
COMet.book Page 1 Tuesday, April 27, 1999 1:54 PM
OrbixCOMet Desktop
Programmer’s Guide
and Reference
IONA Technologies PLC
April 1999

COMet.book Page 2 Tuesday, April 27, 1999 1:54 PM
Orbix is a Registered Trademark of IONA Technologies PLC.
OrbixCOMet (TM) is a Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

Microsoft, Windows, Windows NT and Windows 95 are either trademarks or registered trademarks of Microsoft Corporation.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are
subject to change without notice.

Copyright © 1998, 1999 by IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as
designated by the companies who market those products.

M 2 2 8 9

Contents

COMet.book Page iii Tuesday, April 27, 1999 1:54 PM
 Preface xi
Audience xi
Organisation of this Guide xi
Document Conventions xvi

Part I Programmer’s Guide

Chapter 1 Introduction to OrbixCOMet 3
Two-way Interworking 4
Transparent Interworking 4
The Interworking Model 5
How OrbixCOMet Implements the Interworking Model 6

Chapter 2 Getting Started on Automation 11
Phone Book Example 12

Creating a Type Library 12
Implementing the Client 14

Obtaining a Reference to a CORBA Object 15
The Client Code 17
Building the Client 20

Running the Client 20

Chapter 3 Getting Started on COM 23
Phone Book Example 24

Obtaining a MIDL Interface 24
Building a Proxy/Stub DLL 27

Implementing the Client 27
Obtaining a Reference to a CORBA Object 28
Using CoCreateInstance() 30
The Client Code 30
Building the Client 31

Running the Client 32
iii

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page iv Tuesday, April 27, 1999 1:54 PM
Chapter 4 Usage Models and Bridge Locations 33
Automation Client to CORBA Server 34
COM Client to CORBA Server 36
CORBA Client to COM/Automation Server 38

Chapter 5 Mapping CORBA Objects to Automation 41
Translation of Basic Types 42
Translation of Strings 43
Translation of Interfaces 43

Translation of Attributes 45
Translation of Operations 46
Translation of Inheritance 48

Translation of Complex Types 52
Translation of Constructed Types 53
Creating Constructed OMG IDL Types 53
Translation of Structs 53
Translation of Unions 55
Translation of Sequences 57
Translation of Arrays 60
Translation of Exceptions 60
Translation of the Any Type 63
Context Clause 63

Translation of Object References 63
Object Reference Parameters and IForeignObject 64

Translation of Modules 65
Translation of Constants 66
Translation of Enumerated Types 67
Translation of Scoped Names 68
Translation of Typedefs 68

Chapter 6 Mapping Automation Objects to CORBA 71
Translation of Basic Types 72
Translation of Strings 73
Translation of Interfaces 73

Translation of Properties 74
Translation of Methods 75
Translation of Inheritance 75

Translation of SafeArrays 76
 iv

C o n t e n t s

COMet.book Page v Tuesday, April 27, 1999 1:54 PM
Translation of Exceptions 77
Translation of Variants 78
Translation of Object References 78
Translation of Enumerated Types 79
Translation of Typedefs 80

Chapter 7 Mapping CORBA Objects to COM 81
Translation of Basic Types 82
Translation of Strings 82
Translation of Interfaces 83

Translation of Attributes 84
Translation of Operations 85
Translation of Inheritance 86

Translation of Complex Types 89
Translation of Constructed Types 89
Creating Constructed OMG IDL Types 89
Translation of Structs 90
Translation of Unions 91
Translation of Sequences 92
Translation of Arrays 93
Translation of Exceptions 94
Translation of the Any Type 97
Context Clause 98

Translation of Object References 98
Translation of Modules 99
Translation of Constants 100
Translation of Enumerated Types 101
Translation of Scoped Names 102
Translation of Typedefs 103

Chapter 8 Mapping COM Objects to CORBA 105
Translation of Basic Types 106
Translation of Strings 107
Translation of Interfaces 108

Translation of Properties 108
Translation of Operations 109
Translation of Inheritance 110
v

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page vi Tuesday, April 27, 1999 1:54 PM
Translation of Complex Types 111
Translation of Constructed Types 111
Translation of Structs 111
Translation of Unions 111
Translation of Pointers 113
Translation of Arrays 114
Translation of Exceptions 114
Translation of Variants 117

Translation of Constants 117
Translation of Enumerated Types 118
Translation of Scoped Names 118
Translation of Typedefs 119

Chapter 9 Development Support Tools 121
Type Store GUI Tools 122

The OrbixCOMet Tools Screen 122
Adding New Information to the Type Store 123
Refreshing the Display 123
Deleting the Type Store Contents 124
Rebuilding the Type Store 124
Creating an IDL File 124
Creating a Type Library 126
Generating a Smart Proxy 128
Generating Server Stub Code and Support for Callbacks 129

Type Store Command Line Tools 131
Replacing an Existing DCOM Server 133

Chapter 10 Implementing CORBA Clients 135
Interface to the ORB 136

Obtaining a Reference to the ORB 136
Finding Object References 137

The (D)ICORBAFactory Interface 138
The Naming Service 141
IDL Operations 146

Interworking Interfaces on Objects 147
Implementing CORBA Clients in Automation 148

Late Binding 148
Early Binding 148
 vi

C o n t e n t s

COMet.book Page vii Tuesday, April 27, 1999 1:54 PM
Narrowing Object References 148
A Visual Basic Client Program 150
A PowerBuilder Client Program 155

Implementing CORBA Clients in COM 158
COM Apartments and Threading 158
Narrowing Object References 158
A C++ COM Client Program 159

Chapter 11 Exposing DCOM Servers to CORBA Clients 163
An Existing DCOM Server 164
Exposing the DCOM Server to CORBA 165
Using the Server from CORBA 166

Writing a Client to Talk to the DCOM Server 168
CORBA Client Example Using Composable Support 169
Connection and Usage from Other ORBs 170

Chapter 12 Implementing CORBA Servers 173
Defining the Interfaces 174
Generating the Skeleton Code 174
Implementing CORBA Servers in Automation 175

Implementing the Interfaces 175
Registering with OrbixCOMet 178

Implementing CORBA Servers in COM 180
Implementing the Interfaces 180
Registering with OrbixCOMet 186

Running the Server 187
Registering the CORBA Server in the Implementation Repository 188

Chapter 13 Error Handling 189
CORBA Exceptions 190
Example of User Exception 190
Exception Properties 192

System Exception Properties 192
Exception Handling in Automation 193

Exception Handling in Visual Basic 193
Inline Exception Handling 194
Using Type Information 196
Using the Standard Interfaces 196
vii

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page viii Tuesday, April 27, 1999 1:54 PM
Exception Handling in COM 197
Catching COM Exceptions 197
Using Direct-to-COM Support in Visual C++ 5.0 198

Raising an Exception in a Server 199
Automation Exceptions 199
COM Exceptions 200

Chapter 14 Client Callbacks 201
Implementing Callbacks 202
The OMG IDL Interfaces 202
Generating Skeleton Code 203
Writing a Client 203
Implementing the Server 205
Invoking the Operation 207
Registering the Callback Object Server 208

Chapter 15 Managing the Type Store 211
The Caching Mechanism 212
Type Store Configuration Issues 213
Inserting Information into the Type Store 213
Removing the Contents of the Type Store 213
Priming the Bridge Cache 214

Prime from the Interface Repository 216
Prime from Type Libraries 216
Dumping Contents of the Cache 217

Chapter 16 OrbixCOMet Configuration 219
OrbixCOMet Keys 219
Common Keys 224
Orbix Keys 225

Chapter 17 Deploying your OrbixCOMet Application 227
Deployment Models 228

Internet Deployment 228
Bridge on Each Client Machine 231
DCOM On-the-Wire with OrbixCOMet 232
Bridge Shared by Multiple Clients 234
Bridge on Server Machine 235
 viii

C o n t e n t s

COMet.book Page ix Tuesday, April 27, 1999 1:54 PM
Deployment Steps 235
Installing Your Application Runtime 235
Installing the Development Language Runtime 235
Installing the OrbixCOMet Runtime 236
Minimising Your Client-Side Footprint 237

Part II Programmer’s Reference

Chapter 18 OrbixCOMet API 241
Automation Interfaces 241

DIOrbixServerAPI 241
DCollection 244
DICORBAAny 245
DICORBAFactory 249
DICORBAFactoryEx 251
DICORBAObject 252
DICORBAStruct 254
DICORBASystemException 255
DICORBATypeCode 256
DICORBAUnion 259
DICORBAUserException 259
DIForeignComplexType 260
DIForeignException 260
DIObject 261
DIObjectInfo 261
DIOrbixObject 262
DIOrbixORBObject 266
DIORBObject 278
IForeignObject 281

COM Interfaces 283
IOrbixServerAPI 283
ICORBA_Any 285
ICORBAFactory 287
ICORBAObject 288
ICORBA_TypeCode 290
ICORBA_TypeCodeExceptions 294
IForeignObject 295
ix

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page x Tuesday, April 27, 1999 1:54 PM
IMonikerProvider 296
IOrbixObject 297
IOrbixORBObject 299
IORBObject 310

Chapter 19 Introduction to OMG IDL 313
OMG IDL Interfaces 313
Oneway Operations 315
Context Clause 316
Modules 316
Exceptions 316
Inheritance 317
The Basic Types of OMG IDL 320
Constructed Types 321

Structures 321
Enumerated Types 322
Unions 322

Arrays 323
Template Types 323

Sequences 323
Strings 324

Constants 325
Typedef Declaration 325

Forward Declaration 326
Scoped Names 326
The Preprocessor 326
The Orb.idl Include File 327

Chapter 20 System Exceptions 329
Exceptions Defined by CORBA 329
Orbix-Specific Exceptions 330

Index
 x

COMet.book Page xi Tuesday, April 27, 1999 1:54 PM
Preface
OrbixCOMet combines the best of both the Object Management Group (OMG)
Common Object Request Broker Architecture (CORBA) and Microsoft COM
standards. It provides a high performance bidirectional dynamic bridge which
enables two-way integration between COM/Automation and CORBA
applications.

OrbixCOMet is designed to allow COM developers—who use tools like Visual
C++, Visual Basic, PowerBuilder, Delphi or Active Server Pages on the
Windows desktop—to easily access CORBA applications running on Windows,
UNIX or OS/390 (formerly MVS) environments. It means COM developers can
use the tools familiar to them to build heterogenous systems that use both
COM and CORBA components within a COM environment.

Audience
This guide is intended for use by COM developers who wish to familiarise
themselves with developing OrbixCOMet applications on the Windows
Desktop environment.

Organisation of this Guide
This guide is divided into two main parts.

Part I, Programmer’s Guide

Chapter 1, “Introduction to OrbixCOMet”

The COM/CORBA Interworking specification defines a model for transparent
two-way interworking between the Object Management Group (OMG)
Common Object Request Broker Architecture (CORBA) and Microsoft COM/
Automation environments. OrbixCOMet implements the COM/CORBA
xi

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page xii Tuesday, April 27, 1999 1:54 PM
Interworking specification by enabling two-way interworking between CORBA
and COM/Automation objects. This chapter explains what interworking means.
It also introduces the components involved in OrbixCOMet’s implementation of
the interworking model, and the concepts and terminology used throughout this
guide.

Chapter 2, “Getting Started on Automation”
You can use OrbixCOMet to write Automation client applications for existing
CORBA servers implemented, for example, in C++. As an introduction to
programming with OrbixCOMet, this chapter illustrates this with a simple
example.

Chapter 3, “Getting Started on COM”
You can use OrbixCOMet to write COM client applications for existing CORBA
servers implemented, for example, in C++. As a further introduction to
programming with OrbixCOMet, this chapter illustrates this with a simple
example.

Chapter 4, “Usage Models and Bridge Locations”
You can use OrbixCOMet to develop applications that combine COM/
Automation and CORBA in different ways. These combinations are called usage
models. You can build client-server applications based on the following two
usage models: a COM/Automation client that calls objects in a CORBA server,
and a CORBA client that calls objects in a COM/Automation server. This
chapter explains how OrbixCOMet supports these usage models.

Chapter 5, “Mapping CORBA Objects to Automation”

CORBA types are defined in OMG IDL. Automation types are defined in
Microsoft IDL (MIDL). To allow interworking between CORBA and
Automation, OMG IDL types must be translated to MIDL. This chapter outlines
how translation of CORBA objects to Automation is achieved.
 xii

P r e f a c e

COMet.book Page xiii Tuesday, April 27, 1999 1:54 PM
Chapter 6, “Mapping Automation Objects to CORBA”

Automation types are defined in Microsoft IDL (MIDL). CORBA types are
defined in OMG IDL. To allow interworking between Automation and CORBA,
MIDL types must be translated to OMG IDL. This chapter outlines how
translation of Automation objects to CORBA is achieved.

Chapter 7, “Mapping CORBA Objects to COM”

CORBA types are defined in OMG IDL. COM types are defined in Microsoft IDL
(MIDL). To allow interworking between CORBA and COM, OMG IDL types
must be translated to MIDL. This chapter outlines how translation of CORBA
objects to COM is achieved.

Chapter 8, “Mapping COM Objects to CORBA”
COM types are defined in Microsoft IDL (MIDL). CORBA types are defined in
OMG IDL. To allow interworking between COM and CORBA, MIDL types must
be translated to OMG IDL. This chapter outlines how translation of COM
objects to CORBA is achieved.

Chapter 9, “Development Support Tools”
OrbixCOMet is a high-performance bridge that stores OMG IDL and MIDL type
information at the bridging location in an ORB-neutral binary format. The
OrbixCOMet type store holds a cache of this information that is used by the
dynamic bridge during runtime of your OrbixCOMet applications. This chapter
describes the GUI and command line tools that allow you to maintain the type
store cache and to create OMG IDL, MIDL, type libraries, smart proxy DLLs and
server stub code. It also describes the GUI and command line tools that you can
use to replace an existing DCOM server with a CORBA server.

Chapter 10, “Implementing CORBA Clients”
This chapter provides further details about programming OrbixCOMet clients.
xiii

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page xiv Tuesday, April 27, 1999 1:54 PM
Chapter 11, “Exposing DCOM Servers to CORBA Clients”

This chapter explains how to expose an existing DCOM server to CORBA
clients. This functionality is particularly important in allowing a CORBA client to
talk to applications such as Excel, Word, Access, and so on.

Chapter 12, “Implementing CORBA Servers”

You can use OrbixCOMet to implement COM/Automation servers that appear
as CORBA servers. These servers can accept requests from standard COM/
Automation clients and from CORBA clients. This chapter provides details
about programming OrbixCOMet servers.

Chapter 13, “Error Handling”
Error handling is an important aspect of programming an OrbixCOMet
application. Remote method calls are much more complex to transmit than local
method calls, so there are many more possibilities for error. This chapter
explains how CORBA exceptions can be handled in a client and how a server
can raise a user exception.

Chapter 14, “Client Callbacks”
Usually, CORBA clients invoke operations on objects in CORBA servers.
However, CORBA clients can implement some of the functionality associated
with servers, and all servers can act as clients. A callback invocation is a
programming technique that takes advantage of this. This chapter describes
client callbacks.

Chapter 15, “Managing the Type Store”
“Development Support Tools” on page 121 describes the tools you can use to
populate and remove information from the OrbixCOMet type store in order to
create IDL files, type libraries, smart proxy DLLs and server stub code. This
chapter describes the general workings of the type store and explains how you
can prime it in order to optimise performance at application runtime.
 xiv

P r e f a c e

COMet.book Page xv Tuesday, April 27, 1999 1:54 PM
Chapter 16, “OrbixCOMet Configuration”

This chapter describes the keys that are of interest to OrbixCOMet
configuration, and their associated default values. It includes details of
configuration entries that are either specific to OrbixCOMet or common to
multiple IONA products.

Chapter 17, “Deploying your OrbixCOMet Application”

This chapter describes the various models you can adopt when deploying an
application you have built using OrbixCOMet. It also describes the steps you
must follow to deploy an OrbixCOMet application.

Part II, Programmer’s Reference

Chapter 18, “OrbixCOMet API”
This chapter describes the application programming interface (API) to
OrbixCOMet. The API is defined in MIDL. This chapter is divided into two main
sections. The first section describes the interface entries for Automation. The
second section describes the interface entries for COM.

Chapter 19, “Introduction to OMG IDL”
This chapter introduces the CORBA Interface Definition Language (OMG IDL)
which is used to describe the interfaces of objects in Orbix.

Chapter 20, “System Exceptions”

This chapter describes system exceptions that are defined by CORBA or specific
to Orbix.
xv

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page xvi Tuesday, April 27, 1999 1:54 PM
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or pathnames for your particular
system. For example:

% cd /users/ your_name

Note: some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or
characters.

No prompt When a command’s format is the same for multiple
platforms, no prompt is used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.
 xvi

P r e f a c e

COMet.book Page xvii Tuesday, April 27, 1999 1:54 PM
......

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xvii

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page xviii Tuesday, April 27, 1999 1:54 PM
 xviii

COMet.book Page 1 Tuesday, April 27, 1999 1:54 PM
Part I
Programmer’s Guide

COMet.book Page 2 Tuesday, April 27, 1999 1:54 PM

COMet.book Page 3 Tuesday, April 27, 1999 1:54 PM
 1
Introduction to OrbixCOMet

The COM/CORBA Interworking specification defines a model for
transparent two-way interworking between the Object Management
Group (OMG) Common Object Request Broker Architecture
(CORBA) and Microsoft COM/Automation environments.
OrbixCOMet implements the COM/CORBA Interworking
specification by enabling two-way interworking between CORBA and
COM/Automation objects. This chapter explains what interworking
means. It also introduces the components involved in OrbixCOMet’s
implementation of the interworking model, and the concepts and
terminology used throughout this guide.

Subsequent chapters will explain how to use OrbixCOMet’s
implementation of the model to build distributed applications that
combine the CORBA and COM/Automation models.

Note: OrbixCOMet is not a CORBA C++ server-side implementation product.
Any C++ examples provided in this book are provided for reference
purposes and assume you already have a CORBA server implementation
product. The examples provided are for use with the Orbix for
Windows product.
3

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 4 Tuesday, April 27, 1999 1:54 PM
Two-way Interworking
Two-way interworking means that CORBA and COM/Automation applications
integrate seamlessly. For example:

• A COM/Automation client can call objects in a CORBA server. Because
both COM and CORBA support distribution, the COM/Automation
client and the CORBA server can be on different machines.

• A CORBA client can call objects in a COM/Automation server. Again, the
CORBA client and the COM/Automation server can be on different
machines.

You can implement CORBA clients and CORBA servers on any operating
system and in any language supported by a CORBA implementation. The range
of operating systems supported by Orbix includes UNIX, Windows, and OS/390
(formerly MVS). The range of languages supported by Orbix includes C++, Java,
and (using OrbixCOMet) all COM and Automation-based languages.

By providing two-way interworking, OrbixCOMet supports application
integration across the boundaries of the network, different operating systems
and different programming languages. In particular, it allows you to create new
applications to interact with existing applications that were written specifically
for the Windows desktop.

OrbixCOMet supports both the Internet Inter-ORB Protocol (IIOP) and
Microsoft DCOM. This means any IIOP-compliant Object Request Broker
(ORB) can interact with an OrbixCOMet application.

Transparent Interworking
Transparency in the interworking mechanism means transparency between the
COM/Automation and CORBA object models. For example:

• A client working in the CORBA model can view and treat a COM/
Automation object as if it were a CORBA object. This is because the
COM/Automation object has an OMG IDL interface that the CORBA
client can understand.
 4

I n t r o du c t i o n t o O r b i x C OMe t

COMet.book Page 5 Tuesday, April 27, 1999 1:54 PM
• A client working in the COM/Automation model can view and treat a
CORBA object as if it were a COM/Automation object. This is because
the CORBA object has a MIDL interface that the COM/Automation client
can understand.

Transparency allows clients to work with their familiar object model. They do
not have to know that the objects they are using belong to another object
system.

The Interworking Model
The COM/CORBA Interworking specification defines the interworking model
that specifies how the integration between the COM/Automation and CORBA
object models is achieved.

A client in one object system wishes to send a request to an object in the other
system. The interworking specification provides a bridge that acts as an
intermediary between the two object systems. The bridge provides the
mappings that are required between the object systems. It provides these
mappings transparently so that the client can make requests in its familiar object
model.

To implement the bridge, the model provides an object called a view in the
client’s system. The view object exposes the interface of the target object in the
model understood by the client.

Figure 1.1: The Interworking Model

O b ject m o del A (c lien t) O bje ct m o del B (se rver)

O bject reference in

Target
O bject

B rid ge

View of
Target
object

O bject reference in
5

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 6 Tuesday, April 27, 1999 1:54 PM
The client makes requests on the view object. The bridge maps these requests
into requests in the server’s object model and forwards these requests to the
target objects across the system boundary. The workings of the bridge are
transparent to the client.

How OrbixCOMet Implements the
Interworking Model

For a CORBA programmer, OrbixCOMet provides the expected development
paradigm for ORB applications. The CORBA programmer starts with an OMG
IDL specification. Using OrbixCOMet, the CORBA programmer has the choice
to code CORBA clients and servers using any COM-based or Automation-based
tool including C++, Visual Basic or PowerBuilder.

OrbixCOMet, therefore, presents a programming model that is familiar to the
programmer. Figure 1.2 on page 7 shows the components involved in
OrbixCOMet’s implementation of the interworking model for allowing COM/
Automation clients to make calls on objects in a CORBA server. (Similarly, the
interworking model allows for CORBA clients to make calls on objects in a
COM/Automation server.)

Bridge

The role of the OrbixCOMet bridge is to map requests in one object system
into requests in the other object system. Two-way interworking requires the
bridge to provide the mappings and perform translation between CORBA and
COM/Automation types.

A bridge contains a COM/Automation object and an Orbix object so that it can
expose an appropriate COM/Automation or CORBA interface to its clients.
(Refer to Figure 1.3 on page 8.) In OrbixCOMet, the bridge is implemented as a
set of DLLs that are capable of dynamically mapping between any COM/
Automation and CORBA types.
 6

I n t r o du c t i o n t o O r b i x C OMe t

COMet.book Page 7 Tuesday, April 27, 1999 1:54 PM
Figure 1.2: OrbixCOMet’s Implementation of the Interworking Model

A utom a tion
C lient

C O M
C lient

C O M et

C O R B A
Ser ver

Visual Basic ,
Power Bu ilder

and so on .

C + + , V J+ + ,
and so on .

U nix, M VS, N T,
Java

and so on .

Type
Sto re

M achin e / Pro cess
B o und ar y
7

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 8 Tuesday, April 27, 1999 1:54 PM
Figure 1.3: An OrbixCOMet Bridge View Object

Automation Client

This is a regular Automation client written in a language such as Visual
Basic, PowerBuilder, Excel, MFC or any other Automation-compatible
language.

COM Client

This is a pure COM client written in C++ or any language that supports
COM clients.

COM Library

This is part of the operating system that provides the COM and
Automation infrastructure.

CORBA Server

This is a normal CORBA server written in any language supported by an
ORB. It can be an Orbix program written in languages that include C++,
Java, and Automation-compatible languages such as Visual Basic and
PowerBuilder.

O rb ix
O bjec t

B ridge V iew O bject

COM
Object

COM Interface

Autom ation Interface
 8

I n t r o du c t i o n t o O r b i x C OMe t

COMet.book Page 9 Tuesday, April 27, 1999 1:54 PM
Automation Server

This is a regular Automation server written in a language such as Visual
Basic, PowerBuilder, Excel, MFC or any other Automation-compatible
language.

COM Server

This is a pure COM server written in C++ or any language that supports
COM servers.

CORBA Client

This is a CORBA client written in any language supported by an ORB. It
can be an Orbix program written in languages that include C++, Java, and
Automation-compatible languages such as Visual Basic and PowerBuilder.

As shown in Figure 1.2 on page 7, the Interworking model allows a COM/
Automation client to make calls on objects in a CORBA server. Similarly, a
CORBA client can make calls on objects in a COM/Automation server. The
bridge is not involved in CORBA to CORBA requests.
9

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 10 Tuesday, April 27, 1999 1:54 PM
 10

COMet.book Page 11 Tuesday, April 27, 1999 1:54 PM
 2
Getting Started on Automation

You can use OrbixCOMet to write Automation client applications for
existing CORBA servers implemented, for example, in C++. As an
introduction to programming with OrbixCOMet, this chapter
illustrates this with a simple example.

Versions of the Automation client application described in this chapter can be
found at the following locations in your OrbixCOMet installation:

The server application is implemented in C++ and its code is located in the
directory demo\corbasrv\phonebook of your OrbixCOMet installation. You do
not need to understand how the server is implemented in order to follow the
example in this chapter.

This chapter assumes that you are familiar with the CORBA Interface Definition
Language (OMG IDL). Refer to “Introduction to OMG IDL” on page 313 for
more details.

Visual Basic demo\VB6

PowerBuilder demo\PB6

Internet Explorer demo\IE
11

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 12 Tuesday, April 27, 1999 1:54 PM
Phone Book Example
Figure 2.1 illustrates the components of a telephone book application. The
CORBA server contains an object that supports the interface PhoneBook . Your
task is to implement the Automation client that will make requests on the
PhoneBook object.

Figure 2.1: Telephone Book Example

Creating a Type Library

When using an Automation client, you have the option in some controllers (for
example, Visual Basic) of using straight IDispatch interfaces or dual interfaces.
Refer to the sections “Late Binding”and “Early Binding” on page 148 for more
details.

If you want to use dual interfaces you must create a type library. The Type Store
Manager tool (Typeman.exe) allows you to do this. (Refer to “Development
Support Tools” on page 121 for more details about Typeman.exe .)

The OrbixCOMet tools screen shown in Figure 2.2 on page 13 is opened
when you click the COMet tools option on your OrbixCOMet start menu.

C O RB A Server

O rb ix O bjec t
(Im plem ented in C ++)

P hon eB o ok
O bjec t

num be rO fE ntrie s ()
addN um be r ()
lo o kupN u m be r ()

Autom ation
Client COMet
 12

G e t t i n g S t a r t e d on A u t o ma t i o n

COMet.book Page 13 Tuesday, April 27, 1999 1:54 PM
Figure 2.2: OrbixCOMet Tools Screen

The TypeStore Contents panel lists all the interfaces in the type store. To
create a type library:

1. From the TypeStore Contents panel, select an interface you want to
include in the type library. (In this example, you would add the Phone
Book interface.)

2. Select the Add button. This adds the interface to the Types to use
panel.

3. Select the CreateTLB button after you have selected all the types you
want to use. This opens the Typelibrary Generator screen shown in
Figure 2.3 on page 14.
13

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 14 Tuesday, April 27, 1999 1:54 PM
Figure 2.3: Creating a Type Library

4. Enter the library name and the type library pathname in the
corresponding fields.

5. Select the appropriate radio button to determine whether interface
prototypes should appear as IDispatch only or use the specific interface
name.

6. Select the Generate TLB button. This creates the type library.

Refer to “Development Support Tools” on page 121 to find out more about
these screens and about creating a type library.

Implementing the Client
The principal task of the client is to obtain a reference to an Automation view
object in the bridge that can forward requests to the PhoneBook object in the
CORBA server. The section “How OrbixCOMet Implements the Interworking
Model” on page 6 explained that a client makes method calls on a view object.
The bridge forwards these requests to the target object in the server.
 14

G e t t i n g S t a r t e d on A u t o ma t i o n

COMet.book Page 15 Tuesday, April 27, 1999 1:54 PM
In this example, the PhoneBook view object exports the Automation interface
DIPhoneBook generated from the OMG IDL PhoneBook interface. You can find
details of how CORBA types are translated to Automation in “Mapping CORBA
Objects to Automation” on page 41.

Obtaining a Reference to a CORBA Object

This section includes Visual Basic and PowerBuilder examples of how the client
obtains a reference to a CORBA object.

Visual Basic

Dim ObjFactory As Object
Dim phoneBookObj As Object
...
Set ObjFactory = CreateObject("CORBA.Factory")
...
Set phoneBookObj = ObjFactory.GetObject(

PhoneBook:PhoneBookSrv:" & host.Text)

PowerBuilder

OleObject ObjFactory
OleObject phoneBookObj
...
ObjFactory = CREATE OleObject
ObjFactory.ConnectToNewObject("CORBA.Factory")
...
phoneBookObj = CREATE OleObject
phoneBookObj = ObjFactory.GetObject(

PhoneBook::PhoneBookSrv:" & host.Text)

The client first instantiates a CORBA object factory in the bridge. The CORBA
object factory is a factory for view objects. It has the ProgID CORBA.Factory .

The client then calls GetObject() on the CORBA object factory. It passes the
name of PhoneBook object in the CORBA server in the parameter for
GetObject() . This parameter has the form:

Interface:Marker:Server:Host
15

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 16 Tuesday, April 27, 1999 1:54 PM
In this example, GetObject() does not specify a marker (Orbix object name), so
the call to GetObject() will look for any object in the PhoneBookSrv server on
the host specified in host.Text that supports the PhoneBook interface. Refer to
“Implementing CORBA Clients” on page 135 for full details of the string
parameter for GetObject() .

Figure 2.4: Binding to the Phone Book Object

The purpose of the call to GetObject() is to achieve the connection between
the client’s phoneBookObj object reference and the target PhoneBook object in
the server. To achieve this, GetObject() does the following:

1. It creates an Automation view object in the phonebookBridge that
implements the dual interface DIPhoneBook .

2. It binds the Automation view object to the CORBA implementation
object named in GetObject() ’s string parameter.

3. It returns a reference to the view object.

After the call to GetObject() , the client can use the phoneBookObj object
reference to invoke operations on the target PhoneBook object in the server.
For example:

phoneBookObj.addNumber(...)

Autom ation Client

A utom atio n
V iew

D IPhoneB ook

Ref.
to

Factory

R ef.
to

PhoneB ook

Factory
O bject

To PhoneB ook
ob ject in rem ote
C O RB A server

23

1

B ridge
 16

G e t t i n g S t a r t e d on A u t o ma t i o n

COMet.book Page 17 Tuesday, April 27, 1999 1:54 PM
The Client Code

This section provides Visual Basic and PowerBuilder versions of the client
application. It shows how the code extracts provided earlier in this chapter fit
into a full client application. The client presents the interface shown in Figure 2.5.

Visual Basic Implementation

General Declarations

Declare a reference to the factory object and to the Automation view object.

Dim ObjFactory As Object
Dim phoneBookObj As Object

Creating the Form

Create the CORBA factory object when the Visual Basic Form is created.

Private Sub Form_Load()
Set ObjFactory = CreateObject("CORBA.Factory")

End Sub

Figure 2.5: Using the Phone List Search Client Application
17

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 18 Tuesday, April 27, 1999 1:54 PM
Connecting to the CORBA Server

The implementation of the Connect button connects to the CORBA object
specified in GetObject() ’s parameter.

Private Sub ConnectBtn_Click()
Set phoneBookObj = _

ObjFactory.GetObject(_
"PhoneBook:PhoneBookSrv:" & host.Text)

...
End Sub

Invoking Operations on the PhoneBook Object

The subroutines to implement the Add, LookUp, and Update buttons call OMG
IDL operations on the PhoneBook object in the CORBA server.

Private Sub AddBtn_Click()
If phoneBookObj.addNumber(_

PersonalName.Text, Number.Text) Then
MsgBox "Added " & PersonalName.Text & " successfully"

Else ...
End If

' Update the display of the current number of
' entries in the phonebook
EntryCount.Caption = phoneBookObj.numberOfEntries

End Sub

Private Sub LookupBtn_Click()
Dim num
num = phoneBookObj.lookupNumber(PersonalName.Text)
...

End Sub

Private Sub UpdateBtn_Click()
' Update the display for the number of entries
' in the remote phonebook
EntryCount.Caption = phoneBookObj.numberOfEntries

End Sub
 18

G e t t i n g S t a r t e d on A u t o ma t i o n

COMet.book Page 19 Tuesday, April 27, 1999 1:54 PM
Unloading the Form

The Form_Unload() subroutine releases the CORBA factory object and the
Automation view object.

Private Sub Form_Unload(Cancel As Integer)
Set ObjFactory = Nothing
Set phoneBookObj = Nothing

End Sub

PowerBuilder Implementation

General Declarations

Declare global variables for the factory object and the Automation view object.

OleObject ObjFactory
OleObject phoneBookObj

Loading the Window

Create the CORBA factory object within the open event for the Phone List
Search Client window.

ObjFactory = CREATE OleObject
ObjFactory.ConnectToNewObject("CORBA.Factory")

Connecting to the CORBA Server

The clicked event for the Connect button connects to the CORBA server.

phoneBookObj = ObjFactory.GetObject(
"PhoneBook:PhoneBookSrv:" + sle_host.Text)

...

Invoking Operations on the PhoneBook Object

The clicked event for the Add, LookUp, and Update buttons call operations on
the PhoneBook object in the CORBA server.

// Add Button
If sle_phone.Text <> "" and sle_name.Text <> "" then

If phoneBookObj.addNumber(sle_name.Text, sle_phone.Text) Then
 MessageBox ("Success!", "Added " + sle_name.Text

+ " successfully.")
EntryCount.Text = String(phoneBookObj.numberOfEntries)
19

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 20 Tuesday, April 27, 1999 1:54 PM
...
End If

End if

// Lookup Button
if sle_name.Text <> "" then

...
Result = phoneBookObj.lookupNumber(sle_name)
...

end if

// Update Button
EntryCount.Text = String(phoneBookObj.numberOfEntries)

Unloading the Window

Release the CORBA factory object and the Automation view object when
unloading the window.

ObjFactory.DisconnectObject()
DESTROY ObjFactory
DESTROY phoneBookObj

Building the Client

You can now build your client executable as normal for the language you are
using.

Running the Client
To run the client, perform the following steps:

1. Ensure that the Orbix daemon is running on the CORBA server’s host. If
you have Orbix for Windows installed, you can run the Orbix daemon
from the Orbix Desktop Programs group on the Windows Start menu.

2. Register the server with the Implementation Repository on the server’s
host. (Usually, it will not be necessary to register a server if the server
has been written and registered by someone else.)

You can use the putit utility from the command prompt as follows:
 20

G e t t i n g S t a r t e d on A u t o ma t i o n

COMet.book Page 21 Tuesday, April 27, 1999 1:54 PM
putit PhoneBookSrv your_path \phonebook.exe

where your_path is the full pathname of the directory containing the
server’s executable file.

Refer to the Orbix documentation set for more information about the
putit command.

Note: Alternatively, you can use the Orbix Server Manager to register the
server. Run the Orbix Server Manager from the GUI Tools Programs
group on the Windows Start menu. Register the server with the name
PhoneBookSrv . The on-line GUI Tools Help explains how use the Orbix
Server Manager to register a server.

3. Run the client.

On the Phone List Search Client screen, type the server’s host name in
the Host textbox and click Connect. You can now add and look up phone
book entries.

If your client is inactive for some time, the PhoneBookSrv server will time
out and exit. It will be reactivated automatically if the client issues
another request.
21

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 22 Tuesday, April 27, 1999 1:54 PM
 22

COMet.book Page 23 Tuesday, April 27, 1999 1:54 PM
 3
Getting Started on COM

You can use OrbixCOMet to write COM client applications for
existing CORBA servers implemented, for example, in C++. As an
introduction to programming with OrbixCOMet, this chapter
illustrates this with a simple example.

A version of the COM client application described in this chapter is located in
the directory demo\com\phonebook of your OrbixCOMet installation. This
directory contains Visual C++ COM client code.

The server application is implemented in C++ and its code is located in the
directory demo\corbasrv\phonebook of your OrbixCOMet installation. You do
not need to understand how the server is implemented in order to follow the
example in this chapter.

This chapter assumes that you are familiar with the CORBA Interface Definition
Language (OMG IDL). Refer to “Introduction to OMG IDL” on page 313 for
more details.
23

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 24 Tuesday, April 27, 1999 1:54 PM
Phone Book Example
Figure 3.1 illustrates the components of a telephone book application. The
CORBA server contains an object that supports the interface PhoneBook . Your
task is to implement the COM client that will make requests on the PhoneBook
object.

Figure 3.1: Telephone Book Example

Obtaining a MIDL Interface

The normal procedure for writing a client in COM is to first obtain a MIDL
definition for the interface. OrbixCOMet allows you to extract these MIDL
definitions from the OrbixCOMet type store by using the Type Store Manager
tool (Typeman.exe) described in “Development Support Tools” on page 121.
For this example, you need to get a MIDL definition for the phone book example
as shown in Figure 3.1.

The OrbixCOMet tools screen shown in Figure 3.2 on page 25 is opened
when you select the COMet tools option on your OrbixCOMet start menu.

C O RB A Server

O rb ix O bjec t
(Im plem ented in C ++)

P hon eB o ok
O bjec t

COM Client COMet

num be rO fE ntrie s ()
addN um be r ()
lo o kupN u m be r ()
 24

G e t t i n g S t a r t e d o n C OM

COMet.book Page 25 Tuesday, April 27, 1999 1:54 PM
Figure 3.2: OrbixCOMet Tools Screen

The TypeStore Contents panel lists all the interfaces in the type store. To
create an IDL file:

1. From the TypeStore Contents panel, select an interface you want to
include in the IDL file. (In this example, you would add the Phone Book
interface.)

2. Select the Add button. This adds the interface to the Types to use
panel.

3. Select the CreateIDL button after you have selected all the types you
want to use. This opens the OrbixCOMet ts2idl client screen shown
in Figure 3.3 on page 26.
25

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 26 Tuesday, April 27, 1999 1:54 PM
Figure 3.3: Creating an IDL File

4. Select the appropriate radio button to indicate the type of IDL file you
want to create.

5. Select the Generate IDL button. This creates the IDL file.

Note: Refer to “Development Support Tools” on page 121 to find out more
about these screens and about generating IDL files.
 26

G e t t i n g S t a r t e d o n C OM

COMet.book Page 27 Tuesday, April 27, 1999 1:54 PM
Building a Proxy/Stub DLL

If the OrbixCOMet bridge is not being loaded in-process to your COM client
application, you must create a standard DCOM proxy DLL for the interfaces you
are using. This is necessary to allow DCOM to correctly make a connection to
the remote OrbixCOMet bridge from the client. OrbixCOMet includes a
command line tool called ts2idl.exe that can create the sources for the proxy/
stub DLL. For this example, you would issue the following command:

ts2idl -f PhoneBook.idl -s -p PhoneBook

When you are generating a MIDL file from the command line, the -p switch
allows you to create a Visual C++ makefile that you can use to compile your
proxy/stub DLL. For this example, this makefile is called Phonebook.MK and is
located in the demo\getstarted\COM directory.

Note: Refer to “Development Support Tools” on page 121 to find out more
about generating smart proxy DLLs and server stub code.

Implementing the Client
The principal task of the client is to obtain a reference to a COM view object in
the bridge that can forward requests to the PhoneBook object in the CORBA
server. The section “How OrbixCOMet Implements the Interworking Model”
on page 6 explained that a client makes method calls on a view object. The
bridge forwards these requests to the target object in the server.

In this example, the PhoneBook view object exposes the COM interface
IPhoneBook generated from the OMG IDL PhoneBook interface. You can find
details of how CORBA types are translated to COM in “Mapping CORBA
Objects to COM” on page 81.
27

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 28 Tuesday, April 27, 1999 1:54 PM
Obtaining a Reference to a CORBA Object

The following code shows how the client obtains a reference to a CORBA
object:

//Connecting to the CORBA Factory
hr = CoCreateInstanceEx (IID_ICORBAFactory,

NULL, ctx, NULL, 1, &mqi);
pCORBAFact = (ICORBAFactory*)mqi.pItf;

//Connecting to the CORBA Server
memset(szMarkerServerHost,'\0',128);
sprintf(szMarkerServerHost,

"PhoneBook:PhoneBookSrv:%s", hostname);

hr = pCORBAFact->GetObject(szMarkerServerHost,&pUnk);
hr = pUnk->QueryInterface(IID_IPhoneBook, (PPVOID)&pIPhoneBook);

The client first instantiates a CORBA object factory in the bridge. The CORBA
object factory is a factory for view objects. It has the IID IID_ICORBAFactory .

The client then calls GetObject() on the CORBA object factory. It passes the
name of PhoneBook object in the CORBA server in the parameter for
GetObject() . This parameter has the form:

Interface:Marker:Server:Host

In this example, GetObject() does not specify a marker (Orbix object name), so
the call to GetObject() will look for any object in the PhoneBookSrv server on
the host specified in host.Text that supports the PhoneBook interface. Refer to
“Implementing CORBA Clients” on page 135 for full details of the string
parameter for GetObject() .
 28

G e t t i n g S t a r t e d o n C OM

COMet.book Page 29 Tuesday, April 27, 1999 1:54 PM
Figure 3.4: Binding to the Phone Book Object

The purpose of the call to GetObject() is to achieve the connection between
the client’s phoneBookObj object reference and the target PhoneBook object in
the server. To achieve this, GetObject() does the following:

1. It creates a COM view object in the phonebookBridge that implements
the interface IPhoneBook .

2. It binds the COM view object to the CORBA implementation object
named in GetObject() ’s string parameter.

3. It returns a reference to the view object.

After the call to GetObject() , the client can use the phoneBookObj object
reference to invoke operations on the target PhoneBook object in the server.
For example:

phoneBookObj.addNumber(...)

IPhoneB ook

R ef.
to

Facto ry

R ef.
to

PhoneB ook

Factor y
O bject

To PhoneB ook
ob jec t in rem ote
C O R B A server

23

1

B ridge

C O M C lient

C O M V iew
29

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 30 Tuesday, April 27, 1999 1:54 PM
Using CoCreateInstance()

The CORBA.Factory object allows you to obtain a reference to a CORBA object
in a manner that is compliant with the OMG specification. However,
OrbixCOMet also allows a COM client to connect directly to a CORBA server
using the standard CoCreateInstance() COM API call. Refer to “Implementing
CORBA Clients” on page 135 for more details.

The Client Code

This section provides a Visual C++ 5.0 version of the client application. It shows
how the code extracts provided earlier in this chapter fit into a full client
application. The client produces the following output:

%%% App beginning --
%%% Using out of process server
About to add IONA Freephone USA
Successfully added the number
There are 12 entries
The number for IONA Freephone USA is 6724948
%%% App end

Includes
// Header file created from the MIDL file
// generated by the TypeStore Manager Tool
//
#include "phoneBook.h"

General Declarations
IUnknown*pUnk = NULL;

IPhoneBook*pIPhoneBook = NULL;
ICORBAFactory*pCORBAFact = NULL;
char szMarkerServerHost[128];

Connecting to the CORBA Factory
hr = CoCreateInstanceEx (IID_ICORBAFactory,

NULL, ctx, NULL, 1, &mqi);
pCORBAFact = (ICORBAFactory*)mqi.pItf;
 30

G e t t i n g S t a r t e d o n C OM

COMet.book Page 31 Tuesday, April 27, 1999 1:54 PM
Connecting to the CORBA Server
memset(szMarkerServerHost,'\0',128);
sprintf(szMarkerServerHost,

"PhoneBook:PhoneBookSrv:%s", hostname);

hr = pCORBAFact->GetObject(szMarkerServerHost,&pUnk);
hr = pUnk->QueryInterface(IID_IPhoneBook, (PPVOID)&pIPhoneBook);

Invoking Operations on the PhoneBook Object
boolean lAdded=0;
cout << "About to add IONA Freephone USA" << endl;
hr = pIF->addNumber("IONA Freephone USA",6724948, &lAdded);

if (lAdded)
cout << "Successfully added the number" << endl;

else
cout << "Failed to add the number" << endl;

// see how many entries there are in the phonebook
long nNumEntries=0;
hr = pIF->_get_numberOfEntries(&nNumEntries);
cout << "There are " << nNumEntries << " entries" << endl;

// then lookup a couple of numbers number
long phoneNumber=0;
pIF->lookupNumber("IONA Freephone USA", &phoneNumber);
cout << "The number for IONA Freephone USA is " << phoneNumber <<
endl;

Building the Client

You can now build your client executable as normal by running the makefile.
31

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 32 Tuesday, April 27, 1999 1:54 PM
Running the Client
Follow these steps to run the client:

1. Ensure that the Orbix daemon is running on the CORBA server’s host.
You can run the Orbix daemon from the Orbix for Windows Programs
group from the Windows Start menu.

2. Register the CORBA server with the Implementation Repository on the
server’s host. (Usually, it will not be necessary to register a server, if the
server has been written and registered by someone else.)

You can use the putit utility from the command prompt as follows:

putit PhoneBookSrv your_path \phonebook.exe

where your_path is the full pathname of the directory containing the
server’s executable file.

Refer to the Orbix documentation set for more information about the
putit command.

Note: Alternatively, you can use the Orbix Server Manager to register the
server. Run the Orbix Server Manager from the GUI Tools Programs
group on the Windows Start menu. Register the server with the name
PhoneBookSrv . The on-line GUI Tools Help explains how use the Orbix
Server Manager to register a server.

3. Run the client. It should produce output like the following:

%%% App beginning --
%%% Using in-process server
[392: New IIOP Connection (axiom:1570)]
[392: New IIOP Connection (192.122.221.51:1570)]
[392: New IIOP Connection (axiom:1607)]
[392: New IIOP Connection (192.122.221.51:1607)]
[392: New IIOP Connection (axiom:1611)]
[392: New IIOP Connection (192.122.221.51:1611)]
About to add IONA Freephone USA
Successfully added the number
There are 11 entries
The number for IONA Freephone USA is 6724948
%%% Test end
 32

COMet.book Page 33 Tuesday, April 27, 1999 1:54 PM
 4
Usage Models and Bridge
Locations

You can use OrbixCOMet to develop applications that combine
COM/Automation and CORBA in different ways. These combinations
are called usage models. You can build client-server applications
based on the following two usage models: a COM/Automation client
that calls objects in a CORBA server, and a CORBA client that calls
objects in a COM/Automation server. This chapter explains how
OrbixCOMet supports these usage models.
33

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 34 Tuesday, April 27, 1999 1:54 PM
Automation Client to CORBA Server

Figure 4.1: Automation Client to CORBA Server

The Client

Using this model, an Automation client can use IDispatch to contact a CORBA
server. The client makes method calls on an Automation view object in the
bridge via an IDispatch pointer. The bridge makes a corresponding operation call
on the target object in the CORBA server via a CORBA object reference.

The dynamic marshalling engine of OrbixCOMet allows for automatic mapping
of IDispatch pointers to CORBA interfaces and object references at runtime.

The client need not know that the target object is a CORBA object. An
Automation client can be written in any Automation-based programming
language.

The Server
The CORBA server presents an OMG IDL interface to its objects.

A utom ation C lient

ID ispatch

C O R B A Ser ver

C O RB A O bject
R eference

IIO P
Bridge

A utom ation interface pointer
(ID ispatch pointer)

A utom ation V iew
(a real A utom ation object)

Target
C O RB A
O bject
 34

U s a g e Mo de l s a n d B r i d g e L o c a t i o n s

COMet.book Page 35 Tuesday, April 27, 1999 1:54 PM
The server application can be developed (or already exist) possibly on platforms
other than Windows NT and Windows 95. It can be written in any language
supported by a CORBA implementation such as C++, Java, or any Automation-
based language.

The Bridge
The bridge can be located on the Automation client, on the CORBA server or
on an intermediary machine. It acts as an Automation server because it accepts
requests from the Automation client. The bridge also acts as a CORBA client
because it translates requests from the Automation client into requests on the
CORBA server.
35

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 36 Tuesday, April 27, 1999 1:54 PM
COM Client to CORBA Server

Figure 4.2: COM Client to CORBA Server

The Client

Using this model, a COM client can use the DCOM protocol to contact a
CORBA server. The client makes method calls on a COM view object in the
bridge via a COM interface pointer. The bridge makes a corresponding
operation call on the target object in the CORBA server via a CORBA object
reference.

The dynamic marshalling engine of OrbixCOMet allows for automatic mapping
of COM interface pointers to CORBA interfaces and object references at
runtime.

The client need not know that the target object is a CORBA object. A COM
client can be written in C++ or any language that supports COM clients.

The Server
The CORBA server presents an OMG IDL interface to its objects.

C O R B A Ser ver C O M C lient

C O RB A O bject
R eference

C O M V iew
(a real C O M object)

D CO MIIO P

C O M Interface Pointer

BridgeTarget
C O RB A
O bject
 36

U s a g e Mo de l s a n d B r i d g e L o c a t i o n s

COMet.book Page 37 Tuesday, April 27, 1999 1:54 PM
The server application can be developed (or already exist) possibly on platforms
other than Windows NT and Windows 95. It can be written in any language
supported by a CORBA implementation such as C++, Java, or any Automation-
based language.

The Bridge
The bridge can be located on the COM client, on the CORBA server or on an
intermediary machine. It acts as a COM server because it accepts requests from
the COM client. The bridge also acts as a CORBA client because it translates
requests from the COM client into requests on the CORBA server.
37

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 38 Tuesday, April 27, 1999 1:54 PM
CORBA Client to COM/Automation Server

Figure 4.3: CORBA Client to Automation Server

Figure 4.4: CORBA Client to COM Server

A utom ation Ser ver

Target
Autom ation

Object

Bridge

C O R B A C lient

IIO P

C O RB A O bject R eference

ID ispatch

C O RB A V iew
(a real C O R BA ob ject)

A utom ation interface pointer
(ID ispatch pointer)

C O M Ser ver

Target
COM

Object

Bridge

C O R B A C lient

C O RB A V iew
(a real C O R BA ob ject)

IIO P

C O RB A O bject R eference

C O M interface pointer

D CO M
 38

U s a g e Mo de l s a n d B r i d g e L o c a t i o n s

COMet.book Page 39 Tuesday, April 27, 1999 1:54 PM
The Client

Using this model, a CORBA client can use the CORBA IIOP protocol to contact
a COM/Automation server. The client makes method calls on a CORBA view
object in the bridge via a CORBA object reference. The bridge makes a
corresponding operation call on the target object in the COM/Automation
server via an Automation (IDispatch) or COM interface pointer.

The dynamic marshalling engine of OrbixCOMet allows for automatic mapping
of CORBA interfaces and object references to Automation (IDispatch) and
COM interface pointers.

The client need not know that the target object is a COM/Automation object. A
CORBA client can be developed on any platform including UNIX, Windows NT
and Windows 95. It can be written in any language supported by a CORBA
implementation such as C++, Java, or any Automation-based language.

The Server
The COM/Automation server presents a MIDL interface to its objects. An
Automation server can be written in any Automation-based language. A COM
server can be written in C++ or any language that supports COM servers.

The Bridge
The bridge can be located on the CORBA client (Windows NT or Windows 95
only), on the COM/Automation server or on an intermediary machine. It acts as
a CORBA server because it accepts requests from CORBA clients. The bridge
also acts as a COM/Automation client because it translates CORBA operation
calls into COM/Automation method calls on the COM/Automation server.
39

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 40 Tuesday, April 27, 1999 1:54 PM
 40

COMet.book Page 41 Tuesday, April 27, 1999 1:54 PM
 5
Mapping CORBA Objects to
Automation

CORBA types are defined in OMG IDL. Automation types are defined
in Microsoft IDL (MIDL). To allow interworking between CORBA and
Automation, OMG IDL types must be translated to MIDL. This
chapter outlines how translation of CORBA objects to Automation is
achieved.

For the purposes of illustration, this chapter describes a textual mapping
between OMG IDL and MIDL. OrbixCOMet itself does not require this textual
mapping to take place, because it includes a dynamic marshalling engine. The
textual mappings shown in this chapter are actually performed by OrbixCOMet
at application runtime.
41

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 42 Tuesday, April 27, 1999 1:54 PM
Translation of Basic Types
OMG IDL basic types translate to compatible types in Automation. Table 5.1
shows the mapping for each type.

There is not an exact correspondence between the types supported by OMG
IDL and the types supported by Automation.

Automation does not support unsigned types (that is, unsigned short or
unsigned long). Therefore, an OMG IDL unsigned short is translated to an
Automation signed long . An OMG IDL unsigned long is translated to its
equivalent Automation signed long .

OMG IDL Description MIDL Description

boolean Unsigned char, 8-bit
0 = FALSE

1 = TRUE

VARIANT_BOOL 16-bit integer
0 = FALSE

-1 = TRUE

char 8-bit quantity UI1 a

a. UI1 is supported in Windows32.

8-bit unsigned integer

double IEEE 64-bit float double IEEE 64-bit float

float IEEE 32-bit float float IEEE 32-bit float

long 32-bit integer long 32-bit integer

octet 8-bit quantity UI1 8-bit unsigned integer

short 16-bit integer short 16-bit integer

unsigned long 32-bit integer long 32-bit integer

unsigned short 16-bit integer long 32-bit integer

Table 5.1: Translation of OMG IDL Basic Types to Automation
 42

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 43 Tuesday, April 27, 1999 1:54 PM
These differences mean that the following translations will result in a run-time
error:

• Converting Automation long to OMG IDL unsigned long when the
value of the Automation long parameter is a negative number.

• Demoting OMG IDL unsigned long to Automation long when the
value of the OMG IDL unsigned long parameter is greater than the
maximum value of an Automation long .

• Demoting Automation long to OMG IDL unsigned short when the
value of the Automation long parameter is either negative or greater
than the maximum value of an OMG IDL unsigned short .

Translation of Strings
An OMG IDL string translates to an Automation BSTR. For example:

// OMG IDL
// This definition might appear within a struct
// definition.
string address;

translates to:

// MIDL
BSTR address;

A run-time error will occur when mapping a fixed-length OMG IDL string if
the BSTR exceeds the maximum length of the OMG IDL string .

Translation of Interfaces
An OMG IDL interface translates to an Automation view interface. For example,
the following OMG IDL interface Bank:

// OMG IDL
interface Bank
{

// Attributes and operations here;
. . .

};
43

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 44 Tuesday, April 27, 1999 1:54 PM
translates to the Automation view interface DIBank :

// MIDL
// Definitions that are not of interest here.

[oleautomation, dual, uuid(....)]
interface DIBank : IDispatch
{

// Properties and methods here.
...

}

Figure 5.1: Automation View of Bank Interface

As shown in Figure 5.1, the Automation view in the bridge supports the interface
DIBank . Any Automation controller can use the DIBank interface to invoke
operations on the Automation view. The view forwards the request to the
target Bank object in the CORBA server.

The interface DIBank is an Automation dual interface. A dual interface is a COM
vtable-based interface that derives from IDispatch . This means that its methods
can be either late-bound using IDispatch::Invoke or early-bound through the
vtable portion of the interface.

ID ispa tc h

1Fo re ign O b je ct

D IC O R B A O b je ct

D IO rb ix O b je ct

IU nkn ow n
 44

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 45 Tuesday, April 27, 1999 1:54 PM
The Automation view supports the following interfaces:

• IUnknown and IDispatch required by all Automation objects.

• DIForeignObject required by all views.

• DICORBAObject required by all CORBA objects.

• DIOrbixObject supported by all Orbix objects.

Translation of Attributes

An OMG IDL attribute translates to an Automation property. For example:

// OMG IDL
interface Account
{

attribute float balance;
readonly attribute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float balance);

};

translates to:

// MIDL
[oleautomtion, dual, uuid(....)]
interface DIAccount : IDispatch
{

HRESULT makeLodgement ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance([retval,out] float * val);
[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner([retval,out] BSTR * val);

}

A normal attribute translates to a property that has a method to set the value
and a method to get the value.
45

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 46 Tuesday, April 27, 1999 1:54 PM
A readonly attribute translates to a property that has a method to get the
value. The get method returns the attribute value in the parameter tagged
[retval,out] .

Visual Basic

Set accountObj = ... ' Get a reference to an Account object.

Dim myBalance as Single

' Set the balance of accountObj:
accountObj.balance = 150.22

' Get the balance of accountObj:
myBalance = accountObj.balance

PowerBuilder

... // Get a reference to an Account object.

integer myBalance

myBalance = accountObj.balance
accountObj.balance myBalance

Translation of Operations

An OMG IDL operation translates to an Automation method. For example:

// OMG IDL
interface Account {

void makeDeposit(in float amount, out float balance);
float calculateInterest();
...

};

translates to:
 46

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 47 Tuesday, April 27, 1999 1:54 PM
// MIDL
[oleautomation, dual,uuid(...),helpstring("Account")]
interface DIAccount : IDispatch {

[id(100)] HRESULT makeDeposit (
[in] float it_amount,
[in,out] float *it_balance,
[optional,in,out] VARIANT *IT_Ex);

[id(101)] HRESULT calculateInterest (
[optional,in,out] VARIANT *IT_Ex,
[retval,out] float *IT_retval);

}

Parameters

An OMG IDL in parameter translates to an Automation [in] parameter.

An OMG IDL out parameter translates to an Automation [out] parameter.

An OMG IDL inout parameter translates to an Automation [in,out]
parameter.

Return Types
An OMG IDL void return type does not need any translation.

An OMG IDL return type that is not void translates to an Automation
[retval,out] parameter. A CORBA operation’s return value is therefore
mapped to the last argument in the corresponding operation of the Automation
view interface.

Each Automation method also has an out parameter of type VARIANT. This
parameter appears before the return type and is used to return exception
information. Refer to the section “Translation of Exceptions” on page 60 for
more information.

If the CORBA operation has no return value, the optional parameter is the last
parameter in the corresponding Automation operation. If the CORBA operation
does have a return value, the optional parameter appears directly before the
return value in the corresponding Automation operation. This is because the
return value must always be the last parameter.
47

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 48 Tuesday, April 27, 1999 1:54 PM
Visual Basic

Dim interest, amount As Single
...
' Get a reference to an Account object:
accountObj.makeDeposit amount, balance
interest = accountObj.calculateInterest

Translation of Inheritance

Single Inheritance
A hierarchy of singly-inherited OMG IDL interfaces is mapped to an identical
hierarchy of Automation view interfaces. For example, the following interface
account and its derived interface checkingAccount :

// OMG IDL
{

interface account
{

attribute float balance;
readonly attribute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float theBalance);

};

interface checkingAccount:account
{
readonly attribute float overdraftLimit;
boolean orderChequeBook();
};

};

translate to the following Automation view interfaces:

// MIDL
[oleautomation, dual, uuid(...)]
interface account:IDispatch
{

HRESULT makeLodgement ([in] float amount,
[out] float * balance),
[optional, out] VARIANT * excep_OBJ);
 48

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 49 Tuesday, April 27, 1999 1:54 PM
HRESULT makeWithdrawal ([in] float amount,
[out] float * balance),
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance([retval,out] float * val);
[propput] HRESULT balance([in] float balance);
[propget] HRESULT owner([retval,out] BSTR * val);

};

[oleautomation, dual, uuid(...)]
interface checkingAccount:account
{

HRESULT orderChequeBook([optional, out] VARIANT * excep_OBJ,
[retval, out] short * val);

[propget] HRESULT overdraftLimit ([retval, out] short * val);
};

Multiple Inheritance

Automation does not support multiple inheritance. Therefore, a direct mapping
of a CORBA inheritance hierarchy using multiple inheritance is not possible. This
mapping splits such a hierarchy, at the points of multiple inheritance, into
multiple singly-inherited strands.

The mechanism for determining which interfaces appear on which strands is
based on a left branch traversal of the inheritance tree. Figure 5.2 on page 50 is
an example of a CORBA interface hierarchy.

In Figure 5.2 the hierarchy can be read as follows:

• Account and Simple derive from Bank .

• CheckingDetails derives from Account and Simple .

• Test derives from CheckingDetails and Miscellaneous .
49

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 50 Tuesday, April 27, 1999 1:54 PM
Figure 5.2: Example of a CORBA Interface Hierarchy

In this example, the CORBA hierarchy is mapping to two Automation single
inheritance hierarchies: Bank-Account -CheckingDetails and Bank-Simple . The
leftmost strand will be the main strand. In this example, this is Bank-Account -
CheckingDetails . To accomodate access to all of the object’s methods, the
operations of the secondary strands are aggregated into the interface of the
main strand at points of multiple inheritance. In this example, the operations of
Simple are therefore added to CheckingDetails . This means
CheckingDetails has all the methods of the hierarchy, and an Automation
controller holding a reference to CheckingDetails will be able to access all the
methods of the hierarchy without having to call QueryInterface.

// OMG IDL
interface Bank {
void opBank();
attribute long val;
};
interface Account : Bank {
void opAccount();
};
interface Simple : Bank {
void opSimple();
};
interface CheckingDetails : Account, Simple {
void opCheckingDetails();
};
interface Miscellaneous {
void opMiscellaneous();
};
interface Test : CheckingDetails, Miscellaneous {
void opTest();
};

A cco unt

C heck ingD etails

B ank

Test

M isce llaneous

S im ple
 50

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 51 Tuesday, April 27, 1999 1:54 PM
The following OMG IDL code represents a hierarchy that is based on the
example shown in Figure 5.2:

// OMG IDL
{

interface Bank
{

void Op1a();
void Op1b();

};
interface Account : Bank
{

void Op2a();
void Op2b();

};
interface Simple : Bank
{

void Op3a();
void Op3b();

};
interface CheckingDetails : Simple, Account
{

void Op4a();
void Op4b();

};
};

This translates to the following two Automation view hierarchies:

// MIDL
// strand 1:Bank-Account-CheckingDetails
[oleautomation, dual, uuid(...)]
interface Bank:IDispatch
{

HRESULT Op1a([optional, out] VARIANT * excep_OBJ);
HRESULT Op1b([optional, out] VARIANT * excep_OBJ);

}
[oleautomation, dual, uuid(...)]
interface Account:Bank
{

HRESULT Op2a([optional, out] VARIANT * excep_OBJ);
HRESULT Op2b([optional, out] VARIANT * excep_OBJ);

}

51

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 52 Tuesday, April 27, 1999 1:54 PM
[oleautomation, dual, uuid(...)]
interface CheckingDetails:Account
{

// Aggregated operations of Simple
HRESULT Op3a([optional, out] VARIANT * excep_OBJ);
HRESULT Op3b([optional, out] VARIANT * excep_OBJ);
// Normal operations of CheckingDetails
HRESULT Op4a([optional, out] VARIANT * excep_OBJ);
HRESULT Op4b([optional, out] VARIANT * excep_OBJ);

}
// strand 2:Bank-Simple
[oleautomation, dual, uuid(...)]
interface Simple:Bank
{

HRESULT Op3a([optional, out] VARIANT * excep_OBJ);
HRESULT Op3b([optional, out] VARIANT * excep_OBJ);

}

Translation of Complex Types
Translation is straightforward where there is a direct Automation counterpart
for a CORBA type. However, OMG IDL includes a number of types that do not
have counterparts in MIDL. This section describes how translation is achieved
for the following complex types:

• Constructed types

• Structs

• Unions

• Sequences

• Arrays

• Exceptions

• Anys
 52

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 53 Tuesday, April 27, 1999 1:54 PM
Translation of Constructed Types

OMG IDL constructed types such as struct , union and exception translate to
pseudo-Automation interfaces. The Automation/CORBA Interworking standard
chose this translation because Automation does not allow Automation
constructed types as valid parameter types. Pseudo-objects, which implement
pseudo-Automation interfaces, do not expose the IForeignObject interface.
Instead, the matching Automation interface for a constructed type exposes the
interface DIForeignComplexType .

Creating Constructed OMG IDL Types

To create a complex OMG IDL type, you can use the function CreateType()
that is defined on DICORBAFactoryEx . The CreateType() function creates an
Automation object that is an instance of an OMG IDL constructed type.

CreateType() has the following prototype:

CreateType([in] IDispatch* scope, [in] BSTR typename)

The scope parameter refers to the scope in which the type should be
interpreted. To indicate global scope, pass Nothing to this parameter.

The typename parameter is the name of the complex type you wish to create.

You can create an object that represents an OMG IDL constructed type in a
client in order to pass it as an in or inout parameter to an OMG IDL operation.
You can create an object that represents an OMG IDL constructed type in a
server in order to return it as an out or inout parameter, or return value, from
an OMG IDL operation.

Examples of the use of CreateType() to create structs, unions and exceptions
are shown in “Translation of Structs” on page 53, “Translation of Unions” on
page 55 and “Translation of Exceptions” on page 60.

Translation of Structs

An OMG IDL struct translates to an Automation interface of the same name
that supports the DICORBAStruct interface. DICORBAStruct , in turn, derives
from the DIForeignComplexType interface. DICORBAStruct does not define any
methods. It is used to identify that the interface is translated from a struct . For
example:
53

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 54 Tuesday, April 27, 1999 1:54 PM
// OMG IDL
struct AccountDetails
{

long number;
float balance;

};

is translated as if it were defined as:

// OMG IDL
interface AccountDetails
{

attribute long number;
attribute float balance;

};

Figure 5.3 shows the Automation view of the translation.

Figure 5.3: Automation View of the OMG IDL Struct AccountDetails

Visual Basic
Dim ObjFactory As CORBA_Orbix.DICORBAFactoryEx
Dim details As BankBridge.DIAccountDetails
...
Set details = ObjFactory.CreateType(Nothing, "AccountDetails")

details.balance = 1297.66
details.number = 109784

1D ispatch

D 1Fore ignC om plexType

D IC O RB A Struct

1U nknow n
 54

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 55 Tuesday, April 27, 1999 1:54 PM
Translation of Unions

An OMG IDL union translates to an Automation interface that exposes the
DICORBAUnion interface. DICORBAUnion, in turn, derives from the
DIForeignComplexType interface. DICORBAUnion does not define any methods.
It is used to identify that the interface is translated from a union.

In order to describe CORBA union types that support multiple case labels per
union branch, the DICORBAUnion2 interface is defined. This provides two
additional accessors as follows:

// MIDL
[oleautomation, dual, uuid(...)]
interface DICORBAUnion2:DICORBAUnion
{

HRESULT SetValue([in] long disc, [in] VARIANT val);
[propget, id(-4)]
HRESULT CurrentValue([out, retval] VARIANT * val);

};

The SetValue method can be used to set the discriminant and value
simultaneously. The CurrentValue method will use the current discriminant
value to initialise the VARIANT with the union element. All mapped unions should
support the DICORBAUnion2 interface.

The following OMG IDL union type:

// OMG IDL
interface A { ... };

union U switch(long) {
case 1: long l;
case 2: float f;
default: A obj;

};

translates to the following Automation pseudo-union:

// MIDL
interface DIU : DICORBAUnion2{

[propget] HRESULT get_UNION_d([retval,out] long * val);
[propget] HRESULT get_1([retval,out] long * 1);
[propget] HRESULT put_1([in] long 1);
[propget] HRESULT get_1([retval,out] float * f);
[propget] HRESULT put_1([in] float f);
55

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 56 Tuesday, April 27, 1999 1:54 PM
[propget] HRESULT get_A([retval,out] DIA ** val);
[propget] HRESULT put_A([in] DIA * val);

};

In this case, the mapped Automation dual interface derives from
DICORBAUnion2. The property UNION_d returns the value of the discriminant.
The discriminant indicates the type of value that the union holds. In this example,
the value of UNION_d is 2 if the union U contains a float .

For each member of the union, a property is generated in the matching MIDL
interface to read the value of the member and to set the value of the member.
The property to set the value of a union member also sets the value of the
discriminant.

It is an error to attempt to read the value of a member using a method that does
not match the type of the discriminant.

The mapping for the OMG IDL default label will be ignored if the cases are
exhaustive over the permissible cases (for example, if the switch type is boolean
and a case TRUE and case FALSE are both defined).

Figure 5.4 shows the Automation view of the translation of the OMG IDL union
U.

Figure 5.4: Automation View of the OMG IDL Union u

ID ispatch

D 1 ForeignC o m p lexType

D IC O R BA U nio n

D IC O R BA U nio n2

IU nkn ow n
 56

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 57 Tuesday, April 27, 1999 1:54 PM
Visual Basic
Dim ObjFactory As CORBA_Orbix.DICORBAFactoryEx
Dim myUnion As DIU
.
.
.
Set myUnion =

ObjFactory.CreateType(Nothing, "U")

myUnion.s = "This is a string"

Select Case(myUnion.UNION_d())
Case 1: MsgBox ("Union (long):" & Str$(myUnion.l)
Case 1: MsgBox ("Union (float):" & Str$(myUnion.f)
Case 1: MsgBox ("Union (string):" & Str$(myUnion.s)
Case Else : MsgBox ("Union contains object reference")

End Select

Translation of Sequences

An OMG IDL sequence can be mapped to an Automation SafeArray or an OLE
collection. The method call SetSafeArrayMapping on DIOrbixORBObject
determines the type of mapping in effect. If SetSafeArrayMapping is set to
true , sequences are mapped to SafeArrays; otherwise, sequences are mapped to
OLE collections. You should make this setting only once in your application.
Switching SetSafeArrayMapping between true and false could result in
undefined behaviour.

Mapping to SafeArrays

If the method call SetSafeArrayMapping on DIOrbixORBObject is set to true ,
an OMG IDL bounded or unbounded sequence is mapped to a VARIANT
containing an Automation SafeArray. An OMG IDL bounded sequence is
mapped to a fixed-size SafeArray. If you pass a SafeArray that contains a different
number of elements than that required by the bounded sequence, it is
automatically resized to the correct size. An OMG IDL unbounded sequence is
mapped to an empty SafeArray that can grow or shrink to any size.
57

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 58 Tuesday, April 27, 1999 1:54 PM
Mapping to OLE Collections

If the method call SetSafeArrayMapping on DIOrbixORBObject is set to false ,
an OMG IDL bounded or unbounded sequence is mapped to a VARIANT
containing an OLE collection object that exposes the DCollection interface.
Each collection object exposes the following DCollection Automation
properties and methods:

As an alternative to the Item property, each sequence object also exposes the
following methods for use in controllers that do not support parameterised
properties:

Refer to “OrbixCOMet API” on page 241 for a full description of the MIDL
definitions for the DCollection interface.

The following OMG IDL definition:

OMG IDL
module ModBank {

interface Transaction {...};

// A bounded sequence
typedef sequence<Transaction, 30> TransactionList;

interface Account {
readonly attribute TransactionList statement;
readonly attribute float balance;
...

};

Method Type Description

Count Read/Write Property Get/Set the number of elements in
the collection.

Item Read/Write Parameterised
Property

Get/Set access to individual elements
in the collection.

Method Type Description

getItem Method Get/Set the number of elements in
the collection.

setItem Method Get/Set access to individual elements
in the collection.
 58

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 59 Tuesday, April 27, 1999 1:54 PM
// An unbounded sequence
typedef sequence<Account> AccountList;

interface Bank {
readonly attribute AccountList personalAccounts;
AccountList sortAccounts(in AccountList toSort)
...

};
};

translates to:

// MIDL
typedef [public] VARIANT ModBank_TransactionList

[oleautomation, dual, uuid(...)]
interface DIModBank_Transaction: IDispatch {}

typedef [public] VARIANT ModBank_AccountList;
[oleautomation, dual, uuid(...)]
interface DIModBank_Account: IDispatch {

[propget] HRESULT statement ([retval, out] IDispatch**
IT_retval);

[propget] HRESULT balance ([retval, out] float* IT_retval);
};

[oleautomtion, dual, uuid(...)]
interface DIModBank_Bank: IDispatch {

[propget] HRESULT personalAccounts ([retval,out] IDispatch**
IT_retval);

HRESULT sortAccounts ([in] IDispatch* toSort,
[optional, out] VARIANT* IT_Ex,
[retval, out] IDispatch** IT_retval);

};

Visual Basic
‘ Visual Basic
Dim myBank As IT_Library_Bank.DIModBank_Bank
Dim myAccounts As Variant
Dim tmpAccount As IT_Library_Bank.DIModBank_Account
Dim myBalance As Single
59

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 60 Tuesday, April 27, 1999 1:54 PM
‘ Obtain a reference to a Bank object
Set myBank = ...
Set myAccounts = ORBFactory.CreateType (Nothing,
“ModBank/AccountsList”)

For Each acc in myAccounts
acc.balance = 0.00

Next acc

‘ Access a member of myAccounts
myBalance = myAccounts(4).balance

‘ Obtain a reference to a member of myAccounts
Set tmpAccount = myAccounts(7)
myBalance = tmpAccount.balance

Translation of Arrays

The mapping for an OMG IDL array is similar to that for an OMG IDL sequence.
OMG IDL arrays can map to either Automation SafeArrays or OLE collections.

Mapping to SafeArrays

Multidimensional OMG IDL arrays map to VARIANTs containing multidimensional
SAFEARRAYs. The order of dimensions in the OMG IDL array from left to right
corresponds to ascending order of dimensions in the SAFEARRAY. An error will
occur if the number of dimensions in an input SAFEARRAY does not match the
CORBA type.

Mapping to OLE Collections

Only single dimension arrays can be supported when mapping to OLE
collections.

Translation of Exceptions

The CORBA model uses exceptions to report error information. Exceptions are
classified into two categories as follows:
 60

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 61 Tuesday, April 27, 1999 1:54 PM
1. System exceptions can be raised by any operation. A standard set of
system exceptions is defined by CORBA, and Orbix provides a number of
additional system exceptions. These system exceptions are listed in
“System Exceptions” on page 329.

2. User exceptions are defined in OMG IDL, and an OMG IDL operation
can optionally specify that it might raise a specific set of user exceptions.
An OMG IDL operation can also raise a system exception but this is not
defined at the OMG IDL level.

User Exceptions

An OMG IDL user-defined exception translates to an Automation interface that
has a corresponding property for each member of the exception. The
Automation interface derives from the DICORBAUserException interface. For
example:

// OMG IDL
exception Reject
{

string reason;
};

translates to:

// MIDL
[oleautomation, dual, uuid(...)]
interface DIreject : DICORBAUserException
{

[propget] HRESULT reason([retval,out] BSTR reason);
}

Figure 5.5 on page 62 provides an Automation view of the translation of the
exception Bank::Reject :

Exceptions are fully explained in “System Exceptions” on page 329.
61

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 62 Tuesday, April 27, 1999 1:54 PM
Figure 5.5: Automation View of Bank_Reject

System Exceptions
A CORBA system exception translates to the Automation interface
DICORBASystemException that derives from DIForeignException :

// MIDL
[oleautomation, dual, uuid(...)]
interface DICORBASystemException : DIForeignException
{

[propget] HRESULT EX_minorCode([retval,out] long * val);
[propget] HRESULT EX_completionStatus([retval,out] long * val);

};

The attribute EX_minorCode defines the type of system exception raised, while
EX_completionStatus has one of the following numeric values:

COMPLETION_YES = 0
COMPLETION_NO = 1
COMPLETION_MAYBE = 2

These values are specified as an enum in the type library information:

typedef enum {COMPLETION_YES, COMPLETION_NO,
COMPLETION_MAYBE}

CORBA_CompletionStatus;

This interface is explained in “OrbixCOMet API” on page 241.

1D ispatch

D 1Fore ignC om plexType

DIForeignException

1U nknow n
 62

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 63 Tuesday, April 27, 1999 1:54 PM
Translation of the Any Type

The OMG IDL any data type translates to an OLE VARIANT type. If the any
contains a simple data type, this maps to a VARIANT containing a corresponding
simple type as shown in Table 5.1 on page 42. If the any contains a complex
type, the VARIANT will contain an IDispatch view of the CORBA type. If the any
contains a CORBA sequence or array type, the VARIANT will contain either an
Automation SafeArray or an OLE Collection, depending on the setting of the
SetSafeArrayMapping method call on DIOrbixORBObject .

Context Clause

The CORBA standard OMG IDL to Automation mapping does not specify a
translation for OMG IDL contexts.

Translation of Object References
When an OMG IDL operation returns an object reference or passes an object
reference as an operation parameter, this is translated as a reference to an
IDispatch interface in MIDL. For example:

// OMG IDL
interface Simple
{

attribute short shortTest;
};
interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest, out Simple outTest,

inout Simple inoutTest);
};

};
63

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 64 Tuesday, April 27, 1999 1:54 PM
translates to:

// MIDL
[oleautomation, dual, uuid(...)]
interface DISimple : IDispatch
{

[propget] HRESULT shortTest([retval,out] short * val);
[propput] HRESULT shortTest([in] short shortTest);

};
[oleautomation, dual, uuid(...)]
interface DIObjRefTest : IDispatch
{

HRESULT simpleOp([in] DISimple *inTest,
[out] DISimple **outTest,
[in,out] DISimple **inoutTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] DISimple ** val);

[propget] HRESULT simpleTest([retval,out] DISimple ** val);
[propput] HRESULT simpleTest ([in] DISimple * simpleTest);

};

Object Reference Parameters and IForeignObject

An Automation view interface must expose the IForeignObject interface in
addition to the interface that is isomorphic to the mapped CORBA interface.
IForeignObject provides a mechanism to extract a valid CORBA object
reference from a view object.

Consider an Automation view object B that is passed as an in parameter to an
operation M in view A. Operation M must somehow convert view B to a valid
CORBA object reference. The sequence of events involving
IForeignObject::GetForeignReference is as follows:

1. The client calls Automation-View-A::M, passing an IDispatch-derived
pointer to Automation-View-B.

2. Automation-View-A::M calls IDispatch::QueryInterface for
IForeignObject .

3. Automation-View-A::M calls IForeignObject::GetForeignReference
to get the reference to the CORBA object of type B.

4. Automation-View-A::M calls CORBA-Stub-A::M with the reference,
narrowed to interface type B, as the object reference in parameter.
 64

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 65 Tuesday, April 27, 1999 1:54 PM
Visual Basic
Dim bankObj As BankBridge.DIBank
Dim accountObj As BankBridge.DIAccount

‘ Get a reference to a Bank object
Set bankObj = ...

‘ Get a reference to an Account object as a return value
Set accountObj = bankObj.newAccount "John"

‘ Use the returned object reference
accountObj.makeDeposit 231.98

‘ finished, delete the account
bankobj.deleteAccount accountObj

Translation of Modules
An OMG IDL definition contained within the scope of an OMG IDL module is
translated to its corresponding Automation definition by prefixing the name of
the Automation type definition with the name of the module. For example:

// OMG IDL
module Finance {

interface Bank {
...
};

};

translates to:

[oleautomation, dual, uuid(...), helpstring("Finance_Bank")]
interface DIFinance_Bank : IDispatch {

...
}

Visual Basic
Dim bankObj As DIFinance_Bank
65

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 66 Tuesday, April 27, 1999 1:54 PM
Translation of Constants
No Automation code is generated for an OMG IDL constant definition because
Automation does not have the concept of a constant. However, code can be
generated for an Automation controller, if appropriate.

If an OMG IDL constant is contained within an interface or module, its
translated name is prefixed by the name of the interface or module in the
Automation controller language. (Refer to “Translation of Scoped Names” on
page 68 for more details.)

An OMG IDL constant can be represented as a Visual Basic or PowerBuilder
constant definition.

Visual Basic
// OMG IDL
const long Max = 1000;

can be represented as:

' Visual Basic
' In .BAS file
Global Const Max = 1000

PowerBuilder
// OMG IDL
const long Max = 1000;

can be represented as:

CONSTANT long Max=100
 66

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 67 Tuesday, April 27, 1999 1:54 PM
Translation of Enumerated Types
A CORBA enum translates to an Automation enum. For example, the OMG IDL
definition:

// OMG IDL
{
enum colour { white, blue, red };

interface foo
{

void op1(in colour col);
};

};

translates to:

// MIDL
typedef [public,v1_enum] { white, blue, red } colour;
[oleautomation, dual, uuid(...)]
interface foo:IDispatch
{

HRESULT op1([in] colour col, [optional, out]
VARIANT * excep_OBJ);

}

Because Automation maps enum parameters to the platform’s integer type, a
run-time error will occur in the following situations:

• If the number of elements in the CORBA enum exceeds the maximum
value of an integer.

• If an actual parameter applied to the mapped parameter in the
Automation view interface exceeds the maximum value of the enum.

If an OMG IDL enum is contained within an interface or module, its translated
name is prefixed by the name of the interface or module in the Automation
controller language. (Refer to “Translation of Scoped Names” on page 68 for
more details.)

If the enum is declared at global OMG IDL scope, the name of the enum should
also be included in the constant name.
67

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 68 Tuesday, April 27, 1999 1:54 PM
Translation of Scoped Names
An OMG IDL scoped name translates to an Automation identifier where the
scope operator :: is replaced with _ (that is, an underscore). For example, the
following OMG IDL:

// OMG IDL
module Finance {

interface Bank {
struct PersonnelRecord {
...
};
void addRecord(in PersonnelRecord r);

...
};

};

yields the scoped name Finance::Bank::PersonnelRecord . This would then
translate to Finance_Bank_PersonnelRecord .

Translation of Typedefs
The translation of OMG IDL typedef definitions to Automation depends on the
OMG IDL type for which the typedef is defined.

No translation is provided for typedef definitions for the basic OMG IDL types
that are listed in Table 5.1 on page 42. Therefore, a Visual Basic programmer
cannot make use of these typedef definitions for basic types. The following
OMG IDL example:

// OMG IDL
module MyModule{

module Module2{
module Module3{

interface foo{};
};

};
};
typedef MyModule::Module2::Module3::foo bar;
 68

M ap p in g CORB A Ob j e c t s t o A u t o ma t i o n

COMet.book Page 69 Tuesday, April 27, 1999 1:54 PM
can be used as follows:

‘ in Visual Basic
Dim a as Object
Set a = theOrb.GetObject(“MyModule/Module2/Module3/foo”)
‘ Release the object
Set a = Nothing
‘ Create the object using a typedef alias
Set a = theOrb.GetObject(“bar”)

A typedef definition is most often used for array and sequence definitions.
69

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 70 Tuesday, April 27, 1999 1:54 PM
 70

COMet.book Page 71 Tuesday, April 27, 1999 1:54 PM
 6
Mapping Automation Objects to
CORBA

Automation types are defined in Microsoft IDL (MIDL). CORBA types
are defined in OMG IDL. To allow interworking between Automation
and CORBA, MIDL types must be translated to OMG IDL. This
chapter outlines how translation of Automation objects to CORBA is
achieved.

For the purposes of illustration, this chapter describes a textual mapping
between MIDL and OMG IDL. OrbixCOMet itself does not require this textual
mapping to take place, because it includes a dynamic marshalling engine. The
textual mappings shown in this chapter are actually performed by OrbixCOMet
at application runtime.
71

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 72 Tuesday, April 27, 1999 1:54 PM
Translation of Basic Types
Automation basic types translate to compatible types in OMG IDL. Table 6.1
shows the mapping for each type.

There is not an exact correspondence between the types supported by
Automation and the types supported by OMG IDL. These differences mean that
certain translations can result in a run-time error. For example:

• Translating OMG IDL COM::Currency to Automation CURRENCY, if the
supplied COM::Currency value does not translate to a meaningful
Automation CURRENCY value.

• Translating OMG IDL double to Automation DATE, if the OMG IDL
double value is negative or converts to an impossible date.

MIDL Description OMG IDL Description

VARIANT_BOOL 16-bit integer
0 = FALSE
-1 = TRUE

boolean Unsigned char, 8-bit
0 = FALSE
1 = TRUE

UI1 8-bit unsigned integer octet 8-bit quantity

short 16-bit integer short 16-bit integer

double IEEE 64-bit float double IEEE 64-bit float

float IEEE 32-bit float float IEEE 32-bit float

long 32-bit integer long 32-bit integer

BSTR Length-prefixed string string Null terminated 8-bit
character array

CURRENCY 8-byte fixed-point
number

COM::Currency OMG IDL struct currency

DATE 64-bit floating point double IEEE 64-bit float

SCODE Built-in error type long 32-bit integer

Table 6.1: Translation of Automation Basic Types to OMG IDL
 72

M ap p in g A u t o ma t i o n O b j e c t s t o CORB A

COMet.book Page 73 Tuesday, April 27, 1999 1:54 PM
Translation of Strings
An Automation BSTR translates to an OMG IDL string. For example:

// MIDL
BSTR address;

translates to:

// OMG IDL
// This definition might appear within a struct
// definition.
string address;

Translation of Interfaces
An Automation interface translates in a straightforward fashion to an OMG IDL
interface. For example, the Automation interface account :

// MIDL
[odl, dual, uuid(...)]
interface account : IDispatch
{

[propget] HRESULT balance([retval,out] float * ret);
};

translates to the following OMG IDL interface:

// OMG IDL
interface account
{

readonly attribute float balance;
};

If the Automation interface does not have a parameter with the [retval,out]
attributes, its return type is mapped to long . This allows COM SCODE values to
be passed through to the CORBA client.
73

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 74 Tuesday, April 27, 1999 1:54 PM
Figure 6.1: Automation View of Bank Interface

The Automation view in the bridge supports the interface DIBank . Any
Automation controller can use the DIBank interface to invoke operations on the
Automation view. The view forwards the request to the target Bank object in
the CORBA server.

The Automation view also supports the following interfaces:

• IUnknown and IDispatch required by all Automation objects.

• DIForeignObject required by all views.

• DICORBAObject required by all CORBA objects.

• DIOrbixObject supported by all Orbix objects.

Translation of Properties

An Automation property translates to an OMG IDL attribute. For example:

// MIDL
[odl, dual, uuid(...)]
interface DIaccount : IDispatch {

[propput] HRESULT balance ([in] float balance);
[propget] HRESULT balance ([retval,out] float * ret);
[propget] HRESULT owner ([retval,out] BSTR * ret);

ID ispatch

1ForeignO bject

D IC O RBAO bject

DIO rbixO bject

IU nknow n
 74

M ap p in g A u t o ma t i o n O b j e c t s t o CORB A

COMet.book Page 75 Tuesday, April 27, 1999 1:54 PM
HRESULT makeLodgement ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

}

translates to:

// OMG IDL
interface account

attribute float balance;
readonly attribute string owner;
long makeLodgement(in float amount, out float balance);
long makeWithdrawal(in float amount, out float balance);

};

An Automation property that has a method to get the value, and a method to
set the value, translates to a normal OMG IDL attribute.

An Automation property that has a method to get the value translates to an
OMG IDL readonly attribute.

Translation of Methods

An Automation method translates to an OMG IDL operation.

Parameters
An Automation [in] parameter translates to an OMG IDL in parameter.

An Automation [out] parameter translates to an OMG IDL out parameter.

An Automation [in,out] parameter translates to an OMG IDL inout
parameter.

Translation of Inheritance

A hierarchy of Automation interfaces is mapped to an identical hierarchy of
OMG IDL view interfaces. For example, the following interface account and its
derived interface checkingAccount :
75

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 76 Tuesday, April 27, 1999 1:54 PM
// MIDL
[odl, dual, uuid(...)]
interface account:IDispatch
{

[propput] HRESULT balance([in] float balance);
[propget] HRESULT balance([retval,out] float * ret);
[propget] HRESULT owner([retval,out] BSTR * ret);
HRESULT makeLodgement([in] float amount,

[out] float * balance);
HRESULT makeWithdrawal([in] float amount,

{out} float * balance);
};
interface checkingAccount: account
{

[propget] HRESULT overdraftLimit ([retval,out] short * ret);
HRESULT orderChequeBook([retval,out] short * ret);

};

translates to the following OMG IDL view interface account :

// OMG IDL
interface account
{

attribute float balance;
readonly attribute string owner;
long makeLodgement(in float amount, out float balance);
long makeWithdrawal(in float amount, out float theBalance);

};
interface checkingAccount: account
{

readonly attribute short overdraftLimit;
short orderChequeBook();

};

Translation of SafeArrays
Automation SafeArrays translate to OMG IDL unbounded sequences.

When SafeArrays are in parameters, the view method uses the SafeArray API to
dynamically repackage the SafeArray as an OMG IDL sequence.
 76

M ap p in g A u t o ma t i o n O b j e c t s t o CORB A

COMet.book Page 77 Tuesday, April 27, 1999 1:54 PM
When arrays are out parameters, the view method uses the SafeArray API to
dynamically repackage the OMG IDL sequence as a SafeArray.

Multidimensional SafeArrays
Multidimensional SafeArrays are mapped to an identical linear format and then
to a sequence in the normal way. This is because the bounding information for
each dimension is only available at runtime.

The linearisation of the multidimensional SafeArray is performed as follows:

1. The number of elements in the linear sequence is the product of the
dimensions.

2. The position of each element is deterministic. For example, for a
SafeArray with dimensions d0, d1 and d2, the location of an element
[p0][p1][p2] is defined as follows:
pos[p0][p1][p2] = p0*d1*d2 + p1*d2 + p2

For example, a SafeArray with dimensions 5, 8, 9 maps to a linear
sequence with a run-time bound of 5*8*9=360. This yields valid offsets
0-359. In this example, the real offset to the element at location [4][5][1]
is 4*8*9 + 5*9 + 1 = 334.

Translation of Exceptions
Automation exceptions translate to OMG IDL exceptions.

Automation system error codes map to OMG IDL standard exceptions.
Automation user-defined error codes map to OMG IDL user exceptions.

An Automation method with a HRESULT return value and an argument marked as
a [retval] maps to an OMG IDL method whose return value is mapped from
the [retval] argument.

An Automation method with a HRESULT return value and no argument marked
as a [retval] maps to a CORBA interface with a long return value.
77

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 78 Tuesday, April 27, 1999 1:54 PM
Translation of Variants
An Automation VARIANT translates to an OMG IDL any type. If the VARIANT
contains a DATE or CURRENCY element, these are mapped as shown in
“Translation of Basic Types” on page 72.

Translation of Object References
The following MIDL defines a simple interface and another interface that
references simple as an in parameter, an out parameter, an inout parameter
and a return value:

// MIDL
[odl, dual, uuid(...)]
interface Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out] short * val);
[propput] HRESULT shortTest([in] short val);

}

[odl, dual, uuid(...)]
interface ObjRefTest: IDispatch
{

[propget] HRESULT simpleTest([retval, out] Simple ** val);
[propput] HRESULT simpleTest([in] Simple *pSimpleTest);
HRESULT simpleOp([in] Simple *inTest,

[out] Simple **outTest,
[in,out] Simple **inoutTest,
[retval, out] Simple **val);

}

This translates to the following OMG IDL:
 78

M ap p in g A u t o ma t i o n O b j e c t s t o CORB A

COMet.book Page 79 Tuesday, April 27, 1999 1:54 PM
// OMG IDL
interface Simple
{

attribute short shortTest;
};

interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest,

out Simple outTest,
inout Simple inoutTest);

};

Translation of Enumerated Types
An Automation enum translates to an OMG IDL enum. For example:

// MIDL
typedef enum colour {red=2, green=0, blue=1};
[odl, dual, uuid(...)]
interface foo: IDispatch{

HRESULT op1([in] colour col);
}

translates to:

// OMG IDL
enum colour { green, blue, red };
interface foo{

long op1(in colour col);
};

An Automation enumeration is mapped to OMG IDL such that the enumerators
are ordered in ascending order of their value. Because OMG IDL does not
support explicitly tagged enumerators, the CORBA view of an Automation
object must maintain the mapping of the values of the enumeration.
79

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 80 Tuesday, April 27, 1999 1:54 PM
Translation of Typedefs
Automation typedefs map directly to OMG IDL typedefs.

The only exception to this is an Automation enum that is required to be a
typedef. In this case, the following MIDL:

// MIDL
typedef enum {red, green, blue} colour;
[odl, dual, uuid(...)]
interface foo: IDispatch{

HRESULT op1([in] colour col,
[optional,out] VARIANT * excep_OBJ);

}

translates to:

// OMG IDL
enum colour {red, green, blue};
interface foo
{

void op1(in colour col);
};
 80

COMet.book Page 81 Tuesday, April 27, 1999 1:54 PM
 7
Mapping CORBA Objects to COM

CORBA types are defined in OMG IDL. COM types are defined in
Microsoft IDL (MIDL). To allow interworking between CORBA and
COM, OMG IDL types must be translated to MIDL. This chapter
outlines how translation of CORBA objects to COM is achieved.

For the purposes of illustration, this chapter describes a textual mapping
between OMG IDL and MIDL. OrbixCOMet itself does not require this textual
mapping to take place, because it includes a dynamic marshalling engine. The
textual mappings shown in this chapter are actually performed by OrbixCOMet
at runtime.
81

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 82 Tuesday, April 27, 1999 1:54 PM
Translation of Basic Types
OMG IDL basic types translate to compatible types in COM. Table 7.1 shows
the mapping for each type.

Translation of Strings
An OMG IDL string maps to a MIDL LPSTR, which is a null-terminated 8-bit
character string.

Unbounded Strings
The following definition for an OMG IDL unbounded string:

OMG IDL Description MIDL Description

boolean Unsigned char, 8-bit
0 = FALSE

1 = TRUE

boolean 16-bit integer
0 = FALSE

1 = TRUE

char 8-bit quantity char 8-bit quantity

double IEEE 64-bit float double IEEE 64-bit float

float IEEE 32-bit float float IEEE 32-bit float

long 32-bit integer long 32-bit integer

octet 8-bit quantity unsigned char 8-bit quantity

short 16-bit integer short 16-bit integer

unsigned long 32-bit integer unsigned long 32-bit integer

unsigned short 16-bit integer unsigned short 16-bit integer

unsigned char 8-bit quantity unsigned char 8-bit quantity

Table 7.1: Translation of OMG IDL Basic Types to COM
 82

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 83 Tuesday, April 27, 1999 1:54 PM
// OMG IDL
typedef string UNBOUNDED_STRING;

translates to:

// MIDL
typedef [string, unique] char * UNBOUNDED_STRING;

Bounded Strings
The following definition for an OMG IDL bounded string:

// OMG IDL
const long N = ...;
typdef string<N>BOUNDED_STRING;

translates to:

// MIDL
const long N = ...;
typdef [string, unique] char (*BOUNDED_STRING) [N];

Translation of Interfaces
An OMG IDL RepositoryId translates to a MIDL IID (Interface ID) that is
similar to the DCE UUID (or identical in the case of Windows32).

The mapping is achieved by using a derivative of the RSA Data Security Inc. MD5
Message-Digest algorithm. The RepositoryId is fed into the algorithm to
produce a 128-bit hash identifier.

When the RepositoryId is a DCE UUID, the DCE UUID is used as the IID for a
COM view of a CORBA interface.

When the RepositoryId is not a DCE UUID, the IID generated from the
RepositoryId is used for a COM view of a CORBA interface.
83

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 84 Tuesday, April 27, 1999 1:54 PM
Translation of Attributes

An OMG IDL attribute translates to a MIDL attribute. For example, in the case
of the following OMG IDL:

// OMG IDL
struct CustomerData
{

CustomerId Id;
string Name;
string SurName;

};

#pragma ID “BANK::Account” “IDL:BANK/Account:3.1”
interface Account
{

readonly attribute float Balance;
float Deposit(in float amount) raises(InvalidAmount);
float Withdrawal(in float amount) raises(InsufFunds,

InvalidAmount);
float Close();

};

#pragma ID “BANK::Customer” “IDL:BANK/Customer:1.2”
interface Customer
{

attribute CustomerData Profile:
};

the read-write attribute Profile maps to the following MIDL:

// MIDL
[object,uuid(...),pointer_default(unique)]
interface IBANK_Customer: IUnknown
{

HRESULT _get_Profile([out] BANK CustomerData * val);
HRESULT _put_Profile([in] BANK CustomerData * val);

};

and the read-only attribute Balance maps to the following MIDL:
 84

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 85 Tuesday, April 27, 1999 1:54 PM
// MIDL
[object,uuid(..)]
interface IBANK Account: IUnknown
{

HRESULT _get_Balance([out] float * val);
};

A normal attribute translates to a property that has a method to set the value
and a method to get the value.

A readonly attribute translates to a property that has a method to get the
value.

The get method returns the attribute value in the parameter tagged [out] .

Translation of Operations

An OMG IDL operation translates to a MIDL method. For example:

// OMG IDL
#pragma ID “BANK::Teller” “IDL:BANK/Teller:1.2”
interface Teller
{

Account OpenAccount(in float StartingBalance,
in AccountTypes AccountType);

void Transfer(in Account Account1,
in Account Account2
in float Amount) raises (InSufFunds);

};

translates to:

// MIDL
[object,uuid(...),pointer_default(unique)]
interface IBANK_Teller: IUnknown
{

HRESULT OpenAccount([in] float StartingBalance,
[in] IBANK_AccountTypes AccountType,
[out] IBANK_Account ** ppiNewAccount);

HRESULT Transfer([in] IBANK_Account * Account1,
[in] IBANK_Account * Account2,
[in] float Amount,
[out] BANK_TellerExceptions ** ppException);

};
85

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 86 Tuesday, April 27, 1999 1:54 PM
Parameters

An OMG IDL in parameter translates to a MIDL [in] parameter.

An OMG IDL out parameter translates to a MIDL [out] parameter.

An OMG IDL inout parameter translates to a MIDL [in,out] parameter.

Return Types
An OMG IDL return type translates to a MIDL [out] parameter as the last
parameter in the signature.

Translation of Inheritance

CORBA and COM have different models for inheritance. CORBA interfaces can
be multiply inherited but COM does not support multiple interface inheritance.
The following rules therefore apply when mapping a hierarchy of interfaces from
CORBA to COM:

• Each OMG IDL interface that does not have a parent is mapped to a
MIDL interface deriving from IUnknown .

• Each OMG IDL interface that inherits from a single parent interface is
mapped to a MIDL interface that derives from the mapping for the parent
interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is
mapped to a MIDL interface deriving from IUnknown . This MIDL interface
then aggregates both base interfaces.

• For each CORBA interface, the mapping for operations precedes the
mapping for attributes.

Figure 7.1 on page 87 shows an example of a CORBA interface hierarchy.
 86

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 87 Tuesday, April 27, 1999 1:54 PM
Figure 7.1: Example of a CORBA Interface Hierarchy

The following sample of OMG IDL code represents the hierarchy of interfaces
shown in Figure 7.1:

// OMG IDL
interface Bank
{

void opBank();
attribute long val;

};
interface Account:Bank
{

void opAccount();
};
interface Simple:Bank
{

void opSimple();
};

// OMG IDL
interface Bank {
void opBank();
attribute long val;
};
interface Account : Bank {
void opAccount();
};
interface Simple : Bank {
void opSimple();
};
interface CheckingDetails : Account, Simple {
void opCheckingDetails();
};
interface Miscellaneous {
void opMiscellaneous();
};
interface Test : CheckingDetails, Miscellaneous {
void opTest();
};

A cco unt

C heck in gD etails

B ank

Test

M isce llan eou s

S im p le
87

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 88 Tuesday, April 27, 1999 1:54 PM
interface CheckingDetails:Account,Simple
{

void opCheckingDetails();
};
interface Test
{

void opTest();
};
interface Miscellaneous:CheckingDetails,Test
{

void opMiscellaneous();
};

This translates to the following MIDL:

// MIDL
[object,uuid(...)]
interface IBank: IUnknown
{

HRESULT opBank();
HRESULT get val([out] long * val);
HRESULT set val([in] long val);

};
[{object,uuid(...)]
interface IAccount: IBank
{

HRESULT opAccount();
};
[object,uuid(...)]
interface ISimple: IBank
{

HRESULT opSimple();
};
[object,uuid(...)]
interface ICheckingDetails: IUnknown
{

HRESULT opCheckingDetails();
};
[object,uuid(...)]
interface ITest: IUnknown
{

HRESULT opTest();
};
 88

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 89 Tuesday, April 27, 1999 1:54 PM
[object,uuid(...)]
interface IMiscellaneous: IUnknown
{

HRESULT opMiscellaneous();
};

Note: When the interface defined in OMG IDL is mapped to its corresponding
statements in MIDL, the name of the interface is preceded by the letter I .
If the interface is scoped by OMG IDL modules :: , this is replaced by an
underscore _ (for example, foo::bar maps to Ifoo_bar) .

Translation of Complex Types

Translation of Constructed Types

OMG IDL constructed types such as struct , union , sequence and exception
translate to corresponding struct types in MIDL as described later in this
chapter.

Creating Constructed OMG IDL Types

To create a complex OMG IDL type, you should simply instantiate an instance of
its MIDL struct type.

You must create an object representing an OMG IDL constructed type in a
client in order to pass it as an in or inout parameter to an OMG IDL operation.
You can create an object representing an OMG IDL constructed type in a server
in order to return it as an out or inout parameter, or return value, from an
OMG IDL operation.
89

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 90 Tuesday, April 27, 1999 1:54 PM
Translation of Structs

An OMG IDL struct translates to a MIDL struct . For example:

// OMG IDL
typedef ... T0;
typedef ... T1;
typedef ... T2;
...
typedef ... Tn;
struct STRUCTURE
{

T0 m0;
T1 m1;
T2 m2;

...
Tn mN;

};

translates to:

// MIDL
typedef ... T0;
typedef ... T1;
typedef ... T2;
...
typedef ... Tn;
typedef struct

{
T0 m0;
T1 m1;
T2 m2;
...
Tn mN;

}
STRUCTURE;

Self-referential data types are expanded in the same manner. For example:

// OMG IDL
struct A
{

sequence<A> v1;
};
 90

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 91 Tuesday, April 27, 1999 1:54 PM
translates to:

// MIDL
typedef struct A
{

struct
{

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
struct A * pValue;

} v1;
} A;

Translation of Unions

A discriminated union type in OMG IDL translates to an encapsulated union in
MIDL. For example:

// OMG IDL
enum UNION_DISCRIMINATOR
{

dChar=0;
dShort,
dLong,
dFloat,
dDouble};

union UNION_OF_CHAR_AND_ARITHMETIC
switch (UNION_DISCRIMINATOR)
{

case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f:
case dDouble: double d;
default: octet v[8];

};

translates to:
91

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 92 Tuesday, April 27, 1999 1:54 PM
// MIDL
typedef enum [v1_enum,public]
{

dchar=o,
dshort,
dLong,
dFloat,
dDouble,

} UNION_DISCRIMINATOR;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
} UNION_OF_CHAR_AND_ARITH

Translation of Sequences

Unbounded Sequences
The following OMG IDL unbounded sequence of type T:

// OMG IDL
typedef ... T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

translates to:

// MIDL
typedef ... U;
typedef struct
{

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique] U *

pValue;
} UNBOUNDED_SEQUENCE;
 92

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 93 Tuesday, April 27, 1999 1:54 PM
In the preceding example, the encoding for the unbounded OMG IDL sequence
of type T is that of a MIDL struct containing a unique pointer to a conformant
array of type U, where U is the MIDL mapping of T. The enclosing struct in the
MIDL mapping is necessary to provide a scope in which extent and data bounds
can be defined.

Bounded Sequences
The following OMG IDL bounded sequence of type T (which can grow to be N
size):

// OMG IDL
const long N = ...;
typedef ... T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

translates to:

// MIDL
const long N = ...;
typedef ... U;
typedef struct
{

unsigned long reserved;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value N;

} BOUNDED_SEQUENCE_OF_N;

The maximum size of the bounded sequence is declared in the declaration of the
array. A [size_is()] attribute is therefore not needed.

Translation of Arrays

The following OMG IDL array of some type T:

// OMG IDL
const long N = ...;
typedef ... T;
typedef T ARRAY_OF_T[N];
93

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 94 Tuesday, April 27, 1999 1:54 PM
translates as follows to a MIDL array of type U:

// MIDL
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_U[N];

In this example, the MIDL array of type U is the result of mapping the OMG IDL
T into MIDL.

Note: If the ellipsis were octet in the OMG IDL sample, the ellipsis would have
to be byte in MIDL. That is why the types of the array elements have
different names in the two texts.

Translation of Exceptions

The CORBA model uses exceptions to report error information. Exceptions are
classified into two categories:

1. System exceptions can be raised by any operation. A standard set of
system exceptions is defined by CORBA, and Orbix provides a number of
additional system exceptions. These system exceptions are listed in
“System Exceptions” on page 329.

2. User exceptions are defined in OMG IDL. An OMG IDL operation can
optionally specify that it might raise a specific set of user exceptions. An
OMG IDL operation might also raise a system exception but this is not
defined at the OMG IDL level.

User Exceptions

An OMG IDL user-defined exception translates to a MIDL interface and an
exception structure that appears as the last parameter of any operation mapped
from OMG IDL to MIDL.

For example, if an operation in MyModule::MyInterface raises a user
exception, an exception structure named MyModule_MyInterfaceExceptions
will be created. This is then mapped as an output parameter to MIDL.
 94

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 95 Tuesday, April 27, 1999 1:54 PM
The following OMG IDL code shows the definition of the format used to
represent user exceptions:

// OMG IDL
module BANK
{
...

exception InsufficientFunds {float balance};
exception InvalidAmount {float amount};

interface Account
{

exception NotAuthorised{};
float Deposit(in float Amount) raises(InvalidAmount);
float Withdraw(in float Amount) raises(InvalidAmount,

NotAuthorised);
};

};

This translates to:

// MIDL
struct BANK_InsufficientFunds
{

float balance;
};
struct BANK_InvalidAmount
{

float amount;
};
struct BANK_Account_NotAuthorised
{
};

interface IBANK_AccountUserExceptions: IUnknown
{

HRESULT get_InsufficientFunds([out] BANK_InsufficientFunds *
exceptionBody);

HRESULT get_InvalidAmount([out] BANK_InvalidAmount *
exceptionBody);

HRESULT get_NotAuthorised([out] BANK_Account_NotAuthorised *
exceptionBody);

};
95

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 96 Tuesday, April 27, 1999 1:54 PM
typedef struct
{

ExceptionType type;
LPSTR repositoryId;
IBANK_AccountUserExceptions * piUserException;

} BANK_AccountExceptions

System Exceptions
A CORBA system exception translates to a COM interface defined as follows:

// MIDL
SetErrorInfo(OL,NULL); //Initialise the thread-local error object
try
{

// Call the CORBA operation
}
catch(...)
{

...
CreateErrorInfo(&pICreateErrorInfo);
pICreateErrorInfo->SetSource(...);
pICreateErrorInfo->SetDescription(...);
pICreateErrorInfo->SetGUID(...);
pICreateErrorInfo->QueryInterface(IID_IErrorInfo,&pIErrorInfo);
pICreateErrorInfo->SetErrorInfo(OL,pIErrorInfo);
pIErrorInfo->Release();
pICreateErrorInfo->Release();
...

}

A client to a COM view would access the error object as follows:

// After obtaining a pointer to an interface on the COM View, the
// client does the following one time
pIMyMappedInterface->QueryInterface(IID_ISupportErrorInfo,

&pISupportErrorInfo);
hr = pISupportErrorInfo->InterfaceSupportsErrorInfo

(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE);
...
// Call to the COM operation...
HRESULT hrOperation = pIMyMappedInterface->...
 96

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 97 Tuesday, April 27, 1999 1:54 PM
if (bSupportsErrorInfo)
{

HRESULT hr = GetErrorInfo(O,&pIErrorInfo);
// S_FALSE means that error data is not available
// NO ERROR means it is available
if (hr == NO_ERROR)
{

pIErrorInfo->GetSource(...);
// Has repository id and minor code
// hrOperation has the completion status encoded into it
pIErrorInfo->GetDescription(...);

}
}

Translation of the Any Type

There is no direct translation of the OMG IDL any type to COM. Therefore, it
is mapped to the following interface definition:

// MIDL
typedef [v1_enum, public]
enum CORBAAnyDataTagEnum{

anySimpleValTag=0,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion
switch(CORBAAnyDataTag whichOne){

case anyAnyValTag:ICORBA_Any *anyVal;
case anySeqValTag:
case anyStructValTag:

struct {
[string, unique] char * repositoryId;
unsigned long cbMaxSize;
unsigned long cbLength-Used;
[size_is(cbMaxSize), length_is(cbLengthUsed),unique]

union CORBAAnyDatUnion *pVal;
multiVal;

case anyUnionValTag;
97

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 98 Tuesday, April 27, 1999 1:54 PM
struct{
[string, unique] char * repositoryId;
long disc;
union CORBAAnyDataUnion *value;

unionVal;
case anyObjectValTag:

struct{
[string, unique] char * repositoryId;
VARIANT val;

objectVal;
case anySimpleValTag: //All other types

VARIANT simpleVal;
} CORBAAnyData;

...uuid[...]
interface ICORBA_Any: IUnknown
{

HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData * val);
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);

}

Context Clause

The CORBA standard OMG IDL to COM mapping does not specify a translation
for OMG IDL contexts.

Translation of Object References
When an OMG IDL operation returns an object reference or it passes an object
reference as an operation parameter, this is translated to a reference to an
IUnknown based interface in MIDL. For example:

// OMG IDL
interface Account {

...
};
 98

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 99 Tuesday, April 27, 1999 1:54 PM
interface Bank {
Account newAccount(in string name);
deleteAccount(in Account a);

};

translates to:

// MIDL
[object, uuid(...)]
interface IBank : IUnknown {

HRESULT newAccount ([in] LPSTR it_name,
[out] IAccount ** value);

HRESULT deleteAccount ([in] IAccount * account);
};

C++ COM
// Get a pointer to the Bank interface (pIF) using the GetObject
// method of ICORBAFactory
HRESULT hr = NOERROR;
LPSTR szName = “John Smith”;
float balance = 0, deposit = 10.0;
IAccount *pAcc = 0;
hr = pIF->newAccount(szName, &pAcc, NULL);
hr = pAcc->makeLodgement(deposit);
hr = pAcc->_get_balance(&balance);
cout << “balance is” << balance << endl;
hr = pIF->deleteAccount(pAcc);
pAcc->Release();

Translation of Modules
An OMG IDL definition contained within the scope of an OMG IDL module is
translated to its corresponding MIDL definition by prefixing the name of the
MIDL type definition with the name of the module. For example:

// OMG IDL
module Finance {

interface Bank {
...
};

};
99

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 100 Tuesday, April 27, 1999 1:54 PM
translates to:

[object, uuid(...), helpstring("Finance_Bank")]
interface IFinance_Bank : IUnknown {

...
}

Translation of Constants
OMG IDL const types translate to MIDL const types. For example:

// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const double D = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

translates to:

// MIDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const double D = ...;
const char C = ...;
const boolean B = ...;
const LPSTR STR = “...”;
 100

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 101 Tuesday, April 27, 1999 1:54 PM
Translation of Enumerated Types
A CORBA enum translates directly to a COM enum. For example:

// OMG IDL
interface MyIntf
{

enum A_or_B_or_C {A,B,C};
};

translates to:

// MIDL
[uuid(...), ...]
interface IMyIntf
{

typedef [v1_enum, public]
enum MyIntf_A_or_B_or_C {MyIntf_A = 0, MyIntf_B, MyIntf_C}

MyIntf_A_or_B_or_C;
};

CORBA has enums that are not explicitly tagged with values. On the other hand,
MIDL supports enums that are explicitly tagged with values. Therefore, any
language mapping that permits two enums to be compared, or which defines
successor or predecessor functions on enums, must conform to the ordering of
the enums as specified in OMG IDL.

The MIDL keyword v1_enum is required in order for an enum to be transmitted
as 32-bit values. Microsoft recommends that this keyword is used on 32-bit
platforms, because it increases the efficiency of marshalling and unmarshalling
data when such an enum is embedded in a structure or union.

CORBA supports enums with up to 232 identifiers but MIDL only supports 216
identifiers. Truncation might therefore result.
101

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 102 Tuesday, April 27, 1999 1:54 PM
Translation of Scoped Names
An OMG IDL scoped name must be fully qualified in MIDL to prevent accidental
name collisions. For example:

// OMG IDL
module Bank {

interface ATM {
enum type {CHECKS,CASH];
struct DepositRecord {

string account;
float amount;
type kind;

};
void deposit(in DepositRecord val);

};

translates to:

MIDL
[uuid(...), object]
interface IBANK_ATM: IUnknown {

typedef [v1 enum] enum BANK_ATM_type
{BANK_ATM_CHECKS, BANK_ATM_CASH} BANK_ATM_type;

typedef struct
{

LPSTR account;
float amount;
BANK_ATM_type kind;

}
BANK_ATM_DepositRecord;
HRESULT deposit(in BANK_ATM_DepositRecord * val);

};
 102

Map p i n g C ORB A O b j e c t s t o C OM

COMet.book Page 103 Tuesday, April 27, 1999 1:54 PM
Translation of Typedefs
A CORBA typedef translates directly to a MIDL typedef .

A typedef definition is most often used for array and sequence definitions. For
example:

// OMG IDL
interface Account {...};

typedef sequence<Account, 100> AccountList;

translates to:

[object, UUID(...)]
interface IAccount : IUnknown {...};
Typedef struct {
...
} AccountList;
103

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 104 Tuesday, April 27, 1999 1:54 PM
 104

COMet.book Page 105 Tuesday, April 27, 1999 1:54 PM
 8
Mapping COM Objects to CORBA

COM types are defined in Microsoft IDL (MIDL). CORBA types are
defined in OMG IDL. To allow interworking between COM and
CORBA, MIDL types must be translated to OMG IDL. This chapter
outlines how translation of COM objects to CORBA is achieved.

For the purposes of illustration, this chapter describes a textual mapping
between MIDL and OMG IDL. OrbixCOMet itself does not require this textual
mapping to take place, because it includes a dynamic marshalling engine. The
textual mappings shown in this chapter are actually performed by OrbixCOMet
at application runtime.
105

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 106 Tuesday, April 27, 1999 1:54 PM
Translation of Basic Types
COM basic types translate to corresponding types in CORBA. Table 8.1 shows
the mapping for each type.

MIDL Description OMG IDL Description

boolean Unsigned char, 8-bit
0 = FALSE

1 = TRUE

boolean Unsigned char, 8-bit
0 = FALSE

1 = TRUE

byte octet 8-bit quantity

char 8-bit quantity char 8-bit quantity

double IEEE 64-bit float double IEEE 64-bit float

float IEEE 32-bit float float IEEE 32-bit float

long 32-bit integer long 32-bit integer

short 16-bit integer short 16-bit integer

unsigned long 32-bit integer unsigned long 32-bit integer

unsigned short 16-bit integer unsigned short 16-bit integer

Table 8.1: Translation of MIDL Basic Types to OMG IDL
 106

Map p i n g C OM Ob j e c t s t o CORB A

COMet.book Page 107 Tuesday, April 27, 1999 1:54 PM
Translation of Strings
MIDL to OMG IDL string mappings are shown in Table 8.2.

An error will occur if a COM server returns a BSTR that contains embedded
nulls to a CORBA client.

Unbounded Strings
The following MIDL statement for an unbounded string:

// MIDL
typedef [string,unique] char * UNBOUNDED_STRING;

translates to:

// OMG IDL
typedef string UNBOUNDED_STRING;

Bounded Strings
The following MIDL statement for a bounded string:

// MIDL
const long N = ...;
typedef [string,unique] char (* BOUNDED_STRING) [N];

translates to:

// OMG IDL
const long N = ...;
typedef string<N> BOUNDED_STRING;

MIDL OMG IDL Description

LPSTR [string,unique]char* string Null-terminated 8-bit character string.

BSTR string Null-terminated 16-bit character sting.

LPWSTR [string,unique]wchar t* string Null-terminated unicode string.

Table 8.2: MIDL to OMG IDL String Mappings
107

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 108 Tuesday, April 27, 1999 1:54 PM
Unicode Unbounded Strings

The following MIDL statement for a unicode unbounded string:

// MIDL
typedef [string,unique] LPWSTR UNBOUNDED_UNICODE_STRING;

translates to:

// OMG IDL
typedef string UNBOUNDED_UNICODE_STRING;

Unicode Bounded String
The following MIDL statement for a unicode bounded string:

// MIDL
const long N = ...;
typedef [string,unique] wchar t*(BOUNDED_UNICODE_STRING) [N];

translates to:

// OMG IDL
const long N = ...;
typedef string<N> BOUNDED_UNICODE_STRING;

Translation of Interfaces

Translation of Properties

In general, properties are expressed in a COM interface as two separate
operations: one to get the value and the other to set the value. For this reason,
these operations are mapped to operations in the CORBA interface.
 108

Map p i n g C OM Ob j e c t s t o CORB A

COMet.book Page 109 Tuesday, April 27, 1999 1:54 PM
Translation of Operations

A MIDL operation translates to an OMG IDL operation. For example:

// MIDL
interface IFoo: IUnknown
{

HRESULT stringify([in] VARIANT value, [out,retval] LPSTR *
pszValue);

HRESULT permute([inout] short * value);
HRESULT tryPermute([inout] short * value, [out] long *

newValue);
};

translates to:

// OMG IDL
typedef long HRESULT;
interface IFoo
{

string stringify(in any value) raises (COM_ERROR, COM_ERROREX);
void permute(inout short value);
void tryPermute(inout short value, out long newValue);

};

Parameters
A MIDL [in] parameter translates to an OMG IDL in parameter.

A MIDL [out] parameter translates to an OMG IDL out parameter.

A MIDL [inout] parameter translates to an OMG IDL in,out parameter.

A MIDL [retval,out] parameter translates to an OMG IDL return value.

Return Types

All COM interfaces must have a HRESULT return type that is used in COM for
exception reporting. Because CORBA has a richer exception hierarchy, the
HRESULT types are not included in the mapping. Instead, they are mapped to
equivalent CORBA system exceptions. If an operation in the COM interface is
marked with an [out,reval] parameter, this parameter will appear as the
return value in the CORBA operation.
109

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 110 Tuesday, April 27, 1999 1:54 PM
Translation of Inheritance

CORBA and COM have different models for inheritance. CORBA interfaces can
be multiply inherited but COM does not support multiple interface inheritance.

CORBA::Composite is a general purpose interface used to provide a standard
mechanism for accessing multiple interfaces from a client, eventhough those
interfaces are not related by inheritance. It is defined as follows in CORBA:

// PIDL
{

interface Composite
{

Object query_interface(in RepositoryId whichOne);
};
interface Composable: Composite
{

Composite primary_interface();
};

};

The root of a COM interface inheritance tree, when mapped to CORBA, is
multiply inherited from CORBA::Composable and
CosLifeCycle::LifeCycleObject . Any COM method parameters that require
IUnknown interfaces as arguments are mapped in OMG IDL to object references
of type CORBA::Object .

The following MIDL definiton:

// MIDL
interface IFoo: IUnknown

{
HRESULT inquire([in] IUnknown *obj);
};

translates to:

// OMG IDL
interface IFoo: CORBA::Composable,CosLifeCycle::LifeCycleObject

{
void inquire(in Object obj);

};
 110

Map p i n g C OM Ob j e c t s t o CORB A

COMet.book Page 111 Tuesday, April 27, 1999 1:54 PM
Translation of Complex Types

Translation of Constructed Types

COM constructed types such as struct , union , and array map to the
corresponding CORBA constructed types.

Translation of Structs

A MIDL struct translates to a corresponding struct in OMG IDL. For
example:

// MIDL
struct foo {

long l;
LPTSTR s;

};

translates to:

// OMG IDL
struct foo {

long l;
string s;

};

Translation of Unions

Encapsulated Unions

The following example of a MIDL encapsulated union :

// MIDL
typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble} UNION_DISCRIMINATOR;
111

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 112 Tuesday, April 27, 1999 1:54 PM
typedef union switch (UNION_DISCRIMINATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
} UNION_OF_CHAR_AND_ARITHMETIC;

translates to:

// OMG IDL
enum UNION_DISCRIMINATOR

{
dChar,
dShort,
dLong,
dFloat,
dDouble
};

union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: octet v[8];
};

Non-Encapsulated Unions

MIDL non-encapsulated unions (and MIDL encapsulated unions with non-
constant discriminators) translate to an any type in OMG IDL. For example:

// MIDL
typedef [switch_type(short)] union
tagUNION_OF_CHAR_AND_ARITHMETIC

{
[case(0)] char c;
[case(1)] short s;
[case(2)] long l;
 112

Map p i n g C OM Ob j e c t s t o CORB A

COMet.book Page 113 Tuesday, April 27, 1999 1:54 PM
[case(3)] float f;
[case(4)] double d;
[default] byte v[8];
} UNION_OF_CHAR_AND_ARITHMETIC;

translates to:

// OMG IDL
typedef any UNION_OF_CHAR_AND_ARITHMETIC;

Note: The type of the OMG IDL any is determined at runtime during
conversion of the MIDL union .

Translation of Pointers

A MIDL reference pointer translates to a CORBA sequence containing one
element.

A MIDL unique pointer (with no aliases or cycles) translates to a CORBA
sequence containing zero or one elements.

A MIDL full pointer (with no aliases or cycles) translates to a CORBA sequence
containing zero or one elements.

A run-time error will occur in the following situations:

• If a COM client passes a full pointer containing aliases or cycles to a
CORBA server.

• If a COM server attempts to return a full pointer containing aliases or
cycles to a CORBA client.
113

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 114 Tuesday, April 27, 1999 1:54 PM
Translation of Arrays

Fixed Arrays
A MIDL fixed-length array translates to an OMG IDL fixed-length array. For
example:

// MIDL
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_N[N];
typedef float DTYPE[0..10];

translates to:

// OMG IDL
const long N = ...;
typedef ... T;
typedef T ARRAY_OF_N[N];
typedef float DTYPE[11];

Non-Fixed Arrays

A MIDL non-fixed-length array translates to an OMG IDL sequence. For
example:

// MIDL
typedef short BTYPE[]; // Equivalent to [*];
typedef char CTYPE[*];

translates to:

// OMG IDL
typedef sequence<short> BTYPE;
typedef sequence<char> CTYPE;

Translation of Exceptions

COM exceptions translate to CORBA exceptions. COM system error codes
translate to CORBA standard exceptions. COM user-defined error codes
translate to CORBA user exceptions.
 114

Map p i n g C OM Ob j e c t s t o CORB A

COMet.book Page 115 Tuesday, April 27, 1999 1:54 PM
System Exceptions

COM system exception codes are defined with the FACILITY_NULL and
FACILITY_RPC facility codes that translate to CORBA standard exceptions.

Table 8.3 list the mappings from COM FACILITY_NULL exceptions to CORBA
standard exceptions.

Table 8.4 list the mappings from COM FACILITY_RPC exceptions to CORBA
standard exceptions. (All FACILITY_RPC exceptions not listed in this table are
mapped to the new CORBA standard exception COM.)

COM CORBA

EOUTOFMEMORY NO_MEMORY

E_INVALIDARG BAD_PARAM

E_NOTIMPL NO_IMPLEMENT

E_FAIL UNKNOWN

E_ACCESSDENIED NO_PERMISSION

E_UNEXPECTED UNKNOWN

E_ABORT UNKNOWN

E_POINTER BAD_PARAM

E_HANDLE BAD_PARAM

Table 8.3: Mapping from COM FACILITY_NULL to CORBA Standard Exceptions

COM CORBA

RPC_E_CALL_CANCELED TRANSIENT

RPC_E_CANTPOST_INSENDCALL COMM_FAILURE

RPC_E_CANTCALLOUT_INEXTERNALCALL COMM_FAILURE

RPC_E_CONNECTION_TERMINATED NV_OBJREF

Table 8.4: Mapping from COM FACILITY_RPC to CORBA Standard Exceptions
115

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 116 Tuesday, April 27, 1999 1:54 PM
User Exceptions

COM user-defined error codes require the use of the raises clause in OMG
IDL. The following OMG IDL statement represents such a user exception:

// OMG IDL
exception COM_ERROR {long hresult;};

RPC_E_SERVER_DIED INV_OBJREF

RPC_E_SERVER_DIED_DNE INV_OBJREF

RPC_E_INVALID_DATAPACKET COMM_FAILURE

RPC_E_CANTTRANSMIT_CALL TRANSIENT

RPC_E_CLIENT_CANTMARSHAL_DATA MARSHAL

RPC_E_CLIENT_CANUNMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTUNMARSHAL_DATA MARSHAL

RPC_E_INVALID_DATA COMM_FAILURE

RPC_E_INVALID_PARAMETER BAD_PARAM

RPC_E_CANTCALLOUT_AGAIN COMM_FAILURE

RPC_E_SYS_CALL_FAILED NO_RESOURCES

RPC_E_OUT_OF_RESOURCES NO_RESOURCES

RPC_E_NOT_REGISTERED NO_IMPLEMENT

RPC_E_DISCONNECTED INV_OBJREF

RPC_E_RETRY TRANSIENT

RPC_E_SERVERCALL_REJECTED TRANSIENT

RPC_E_NOT_REGISTERED NO_IMPLEMENT

COM CORBA

Table 8.4: Mapping from COM FACILITY_RPC to CORBA Standard Exceptions
 116

Map p i n g C OM Ob j e c t s t o CORB A

COMet.book Page 117 Tuesday, April 27, 1999 1:54 PM
Translation of Variants

A COM VARIANT translates to a CORBA any type.

The allowable VARIANT data types are currently limited to the data types
supported by Automation. Refer to the documentation for your COM client
language for details of the types supported in a VARIANT.

An error will occur at runtime if a CORBA client returns an inconvertible any
type to a COM server.

Translation of Constants
A MIDL const type translates to a corresponding OMG IDL const type. For
example:

// MIDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const float F = ...;
const double D = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

translates to:

// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long LS = ...;
const float F = ...;
const double D = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;
117

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 118 Tuesday, April 27, 1999 1:54 PM
Translation of Enumerated Types
A MIDL enum translates to an OMG IDL enum. For example, the MIDL definition:

// MIDL
typedef [v1_enum] enum tagA_or_B_or_C {A=2, B=3, C=1}

A_or_B_or_C;

translates to:

// OMG IDL
enum A_or_B_or_C {C,A,B};

OMG IDL does not support enums defined with explicit tagged values. The
CORBA view of a COM object, therefore, is responsible for maintaining the
correct tagged value of the mapped enums as they cross the view.

Translation of Scoped Names
MIDL considers all definitions to be at global scope. Therefore, to avoid
collisions across interfaces when translating from MIDL to OMG IDL, nested
data types are treated as if they have been prefixed with the name of the scoping
level. For example:

interface IA: IUnknown
{

typedef enum {ONE, TWO, THREE} Count;
HRESULT f([in] Count val);

}

is mapped as if it were defined as follows:

typdef enum {A_ONE, A_TWO, A_THREE} A_Count;
interface IA: IUnknown
{

HRESULT f([in] A Count val);
}

 118

Map p i n g C OM Ob j e c t s t o CORB A

COMet.book Page 119 Tuesday, April 27, 1999 1:54 PM
Translation of Typedefs
A MIDL typedef is translated to an OMG IDL typedef . For example:

// MIDL
interface IAccount : IUnknown {...};
Typedef struct {
...
} AccountList;

translates to:

// OMG IDL
interface Account {...};

typedef sequence<Account, 100> AccountList;
119

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 120 Tuesday, April 27, 1999 1:54 PM
 120

COMet.book Page 121 Tuesday, April 27, 1999 1:54 PM
 9
Development Support Tools

OrbixCOMet is a high-performance bridge that stores OMG IDL and
MIDL type information at the bridging location in an ORB-neutral
binary format. The OrbixCOMet type store holds a cache of this
information that is used by the dynamic bridge during runtime of
your OrbixCOMet applications. This chapter describes the GUI and
command line tools that allow you to maintain the type store cache
and to create OMG IDL, MIDL, type libraries, smart proxy DLLs and
server stub code. It also describes the GUI and command line tools
that you can use to replace an existing DCOM server with a CORBA
server.

Note: The GUI and command line tools for maintaining the type store cache
provide the same functionality. You can choose to use just one or the
other, or you can use both if you wish. However, if you are using both
the GUI tool and the command line utilities simultaneously, changes you
make to the type store cache with the command line tools will not
appear automatically on the GUI interface. In this case, you would have
to refresh the GUI interface. This is further explained later in this
chapter.
121

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 122 Tuesday, April 27, 1999 1:54 PM
Type Store GUI Tools

The OrbixCOMet Tools Screen

From your OrbixCOMet start menu, select COMet tools to open the
OrbixCOMet tools screen shown in Figure 9.1.

Figure 9.1: OrbixCOMet Tools Screen

On the OrbixCOMet tools screen, the TypeStore Contents panel lists all
the type information that is currently held in the type store cache. All type
information is held in the cache in one ORB-neutral binary format called
metadata, regardless of whether it has originated from OMG IDL or MIDL files.
It can consist of module names, interface names or data types.
 122

De v e l o p men t S u p po r t T o o l s

COMet.book Page 123 Tuesday, April 27, 1999 1:54 PM
From this screen, you can perform the following tasks:

• Add new information to the type store.

• Delete the type store contents.

• Rebuild the type store.

• Create an OMG IDL or MIDL file.

• Create a type library.

• Create a smart proxy DLL.

• Create server stub code.

Adding New Information to the Type Store

To add new information to the type store:

1. Enable the LookUp button in either of the following ways:

♦ In the field beside the LookUp button, enter the name of the
interface you want to find.

♦ Select the browse button that is marked by an ellipsis (that is, …).
This provides you with a list of type library names. Select a type
library name to return it to the field.

2. Select the LookUp button. This searches the Interface Repository and
the type store cache for the specified name. If the relevant name is found
in the Interface Repository and it is not already in the cache, it is then
automatically added to the cache.

Refreshing the Display

If you are using the command line tools and GUI tool simultaneously, any
changes you make to the type store cache with the command line tools do not
appear automatically in the TypeStore Contents panel on the OrbixCOMet
tools screen. In this case, you can select the Refresh Display button to reflect
any changes that you made via the command line.
123

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 124 Tuesday, April 27, 1999 1:54 PM
Deleting the Type Store Contents

To delete the entire contents of the cache, select the Delete TypeStore
button.

Rebuilding the Type Store

To automatically refresh or rebuild the type store from a record of existing
entries, select the Rebuild TypeStore button.

Creating an IDL File

The normal procedure for writing a CORBA or COM client is to first obtain an
OMG IDL or Microsoft IDL (MIDL) definition for the interface. You should
ensure that each IDL file contains a module in order to minimise manual
lookups.

To create an IDL file from the OrbixCOMet tools screen in Figure 9.1 on
page 122:

1. From the TypeStore Contents panel, select an item of type
information you want to include in the IDL file.

2. Select the Add button. This adds the item to the Types to use panel.

Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the IDL file.

3. Select the Create IDL button. This opens the OrbixCOMet ts2idl
client screen shown in Figure 9.2 on page 125.

Note: Creating MIDL here allows you to create a standard DCOM proxy/stub
DLL that can be installed with your DCOM client application. This means
you do not have to install any CORBA components on the client
machine. The distribution model is exactly the same as it would be for a
standard DCOM application. This means it includes a COM client and a
proxy/stub DLL.
 124

De v e l o p men t S u p po r t T o o l s

COMet.book Page 125 Tuesday, April 27, 1999 1:54 PM
Figure 9.2: Creating an IDL File

4. If you want to:

♦ Create a Microsoft IDL file, select the Microsoft IDL radio button.

♦ Create an OMG IDL file, select the OMG IDL radio button.

♦ Ensure IDL is created for all dependent types not defined within the
scope of (for example) your interface, select the Resolve
References check box.

♦ Copy the contents of the IDL file to your development environment,
select the Copy All button.
125

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 126 Tuesday, April 27, 1999 1:54 PM
♦ Refresh the screen, select the Clear button.

♦ Assign an IDL filename, select the Save As button.

5. Select the Generate IDL button. This creates the IDL file.

Creating a Type Library

When using an Automation client, you have the option in some controllers (for
example, Visual Basic) of using straight IDispatch interfaces or dual interfaces. If
you are only using straight IDispatch interfaces, there is no need to create a
type library. This is because OrbixCOMet will automatically put the related type
information into the type store when it performs a lookup using GetObject , as
in the following example:

‘ Visual Basic requesting an Automation object
‘ reference to OMG IDL interface mod::CorbaSrv
srvobj = factory.GetObject (“mod/CorbaSrv”)

However, if you want to use dual interfaces you must create a type library.

To create a type library from the OrbixCOMet tools screen in Figure 9.1 on
page 122:

1. From the TypeStore Contents panel, select an item of type
information you want to include in the type library.

2. Select the Add button. This adds the item to the Types to use panel.

Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the type library.

3. Select the Create TLB button. This opens the Typelibrary
Generator screen shown in Figure 9.3 on page 127.
 126

De v e l o p men t S u p po r t T o o l s

COMet.book Page 127 Tuesday, April 27, 1999 1:54 PM
Figure 9.3: Creating a Type Library

4. In the Library Name field, enter the internal library name. This can be
the same as the type library pathname if you wish, but make sure the
library does not have the same name as any of the types that it contains.

5. In the Typelibrary pathname field, enter the full pathname for the type
library.

6. If you want interface prototypes to:

♦ Appear as IDispatch , select the IDispatch only radio button.

♦ Use the specific interface name, select the Interface name radio
button.

7. To apply an identifier prefix to avoid name clashes, select the
corresponding check box. This helps to avoid potential name clashes
between OMG IDL and MIDL keywords.

8. Select the Generate TLB button. This creates the type library.
127

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 128 Tuesday, April 27, 1999 1:54 PM
Generating a Smart Proxy

Proxy objects are an Orbix-specific feature that are implemented in the stub
code for the client process. A normal proxy marshals the in and inout
parameters from the client request, transmits the request package to the
implementation object in the server, receives the reply package back from the
server, and unmarshals the out and inout parameters and return value for use
by the client. In other words, it fools the client into thinking that the distributed
object is local to the client process. A smart proxy goes further in that it can also
act as a cache of low-level state information and attribute values from the
distribution object in the server.

If the OrbixCOMet bridge is not being loaded in-process to your COM client
application, you must create a standard DCOM proxy DLL for the interfaces you
are using. This is necessary to allow DCOM to correctly make a connection to
the remote OrbixCOMet bridge from the client.

To create a smart proxy from the OrbixCOMet tools screen in Figure 9.1 on
page 122:

1. From the TypeStore Contents panel, select an item of type
information you want to include in the source for the smart proxy.

2. Select the Add button. This adds the item to the Types to use panel.

Repeat steps 1 and 2 until you have added all the items of type
information that you want to include in the source for the smart proxy.

3. Select the Create Smart Proxy button. This opens the Smart Proxy
Generator screen shown in Figure 9.4 on page 129.

4. Specify the name you want to assign to the handler DLL file in either of
the following ways:

♦ In the Handler Name field, enter the name of the handler DLL file.

♦ Select the browse button that is marked by an ellipsis (that is, …).
This provides you with a list of filenames. Select a name to return it to
the Handler Name field.

5. Select the target directory where you want the output files to be created.

6. Select any additional source files that you want to include.

7. Select the Generate button. This creates the smart proxy in the target
directory you have selected.
 128

De v e l o p men t S u p po r t T o o l s

COMet.book Page 129 Tuesday, April 27, 1999 1:54 PM
Figure 9.4: Generating a Smart Proxy

Generating Server Stub Code and Support for Callbacks

When you want your application to be a server application or to have callback
functionality, you must provide an implementation for the server/callback
objects. The cometcfg tool allows you to generate starting point skeleton code
for these object implementations. Currently it generates skeleton code for
Visual Basic 5.0 and PowerBuilder.
129

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 130 Tuesday, April 27, 1999 1:54 PM
To create server stub code from the OrbixCOMet tools screen in Figure 9.1
on page 122:

1. From the TypeStore Contents panel, select an item of type
information you want to include in the server stub code.

2. Select the Add button. This adds the item to the Types to use panel.

Repeat these steps until you have added all the items of type information
that you want to include in the server stub code.

3. Select the Server Stub Code button. This opens the Server Stub
Code Generator screen shown in Figure 9.5.

Figure 9.5: Generating Server Stub Code

4. To indicate the development language you are using, select the
corresponding radio button in the Language panel.

5. Select the target directory where you want the output files to be created.

6. Select the Generate button. This generates the skeleton code in the
target directory you have selected.
 130

De v e l o p men t S u p po r t T o o l s

COMet.book Page 131 Tuesday, April 27, 1999 1:54 PM
Type Store Command Line Tools
This section describes the command line utilities that you can use as an
alternative to the GUI tool for maintaining the type store cache and creating
OMG IDL files, MIDL files, type libraries and smart proxies.

These utilities can be found in %ORBIXCOMET%\bin , where %ORBIXCOMET%
represents the name of the installation directory you have chosen.

Adding New Information to the Type Store
The following command would add the grid interface to the type store cache:

typeman -e grid

Refer to “Managing the Type Store” on page 211 for more details about adding
information to the type store cache. (This is also called priming the cache.)

Deleting the Type Store Contents

Either of the following commands would delete the entire contents of the type
store:

typeman -w

or

del c:\temp\typeman.*

The second command in this case is assuming the typeman data files are held in
c:\temp . The typeman data files include the following:

Creating an IDL File
The following command would create a grid.idl file for the interface grid :

ts2idl -f grid.idl grid

typeman._dc This is the disk cache data file.

typeman.idc This is the disk cache index.

typeman.edc This is the disk cache empty record index.

typeman.map This is the UUID name mapper.
131

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 132 Tuesday, April 27, 1999 1:54 PM
The following is an example of the usage string for ts2idl :

Usage:
ts2idl [options] <type name> [[<type name>] ...]
Options:

-b : Pass object references as type Object in OMG IDL
-c : Don’t connect to the IFR (e.g. if cache is fully primed)
-r : Resolve referenced types
-m : Generate MIDL <default>
-p : Generate makefile for proxy/stub DLL
-f : <filename>
-v : Print this message
Tip : use -p to generate a makefile for the marshalling DLL!!

For more complicated interfaces that use user-defined types, you can use the -r
switch to completely resolve those types and produce MIDL for them also.

You can use the -b switch when generating OMG IDL based on type library
information stored in the type store. Its purpose is to attempt to keep the
number of generated lines of OMG IDL to a minimum. It specifies that interface
pointers passed as parameters to operations described in the type library are
mapped as type CORBA::Object in the generated OMG IDL rather than as their
dynamic type. Use this switch in conjunction with the -r switch. For an example
of its use, see the Excel CORBA client in the demos\corbaclient\excel
directory.

Creating a Type Library
The following command would create a grid.tlb file in library IT_grid for the
interface grid :

ts2tlb -f grid.tlb -l IT_grid grid

The following is an example of the usage string for ts2tlb :

Usage:
ts2tlb [options] <type name> [[<type name>] ...]

-f : file name (defaults to <type name #1>.tlb>
-l : library name (defaults to IT_Library_<type name #1>
-p : prefix parameter names with “it_”
-i : Pass a pointer to interface Foo as IDispatch*

rather than DIFoo* - necessary for some controllers
-v : Print this message
Tip : use tlibreg.exe to register your type library!!
 132

De v e l o p men t S u p po r t T o o l s

COMet.book Page 133 Tuesday, April 27, 1999 1:54 PM
Generating a Smart Proxy

The following command would generate a smart proxy for the grid interface in
the test module:

ts2sp test::grid

Replacing an Existing DCOM Server
At some stage, it might become necessary to replace an existing DCOM server
with a CORBA server, without the opportunity to modify existing DCOM
clients. However, such clients will not be aware of the (D)ICORBAFactory
interface that has so far been the usual way for clients to obtain initial references
to CORBA objects. The solution is to allow such clients to continue to use their
normal CoCreateInstanceEx() or CreateObject() calls. This means you must
retrofit the bridge to serve these clients’ activation requests. In other words,
you must alias the bridge to the legacy DCOM server. This ensures that when
the client is subsequently run, the bridge is activated in response to the client’s
CoCreateInstanceEx() /CreateObject() calls.

In OrbixCOMet, this is achieved through a GUI tool called srvAlias that allows
the user to place some entries in the registry to allow such server ‘aliasing’ to
occur. The srvAlias tool is shown in Figure 9.6 on page 134. Type srvalias
and then press Enter in the %ORBIXCOMET%\bin directory of your OrbixCOMet
installation to open this screen. You must enter the CLSID for the server to be
replaced and then supply, in the appropriate text box, the string that would be
passed to (D)ICORBAFactory::GetObject() if the CORBA factory were being
used. This string is then stored in the registry under a COMetInfo subkey under
the server’s CLSID entries. In addition, ITUnknown.dll is registered as the
server executable. Nothing else is required.

The SrvAlias tool allows users to save the new registry entries in binary
format, so that an accompanying command line tool (aliassrv.exe) can be
used at application deployment time to restore the entries on the destination
machine. For example, given a file called replace.reg that contains the modified
registry entries, the following command would alias the specified CLSID to
OrbixCOMet:

aliassrv -r replace.reg -c {F7B6A75E-90BF-11D1-8E10-0060970557AC}
133

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 134 Tuesday, April 27, 1999 1:54 PM
The next time a DCOM client of the server is run, OrbixCOMet will be used
instead. Refer to the demo\corbasrv\replace directory of your OrbixCOMet
installation for an example of srvalias.exe and aliassrv.exe in action.

Figure 9.6: Aliasing the Bridge
 134

COMet.book Page 135 Tuesday, April 27, 1999 1:54 PM
 10
Implementing CORBA Clients

“Getting Started on Automation” on page 11 and “Getting Started
on COM” on page 23 explained how to write a simple CORBA client
program in an Automation-compatible language and COM C++
respectively. This chapter provides further details about
programming OrbixCOMet clients.

The topics covered in this chapter include:

• How programs communicate with the ORB to obtain services or to
modify the ORB’s default behaviour.

• The interfaces that CORBA and COM/Automation view objects support.

• How a client can narrow an object reference when the object referred to
is a derived type of the client’s reference type.

• How a CORBA client can obtain a reference to an object in a CORBA
server. This chapter describes a number of ways, including the use of the
Naming Service.

This chapter also shows how to implement Visual Basic, PowerBuilder and C++
COM client examples for the Bank server that is developed in “Implementing
CORBA Servers” on page 173.
135

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 136 Tuesday, April 27, 1999 1:54 PM
Interface to the ORB
An OrbixCOMet program can obtain a reference to the ORB in order to
communicate with it and to modify its settings. This functionality is provided by
the following interfaces:

DIORBObject / IORBObject

These interfaces contain a set of methods defined by the COM/CORBA
Interworking standard.

(D)IORBObject includes methods to convert an Interoperable Object
Reference (IOR) to a string known as a stringified IOR, and to convert a
stringified IOR back into an IOR.

DIOrbixORBObject / IOrbixORBObject

These interfaces contain a set of methods that are specific to
OrbixCOMet for controlling the ORB.

(D)IOrbixORBObject includes methods to configure Orbix dynamically,
to optimise calls when the client and server are located in the same
process, to help with interface matching, and to control the diagnostic
level. It also includes a set of methods that allow a client to control
connections to a server.

A full description of (D)IORBObject and (D)IOrbixORBObject is provided in
“OrbixCOMet API” on page 241.

Obtaining a Reference to the ORB

The ORB has the ProgID CORBA.ORB.2. The following code shows how you can
obtain and use a reference to the ORB.

Visual Basic
Dim theORB as CORBA_Orbix.DIOrbixORBObject
Set theORB = CreateObject("CORBA.ORB.2")
 136

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 137 Tuesday, April 27, 1999 1:54 PM
You can now make calls such as:

' Do not output any diagnostic messages:
theORB.SetDiagnostics 0 ' No diagnostics

PowerBuilder
OleObject theOrb
theOrb = CREATE OleObject
theOrb.ConnectToNewObject("CORBA.ORB.2")

You can now make calls such as:

// Do not check that target object exists when binding:
theORB.PingDuringBind(0)

C++ COM
// Connect to the ORB and get the regisration interface
IOrbixORBObject * poOrb=0;
hr = CoCreateInstance(IID_IOrbixORBObject, NULL, ctx,

IID_IOrbixORBObject, (void**)&poOrb);
CheckHRESULT(“Connecting to ORB”, hr, FALSE);

hr = poOrb->PingDuringBind(false);
CheckHRESULT(“getting Server API”, hr, FALSE);

Finding Object References
Normally, a client’s first task is to locate an object reference in a server. The
following are some of the ways in which a client can obtain an object reference:

• The (D)ICORBAFactory interface.

• The Naming Service.

• IDL operations.

The following subsections discuss each of these in turn.
137

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 138 Tuesday, April 27, 1999 1:54 PM
The (D)ICORBAFactory Interface

The COM/CORBA Interworking specification defines the interfaces
DICORBAFactory and ICORBAFactory that provide the methods GetObject()
and CreateObject() to allow a client to obtain references to CORBA objects.

GetObject()
// MIDL
interface DICORBAFactory : IDispatch {

...
HRESULT GetObject([in] BSTR objectName,

[optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

}

As explained in “Getting Started on Automation” on page 11 and “Getting
Started on COM” on page 23, GetObject() performs the following functions:

1. It creates a COM/Automation view in the bridge. This means it creates an
object that presents a COM/Automation view of the target CORBA
object to the client.

2. It binds the view to the CORBA implementation object in the server.

3. It returns a reference to the view to the caller.

Parameter to GetObject()

The parameter to GetObject() is a string that identifies the target object by
specifying its Orbix object name or its IOR.

Specifying the Orbix Object Name

The parameter has two forms:

1 “Interface[[[:Marker]:ServerName]:HostMachine]”
2 “Interface:<TAG>:<Tag_data>”

The components of the string are interpreted as follows:

Interface This is the IDL interface that the target object should
support.
 138

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 139 Tuesday, April 27, 1999 1:54 PM
Marker This is the name of the target Orbix object. Every Orbix
object has a name that is either chosen by Orbix or set
(usually) at the time the object is created. See
SetObjectImpl() and DIOrbixObject::Marker() for
details.

The Marker component is optional. If specified,
GetObject() will fail if an object having that marker cannot
be found. If not specified, OrbixCOMet chooses any object
that supports the desired interface and matches the
remaining components.

ServerName This is the name of the Orbix server in which the object is
implemented. This is the name of the server that is
registered with the Implementation Repository.

This component is optional. If not specified, the server name
defaults to the name specified in Interface .

HostMachine This is the Internet host name or Internet address of the
host on which the server is located. If the string is in the
format xxx.xxx.xxx.xxx , where x is a decimal digit, it is
interpreted as an Internet address.

This component is optional. If not specified, OrbixCOMet
will use its default locator to search the network for a host
supporting the desired server. However, this requires that
locator configuration information is available. If no
configuration information is available, the search will be
confined to the local host. Refer to the Orbix
documentation set for an explanation of how to configure
the default locator.
139

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 140 Tuesday, April 27, 1999 1:54 PM
Parameter String Examples

The following are some examples of how to use the string parameter for the
Orbix object name:

“Bank”

Obtain a reference to any object on any host in the network. The object
should implement the OMG IDL interface Bank and be located in a server
named Bank .

“Bank:alpha”

Obtain a reference to any object on host alpha (in the current domain).
The object should implement the OMG IDL interface Bank and be
located in a server named Bank.

“Bank:HighStreet:bankSrv:alpha”

Obtain a reference to an object named HighStreet in the server
bankSrv on host alpha (in the current domain). The object must
implement the OMG IDL interface Bank.

“Bank:HighStreet:Credit:”

Locate an object named HighStreet in the server Credit somewhere in
the network. The object must implement the OMG IDL interface Bank.

<TAG> Two types of tags are allowed. Each type has a different
form of <Tag_data> . Valid tag types are:

• IOR—the tag data is the hexadecimal string for the
stringified IOR. For example:
fact.GetObject(“employee:IOR:123456789......”)

• NAME_SERVICE—the tag data is the NAME_SERVICE
compound name separated by “.”. For example:
fact.GetObject(“employee:NAME_SERVICE:
IONA.employees.PD.Ronan”)
 140

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 141 Tuesday, April 27, 1999 1:54 PM
“Bank:alpha.mc.com”

Obtain a reference to any object on host alpha in the domain mc.com.
The object should implement the OMG IDL interface Bank and be
located in a server named Bank .

“Bank:123.456.789.012”

Obtain a reference to any object at the Bank server at the host whose
Internet address is 123.456.789.012 . The object must implement the
OMG IDL interface Bank.

CreateObject()
// MIDL
interface DICORBAFactory : IDispatch {

HRESULT CreateObject([in] BSTR factoryName,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

...
}

In OrbixCOMet, DICORBAFactory::CreateObject() behaves in the same way
as DICORBAFactory::GetObject() . Therefore, it can be used exactly as
described for GetObject() .

The Naming Service

A CORBA server can assign a name to an object and register the name and the
object with the Naming Service. (The Naming Service is one of the CORBA
services defined by the OMG.) A client that knows the object name can resolve
it in the Naming Service to obtain a reference to the object. You need an
implementation of the Naming Service, such as OrbixNames, to use this method.
Refer to the OrbixNames Programmer’s and Administrator’s Guide for details of
the Naming Service terminology used here and for full details of how to use
OrbixNames.

In this case, a simple example of using the Naming Service from OrbixCOMet is
provided.
141

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 142 Tuesday, April 27, 1999 1:54 PM
An object registered with the Naming Service has a name that is defined in OMG
IDL as follows:

// OMG IDL
module CosNaming {
...

typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

...
}

To locate an object using the Naming Service, your client must create a
CosNaming::Name that names the desired object. The client must then resolve
the name with the Naming Service.

Creating a CosNaming::Name
In the following code extracts, assume that the client wants to bind to a Bank
object that is registered with the name Commercial.Trust . The Naming
Service’s bridge in the example is called NamingBridge .

Note: The following code creates an IDL sequence of NameComponents to
construct a CosNaming::Name . Refer to “Mapping CORBA Objects to
Automation” on page 41 and “Mapping CORBA Objects to COM” on
page 81 for more details of how to create an OMG IDL sequence in an
Automation or COM application.

Visual Basic Create an empty sequence of CosNaming::NameComponent s as follows:

Dim ObjFactory As DICORBA_Orbix.DICORBAFactory
Set ObjFactory = CreateObject("CORBA.Factory")

Dim bankName As DICosNaming_Name
Set bankName = ObjFactory.CreateType(Nothing,“CosNaming/Name”)
 142

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 143 Tuesday, April 27, 1999 1:54 PM
Create a NameComponent as follows:

Dim bankNameComp As DICosNaming_NameComponent
Set bankNameComp = ObjFactory.CreateType(Nothing,

"CosNaming/NameComponent")

Populate the NameComponent and insert it in the Name sequence as follows:

bankNameComp.id = "Commercial"
bankNameComp.kind = ""
bankName.setItem 0, bankNameComp

bankNameComp.id = "Trust"
bankNameComp.kind = ""
bankName.setItem 1, bankNameComp

PowerBuilder Create an empty sequence as follows:

bankName = CREATE OleObject
bankName = ObjFactory.CreateType(Nothing,“CosNaming/Name”)

(Refer to the section “Translation of Constructed Types” on page 53 for a
description of using CreateType() .)

Create a NameComponent as follows:

bankNameComp = CREATE OleObject
bankNameComp = ObjFactory.CreateType(Nothing,

“CosNaming NameComponent")

Populate the NameComponents and insert them in the Name sequence as follows:

bankName.Count = 2

bankNameComp.id = "Commercial"
bankNameComp.kind = ""
bankName.setitem(0, bankNameComp)

bankNameComp2.id = "Trust"
bankNameComp2.kind = ""
bankName.setitem(1, bankNameComp)

COM C++ Create an empty sequence of CosNaming::NameComponent s as follows:

CosNaming_Name bankName;
CosNaming_NameComponent BankNameComp;

bankName.cbMaxSize = 2;
143

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 144 Tuesday, April 27, 1999 1:54 PM
bankName.cbLengthUsed = 2;
bankName.pValue = new CosNaming_NameComponent

[bankName.cbLengthUsed];
BankNameComp.id=“Commercial”;
BankNameComp.kind=“”;
bankName.pValue[0]=BankNameComp;

BankNameComp.id=“Trust”;
BankNameComp.kind=“”;

bankName.pValue[1]=BankNameComp;

Resolving the Name

The client obtains a reference to the target object by resolving the Name in the
Naming Service. The following code extracts illustrate how to do this:

Visual Basic Dim myNS as DICosNaming_NamingContext
Dim NSObj as Object

Dim theORB as CORBA_Orbix.DIOrbixORBObject
Set theORB = CreateObject("CORBA.ORB.2")

Set myNS = ObjFactory.GetObject(
"CosNaming NamingContext:NS:host")

Set NSObj = myNS.resolve(bankName)

Set theBank = NSObj

The first step is to obtain a reference to a NamingContext , usually the Naming
Service’s root context. The client then calls resolve() on the NamingContext
to obtain a reference to the object. The object reference that is returned by the
call to resolve() must be narrowed to obtain a reference to the desired
interface. (Refer to “Narrowing Object References” on page 148 for more
details.)

PowerBuilder OleObject ObjFactory
ObjFactory = CREATE OleObject

OleObject theORB
theORB = CREATE OleObject
 144

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 145 Tuesday, April 27, 1999 1:54 PM
myNS = CREATE OleObject
myNS = ObjFactory.GetObject(“CosNaming/NamingContext:NS:host”)

NSObj = myNS.resolve(bankName)

theORB.ConnectToNewObject("CORBA.ORB.2")

theBank = theORB.Narrow(NSObj,"Bank")

COM C++ The desired interface is obtained using QueryInterface after you have called
Resolve() . For example:

ICosNaming_NamingContext myNS;
IUnknown *NSObj;
Ibank *pIBasic = NULL;

hr = pCORBAFact->GetObject(“CosNaming/Namingcontext:NS:host”,
&myNS);

if(!CheckErrInfo(hr, pCORBAFact, IID_ICORBAFactory))
{

pCORBAFact->Release();
return;

}
pCORBAFact->Release();

NSObj=myNS->Resolve(bankName);
hr = NSObj->QueryInterface(IID_Ibank, (PPVOID)&pIBasic);
if(!CheckErrInfo(hr, NSObj, IID_Ibank))
{

NSObj->Release();
return;

}
NSObj->Release();

try
{

pIBasic->newAccount(...)
}
catch(...)
{...
145

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 146 Tuesday, April 27, 1999 1:54 PM
IDL Operations

A typical client program first obtains a reference to a server object by binding to
the object via DICORBAFactory::GetObject() or
DICORBAFactory::CreateObject(), or by using the Naming Service. This
object is known as a root object and a client might need to obtain references to
more than one root object. Thereafter, the client usually obtains other object
references through its interaction with the root object(s).

A client can obtain an object reference from an IDL operation’s return value,
from an inout or out parameter, or from an attribute value. When a client
receives an object reference in one of these ways, an Automation or COM view
is created in the bridge and reference to the Automation or COM view is
returned to the client.

The following code extract from a client of the Bank server illustrates this
method. A fuller version of the code is provided in “A Visual Basic Client
Program” on page 150.

Visual Basic
Dim ObjFactory As CORBA_Orbix.DICORBAFactory
Dim bankObj As BankBridge.DIBank
Dim bankAccount As BankBridge.DIAccount

Set ObjFactory = CreateObject("CORBA.Factory")
...
Set bankObj = ObjFactory.GetObject("Bank:" & _

marker.Text & ":" & server_name.Text & _
":" & host_name.Text)

...
' Get an object reference as a return value:
Set bankAccount = bankObj.getAccount(txtOwner.Text)
...
' Use the object reference:
TxtBalance.Text = bankAccount.balance
txtOwner.Text = bankAccount.owner
 146

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 147 Tuesday, April 27, 1999 1:54 PM
Interworking Interfaces on Objects
Orbix objects support the interface defined in their IDL file. In addition, all Orbix
objects support the following interfaces:

A COM/Automation view object supports the additional interfaces
DIForeignObject and IForeignObject . The purpose of these interfaces is to
provide a way for the view to find the foreign object reference in a proxy. (The
term foreign refers to the CORBA system in this case.)

Refer to “OrbixCOMet API” on page 241 for details of all interfaces supported
in OrbixCOMet.

(D)ICORBAObject Support for these interfaces is mandated by the COM/
CORBA Interworking standard. These interfaces include
important functions to convert object references to string
format and to convert object reference strings to object
references.

(D)IOrbixObject OrbixCOMet provides a number of additional methods
that are supported by all Orbix objects. These include
functions to bind to an object in an Orbix server, to find
the object’s marker name, to close the underlying
communications connection to the server and to
determine whether the communications channel between
the client and server is open.
147

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 148 Tuesday, April 27, 1999 1:54 PM
Implementing CORBA Clients in Automation

Late Binding

Late binding is where you use the IDispatch interface on an Automation object.
It means that all invocations through the object will require the parameters to be
marshalled through IDispatch and then to CORBA.

Early Binding

If you make a call on an early bound object, you avoid the IDispatch marshalling
overhead. This improves performance if the bridge is loaded in-process in your
client application.

The code samples shown in “Getting Started on Automation” on page 11 used
late binding (via the IDispatch interface) and declared all references as Object .
In this chapter, because Visual Basic allows early binding by calling methods
directly through the vtable, the types are specified in the declarations.

For example, to obtain a reference to a view of type DIAccount , declare a
reference accountObj as follows:

‘ Visual Basic
Dim accountObj As BankBridge.DIAccount

Narrowing Object References

A client that holds a reference to a view can assign the reference to a derived
interface if the implementation object referred to is an instance of the derived
interface.

CORBA refers to such an assignment as narrowing the object reference. For
example, suppose the client holds a reference to an Account view, but knows
that the implementation object is actually a CheckingAccount . The following
code extracts demonstrate how the client can obtain a CheckingAccount
interface pointer:

Visual Basic Dim accountObj as BankBridge.DIAccount
Dim theORB as Object CORBA_Orbix.DIOrbixORBObject
 148

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 149 Tuesday, April 27, 1999 1:54 PM
Set theORB = CreateObject("CORBA.ORB.2")

Dim myCheckingAccount as _
DICheckingAccount

...

Set accountObj = ... ' Obtain a reference somehow

Set myCheckingAccount = accountObj
if myCheckingAccount = Nothing

then ‘Narrow failed
endif

PowerBuilder OleObject theORB
theORB = CREATE OLEObject
theORB.ConnectToNewObject("CORBA.ORB.2")

OleObject accountObj
accountObj = ... //get

OleObject myCheckingAccount
myCheckingAccount = CREATE OleObject

myCheckingAccount = theORB
Narrow(“CheckingAccount”,accountObj)
if IsEmpty(myCheckingAccount)

then // Narrow failed
endif

DIOrbixObject::Narrow()

Refer to the entry for DIOrbixObject::Narrow() in “OrbixCOMet API” on
page 241 for an alternative way of narrowing an object reference.
149

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 150 Tuesday, April 27, 1999 1:54 PM
A Visual Basic Client Program

This section shows Visual Basic code extracts for a client of the bank server that
is developed in “Implementing CORBA Servers” on page 173. The code in this
section is based on the Bank form shown in Figure 10.1 on page 151.

Recall the interface that the bank server presents to its clients:

// OMG IDL
interface Account {

attribute float balance;
attribute string owner;
void makeDeposit(in float amount);
void makeWithdrawal(in float amount);

};
interface CheckingAccount {

attribute float overDraftLimit;
};
interface Bank {

exception Reject { string reason; };
Account newAccount(in string owner) raises (Reject);
Account newCheckingAccount(in string owner) raises (Reject);
Account getAccount(in string owner);
void deleteAccount(in string owner);

};
 150

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 151 Tuesday, April 27, 1999 1:54 PM
Figure 10.1: Bank Form Presenting the User’s View of the Bank Service

General Declarations

Note: If your Automation client requires type libraries to be registered, you
must add a reference to the type library for early binding. In Visual Basic,
use Project>References to add references.

Dim ObjFactory As CORBA_Orbix.DICORBAFactory
Dim bankObj As BankBridge.DIBank
Dim bankAccount As BankBridge.DIAccount
151

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 152 Tuesday, April 27, 1999 1:54 PM
Creating the Form

The Form_Load() subroutine, which is called when the Bank form is loaded,
creates a CORBA factory object in the bridge that will be used to create
Automation views.

Private Sub Form_Load()
...
Set ObjFactory = CreateObject("CORBA.Factory")

End Sub

Connecting to the CORBA Server

When a user clicks the Connect button in Figure 10.1 on page 151, the client
connects to the bankSrv server on the host named in the Host textbox and
binds to the Bank object whose marker is specified in the Marker textbox. (The
client binds to any Bank object in the bankSrv server if no marker is specified.)

The client uses the DICORBAFactory::GetObject() method to bind to the Bank
object.

It is important to handle errors that can be raised by the call to GetObject() . A
call to GetObject() , or any other remote call, could fail for a number of reasons
because of the complexity of making a call across a network. CORBA exceptions
raised in the server are mapped into Automation exceptions by the bridge. In
Visual Basic, these exceptions can be trapped using the On Error statement and
handled using the standard Visual Basic Err object. “Error Handling” on
page 189 explains CORBA exceptions and alternative ways of handling them in a
client.

Private Sub cmdConnect_Click()
On Error GoTo errorTrap

Set bankObj = ObjFactory.GetObject("Bank:" & _
marker.Text & ":" & server_name.Text & _
":" & host_name.Text)

...
errorTrap:

MsgBox (Err.Description & " occurred in " & Err.Source)
End Sub
 152

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 153 Tuesday, April 27, 1999 1:54 PM
Invoking Operations on Remote CORBA Objects

The following subroutines respond to user requests to create bank accounts and
deposit and withdraw from accounts.

The subroutine cmdNew_Click() creates an Account or a CheckingAccount ,
depending on whether the CheckingAccount check box is clicked.

The IDL definitions specify that the operations Bank::newAccount() and
Bank::newCheckingAccount() can raise the user exception Bank::Reject if
the bank fails to create an account. In the following code sample, this exception
is trapped using the On Error statement. “Error Handling” on page 189 shows a
better way to handle this exception that provides more information to the user.

' New Account button
Private Sub cmdNew_Click()
On Error GoTo errorTrap

If checking_acc.Value = 0 Then ' Create ordinary Account
Set bankAccount = bankObj.newAccount(txtOwner.Text)

...
Else

If txtLimit.Text = "" Then
MsgBox ("Enter Overdraft Limit!")

Exit Sub
Else ' Create CheckingAccount

Set bankAccount = bankObj.newCheckingAccount(_
...

End If
End If
checking_acc.Value = 0
End If

Exit Sub
errorTrap:
 MsgBox (Err.Description & " occurred in " & Err.Source)
End Sub
153

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 154 Tuesday, April 27, 1999 1:54 PM
' Get Details button
Private Sub cmdGet_Click()
On Error GoTo errorTrap

...
Set bankAccount = bankObj.getAccount(txtOwner.Text)
...

Exit Sub
errorTrap:
 MsgBox (Err.Description & " occurred in " & Err.Source)
End Sub

' Deposit button
Private Sub cmdDeposit_Click()
On Error GoTo errorTrap

...
bankAccount.makeDeposit CSng(txtAmount.Text)
...

Exit Sub
errorTrap:

MsgBox (Err.Description & " occurred in " & Err.Source)
End Sub

' Withdraw button
Private Sub cmdWithdraw_Click()
On Error GoTo errorTrap
 ...

bankAccount.makeWithdrawal CSng(txtAmount.Text)
TxtBalance.Text = bankAccount.balance
...

errorTrap:
 MsgBox (Err.Description & " occurred in " & Err.Source)
End Sub
' Delete Account button
Private Sub cmdDelete_Click()
On Error GoTo errorTrap
 ...

bankObj.deleteAccount (txtOwner.Text)
Set bankAccount = Nothing
...

Exit Sub
errorTrap:

MsgBox (Err.Description & " occurred in " & Err.Source)
End Sub
 154

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 155 Tuesday, April 27, 1999 1:54 PM
Disconnecting from the CORBA Server

Release the views in the bridge when the user disconnects from the bankSrv
server.

Private Sub cmdDisconnect_Click()
 ...

Set bankObj = Nothing
Set bankAccount = Nothing

End Sub

Exiting the Application

Release the CORBA factory object when the user exits the application.

Private Sub Form_Unload(Cancel As Integer)
Set ObjFactory = Nothing

End Sub

A PowerBuilder Client Program

This section shows PowerBuilder code extracts for a client of the bank server
that is developed in “Implementing CORBA Servers” on page 173. The code in
this section is based on the Bank form shown in Figure 10.1 on page 151.

The simplified PowerBuilder example shown here implements a client for a
server that does not support the CheckingAccount interface.

Recall the interface that the bank server presents to its clients:

// OMG IDL
interface Account {

attribute float balance;
attribute string owner;

void makeDeposit(in float amount);
void makeWithdrawal(in float amount);

};

interface CheckingAccount {
attribute float overDraftLimit;

};
155

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 156 Tuesday, April 27, 1999 1:54 PM
interface Bank {
exception Reject { string reason; };

Account newAccount(in string owner) raises (Reject);

Account newCheckingAccount(in string owner)
raises (Reject);

Account getAccount(in string owner);
void deleteAccount(in string owner);

};

General Declarations

Declare global variables for the factory object and the CORBA object.

OleObject ObjFactory
OleObject bankObj

Loading the Window
Create the CORBA factory object within the open event for the Bank window.

ObjFactory = CREATE OleObject
ObjFactory.ConnectToNewObject("CORBA.Factory")

Connecting to the CORBA Server
When a user clicks the Connect button in the Bank window in Figure 10.1 on
page 151, the client connects to the bankSrv server on the host specified in the
Host textbox and binds to the Bank object whose marker is specified in the
Marker textbox. (The client binds to any Bank object in the bankSrv server if no
marker is specified.)

The client uses the DICORBAFactory::GetObject() method to bind to the Bank
object.

bankObj = CREATE OleObject
bankObj = ObjFactory.GetObject(

"Bank:bankSrv:" + host_name.Text)
 156

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 157 Tuesday, April 27, 1999 1:54 PM
Invoking IDL Operations

The following code implements the New Account, Delete Account, and Deposit
and Withdraw buttons, responding to user requests to create bank accounts and
to deposit and withdraw from accounts. Corresponding OMG IDL operations
are invoked on Bank and Account objects in the CORBA server.

// New Account button
If owner.Text = "" Then

MessageBox ("Error","Enter account owner's name")
Else

accountObj = bankObj.newAccount(owner.Text)
balance.Text = String(accountObj.balance)
...

End If
// Delete Account button
If owner.Text = "" Then
 MessageBox ("Error","Enter account name first")
Else

bankObj.deleteAccount(accountObj)
DESTROY accountObj
...

End If
// Deposit button
If enter_amt.Text = "" Then

MessageBox("Error", "Enter amount")
Else
 accountObj.makeDeposit(integer(enter_amt.Text))
 balance.Text = String(accountObj.balance)
End If

...
// Update balance after transaction.
balance.Text = String(accountObj.balance)

End If
// Withdraw button
If enter_amt.Text = "" Then

MessageBox("Error", "Enter amount")
Else

accountObj.makeWithdrawal(Integer(enter_amt.Text))
// Update balance after transaction.
balance.Text = String(accountObj.balance)

End If
157

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 158 Tuesday, April 27, 1999 1:54 PM
Disconnecting from the Server

Release the Automation views when the user disconnects from the bankSrv
server.

bankObj.DisconnectObject()
DESTROY accountObj
DESTROY bankObj

Unloading the Window

Release the CORBA factory object when the user exits the application.

ObjFactory.DisconnectObject()
DESTROY ObjFactory

Implementing CORBA Clients in COM

COM Apartments and Threading

COM and Automation view objects exposed by the bridge are marked with the
Both attribute in the registry. This means these objects can be hosted in either
an apartment-threaded or free-threaded client application. Refer to the
Microsoft DCOM documentation for a fuller discussion of COM apartments and
threading models.

Narrowing Object References

In CORBA, the process of converting a base object to a more derived instance is
called narrowing an object reference. CORBA provides an API for doing this to
ensure that type unsafe casts are not needed.

When using the COM mapping, CORBA objects do not explicitly need to be
narrowed to a derived interface. If the object is actually an instance of the
derived type, making a call to QueryInterface with the IID of the derived
interface will be sufficient. If QueryInterface fails, this object cannot be validly
converted to an instance of the derived type.
 158

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 159 Tuesday, April 27, 1999 1:54 PM
A C++ COM Client Program

The remainder of this section shows code extracts for a C++ COM client of the
bank server that is developed in “Implementing CORBA Servers” on page 173.

Recall the interface that the bank server presents to its clients:

// OMG IDL
interface Account {

attribute float balance;
attribute string owner;

void makeDeposit(in float amount);
void makeWithdrawal(in float amount);

};

interface CheckingAccount {
attribute float overDraftLimit;

};

interface Bank {
exception Reject { string reason; };

Account newAccount(in string owner) raises (Reject);
Account newCheckingAccount(in string owner)

raises (Reject);
Account getAccount(in string owner);
void deleteAccount(in string owner);

};

Includes
// Include
#include <iostream.h>
#include <stdio.h>
#include <oaidl.h>
#include “bank.h”

General Declarations

// General Declaration
HRESULT hr=NOERROR;
IUnknown *pUnk=NULL;
159

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 160 Tuesday, April 27, 1999 1:54 PM
ICORBAFactory *pCORBAFact=NULL;

// our custom interface
Ibank *pIBasic=NULL;
MULTI_QI mqi;

Connecting to the CORBA Factory

// In Process
memset (&mqi, 0x00, sizeof (MULTI_QI));
mqi.pIID = &IID_ICORBAFactory;
hr=CoCreateInstanceEx (IID_ICORBAFactory, NULL,

CLSCTX_INPROC_SERVER, NULL, 1, &mqi);
CheckHRESULT(“CoCreateInstanceEx()”, hr, FALSE);
pCORBAFact = (ICORBAFactory*)mqi.pItf;

// Out Process
memset (&mqi, 0x00, sizeof (MULTI_QI));
mqi.pIID = &IID_ICORBAFactory;
hr = CoCreateInstanceEx (IID_ICORBAFactory, NULL,

CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
NULL, 1, &mqi);

CheckHRESULT(“CoCreateInstanceEx()”, hr, FALSE);
pCORBAFact = (ICORBAFactory*)mqi.pItf;

Connecting to the CORBA Server

hr = pCORBAFact->GetObject(“bank:bank:” & hostname,&pUnk);
if(!CheckErrInfo(hr, pCORBAFact, IID_ICORBAFactory))
{

pCORBAFact->Release();
return;

}
pCORBAFact->Release();
 160

Im p l em e n t i n g COR BA C l i e n t s

COMet.book Page 161 Tuesday, April 27, 1999 1:54 PM
hr = pUnk->QueryInterface(IID_Ibank, (PPVOID)&pIBasic);
if(!CheckErrInfo(hr, pUnk, IID_Ibank))
{

pUnk->Release();
return;

}
pUnk->Release();

Invoking Operations on Remote CORBA Objects

Iaccount *pAcc = 0;
IcurrentAccount *pCurrAcc = 0;
IOrbixObject *pOrbixObj = 0;
float balance = 0, overdraft = 0, deposit = 1000000;
hr = pIBasic->newAccount(“Ronan”, &pAcc, NULL);
CheckErrInfo(hr, pIBasic, IID_Ibank);

if (SUCCEDED(pAcc->QueryInterface(IID_IOrbixObject,
(PPVOID)&pOrbixObj)))

{
LPSTR marker = 0, host = 0;
hr = pOrbixObj->_get_Marker($marker);
CheckErrInfo(hr, pOrbixObj, IID_IOrbixObject);
cout << “Our marker is ” << marker << endl;
CoTaskMemFree(marker);
hr = pOrbixObj->_get_Host(&host);
CheckErrInfo(hr, pOrbixObj, IID_IOrbixObject);
cout << “Our host is ” << host << endl;
CoTaskMemFree(host);
pOrbixObj->Release();

}
else

cout << “FAIL: QI for IID_IOrbixObject failed” << endl;

cout << “Calling makeLodgement()” << endl;
hr = pAcc->makeLodgement(deposit);
CheckErrInfo(hr, pAcc, IID_Iaccount);
cout << “Calling _get_balance()” << endl;
hr = pAcc->_get_balance(&balance);
CheckErrInfo(hr, pAcc, IID_Iaccount);
cout << “balance was ” << balance << endl;
if(balance != deposit)

cout << “FAIL: balance is not correct” << endl;
161

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 162 Tuesday, April 27, 1999 1:54 PM
// now use QueryInterface() to see if we have really been given a
// CurrentAccount (this is like doing a _narrow in CORBA)
if (SUCCEEDED(pAcc->QueryInterface(IID_IcurrentAccount,

(PPVOID)&pCurrAcc)))
{

cout << “We have a current Account” << endl;
hr = pCurrAcc->_get_overdraftLimit(&overdraft);
CheckErrInfo(hr, pCurrAcc, IID_IcurrentAccount);
cout << “Our overdraft limit is ” << overdraft << endl;

// call a couple of methods from our base interface, i.e. account
cout << “Calling makeLodgement()” << endl;
hr = pCurrAcc->makeLodgement(deposit);
CheckErrInfo(hr, pCurrAcc, IID_IcurrentAccount);
cout << “Calling _get_balance()” << endl;
hr = pCurrAcc->_get_balance(&balance);
CheckErrInfo(hr, pCurrAcc, IID_IcurrentAccount);
cout << “balance was ” << balance << endl;
if(balance != 2*deposit)

cout << “FAIL: current account’s balance is not correct!” <<
endl;

pCurrAcc->Release();

// finally, just to prove that all the above happened to the same
// object, call account::balance
cout << “Calling _get_balance()” << endl;
hr = pAcc->_get_balance(&balance);
CheckErrInfo(hr, pAcc, IID_Iaccount);
cout << “balance was ” << balance << endl;
if(balance != 2*deposit)

cout << “FAIL: balance is not correct” << endl;
}

Disconnecting from the CORBA Server

hr = pIBasic->deleteAccount(pAcc);
CheckErrInfo(hr, pIBasic, IID_Ibank);
pAcc->Release();
pIBasic->Release();

Exiting the Application

CoUninitialize();
 162

COMet.book Page 163 Tuesday, April 27, 1999 1:54 PM
 11
Exposing DCOM Servers to
CORBA Clients

This chapter explains how to expose an existing DCOM server to
CORBA clients. This functionality is particularly important in allowing
a CORBA client to talk to applications such as Excel, Word, Access,
and so on.

It used to be the case that developers wishing to expose DCOM objects to
CORBA clients had to use the (D)IOrbixServerAPI interface to register their
DCOM objects with the bridge. However, this is no longer required. You can
now expose DCOM objects to CORBA clients without needing to write any
such wrapper code. In addition, the existing DCOM server remains unchanged.
The following is a summary of the main steps you need to follow to expose
DCOM servers to CORBA clients:

• Build and register the DCOM server and any proxy/stub DLLs.

• Prime the OrbixCOMet type store with the correct type library.

• Register custsur.exe in the Implementation Repository under a given
server name.

• Generate OMG IDL.

• Bind to the server and call operations.
163

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 164 Tuesday, April 27, 1999 1:54 PM
An Existing DCOM Server
IONA ships some pure DCOM applications with OrbixCOMet in the
comet_ x.x \dcomapp directory (where x.x represents the release number).
These are primarily intended to serve as diagnostic tools that allow trouble-
shooting of DCOM installations without the added variable of a COM/CORBA
bridge. A DCOM (local) server called fortune is provided in the
dcomapp\testExe\server directory. This server is written using ATL and
exposes objects supporting the following MIDL interface:

[
object,
uuid(F7B6A75D-90BF-11D1-8E10-0060970557AC),
dual,
helpstring("IIT_DcomTest Interface"),
pointer_default(unique)

]
interface IIT_DcomTest : IDispatch
{

[propget, id(1), helpstring("property fortune")]
HRESULT fortune([out, retval] BSTR *pVal);

};

This chapter uses the example of the fortune server. When the COM C++
client in the dcomapp\testexe\client directory is run, the output is as follows:

[c:\iona\comet_ x.x \dcomapp\testexe\client]client advice

Your fortune is :

This fortune intentionally left blank :-) :-)

To build the above server, do the following:

//build the server exe
[c:\iona\comet_ x.x] cd dcomapp\testexe\server
[c:\iona\comet_ x.x \dcomapp\testexe\server] nmake -f

IT_DcomApp.mak
//build the P/S dll
[c:\iona\comet_ x.x \dcomapp\testexe\server] nmake -f

IT_DcomAppps.mk

At this point, you might wish to check the server's operation using the DCOM
client as described above.
 164

E x p o s i n g D COM S e r v e r s t o COR BA C l i e n t s

COMet.book Page 165 Tuesday, April 27, 1999 1:54 PM
Exposing the DCOM Server to CORBA
When talking to a CORBA server from COM/Automation, the Interface
Repository must be populated with the required OMG IDL definitions so that
the OrbixCOMet type store can obtain them the first time an application is run.
(For more details about the OrbixCOMet type store, refer to “Development
Support Tools” on page 121 and “Managing the Type Store” on page 211.) You
can also populate the type store in advance by using the following command:

typeman -e <typename>

Because you want to contact a DCOM server, all the marshalling code will be
based on the type library (in this case, IT_DcomApp.tlb). You must prime the
type store with this type library as follows:

typeman -e c:\iona\comet_ x.x \dcomapp\testexe\
server\IT_DcomApp.tlb

Note: The full path to the type library must be supplied.

The next step is to decide on a CORBA server name, and to create an entry in
the Implementation Repository under that name. In this case, the server name is
fortune , which is an arbitrary choice. OrbixCOMet supplies a generic Orbix
server (custsur.exe) that can masquerade as any server, receiving CORBA
requests and making the corresponding call on the correct DCOM server. This
is the server executable that you use when creating the entry in the
Implementation Repository. The custsur.exe server has a dual personality
because it can also act as a DCOM surrogate executable. This makes it a generic
DCOM server as well as a generic Orbix server.

Type the following to register your server:

[c:\iona\comet_ x.x \bin] putit fortune c:\iona\comet x.x \
bin\custsur.exe

This server currently has an infinite timeout value. This means it stays around
forever after it has been launched by the Orbix daemon.1

1. In future release of OrbixCOMet, there might be some switches that will allow this server to be
timed-out after a specific period of inactivity.
165

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 166 Tuesday, April 27, 1999 1:54 PM
To expose the server to CORBA, you just need to do the following:

• Register the type library.

• Register custsur.exe in the Implementation Repository under a server
name.

Using the Server from CORBA
If you want to contact the server and invoke requests, you need some OMG IDL
definitions. The ts2idl.exe can produce these by applying the COM/
Automation->CORBA mapping rules to the type information stored in the type
store (that is, IT_DcomApp.tlb).

The following command:

>ts2idl -i -r -f fortune.idl IT_DCOMAPPLib::IT_DcomTest

produces an OMG IDL file (fortune.idl) that will have, in this case, two
interfaces called IT_DCOMAPPLib::IIT_DcomTest and
IT_DCOMAPPLib::IT_DcomTest (coclass pseudo interface).

Both of these interfaces are scoped within a module (IT_DCOMAPPLib) that is the
internal type library name. (You can check this using oleview if you wish.)

The OMG IDL shows the following:

// within module IT_DCOMAPPLib

interface IIT_DcomTest : CosLifeCycle::LifeCycleObject,
 CORBA_COM::Composable

{
readonly attribute string fortune;

};

// manufactured interface for coclass

interface IT_DcomTest : CosLifeCycle::LifeCycleObject,
 CORBA_COM::Composable

{
readonly attribute IT_DCOMAPPLib::IIT_DcomTest it_default;

};
 166

E x p o s i n g D COM S e r v e r s t o COR BA C l i e n t s

COMet.book Page 167 Tuesday, April 27, 1999 1:54 PM
There are several points to note here:

• The original propget (fortune) of type BSTR has been mapped to a
readonly attribute of type string . This is as expected.

• All mapped interfaces inherit from CosLifeCycle::LifeCycleObject ,
which is one of the interfaces specified in the CORBA lifecycle service.
This is because of DCOM and CORBA’s differing approaches to
reference counting.

DCOM uses distributed reference counting. This means that when all
outstanding references to an object are released (even for references that
were held by remote clients), the server object's reference count will fall
to zero and the object will be destroyed. When all objects in a DCOM
server have been destroyed, the server typically shuts down.

CORBA, however, takes a different view. Client calls to _duplicate()
and release() should in no way affect the reference count of an object
in the server. This can present problems in a COM/CORBA bridge where
it launches DCOM servers in response to requests from CORBA clients,
because the bridge would not know when to release DCOM interface
pointers. The solution to this problem lies in the lifecycle interfaces,
especially the method CosLifeCycle::LifeCycleObject::remove() .
When a CORBA client is finished with a particular object reference, it
should call remove() to release the DCOM interface pointer in the
bridge, and thus allow the DCOM server to shut down if necessary.

• The presence of so-called "coclass pseudo interface". Coclasses are a
feature of Microsoft IDL. They provide a listing of the interfaces that an
object supports. The object itself is identified by its CLSID, which is
provided in its UUID attribute, and each interface is marked with either
"default" or "source" attributes. In the interface shown previously,
IIT_DcomTest is the default interface for the coclass IT_DcomTest (the
object that serves up fortune strings), and is represented by a readonly
attribute on the pseudo coclass object. Any other interfaces supported by
the coclass object (in this example there are no others) would also be
represented by readonly attributes. You should think of these coclasses
as your initial point of contact; for example, these are what you _bind()
to from an Orbix client.
167

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 168 Tuesday, April 27, 1999 1:54 PM
• All interfaces inherit from Composable , as mandated by the COM/
CORBA specification. This allows CORBA programmers to navigate
between the various interfaces supported by the COM object in the
absence of an inheritance relationship between those interfaces.

Writing a Client to Talk to the DCOM Server

You can write a client to talk to the DCOM server in the same way that you
write any other CORBA client. You should firstly obtain an initial object
reference. The following example uses _bind() to do this but you can also use
custsur.exe to generate IORs for non-Orbix clients, (Refer to “Connection
and Usage from Other ORBs” on page 170 for more details). After you have
obtained an IOR you can then invoke operations. For example:

// C++

using namespace IT_DCOMAPPLib;

IT_DcomTest_var dcomTestVar;
IIT_DcomTest_var defaultVar;

// _bind to the coclass pseudo object in server "fortune" on host
// "advice.iona.com"
dcomTestVar = IT_DcomTest::_bind(":fortune", "advice.iona.com");

// now get the default interface of the coclass - IIT_DcomTest
// in our case

defaultVar = dcomTestVar->it_default();
if(!CORBA::is_nil(defaultVar))
{

cout << "got default interface...calling fortune()" << endl;
// call fortune()
cout << "fortune is " << defaultVar->fortune() << endl;
// lifecycle support - signal that we are finished with
// this objref
defaultVar->remove();

}
// lifecycle support - after this call, the DCOM server will
// have shut down...
dcomTestVar->remove();
 168

E x p o s i n g D COM S e r v e r s t o COR BA C l i e n t s

COMet.book Page 169 Tuesday, April 27, 1999 1:54 PM
If you were to examine the task list during the running of this client you would
see that IT_DcomApp.exe appeared briefly and disappeared after the second call
to remove() shown above. This means it was correctly shut down due to the
lifecycle support.

CORBA Client Example Using Composable Support

The following is an example of a CORBA client of the fortune DCOM server
that uses composable support (rather than the pseudo coclass object support
described in “Writing a Client to Talk to the DCOM Server” on page 168):

#include "fortune.hh"
#include <iostream.h>
#include <stdlib.h>

int main (int argc, char **argv) {

if (argc < 2) {
cout << "usage: " << argv[0] << " <hostname>" << endl;
exit (-1);

}

try {
using namespace IT_DCOMAPPLib;

CORBA::Object_var pObj;
IT_DcomTest_var dcomTestVar;
IIT_DcomTest_var defaultVar;
dcomTestVar = IT_DcomTest::_bind(“:fortune”, argv[1]);

cout << “_bind succeeded; calling query_interface()...” <<
endl;
pObj = dcomTestVar->query_interface

(“IT_DCOMAPPLib::IIT_DcomTest”);
if(!CORBA::is_nil(pObj))
{

defaultVar = IIT_DcomTest::_narrow(pObj);
if(CORBA::is_nil(defaultVar))

cerr << “got nil obj ref after q_i()” << endl;
else
{

cout << “fortune is ” << defaultVar->fortune() << endl;
169

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 170 Tuesday, April 27, 1999 1:54 PM
defaultVar->remove();
}

}

// lifecycle support
dcomTestVar->remove();

} catch (CORBA::SystemException &sysEx) {
 cerr << “Unexpected system exception” << endl;
 cerr << &sysEx;
 exit(1);
} catch(...) {
 // an error occurred while trying to bind to the IT_DcomTest
 // object.
 cerr << “Bind to object failed” << endl;
 cerr << “Unexpected exception ” << endl;
 exit(1);
}
return 0;

}

Connection and Usage from Other ORBs

You can use custsur.exe to generate IORs for non-Orbix clients. The following
switches apply:

For example, the following command would generate an IOR for the
IT_DcomTest interface in the fortune server and write it to the fortune.ior
file:

custsur -g -i IT_DcomApplib::IT_DcomTest
 -s fortune -f c:\temp\fortune.ior

-g This generates an IOR.

-m This specifies the marker name.

-i This specifies the interface name.

-s This specifies the server name.

-f This specifies the filename.
 170

E x p o s i n g D COM S e r v e r s t o COR BA C l i e n t s

COMet.book Page 171 Tuesday, April 27, 1999 1:54 PM
The following is an example of a VisiBroker client:

ifstream in(argv[1], ios::nocreate);
// read in the IOR, then do a string_to_object
if(!in.is_open())
{
 cerr << "Unable to open file " << argv[1] << endl;
 return 1;
}
in >> ior;
in.close();

// Initialize the ORB.
orb = CORBA::ORB_init(argc, argv);

objVar = orb->string_to_object(ior);
if(CORBA::is_nil(objVar))
{
 cerr << "string_to_object() returned a nil objref" << endl;
 return 1;
}

dcomTestVar= IT_DCOMAPPLib::IT_DcomTest::_narrow(objVar);
if(CORBA::is_nil(dcomTestVar))
{
 cerr << "_narrow() returned a nil objref" << endl;
 return 1;
}

cout << "About to get the default interface " << endl;

defaultVar= dcomTestVar->it_default();

if(!CORBA::is_nil(defaultVar))
{
 cout << "got default interface...calling fortune()" << endl;
 cout << "fortune is " << defaultVar->fortune() << endl;
 // lifecycle support
 defaultVar->remove();
}

// lifecycle support
dcomTestVar->remove();
171

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 172 Tuesday, April 27, 1999 1:54 PM
 172

COMet.book Page 173 Tuesday, April 27, 1999 1:54 PM
 12
Implementing CORBA Servers

You can use OrbixCOMet to implement COM/Automation servers
that appear as CORBA servers. These servers can accept requests
from standard COM/Automation clients and from CORBA clients.
This chapter provides details about programming OrbixCOMet
servers.

Note: If you wish to expose an existing DCOM server to CORBA clients
without writing any wrapper code, refer to “Exposing DCOM Servers to
CORBA Clients” on page 163.

A CORBA server presents an OMG IDL interface to its clients. To implement a
CORBA server, your first step is to define the interfaces to your objects in
OMG IDL.

You can use the Type Store Manager tool (typeman) to generate skeleton code
to help you implement the interfaces to your objects. (Refer to “Generating
Skeleton Code” on page 203 for more details.) You now have a standard
Automation server.

To allow your COM/Automation server to accept CORBA requests, you can
instantiate one or more COM/Automation objects and register them with
OrbixCOMet, and then activate the server to receive CORBA requests. You
can also register the server in the Orbix Implementation Repository. Your
server is now a CORBA server.

The example provided in this chapter illustrates how to do this.
173

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 174 Tuesday, April 27, 1999 1:54 PM
Defining the Interfaces
The example in this chapter represents a bank and its accounts. For example:

// OMG IDL
interface Account {

attribute float balance;
attribute string owner;

void makeDeposit(in float amount);
void makeWithdrawal(in float amount);

};

interface CheckingAccount : Account {
attribute float overDraftLimit;

};

interface Bank {
exception Reject { string reason; };

Account newAccount(in string owner) raises (Reject);
Account newCheckingAccount(in string owner)

raises (Reject);
Account getAccount(in string owner);
void deleteAccount(in string owner);

};

A Visual Basic version of this example is available in the \demo\VB6\bank
directory of your OrbixCOMet installation. A COM C++ version can be found
in the \demo\com\idl_demo directory of your OrbixCOMet installation.

Generating the Skeleton Code
Generating skeleton code automates the task of translating your OMG IDL
interface definitions into equivalent definitions in your implementation language.
It also ensures that all parameters are available in order and that they are passing
the correct types. For more details about generating skeleton code, refer to
“Development Support Tools” on page 121.
 174

Im p l em e n t i n g CORB A S e r v e r s

COMet.book Page 175 Tuesday, April 27, 1999 1:54 PM
Implementing CORBA Servers in Automation

Implementing the Interfaces

To implement the OMG IDL interfaces, you implement a class in your chosen
implementation language, exactly as you would for a normal Automation server.

The interfaces defined in your OMG IDL file define the interface that (remote)
CORBA clients use to interact with your server objects. You must provide
implementations of these interfaces, and each of their operations and attributes,
in your chosen implementation language.

You might also need to implement supporting classes, functions or subroutines
to complete your application. In the following Visual Basic example, the
collections colAccounts and colCheckingAccounts are needed to maintain a
collection of Account and CheckingAccount objects owned by the Bank . The
code for colAccounts and colCheckingAccounts is not shown here. It can be
found in the accounts.cls and checkingaccounts.cls files in the
demo\VB6\banksvr\ directory of your OrbixCOMet installation.

In the code samples in the following subsections, the additions to the generated
code are shown in bold text.

Implementing the Account Interface
‘ Visual Basic (account.cls)
Private accBalance As Single
Private accOwner As String

Public Property Get balance() As String
balance = accBalance

End Property

Public Property Let balance(_
ByVal var_balance As String)
accBalance = var_balance

End Property

Public Property Get owner() As String
owner = accOwner

End Property
175

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 176 Tuesday, April 27, 1999 1:54 PM
Public Property Let owner(_
ByVal var_owner As String)
accOwner = var_owner

End Property

Public Sub makeDeposit(_
ByVal var_amount As Single, _
Optional ByRef IT_Ex As Variant)
accBalance = accBalance + var_amount

End Sub

Public Sub makeWithdrawal(_
ByVal var_amount As Single, _
Optional ByRef IT_Ex As Variant)
If ((accBalance - var_amount) >= 0) Then _

accBalance = accBalance - var_amount
End Sub

Implementing the CheckingAccount Interface

The interface CheckingAccount inherits from Account . To implement the
CheckingAccount interface, you must reimplement the properties and methods
inherited from Account . You must also implement the overdraftLimit
property that the CheckingAccount interface adds.

‘ Visual Basic (checkingaccount.cls)
Private parentAcc As New Account
Private accLimit As Single

Public Property Let overdraftLimit(
ByVal var_overdraftLimit As Single)

accLimit = var_overdraftLimit
End Property

Public Property Get overdraftLimit() As Single
 overdraftLimit = accLimit
End Property

Public Property Get balance()
 balance = parentAcc.balance
End Property
 176

Im p l em e n t i n g CORB A S e r v e r s

COMet.book Page 177 Tuesday, April 27, 1999 1:54 PM
Public Property Let owner(ByVal owner As String)
 parentAcc.owner = owner
End Property

Public Property Get owner() As String
 owner = parentAcc.owner
End Property

Public Sub makeDeposit(ByVal amount As Single,
Optional IT_Ex As Variant)

 parentAcc.makeDeposit amount
End Sub

Public Sub makeWithdrawal(ByVal amount As Single,
Optional IT_Ex As Variant)

If ((parentAcc.balance(amount-overdraftLimit))>=0) Then _
 parentAcc.balance = parentAcc.balance - amount
End Sub

Implementing the Bank Interface
The operations newAccount() and newCheckingAccount() on interface Bank
raise an exception if the bank fails to create an account. The code to raise an
exception is not included here. “Error Handling” on page 189 deals with this
topic in detail.

‘ Visual Basic (Bank.cls)
...
Public Function newAccount(_

ByVal var_owner As String, _
Optional ByRef IT_Ex As Variant) As Object

...
' Raise Reject exception here, if Bank cannot
' create account. .
...
Set newAccount = Accounts.Add(var_owner)
frmBankSrv.details.AddItem "Created new _

account for Customer : " & newAccount.owner
End Function
177

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 178 Tuesday, April 27, 1999 1:54 PM
Public Sub deleteAccount(_
ByVal var_owner As String, _
Optional ByRef IT_Ex As Variant)

Accounts.Remove var_owner
End Sub

Public Function getAccount(_
ByVal var_owner As String, _
Optional ByRef IT_Ex As Variant) As Object

Set getAccount = Accounts.Item(var_owner)
End Sub

Registering with OrbixCOMet

When you have implemented your OMG IDL interfaces, you have developed an
Automation server. To make your Automation server appear as a CORBA
server, you must instantiate your implementation Automation object and
register it with OrbixCOMet. (If it makes sense for your application, you might
want to create more than one implementation object.)

Visual Basic
Dim orb As Object
Dim bankobj As New Bank
Dim serverAPI As Object

Private Sub Form_Load()
On Error GoTo errorTrap

Set orb = CreateObject(“CORBA.ORB.2”)

Set serverAPI = orb.GetServerAPI
Set orb = Nothing
Call serverAPI.SetObjectImpl(“bank”, “”, bankObj)
Call serverAPI.Activate(“bank”)
Exit Sub

errorTrap:
MsgBox (Err.Description & “ in ” & Err.Source)
Err.Clear

End Sub
 178

Im p l em e n t i n g CORB A S e r v e r s

COMet.book Page 179 Tuesday, April 27, 1999 1:54 PM
Private Sub Form_Unload(Cancel As Integer)
Call serverAPI.Deactivate(“bank”)
Set serverAPI = Nothing

End Sub

PowerBuilder

This section demonstrates how to use PowerBuilder to transform an
Automation server to a CORBA server.

Note: In PowerBuilder, your implementation (user) objects must be exposed
with valid ProgIDs using the PowerBuilder tool PBGENREG.EXE.

// Get a reference to the ITServerAPI object
OleObject orb
orb = CREATE OleObject
orb.ConnectToNewObject(“CORBA.ORB.2”)
ServerAPI=orb.GetServerAPI()

// Instantiate a Bank object.
// You first need to use PBGENREG.EXE to expose the Bank
// object with the ProgID 'bankSrv.bankImplObject'
OleObject bankObj
bankObj = CREATE OleObject
bankObj.ConnectToNewObject("bankSrv.bankImplObject")

// Register bankObj with the Bridge.
serverAPI.setObjectImpl("Bank", "", bankObj)

// Activate the server so that bankObj
// can receive incoming calls from CORBA clients.
serverAPI.Activate("Bank")

// Deactivate the server when finished.
serverAPI.Deactivate("Bank")

The code instantiates a Bank object and registers it with the bridge by calling
SetObjectImpl() on the bridge’s ITServerAPI interface.
179

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 180 Tuesday, April 27, 1999 1:54 PM
SetObjectImpl() specifies the IDL interface that the registered object supports
in its first parameter and specifies the object’s marker in its second parameter.
No marker is specified in this example. Therefore, Orbix will choose the marker
for the Bank object.

The next step is to activate the server so that any objects registered with the
bridge will receive incoming requests from CORBA clients. In this case, the call
to Activate() gives the server the name bankSrv . This is also the name with
which the server will be registered in the Implementation Repository. (Refer to
“Registering the CORBA Server in the Implementation Repository” on page 188
for more details.)

When your application no longer needs to receive CORBA client requests, you
can deactivate the server by calling Deactivate() .

Implementing CORBA Servers in COM

Implementing the Interfaces

To implement the OMG IDL interfaces, you implement a class in your chosen
implementation language, exactly as you would for a normal COM server.

The interfaces defined in your OMG IDL file define the interface that (remote)
CORBA clients use to interact with your server objects. You must provide
implementations of these interfaces, and each of their operations and attributes,
in your chosen implementation language.

You might also need to implement supporting classes, functions or subroutines
to complete your application.
 180

Im p l em e n t i n g CORB A S e r v e r s

COMet.book Page 181 Tuesday, April 27, 1999 1:54 PM
Implementing the Account Interface
ICOMAccountImpl :: ICOMAccountImpl(char *szOwner)
: i_nRef(0)
{

m_fBalance=0;
if(strlen(szOwner)<20)

m_szOwner=szOwner;
else
{

*(szOwner+20)=\0;
m_szOwner=szOwner;

}
}

ICOMAccountImpl :: ~ICOMAccountImpl() {
}

ICOMAccountImpl* ICOMAccountImpl :: Create(char *szOwner) {
ICOMAccountImpl * pObj;
if ((pObj = new ICOMAccountImpl(szOwner)) == NULL)

return NULL;
pObj->AddRef();
return pObj;

}

STDMETHODIMP ICOMAccountImpl :: QueryInterface (REFIID riid, void
** ppv) {

*ppv=NULL;
if (IsEqualIID(riid, IID_IUnknown) || IsEqualIID(riid,

IID_Iaccount)) {

*ppv=this;
AddRef();
return NOERROR;

}
return E_NOINTERFACE;

}

STDMETHODIMP_(ULONG) ICOMAccountImpl :: AddRef() {
return InterlockedIncrement(&i_nRef);

}

181

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 182 Tuesday, April 27, 1999 1:54 PM
STDMETHODIMP_(ULONG) ICOMAccountImpl :: Release() {
if (0!=InterlockedDecrement(&i_nRef))

return i_nRef;
delete this;
return 0;

}

// custom methods
STDMETHODIMP ICOMAccountImpl :: makeLodgement (float f) {

m_fBalance+=f;
return NOERROR;

}

STDMETHODIMP ICOMAccountImpl :: makeWithdrawal (float f) {
if(m_fBalance>=f)

m_fBalance-=f;
return NOERROR;

}

STDMETHODIMP ICOMAccountImpl :: _get_balance (float *val) {
*val=m_fBalance;
return NOERROR;

}

Implementing the CheckingAccount Interface

The interface CheckingAccount inherits from Account . To implement the
CheckingAccount interface, you must reimplement the properties and methods
inherited from Account . You must also implement the overdraftLimit
property that the CheckingAccount interface adds.
 182

Im p l em e n t i n g CORB A S e r v e r s

COMet.book Page 183 Tuesday, April 27, 1999 1:54 PM
ICOMCheckingAccountImpl :: ICOMCheckingAccountImpl(char *szOwner,
float fOverLimit)

: i_nRef(0)
{

m_fBalance=0;
if(strlen(szOwner)<20)

m_szOwner=szOwner;
else
{

*(szOwner+20)=\0;
m_szOwner=szOwner;

}
m_fOverLimit=fOverLimit;

}

ICOMCheckingAccountImpl :: ~ICOMCheckingAccountImpl() {
}

ICOMCheckingAccountImpl* ICOMCheckingAccountImpl :: Create() {
ICOMAccountImpl * pObj;
if ((pObj = new ICOMCheckingAccountImpl) == NULL)

return NULL;
pObj->AddRef();
return pObj;

}

STDMETHODIMP ICOMCheckingAccountImpl :: QueryInterface (REFIID
riid, void ** ppv) {

*ppv=NULL;
if (IsEqualIID(riid, IID_IUnknown) ||

IsEqualIID(riid, IID_Iaccount) ||
IsEqualIID(riid, IID_IcurrentAccount)) {

*ppv=this;
AddRef();
return NOERROR;

}
return E_NOINTERFACE;

}

STDMETHODIMP_(ULONG) ICOMCheckingAccountImpl :: AddRef() {
return InterlockedIncrement(&i_nRef);

}

183

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 184 Tuesday, April 27, 1999 1:54 PM
STDMETHODIMP_(ULONG_ ICOMCheckingAccountImpl :: Release() {
if (0!=InterlockedDecrement(&i_nRef))

return i_nRef;
delete this;
return 0;

}

// custom methods
STDMETHODIMP ICOMCheckingAccountImpl :: makeLodgement (float f) {

m_fBalance+=f;
return NOERROR;

}

STDMETHODIMP ICOMCheckingAccountImpl :: makeWithdrawal (float f) {
if((m_fBalance-f)>m_fOverLimit)

m_fBalance-=f;
else

return -1;
return NOERROR;

}

STDMETHODIMP ICOMCheckingAccountImpl :: _get_balance (float *val)
{

*val=m_fBalance;
return NOERROR;

}

STDMETHODIMP ICOMCheckingAccountImpl :: _get_overdraftLimit (float
*val) {

*val=m_fOverLimit;
return NOERROR;

}

Implementing the Bank Interface

The operations newAccount() and newCheckingAccount() on interface Bank
raise an exception if the bank fails to create an account. The code to raise an
exception is not included here. “Error Handling” on page 189 deals with this
topic in detail.
 184

Im p l em e n t i n g CORB A S e r v e r s

COMet.book Page 185 Tuesday, April 27, 1999 1:54 PM
ICOMBankImpl :: ICOMBankImpl()
: i_nRef(0)
{
}

ICOMBankImpl :: ~ICOMBankImpl() {
}

ICOMBankImpl* ICOMBankImpl :: Create() {
ICOMBankImpl * pObj;
if ((pObj = new ICOMBankImpl) == NULL)

return NULL;
pObj->AddRef();
return pObj;

}

STDMETHODIMP ICOMBankImpl :: QueryInterface (REFIID riid, void **
ppv) {

*ppv=NULL;
if (IsEqualIID(riid, IID_IUnknown) ||

IsEqualIID(riid, IID_Ibank)) {
*ppv=this;
AddRef();
return NOERROR;

}
return E_NOINTERFACE;

}

STDMETHODIMP_(ULONG) ICOMBankImpl :: AddRef() {
return InterlockedIncrement(&i_nRef);

}

STDMETHODIMP_(ULONG) ICOMBankImpl :: Release() {
if (0!=InterlockedDecrement(&i_nRef))

return i_nRef;
delete this;
return 0;

}

185

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 186 Tuesday, April 27, 1999 1:54 PM
// custom methods
STDMETHODIMP ICOMBankImpl :: deleteAccount

(ICOMCheckingAccountImpl *a)
{

a->Release();
return NOERROR;

}

STDMETHODIMP ICOMBankImpl :: newAccount (LPSTR name,
ICOMAccountImpl **val, ICOMBankUserExceptionsImpl
**ppException)

{
*val=new ICOMAccountImpl(name);
return NOERROR;

}

STDMETHODIMP ICOMBankImpl :: newCheckingAccount (LPSTR name,
float limit, ICOMCheckingAccountImpl **val,
ICOMBankUserExceptionsImpl **ppException)

{
*val=new ICOMCheckingAccountImpl(name,limit);
return NOERROR;

}

Registering with OrbixCOMet

When you have implemented your OMG IDL interfaces, you have developed a
COM server. To make your COM server appear as a CORBA server, you must
instantiate an implementation COM object and register it with OrbixCOMet. (If
it makes sense for your application, you might want to create more than one
implementation object.)

The following code shows how to complete your implementation:

ICOMBankImpl* m_Bank=new ICOMBankImpl();

IOrbixORBObject * poOrb=0;
hr = CoCreateInstance(IID_IOrbixORBObject, NULL, ctx,

IID_IOrbixORBObject, (void**)&poOrb);
CheckHRESULT(“Connecting to ORB”, hr, FALSE);

IOrbixServerAPI * poAPI=0;
 186

Im p l em e n t i n g CORB A S e r v e r s

COMet.book Page 187 Tuesday, April 27, 1999 1:54 PM
hr = poOrb->GetServerAPI(&poAPI);
CheckHRESULT(“getting Server API”, hr, FALSE);
poOrb->Release();

// register our COM object as the CORBA interface ‘ClientObject’
poAPI->setObjectImpl(“Bank”, “”, m_Bank);

poAPI->Activate(“banksvr”);

poAPI->Release();

The code instantiates a Bank object and registers it with the bridge by calling
SetObjectImpl() on the bridge’s ITServerAPI interface.

SetObjectImpl() specifies the IDL interface that the registered object supports
in its first parameter and specifies the object’s marker in its second parameter.
No marker is specified in this example. Therefore, OrbixCOMet will choose the
marker for the Bank object.

The next step is to activate the server so that any objects registered with the
bridge will receive incoming requests from CORBA clients. In this case, the call
to Activate() gives the server the name bankSrv . This is also the name with
which the server will be registered in the Implementation Repository. (Refer to
“Registering the CORBA Server in the Implementation Repository” on page 188
for more details.)

When your application no longer needs to receive CORBA client requests, you
can deactivate the server by calling Deactivate() .

Running the Server
You can now build your server executable as normal for the language you are
using. Your server project name will be used as the first part of the ProgID for
your server’s Automation objects.
187

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 188 Tuesday, April 27, 1999 1:54 PM
Registering the CORBA Server in the
Implementation Repository

Your server executable must be registered in the Orbix Implementation
Repository so that the Orbix daemon knows how to activate it when a CORBA
client makes a request on one of its objects.

You must register your server with the name that was specified in the call to
Activate() . In this example, the server must be registered with the name
bankSrv .

You can register your server as follows using putit :

putit bankSrv executable_file

where executable_file is the full path to the server program.
 188

COMet.book Page 189 Tuesday, April 27, 1999 1:54 PM
 13
Error Handling

Error handling is an important aspect of programming an
OrbixCOMet application. Remote method calls are much more
complex to transmit than local method calls, so there are many more
possibilities for error. This chapter explains how CORBA exceptions
can be handled in a client and how a server can raise a user
exception.

CORBA defines a standard set of system exceptions that can be raised by the
ORB during the transmission of remote operation calls and reported to a client
or server. These exceptions range between reporting network problems and
failure to marshal operation parameters.

CORBA also allows users to define application-specific exceptions that allow an
application to define the set of exception conditions associated with it. These
exceptions are defined in the raises clause of an OMG IDL operation as
explained in the Orbix documentation set.

Applications do not (and should not) explicitly raise system exceptions.
However, they should handle system exceptions and user exceptions
appropriately.
189

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 190 Tuesday, April 27, 1999 1:54 PM
CORBA Exceptions
A client application should handle user exceptions, defined in an OMG IDL
raises clause, that can be raised by a call to an OMG IDL operation.

A client should also handle system exceptions that can be raised by
OrbixCOMet itself, either during a remote invocation or by calls to
OrbixCOMet. OrbixCOMet might raise a system exception if, for example, it
encounters a problem with the network.

Example of User Exception
Recall the Bank interface defined in “Implementing CORBA Servers” on
page 173.

// OMG IDL
interface Bank {

exception Reject {
string reason;

};

Account newAccount(in string owner) raises (Reject);
...

};

Note: An operation can raise more than one exception. For example:
Account newAccount(in string owner) raises (Reject,

BankClosed);

If the bank fails to create an account (for example, because the owner already
has an account at the bank), the operation newAccount() raises the Reject user
exception. The Reject exception contains one member, of type string , that is
used to specify the reason why the request for a new account was rejected.

The newAccount() operation can, of course, raise a system exception if some
problem is encountered by OrbixCOMet during the operation invocation.
However, system exceptions are not listed in a raises clause, and user code
should never raise a system exception.
 190

E r r o r H a n d l i n g

COMet.book Page 191 Tuesday, April 27, 1999 1:54 PM
The Automation view of these OMG IDL definitions is as follows:

// MIDL
interface DIBank : IDispatch {

HRESULT newAccount(
[in] BSTR owner,
[optional,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

...
}
...
interface DIBank_Reject : DICORBAUserException {

[propput] HRESULT reason([in] BSTR reason);
[propget] HRESULT reason(

[retval,out] BSTR* IT_retval);
}

The COM view of these OMG IDL definitions is as follows:

// OMG IDL
interface Ibank: IUnknown
{

typedef struct tagbank_reject
{

LPSTR reason;
} bank_reject;
HRESULT deleteAccount([in] Iaccount *a);
HRESULT newAccount([in, string] LPSTR name,

[out] Iaccount **val,
[in,out,unique] bankExceptions

**ppException);
HRESULT newCurrentAccount([in, string] LPSTR name,

[in] float limit,
{out] IcurrentAccount **val,
[in,out,unique] bankExceptions

**ppException);
};

Refer to “Mapping CORBA Objects to Automation” on page 41 for details of
how OMG IDL interfaces and exceptions translate to Automation. Refer to
“Mapping CORBA Objects to COM” on page 81 for details of how OMG IDL
interfaces and exceptions translate to COM.
191

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 192 Tuesday, April 27, 1999 1:54 PM
Exception Properties
System exceptions and user exceptions have a number of properties that allow
you to find information about an exception that has occurred. Both system
exceptions and user exceptions expose the interface (D)IForeignException
that is defined as follows:

interface DIForeignException : DIForeignComplexType {
[propget] HRESULT EX_majorCode(

[retval,out] long* IT_retval);

[propget] HRESULT EX_Id(
[retval,out] BSTR* IT_retval);

};

The method EX_majorCode() indicates the category of exception raised. It can
be one of the following defined in the file ITStdInterfaces.tlb :

EXCEPTION_NO
EXCEPTION_USER
EXCEPTION_SYSTEM

The method EX_Id() indicates the type of exception raised. For example,
CORBA::COMM_FAILURE is an example of a system exception. Bank::Reject is an
example of a user exception (based on the Bank interface in “Example of User
Exception” on page 190).

System Exception Properties

System exceptions have the following additional properties defined in
(D)ICORBASystemException :

interface DICORBASystemException : DIForeignException {
[propget] HRESULT EX_minorCode(

[retval,out] long* IT_retval);
[propget] HRESULT EX_completionStatus(

[retval,out] long* IT_retval);
};
 192

E r r o r H a n d l i n g

COMet.book Page 193 Tuesday, April 27, 1999 1:54 PM
EX_completionStatus() indicates the status of the operation at the time the
system exception was raised. The status can be as follows:

EX_minorCode() returns a code describing the type of system exception that
has occurred. Each of these codes is assigned a descriptive identifier that is
declared as a constant in the file _orbix.bas . A minor code can be looked up in
the error messages file, ERRMSGS, to find a textual description of the code.

Exception Handling in Automation
CORBA exceptions are mapped into Automation exceptions by the bridge. This
allows exceptions raised by calls to CORBA objects to be handled in whatever
way your development tool handles Automation exceptions.

User exceptions can define members as part of their OMG IDL definition.
However, using Automation’s native exception handling, these members cannot
be accessed by a caller.

Exception Handling in Visual Basic

In Visual Basic, exceptions can be trapped using the On Error GoTo clause and
handled using the standard Err object. For example:

' Visual Basic
Dim accountObj As BankBridge.DIAccount
Dim bankObj As BankBridge.DIBank
On Error Goto errorTrap

' Obtain a reference to a Bank object:
Set bankObj = ...
Set accountObj = bankObj.newAccount(owner)
...

COMPLETION_YES This means the operation had completed before the
exception was raised.

COMPLETION_NO This means the operation was never initiated.

COMPLETION_MAYBE This means the operation was initiated but it cannot be
determined whether or not it had completed.
193

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 194 Tuesday, April 27, 1999 1:54 PM
Exit Sub
errorTrap:

MsgBox(Err.Description & _
" occurred in " & Err.Source)

End Sub

The Err Object

The details of any exception that occurs are available as properties of the
standard Err object. (Refer to your Visual Basic documentation for full details of
the Err object.) For example:

• Err.Description provides details of the exception, including the name
of the exception; for example, CORBA::COMM_FAILURE or Bank::Reject .

For a user exception, an example of the string in Err.Description is:

CORBA User Exception :[Bank::Reject]

For a system exception, an example is:

CORBA System Exception :[CORBA::COMM_FAILURE]
minor code [10087][NO]

• Err.Source indicates the operation that raised the exception; for
example, Bank.newAccount .

Inline Exception Handling

The second approach to handling exceptions in an Automation client is to use
the exception parameter directly.

Recall that an OMG IDL operation translates to an Automation method that has
an additional optional parameter. For example:

interface Account {
...
void makeDeposit(in float amount,

out float balance);
};

translates to:
 194

E r r o r H a n d l i n g

COMet.book Page 195 Tuesday, April 27, 1999 1:54 PM
// MIDL
interface DIAccount : IDispatch {

...
HRESULT makeDeposit(

[in] float amount,
[out] float* balance,
[optional, in, out] VARIANT* IT_Ex);

}

A client can pass this parameter in a method call, and check if it contains an
exception after the call. The error-handling code must be written inline. The
ability to handle user exceptions inline is useful because user exceptions can be
thrown to indicate logical errors rather than unrecoverable errors.

However, it allows the caller to get additional information about a user
exception that has occurred. A user exception can define one or more members
that translate to MIDL methods that can be used by the caller to extract this
additional information. (Refer to “Mapping CORBA Objects to Automation” on
page 41 and “Mapping Automation Objects to CORBA” on page 71 for a
description of the mapping between OMG IDL and MIDL user exceptions.)

Standard Automation expection handling is disabled when the exception
parameter is passed in a method. This allows the value of the exception to be
examined inline.

The code extracts in the following subsections show two ways of checking for
and handling an exception using this exception parameter. Assume that
newAccount() can raise the user exception Reject defined as follows:

// OMG IDL
interface Bank {

exception Reject {
string reason;

};
...
};
195

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 196 Tuesday, April 27, 1999 1:54 PM
Using Type Information

You can use type information to check the type of exception that occurred.

‘ Visual Basic

Dim excep as Variant
Set excep = Nothing
...
Set bankObj = ...
Set accountObj = bankObj.newAccount owner, excep

If TypeOf excep Is DIBank_Reject
MsgBox "User Exception: " + excep.reason

ElseIf TypeOf excep Is CORBA_Orbix.DICORBASystemException And _
Not excep.EX_majorCode = 0 Then

MsgBox ("error creating account : " & _
excep.EX_Id)

End If

Using the Standard Interfaces

You can call the methods defined on the standard interfaces supported by
DICORBAUserException and DICORBASystemException directly. (Refer to
“Exception Properties” on page 192.)

Visual Basic
Dim excep As Variant
Set excep = Nothing
...
Set bankObj = ...
Set accountObj = bankObj.newAccount owner, excep

If excep.EX_majorCode() = IT_SystemException
Then ' this is a system exception

MsgBox(excep.EX_Id)
Else If excep.EX_majorCode() = IT_UserException
Then ' this is a user exception

If excep.EX_Id = "[Bank::Reject]" Then
MsgBox(excep.EX_Id & excep.reason)
 196

E r r o r H a n d l i n g

COMet.book Page 197 Tuesday, April 27, 1999 1:54 PM
Else
MsgBox(excep.EX_repositoryID)

End If
End If

A program can check for a specific minor code as follows:

If excep.EX_minorCode = NARROW_FAILED Then
...

Exception Handling in COM

Catching COM Exceptions

The bridge will translate the exception into a standard COM exception. There
are two parts to the exception. The first part, HRESULT, gives the class of
exception. The second part is a human-readable form of the exception exposed
through the IErrorInfo interface. For example:

HRESULT hRes;
IErrorInfo *pIErrInfo = 0;
ISupportErrorInfo *pISupportErrInfo = 0;

if(SUCCEEDED(hr))
return TRUE;

if(SUCCEEDED(pUnk->QueryInterface(IID_ISupportErrorInfo,
(PPVOID)&pISupportErrInfo)))

{
if(SUCCEEDED(pISupportErrInfo->InterfaceSupportsErrorInfo

(riid)))
{

hRes = GetErrorInfo(0, &pIErrInfo);
if(hRes == S_OK)
{

pIErrInfo->GetSource(&src);
pIErrInfo->GetDescription(&desc);
mbsrc = WSTR2CHAR(src);
mbdesc = WSTR2CHAR(desc);
SysFreeString(src);
SysFreeString(desc);
197

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 198 Tuesday, April 27, 1999 1:54 PM
mbmsg = new char [strlen(mbsrc) + strlen(mbdesc)+strlen
(“ : ”)+1];

sprintf(mbmsg, “%s : %s”, mbsrc, mbdesc);
pIErrInfo->Release();
CheckHRESULT(mbmsg, hr);
delete [] mbsrc;
delete [] mbdesc;
delete [] mbmsg;

}
else

cout << “No error object found” << endl;

}
pISupportErrInfo->Release{};

}
CheckHRESULT(“Error : ”, hr);

Using Direct-to-COM Support in Visual C++ 5.0

In this case, CORBA exceptions are mapped to the standard _com_error
exception. For example:

try
{

short h, w;
DIbankPtr bank;
DIaccountPtr acc;
DICORBAFactoryPtr fact;

fact.CreateInstance(“CORBA.Factory”);
bank = fact->GetObject(“bank:bank:”, NULL);
acc = bank->newAccount(“Ronan”, NULL);
cout << “Created new account ‘Ronan’” << endl;
acc->makeLodgement(100, NULL);
cout << “Deposited $100” << endl;
cout << “New balance is ” << acc->Getbalance() << endl;
bank->deleteAccount(acc, NULL);
cout << “Deleted account” << endl;

}

 198

E r r o r H a n d l i n g

COMet.book Page 199 Tuesday, April 27, 1999 1:54 PM
catch (_com_error &e)
{

print_error(e);
}
catch (...)
{

cerr << “Caught unknown exception ” << endl;
}

Raising an Exception in a Server
When an OMG IDL operation definition specifies a raises clause, the server’s
implementation of that operation should raise the exception(s) specified in an
appropriate way.

In the Bank example, the implementation of the OMG IDL operation
newAccount() raises the Reject exception when it fails to create an account.

To raise the exception, create an exception object using the
(D)ICORBAFactoryEx::CreateType() method. (Refer to “Translation of
Constructed Types” on page 53 and page 89 for more details.)

If the OMG IDL exception defines members, you must assign appropriate data to
these members to provide details about the exception to the caller. You then
assign the exception into the IT_ex parameter whose purpose is to transmit
system and user exceptions back to the caller. It is good practice to exit the
function immediately after you raise an exception.

Automation Exceptions

' Visual Basic
Dim ObjFactory As CORBA_Orbix.DICORBAFactory

Public Function newAccount(_
ByVal var_owner As String, _
Optional ByRef IT_Ex As Variant) As Object

...
If ...' owner has account at the bank

If Not IsMissing(IT_Ex) Then
Dim excep As BankBridge.DIBank_Reject
199

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 200 Tuesday, April 27, 1999 1:54 PM
Set excep = ObjFactory.CreateType(Nothing,_
"Bank/Reject")

excep.reason = "Account already exists!"
Set IT_Ex = excep
Exit Function

End If
Else ... ' create new account
...

End Function

COM Exceptions

try
{

short h, w;
DIbankPtr bank;
DIaccountPtr acc;
DICORBAFactoryPtr fact;

fact.CreateInstance(“CORBA.Factory”);
bank = fact->GetObject(“bank:bank”, NULL);
acc = bank->newAccount(“Ronan”, NULL);
cout << “Created new account ‘Ronan’” << endl;
acc->makeLodgement(100, NULL);
cout << “Deposited $100” << endl;
cout << “New balance is ” << acc->Getbalance() << endl;
bank->deleteAccount(acc, NULL);
cout << “Deleted account” << endl;

}
catch (_com_error &e)
{

print_error(e);
}
catch (...)
{

cerr << “Caught unknown exception ” << endl;
}

 200

COMet.book Page 201 Tuesday, April 27, 1999 1:54 PM
 14
Client Callbacks

Usually, CORBA clients invoke operations on objects in CORBA
servers. However, CORBA clients can implement some of the
functionality associated with servers, and all servers can act as clients.
A callback invocation is a programming technique that takes
advantage of this. This chapter describes client callbacks.

A callback is an operation invocation made from a server to an object that is
implemented in a client. A callback allows a server to send information to clients
without forcing clients to explicitly request the information.

Callbacks are typically used to allow a server to notify a client to update itself.
For example, in the bank application, clients might maintain a local cache to hold
the balance of accounts for which they hold references1. Each client that uses
the server’s account object maintains a local copy of its balance. If the client
accesses the balance attribute, the local value is returned if the cache is valid. If
the cache is invalid, the remote balance is accessed and returned to the client,
and the local cache is updated.

When a client makes a deposit or withdrawal from an account, it invalidates the
cached balance in the remaining clients that hold a reference to that account.
These clients must be informed that their cached value is invalid. To do this, the
real account object in the server must notify (that is, call back) its clients
whenever its balance changes.

1. A bridge holds an Orbix proxy as well as a COM/Automation view for each implementation
object to which it has a reference. The client could maintain a cache by implementing a smart proxy.
Refer to the Orbix documentation set for details about writing smart proxies.
201

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 202 Tuesday, April 27, 1999 1:54 PM
Implementing Callbacks
To implement callbacks, you must do the following:

• Define the OMG IDL interfaces for the server’s objects and the client’s
objects.

• Write a client.

• Write a server and register it in the Implementation Repository.

The OMG IDL Interfaces
The client implements an interface that the server will use to call back clients. A
suitable interface might be defined as:

// OMG IDL
interface NotifyCallback{

oneway void notifyClient();
}

The notifyClient() operation is declared to be oneway because it is important
that the server is not blocked when it calls back its clients.

The server implements an interface that allows it to maintain a list of clients that
should be notified of changes in its objects’ data. A suitable interface might be
defined as:

// OMG IDL
interface RegisterCallback{

void registerClient(in NotifyCallback client);
void unregisterClient(in NotifyCallback client);

}

The operation registerClient() registers a client with the server. The
parameter to registerClient() is of type NotifyCallback so that the client
can pass a reference to itself to the server. The server can maintain this
reference in a list of clients who should be notified of events of interest.

The operation unregisterClient() tells the server that the client is no longer
interested in receiving callbacks. The server can remove the client from its list of
interested clients.
 202

C l i e n t C a l l b a c k s

COMet.book Page 203 Tuesday, April 27, 1999 1:54 PM
Generating Skeleton Code
As in the case of creating a server, you should use the Type Store Manager tool
to create your skeleton code for your callback objects. This will ensure that
your interfaces have the correct parameters in the correct order and so on.
Refer to “Development Support Tools” on page 121 for more details.

Writing a Client
To write a client, you must implement the NotifyCallback interface for the
client objects. You can use the skeleton code generated by the Type Store
Manager tool as a template, as if the client were a CORBA server.

Visual Basic

Dim clientObj as New NotifyCallback

Dim ObjFactory As Object
Set ObjFactory = CreateObject("CORBA.Factory")
...
Dim serverObj as clientBridge.DIRegisterCallback
Set serverObj = ObjFactory.GetObject(

"RegisterCallback:callbackSrv:h")
serverObj.registerClient clientObj
... ‘Your code goes here
Public Sub notifyClient(Optional ByRef IT_Ex As Variant)

End Sub
...

PowerBuilder
OleObject NotifyCallback
NotifyCallback = CREATE OleObject
NotifyCallback.ConnectToNewObject(“serverImplObject”)
203

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 204 Tuesday, April 27, 1999 1:54 PM
OleObject ObjFactory
ObjFactory = CREATE OleObject

serverObj = CREATE OleObject
serverObj = ObjFactory.GetObject

(“RegisterCallback:callbackServer:h”)
serverObj.resolve(NotifyCallback)

C++ COM
ICallBack *pIF = NULL;
...

hr = CoCreateInstanceEx (IID_ICORBAFactory, NULL, ctx, NULL, 1,
&mqi);

CheckHRESULT(“CoCreateInstanceEx()”, hr, FALSE);

pCORBAFact = (ICORBAFactory*)mqi.pItf;

// connect to the target CORBA server
memset(szMarkerServerHost, ‘\0’,128);
sprintf(szMarkerServerHost, “CallBack:callback:%s”, hostname);
hr = pCORBAFact->GetObject(szMarkerServerHost,&pUnk);
if(!CheckErrInfo(hr, pCORBAFact, IID_ICORBAFactory))
{

pCORBAFact->Release();
return;

}
pCORBAFact->Release();

hr = pUnk->QueryInterface(IID_ICallBack, (PPVOID)&pIF);
if(!CheckErrInfo(hr, pUnk, IID_ICallBack))
{

pUnk->Release();
return;

}
pUnk->Release();

// Create our implementation for the callback object
ICOMCallBackImpl * poImpl = ICOMCallBackImpl::Create();
 204

C l i e n t C a l l b a c k s

COMet.book Page 205 Tuesday, April 27, 1999 1:54 PM
// make the call to the server passing in our object
pIF->Register(poImpl);
// wait around until we explicitly quit for the none console
// application
StartCOMServerLOOP(10000);
poImpl->Release();

The client creates an implementation object, clientObj , of type
NotifyCallback .

It binds to an object of type RegisterCallback in the server. At this point, the
client holds an implementation object for type NotifyCallback and a reference
to an Automation View (serverObj) for an object of type RegisterCallback.

To allow the server to invoke operations on the NotifyCallback object, the
client must pass a reference to its implementation object to the server. Thus, the
client calls the operation registerClient() on the serverObj View and passes
it a reference to its implementation object clientObj .

Because it implements an interface, the client is acting as a server. However, the
client does not have to register its implementation object with the bridge and it
is not registered in the Implementation Repository. Therefore, the server will
not be able to bind to the client’s implementation object.

Implementing the Server
The server application can be coded as a normal OrbixCOMet server as
described in “Implementing CORBA Servers” on page 173.

In particular, you must provide an implementation class for the
RegisterCallback interface using the skeleton code generated by the Type
Store Manager tool as a template.

The implementation of the registerClient() operation receives an object
reference from the client. When this object reference enters the server address
space, a COM/Automation view for the client’s NotifyCallback object is
created in the server’s bridge. The server uses this view to call back to the client.
The implementation of RegisterClient() should store the reference to the
view for this purpose.
205

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 206 Tuesday, April 27, 1999 1:54 PM
Visual Basic

Public Sub registerClient(ByVal var_client As Object,
Optional ByRef IT_Ex As Variant)
// Store reference to var_client
...

End Sub

Public Sub unregisterClient(ByVal var_client As Object,
Optional ByRef IT_Ex As Variant)
// Remove reference to var_client
...

End Sub

PowerBuilder
// Create two functions passing a user object
registerClient (...
unregisterClient (...

COM C++
void CallBack_i::Register (IClientObject * obj)
{

cout << “in Server, about to call back to client” << endl;

// Register reference
...

}

void CallBack_i::UnRegister (IClientObject * obj)
{

cout << “in Server, about to call back to client” << endl;

// Remove the reference
...

}

 206

C l i e n t C a l l b a c k s

COMet.book Page 207 Tuesday, April 27, 1999 1:54 PM
Invoking the Operation
After the view is created in the server address space, the server can invoke the
operation notifyClient() on the view. For example, the server might initiate
this call in response to an incoming event (such as a request to make a deposit
or withdrawal to a bank account).

Visual Basic

Dim callbackObj as serverBridge.DINotifyCallback

' Get reference to the client from server's stored data:
Set callbackObj = ...

' Call back to client
callbackObj.notifyClient

PowerBuilder
// get the reference to the client from the server’s stored data
OleObject CallbackObj
...
CallbackObj.ConnectToNewObject(...)
...
CallbackObj.notify()

COM C++
try
{

obj->op1(“This is the server calling”);
}
catch (CORBA(SystemException) & oEx)
{

cout << oEx;
}
catch (...)
{

cout << “Unknown exception” << endl;
}
cout << “in Server, back from client” << endl;
207

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 208 Tuesday, April 27, 1999 1:54 PM
The callback can be sent directly to the client. The callback does not need to be
routed through an Orbix daemon, so the client does not have to be registered in
the Orbix Implementation Repository. Therefore, the server will not be able to
bind to the client’s implementation object.

Registering the Callback Object Server
Finally, the server instantiates an object of type RegisterCallback , registers it
with the bridge and activates itself as a CORBA server.

Visual Basic

Dim serverObj As New RegisterCallback
Dim serverAPI as Object

...
Set serverAPI = CreateObject("serverBridge.ITServerAPI")
serverAPI.SetObjectImpl("RegisterCallback", "", serverObj)
serverAPI.Activate("CallbackServer")

The server should be registered in the Implementation Repository with the
name specified in the Activate() call.

PowerBuilder
// Get a reference to the ITServerAPI object
OleObject serverAPI
serverAPI = CREATE OleObject
serverAPI.ConnectToNewObject(“serverBridge.ITServerAPI”)

// Instantiate a Bank object.
// You first need to use PBGENREG.EXE to expose the
// object with the ProgID ‘CallbackSrv.CallbackImplObject’
OleObject Obj
Obj = CREATE OleObject
Obj.ConnectToNewObject(“CallbackSrv.CallbackImplObject”)

// Register Obj with the Bridge.
serverAPI.setObjectImpl(“RegisterCallback”, “”, Obj)
 208

C l i e n t C a l l b a c k s

COMet.book Page 209 Tuesday, April 27, 1999 1:54 PM
// Activate the server so that bankObj
// can receive incoming calls from CORBA clients.
serverAPI.Activate(“CallbackServer”)

//Deactivate the server when finished.
serverAPI.Deactivate(“CallbackServer”)

COM C++
CallBack_i* m_pObj=new CallBack_i();

IOrbixORBObject * poOrb=0;
hr = CoCreateInstance(IID_IOrbixORBObject, NULL, ctx,

IID_IOrbixORBObject, (void**)&poOrb);
CheckHRESULT(“Connecting to ORB”, hr, FALSE);

IOrbixServerAPI * poAPI=0;

hr = poOrb->GetServerAPI(&poAPI);
CheckHRESULT(“getting Server API”, hr, FALSE);
poOrb->Release();

// register our COM object as the CORBA interface ‘ClientObject’
poAPI->setObjectImpl(“RegisterCallback”, “”, m_pObj);

poAPI->Activate(“CallbackServer”);

poAPI->Release();

delete m_pObj;
209

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 210 Tuesday, April 27, 1999 1:54 PM
 210

COMet.book Page 211 Tuesday, April 27, 1999 1:54 PM
 15
Managing the Type Store

“Development Support Tools” on page 121 has already described
the tools you can use to populate and remove information from the
OrbixCOMet type store in order to create IDL files, type libraries,
smart proxy DLLs and server stub code. This chapter describes the
general workings of the type store and explains how you can prime
it in order to optimise performance at application runtime.

OMG IDL files are text files that contain CORBA Interface Definition Language
(OMG IDL). MIDL files are text files that contain Microsoft Interface Definition
Language (MIDL). The OMG IDL compiler is used to compile OMG IDL into
skeleton source code for client and server applications. The MIDL compiler
(midl.exe) is used to compile MIDL into skeleton source code for client and
server proxies, stubs, and so on. In CORBA, you can use the putidl command
to store OMG IDL in the Interface Repository in binary format. In COM, when
you run midl.exe , it automatically creates a type library that can store MIDL in
binary format. (Note that midl.exe is now replacing mktypelib.exe .)

The OrbixCOMet type store holds a cache of OMG IDL and MIDL type
information in an ORB-neutral binary format called metadata. This type
information is then used by the dynamic bridge at application runtime.
211

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 212 Tuesday, April 27, 1999 1:54 PM
Note: Type libraries are not required if you are only using straight IDispatch
interfaces. In this case, OrbixCOMet automatically puts type information
into the type store when it does a lookup using GetObject , as in the
following example:
mod::CorbaSrv
‘Visual Basic
srvobj = factory.GetObject (“mod/CorbaSrv”)

The Caching Mechanism
It is recognised that a possible performance bottleneck might result at
application runtime when the Interface Repository is being contacted to obtain
OMG IDL type information, and the type library is being contacted to obtain
MIDL type information. This is because every query might involve multiple
remote invocations. To avoid this, OrbixCOMet uses a memory and disk cache
of type information. This means the Interface Repository only has to be
contacted once per OMG IDL definition, and the type library only has to be
contacted once per MIDL definition. When a new OMG IDL type is
encountered, OrbixCOMet queries the Interface Repository for its type
information. When a new MIDL type is encountered, OrbixCOMet queries the
type library for its type information.

The OrbixCOMet Type Store Manager tool (TypeMan) converts all OMG IDL
and MIDL type information into metadata, and caches it in memory. At runtime,
when OrbixCOMet is marshalling information, and method invocations are being
made, the type store cache holds the required type information in memory. The
type information is handled on a first in-first out (FIFO) basis in the memory
cache. This means the most recently accessed information becomes the most
recent in the queue. On exiting the application process (or when the memory
cache size limit has been reached), new entries in the memory cache are written
out to persistent storage and are reloaded on the next run of an OrbixCOMet
application.

The memory cache and disk cache are quite separate. Initially, on starting up, the
memory cache is primed with the most recently accessed elements of the disk
cache. (The number of elements in the memory cache depends on the
configuration settings, as described in “OrbixCOMet Configuration” on
 212

Man a g i n g t h e T y p e S t o r e

COMet.book Page 213 Tuesday, April 27, 1999 1:54 PM
page 219.) When lookups are performed, if the required type information is not
already in the memory cache, the TypeMan tool pulls it out of the disk cache. If
the required type information is not already in the memory or disk cache, the
TypeMan tool pulls it out of the Interface Repository or type library (depending
on whether it is an OMG IDL or MIDL type definition). The related type
information then becomes the most recent item in the queue in the type store
memory cache.

Type Store Configuration Issues
Refer to “OrbixCOMet Configuration” on page 219 for a description of the keys
that are of interest to OrbixCOMet configuration, and their associated default
values.

Inserting Information into the Type Store
“Development Support Tools” on page 121 has already explained how to insert
type information into the OrbixCOMet type store. To recap, you can use the
GUI tool (OrbixCOMet tools screen) or the command line utilities.

Remember that if you use the command line tools and GUI tool simultaneously,
any changes you make with the command line tools will not appear automatically
on the OrbixCOMet tools screen. In this case, you would have to click the
Refresh Display button on the OrbixCOMet tools screen to update the list
of type store contents displayed.

Removing the Contents of the Type Store
“Development Support Tools” on page 121 has already explained how to delete
the contents of the type store. To recap, you can use any of the following three
ways:

• Click the Delete TypeStore button on the OrbixCOMet tools
screen. (Refer to “Development Support Tools” on page 121 for more
details.)
213

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 214 Tuesday, April 27, 1999 1:54 PM
• Type typeman -w at the command line. (This is the “wipe” command in
typeman.exe.)

• Type del c:\temp\typeman.* at the command line. (This is assuming
the data files are in the default location c:\temp .) If the data files are not
in c:\temp , you can find out where they are stored by checking the
setting for COMet.TypeMan.TYPEMAN_CACHE_FILE in the
\iona\config\orbixcomet x.x .cfg file (where x.x represents the
version number). (Refer to “OrbixCOMet Configuration” on page 219
for more details.)

Priming the Bridge Cache
While it is possible to allow the type store cache to obtain its information on an
as-needed basis (that is, at runtime on the first run of an application), it is
possible that users might want to prime the cache before executing their
program. If this is done, there will be a notable performance difference on the
first run of an application.

Note: This is only an issue for the first run of an application that is using
previously unseen OMG IDL or MIDL types. After OrbixCOMet has
obtained the type information from the Interface Repository or type
library, either through cache priming or during the first run of an
application, all subsequent queries will be satisfied by the cache.

To allow users to prime the cache, OrbixCOMet is shipped with a command line
utility, TypeMan.exe , found in the %ORBIXCOMET%\bin directory (where
%ORBIXCOMET% represents the name of the installation directory you have
chosen). The help message for this command is as follows:

[c:\iona\comet\bin]typeman /?

TypeMan [filename | -e name] [-r] [-i] [-c[n][u]] [-b] [-h]
[-l[+]] [-v[s[i] method]] [-z]

filename: name of input text file.
-e: lookup Entry (name or uuid)
 214

Man a g i n g t h e T y p e S t o r e

COMet.book Page 215 Tuesday, April 27, 1999 1:54 PM
-r: Resolve all references (use to generate static
bridge compatible names for CORBA sequences)

-i: always connect to IFR.
-c[n][u]: list disk cache Contents, n: Natural order,

u: display uuid.
-v[s[i] method]: log v-table for interface/struct

[s:search for method]
[i]: Ignore case. use -v with -e option.

-b: Log mem cache hash-table bucket sizes.
-h: Log cache hits/misses.
-z: Log mem cache siZe after each addition.
-l[+]: log TS basic contents ['+' shows new's/delete's]
-w: Delete (wipe) cache contents.
-u: (Unattended) continue without pause at program

exit.
-?2: Priming input file format info.

The cache file for interface type information is determined by the
Comet.TypeMan.TYPEMAN_CACHE_FILE entry in the
\iona\config\orbixcomet x.x .cfg file (where x.x represents the version
number). A typical value would be C:\temp\typeman._dc . (For more details
about OrbixCOMet configuration entries, refer to “OrbixCOMet
Configuration” on page 219.)

If you wish, you can use one single text file to contain all Interface Repository
and type library entries, and this can then be used to rebuild the cache. In the
text file, you can comment out a line by putting // at the start of it. If you insert
a double blank line, it will be treated as the end of the file.

Note: The Type Store Manager tool (typeman) does not currently support
selective removal of type store entries. However, use of this file format
for priming the cache is a useful aid in managing the cache. Simply delete
the typeman cache files typeman.edc, typeman.idc, typeman.map,

typeman._dc (usually in \temp) using the del c:\temp typeman.*
command or the typeman -w command. If you wish, you can then re-
prime the cache using a modified list of types.
215

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 216 Tuesday, April 27, 1999 1:54 PM
Prime from the Interface Repository

In this case, the command expects either an individual OMG IDL typename or a
text file that lists all the fully scoped OMG IDL interface names with which the
cache is to be primed.

For example, assume you want to prime the cache with the type information for
interfaces grid , bank , account and foobar::myInterface . You would edit a
text file (called, for example, prime.txt) where each interface name is placed on
a separate line as follows:

grid
bank
account
foobar::myInterface

Then you would run the following command:

[c:\] typeman prime .txt

Assuming that the IDL for the interfaces listed in prime.txt is installed in the
Interface Repository, the cache would be primed with this type information.

Alternatively, you can supply an individual typename on the command line. For
example, to prime the cache for interface grid you would type the following:

[c:\] typeman -e grid

Assuming that the Interface Repository has been updated with the OMG IDL for
interface grid , the OrbixCOMet disk cache would be primed with metadata for
the grid interface. Thereafter, no interaction with the Interface Repository
occurs for applications using that interface.

Prime from Type Libraries

In this case, the command expects either an individual type library name
(including its full path) or a text file that contains a list of type library names
(including their full paths) with which the cache is to be primed.

For example, assume you want to prime the cache with the type information for
type libraries grid.tlb , bank.tlb , account.tlb and foobar.tlb , which are all
held, for example, in c:\temp. You would edit a text file (called, for example,
prime.txt) where each type library path is placed on a separate line as follows:

c:\temp\grid.tlb
 216

Man a g i n g t h e T y p e S t o r e

COMet.book Page 217 Tuesday, April 27, 1999 1:54 PM
c:\temp\bank.tlb
c:\temp\account.tlb
c:\temp\foobar.tlb

Then you would run the following command:

[c:\] typeman prime .txt

The cache would then be primed with this type information.

Alternatively, you can supply an individual type library pathname on the
command line. For example, to prime the cache for type library grid.tlb held
in c:\temp , type the following:

[c:\] typeman -e c:\temp\grid.tlb

The OrbixCOMet disk cache would then be primed with metadata for that type
library.

Dumping Contents of the Cache

The typeman tool is also a useful diagnostic utility in that it allows for dumping
contents of the cache. For example, the following command would print the
methods of interface grid in alphabetical order and also in vtable order (this
order is determined by the COM/CORBA Interworking document):

[c:\] typeman -e grid -v

MD5/Name or IFR look up: grid

 Name sorted V-table DispId Offset

 get get 1 0
 height get set 2 1
 set height 3 2
 width get width 4 3

Note: The second column in this example denotes attribute get operations.
The absence of height set and width set implies that these are read-
only attributes.
217

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 218 Tuesday, April 27, 1999 1:54 PM
 218

COMet.book Page 219 Tuesday, April 27, 1999 1:54 PM
 16
OrbixCOMet Configuration

This chapter describes the keys that are of interest to OrbixCOMet
configuration, and their associated default values. It includes details
of configuration entries that are either specific to OrbixCOMet or
common to multiple IONA products.

OrbixCOMet Keys
This section describes the configuration variables that are specific to
OrbixCOMet. They are held in the \iona\config\orbixcomet x.x .cfg file
(where x.x represents the version number). They are declared within various
scopes within the scope COMet{...} . As shown in this section, you can also use
the prefix COMet.Scope name . to refer to individual entries in this file.

Key COMet.Licensing.IT_KEY=“134217728-1476395008-134217728-134217728-
2147483710”

Description This denotes either an evaluation or full licence key for using the product. When
you install OrbixCOMet you are asked for a valid OrbixCOMet licence code
that should be included in your product package. If you supply an invalid code,
the installation defaults to a 21-day evaluation licence. You can contact
shipping@iona.com if you need to obtain a new licence code. When you
receive a full licence code you should enter it in this key.
219

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 220 Tuesday, April 27, 1999 1:54 PM
Key COMet.Config.COMET_HANDLER_LOCATION=“COMet\Handlers”

Description This key is used to specify handler DLLs for smart proxies, filters, transformers,
I/O callbacks and so on (for example, calls to configure Orbix dynamically). It
specifies a key stored in HKEY_CLASSES_ROOT that stores where these DLLs are
located. The default value is “COMet\ x.x \Handler DLLs” , where x.x represents
the version number. It is placed in HKEY_CLASSES_ROOT so that users without
administrative privileges can read and modify the values. The values would look
like the following:

[HKEY_CLASSES_ROOT\COMet\x.x \Handler DLLs]
grid="c:\foo\bar.dll"
bank="c:\foo\bar2.dll"

Key COMet.Config.COMET_DAEMON_HOST=“”

Description This specifies the host where the Orbix daemon is running. The locator on this
host will be used in calls to GetObject() . This is used by GetObject() when the
Marker:Server:Host format is being used (but not when stringified IORs are
being used, because this information is contained in the IOR). This allows IIOP-
on-the-wire to be used by OrbixCOMet, without a local daemon. The locator
on the host specified by COMET_DAEMON_HOST will be used by OrbixCOMet to
launch the server.

Key COMet.Config.COMET_DEFAULT_PROTOCOL=“IIOP”

Description This is the default protocol used by OrbixCOMet to connect to a CORBA
server and the IFR. Valid settings are:

Key COMet.Config.COMET_ROOT=“c:\iona\comet\bin”

Description This is the full pathname of the OrbixCOMet installation directory. This is used
by the Uninstall package to indicate where OrbixCOMet is located.

“IIOP” Internet Inter-ORB Protocol

“POOP” Plain Old Orbix Protocol
 220

O r b i x COM e t C o n f i g u r a t i o n

COMet.book Page 221 Tuesday, April 27, 1999 1:54 PM
Key Comet.Config.IT_DAEMON_PROTOCOL=“IIOP”

Description This is used by OrbixCOMet to connect to the daemon. The daemon then
launches the server and returns a COMET_DEFAULT_PROTOCOL type connection
between OrbixCOMet and the server. In general, this setting should be identical
to the COMET_DEFAULT_PROTOCOL setting. Valid settings are:

Key COMet.Config.COMET_SHUTDOWN_POLICY=“implicit”

Description The valid settings for this key are as follows:

Key COMet.Config.COMET_UPDATE_LEVEL=“3-0b4-00”

Description This includes information about the version of OrbixCOMet, the patch level of
Orbix against which OrbixCOMet has been built, and the patch level of
OrbixCOMet. You should quote this value whenever posting to
support@iona.com or to the comet-users newsgroup.

“IIOP” Internet Inter-ORB Protocol

“POOP” Plain Old Orbix Protocol

“implicit” This is the default setting. It means OrbixCOMet will
shut down the first time DllCanUnloadNow is about to
return ‘yes’.

“explicit” This means you must make a call to ORB::ShutDown()
to force OrbixCOMet to shut down.

“Disabled” This means OrbixComet will not shut down the ORB
when it thinks it is about to unload. That is, the DLL is
not unloaded when DllCanUnloadNow is called by the
COM runtime. Visual Basic and Internet Explorer do
this to cache the DLLs.

A problem will arise, however, if the DLL is re-used
because Orbix has already been shut down.

“atExit” This means that the OrbixCOMet bridge will only
shut down at process exit time. This is the
recommended setting when running inside the Visual
Basic development environment.
221

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 222 Tuesday, April 27, 1999 1:54 PM
Key COMet.Mapping.UseSAFEARRAYMapping=“yes”

Description The Automation mapping for OMG IDL sequences and arrays is to Automation
compatible SAFEARRAYs as described in the COM/CORBA Interworking
document. Existing code from the Orbix Desktop product used the alternative
mapping to collections. This mapping to collections has been deprecated in the
current specification, but it is supported in OrbixCOMet for existing users. To
specify that the collections mapping should be used, you should set this value to
“no” .

Key COMet.Mapping.KEYWORDS=“grid, DialogBox, bar, Foobar, height”

Description This allows you to enter a list of words that you want to be prefixed in order to
avoid clashes when using ts2idl to generate IDL.

Key COMet.TypeMan.TYPEMAN_CACHE_FILE=“C:\TEMP\typeman._dc”

Description OrbixCOMet uses a memory and disk cache for efficient access of type
information. This entry specifies the name and location of the file used.

Key COMet.TypeMan.TYPEMAN_DISK_CACHE_SIZE=“2000”

COMet.TypeMan.TYPEMAN_MEM_CACHE_SIZE=“250”

Description These two keys specify the maximum number of entries allowed in the disk
cache/memory cache. When these values are exceeded, entries can be flushed
from the cache. The nature of the applications using the bridge will affect the
values these keys should have. However, as a general rule, the disk cache size
should be about eight to ten times greater than the the memory cache.
Furthermore, to avoid unnecessary swapping into and out from disk, you should
ensure the memory cache size is no smaller than 100. An “entry” in this case
corresponds to a user-defined type. For example, a union defined in OMG IDL
would result in one entry in the cache. An interface containing the definition of a
structure would result in two entries. A good rule of thumb is that 1000 cache
entries (given a representative cross section of user-defined types) would
correspond to approximately 2 MB of disk space. Therefore, the default disk
cache size of 2000 allows for a maximum disk cache file size of approximately 4
MB. When the cache is primed with type libraries for DCOM servers, the size
could be considerably larger. It depends on the size of the type libraries, and this
can vary considerably. Typically, a primed type library will be over three times
the size of the original type library because the information is stored in a format
that optimises speed.
 222

O r b i x COM e t C o n f i g u r a t i o n

COMet.book Page 223 Tuesday, April 27, 1999 1:54 PM
Key COMet.TypeMan.TYPEMAN_IFR_HOST=“”

Description To allow for ease of deployment and for an easy upgrade path (for example,
when new interfaces are exposed by a server implementor), a common
requirement is to use a central Interface Repository (IFR). This raises the need
to get OrbixCOMet to use an IFR on a machine other than that on which
OrbixCOMet is installed. If it is preferable that an IFR on another machine
should be used, simply create an entry in the orbix.hst file for use by the
locator and specify the host that should be contacted. For example, to use the
IFR on the machine advice.iona.com , the orbix.hst file would look like:
IFR:advice.iona.com :

However, use of the Orbix locator requires an orbixd on the local machine.
This might not always be the case, and OrbixCOMet allows for this by providing
the TYPEMAN_IFR_HOST configuration file entry that can be used to specify the
host on which the IFR should be contacted. The value for this key should specify
the host in question.

Key COMet.TypeMan.TYPEMAN_IFR_IOR_FILENAME=“”

Description This key only needs to be set if you are using the stand-alone COMetIFR that
ships with OrbixCOMet. This is the full pathname to the file containing the
stringified version of the COMetIFR Interoperable Object Reference (IOR).

Key Comet.TypeMan.TYPEMAN_IFR_NS_NAME=“”

Description This is the name of the IFR in the Naming Service. This is needed if you are using
the Naming Service to resolve the IFR. You should register an IOR for the IFR in
the Naming Service under a compound name. This key should contain that
compound name.

Key Comet.TypeMan.TYPEMAN_READONLY=“no”

Description This key determines whether readonly mode is to be used for the type store.

Key Comet.Services.NameService=“”

Description This is the full pathname to the file containing the IOR for the Naming Service.
This is needed if you are using the Naming Service to resolve the IFR.
223

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 224 Tuesday, April 27, 1999 1:54 PM
Common Keys
This section describes the configuration variables that are common to multiple
IONA products, including OrbixCOMet. They are held in the
\iona\config\common.cfg file and are declared within the scope Common{...} .
As shown in this section, you can also use the prefix Common. to refer to
individual entries in this file.

Key Common.IT_DAEMON_PORT=“1570”

Description This is the TCP port number that OrbixCOMet will use to contact an Orbix
daemon.

Key Common.IT_DAEMON_SERVER_BASE=“1570”

Description This is the starting port number for servers launched by the Orbix daemon. This
key must be set if you are using the stand-alone COMetIFR. This location is used
by the COMetIFR to keep repository records.

Key Common.IT_IMP_REP_PATH=cfg_dir + “Repositories\ImpRep”

Description This is the full pathname of the Implementation Repository directory.

Key Common.IT_INT_REP_PATH=cfg_dir + “Repositories\IFR”

Description This is the full pathname of the Interface Repository directory.

Key Common.IT_LOCATOR_PATH=cfg_dir

Description This is the full pathname of the directory holding the locator files.

Key Common.IT_LOCAL_DOMAIN=“”

Description This is the name of the local Internet domain. This should be the same for both
the client and server sides. An empty value is a valid value.

Key Common.IT_JAVA_INTERPRETER=“c:\iona\bin\jre.exe”

Description This is the full pathname to the JRE binary executable that installs with Orbix.

Key Common.IT_DEFAULT_CLASSPATH=cfg_dir + “C:\IONA\bin\bongo.zip;
C:\IONA\bin\marimba.zip;C:\IONA\bin\NSclasses.zip;
C:\IONA\bin\utils.zip;C:\IONA\bin\rt.jar;C:\IONA\bin\orbixweb.jar
;C:\IONA\Tools\NamingServiceGUI\NSGUI.jar”

Description This the default classpath to be used when Java servers are automatically
launched by the daemon.
 224

O r b i x COM e t C o n f i g u r a t i o n

COMet.book Page 225 Tuesday, April 27, 1999 1:54 PM
Note: After installation, the common.cfg file provides default settings for the
main environment variables required. You can change these default
settings by manually editing the configuration file, or by using the
Configuration Explorer, or by setting a variable in the user environment.
If an environment variable is set, it takes precedence over the value set in
the configuration file. Environment variables are not scoped with a
Common. prefix.

Orbix Keys
This section describes configuration variables that are common to both Orbix
and OrbixCOMet. They are held in the \iona\config\orbix3.cfg file and are
declared within the scope Orbix{...} . By default, the configuration variables in
this file are scoped with the Orbix. prefix.

Key Orbix.IT_ERRORS=cfg_dir + “ErrorMsgs”

Description This is the pathname for the error messages file.

Key Orbix.IT_CONNECT_ATTEMPTS=“10”

Description This is the maximum number of retries that Orbix makes to connect to a server.
225

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 226 Tuesday, April 27, 1999 1:54 PM
 226

COMet.book Page 227 Tuesday, April 27, 1999 1:54 PM
 17
Deploying your OrbixCOMet
Application

This chapter describes the various models you can adopt when
deploying an application you have built using OrbixCOMet. It also
describes the steps you must follow to deploy an OrbixCOMet
application.
227

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 228 Tuesday, April 27, 1999 1:54 PM
Deployment Models
OrbixCOMet supports communication using either the DCOM protocol or the
CORBA IIOP protocol. Therefore, when it comes to deploying your
applications, you have a great degree of flexibility in terms of how you might
choose to install OrbixCOMet. For example, you can install it on each of your
client machines or on one central machine that is separate from your clients.
Alternatively, you could install it on your server machine.

Internet Deployment

When it comes to deploying your OrbixCOMet application on the Internet you
have two options to choose from:

• Download the entire bridge onto the client machine.

• Download only the DLLs and leave the bridge on the Internet server
machine.

Using OrbixCOMet with Internet Explorer
Before reading this section, refer to the section “DCOM On-the-Wire with
OrbixCOMet” on page 232.

The DLL CCIExWrapper.DLL contains a control for wrapping
CoCreateInstanceEx() that can be referenced in HTML files (using the OBJECT
tag) supplying attribute values that specify the object name, location, type, and so
on. The CODEBASE attribute identifies the code base for the object by supplying a
URL. (The machine name might need to be modified in the HTML file before the
demonstration will work.) The CLASS ID attribute identifies the object
implementation. Its syntax is CLSID:class-identifier for registered ActiveX
controls. For example:

<OBJECT ID="bridge" <
 CLASSID="CLSID:3DA5B85F-F2FC-11D0-8D97-0060970557AC"
 # change this to reflect the location of CCIExWrapper.dll on your

machine
 CODEBASE="\\ INSTALLATION_MACHINE_NAME\IONA\COMet\bin\CIExWrapper.dll"

>
</OBJECT>
 228

De p l o y i n g y ou r O r b i x C OMe t A p p l i c a t i o n

COMet.book Page 229 Tuesday, April 27, 1999 1:54 PM
When the HTML file is first downloaded, the control is also retrieved and
registers itself on your machine (subject to you agreeing, of course). This allows
use of OrbixCOMet from client machines with zero configuration effort
required on the client’s part. The only requirement is that the developer
configures OrbixCOMet on the server side with respect to type information,
access permissions, and so on, and places a HTML file on a server. This HTML
file can contain VBScript or JavaScript for calling methods on the remote
CORBA objects. (DCOM will be used on the wire.) For example, the following
VBScript is used for connecting to the grid object on machine

“advice.iona.com” and obtaining the height and the width of the grid:

<SCRIPT LANGUAGE="VBScript">
<!--

Dim Grid
Dim fact

Sub btnConnect_Onclick
 lblStatus.Value = "Connecting..."

DCOM on the wire...
 # the parameter should be the name of the
 # machine where the bridge is located
Set fact = bridge.IT_CreateRemoteFactory("advice.iona.com")

IIOP on the wire
Set fact = CreateObject("CORBA.Factory")

 Set Grid = fact.GetObject("grid")
 lblStatus.Value = "Obtaining dimensions..."
 sleWidth.Value = Grid.width
 sleHeight.Value = Grid.height
 lblStatus.Value = "Connected..."
End Sub

-->
</SCRIPT>

The full example can be found in:

%ORBIXCOMET%\demos\ie\grid\griddemo.htm

(where %ORBIXCOMET% represents the installation directory you have chosen).
229

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 230 Tuesday, April 27, 1999 1:54 PM
In order to use it you must set your Internet Explorer security settings to
“Medium” as follows:

1. Click Options on the View menu.

2. Select the Security tab and click Safety level.

3. Set the security to medium.

4. Click OK to close the options dialog box.

A security setting of medium means you will be prompted whenever executable
content is being downloaded. That is all you need to do. You do not need to
have Orbix installed. You can now open the file:

\\ INSTALLATION_MACHINE_NAME\OrbixCOMet\demos\iexplorer\griddemo.h

You will need to edit the file to specify the name of the machine that you want
to be contacted when the demonstration is downloaded.

The two changes are on the following lines in griddemo.htm :

CODEBASE="\\MYMACHINENAME\IONA\COMet\bin\CIExWrapper.dll"

and

Set fact = bridge.IT_CreateInstanceEx("{A8B553C5-3B72-11CF-BBFC-
444553540000}", "MACHINENAME")

or

Set fact = bridge.IT_CreateRemoteFactory("MACHINENAME")

IT_CreateInstanceEx in the preceding example takes a stringified CLSID as the
first parameter, which in this case is the CLSID for the CORBA Factory, whereas
IT_CreateRemoteFactory has the CLSID for CORBA.Factory hard-coded in its
implementations.

When these changes have been made, this file can be accessed from any
Windows NT 4.0 or Windows 95 machine with Internet Explorer. Neither
Orbix nor OrbixCOMet are required on the client side for this demonstration
to work.

The first time the page is accessed, a dialog box opens to tell you that unsigned
executable content is being downloaded. That is acceptable in this case. You
should be presented with a simple GUI, somewhat similar to the Visual Basic or
PowerBuilder GUI described earlier. To use the demonstration you can click
Connect, fill in x and y values for the grid, and then click Set/Get and so on. You
can click Disconnect when you are finished.
 230

De p l o y i n g y ou r O r b i x C OMe t A p p l i c a t i o n

COMet.book Page 231 Tuesday, April 27, 1999 1:54 PM
Bridge on Each Client Machine

In this model, the OrbixCOMet runtime is installed on every machine. Clients
communicate with servers using the CORBA communications protocol, IIOP, on
the wire. Figure 17.1 provides an overview of this model.

The OrbixCOMet runtime is what is required to deploy an OrbixCOMet
application. It requires considerably less disk space than an installation of
OrbixCOMet on a development machine.

Figure 17.1: Bridge on Each Client Machine

Client Program
(Visual Basic,
Power Builder,

and so on)
OrbixCOMet

OrbixCOMet

COM
Object

COM
Object

CORBA
Object

Client Machine 1
 (NT or 95)

Client Machine 2
 (NT or 95)

Server Machine
(NT, UNIX,

 MVS, and so on)

COM

COM

Server
Application

IIOP

IIOP

Client Program
(Visual Basic,
Power Builder,

and so on)

Client Program
(Visual Basic,
Power Builder,

and so on)
231

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 232 Tuesday, April 27, 1999 1:54 PM
DCOM On-the-Wire with OrbixCOMet

This section describes how OrbixCOMet can be used to write applications that
launch the bridge out-of-process, either on the local machine or on a remote
machine.

A DLL called CCIExWrapper.dll has been provided with your OrbixCOMet
installation. This DLL essentially exposes the functionality of
CoCreateInstanceEx() to PowerBuilder/Visual Basic and Delphi programmers.
Use of this functionality allows programmers to specify the machine on which
the OrbixCOMet bridge should be launched, thus allowing use of DCOM on-
the-wire. Programmers can of course elect to use IIOP on-the-wire instead.
Both configurations are equally easy to use from the client programmers' point
of view. The decision about which one is to be used can be made at runtime. It is
simply a matter of whether the bridge is launched as an in-process server, a local
server or a remote server1. For example, consider the following Visual Basic
code, where you use a check button (inprocess) to let the user decide whether
to launch the bridge in-process (and hence talk IIOP on-the-wire) or out-of-
process (and hence talk DCOM on-the-wire):

Private Sub ConnectBtn_Click()
On Error GoTo errortrap
 If inprocess.Value <> Checked Then

Dim wrapper As Object
set wrapper = CreateObject("IT_CCIExWrap.IT_CCIExWrap.1")
 set objFactory =
wrapper.IT_CreateRemoteFactory(HostName.Text)

set wrapper = Nothing
 Else
 Set objFactory = CreateObject("CORBA.Factory")
 End If
 inprocess.Enabled = False

1. Using DCOM on-the-wire to another machine requires that DCOM security issues are
addressed. Security can be dealt with by using DCOMCNFG.EXE, programmatically via security API
functions, or by a combination of the two approaches. To help in this regard, refer to the
OrbixCOMet Desktop Getting Started book which provides details on some DCOM-only
applications shipped with OrbixCOMet that can be used to experiment with configuring DCOM.
However, a full treatment of COM security is outside the scope of this book. Refer to the COM
security FAQ at http://support.microsoft.com/support/kb/articles/q158/5/08.asp
for more details.
 232

De p l o y i n g y ou r O r b i x C OMe t A p p l i c a t i o n

COMet.book Page 233 Tuesday, April 27, 1999 1:54 PM
 Set srvObj = objFactory.GetObject("grid:grid:" &
HostName.Text)
StartBtn.Enabled = True
 ConnectBtn.Enabled = False
 Exit Sub
errortrap:
 MsgBox (Err.Description & ", in " & Err.Source)
End Sub

In the preceding example, the same hostname is supplied to the GetObject call
and the IT_CreateRemoteFactory call. This is purely to keep the example
simple. Remember that the hostname passed to GetObject() , as shown in the
preceding example, specifies the host on which the CORBA server you wish to
contact is registered. The hostname passed to IT_CreateRemoteFactory in the
preceding example specifies the host on which you want to create an instance of
the CORBA.Factory object (that is, the host (local or remote) on which you
want to launch the bridge). In practice, the two hosts can be different. When
IT_CreateRemoteFactory() is used as in the preceding example, the
OrbixCOMet DLLs are hosted by a surrogate executable (custsur.exe found
in %ORBIXCOMET%\bin\) on the local or remote host. Furthermore, the code in
CCIExWrapper.DLL is completely independent of Orbix, and can therefore be
used on dedicated DCOM client machines. This is of particular use when using
OrbixCOMet with Internet Explorer. When a user accesses a given web page
that references the wrapper object, the DLL is downloaded automatically to the
client’s machine.

Use of OrbixCOMet in this fashion requires zero configuration effort on the
client’s machine.

Surrogate

As already mentioned, when the bridge is launched out of process, the
OrbixCOMet DLLs are hosted by a surrogate process
(%ORBIXCOMET%\bin\custsur.exe) rather than the default surrogate
DLLHOST.exe.

This is indicated by the following registry value that is set during installation:

HKEY_CLASSES_ROOT\AppID\{A8B553C5-3B72-11CF-BBFC-444553540000}
[DllSurrogate] = c:\iona\comet\bin\custsur.exe
233

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 234 Tuesday, April 27, 1999 1:54 PM
Bridge Shared by Multiple Clients

In this model, OrbixCOMet is installed on one central machine that is separate
from your clients. In this case, you only need to be able to create a remote
instance of the CORBA Factory object on your client machines. This is normally
done using the DCOM CoCreateInstanceEx() method. OrbixCOMet provides
a simple wrapper for this function for any languages (such as Visual Basic Script
or PowerBuilder) that do not directly support this DCOM call. Figure 17.2
provides an overview of this model.

Figure 17.2: Bridge Shared by Multiple Clients

CORBA
Object

COM
Object

Client Machine 1
 (NT or 95)

Client Machine 2
 (NT or 95)

Server Machine
(NT, UNIX,

 MVS, and so on)

Server
ApplicationObixCOMet

Bridge Machine
(NT or 95)

IIOP

DCOM

DCOM

Client Program
(Visual Basic,
Power Builder,

and so on)

Client Program
(Visual Basic,
Power Builder,

and so on)
 234

De p l o y i n g y ou r O r b i x C OMe t A p p l i c a t i o n

COMet.book Page 235 Tuesday, April 27, 1999 1:54 PM
Bridge on Server Machine

In this model, OrbixCOMet is only installed on your server machine. In this case,
your server should be running on Windows NT. The DCOM protocol is used to
communicate across the network.

Note: The OrbixCOMet Server product would provide a better solution for
implementing this deployment model because OrbixCOMet Desktop is
designed specifically as a client-side product.

Deployment Steps
To install an application developed with OrbixCOMet you must install:

• Your application’s runtime.

• The development language’s runtime.

• The OrbixCOMet runtime.

You must also set the OrbixCOMet configuration variables required by your
OrbixCOMet application at the location where the OrbixCOMet runtime is
installed. These are described in “OrbixCOMet Configuration” on page 219.

Installing Your Application Runtime

The components associated with your OrbixCOMet application consist of:

• Your application executables.

• Any other DLLs needed by your application.

Installing the Development Language Runtime

The run-time requirements for your development language normally consist of:
235

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 236 Tuesday, April 27, 1999 1:54 PM
• Run-time libraries (such as Visual Basic or PowerBuilder run-time
libraries).

• Support libraries (such as Roguewave tools or extra libraries).

Details of the run-time requirements of your development language can be
found in the documentation set for the specific development language.

Installing the OrbixCOMet Runtime

The run-time requirements of OrbixCOMet are the following DLLs:

♦ CCIExWrapper.dll *

♦ custsur.exe

♦ DSIMM23C.dll

♦ ITCplx.dll *

♦ ITGeneric.dll *

♦ ITGLM23C.dll

♦ ITLicense.dll *

♦ ITMisc.dll

♦ ITM_M23C.dll

♦ ITOLM23C.dll

♦ ITStdObjs.dll *

♦ ITStdPS.dll *

♦ ITts2tlb.dll *

♦ ITUnknown.dll

♦ it_licps.dll *

♦ MSVCIRT.dll

Note: The files marked with * must be explicitly registered with COM using
regsvr32 dllname .

Depending on the version of OrbixCOMet you have installed, these DLLs can
also be found in CAB file format at installdir/redist/cometCAB in your
OrbixCOMet installation. Alternatively, you can find them on the OrbixCOMet
web site at www.iona.OrbixCOMet .
 236

De p l o y i n g y ou r O r b i x C OMe t A p p l i c a t i o n

COMet.book Page 237 Tuesday, April 27, 1999 1:54 PM
Minimising Your Client-Side Footprint

In certain scenarios, OrbixCOMet allows you to deploy your client application
without requiring any OrbixCOMet footprint on the client machine. This is
normally referred to as a zero install configuration. This means you can use a
centralised installation of the OrbixCOMet bridge for your clients that provides
the deployment option of using DCOM as the wire protocol for communication.

Internet-Based Deployment
This deployment scenario allows you to download your client application over
the Internet. Because OrbixCOMet supports the DCOM wire protocol, your
Web-based clients can use DCOM to communicate with your installation of
OrbixCOMet which will then forward the calls to the appropriate CORBA
server.

If your scripting language supports the creation of a remote DCOM object, no
OrbixCOMet runtime needs to be downloaded to that machine. At time of
writing, the main scripting language is VB-Script which does not have this
capability. For this reason, OrbixCOMet includes a simple wrapper DLL called
CCIExWrapper.DLL that is a small (less than 20K) ActiveX that can be
automatically downloaded with your web page and allows connection to a
remote instance of the OrbixCOMet bridge. The samples provided in the
demo/IE directory of your OrbixCOMet installation show how this can be
achieved.

Automation-Based Clients
If you are developing client applications that use Automation late binding (that is,
the IDispatch interface), you have the option to use DCOM-on-the-wire. In
this scenario, you do not need any OrbixCOMet installation on your client
machine provided the Automation language supports connection to a remote
DCOM object (which in this case is the OrbixCOMet bridge). PowerBuilder 6.0
is currently the only main Automation client language that supports this. Visual
Basic does not allow direct connection to a remote DCOM object.

As in the case of Internet-based deployment, you can use the
CCIExWrapper.DLL supplied in your OrbixCOMet installation to limit the
OrbixCOMet footprint to less than 20K.
237

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 238 Tuesday, April 27, 1999 1:54 PM
If you are using early binding (that is, dual interfaces), you must include the
Automation type library that you created with the COMetCfg tool or the ts2tlb
command line tool. This will allow DCOM to use the standard type library
Marshaller to manage the client side marshalling of your client.

COM-Based Clients
The normal DCOM deployment rules state that you need to deploy and register
a proxy/stub DLL for all the COM interfaces your client uses. OrbixCOMet can
automatically generate the MIDL definitions and makefile, which are needed to
create this DLL, using the COMetCfg tool or the ts2idl command line tool.

If your COM client application uses the standard OrbixCOMet interfaces, such
as ICORBAFactory , you must also include the OrbixCOMet proxy/stub DLL.
This is called ITStdPS.DLL and is located in the \bin directory of your
OrbixCOMet installation.

If your COM client uses pure DCOM calls, you must register forwarding entries
in your client-side registry to indicate the OrbixCOMet CORBA location
information for your CORBA server. The extra registry entries can be created
by using the OrbixCOMet SrvAlias.exe tool. For deployment purposes, an
additional tool AliasSrv.exe can be used to restore these settings during
installation. See the demo\COM\coCreate demonstration for details. (Refer to
“Replacing an Existing DCOM Server” on page 133 for more information about
these tools.)
 238

COMet.book Page 239 Tuesday, April 27, 1999 1:54 PM
Part II
Programmer’s Reference

COMet.book Page 240 Tuesday, April 27, 1999 1:54 PM

COMet.book Page 241 Tuesday, April 27, 1999 1:54 PM
 18
OrbixCOMet API

This chapter describes the application programming interface (API)
to OrbixCOMet. The API is defined in MIDL. This chapter is divided
into two main sections. The first section describes the interface
entries for Automation. The second section describes the interface
entries for COM.

Automation Interfaces

DIOrbixServerAPI

Note: You no longer need to use DIOrbixServerAPI to register your DCOM
objects with the bridge. (Refer to “Exposing DCOM Servers to CORBA
Clients” on page 163 for more details.) Because the use of this interface
is deprecated, it is mainly used for backwards compatibility purposes.

Synopsis [oleautomation,dual,uuid(...)]
interface DIOrbixServerAPI : IDispatch
{

HRESULT Activate ([in] BSTR cServerName,
[optional,in,out] VARIANT *IT_Ex);

HRESULT Deactivate ([in] BSTR cServerName,
[optional,in,out] VARIANT *IT_Ex);
241

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 242 Tuesday, April 27, 1999 1:54 PM
HRESULT DispatchEvents ([optional,in,out] VARIANT *IT_Ex);
HRESULT SetObjectImpl ([in] BSTR cIFace,

[in] BSTR cMarker,
[in] VARIANT poImpl,
[optional,in,out] VARIANT *IT_Ex);

HRESULT ActivatePersistent ([optional,in,out] VARIANT *IT_Ex);

HRESULT SetObjectImplPersistent ([in] BSTR cIFace,
[in] BSTR cmarker,
[in] BSTR cServer,
[in] VARIANT poImpl,
[in] BSTR cIORFileName,
[optional,in,out] VARIANT

*IT_Ex);
};

Description Bridges expose an Automation interface that allows them to act as CORBA
servers. This interface can be obtained using the ProgID ServerAPI .

The Automation server should instantiate an object of this type and use it to
control the Automation server’s behaviour as a CORBA server.

Methods

Activate() This activates an Automation server as a
CORBA server using the cServerName
parameter. This name should be the same name
that is used to register the application in the
Implementation Repository: that is, the name
passed to putit or the server manager tool.

Once Activate() has been called, your server
is ready to receive incoming requests from
CORBA clients.

It is recommended that you register all your
implementation objects using SetObjectImpl()
before calling Activate() .
 242

O r b i x CO Me t A P I

COMet.book Page 243 Tuesday, April 27, 1999 1:54 PM
Deactivate() This deactivates your application as a CORBA
server. Once Deactivate() has been called,
your application can no longer process incoming
requests from CORBA clients.

cServerName is the name of the CORBA server.
The server must be registered with this name in
the Orbix Implementation Repository.

DispatchEvents() This causes any outstanding CORBA events to
be dispatched to a client or server application
for processing. It might be necessary to call this
method in a client application if the client is
asynchronously receiving callbacks from a server
object. This will depend primarily on your
development environment. Single-threaded
development environments (for example, Visual
Basic or PowerBuilder) require this to correctly
dispatch incoming events.

SetObjectImpl() This registers an Automation object with the
bridge. The poimpl parameter identifies the
Automation object and exposes it to the
CORBA object space as the interface CIFace
with the Orbix marker cMarker . (Markers are
used to uniquely identify different instances of
the same interface.) If no marker is passed,
Orbix will automatically select a unique marker
for the object. The marker names chosen by
Orbix consist of a string composed entirely of
decimal digits. To ensure that a new marker is
different from any chosen by Orbix, do not use
marker strings that consist entirely of digits.
Marker names cannot contain a colon “:” or a
null character.

ActivatePersistent() This allows servers to be started without the
need for orbixd .

SetObjectImplPersistent() See ActivatePersistent() .
243

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 244 Tuesday, April 27, 1999 1:54 PM
DCollection

Synopsis [odl,uuid(...)]
interface DCollection : IDispatch {

[propget] long Count();
[propget,id(0)] VARIANT Item ([in] long index);
[propput,id(0)] void Item ([in] long index, [in] VARIANT val);
[id(-4)] IEnumVARIANT* _NewEnum();
VARIANT getItem ([in] long index);
void setItem ([in] long index, [in] VARIANT val);

};

[oleautomation,dual,uuid(...)]
interface DCollection : DIForeignComplexType {

[propget,id(100)] HRESULT Count([retval,out] long* IT_retval);
[propget,id(0)] HRESULT Item ([in] long index,

[retval,out] VARIANT* IT_retval);
[propput,id(0)] HRESULT Item ([in] long index,

[in] VARIANT val);
[id(101)] HRESULT getItem ([in] long index,

[retval,out] VARIANT* IT_retval);
[id(102)] HRESULT setItem ([in] long index,

[in] VARIANT val);
[id(-4)] HRESULT _NewEnum([out,retval] IUnknown** IT_retval);

};

Description Automation interfaces that result from the translation of an OMG IDL sequence
support the interface DCollection .

Methods

UUID {E977F909-3B75-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

Count() This returns the number of items in a collection (that is, the
number of items in the sequence).

Item() This returns the collection member at the specified index
(propget) or inserts an item into the collection at the specified
index (propput).

GetItem() This returns the collection member at the specified index.

SetItem() This inserts an item into the collection at the specified index.
 244

O r b i x CO Me t A P I

COMet.book Page 245 Tuesday, April 27, 1999 1:54 PM
DICORBAAny

Synopsis typedef enum {
tk_null, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_octet, tk_any,
tk_typeCode, tk_principal, tk_objref, tk_struct,
tk_union, tk_enum, tk_string, tk_sequence, tk_array,
tk_alias, tk_except, tk_boolean, tk_char

} CORBATCKind;

[oleautomation,dual,uuid(...)]
interface DICORBAAny : DIForeignComplexType {

[id(0),propget] HRESULT value([retval,out] VARIANT* IT_retval);
[id(0),propput] HRESULT value([in] VARIANT val);
[propget] HRESULT kind([retval,out] CORBATCKind* IT_retval);

// tk_objref, tk_struct, tk_union, tk_alias, tk_except
[propget] HRESULT id([retval,out] BSTR* IT_retval);
[propget] HRESULT name([retval,out] BSTR* IT_retval);

// tk_struct, tk_union, tk_enum, tk_except
[propget] HRESULT member_count([retval,out] long* IT_retval);
HRESULT member_name([in] long index,

[retval,out] BSTR* IT_retval);
HRESULT member_type([in] long index,

[retval,out] VARIANT* IT_retval);

// tk_union
HRESULT member_label([in] long index,

[retval,out] VARIANT* IT_retval);
[propget] HRESULT discriminator_type(

[retval,out] VARIANT* IT_retval);
[propget] HRESULT default_index([retval,out] long* IT_retval);

// tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long* IT_retval);

// tk_array, tk_sequence, tk_alias
[propget] HRESULT content_type(

[retval,out] VARIANT* IT_retval);
};
245

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 246 Tuesday, April 27, 1999 1:54 PM
Description The OMG IDL type any translates to the Automation interface DICORBAAny.
Details about the type of value stored by an any can be found using the methods
defined on DICORBAAny. The particular methods that can be called on a
DICORBAAny depend on the kind of value contained in the DICORBAAny. The kind
of value that the DICORBAAny contains can be found using the method kind() .
This method returns an enumerated value of type CORBATCKind. For example, a
DICORBAAny containing a struct has the kind tk_struct ; a DICORBAAny
containing an object has the kind tk_objref ; a DICORBAAny containing a
typedef has the kind tk_alias .

A BadKind exception is raised if a method is called on DICORBAAny that is not
appropriate to the kind of value it contains.

Methods

value() These propput and propget methods can be
called on every kind of DICORBAAny.

The propget method returns the actual value
stored in DICORBAAny.

The propput method inserts a value into a
DICORBAAny.

kind() This can be called on every kind of DICORBAAny.

It finds the type of OMG IDL definition described
by the any . It returns an enumerated value of type
CORBATCKind. For example, an any that contains a
sequence has the kind tk_sequence . Once the
kind of value stored by the any is known, the
methods that can be called on the any are
determined.

id() This can be called on a DICORBAAny that has the
kind tk_objref , tk_struct , tk_union , tk_enum ,
tk_alias or tk_except . If called on a DICORBAAny
of a different kind, it raises a BadKind exception.

It returns the Interface Repository ID that globally
identifies the type.

This method requires run-time access to the
Interface Repository.
 246

O r b i x CO Me t A P I

COMet.book Page 247 Tuesday, April 27, 1999 1:54 PM
name() This can be called on a DICORBAAny that has the
kind tk_objref , tk_struct , tk_union , tk_enum ,
tk_alias or tk_except . If called on a DICORBAAny
of a different kind, it raises a BadKind exception.

It returns the name that identifies the type. The
name returned does not contain any scoping
information.

member_count() This can be called on a DICORBAAny that has the
kind tk_struct , tk_union , tk_enum or
tk_except . If called on a DICORBAAny of a different
kind, it raises a BadKind exception.

It returns the number of members that make up
the type.

member_name() This can be called on a DICORBAAny that has the
kind tk_struct , tk_union , tk_enum or
tk_except . If called on a DICORBAAny of a different
kind, it raises a BadKind exception.

The method member_name() returns the name of
the member identified by the index parameter.
The name returned does not contain any scoping
information.

A Bounds exception is raised if the index
parameter is greater than or equal to the number
of members that make up the type. Note that the
index starts at 0.

member_type() This can be called on a DICORBAAny that has the
kind tk_struct , tk_union or tk_except . If called
on a DICORBAAny of a different kind, it raises a
BadKind exception.

It returns the type of the member identified by the
index parameter.

A Bounds exception is raised if the index
parameter is greater than or equal to the number
of members that make up the type. Note that the
index starts at 0.
247

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 248 Tuesday, April 27, 1999 1:54 PM
member_label() This can be called on a DICORBAAny that has the
kind tk_union . If called on a DICORBAAny of a
different kind, it raises a BadKind exception.

The method member_label() returns the case
label of the union member identified by index .
(The case label is an integer, char, boolean or
enum type.)

A Bounds exception is raised if the index
parameter is greater than or equal to the number
of members that make up the type. Note that the
index starts at 0.

discriminator_type() This can be called on a DICORBAAny that has the
kind tk_union . If called on a DICORBAAny of a
different kind, it raises a BadKind exception.

It returns the type of the union’s discriminator.

default_index() This can be called on a DICORBAAny that has the
kind tk_union . If called on a DICORBAAny of a
different kind, it raises a BadKind exception.

The method default_index() returns the index
of the default member; it returns -1 if there is no
default member.

length() This can be called on a DICORBAAny that has the
kind tk_string , tk_sequence or tk_array .

For a bounded string or sequence , length()
returns the bound; a return value of 0 indicates an
unbounded string or sequence.

For an array, length() returns the length of the
array.
 248

O r b i x CO Me t A P I

COMet.book Page 249 Tuesday, April 27, 1999 1:54 PM
UUID {A8B553C4-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

DICORBAFactory

Synopsis [oleautomation,dual,uuid(...)]
interface DICORBAFactory : IDispatch
{

HRESULT CreateObject([in] BSTR factoryName,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

HRESULT GetObject([in] BSTR objectName,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

}

Description DICORBAFactory is a factory class that provides a way to obtain a reference to a
CORBA object.

The Automation/CORBA-compliant ProgID for this class is CORBA.Factory .

In OrbixCOMet, the name CORBA.Factory.Orbix is also registered as an alias
for CORBA.Factory . This allows access to the Orbix instance after a subsequent
installation of an ORB other than Orbix.

Methods

content_type() This can be called on a DICORBAAny that has the
kind tk_sequence , tk_array or tk_alias . If
called on an any of a different kind, it raises a
BadKind exception.

For a sequence or array, content_type() returns
the type of element contained in the sequence or
array. For an alias, it returns the type aliased by the
typedef definition.

CreateObject() This is the same as GetObject() .
249

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 250 Tuesday, April 27, 1999 1:54 PM
GetObject() The OMG COM/CORBA Interworking document at
WWW.OMG.ORG specifies that GetObject() should take a
string as one parameter and return a pointer to the
IDispatch interface on the created object. However, it
does not specify the format for the string. In OrbixCOMet,
the formats for the parameter to GetObject() are as
follows:

• Old format (for backwards compatibility with the
Orbix/ActiveX Integration product):

“broker.interface[[[:marker]:
server]:host]”

(Broker is ignored.)

• COMet format:

“interface[[[:marker]:server]:
host]”

• Tagged format:

“interface:TAG:Tag data”

where TAG is one of the following:

IOR—The data is the hexadecimal string for the
stringified IOR. For example:
fact.GetObject(“employee:IOR:123456789.”)

NAME_SERVICE—The data is the NAME_SERVICE
compound name separated by “.”. For example:
fact.GetObject(“employee:NAME_SERVICE:

IONA:employees.PD.Ronan”)
 250

O r b i x CO Me t A P I

COMet.book Page 251 Tuesday, April 27, 1999 1:54 PM
UUID {204F6241-3AEC-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

See Also DIOrbixORBObject::pingDuringBind()

DICORBAFactoryEx

Synopsis [oleautomation,dual,uuid(...)]
interface DICORBAFactoryEx : DICORBAFactory {

HRESULT CreateType([in] IDispatch* scopingObj,
[in] BSTR typeName,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT* IT_retval);

HRESULT CreateTypeById([in] IDispatch* scopingObj,
[in] BSTR repID,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT* IT_retval);

};

Description DICORBAFactoryEx is a factory class that allows Automation objects
representing the OMG IDL complex types, struct , union and exception to be
created.

GetObject()

(continued)
•Simple Format:

“interface”

This assumes the server name is the same as the interface.
It also assumes the Orbix locator is used to find the host
name. If there is no Orbix daemon running in the client
machine, the configuration setting COMET_DAEMON_HOST
should point at a machine where a daemon is running with
its locator configured.

Note that if the interface were scoped (for example,
“Module::Interface”) the interface token above would
be “Module/Interface” .
251

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 252 Tuesday, April 27, 1999 1:54 PM
You can create an object representing an OMG IDL complex type in a client in
order to pass it as an in or inout parameter to an OMG IDL operation. You
can create an object representing an OMG IDL complex type in a server in
order to return it as an out or inout parameter or return value from an OMG
IDL operation.

The methods of DICORBAFactoryEx can be called on an instance of the interface
DICORBAFactory .

Methods

UUID {A8B553C5-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

DICORBAObject

Synopsis [oleautomation,dual,uuid(...)]
interface DICORBAObject : IDispatch {

HRESULT GetInterface([optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

HRESULT GetImplementation([optional,in,out] VARIANT* IT_Ex,
[retval,out] BSTR* IT_retval);

HRESULT IsA([in] BSTR repositoryID,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT_BOOL* IT_retval);

HRESULT IsNil([optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT_BOOL* IT_retval);

CreateType() This creates an Automation object that is an instance
of an OMG IDL complex type.

The scopingObj parameter indicates the scope in
which the type in typeName should be interpreted.
Global scope is indicated by passing the parameter
Nothing .

CreateTypeById() This creates an instance of a complex type based on
its repository ID. The repository ID can be
determined using a call to DIForeignComplexType::

INSTANCE_repositoryID() .

This method requires run-time access to the IFR.
 252

O r b i x CO Me t A P I

COMet.book Page 253 Tuesday, April 27, 1999 1:54 PM
HRESULT IsEquivalent([in] IDispatch* obj,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT_BOOL* IT_retval);

HRESULT NonExistent([optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT_BOOL* IT_retval);

HRESULT Hash([in] long maximum,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] long* IT_retval);

};

Description All CORBA objects expose the interface DICORBAObject . It provides a number
of Automation/CORBA compliant methods that all CORBA (and hence, Orbix)
objects support.

Methods

GetInterface() This returns a reference to an object in the IFR
that provides type information about the target
object. This method requires run-time access to
the IFR.

GetImplementation() This finds the name of the target object’s server as
registered in the Implementation Repository. For a
local object in a server, this will be that server’s
name if it is known. For an object created in a
client program, it will be the process identifier of
the client process.

IsA() This returns true if the object is either an instance
of the type specified by the repositoryID
parameter or an instance of a derived type of the
type in repositoryID . Otherwise, it returns
false .

IsNil() This returns true if an object reference is nil.
Otherwise, it returns false .

IsEquivalent() This returns true if the target object reference is
known to be equivalent to the object reference in
the parameter obj .

A return value of false indicates that the object
references are distinct; it does not necessarily
mean that the references indicate distinct objects.
253

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 254 Tuesday, April 27, 1999 1:54 PM
UUID {204F6244-3AEC-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

See Also DIOrbixObject

DICORBAStruct

Synopsis [oleautomation,dual,uuid(...)]
interface DICORBAStruct : DIForeignComplexType {};

Description An Automation interface that results from the translation of an OMG IDL
struct definition supports the interface DICORBAstruct . Its purpose is to
identify that the interface is translated from an OMG IDL struct .

UUID {A8B553C1-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

NonExistent() This returns true if the object has been destroyed.
Otherwise, it returns false .

Hash() Every object reference has an internal identifier
associated with it—a value that remains constant
throughout the lifetime of the object reference.

Hash() returns a hashed value, determined via a
hashing function, from the internal identifier. Two
different object references can yield the same
hashed value. However, if two object references
return different hash values, you will know that
these object references are for different objects.

The Hash() function allows you to partition the
space of object references into sub-spaces of
potentially equivalent object references.

The parameter maximum specifies the maximum
value that is to be returned from the Hash()
function. For example, by setting maximum to 7, the
object reference space is partitioned into a
maximum of 8 sub-spaces (since the lower bound
of the function is 0).
 254

O r b i x CO Me t A P I

COMet.book Page 255 Tuesday, April 27, 1999 1:54 PM
DICORBASystemException

Synopsis [oleautomation,dual,uuid(...)]
interface DICORBASystemException : DIForeignException {

[propget] HRESULT EX_minorCode([retval,out] long* IT_retval);
[propget] HRESULT EX_completionStatus(

[retval,out] long* IT_retval);
};

Description An Automation interface that represents a system exception supports the
interface DICORBASystemException . (Note that system exceptions are not
defined in OMG IDL.)

Methods

UUID {A8B553C9-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

EX_minorCode() This describes the system exception.

EX_completionStatus() This indicates the status of the operation at the
time the exception occurred. Possible return
values are:

COMPLETION_YES = 0

COMPLETION_NO = 1

COMPLETION_MAYBE = 2

The value COMPLETION_YES indicates that the
operation had completed before the exception
was raised.

The value COMPLETION_NO indicates that the
operation was never initiated.

The value COMPLETION_MAYBE indicates that the
operation was initiated, but whether it completed
cannot be determined.
255

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 256 Tuesday, April 27, 1999 1:54 PM
DICORBATypeCode

Synopsis [oleautomation,dual,uuid(...)]
interface DICORBATypeCode : DIForeignComplexType {
// tk_objref, tk_struct,
// tk_union, tk_alias,
// tk_except
[propget] HRESULT id ([retval,out] BSTR * val);
[propget] HRESULT name ([retval,out] BSTR * val);

// tk_struct, tk_union,
// tk_enum, tk_except
[propget] HRESULT member_count ([retval,out] long* val);

HRESULT member_name ([in] long index,
[retval,out] BSTR* val);

HRESULT member_type ([in] long index,
[retval,out] DICORBATypeCode** val);

// tk_union
HRESULT member_label ([in] long index,

[retval,out] VARIANT* val);
[propget] HRESULT discriminator_type ([retval,out] IDispatch **

val);
[propget] HRESULT default_index ([retval,out] long* val);

// tk_string, tk_array,
// tk_sequence
[propget] HRESULT length ([retval,out] long* val);

// tk_array, tk_sequence,
// tk_alias
[propget] HRESULT content_type ([retval,out] IDispatch** val);
};

Description An Automation interface that results from the translation of an OMG IDL
typecode definition supports the interface DICORBATypeCode.
 256

O r b i x CO Me t A P I

COMet.book Page 257 Tuesday, April 27, 1999 1:54 PM
Methods

id() This can be called on a DICORBATypeCode that has the
kind tk_objref , tk_struct , tk_union , tk_enum ,
tk_alias or tk_except . If called on a
DICORBATypeCode of a different kind, it raises a
BadKind exception.

It returns the IFR repository ID that globally identifies
the type.

This method requires run-time access to the IFR.

name() This can be called on a DICORBATypeCode that has the
kind tk_objref , tk_struct , tk_union , tk_enum ,
tk_alias or tk_except . If called on a
DICORBATypeCode of a different kind, it raises a
BadKind exception.

It returns the name that identifies the type. The name
returned does not contain any scoping information.

member_count() This can be called on a DICORBATypeCode that has the
kind tk_struct , tk_union , tk_enum or tk_except . If
called on a DICORBATypeCode of a different kind, it
raises a BadKind exception.

It returns the number of members that make up the
type.

member_name() This can be called on a DICORBATypeCode that has the
kind tk_struct , tk_union , tk_enum or tk_except . If
called on a DICORBATypeCode of a different kind, it
raises a BadKind exception.

The method member_name() returns the name of the
member identified by the parameter index . The name
returned does not contain any scoping information.

A Bounds exception is raised if the parameter index is
greater than or equal to the number of members that
make up the type. Note that the index starts at 0.
257

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 258 Tuesday, April 27, 1999 1:54 PM
member_type() This can be called on a DICORBATypeCode that has the
kind tk_struct , tk_union or tk_except . If called on
a DICORBATypeCode of a different kind, it raises a
BadKind exception.

It returns the type of the member identified by the
parameter index .

A Bounds exception is raised if the parameter index is
greater than or equal to the number of members that
make up the type. Note that the index starts at 0.

member_label() This can be called on a DICORBATypeCode that has the
kind tk_union . If called on a DICORBATypeCode of a
different kind, it raises a BadKind exception.

The method member_label() returns the case label
of the union member identified by index . (The case
label is an integer, char, boolean or enum type.)

A Bounds exception is raised if the parameter index is
greater than or equal to the number of members that
make up the type. Note that the index starts at 0.

discriminator_type This can be called on a DICORBATypeCode that has the
kind tk_union . If called on a DICORBATypeCode of a
different kind, it raises a BadKind exception.

It returns the type of the union’s discriminator.

default_index This can be called on a DICORBATypeCode that has the
kind tk_union . If called on a DICORBATypeCode of a
different kind, it raises a BadKind exception.

The method default_index() returns the index of
the default member; it returns -1 if there is no default
member.

length This can be called on a DICORBATypeCode that has the
kind tk_string , tk_sequence or tk_array .

For a bounded string or sequence, length() returns
the bound; a return value of 0 indicates an unbounded
string or sequence.

For an array, length() returns the length of the array.
 258

O r b i x CO Me t A P I

COMet.book Page 259 Tuesday, April 27, 1999 1:54 PM
UUID {A8B553C3-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

DICORBAUnion

Synopsis [oleautomation,dual,uuid(...)]
interface DICORBAUnion : DIForeignComplexType {};

Description An Automation interface that results from the translation of an OMG IDL union
definition supports the interface DICORBAUnion. Its purpose is to identify that
the interface is translated from an OMG IDL union .

UUID {A8B553C2-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

DICORBAUserException

Synopsis [oleautomation,dual,uuid(...)]
interface DICORBAUserException : DIForeignException {};

Description An Automation interface that results from the translation of an OMG IDL
exception definition supports the interface DICORBAUserException . Its purpose
is to identify that the interface is translated from an OMG IDL exception.

UUID {A8B553C8-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

content_type This can be called on a DICORBATypeCode that has the
kind tk_sequence , tk_array or tk_alias . If called
on a DICORBATypeCode of a different kind, it raises a
BadKind exception.

For a sequence or array, content_type() returns the
type of element contained in the sequence or array.
For an alias, it returns the type aliased by the typedef
definition.
259

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 260 Tuesday, April 27, 1999 1:54 PM
DIForeignComplexType

Synopsis [oleautomation,dual,uuid(...)]
interface DIForeignComplexType : IDispatch {

[propget] HRESULT INSTANCE_repositoryId(
[retval,out] BSTR* IT_retval);

HRESULT INSTANCE_clone([in] IDispatch* obj,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

};

Description An Automation interface that results from the translation of OMG IDL complex
types (struct , union , and exception) supports the interface
DIForeignComplexType .

Methods

Note: Both of these methods are deprecated as of CORBA 2.2. The approved
way to get a repository ID is through DIObjectInfo::unique_id() and
to clone using DIObjectInfo::clone() .

UUID {A8B553C0-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

DIForeignException

Synopsis [oleautomation,dual,uuid(...)]
interface DIForeignException : DIForeignComplexType {

[propget] HRESULT EX_majorCode([retval,out] long* IT_retval);
[propget] HRESULT EX_Id([retval,out] BSTR* IT_retval);

};

Description An Automation interface that represents either a user-defined or system
exception supports the interface DIForeignException .

INSTANCE_repositoryId() This returns the repository ID of a complex
type.

INSTANCE_clone() This creates a new instance that is an identical
copy of the target instance.
 260

O r b i x CO Me t A P I

COMet.book Page 261 Tuesday, April 27, 1999 1:54 PM
Methods

UUID {A8B553C7-3B72-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

DIObject

Synopsis [oleautomation,dual,uuid(...)]
interface DIObject : IDispatch {};

Description This is the object wrapper for the OMG IDL Object type.

UUID {49703179-4414-a552-1ddf-90151ac3b54b}

Notes Automation/CORBA compliant.

DIObjectInfo

Synopsis [oleautomation,dual,uuid(...)]
interface DIObjectInfo : DICORBAFactoryEx {

HRESULT type_name ([in] IDispatch* target,
[optional,in,out] VARIANT * IT_Ex,
[retval,out] BSTR* typeName);

HRESULT scoped_name ([in] IDispatch* target,
[optional,in,out] VARIANT * IT_Ex,
[retval,out] BSTR* repositoryID);

HRESULT unique_id ([in] IDispatch* target,
[optional,in,out] VARIANT * IT_Ex,
[retval,out] BSTR* uniqueID);

};

EX_majorCode() This defines the category of exception raised.
Possible return values are:

IT_NoException
IT_UserException
IT_SystemException

EX_Id() This returns a unique string that identifies the
exception.
261

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 262 Tuesday, April 27, 1999 1:54 PM
Description This provides helper functions for retrieving information about a composite data
type (such as a union , structure or exception) that is held as an IDispatch
pointer.

Methods

UUID {6dd1b940-21a0-11d1-9d47-00a024a73e4f}

Notes Automation/CORBA compliant.

DIOrbixObject

Synopsis [oleautomation,dual,uuid(...)]
interface DIOrbixObject : DICORBAObject {

HRESULT Bind([optional,in] VARIANT marker,
[optional,in] VARIANT host,
[optional,in,out] VARIANT * IT_Ex,
[retval,out] short* IT_retval);

[propget] HRESULT Marker([retval,out] BSTR* marker);
[propput] HRESULT Marker([in] BSTR marker);
[propget] HRESULT Host([retval,out] BSTR* marker);
[propput] HRESULT Host([in] BSTR marker);
HRESULT CloseChannel();
HRESULT FileDescriptor([optional,in,out] VARIANT *IT_Ex,

[retval,out] short * rval);
HRESULT HasValidOpenChannel([optional,in,out] VARIANT *IT_Ex,

[retval,out] VARIANT_BOOL * val);
}

Description This allows Orbix-specific operations to be performed on the object.

type_name() This retrieves the simple type name of the data
type.

scoped_name() This retrieves the scoped name of the data type.

unique_id() This retrieves the repository ID of the data type.

clone() This creates an identical copy of the data type.
 262

O r b i x CO Me t A P I

COMet.book Page 263 Tuesday, April 27, 1999 1:54 PM
Methods

Bind() This provides a way to bind to an object in an Orbix
server. It can be used as an alternative to
DICORBAObject::GetObject() with the
marker:server:host parameter.

The markerServer parameter has the format
marker:server .

See DICORBAObject::GetObject() for an
explanation of how the values set in marker , server
and host affect the search for the object.

The following Visual Basic example shows how to
use Bind() to obtain a reference to an Orbix object
named m in server s on host h: (The Orbix object
supports the interface A.)

• Create a view for the target Orbix object in the
bridge:

Dim RealRef as DIA
Set RealRef as CreateObject("A")

• Set a reference of type
CORBA_Orbix.DIOrbixObject pointing to the
view:

Dim Binder as CORBA_Orbix.DIOrbixObject
Set Binder = RealRef

• Call Bind() to bind the view to the target object
and release the DIOrbixObject reference.

Binder.Bind "m:s", "h"
Set Binder = Nothing

RealRef.someOperation(...)
263

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 264 Tuesday, April 27, 1999 1:54 PM
Narrow() This method is currently missing in version 1.0 but it
will feature in a later release of the product.

A client that holds an object reference for an object
of one type, and knows that the (remote)
implementation object is a derived type, can narrow
the object reference to the derived type.

The following Visual Basic code shows how to use
this function:

‘ Given an object reference of some base
type

Dim BaseRef as ABridge.DIBase
Set BaseRef = ... ' Obtain object

reference

‘ Create an object of the derived type
Dim DerivedRef as ABridge.DIDerived
Set DerivedRef = _

CreateObject("ABridge.Derived")

‘ Get a reference to the new object’s
DIOrbixObject

‘ interface
Dim OrbixObjectRef as

CORBA_Orbix.DIOrbixObject
Set OrbixObjectRef = DerivedRef

‘ Call Narrow on this reference
OrbixObjectRef.Narrow BaseRef

‘ Set the reference to the DIOrbixObject
interface

‘ to null
Set OrbixObjectRef = Nothing
 264

O r b i x CO Me t A P I

COMet.book Page 265 Tuesday, April 27, 1999 1:54 PM
Marker() The propget method finds the object’s marker
name.

The propput method sets the object’s marker name.

If, when setting the object’s marker, you choose a
marker that is already in use for an object of the
same interface within the server, OrbixCOMet will
(silently) assign a different marker to the object.
(The object with the original marker will not be
affected.) You might wish to check for this when
assigning a new marker.

The propput method should be used with care.
Every incoming request to a server is dispatched to
the appropriate object within the server on the basis
of the marker included in the request. Thus, if an
object is made known to a remote client (for
example, via Bind() ,
DICORBAFactory::GetObject() , as a return value,
or as an out or inout parameter of an operation),
and the object’s marker is subsequently changed
within the server by a call to Marker() , a
subsequent request from the remote client will fail
because the client will have used the original value of
the marker. Thus, you should change the marker
name of an object before knowledge of the
existence of the object is passed from the server to
any client.

A marker should not consist entirely of digits and
cannot contain a colon or null character.

Host() This returns the host on which the object’s server is
located.
265

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 266 Tuesday, April 27, 1999 1:54 PM
UUID {036A6A33-0BB3-CF47-1DCB-A2C4E4C6417A}

Notes Orbix-specific.

See Also DICORBAObject

DIOrbixORBObject

Synopsis [oleautomation,dual,uuid(...)]
interface DIOrbixORBObject : DIORBObject {

HRESULT ConnectionTimeout([in] long timeout,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] long* IT_retval);

HRESULT MaxConnectRetries([in] long numTries,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] long* IT_retval);

CloseChannel() This requests Orbix to close the underlying
communications connection to the server. This
function is intended as an optimisation so that a
connection between a client and server that is rarely
used is not kept open for long periods between
uses.

The channel is automatically reopened when an
invocation is made on the object. Note that if the
client holds proxies for other objects in the same
server, the channel is closed for all such proxies; it is
automatically reopened when a subsequent
invocation is made on one of these proxies

FileDescriptor() This gets the file descriptor of the object.

HasValidOpenChannel() This determines whether the communications
channel between the client and server is open.

(This channel can be closed to avoid having an
unnecessary connection left open for long periods
between an idle client and server. The channel is
automatically reopened when an invocation is made
on the object.)
 266

O r b i x CO Me t A P I

COMet.book Page 267 Tuesday, April 27, 1999 1:54 PM
HRESULT PingDuringBind([in] VARIANT_BOOL pingOn,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT_BOOL* IT_retval);

HRESULT ReSizeObjectTable([in] long size,
[optional,in,out] VARIANT* IT_Ex);

HRESULT NoReconnectOnFailure([in] VARIANT_BOOL OffOn,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT_BOOL* IT_retval);

HRESULT ReclaimCallbackStore([optional,in,out] VARIANT* IT_Ex);
HRESULT AbortSlowConnects([in] VARIANT_BOOL OnOff,

[optional,in,out] VARIANT *IT_Ex,
[retval,out] VARIANT_BOOL *IT_retval);

HRESULT ActivateCVHandler([in] BSTR identifier,
[optional,in,out] VARIANT *IT_Ex);

HRESULT DeactivateCVHandler([in] BSTR identifier,
[optional,in,out] VARIANT *IT_Ex);

HRESULT ActivateOutputHandler([in] BSTR identifier,
[optional,in,out] VARIANT *IT_Ex);

HRESULT PlaceCVHandlerAfter([in] BSTR handler,
[in] BSTR afterThisHandler,

 [optional,in,out] VARIANT *IT_Ex);
HRESULT PlaceCVHandlerBefore([in] BSTR handler,

[in] BSTR beforeThisHandler,
[optional,in,out] VARIANT *IT_Ex);

HRESULT DeactivateOutputHandler ([in] BSTR identifier,
[optional,in,out] VARIANT *IT_Ex);

HRESULT BaseInterfacesOf([in] BSTR derived,
[optional,in,out] VARIANT *IT_Ex,
[retval,out] VARIANT** IT_retval);

HRESULT IsBaseInterfaceOf([in] BSTR derived,
[in] BSTR maybeBase,
[optional,in,out] VARIANT *IT_Ex,
[retval,out] VARIANT_BOOL * IT_retval);

HRESULT CloseChannel([in] long fd,
[optional,in,out] VARIANT *IT_Ex);

HRESULT Collocated([in] VARIANT_BOOL OnOff,
[optional,in,out] VARIANT *IT_Ex,
[retval,out] VARIANT_BOOL * IT_retval);

HRESULT DefaultTxTimeout([in] long timeout,
[optional,in,out] VARIANT *IT_Ex,
[retval,out] long* IT_retval);
267

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 268 Tuesday, April 27, 1999 1:54 PM
HRESULT EagerListeners([in] VARIANT_BOOL OnOff,
[optional,in,out] VARIANT *IT_Ex,

[retval,out] VARIANT_BOOL * IT_retval);
HRESULT GetConfigValue([in] BSTR name, [out] BSTR *value,

[optional,in,out] VARIANT *IT_Ex,
[retval,out] VARIANT_BOOL * IT_retval);

HRESULT SetConfigValue([in] BSTR name, [in] BSTR value,
[optional,in,out] VARIANT *IT_Ex,
[retval,out] VARIANT_BOOL * IT_retval);

HRESULT Output([in] VARIANT value, [in] short level,
[optional,in,out] VARIANT *IT_Ex);

HRESULT ReinitialiseConfig([optional,in,out] VARIANT *IT_Ex);
HRESULT SetDiagnostics([in] short level,

[optional,in,out] VARIANT *IT_Ex,
[retval,out] short * IT_retval);

HRESULT StartUp([optional,in,out] VARIANT *IT_Ex,
[retval,out] VARIANT_BOOL * IT_retval);

HRESULT ShutDown([optional,in,out] VARIANT *IT_Ex,
[retval,out] VARIANT_BOOL * IT_retval);

HRESULT GetServerAPI([optional,in,out] VARIANT *IT_Ex,
[retval,out] IDispatch ** IT_retval);

HRESULT LoadHandler([in] BSTR handlerName,
[optional,in,out] VARIANT *IT_Ex);

};

Description DIOrbixORBObject provides Orbix-specific methods that allow a programmer
to control some aspects of the ORB (Orbix) or request the ORB to perform
actions. These methods augment the Automation/CORBA compliant methods
defined in the interface DIORBObject .

The ORB has the ProgID CORBA.ORB.2.

CORBA.ORB.2 is the Automation/CORBA compliant name. In Orbix COMet,
the name CORBA.ORB.Orbix is registered as an alias for CORBA.ORB.2. This
allows access to the Orbix instance after a subsequent installation of an ORB
other than Orbix.
 268

O r b i x CO Me t A P I

COMet.book Page 269 Tuesday, April 27, 1999 1:54 PM
Methods

ConnectionTimeout() This sets the time limit, in seconds, for
establishing that a connection from a client to a
server is fully operational. The default is 30
seconds. This should be adequate in the
majority of cases.

The value set by this function comes into effect
if, for example, the server crashes after the
transport (for example, TCP/IP) connection has
been made but before the full Orbix
connection has been established.

The value set by ConnectionTimeout() is
independently used by AbortSlowConnect()
when setting up the transport connection.

If clients of a single-threaded server are
continually timed out because the server is
busy, it might be that existing connections are
being favoured over new connection attempts.
The function EagerListeners() addresses this
problem.

MaxConnectRetries() If an operation call cannot be made on the first
attempt because the transport (for example,
TCP/IP) connection cannot be established,
Orbix will retry the attempt every two seconds
until either the call can be made or until there
have been too many retries. The function
MaxConnectRetries() sets the maximum
number of retries. The default number of
retries is ten.

As an alternative, the IT_CONNECT_ATTEMPTS
entry in the Orbix configuration file or as an
environment variable can be used to control
the maximum number of retries. The value set
by MaxConnectRetries() takes precedence
over this. The IT_CONNECT_ATTEMPTS value will
only be used if it is set to zero.
269

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 270 Tuesday, April 27, 1999 1:54 PM
PingDuringBind() By default, _bind() raises an exception if the
object on which the _bind() is attempted is
unknown to Orbix. Doing so requires Orbix to
ping the desired object. The ping operation is
defined by Orbix and it has no effect on the
target object. The pinging will cause the target
server process to be activated if necessary, and
will confirm that this server recognises the
target object. Pinging can be enabled using
PingDuringBind() by passing 1 to the
parameter pingOn . Pinging can be disabled by
passing 0 to pingOn . The previous setting is
returned in the parameter IT_retval .

You might wish to disable pinging to improve
efficiency by reducing the overall number of
remote invocations. In this case, Orbix will
check the object’s availability only when a
method is invoked on the object and not at the
time that the bind attempt is made.

Note that if PingDuringBind(false) is called:

• A _bind() to an unavailable object will not
immediately raise an exception, but
subsequent requests using the object
reference returned from _bind() will fail by
raising a system exception
(CORBA::INV_OBJREF).

• If a host name is specified to _bind() , the
_bind() will not itself make any remote
calls; it simply sets up a proxy with the
required fields.

• If a host name is not specified, Orbix uses it
locator to find a suitable server, but
_bind() does not interact with that server
to determine if the required object exists
within it.
 270

O r b i x CO Me t A P I

COMet.book Page 271 Tuesday, April 27, 1999 1:54 PM
ReSizeObjectTable() All Orbix implementation objects in an address
space are registered in its object table—a hash
table that maps from object identifiers to the
location of objects in virtual memory. It is
important that this table is not too small for the
number of objects in a process, because long
overflow chains lead to inefficiencies. The
default size of the object table is defined as the
value:

CORBA_OBJECT_TABLE_SIZE_DEFAULT

in the file CORBA.h.

If you anticipate that a program will handle a
much larger number of objects than the default
size (which is about 1000), you can use this
function to resize the table.

NoReconnectOnFailure() When an Orbix client first contacts a server, a
single communication channel is established
between the client and the server. This
connection is used for all subsequent
communications between the client and server.
The connection is closed only when either the
client or the server exits.

When a server exits while a client is still
connected, the next invocation by the client will
raise a system exception of type
CORBA::COMM_FAILURE. If the client attempts
another invocation, Orbix will automatically try
to re-establish the connection.

This default behaviour can be changed by
passing the value 0 (false) to
NoReconnectOnFailure() . Then, all client
attempts to contact a server subsequent to
closure of the communications channel will
raise a CORBA::COMM_FAILURE system
exception.
271

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 272 Tuesday, April 27, 1999 1:54 PM
ReclaimCallbackStore() When an Automation object is passed as a
callback object to a server, Orbix creates
internal structures to facilitate the callback.
When this facility is no longer required, you can
call ReclaimCallbackStore() to free the
memory allocated by Orbix.

AbortSlowConnects() This aborts TCP/IP connection attempts that
exceed the timeout specified in
DIOrbixORBObject:: ConnectionTimeout() .
The default value for this timeout is 30 seconds.

A TCP/IP connect can block for a considerable
time if a node, known to the local node, is
down or unreachable.

Set OnOff to 1 to abort slow connection
attempts.

ActivateCVHandler() Thia activates the configuration value handler
identified in identifier.

You must call ReinitialiseConfig() before
modifications by this function take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

DeactivateCVHandler() This deactivates the configuration value handler
identified in identifier .

You must call ReinitialiseConfig() before
modifications by this function take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

ActivateOutputHandler() This activates the output handler specified in
identifier .

Refer to the Orbix documentation set for
information on output handlers.
 272

O r b i x CO Me t A P I

COMet.book Page 273 Tuesday, April 27, 1999 1:54 PM
PlaceCVHandlerAfter() This modifies the order in which configuration
handlers are called. If not explicitly rearranged,
configuration handlers are called in reverse
order to that in which they are instantiated in
an application.

You must call ReinitialiseConfig() before
modifications by this function take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

PlaceCVHandlerBefore() See PlaceCVHandlerAfter() .

DeactivateOutputHandler() This deactivates the output handler specified in
identifier .

Refer to the Orbix documentation set for
information on output handlers.

BaseInterfacesOf() This returns a list of interfaces that are base
interfaces of the interface named in derived .
The interface derived is included in the list,
because it is considered a base interface of
itself.

IsBaseInterfaceOf() This determines whether the interface
maybeBase is a base interface of the derived
interface.

IsBaseInterfaceOf() returns 1 if maybeBase
is a base interface of derived (or if derived
and maybeBase are the same). Otherwise, it
returns 0.
273

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 274 Tuesday, April 27, 1999 1:54 PM
CloseChannel() This requests Orbix to close the underlying
communications connection to the server. This
function is intended as an optimisation so that a
connection between a client and server that is
rarely used is not kept open for long periods
between uses.

The channel is automatically reopened when an
invocation is made on the object. Note that if
the client holds proxies for other objects in the
same server, the channel is closed for all such
proxies; it is automatically reopened when a
subsequent invocation is made on one of these
proxies.

Collocated() This determines whether collocation is
enforced.

Set OnOff to 1 to disallow binding to objects
outside the address space of the current
process.

Set OnOff to 0, to allow binding to objects
outside the address space of the current
process. This is the default.

DefaultTxTimeout() This sets the timeout for all remote calls and
returns the previous setting.

By default, there is no timeout set for remote
calls; that is, the default timeout is infinite.

The value set by this function is ignored when
making a connection between a client and a
server. It comes into effect only when the
connection has been established.
 274

O r b i x CO Me t A P I

COMet.book Page 275 Tuesday, April 27, 1999 1:54 PM
EagerListeners() By default, established connections to a server
are given priority over requests for new
connections. As a result, busy single-threaded
servers (for example, processing long running
operations) might not service new connection
attempts and consequently clients attempting
to make a connection might be continually
timed out.

EagerListeners() allows equal fairness to be
given to both established connections and to
new connection attempts. This avoids
discrimination against new connections.

This feature is not necessary in multi-threaded
versions of Orbix.

Set OnOff to 1 to enable eager listening. This
means that attempts to establish new
connections are given equal priority to
processing existing connections.

Set OnOff to 0 to give priority to established
connections.

EagerListeners() returns the previous
setting.

GetConfigValue() This obtains the value of the configuration entry
in name.

Refer to the Orbix documentation set for
information on configuration values.
275

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 276 Tuesday, April 27, 1999 1:54 PM
SetConfigValue() This sets the value of the configuration entry
specified in name for this process only. (It does
not set the configuration entry in the Orbix
configuration file or in the Windows registry.)

The following configuration entries can be set
by SetConfigValue() :

IT_DAEMON_SERVER_BASE
IT_DAEMON_SERVER_RANGE
IT_DAEMON_PORT
IT_ERRORS
IT_IMP_REP_PATH
IT_LOCATOR_PATH
IT_INT_REP_PATH
IT_LOCAL_DOMAIN

ReinitialiseConfig() invalidates the effect
of a call to this function.

Refer to the Orbix documentation set for
information on configuration values.

Output() This outputs application’s diagnostic and other
output via the active output handlers.

Unless overridden by an implementation of the
C++ class CORBA::ORB::UserOutput , all
output is directed to the standard output
stream via the default output handler
ITStdOutHandler .

Refer to the Orbix documentation set for
information on output handlers.
 276

O r b i x CO Me t A P I

COMet.book Page 277 Tuesday, April 27, 1999 1:54 PM
ReinitialiseConfig() This effects modifications to the arrangement
or activation of configuration value handlers.

It must be called in order for changes made by
ActivateCVHandler() ,
DecactivateCVHandler() ,
PlaceCVHandlerBefore() and
PlaceCVHandlerAfter() to take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

SetDiagnostics() This controls the level of diagnostic messages
output to the cout stream by the Orbix
libraries. The previous setting is returned.

Level 1—Output no diagnostics.

Level 2—Output simple diagnostics (default).

Level 3—Output full diagnostics.

Diagnostic messages are output for events such
as operation requests, connections and
disconnections from a client.

An interleaved history of activity across the
distributed system can be obtained from the full
diagnostic output, for example from a client to
a server, by redirecting the diagnostic messages
from both the client and the server to files and
then sorting a merged copy of these files.

StartUp() This allows users to programatically initialise
the bridge.

ShutDown() This allows users to programatically shut down
the bridge. This might be necessary if you are
experiencing hang-on-exit problems.

LoadHandler() This forces OrbixCOMet to load the specified
handler DLL into memory. Handlers can
contain smart proxies, filters, transformers and
so on.
277

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 278 Tuesday, April 27, 1999 1:54 PM
UUID {036A6A33-0BB3-CF47-1DCB-A2C4E4C6417A}

Notes Orbix-specific.

DIORBObject

Synopsis [oleautomation,dual,uuid(...)]
interface DIORBObject : IDispatch {

HRESULT ObjectToString([in] IDispatch* obj,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] BSTR* IT_retval);

HRESULT StringToObject([in] BSTR ref,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

HRESULT GetInitialReferences([optional,in,out] VARIANT* IT_Ex,
[retval,out] VARIANT* IT_retval);

HRESULT ResolveInitialReference([in] BSTR name,
[optional,in,out] VARIANT* IT_Ex,
[retval,out] IDispatch** IT_retval);

HRESULT GetCORBAObject([in] IDispatch* obj,
[optional,in,out] VARIANT* IT_Ex,

[retval,out] IDispatch** IT_retval);
};

Description The interface DIORBObject provides Automation/CORBA-compliant methods
that request the ORB to perform actions.

The ORB has the ProgID CORBA.ORB.2.

In OrbixCOMet, the name CORBA.ORB.Orbix is registered as an alias for
CORBA.ORB.2. This allows access to the Orbix instance after a subsequent
installation of an ORB other than Orbix.

Narrow() This narrows the object reference specified in
srcObj to an object reference for the interface
whose ProgID is specified in cDestProgID .
 278

O r b i x CO Me t A P I

COMet.book Page 279 Tuesday, April 27, 1999 1:54 PM
Methods

ObjectToString() This converts the target object’s reference to a
string. An Orbix stringified object reference has
the form:

:\host:serverName:marker:IFR_host:
IFR_server:interfaceMarker

The fields can be described as follows:

• host —This is the host name of the
target.

• serverName —This is the name of the
target object’s server as registered in
the Implementation Repository and also
as specified to
CORBA::BOA::impl_is_ready() ,
CORBA::BOA::object_is_ready() or
set by setServerName() . For a local
object in a server, this will be that
server’s name (if that server’s name is
known); otherwise, it will be the
identifier of the process. Note that the
server name will be known if the server
is launched by Orbix; or if it is launched
manually and the server name is passed
to impl_is_ready() or the server
name has been set by
CORBA::ORB::setServerName().

• marker —This is the object’s marker
name. This can be chosen by the
application, or it will be a string of digits
chosen by Orbix.

• IFR_host —This is the name of a host
running an IFR that stores the target
object’s OMG IDL definition. Normally,
this is blank.
279

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 280 Tuesday, April 27, 1999 1:54 PM
UUID {204F6246-3AEC-11CF-BBFC-444553540000}

Notes Automation/CORBA compliant.

See Also DIOrbixORBObject

ObjectToString()

(continued)
•IFR_server —This is the string “IFR” .

•interface_Marker —This is the target object’s
interface. If called on a proxy, this might not be
the object’s true (most derived) interface: it can
be a base interface.

This method can also produce stringified IOR if
IIOP is being used.

StringToObject() This accepts a string produced by
ObjectToString() and returns the
corresponding object reference.

(See ObjectToString for a description of the
fields in a stringified object reference.)

GetInitialReferences() The IFR and the CORBA services can only be
used by first obtaining an object reference to an
object through which the service can be used.
The Automation/CORBA standard defines
GetInitialReferences() as a way to list the
services that are available.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service and
Event Service.)

ResolveInitialReference() This returns an object reference through which
a service (for example, the IFR or one of the
CORBA services) can be used. The ref
parameter names the desired service. A list of
supported services can be obtained using
DIORBObject::GetInitialReferences() .

GetCORBAObject() This returns an object that allows access to the
methods defined on the interfaces
DICORBAObject and DIOrbixObject .
 280

O r b i x CO Me t A P I

COMet.book Page 281 Tuesday, April 27, 1999 1:54 PM
IForeignObject

Synopsis interface IForeignObject : IUnknown {
HRESULT GetForeignReference([in] objSystemIDs systemIDs,

[out] long* systemID,
[out] BSTR* objRef);

HRESULT GetRepositoryId([out] BSTR* repositoryId);
};

Description The IForeignObject interface must be supported by all view objects.

As well as having an Automation view, a bridge holds an Orbix proxy for each
implementation object for which the client holds a reference. The
IForeignObject interface provides a way for a view to find the foreign object
reference in a proxy.

Methods

GetForeignReference() This extracts an object reference from a proxy
in string form.

The parameter systemIDs is an array of long
values, where a value in the array identifies an
object system (for example, CORBA) for which
the caller is interested in obtaining object
references. The value for the CORBA object
system is the long value 1. The order of IDs in
the array, systemIDs , indicates the caller’s order
of preference in the event that the proxy could
be a proxy for an object in more than one object
system.

The out parameter systemID identifies an
object system for which the proxy can produce
an object reference. If the proxy can produce a
reference for more than one object system, the
order of preference specified in the systemIDs
parameter is used to determine the value
returned in this parameter.
281

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 282 Tuesday, April 27, 1999 1:54 PM
UUID {204f6242-3aec-11cf-bbfc-444553540000}

Notes Automation/CORBA compliant.

GetForeignReference()

(continued)
The out parameter objRef contains the object
reference in string form. In the case of the
CORBA object system, this is a stringified
interoperable object reference (IOR).

GetRepositoryId() This returns an IFR identifier for the object. This
method requires run-time access to the IFR.
 282

O r b i x CO Me t A P I

COMet.book Page 283 Tuesday, April 27, 1999 1:54 PM
COM Interfaces

IOrbixServerAPI

Note: You no longer need to use IOrbixServerAPI to register your DCOM
objects with the bridge. (Refer to “Exposing DCOM Servers to CORBA
Clients” on page 163 for more details.) Because the use of this interface
is deprecated, it is mainly used for backwards compatibility purposes.

Synopsis [object, uuid(...)]
interface IOrbixServerAPI : IUnknown
{

HRESULT Activate ([in] LPSTR cServerName);
HRESULT Deactivate ([in] LPSTR cServerName);
HRESULT DispatchEvents ();
HRESULT SetObjectImpl ([in] LPSTR CIFace,

[in] LPSTR cMarker,
[in] IUnknown* poImpl);

HRESULT ActivatePersistent ([optional,in,out] VARIANT *IT_Ex);
HRESULT SetObjectImplPersistent ([in] LPSTR cIFace,

[in] LPSTR cmarker,
[in] LPSTR cSrv,
[in] IUnknown *poImpl,
[in] LPSTR cIORFileName);

};

Description Bridges expose a COM interface that allows them to act as CORBA servers.
This interface can be obtained using the ProgID ServerAPI .

The COM server should instantiate an object of this type and use it to control
the COM server’s behaviour as a CORBA server.
283

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 284 Tuesday, April 27, 1999 1:54 PM
Methods

Activate() This activates a COM server as a CORBA
server using the cServerName parameter. This
name should be the same name that is used to
register the application in the Implementation
Repository: that is, the name passed to putit
or the server manager tool.

Once Activate() has been called, your server
is ready to receive incoming requests from
CORBA clients.

It is recommended that you register all your
implementation objects using SetObjectImpl()
before calling Activate() .

Deactivate() This deactivates your application as a CORBA
server. Once Deactivate() has been called,
your application can no longer process incoming
requests from CORBA clients.

cServerName is the name of the CORBA
server. The server must be registered with this
name in the Orbix Implementation Repository.

DispatchEvents() This causes any outstanding CORBA events to
be dispatched to a client or server application
for processing. It might be necessary to call this
method in a client application if the client is
asynchronously receiving callbacks from a
server object. This will depend primarily on
your development environment. Single-
threaded development environments require
this to correctly dispatch incoming events.
 284

O r b i x CO Me t A P I

COMet.book Page 285 Tuesday, April 27, 1999 1:54 PM
UUID {127e2a6c-c1fe-b9f2-1d63-fb97cfc58b84}

Notes Orbix-specific.

ICORBA_Any

Synopsis typedef [public,v1_enum] enum CORBAAnyDataTagEnum {
anySimpleValTag=0,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag,
anyObjectValTag

}CORBAAnyDataTag;

interface ICORBA_ANY;
interface ICORBA_TypeCode;

SetObjectImpl() This registers a COM object with the bridge.
The poimpl parameter identifies the COM
object and exposes it to the CORBA object
space as the interface CIFace with the Orbix
marker cMarker . (Markers are used to uniquely
identify different instances of the same
interface.) If no marker is passed, Orbix will
automatically select a unique marker for the
object. The marker names chosen by Orbix
consist of a string composed entirely of decimal
digits. To ensure that a new marker is different
from any chosen by Orbix, do not use marker
strings that consist entirely of digits. Marker
names cannot contain a colon “:” or a null
character.

ActivatePersistent() This allows servers to be started without the
need for orbixd .

SetObjectImplPersistent() See ActivatePersistent() .
285

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 286 Tuesday, April 27, 1999 1:54 PM
typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag whichOne) {
case anyAnyValTag:

ICORBA_Any *anyVal;
case anySeqValTag:

struct tagMultiVal {
[string,unique] LPSTR repositoryId;
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize),length_is(cbLengthUsed),unique]

union CORBAAnyDataUnion * pVal;
] multiVal;

case anyUnionValTag:
struct tagUnionVal {

[string,unique] LPSTR repositoryId long disc;
union CORBAAnyDataUnion * pVal;

} unionVal;
case anyObjectValTag:

struct tagObjectVal {
[string,unique] LPSTR repositoryId VARIANT val;

} objectVal;
case anySimpleValTag:

VARIANT simpleVal;
} CORBAAnyData;

[object,uuid(...),pointer_default(unique)]
interface ICORBA_Any : IUnknown
{

HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData * val);
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);

};

Description Interface for CORBA/Orbix any type.

Methods

_get_value() This returns the value of a CORBA any .

_put_value() This sets the value of a CORBA any .

_get_CORBAAnyData() This returns the data stored in the CORBA any .

_put_CORBAAnyData() This sets the data stored in the CORBA any .
 286

O r b i x CO Me t A P I

COMet.book Page 287 Tuesday, April 27, 1999 1:54 PM
UUID {74105f50-3c68-11cf-9588-aa0004004a09}

Notes COM/CORBA compliant.

ICORBAFactory

Synopsis [object,uuid(...)]
interface ICORBAFactory : IUnknown
{

HRESULT CreateObject ([in] LPSTR factoryName, [out] IUnknown **
val);

HRESULT GetObject ([in] LPSTR objectName, [out] IUnknown **
val);

};

Description This supports general, simple mechanisms for creating new CORBA object
instances and accessing existing instances of CORBA object references by name.

Methods

_get_typeCode() This returns the type of the any .

GetObject() The OMG COM/CORBA Interworking document at
WWW.OMG.ORG specifies that GetObject() should take
a string as one parameter and return a pointer to the
IDispatch interface on the created object. However,
it does not specify the format for the string. In
OrbixCOMet, the formats for the parameter to
GetObject() are as follows:

• Old format (for backwards compatibility with the
Orbix/ActiveX Integration product):

“broker.interface[[[:marker]:
server]:host]”

(Broker is ignored.)

• COMet format:

“interface[[[:marker]:server]:
host]”
287

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 288 Tuesday, April 27, 1999 1:54 PM
UUID {204F6240-3AEC-11CF-BBFC-444553540000}

Notes COM/CORBA compliant.

ICORBAObject

Synopsis [object,uuid(...)]
interface ICORBAObject : IUnknown
{

HRESULT GetInterface ([out] IUnknown ** val);
HRESULT GetImplementation ([out] LPSTR * val);
HRESULT IsA ([in] LPSTR repositoryID, [out] boolean* val);
HRESULT IsNil ([out] boolean* val);

GetObject()

(continued)
•Tagged format:

“interface:TAG:Tag data”

where TAG is one of the following:

IOR—The data is the hexadecimal string for the
stringified IOR. For example:
fact.GetObject(“employee:IOR:123456789.”)

NAME_SERVICE—The data is the NAME_SERVICE
compound name separated by “.”. For example:
fact.GetObject(“employee:NAME_SERVICE:

IONA:employees.PD.Ronan”)

•Simple Format:

“interface”

This assumes the server name is the same as the
interface. It also assumes the Orbix locator is used to
find the host name. If there is no Orbix daemon
running in the client machine, the configuration setting
COMET_DAEMON_HOST should point at a machine where
a daemon is running with its locator configured.

Note that if the interface were scoped (for example,
“Module::Interface”) the interface token above
would be “Module/Interface” .

CreateObject() This is the same as GetObject() .
 288

O r b i x CO Me t A P I

COMet.book Page 289 Tuesday, April 27, 1999 1:54 PM
HRESULT IsEquivalent ([in] IUnknown* obj, [out] boolean* val);
HRESULT NonExistent ([out] boolean* val);
HRESULT Hash ([in] long maximum, [out] long* val);

};

Description This allows COM clients access to operations on the CORBA object references.

Methods

GetInterface() This returns a reference to an object in the IFR that
provides type information about the target object.
This method requires run-time access to the IFR.

GetImplementation() This finds the name of the target object’s server as
registered in the Implementation Repository. For a
local object in a server, this will be that server’s name
if it is known. For an object created in a client
program, it will be the process identifier of the client
process.

IsA() This returns true if the object is either an instance of
the type specified by the repositoryID parameter or
an instance of a derived type of the type in the
repositoryID . Otherwise, it returns false .

IsNil() This returns true if an object reference is nil.
Otherwise, it returns false .

IsEquivalent() This returns true if the target object reference is
known to be equivalent to the object reference in the
parameter obj .

A return value of false indicates that the object
references are distinct; it does not necessarily mean
that the references indicate distinct objects.

NonExistent() This returns true if the object has been destroyed.
Otherwise, it returns false .
289

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 290 Tuesday, April 27, 1999 1:54 PM
UUID {204F6243-3AEC-11CF-BBFC-444553540000}

Notes COM/CORBA compliant.

ICORBA_TypeCode

Synopsis [uuid(...), object, pointer_default(unique)]
interface ICORBA_TypeCode : IUnknown
{

HRESULT equal ([in] ICORBA_TypeCode * pTc,
[out] boolean * pval,
[out] CORBA_TypeCodeExceptions ** ppExcept);

HRESULT kind ([out] CORBA_TCKind * pval,
[out] CORBA_TypeCodeExceptions ** ppExcept);

HRESULT id ([out] LPSTR * pId,
[out] CORBA_TypeCodeExceptions ** ppExcept);

HRESULT name ([out] LPSTR * pName,
[out] CORBA_TypeCodeExceptions ** ppExcept);

HRESULT member_count ([out] unsigned long * pCount,
[out] CORBA_TypeCodeExceptions ** ppExcept);

Hash() Every object reference has an internal identifier
associated with it—a value that remains constant
throughout the lifetime of the object reference.

Hash() returns a hashed value, determined via a
hashing function, from the internal identifier. Two
different object references can yield the same hashed
value. However, if two object references return
different hash values, you will know that these object
references are for different objects.

The Hash() function allows you to partition the space
of object references into sub-spaces of potentially
equivalent object references.

The parameter maximum specifies the maximum value
that is to be returned from the Hash() function. For
example, by setting maximum to 7, the object
reference space is partitioned into a maximum of 8
sub-spaces (since the lower bound of the function is
0).
 290

O r b i x CO Me t A P I

COMet.book Page 291 Tuesday, April 27, 1999 1:54 PM
HRESULT member_name ([in] unsigned long nIndex,
[out] LPSTR * pName,

[out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT member_type ([in] unsigned long nIndex,

[out] ICORBA_TypeCode ** pRetval,
[out] CORBATypeCodeExceptions ** ppExcept);

HRESULT member_label ([in] unsigned long nIndex,
[out] ICORBA_Any ** pRetval,

[out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT discriminator_type ([out] ICORBA_TypeCode ** pRetval,

[out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT default_index ([out] unsigned long * pRetval,

[out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT length ([out] unsigned long * nLen,

[out] CORBA_TypeCodeExceptions ** ppExcept);
HRESULT content_type ([out] ICORBA_TypeCode ** pRetval,

[out] CORBA_TypeCodeExceptions ** ppExcept);
};

Description This describes arbitrary complex OMG IDL type structures at runtime.

Methods

equal() This returns true if the TypeCode s are equal.
Otherwise, it returns false .

kind() This can be called on every kind of
ICORBA_TypeCode.

It finds the type of OMG IDL definition described
by the typecode . It returns an enumerated value
of type CORBATCKind. For example, a typecode
that contains a sequence has the kind
tk_sequence . Once the kind of value stored by
the typecode is known, the methods that can be
called on the typecode are determined.
291

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 292 Tuesday, April 27, 1999 1:54 PM
id() This can be called on an ICORBA_TypeCode that
has the kind tk_objref , tk_struct , tk_union ,
tk_enum , tk_alias or tk_except . If called on an
ICORBA_TypeCode of a different kind, it raises a
BadKind exception.

It returns the IFR repository ID that globally
identifies the type.

This method requires run-time access to the IFR.

name() This can be called on an ICORBA_TypeCode that
has the kind tk_objref , tk_struct , tk_union ,
tk_enum , tk_alias or tk_except . If called on an
ICORBA_TypeCode of a different kind, it raises a
BadKind exception.

It returns the name that identifies the type. The
name returned does not contain any scoping
information.

member_count() This can be called on an ICORBA_TypeCode that
has the kind tk_struct , tk_union , tk_enum or
tk_except . If called on an ICORBA_TypeCode of a
different kind, it raises a BadKind exception.

It returns the number of members that make up
the type.

member_name() This can be called on an ICORBA_TypeCode that
has the kind tk_struct , tk_union , tk_enum or
tk_except . If called on an ICORBA_TypeCode of a
different kind, it raises a BadKind exception.

The method member_name() returns the name of
the member identified by the parameter index .
The name returned does not contain any scoping
information.

A Bounds exception is raised if the parameter
index is greater than or equal to the number of
members that make up the type. Note that the
index starts at 0.
 292

O r b i x CO Me t A P I

COMet.book Page 293 Tuesday, April 27, 1999 1:54 PM
member_type() This can be called on an ICORBA_TypeCode that
has the kind tk_struct , tk_union or tk_except .
If called on an ICORBA_TypeCode of a different
kind, it raises a BadKind exception.

It returns the type of the member identified by the
parameter index .

A Bounds exception is raised if the parameter
index is greater than or equal to the number of
members that make up the type. Note that the
index starts at 0.

member_label() This can be called on an ICORBA_TypeCode that
has the kind tk_union . If called on an
ICORBA_TypeCode of a different kind, it raises a
BadKind exception.

The method member_label() returns the case
label of the union member identified by index .
(The case label is an integer, char, boolean or
enum type.)

A Bounds exception is raised if the parameter
index is greater than or equal to the number of
members that make up the type. Note that the
index starts at 0.

discriminator_type() This can be called on an ICORBA_TypeCode that
has the kind tk_union . If called on an
ICORBA_TypeCode of a different kind, it raises a
BadKind exception.

It returns the type of the union’s discriminator.

default_index() This can be called on an ICORBA_TypeCode that
has the kind tk_union . If called on an
ICORBA_TypeCode of a different kind, it raises a
BadKind exception.

The method default_index() returns the index
of the default member; it returns -1 if there is no
default member.
293

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 294 Tuesday, April 27, 1999 1:54 PM
UUID {9556EA21-3889-11cf-9586AA0004004A09}

Notes COM/CORBA compliant.

ICORBA_TypeCodeExceptions

Synopsis typedef struct tagTypeCodeBounds {long 1;} TypeCodeBounds;
typedef struct tagTypeCodeBadKind {long 1;} TypeCodeBadKind;

[object, uuid(...), pointer_default(unique)]
interface ICORBA_TypeCodeExceptions : IUnknown
{

HRESULT _get_Bounds([out] TypeCodeBounds * pExceptionBody);
HRESULT _get_BadKind([out] TypeCodeBadKind * pExceptionBody);

};
typedef struct tagCORBA_TypeCodeExceptions
{

CORBA_ExceptionType type;
LPSTR repositoryId;
ICORBA_TypeCodeExceptions *pUserException;

} CORBA_TypeCodeExceptions;

length() This can be called on an ICORBA_TypeCode that
has the kind tk_string , tk_sequence or
tk_array .

For a bounded string or sequence , length()
returns the bound; a return value of 0 indicates an
unbounded string or sequence.

For an array, length() returns the length of the
array.

content_type() This can be called on an ICORBA_TypeCode that
has the kind tk_sequence , tk_array or
tk_alias . If called on an any of a different kind, it
raises a BadKind exception.

For a sequence or array, content_type() returns
the type of element contained in the sequence or
array. For an alias, it returns the type aliased by the
typedef definition.
 294

O r b i x CO Me t A P I

COMet.book Page 295 Tuesday, April 27, 1999 1:54 PM
Description This allows for the raising of exceptions that can occur with an
ICORBA_TypeCode at runtime.

Methods

UUID {9556ea20-3889-11cf-9586-aa0004004a09}

Notes COM/CORBA compliant.

IForeignObject

Synopsis typedef [public] struct objSystemIDs {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
long * pValue;

} objSystemIDs;

[object, uuid(...), pointer_default(unique)]
interface IForeignObject : IUnknown
{

HRESULT GetForeignReference ([in] objSystemIDs systemIDs,
[out] long * systemID,
[out] LPSTR * objRef);

HRESULT GetUniqueId ([out] LPSTR * uniqueId);
};

Description This provides bridges access to object references from foreign object systems
that are encapsulated in proxies.

_get_Bounds() This returns a Bounds exception that results if the
parameter index is greater than or equal to the
number of members that make up the type.

_get_BadKind() This returns a BadKind exception that results from
doing a method call on an ICORBA_TypeCode that has
the wrong kind for that method.
295

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 296 Tuesday, April 27, 1999 1:54 PM
Methods

UUID {204f6242-3aec-11cf-bbfc-444553540000}

Notes COM/CORBA compliant.

IMonikerProvider

Synopsis [object, uuid(...)]
interface IMonikerProvider : IUnknown
{

HRESULT get_moniker([out] IMoniker ** val);
};

GetForeignReference() This extracts an object reference from a proxy in
string form.

The parameter systemIDs is an array of long values
where a value in the array identifies an object
system (for example, CORBA) for which the caller
is interested in obtaining object references. The
value for the CORBA object system is the long
value 1. The order of IDs in the array, systemIDs ,
indicates the caller’s order of preference in the
event that the proxy could be a proxy for an object
in more than one object system.

The out parameter systemID identifies an object
system for which the proxy can produce an object
reference. If the proxy can produce a reference for
more than one object system, the order of
preference specified in the systemIDs parameter is
used to determine the value returned in this
parameter.

The out parameter objRef contains the object
reference in string form. In the case of the CORBA
object system, this is a stringified interoperable
object reference (IOR).

GetUniqueId() This returns a unique identifier for the object.
 296

O r b i x CO Me t A P I

COMet.book Page 297 Tuesday, April 27, 1999 1:54 PM
Description This allows COM clients to persistently save object references for later use
without needing to keep the view in memory.

The moniker returned by IMonikerProvider must support at least the
IMoniker and IPersistStorage interfaces. To allow object reference monikers
to be created with one COM/CORBA interworking solution and later restored
using another, IPersist::GetClassID must return the following CLSID:

{a936c802-33fb-11cf-a9d1-00401c606e79}

Methods

UUID {ecce76fe-39ce-11cf-8e92-080000970dac7}

Notes COM/CORBA compliant.

IOrbixObject

Synopsis [object, uuid(...)]
interface IOrbixObject : ICORBAObject
{

HRESULT _get_Marker ([out] LPSTR *marker);
HRESULT _put_Marker ([in] LPSTR marker);
HRESULT _get_Host ([out] LPSTR *marker);
HRESULT _put_Host ([in] LPSTR marker);
HRESULT CloseChannel();
HRESULT FileDescriptor ([out] short * rval);
HRESULT HasValidOpenChannel ([out] boolean * val);

};

Description This allows Orbix-specific operations to be performed on the object.

get_moniker() This returns a COM moniker that allows the CORBA
object to be converted to persistent form for storage
in a file and so on. Once stored to persistent form
using this moniker, the CORBA object can be
reconnected to again, using the standard COM
moniker semantics.
297

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 298 Tuesday, April 27, 1999 1:54 PM
Methods

UUID {036A6A34-0BB3-CF47-1DCB-A2C4E4C6417A}

_get_Marker()

_put_Marker()

Both _get_Marker and _put_Marker allow you to
access the marker on the object. (Refer to
ICORBAFactory::GetObject() on page 287 for
more details.)

_get_Host()

_put_Host()

Both _get_Host and _put_Host allow you to access
the host part of the object reference (that is, the host
on which the object lives).

CloseChannel() This requests Orbix to close the underlying
communications connection to the server. This
function is intended as an optimisation so that a
connection between a client and server that is rarely
used is not kept open for long periods between uses.

The channel is automatically reopened when an
invocation is made on the object. Note that if the
client holds proxies for other objects in the same
server, the channel is closed for all such proxies; it is
automatically reopened when a subsequent
invocation is made on one of these proxies.

FileDescriptor() This gets the set of file descriptors scanned by Orbix
to detect incoming events. Programmers using
libraries or systems that depend on the UNIX
select() system call might need to know which file
descriptors are scanned by Orbix.

Note that this function is defined only if the following
preprocessor directive is issued in the C++ file
before including CORBA.h.

HasValidOpenChannel() This determines whether the communications
channel between the client and server is open.

(This channel can be closed to avoid having an
unnecessary connection left open for long periods
between an idle client and server. The channel is
automatically reopened when an invocation is made
on the object.)
 298

O r b i x CO Me t A P I

COMet.book Page 299 Tuesday, April 27, 1999 1:54 PM
Notes Orbix-specific.

IOrbixORBObject

Synopsis [object, uuid(...)]
interface IOrbixORBObject : IORBObject
{

HRESULT ConnectionTimeout ([in] long timeout,
[out] long* IT_retval);

HRESULT MaxConnectRetries ([in] long numTries,
[out] long* IT_retval);

HRESULT PingDuringBind ([in] BOOLEAN ping On,
[out] BOOLEAN* IT_retval);

HRESULT ReSizeObjectTable ([in] long size);
HRESULT NoReconnectOnFailure ([in] BOOLEAN OffOn,

[out] BOOLEAN* IT_retval);
HRESULT AbortSlowConnects ([in] BOOLEAN OnOff,

[out] BOOLEAN *IT_retval);
HRESULT ActivateCVHandler ([in] LPSTR identifier);
HRESULT DeactivateCVHandler ([in] LPSTR identifier);
HRESULT ActivateOutputHandler ([in] LPSTR identifier);
HRESULT PlaceCVHandlerAfter ([in] LPSTR handler,

[in] LPSTR afterThisHandler);
HRESULT PlaceCVHandlerBefore ([in] LPSTR handler,

[in] LPSTR beforeThisHandler);
HRESULT DeactivateOutputHandler ([in] LPSTR identifier);
HRESULT BaseInterfacesOf ([in] LPSTR derived,

[out] VARIANT* IT_retval);
HRESULT IsBaseInterfaceOf ([in] LPSTR derived,

[in] LPSTR maybeABase,
[out] BOOLEAN * IT_retval);

HRESULT CloseChannel ([in] long fd);
HRESULT Collocated ([in] BOOLEAN OnOff,

[out] BOOLEAN *IT_retval);
HRESULT DefaultTxTimeout ([in] long timeout,

[out] long* IT_retval);
HRESULT EagerListeners ([in] BOOLEAN OnOff,

[out] BOOLEAN * IT_retval);
HRESULT GetConfigValue ([in] LPSTR name,

[out] LPSTR *value,
[out] BOOLEAN * IT_retval);
299

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 300 Tuesday, April 27, 1999 1:54 PM
HRESULT SetConfigValue ([in] LPSTR name,
[in] LPSTR value,
[out] BOOLEAN * IT_retval);

HRESULT Output ([in] LPSTR value,
[in] short level);

HRESULT ReinitialiseConfig ();
HRESULT SetDiagnostics {[in] short level,

[out] short * IT_retval);
HRESULT StartUp ([out] BOOLEAN * IT_retval);
HRESULT ShutDown ([out] BOOLEAN * IT_retval);
HRESULT GetServerAPI ([retval,out] IDispatc ** IT_retval);
HRESULT LoadHandler ([in] LPSTR keyName);

};

Description This is used for Orbix-specific operations.

Methods

ConnectionTimeout() This sets the time limit, in seconds, for
establishing that a connection from a client to a
server is fully operational. The default is 30
seconds. This should be adequate in the majority
of cases.

The value set by this function comes into effect
if, for example, the server crashes after the
transport (for example, TCP/IP) connection has
been made but before the full Orbix connection
has been established.

The value set by ConnectionTimeout() is
independently used by AbortSlowConnect()
when setting up the transport connection.

If clients of a single-threaded server are
continually timed out because the server is busy,
it might be that existing connections are being
favoured over new connection attempts. The
function EagerListeners() addresses this
problem.
 300

O r b i x CO Me t A P I

COMet.book Page 301 Tuesday, April 27, 1999 1:54 PM
MaxConnectRetries() If an operation call cannot be made on the first
attempt because the transport (for example,
TCP/IP) connection cannot be established,
Orbix will retry the attempt every two seconds
until either the call can be made or until there
have been too many retries. The function
MaxConnectRetries() sets the maximum
number of retries. The default number of retries
is ten.

As an alternative, the IT_CONNECT_ATTEMPTS
entry in the Orbix configuration file or as an
environment variable can be used to control the
maximum number of retries. The value set by
MaxConnectRetries() takes precedence over
this. The IT_CONNECT_ATTEMPTS value will only
be used if it is set to zero.
301

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 302 Tuesday, April 27, 1999 1:54 PM
PingDuringBind() By default, _bind() raises an exception if the
object on which the _bind() is attempted is
unknown to Orbix. Doing so requires Orbix to
ping the desired object. The ping operation is
defined by Orbix and it has no effect on the
target object. The pinging will cause the target
server process to be activated if necessary, and
will confirm that this server recognises the
target object. Pinging can be enabled using
PingDuringBind() by passing 1 to the
parameter pingOn . Pinging can be disabled by
passing 0 to pingOn . The previous setting is
returned in the parameter IT_retval .

You might wish to disable pinging to improve
efficiency by reducing the overall number of
remote invocations. In this case, Orbix will
check the object’s availability only when a
method is invoked on the object and not at the
time that the bind attempt is made.

Note that if PingDuringBind(false) is called:

• A _bind() to an unavailable object will not
immediately raise an exception, but
subsequent requests using the object
reference returned from _bind() will fail by
raising a system exception
(CORBA::INV_OBJREF).

• If a host name is specified to _bind() , the
_bind() will not itself make any remote
calls; it simply sets up a proxy with the
required fields.

• If a host name is not specified, Orbix uses its
locator to find a suitable server, but _bind()
does not interact with that server to
determine if the required object exists
within it.
 302

O r b i x CO Me t A P I

COMet.book Page 303 Tuesday, April 27, 1999 1:54 PM
ReSizeObjectTable() All Orbix implementation objects in an address
space are registered in its object table—a hash
table that maps from object identifiers to the
location of objects in virtual memory. It is
important that this table is not too small for the
number of objects in a process, because long
overflow chains lead to inefficiencies. The
default size of the object table is defined as the
value:

CORBA_OBJECT_TABLE_SIZE_DEFAULT

in the file CORBA.h.

If you anticipate that a program will handle a
much larger number of objects than the default
size (which is about 1000), you can use this
function to resize the table.

NoReconnectOnFailure() When an Orbix client first contacts a server, a
single communications channel is established
between the client-server pair. This connection
is then used for all subsequent communications
between the client and the server. The
connection is closed only when either the client
or the server exists.

When a server exists while a client is still
connected, the next invocation by the client will
raise a system exception of type
CORBA::COMM_FAILURE. If the client attempts
another invocation, Orbix will automatically try
to re-establish the connection.

This default behaviour can be changed by passing
the value 0 (false) to the function
CORBA::ORB::NoReconnectOnFailure() . Then,
all client attempts to contact a server
subsequent to closure of the communications
channel will raise a CORBA::COMM_FAILURE
system exception.
303

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 304 Tuesday, April 27, 1999 1:54 PM
AbortSlowConnects() This aborts TCP/IP connection attempts that
exceed the timeout specified in
DIOrbixORBObject:: ConnectionTimeout() .
The default value for this timeout is 30 seconds.

A TCP/IP connect can block for a considerable
time if a node, known to the local node, is down
or unreachable.

Set OnOff to 1 to abort slow connection
attempts.

ActivateCVHandler() This activates the configuration value handler
identified in identifier .

You must call ReinitialiseConfig() before
modifications by this function take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

DeactivateCVHandler() This deactivates the configuration value handler
identified in identifier .

You must call ReinitialiseConfig() before
modifications by this function take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

ActivateOutputHandler() This activates the output handler specified in
identifier .

Refer to the Orbix documentation set for
information on output handlers.
 304

O r b i x CO Me t A P I

COMet.book Page 305 Tuesday, April 27, 1999 1:54 PM
PlaceCVHandlerAfter() This modifies the order in which configuration
handlers are called. If not explicitly rearranged,
configuration value handlers are called in
reverse order to that in which they are
instantiated in an application.

You must call ReinitialiseConfig() before
modifications by this function take effect.

Refer to the Orbix documentation set for
information on configuration handlers.

PlaceCVHandlerBefore() See PlaceCVHandlerAfter .

DeactivateOutputHandler() This deactivates the output handler specified in
identifier .

Refer to the Orbix documentation set for
information on output handlers.

BaseInterfacesOf() This returns an OMG IDL sequence of strings in
the parameter interfaces , listing the base
interfaces of derived . The interface derived is
returned in the sequence because it is
considered a base interface of itself.

IsBaseInterfaceOf() This determines whether the interface
maybeABase is a base interface of the interface
derive d.

IsBaseInterfaceOf() returns 1 if maybeABase
is a base interface of derived (or if derived and
maybeABase are the same). Otherwise, it
returns 0.
305

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 306 Tuesday, April 27, 1999 1:54 PM
CloseChannel() This requests Orbix to close the underlying
communications connection to the server. This
function is intended as an optimisation so that a
connection between a client and server that is
rarely used is not kept open for long periods
between uses.

The channel is automatically reopened when an
invocation is made on the object. Note that if
the client holds proxies for other objects in the
same server, the channel is closed for all such
proxies; it is automatically reopened when a
subsequent invocation is made on one of these
proxies.

Collocated() This determines whether collocation is
enforced.

Set OnOff to 1 to disallow binding to objects
outside the address space of the current
process.

Set OnOff to 0, to allow binding to objects
outside the address space of the current
process. This is the default.

DefaultTxTimeout() This sets the timeout for all remote calls and
returns the previous setting.

By default, there is no timeout set for remote
calls; that is, the default timeout is infinite.

The value set by this function is ignored when
making a connection between a client and a
server. It comes into effect only when the
connection has been established.
 306

O r b i x CO Me t A P I

COMet.book Page 307 Tuesday, April 27, 1999 1:54 PM
EagerListeners() By default, currently established connections to
a server are given priority over requests for
new connections. As a result, busy single-
threaded servers (for example, processing long
running operations) might not service new
connection attempts and consequently clients
attempting to make a connection might be
continually timed out.

EagerListeners() allows equal fairness to be
given to both established connections and to
new connection attempts. This avoids
discrimination against new connections.

This feature is not necessary in multi-threaded
versions of Orbix.

Set OnOff to 1 to enable eager listening. This
means that attempts to establish new
connections are given equal priority to
processing existing connections.

Set OnOff to 0 to give priority to established
connections.

EagerListeners() returns the previous setting.

GetConfigValue() This obtains the value of the configuration entry
in name.

Refer to the Orbix documentation set for
information on configuration values.
307

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 308 Tuesday, April 27, 1999 1:54 PM
SetConfigValue() This sets the value of the configuration entry
specified in name for this process only. (It does
not set the configuration entry in the Orbix
configuration file or in the Windows registry.)

The following configuration entries can be set by
SetConfigValue() :

IT_DAEMON_SERVER_BASE
IT_DAEMON_SERVER_RANGE
IT_DAEMON_PORT
IT_ERRORS
IT_IMP_REP_PATH
IT_LOCATOR_PATH
IT_INT_REP_PATH
IT_LOCAL_DOMAIN

ReinitialiseConfig() invalidates the effect of
a call to this function.

Refer to the Orbix documentation set for
information on configuration values.

Output() This outputs application’s diagnostic and other
output via the active output handlers.

Unless overridden by an implementation of the
C++ class CORBA::ORB::UserOutput , all output
is directed to the standard output stream via the
default output handler ITStdOutHandler .

Refer to the Orbix documentation set for
information on output handlers.

ReinitialiseConfig() This effects modifications to the arrangement or
activation of configuration value handlers.

It must be called in order for changes made by
ActivateCVHandler() ,
DecactivateCVHandler() ,
PlaceCVHandlerBefore() and
PlaceCVHandlerAfter() to take effect.

Refer to the Orbix documentation set for
information on configuration handlers.
 308

O r b i x CO Me t A P I

COMet.book Page 309 Tuesday, April 27, 1999 1:54 PM
UUID {4ea7b110-1a93-f447-1dc7-c8c8b25be06f}

Notes Orbix-specific.

SetDiagnostics() This controls the level of diagnostic messages
output to the cout stream by the Orbix
libraries. The previous setting is returned.

Level 1—Output no diagnostics.

Level 2—Output simple diagnostics (default).

Level 3—Output full diagnostics.

Diagnostic messages are output for events such
as operation requests, connections and
disconnections from a client.

An interleaved history of activity across the
distributed system can be obtained from the full
diagnostic output, for example from a client to a
server, by redirecting the diagnostic messages
from both the client and the server to files and
then sorting a merged copy of these files.

StartUp() This initialises the ORB. Invoking this method is
optional. If StartUp is not invoked, the ORB is
automatically initialised when the first object is
created. However, it is a CORBA guideline that
an ORB should be initialised before being used.
IONA recommends you call this method before
doing anything else (that is, before you make any
calls to GetObject or CreateType on
ICORBAFactory).

ShutDown() This unitialises the ORB. Once this is called, no
more invocations can be made using CORBA.

GetServerAPI() This returns a COM/Automation interface that
allows you to turn your application into a
CORBA server.

LoadHandler() This forces OrbixCOMet to load the specified
handler DLL into memory. Handlers can contain
smart proxies, filters, transformers and so on.
309

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 310 Tuesday, April 27, 1999 1:54 PM
IORBObject

Synopsis [public] typedef struct tagCORBA_ORBObjectIdList {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

LPSTR *pValue;
} CORBA_ORBObjectIdList;

[object, uuid(...)]
interface IORBObject : IUnknown
{

HRESULT ObjectToString ([in] IUnknown* obj,
[out] LPSTR* val);

HRESULT StringToObject ([in,string] LPSTR cStr,
[out] IUnknown ** val);

HRESULT GetInitialReferences ([out] CORBA_ORBObjectIdList*
val);

HRESULT ResolveInitialReference ([in,string] LPSTR name,
[out] IUnknown** IT_retval);

};

Description This provides COM clients access to the operations on the ORB pseudo-object.

Methods

ObjectToString() This converts the target object’s reference to a
string. An Orbix stringified object reference has
the form:

:\host:serverName:marker:IFR_host:
IFR_server:interfaceMarker

The fields can be described as follows:

• host —This is the host name of the
target.
 310

O r b i x CO Me t A P I

COMet.book Page 311 Tuesday, April 27, 1999 1:54 PM
ObjectToString()

(continued)
•serverName —This is the name of the target
object’s server as registered in the
Implementation Repository and also as specified
to CORBA::BOA::impl_is_ready() ,
CORBA::BOA::object_is_ready() or set by
setServerName() . For a local object in a server,
this will be that server’s name (if that server’s
name is known); otherwise, it will be the
identifier of the process. Note that the server
name will be known if the server is launched by
Orbix; or if it is launched manually and the
server name is passed to impl_is_ready() or
the server name has been set by
CORBA::ORB::setServerName() .

•marker —This is the object’s marker name.
This can be chosen by the application, or it will
be a string of digits chosen by Orbix.

•IFR_host —This is the name of a host running
an IFR that stores the target object’s OMG IDL
definition. Normally, this is blank.

•IFR_server —This is the string “IFR” .

•interface_Marker —This is the target object’s
interface. If called on a proxy, this might not be
the object’s true (most derived) interface: it can
be a base interface.

This method can also produce stringified IOR if
IIOP is being used.

StringToObject() This converts the stringified object reference
obj_ref_string to an object reference.

(See ObjectToString for a description of the
fields in a stringified object reference.)
311

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 312 Tuesday, April 27, 1999 1:54 PM
UUID {204F6245-3AEC-11CF-BBFC-444553540000}

Notes COM/CORBA compliant.

GetInitialReferences() The IFR and the CORBA services can only be
used by first obtaining an object reference to an
object through which the service can be used.
The Automation/CORBA standard defines
GetInitialReferences() as a way to list the
services that are available.

(CORBA services are optional extensions to
ORB implementations that are specified by
CORBA. They include the Naming Service and
Event Service.)

ResolveInitialReference() This returns an object reference through which
a service (for example, the IFR or one of the
CORBA services) can be used. The parameter
ref names the desired service. A list of
supported services can be obtained using
DIORBObject::GetInitialReferences() .
 312

COMet.book Page 313 Tuesday, April 27, 1999 1:54 PM
 19
Introduction to OMG IDL

This chapter describes the CORBA Interface Definition Language
(OMG IDL) that is used to describe the interfaces of objects in Orbix.

The OMG IDL language itself is part of the Object Management Group (OMG)
Common Object Request Broker Architecture (CORBA) specification. OMG
IDL is not a programming language because it cannot be used to implement the
interfaces that are defined in it. The use of OMG IDL does not replace the roles
of programming languages such as C++, OLE Automation, Visual Basic, Smalltalk,
Java, and Ada. An advantage of OMG IDL is that it allows interfaces to be defined
independently of the languages used to implement and use these interfaces. It
therefore makes it easy to support language interoperability.

OMG IDL does not have many complex features. This makes it an easy language
to learn and helps programmers to write clear interfaces.

OMG IDL Interfaces
An OMG IDL interface provides a description of the functionality that is
provided by an object. An interface definition provides all of the information
needed to develop clients that use the interface. An interface definition typically
specifies the attributes and operations belonging to that interface, as well as the
parameters of each operation. Defining the interfaces between components is
the most important aspect of distributed system design. Interfaces, therefore,
are the single most important feature of OMG IDL.
313

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 314 Tuesday, April 27, 1999 1:54 PM
Consider a simple banking application that will manage bank accounts. A user of
an account object will wish to make deposits and withdrawals. An account
object will also need to hold the balance of the account and perhaps the name of
the account’s owner. A sample interface is as follows:

// OMG IDL
interface Account {

// Attributes to hold the balance and the name
// of the account's owner.
attribute float balance;
readonly attribute string owner;

// The operations defined on the interface.
void makeDeposit(in float amount,

out float newBalance);
void makeWithdrawal(in float amount,

out float newBalance);
};

The Account interface defines attributes balance and owner ; these are
properties of an Account object. The attribute balance can take values of type
float which is one of the basic types of OMG IDL and represents a floating
point type (such as 102.31). The attribute owner is of type string and is defined
to be readonly .1

Two operations, makeDeposit() and makeWithdrawal() , are provided. Each of
these has two parameters of type float . Each parameter must specify the
direction in which the parameter is passed. The possible parameter passing
modes are as follows:

1. An attribute declaration typically maps to two functions in the programming language: one to
retrieve the value of the attribute and the other to set the value of the attribute. The readonly
keyword specifies that there is only a function to retrieve the value. A readonly attribute need not
be a constant: two reads of an attribute where there is an interleaving operation call can return
different values.

in The parameter is passed from the caller (client) to the called object.

out The parameter is passed from the called object to the caller.

inout The parameter is passed in both directions.
 314

I n t r od u c t i o n t o OM G I D L

COMet.book Page 315 Tuesday, April 27, 1999 1:54 PM
In this example, amount is passed as an in parameter to both functions and the
new balance is returned as an out parameter. The parameter passing mode must
be specified for each parameter, and it is used both to improve the “self-
documentation” of an interface and to help guide the code to which the OMG
IDL is subsequently translated.

Line comments are introduced with the characters // as shown in the example.
Comments spanning more than one line are delimited by /* and */ . For
example:

// OMG IDL
/* This commment

spans more than
one line. */

Multiple OMG IDL interfaces can be defined in a single source file, but it is
common to define each interface in its own file.

Oneway Operations
Normally, the caller of an operation is blocked while the call is being processed
by the receiver. However, an OMG IDL operation can be defined to be oneway
so that the caller is not blocked and can continue in parallel to the server. For
example, you could provide a oneway operation on the Account interface to
send a notice to the account:

// OMG IDL
interface Account {

// Details as before.
// Send notice to account.
oneway void notice(in string notice);

};

A oneway operation must specify a void return type. It cannot have out or
inout parameters, or a raises clause.

Oneway operations are supported because it is sometimes important to be able
to communicate with a remote object without waiting for a reply. A oneway
operation differs from a normal operation (that is, an operation not designated
as oneway) that has no out or inout parameters and a void return type. Calls to
the normal operation will block until the operation request has been carried out.
315

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 316 Tuesday, April 27, 1999 1:54 PM
Context Clause
The use of context is not specified in the COM/CORBA Interworking
Specification. Contexts are therefore deprecated.

Modules
An interface can be defined within a module. This allows interfaces and other
OMG IDL type definitions to be grouped in logical units. This can be convenient
because names defined within a module do not clash with names defined outside
the module (that is, a module defines a naming scope). This allows sensible
names for interfaces and other definitions to be chosen without clashing with
other names.

The following example illustrates the use of a module (where the interfaces
related to banks are defined within a module called Finance):

// OMG IDL
module Finance {

interface Bank {
. . .

};
interface Account {

. . .
};

};

The full (or scoped) name of Account is then Finance::Account .

Exceptions
An OMG IDL operation can raise an exception indicating that an error has
occurred. To illustrate exceptions, the banking application will now be extended
by providing a Bank interface as follows:

// OMG IDL
interface Bank {

exception Reject {
string reason;
 316

I n t r od u c t i o n t o OM G I D L

COMet.book Page 317 Tuesday, April 27, 1999 1:54 PM
};
exception TooMany {}; // Too many accounts.
Account newAccount(in string name)

raises (Reject, TooMany);
void deleteAccount(in Account a);

};

The Bank interface defines two operations:

The newAccount() operation specifies via the raises expression that it can
raise two exceptions called Reject and TooMany . The exceptions Reject and
TooMany are defined within the Bank interface. The Reject exception defines a
member of type string , which is used to specify the reason that the bank
rejected the request to create a new account. The TooMany exception does not
define any members.

As well as user-defined exceptions, a set of standard exceptions is defined by
CORBA. These correspond to standard run-time errors that can occur during
the execution of a request. Refer to “System Exceptions” on page 329 for more
details.

Exceptions provide a clean way to allow an operation to raise an error to a
caller. It allows an operation to specify that it can raise a set of possible error
conditions. Because OMG IDL provides a separate syntax for exceptions, this
can be translated into exception handling code in programming languages that
support them (such as C++ and Ada).

Inheritance
The banking application example also needs to consider that there are many
types of bank account (for example, checking (or current) accounts and savings
accounts). Both checking accounts and savings accounts share the properties of
an account and respond to the same operations but these operations have
different behaviour. They can also have additional properties and operations.

newAccount() This creates an account whose owner is the person or
company whose name is passed as the parameter. The
operation returns a reference to an Account object.

deleteAccount() This deletes an account.
317

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 318 Tuesday, April 27, 1999 1:54 PM
The relationships among these interfaces can be described in a type hierarchy as
shown in Figure 19.1. The Account interface is called a base interface of
CheckingAccount and SavingsAccount . The interfaces CheckingAccount and
SavingsAccount are called derived interfaces of Account .

Figure 19.1: Inheritance

You can define interface CheckingAccount as follows:

// OMG IDL
interface CheckingAccount : Account {

readonly attribute overdraftLimit;
boolean orderChequeBook();

};

It defines one attribute overdraftLimit but it inherits the attributes balance
and owner defined in its base interface Account . Similarly, it inherits the
operations makeDeposit() and makeWithdrawal() from Account , and defines a
new operation orderChequebook() . An implementation of interface
CheckingAccount can provide code that is different to an implementation of
interface Account .

You can define interface SavingsAccount as follows:

// OMG IDL
interface SavingsAccount : Account {

float calculateInterest();
};

acco u n t

c h e c k in g a c c o u n t sa v in g s a c c o u n t
 318

I n t r od u c t i o n t o OM G I D L

COMet.book Page 319 Tuesday, April 27, 1999 1:54 PM
An interface can be derived from any number of base interfaces. This is known
as multiple inheritance. For example, a premium account might have the
properties of both a checking account and a savings account. This means it is an
interest earning account that can also have a cheque book. Thus the multiple
inheritance hierarchy is as shown in Figure 19.2.

Figure 19.2: Multiple Inheritance

The SavingsAccount interface is defined as follows:

// OMG IDL
interface SavingsAccount : Account {

float calculateInterest();
};

The PremiumAccount interface can then be specified as follows:

// OMG IDL
interface PremiumAccount :

CheckingAccount, SavingsAccount {
// New attributes and operations defined here.

};

If an interface inherits from two interfaces that contain a definition (constant,
type, or exception) of the same name, references to this interface in the derived
interface will be ambiguous unless the name of the definition is qualified by its
interface name (that is, unless a scoped name is provided). It is illegal to inherit
from two interfaces with the same operation or attribute name.

account

checking account savings account

premium account
319

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 320 Tuesday, April 27, 1999 1:54 PM
OMG IDL inheritance differs considerably from C++ inheritance. The latter has
variations such as private, protected, public and virtual that are not reflected in
OMG IDL. Public virtual inheritance in C++ is similar to OMG IDL inheritance.
An instance of a derived interface must behave as an instance of all of its base
interfaces. All of the attributes and operations on base interfaces are available on
instances of a derived interface.

The Basic Types of OMG IDL
Table 19.1 lists the basic types supported in OMG IDL.

Table 19.1: OMG IDL Basic Types

Type OMG IDL Identifier Description

Floating point float

double

IEEE single-precision
floating point numbers.

IEEE double-precision
numbers.

Integer long

short

unsigned long

unsigned short

–231...231-1 (32bit)

–215...215-1 (16bit)

0...232-1 (32bit)

0...216-1 (16bit)

Char char An 8-bit quantity.

Boolean boolean TRUE or FALSE

Octet octet An 8-bit quantity that is
guaranteed not to
undergo any conversion
during transmission.

Any any The any type allows the
specification of values that
can express an arbitrary
OMG IDL type.
 320

I n t r od u c t i o n t o OM G I D L

COMet.book Page 321 Tuesday, April 27, 1999 1:54 PM
Note: There is no int type in OMG IDL, and char cannot be qualified by
unsigned .

The any type allows an interface to specify that a parameter or result type can
contain an arbitrary type of value to be determined at runtime. For example:

// OMG IDL
interface I {

void op(in any a);
};

A process that receives an any must determine what type of value it contains
and then extract the value.

Constructed Types
As well as the basic types listed above, OMG IDL provides three constructed
types: struct , union and enum.

Structures

A struct data type allows related items to be packaged together. For example:

// OMG IDL
struct PersonalDetails {

string name;
short age;

};

interface Bank {
exception Reject {

string reason;
};
Account newAccount(in string name,

in short age) raises (Reject);
PersonalDetails getPersonalDetails(

in string name);
void deleteAccount(in account a);

};
321

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 322 Tuesday, April 27, 1999 1:54 PM
The struct PersonalDetails has two members: name of type string , and age
of type short . The operation getPersonalDetails() returns one of these
structs.

Enumerated Types

An enumerated type allows the members of a set of values to be depicted by
identifiers. For example:

// OMG IDL
enum colour { red, green, blue, yellow, white };

This is more readable than defining colour as a short . The order in which the
identifiers are named in the specification of an enumerated type defines the
relative order of the identifiers. This order can be used by a specific
programming language mapping that allows two enumerators to be compared.

Unions

The OMG IDL union type provides a space-saving type whereby the amount of
storage required for a union is the amount necessary to store its largest
element. A tag field is used to specify which member of a union instance is
currently assigned a value. For example:

// OMG IDL
union token switch (long) {

case 1 : long l;
case 2 : float f;
default: string str;

};

The identifier following the union keyword defines a new legal type. A union
type can also be named using a typedef declaration.

OMG IDL unions must be discriminated. This means the union header must
specify a tag field that determines which union member is assigned a value. In the
preceding example, the tag is called token and is of type long . Each expression
that follows the case keyword must be compatible with the tag type. The type
specified in parentheses after the switch keyword must be an integer, char,
boolean or enum type. A default case can appear at most once in a union
declaration.
 322

I n t r od u c t i o n t o OM G I D L

COMet.book Page 323 Tuesday, April 27, 1999 1:54 PM
Arrays
OMG IDL provides multi-dimensional fixed-size arrays to hold lists of elements
of the same type. The size of each dimension should be specified in the
definition. Some sample array types are as follows:

// OMG IDL
// A 1-dimensional array.
Account bankAccounts[100];

// A 2-dimensional array.
short gridArr[10][20];

Types bankAccounts and gridArr can be used, for example, to define
parameters to an operation.

Template Types
OMG IDL provides two template types, sequence and string , that are
described in the following subsections.

Sequences

An OMG IDL sequence data type allows lists of items to be passed between
objects. A sequence is similar to a one-dimensional array. It has two
characteristics: a maximum size that is fixed at compile time and a length that is
determined at runtime. A sequence differs from an array in that a sequence is
not of fixed size (although a bounded sequence has a fixed maximum size).
Hence, a sequence is a more flexible data type, and should be used in preference
to an array except when the list of elements to be passed is always of the same
size.

A sequence can be bounded or unbounded, depending on whether the
maximum size is specified. For example, the following type declaration:

// OMG IDL
sequence<long, 10> vectorTen;

defines a bounded sequence of size 10. The sequence vectorTen can be of any
length up to the bound (that is, 10).
323

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 324 Tuesday, April 27, 1999 1:54 PM
The following type declaration defines an unbounded sequence:

// OMG IDL
sequence<long> vector;

A sequence that is used within an interface definition must be named by a
typedef declaration before it can be used as the type of an attribute definition or
as a parameter to an operation. For example:

// OMG IDL
typedef sequence<long, 10> vectorTen;

attribute vectorTen vector;

// The following definition is not allowed:
attribute sequence<long, 10> illegalVector;

A sequence that appears within a struct or union definition does not have to be
named.

Strings

The string type has already been used. It is similar to a sequence of char . A
string can be bounded or unbounded depending on whether its length is
specified in the declaration. A length can be specified for a string as shown in
the following example:

// OMG IDL
interface Bank {

// Other details as before.

// A bounded string.
attribute string sortCode<10>;

// An unbounded string.
attribute string address;

};
 324

I n t r od u c t i o n t o OM G I D L

COMet.book Page 325 Tuesday, April 27, 1999 1:54 PM
Constants
A constant can be defined as follows:

// OMG IDL
interface Bank {

const long MaxAccounts = 100000;
// Rest of definition here.

};

The value of an OMG IDL constant cannot change. Constants can be defined in
an interface or module, or at global or file-level scope (outside of any interface
or module).

Constants of type long , unsigned long , short , unsigned short , char ,
boolean , float , double and string can be declared. Constants of type octet
cannot be declared.

Typedef Declaration
A typedef declaration can be used to define a meaningful or a more simple
name for a basic or a user-defined type. For example:

// OMG IDL
typedef short size;

defines size as a synonym for short . Consequently the parameter declaration:

// OMG IDL
in size i

is equivalent to:

// OMG IDL
in short i

The definition:

// OMG IDL
typedef Account Accounts[100];

allows a subsequent definition (for example, as a member of a structure):

// OMG IDL
Accounts bankAccounts;
325

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 326 Tuesday, April 27, 1999 1:54 PM
Forward Declaration

An interface must be declared before it is referenced. A forward declaration
declares the name of an interface without defining it. This allows the definition of
interfaces that mutually reference each other. The syntax is the keyword
interface followed by the identifier that names the interface. For example:

// OMG IDL
interface Bank;

The interface definition must appear later in the specification.

Scoped Names
An OMG IDL file forms a naming scope in which an identifier is defined and can
be referred to. Every OMG IDL identifier must be unique within a scope but an
identifier can be reused in distinct scopes. An interface is considered to
represent a distinct scope. Thus, names defined within an interface do not clash
with names defined outside of that interface (for example, in another interface
or at file level). The following type definitions also represent distinct scopes:
module, structure, union, operation and exception. The following type
definitions are treated as being scoped: types, constants, enumeration values,
exceptions, interfaces, attributes and operations.

A qualified or scoped name has the form <scoped_name>::<identifier> .
Within a scope, a name can be used in its unqualified form.

The Preprocessor
OMG IDL provides preprocessing directives that allow macro substitution,
conditional compilation and source file inclusion. The OMG IDL preprocessor is
based on the C++ preprocessor. For example, the #include directive allows an
OMG IDL file to be included in other files.

As for a C++ include file, the following directives should be used in an OMG IDL
file that is potentially included in many other OMG IDL files:
 326

I n t r od u c t i o n t o OM G I D L

COMet.book Page 327 Tuesday, April 27, 1999 1:54 PM
#ifndef <some_unique_name>
#define <some_unique_name>

Body of the idl file.

#endif

Other preprocessing directives available in OMG IDL are #define , #undef ,
#include , #if , #ifdef , #ifndef , #elif , #else , #endif , #defined , #error , and
#pragma .

The Orb.idl Include File
The interface names for the CORBA pseudo types NamedValue , Principal and
TypeCode are available in an OMG IDL file only if it includes the following
directive:

#include <orb.idl>

The interface name Object (the implicit base interface of all interfaces) is
available in all files.
327

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 328 Tuesday, April 27, 1999 1:54 PM
 328

COMet.book Page 329 Tuesday, April 27, 1999 1:54 PM
 20
System Exceptions

This chapter describes system exceptions that are defined by CORBA
or specific to Orbix.

Exceptions Defined by CORBA

Identifier Exception Description

10000 UNKNOWN The unknown exception.

10020 BAD_PARAM An invalid parameter was passed.

10040 NO_MEMORY Dynamic memory allocation failure.

10060 IMP_LIMIT Violated implementation limit.

10080 COMM_FAILURE Communication failure.

10100 INV_OBJREF Invalid object reference.

10120 NO_PERMISSION No permission for attempted operation.

10140 INTERNAL ORB internal error.

10160 MARSHAL Error marshalling parameter/result.

10180 INITIALIZE ORB initialisation failure.

10200 NO_IMPLEMENT Operation implementation unavailable.

10220 BAD_TYPECODE Bad TypeCode .

10240 BAD_OPERATION Invalid operation.
329

O r b i x COM e t D e s k t op P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 330 Tuesday, April 27, 1999 1:54 PM
Table 20.1: CORBA-Defined Exceptions

Orbix-Specific Exceptions

Table 20.2: Orbix-Specific Exceptions

10260 NO_RESOURCES Insufficient resources for request.

10280 NO_RESPONSE Response to request not yet available.

10300 PERSIST_STORE Persistent storage failure.

10320 BAD_INV_ORDER Routine invocations out of order.

10340 TRANSIENT Transient failure—reissue request.

10360 FREE_MEM Cannot free memory.

10380 INV_IDENT Invalid identifier syntax.

10400 INV_FLAG Invalid flag was specified.

10420 INTF_REPOS Error accessing Interface Repository.

10440 BAD_CONTEXT Error processing context object.

10460 OBJ_ADAPTOR Failure detected by object adaptor.

10480 DATA_CONVERSION Data conversion error.

Identifier Exception Description

10500 FILTER_SUPPRESS Suppress exception raised in per-object pre-
filter.

10520 LOCATOR Locator error.

10540 ASCII_FILE ASCII file error.

10560 LICENCING Licencing error.

10580 VXWORKS_EX VxWorks error.

10600 IIOP IIOP error.

10620 NO_CONFIG_VALUE No configuration value set for one of the
mandatory configuration entries.
 330

Index

COMet.book Page 331 Tuesday, April 27, 1999 1:54 PM
Symbols
_get_BadKind() 295
_get_Bounds() 295
_get_CORBAAnyData() 286
_get_Host() 298
_get_Marker() 298
_get_typeCode() 287
_get_value() 286
_put_CORBAAnyData() 286
_put_Host() 298
_put_Marker() 298
_put_value() 286

A
AbortSlowConnects() 272, 304
Activate() 242, 284
ActivateCVHandler() 272, 304
ActivateOutputHandler() 272, 304
ActivatePersistent 243
activating CORBA servers 180, 187
adding new information to the type store

using the command line 131
using the GUI tool 123

any 246, 286
anys

mapping from CORBA to Automation 63
mapping from CORBA to COM 97

API 241
applications

deploying 227–238
arrays

mapping from COM to CORBA 114
mapping from CORBA to Automation 60
mapping from CORBA to COM 93
OMG IDL definition 323

attributes 314
mapping from CORBA to Automation 45
mapping from CORBA to COM 84

Automation client 8
Automation interfaces

DCollection 244
DIany 245
DICORBAAny 245
DICORBAFactory 249
DICORBAFactoryEx 251
DICORBAObject 252
DICORBAStruct 254
DICORBASystemException 255
DICORBATypeCode 256
DICORBAUnion 259
DICORBAUserException 259
DIForeignComplexType 260
DIForeignException 260
DIObject 261
DIObjectInfo 261
DIOrbixObject 262
DIOrbixORBObject 266
DIOrbixServerAPI 241
DIORBObject 278
IForeignObject 281

Automation server 9

B
base interfaces

finding 273
BaseInterfacesOf() 273, 305
basic types 320

mapping from Automation to CORBA 72
mapping from COM to CORBA 106
mapping from CORBA to Automation 42
mapping from CORBA to COM 82

Bind() 263
binding

early 148
late 148
PingDuringBind() 270, 302
to objects 263
View to target 16, 29

bridge 5, 6
bridge cache

priming 214

C
caching mechanism 212
callbacks 201–209

implementing 202
ReclaimCallbackStore() 272

catching COM exceptions 197
331

O r b i x C OMe t D e s k t o p P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 332 Tuesday, April 27, 1999 1:54 PM
clients
building 20
collocation 274, 306
example in C++ COM 159–162
example in PowerBuilder 155–158
example in Visual Basic 150–155
implementing 27, 135–162
implementing in Automation 11–21
implementing in COM 23–32
running 20, 32
writing 168, 203

clone() 262
CloseChannel() 274, 298, 306
CoCreateInstance() 30
Collocated() 274, 306
collocation 274, 306
COM apartments and threading 158
COM client 8
COM interfaces

ICORBA_Any 285
ICORBA_TypeCode 290
ICORBA_TypeCodeExceptions 294
IForeignObject 295
IMonikerProvider 296
IOrbixObject 297
IOrbixORBObject 299
IOrbixServerAPI 283
IORBObject 310

COM library 8
COM server 9
command line tools 131
configuration

GetConfigValue() 275, 307
ReinitialiseConfig() 277, 308
SetConfigValue() 276, 308

configuration handlers
activating 272, 304
deactivating 272, 304
order of 273, 305

configuration keys
common 224
Orbix 225
OrbixCOMet 219

connecting
AbortSlowConnects() 272, 304
ConnectionTimeout() 269, 300
EagerListeners() 275, 307
MaxConnectRetries() 269, 301
NoReconnectOnFailure() 271, 303

ConnectionTimeout() 269, 300
 332
constants 325
mapping from COM to CORBA 117
mapping from CORBA to Automation 66
mapping from CORBA to COM 100

constructed types 321
creating 53, 89, 251
mapping from COM to CORBA 111
mapping from CORBA to Automation 53
mapping from CORBA to COM 89

content_type() 249, 259, 294
context 63, 98
CORBA client 9
CORBA clients

implementing in Automation 148
implementing in COM 158

CORBA exceptions
handling in Automation 193
handling in COM 197
properties of 192
raising in a server 199

CORBA server 8
CORBA servers

from Automation server 178
from COM server 186
implementing in Automation 175
implementing in COM 180

CORBA.ORB.2 268
CORBA.ORB.Orbix 268
Count() 244
CreateObject() 141, 249, 288
CreateType() 53, 252
CreateTypeById() 252
creating

constructed types 53, 89, 251
exceptions 53, 89, 251
structs 53, 89, 251
unions 53, 89, 251

creating a type library 12
using the command line 132
using the GUI tool 126

creating an IDL file 24
using the command line 131
using the GUI tool 124

D
DCollection 244
Deactivate() 243, 284
DeactivateCVHandler() 272, 304
DeactivateOutputHandler() 273, 305
deactivating CORBA servers 180, 187

I n d e x

COMet.book Page 333 Tuesday, April 27, 1999 1:54 PM
default_index() 248, 258, 293
DefaultTxTimeout() 274, 306
deleting the type store contents

using the command line 131
using the GUI tool 124

deploying applications 227–238
deployment models 228–235

bridge on each client machine 231
bridge on server machine 235
bridge shared by multiple clients 234
DCOM on-the-wire with OrbixCOMet 232
internet 228

diagnostics
output() 276, 308
SetDiagnostics() 277, 309

DIany 245
DICORBAAny 245
DICORBAFactory 138, 249
DICORBAFactoryEx 53, 251
DICORBAObject 147, 252
DICORBAStruct 53, 254
DICORBASystemException 62, 192, 255
DICORBATypeCode 256
DICORBAUnion 55, 259
DICORBAUserException 259
DIForeignComplexType 53, 260
DIForeignException 192, 260
DIObject 261
DIObjectInfo 261
DIOrbixObject 147, 262
DIOrbixORBObject 136, 266
DIOrbixServerAPI 163, 241
DIORBObject 136, 278
discriminator_type() 248, 258, 293
DispatchEvents() 243, 284

E
EagerListeners() 275, 307
early binding 148
enums 322

mapping from Automation to CORBA 79
mapping from COM to CORBA 118
mapping from CORBA to Automation 67
mapping from CORBA to COM 101

equal() 291
equivalence

of object references 253
Err object 194
error handling 189–199
EX_completionStatus() 255
EX_Id() 261
EX_majorCode() 261
EX_minorCode() 255
exception handling

inline 194
exceptions 189–199, 316

creating 53, 89, 251
handling in Automation 193
handling in COM 197
mapping from COM to CORBA 114
mapping from CORBA to Automation 60
mapping from CORBA to COM 94
properties of 192
raising in a server 199

exposing DCOM servers to CORBA clients 163

F
Factory

CORBA 15, 28
FileDescriptor() 298
finding object references 137
forward declaration 326

G
generating a smart proxy

using the command line 133
using the GUI tool 128

generating server stub code
using the GUI tool 129

generating skeleton code 174, 203
get_moniker() 297
GetConfigValue() 275, 307
GetCORBAObject() 280
GetForeignReference() 281, 282, 296
GetImplementation() 253
GetInitialReferences() 280, 312
GetInterface() 253
GetItem() 244
GetObject 138
GetObject() 138, 250, 251, 287, 288

example 15, 203
parameter to 138

GetRepositoryId() 282
GetServerAPI() 309
GetUniqueId() 296
333

O r b i x C OMe t D e s k t o p P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 334 Tuesday, April 27, 1999 1:54 PM
H
handling exceptions

in Automation 193
in COM 197

Hash() 254
HasValidOpenChannel() 298
Host() 265

I
ICORBA_Any 285
ICORBA_TypeCode 290
ICORBA_TypeCodeExceptions 294
ICORBAFactory 138
ICORBAObject 147
id() 246, 257, 292
IDL file

creating 124, 131
IDL interface

creating 24
IDL operations 146
IForeignObject 281, 295
IMonikerProvider 296
implementation repository

registering CORBA servers 20, 32, 188
implementing

Automation client 11–21
callbacks 202
COM client 23–32
CORBA clients in Automation 148
CORBA clients in COM 158
CORBA servers in Automation 175
CORBA servers in COM 180
interfaces 175
server for client callbacks 205

inheritance 317
mapping from CORBA to COM 86

inline exception handling
in Automation 194

installing
the OrbixCOMet runtime 236
your application runtime 235
your development language runtime 235

INSTANCE_clone() 260
INSTANCE_repositoryId() 260
interfaces 313

finding base interfaces 273, 305
IDL, implementing 175
mapping from Automation to CORBA 73
mapping from COM to CORBA 108
mapping from CORBA to Automation 43
 334
mapping from CORBA to COM 83
to CORBA objects 147
to ORB 136

internet deployment 228
Internet Explorer 228
interworking 4
interworking interfaces on objects 147
interworking model 5

implementation of 6
introduction to OMG IDL 313
IOrbixObject 147, 297
IOrbixORBObject 136, 299
IOrbixServerAPI 163, 283
IORBObject 136, 310
IsA() 253
IsBaseInterfaceOf() 273, 305
IsEquivalent() 253
IsNil() 253
Item() 244

K
kind() 246, 291

L
late binding 148
length() 248, 258, 294
libraries

Orbix runtime 236
LoadHandler 277
LoadHandler() 309

M
managing the type store 211–217
mapping Automation objects to CORBA 71–80
mapping COM objects to CORBA 105–119
mapping CORBA objects to Automation 41–69
mapping CORBA objects to COM 81–103
mapping from Automation to CORBA

basic types 72
enums 79
interfaces 73
methods 75
object references 78
properties 74
safearrays 76
strings 73
typedefs 80
variants 78

I n d e x

COMet.book Page 335 Tuesday, April 27, 1999 1:54 PM
mapping from COM to CORBA
arrays 114
basic types 106
constants 117
constructed types 111
enums 118
exceptions 114
interfaces 108
operations 109
pointers 113
properties 108
scoped names 118
strings 107
structs 111
typedefs 119
unions 111
variants 117

mapping from CORBA to Automation
anys 63
arrays 60
attributes 45
basic types 42
constants 66
constructed types 53
enums 67
exceptions 60
interfaces 43
modules 65
object references 63
operations 46
scoped names 68
sequences 57
strings 43
structs 53
typedefs 68
unions 55

mapping from CORBA to COM
anys 97
arrays 93
attributes 84
basic types 82
constants 100
constructed types 89
enums 101
exceptions 94
inheritance 86
interfaces 83
modules 99
object references 98
operations 85
scoped names 102
sequences 92
strings 82
structs 90
typedefs 103
unions 91

marker() 265
markers 16, 28

setting 265
MaxConnectRetries() 269, 301
member_count() 247, 257, 292
member_label() 248, 258, 293
member_name() 247, 257, 292
member_type() 247, 258, 293
methods

mapping from Automation to CORBA 75
minimising your client-side footprint 237
modules 316

mapping from CORBA to Automation 65
mapping from CORBA to COM 99

N
name() 247, 257, 292
Naming Service 141
Narrow() 149, 264, 278
narrowing 148, 158

object references 148, 158, 264, 278
nil object references 253
NonExistent() 254
NoReconnectOnFailure() 271, 303

O
object references 148, 158

binding 263
converting to strings 279, 310
equivalent 253
finding 137–146
getting foreign 281, 296
mapping from Automation to CORBA 78
mapping from CORBA to Automation 63
mapping from CORBA to COM 98
narrowing 264, 278
nil 253

object table
resizing 271, 303

objects
instantiating in bridge 179, 187
interface to CORBA 147
registering with OrbixCOMet 178, 186
335

O r b i x C OMe t D e s k t o p P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 336 Tuesday, April 27, 1999 1:54 PM
ObjectToString() 279, 280, 310, 311
obtaining a reference to a CORBA object

in Automation 15
in COM 28

obtaining a reference to the ORB 136
OMG IDL

arrays 323
attributes 314
basic types 320
constants 325
constructed types 321
enums 322
exceptions 316
forward declaration 326
inheritance 317
interfaces 313
modules 316
oneway operations 315
operations 314
orb.idl 327
scoped names 326
sequences 323
strings 324
structs 321
typedefs 325
unions 322

OMG IDL preprocessor 326
OMG IDL template types

sequences 323
strings 324

operations 314
mapping from COM to CORBA 109
mapping from CORBA to Automation 46
mapping from CORBA to COM 85
oneway 315

ORB
interface to 136
obtaining reference to 136

orb.idl 327
Orbix

interface to 136
runtime 236

Orbix object name
parameter string examples 140
specifying 138

output handlers
activating 272, 304
deactivating 273, 305

Output() 276, 308
 336
P
parameter to GetObject() 138
PingDuringBind() 270, 302
PlaceCVHandlerAfter() 273, 305
PlaceCVHandlerBefore() 273, 305
pointers

mapping from COM to CORBA 113
preprocessor 326
priming the bridge cache 214

from the interface repository 216
from type libraries 216

properties
mapping from Automation to CORBA 74
mapping from COM to CORBA 108
of exceptions 192

putit command 21, 32, 188

Q
qualified names 326

R
raising an exception in a server 199
rebuilding the type store

using the GUI tool 124
ReclaimCallbackStore() 272
references

See object references 253
registering a CORBA server in the implementation

repository 188
registering objects 178, 186
ReinitialiseConfig() 277, 308
replacing an existing DCOM server 133
ReSizeObjectTable() 271, 303
ResolveInitialReference() 280, 312
running a server 187
runtime

application 235
language 235
Orbix 236

S
safearrays

mapping from Automation to CORBA 76
scoped names 326

mapping from COM to CORBA 118
mapping from CORBA to Automation 68
mapping from CORBA to COM 102

scoped_name() 262

I n d e x

COMet.book Page 337 Tuesday, April 27, 1999 1:54 PM
sequences 323
mapping from CORBA to Automation 57
mapping from CORBA to COM 92

servers
activating 180, 187, 242, 284
Automation to CORBA 178
collocation 274, 306
COM to CORBA 186
deactivating 180, 187, 243, 284
implementing 173–188
implementing for client callbacks 205
registering 20, 32

SetConfigValue() 276, 308
SetDiagnostics() 277, 309
SetItem() 244
SetObjectImpl() 243, 285
SetObjectImplPersistent 243
ShutDown() 277, 309
Smart 128, 133
smart proxy

generating 128, 133
specifying the Orbix object name 138
StartUp 277
StartUp() 309
stringified object references 279, 310
strings 324

mapping from Automation to CORBA 73
mapping from COM to CORBA 107
mapping from CORBA to Automation 43
mapping from CORBA to COM 82

StringToObject() 280, 311
structs 321

creating 53, 89, 251
mapping from COM to CORBA 111
mapping from CORBA to Automation 53
mapping from CORBA to COM 90

stub code
generating 129

system exceptions 192
defined by CORBA 329
mapping from CORBA to Automation 62
mapping from CORBA to COM 96
Orbix-specific 330

T
tag field 322
template types

sequences 323
strings 324

timeouts
for remote calls 274, 306
transparent interworking 4
two-way interworking 4
Type 126, 132
type library

creating 12, 126, 132
type store

adding new information 123, 131
configuration issues 213
deleting 124, 131
managing 211–217
rebuilding 124

type_name() 262
typedefs 325

mapping from Automation to CORBA 80
mapping from COM to CORBA 119
mapping from CORBA to Automation 68
mapping from CORBA to COM 103

U
unions 322

creating 53, 89, 251
discriminated 322
mapping from COM to CORBA 111
mapping from CORBA to Automation 55
mapping from CORBA to COM 91

unique_id() 262
usage models 33–39

Automation client to CORBA server 34
COM client to CORBA server 36
CORBA client to COM/Automation server 38

user exceptions
mapping from CORBA to Automation 61
mapping from CORBA to COM 94

using direct-to-COM support 198
using OrbixCOMet with Internet Explorer 228

V
value() 246
variants

mapping from Automation to CORBA 78
mapping from COM to CORBA 117

Views 5
views

obtaining reference to in Automation 14
obtaining reference to in COM 27

W
writing a client 168, 203
337

O r b i x C OMe t D e s k t o p P r o g r amme r ’ s G u i d e a n d R e f e r e n c e

COMet.book Page 338 Tuesday, April 27, 1999 1:54 PM
 338

	Preface
	Audience
	Organisation of this Guide
	Part I, Programmer’s Guide
	Part II, Programmer’s Reference

	Document Conventions

	1. Introduction to OrbixCOMet
	Two-way Interworking
	Transparent Interworking
	The Interworking Model
	How OrbixCOMet Implements the Interworking Model

	2. Getting Started on Automation
	Phone Book Example
	Creating a Type Library

	Implementing the Client
	Obtaining a Reference to a CORBA Object
	The Client Code
	Building the Client

	Running the Client

	3. Getting Started on COM
	Phone Book Example
	Obtaining a MIDL Interface
	Building a Proxy/Stub DLL

	Implementing the Client
	Obtaining a Reference to a CORBA Object
	Using CoCreateInstance()
	The Client Code
	Building the Client

	Running the Client

	4. Usage Models and Bridge Locations
	Automation Client to CORBA Server
	COM Client to CORBA Server
	CORBA Client to COM/Automation Server

	5. Mapping CORBA Objects to Automation
	Translation of Basic Types
	Translation of Strings
	Translation of Interfaces
	Translation of Attributes
	Translation of Operations
	Translation of Inheritance

	Translation of Complex Types
	Translation of Constructed Types
	Creating Constructed OMG IDL Types
	Translation of Structs
	Translation of Unions
	Translation of Sequences
	Translation of Arrays
	Translation of Exceptions
	Translation of the Any Type
	Context Clause

	Translation of Object References
	Object Reference Parameters and IForeignObject

	Translation of Modules
	Translation of Constants
	Translation of Enumerated Types
	Translation of Scoped Names
	Translation of Typedefs

	6. Mapping Automation Objects to CORBA
	Translation of Basic Types
	Translation of Strings
	Translation of Interfaces
	Translation of Properties
	Translation of Methods
	Translation of Inheritance

	Translation of SafeArrays
	Translation of Exceptions
	Translation of Variants
	Translation of Object References
	Translation of Enumerated Types
	Translation of Typedefs

	7. Mapping CORBA Objects to COM
	Translation of Basic Types
	Translation of Strings
	Translation of Interfaces
	Translation of Attributes
	Translation of Operations
	Translation of Inheritance

	Translation of Complex Types
	Translation of Constructed Types
	Creating Constructed OMG IDL Types
	Translation of Structs
	Translation of Unions
	Translation of Sequences
	Translation of Arrays
	Translation of Exceptions
	Translation of the Any Type
	Context Clause

	Translation of Object References
	Translation of Modules
	Translation of Constants
	Translation of Enumerated Types
	Translation of Scoped Names
	Translation of Typedefs

	8. Mapping COM Objects to CORBA
	Translation of Basic Types
	Translation of Strings
	Translation of Interfaces
	Translation of Properties
	Translation of Operations
	Translation of Inheritance

	Translation of Complex Types
	Translation of Constructed Types
	Translation of Structs
	Translation of Unions
	Translation of Pointers
	Translation of Arrays
	Translation of Exceptions
	Translation of Variants

	Translation of Constants
	Translation of Enumerated Types
	Translation of Scoped Names
	Translation of Typedefs

	9. Development Support Tools
	Type Store GUI Tools
	The OrbixCOMet Tools Screen
	Adding New Information to the Type Store
	Refreshing the Display
	Deleting the Type Store Contents
	Rebuilding the Type Store
	Creating an IDL File
	Creating a Type Library
	Generating a Smart Proxy
	Generating Server Stub Code and Support for Callbacks

	Type Store Command Line Tools
	Replacing an Existing DCOM Server

	10. Implementing CORBA Clients
	Interface to the ORB
	Obtaining a Reference to the ORB

	Finding Object References
	The (D)ICORBAFactory Interface
	The Naming Service
	IDL Operations

	Interworking Interfaces on Objects
	Implementing CORBA Clients in Automation
	Late Binding
	Early Binding
	Narrowing Object References
	A Visual Basic Client Program
	A PowerBuilder Client Program

	Implementing CORBA Clients in COM
	COM Apartments and Threading
	Narrowing Object References
	A C++ COM Client Program

	11. Exposing DCOM Servers to CORBA Clients
	An Existing DCOM Server
	Exposing the DCOM Server to CORBA
	Using the Server from CORBA
	Writing a Client to Talk to the DCOM Server
	CORBA Client Example Using Composable Support
	Connection and Usage from Other ORBs

	12. Implementing CORBA Servers
	Defining the Interfaces
	Generating the Skeleton Code
	Implementing CORBA Servers in Automation
	Implementing the Interfaces
	Registering with OrbixCOMet

	Implementing CORBA Servers in COM
	Implementing the Interfaces
	Registering with OrbixCOMet

	Running the Server
	Registering the CORBA Server in the Implementation Repository

	13. Error Handling
	CORBA Exceptions
	Example of User Exception
	Exception Properties
	System Exception Properties

	Exception Handling in Automation
	Exception Handling in Visual Basic
	Inline Exception Handling
	Using Type Information
	Using the Standard Interfaces

	Exception Handling in COM
	Catching COM Exceptions
	Using Direct-to-COM Support in Visual C++ 5.0

	Raising an Exception in a Server
	Automation Exceptions
	COM Exceptions

	14. Client Callbacks
	Implementing Callbacks
	The OMG IDL Interfaces
	Generating Skeleton Code
	Writing a Client
	Implementing the Server
	Invoking the Operation
	Registering the Callback Object Server

	15. Managing the Type Store
	The Caching Mechanism
	Type Store Configuration Issues
	Inserting Information into the Type Store
	Removing the Contents of the Type Store
	Priming the Bridge Cache
	Prime from the Interface Repository
	Prime from Type Libraries
	Dumping Contents of the Cache

	16. OrbixCOMet Configuration
	OrbixCOMet Keys
	Common Keys
	Orbix Keys

	17. Deploying your OrbixCOMet Application
	Deployment Models
	Internet Deployment
	Bridge on Each Client Machine
	DCOM On-the-Wire with OrbixCOMet
	Bridge Shared by Multiple Clients
	Bridge on Server Machine

	Deployment Steps
	Installing Your Application Runtime
	Installing the Development Language Runtime
	Installing the OrbixCOMet Runtime
	Minimising Your Client-Side Footprint

	18. OrbixCOMet API
	Automation Interfaces
	DIOrbixServerAPI
	DCollection
	DICORBAAny
	DICORBAFactory
	DICORBAFactoryEx
	DICORBAObject
	DICORBAStruct
	DICORBASystemException
	DICORBATypeCode
	DICORBAUnion
	DICORBAUserException
	DIForeignComplexType
	DIForeignException
	DIObject
	DIObjectInfo
	DIOrbixObject
	DIOrbixORBObject
	DIORBObject
	IForeignObject

	COM Interfaces
	IOrbixServerAPI
	ICORBA_Any
	ICORBAFactory
	ICORBAObject
	ICORBA_TypeCode
	ICORBA_TypeCodeExceptions
	IForeignObject
	IMonikerProvider
	IOrbixObject
	IOrbixORBObject
	IORBObject

	19. Introduction to OMG IDL
	OMG IDL Interfaces
	Oneway Operations
	Context Clause
	Modules
	Exceptions
	Inheritance
	The Basic Types of OMG IDL
	Constructed Types
	Structures
	Enumerated Types
	Unions

	Arrays
	Template Types
	Sequences
	Strings

	Constants
	Typedef Declaration
	Forward Declaration

	Scoped Names
	The Preprocessor
	The Orb.idl Include File

	20. System Exceptions
	Exceptions Defined by CORBA
	Orbix-Specific Exceptions

