
OrbixNames 
Programmer’s and 
Administrator’s Guide

IONA Technologies PLC
June 1999



Orbix is a Registered Trademark of IONA Technologies PLC.
OrbixNames is a Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind 
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. 
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in 
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.
COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, 
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual 
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC 
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are 
subject to change without notice.
© 1991-1999 IONA Technologies PLC. All rights reserved. 

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as 
designated by the companies that market those products.
M 2 2 8 4



Contents
Preface ix
Audience ix
Organization of this Guide ix
Document Conventions x

Part I   Introduction

Chapter 1   Introduction to the CORBA Naming Service 3
The Interface to the Naming Service 4

Format of Names in the Naming Service 4
IDL Interfaces to the Naming Service 5

Using the Naming Service 6
Associating a Name with an Object 6
Using Names to Find Objects 6
Associating a Compound Name with an Object 7
Removing Bindings from the Naming Service 8

Convention for String Format of Names 9

Part II   OrbixNames C++ Programmer’s Guide

Chapter 2   C++ Programming with OrbixNames 13
Developing an OrbixNames Application 14

Making Initial Contact with the Naming Service 15
Binding Names to Objects 16
Resolving Object Names in Clients 19
Iterating through Context Bindings 20
Finding Unreachable Context Objects 23

Compiling and Running an Application 24
Configuring OrbixNames 25
Registering the OrbixNames Server 25
Options to the OrbixNames Server 26
iii



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Running OrbixNames in a Secure System 28
Configuring SSL Support in OrbixNames 28
Writing the OrbixNames IOR to a File 30
Configuring Clients to Read the OrbixNames IOR 31
Running the OrbixNames Server 31
Running the OrbixNames Utilities 32

Federation of Name Spaces 32

Chapter 3   Load Balancing with OrbixNames Using C++ 37
The Need for Load Balancing 37
Introduction to Load Balancing in OrbixNames 39

The Interface to Object Groups in OrbixNames 40
Using Object Groups in OrbixNames 41

Example of Load Balancing with Object Groups 44
Defining the IDL for the Application 44
Creating an Object Group and Adding Objects 46
Creating Replicated Objects 55
Accessing the Objects from a Client 58

Part III   OrbixNames Java Programmer’s Guide

Chapter 4   Java Programming with OrbixNames 63
Developing an OrbixNames Application 64

Making Initial Contact with the Naming Service 65
Binding Names to Objects 66
Resolving Object Names in Clients 69
Iterating through Context Bindings 71
Finding Unreachable Context Objects 73

Compiling and Running an Application 74
Compiling and Running the demo Application 75
Configuring OrbixNames 76
Registering the OrbixNames Server 76
Options to the OrbixNames Server 76

Running OrbixNames in a Secure System 78
Configuring SSL Support in OrbixNames 79
Writing the OrbixNames IOR to a File 81
Configuring Clients to Read the OrbixNames IOR 81
 iv



Running the OrbixNames Server 82
Running the OrbixNames Utilities 83

Federation of Name Spaces 83

Chapter 5   Load Balancing with OrbixNames Using Java 85
The Need for Load Balancing 85
Introduction to Load Balancing in OrbixNames 87

The Interface to Object Groups in OrbixNames 88
Using Object Groups in OrbixNames 89

Example of Load Balancing with Object Groups 92
Defining the IDL for the Application 92
Creating an Object Group and Adding Objects 94
Creating Replicated Objects 103
Accessing the Objects from a Client 106

Part IV   OrbixNames Administrator’s Guide

Chapter 6   Using the OrbixNames Utilities 113
Managing Name Bindings 114

Using the Name Utilities 115
Syntax of the Name Management Utilities 120

Managing Object Groups 122
Using the Object Group Utilities 122
Syntax of the Object Group Utilities 124

Chapter 7   The OrbixNames Browser 127
Starting the OrbixNames Browser 128
Connecting to an OrbixNames Server 129
Connecting to a Secure OrbixNames Server 130
Disconnecting from an OrbixNames Server 133
Managing Naming Contexts 134

Creating a Naming Context 134
Modifying a Naming Context 134
Removing a Naming Context 136

Managing Object Names 136
Binding a Name to an Object 137
v



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Modifying an Object Binding 139
Removing an Object Name 139
Navigating the OrbixNames Browser Button Bar 140

Part V   OrbixNames Programmer’s Reference

CosNaming 143

CosNaming::BindingIterator 149

CosNaming::NamingContext 151

LoadBalancing 165

LoadBalancing::ObjectGroup 171

LoadBalancing::ObjectGroupFactory 175

LoadBalancing::RandomObjectGroup 179

LoadBalancing::RoundRobinObjectGroup 181
 vi



Part VI   Appendices

Appendix A   Configuration Variables 185

Index 189
vii



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 viii



Preface
OrbixNames is IONA Technologies’ implementation of the CORBA Naming 
Service. This service allows you to associate abstract names with CORBA 
objects and to locate objects using those names.

Audience
This guide is intended for use by application programmers who wish to 
familiarize themselves with the Naming Service, and OrbixNames in particular. 
Before reading this guide, you should be familiar with either the C++ or the Java 
programming language and Orbix application programming.

Organization of this Guide
This guide is divided into the following parts:

Part I, “Introduction”

This part introduces the CORBA Naming Service and describes the features of 
the Naming Service specification.

Part II, “OrbixNames C++ Programmer’s Guide”

Part II describes how C++ programmers can use OrbixNames to take advantage 
of the CORBA Naming Service in their applications. It also describes 
OrbixNames extensions to this service that facilitate the implemention of load 
balancing in CORBA servers.

Part III, “OrbixNames Java Programmer’s Guide”

Part III describes how Java programmers can use OrbixNames to take advantage 
of the CORBA Naming Service in their applications. It also describes 
OrbixNames extensions to this service that facilitate the implemention of load 
balancing in CORBA servers.
ix



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Part IV, “OrbixNames Administrator’s Guide”

Part IV describes the OrbixNames command-line utilities and graphical browser. 
This allow administrators to access the CORBA Naming Service without writing 
applications.

Part V, “OrbixNames Programmer’s Reference”

Part V provides a complete reference for the programming interface to 
OrbixNames, defined in the CORBA Interface Definition Language (IDL).

Part VI, “Appendices”

Part VI describes the configuration options available for OrbixNames.

Document Conventions
This guide uses the following typographical conventions:  

Constant width Constant width in normal text represents portions of code 
and literal names of items such as classes, functions, 
variables, and data structures. For example, text might refer 
to the CORBA::Object class.

Constant width paragraphs represent code examples or 
information a system displays on screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new 
terms.

Italic words or characters in code and commands represent 
variable values you must supply, such as arguments to 
commands or path names for your particular system. For 
example:

% cd /users/your_name
 x



P r e f a c e
This guide may use the following keying conventions: 

< > Some command examples use angle brackets to represent variable 
values you must supply. This is an older convention.

...... 

Horizontal or vertical ellipses in format and syntax descriptions 
indicate that material has been eliminated to simplify the discussion.

[ ] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format 
and syntax descriptions.

| A vertical bar separates items in a list of choices enclosed in { } 
(braces) in format and syntax descriptions.
xi



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 xii



Part I
Introduction





 1
Introduction to the CORBA 
Naming Service

OrbixNames is IONA Technologies’ implementation of the CORBA 
Naming Service, a service that allows you to associate abstract 
names with CORBA objects in your applications. This chapter 
describes the features of the CORBA Naming Service.

The Naming Service is a standard service for CORBA applications, defined in the 
Object Management Group’s (OMG) CORBAservices specification. The Naming 
Service allows you to associate abstract names with CORBA objects and allows 
clients to find those objects by looking up the corresponding names. This service 
is both very simple and very useful.

A server that holds a CORBA object binds a name to the object by contacting 
the Naming Service. To obtain a reference to the object, a client requests the 
Naming Service to look up the object associated with a specified name. This is 
known as resolving the object name. The Naming Service provides interfaces 
defined in IDL that allow servers to bind names to objects and clients to resolve 
those names.

Most CORBA applications make some use of the Naming Service. Locating a 
particular object is a common requirement in distributed systems and the 
Naming Service provides a simple, standard way to do this. 
3



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
The Interface to the Naming Service
The Naming Service maintains a database of names and the objects associated 
with them. An association between a name and an object is called a binding. The 
IDL interfaces to the Naming Service provide operations to access the database 
of bindings. For example, you can create new bindings, resolve names, and delete 
existing bindings.

OrbixNames is implemented as a normal Orbix server. This server contains 
objects which support the standard IDL interfaces to the Naming Service. These 
interfaces are defined in the IDL module CosNaming:

// IDL
module CosNaming {

// Naming Service IDL definitions.
...

};

Part V of this guide on page 145 provides a full reference for the definitions in 
this module. The remainder of this chapter provides a brief overview of the 
most commonly used definitions.

Format of Names in the Naming Service

In the CORBA Naming Service, names can be associated with two types of 
object: a naming context or an application object. A naming context is an object 
in the Naming Service within which you can resolve the names of other objects. 

Naming contexts are organized into a naming graph, which may form a naming 
hierarchy much like that of a filing system. Using this analogy, a name bound to a 
naming context would correspond to a directory and a name bound to an 
application object would correspond to a file.

The full name of an object, including all the associated naming contexts, is known 
as a compound name. The first component of a compound name gives the name 
of a naming context, in which the second component is accessed. This process 
continues until the last component of the compound name has been reached.

The notion of a compound name is common in filing systems. For example, in 
UNIX, compound names take the form /aaa/bbb/ccc; in Windows they take 
the form C:\aaa\bbb\ccc. A compound name in the Naming Service takes a 
more abstract form: an IDL sequence of name components.
 4



I n t r o d u c t i o n  t o  t h e  CORB A  N am i n g  S e r v i c e
Name components are not simple strings. Instead, a name component is defined 
as an IDL structure, of type CosNaming::NameComponent, that holds two strings:

// IDL
// In module CosNaming.
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

A name is a sequence of these structures:

typedef sequence<NameComponent> Name;

The id member of a NameComponent is a simple identifier for the object; the 
kind member is a secondary way to differentiate objects and is intended to be 
used by the application layer. For example, you could use the kind member to 
distinguish the type of the object being referred to. The semantics you choose 
for this member are not interpreted by OrbixNames.

Both the id and kind members of a NameComponent are used in name 
resolution. Two names that differ only in the kind member of one 
NameComponent are considered to be different names.

IDL Interfaces to the Naming Service

The IDL module CosNaming contains two interfaces that allow your applications 
to access the Naming Service:

The remainder of this chapter describes how you use the NamingContext 
interface to do simple Naming Service operations, such as binding names to your 
application objects and resolving those names in your clients.

NamingContext Provides the operations that allow you to access the main 
features of the Naming Service, such as binding and 
resolving names.

BindingIterator Allows you to read each element in a list of bindings. Such 
a list may be returned by operations of the 
NamingContext interface.
5



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Using the Naming Service
The first step in using the Naming Service is to get a reference to the root 
naming context. The root naming context is an object, of type 
CosNaming::NamingContext, which acts as an entry point to all the bindings in 
the Naming Service.

This section describes some of the operations you can call on the root naming 
context, or other naming contexts created by you, to do basic Naming Service 
tasks.

Associating a Name with an Object

The operation CosNaming::NamingContext::bind() allows you to bind a name 
to an object in your application. This operation is defined as:

void bind (in Name n, in Object o)
raises (NotFound, CannotProceed,
        InvalidName, AlreadyBound);

To use this operation, you first create a CosNaming::Name structure containing 
the name you want to bind to your object. You then pass this structure and the 
corresponding object reference as parameters to bind().

Using Names to Find Objects

Given an abstract name for an object, you can retrieve a reference to the object 
by calling CosNaming::NamingContext::resolve(). This operation is defined 
as:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

When you call resolve(), the Naming Service retrieves the object reference 
associated with the specified CosNaming::Name value and returns it to your 
application.
 6



I n t r o d u c t i o n  t o  t h e  CORB A  N am i n g  S e r v i c e
Associating a Compound Name with an Object

Figure 1.1 shows an example of a simple compound name.

Figure 1.1: Example of a Compound Name

In this figure, a name with identifier company (and no kind value) is bound to a 
naming context in the Naming Service. This naming context contains one 
binding: between the name staff and another naming context. The staff 
naming context contains a binding between the name james and an application 
object.

If you want to associate a compound name with an object, you must first create 
the naming contexts that will allow you to build the compound name. For 
example, to create the compound name shown in Figure 1.1:

1. Get a reference to the root naming context.

2. Use the root naming context to create a new naming context and bind 
the name company to it. To do this, call the operation 
CosNaming::NamingContext::bind_new_context(), passing the name 
company as a parameter. This operation returns a reference to the newly 
created naming context.

company

staff

james
7



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
3. Call CosNaming::NamingContext::bind_new_context() on the 
company naming context object, passing the name staff as a parameter. 
This returns a reference to the new staff naming context.

4. Call CosNaming::NamingContext::bind() on the staff naming 
context, to bind the name james to your application object.

The operation CosNaming::NamingContext::bind_new_context() is defined 
as:

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, 
        InvalidName, AlreadyBound);

To create a new naming context and bind a name to it, create a 
CosNaming::Name structure for the context name and pass it to 
bind_new_context(). If the call is successful, the operation returns a reference 
to your newly created naming context.

Removing Bindings from the Naming Service

If you want to remove the association between a name and an object in the 
Naming Service, call the operation CosNaming::NamingContext::unbind(). 
This operation is defined as:

void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);

This operation takes a single parameter that indicates the name to be removed 
from the Naming Service.

The name passed as a parameter to unbind() may be associated with a naming 
context or an application object. If you unbind the name of a context and your 
applications have no further use for that context, you should delete the 
corresponding naming context object. To do this, call 
CosNaming::NamingContext::destroy() on a reference to the naming 
context. This operation is defined as:

void destroy ()
raises (NotEmpty);

Before calling destroy() on a naming context object, remove any bindings 
contained in the context.
 8



I n t r o d u c t i o n  t o  t h e  CORB A  N am i n g  S e r v i c e
Convention for String Format of Names
To make it easier to describe examples, this guide uses a string representation of 
Naming Service names. This convention is specific to OrbixNames and is 
illustrated by the following example1:

documents-dir.reports-dir.april97-txt

In this example, the ID value of the first name component is documents and the 
kind value is dir. The next component has ID reports and kind dir, followed 
by a component with ID april97 and kind txt. This string format is used 
throughout the rest of this guide and is understood by the OrbixNames utilities 
described in Chapter 6 on page 113.

Note: If the dash ‘-’ character is omitted from a name component, the kind field 
is a zero length string. The forward slash character ‘/’ may be used to 
escape the characters ‘-’ (dash), ‘.’ (period), and ‘/’ (forward slash).

1.   The Object Management Group (OMG) is expected to introduce a standard string format for 
Naming Service names. This standard will be adopted in a future release of OrbixNames.
9



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 10



Part II
OrbixNames C++
Programmer’s Guide





 2
C++ Programming with 
OrbixNames

This chapter describes how you can use OrbixNames to make objects 
available in CORBA servers and to locate those objects in clients. The 
examples in this chapter use a C++ programming interface to the 
Naming Service introduced in Chapter 1.

OrbixNames implements the CORBA Naming Service. To develop applications 
that access the Naming Service, you must use two components of OrbixNames:

• The OrbixNames IDL files contain the IDL definitions for the interfaces to 
the CORBA Naming Service and the load balancing features of 
OrbixNames.

• The OrbixNames server is a normal Orbix server, provided by IONA 
Technologies, that implements the functionality of the CORBA Naming 
Service.

When you write a CORBA program that uses the Naming Service, this program 
contacts the OrbixNames server using the OrbixNames IDL definitions. In this 
way, any CORBA client or server that uses the Naming Service simply acts as a 
client to the OrbixNames server. The examples in this chapter show how to 
develop, compile, and run such programs.
13



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Developing an OrbixNames Application
Consider a software engineering company that maintains an administrative 
database of personnel records which includes details of names, login names, 
addresses, salaries, and holiday entitlements. These records are used for various 
administrative purposes, and it is convenient to use the Naming Service to locate 
an employee record by name. Figure 2.1 shows part of a naming context graph 
designed for this purpose.

The nodes company, staff, engineering, and support represent naming 
contexts. A name such as company.staff.paula-person names an application 
object. The same object may have more than one name; for example, each 
person is listed in the generic company.staff context and is also listed in a 
particular division such as company.engineering or company.sales.

In addition, it is convenient to use abstract names so that, for example, the 
engineering manager can be found by looking up the name 
company.engineering.manager.

Figure 2.1: A Naming Context Graph

john managerpaulajames paulajohn
support

james manager

engineering

company

staff
 14



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
Allowing different paths to the same object facilitates the many uses that might 
be made of the Naming Service. For example, a payroll system might be 
interested only in the company.staff context; the engineering manager might 
want the holiday records for all of the employees with entries in the 
company.engineering context to be written to a spreadsheet, and so on.

The remainder of this section shows some sample code based on the naming 
context graph in Figure 2.1. The full source code for this example is available in 
the directory demo/naming/staff of your OrbixNames installation.

Making Initial Contact with the Naming Service

Whether you are writing a client or server application, the first step in 
communicating with the Naming Service is to obtain a reference to the root 
naming context. There are two ways for an application to do this:

• The recommended way is to use the CORBA Initialization Service. This 
approach is fully CORBA compliant. To use the Initialization Service, pass 
the string NameService to the following C++ function call on the ORB:

// C++
// In class CORBA::ORB.
Object_ptr resolve_initial_references(

const char* identifier)

The result must be narrowed using the function 
CosNaming::NamingContext::_narrow() to obtain a reference to the 
naming context.

The call to resolve_initial_references() succeeds if an OrbixNames 
server is running on the local host or the locator is appropriately 
configured as described in “Compiling and Running an Application” on 
page 24. 

The name of the OrbixNames server as registered in the Implementation 
Repository is assumed to be NS by default. To contact an OrbixNames 
server registered with a different name, the configuration entry 
IT_NAMES_SERVER must identify that name, as described in “Configuring 
OrbixNames” on page 25.

• The second approach is to read the root naming context IOR from a 
shared file. To do this, use the -I switch to specify a file name when 
running the OrbixNames server, NS:
15



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
ns -I /sharedIORs/ns.ior

When you run the server in this way, it stores the root naming context 
IOR in the specified file. You can use this file later to get the initial naming 
context:

// C++
#include <Naming.hh>
...

char *rootIOR;
CORBA::Object_var objVar;
CORBA::ORB_var orbVar;

// Read the contents of file /sharedIORs/ns.ior
// into the string rootIOR.
...

try {
orbVar = 

CORBA::ORB_init (argc, argv, "Orbix");
objVar = orbVar->string_to_object (rootIOR);

}
...

The resulting object reference must subsequently be narrowed using the 
following call:
CosNaming::NamingContext::_narrow().

Once you get a reference to the root naming context, you can look up names in 
contexts held by the corresponding OrbixNames server. This allows you to 
obtain a reference to a particular context or to an application object.

Binding Names to Objects

The following sample server code shows how to build the company and 
company.staff naming contexts shown in Figure 2.1 on page 14. It then shows 
how to bind the name company.staff.john-person to the object referenced 
by the variable johnVar (which supports the IDL interface Person implemented 
by class PersonImpl).

// C++
 16



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
// An Orbix server.
#include <Naming.hh>
...

int main () {
Person_var johnVar = new PersonImpl 

("John", "Engineer");
CORBA::ORB_var orbVar;
CORBA::Object_var objVar;
CosNaming::NamingContext_var rootContext, 

companyContext, staffContext;
CosNaming::Name_var name;
...

try {
orbVar = 

CORBA::ORB_init (argc, argv, "Orbix");

// Find the initial naming context:
1 objVar = orbVar->

resolve_initial_references("NameService");
if (rootContext=CosNaming::

NamingContext::_narrow(objVar)) {
// A CosNaming::Name is simply a sequence 
// of structs.

2 name = new CosNaming::Name(1);
name->length(1);
name[0].id =CORBA::string_dup("company");
name[0].kind = 

CORBA::string_dup("company");

// (In one step) create a new context, and 
// bind it relative to the initial 
// context:

3 companyContext = 
rootContext->bind_new_context(name);

4 name[0].id = CORBA::string_dup("staff");
name[0].kind = CORBA::string_dup("staff");

// (In one step) create a new context, and 
// bind it relative to the company
// context:
17



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
5 staffContext = 
companyContext->bind_new_context(name);

6 name[0].id = CORBA::string_dup("john");
name[0].kind=CORBA::string_dup("person");

// Bind name to object johnVar in context
// company.staff:

7 staffContext->bind(name,johnVar);
} else { ... } 

// Deal with failure to _narrow().
} // catch clauses not shown here.
...

}

This code is explained as follows:

1. The server calls CORBA::ORB::resolve_initial_references() to get a 
reference to the root naming context.

2. The server creates a CosNaming::Name structure that contains a single 
component with ID company and company kind value.

3. A call to bind_new_context() on the root context binds the newly 
created name to a new context object. The new context object is directly 
within the scope of the root naming context.

4. The server modifies the CosNaming::Name structure, assigning ID staff 
and an empty kind value to the single name component.

5. The server calls bind_new_context() on a reference to the company 
context object created in step 3. The Naming Service creates a new 
context object and binds the name company.staff to it.

6. The server again modifies the CosNaming::Name structure, assigning ID 
john and kind person to the single name component.

7. A call to bind() on the company.staff naming context associates the 
name company.staff.john-person with the application object johnVar.

The server code builds up a naming graph by creating individual naming contexts 
and then binding a name to the application object within the scope of those 
contexts.
 18



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
Resolving Object Names in Clients

For a client, a typical use of the Naming Service is to find the initial naming 
context and then to resolve a name to obtain an object reference. The following 
code sample illustrates this. It finds the object named 
company.engineering.manager-person and then prints the manager’s name. 

The following IDL definition is assumed:

// IDL
interface Person {

readonly attribute name;
...

};

The client is written as:

// C++
// An Orbix client.
#include <Naming.hh>
...
int main (int argc, char** argv) {

CosNaming::NamingContext_var rootContext;
CosNaming::Name_var name;
Person_var personVar;
CORBA::Object_var objVar;
CORBA::ORB_var orbVar;

try {
orbVar = 

CORBA::ORB_init (argc, argv, "Orbix");

// Find the initial naming context:
1 objVar = orbVar->

resolve_initial_references("NameService");
if (rootContext = CosNaming::

NamingContext::_narrow(objVar)) {

2 name = new CosNaming::Name(3);
name->length(3);
name[0].id = CORBA::string_dup("company");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup

("engineering");
19



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
name[1].kind = CORBA::string_dup("");
name[2].id = CORBA::string_dup("manager");
name[2].kind = CORBA::string_dup

("person");

3 objVar = rootContext->resolve(name);
4 if (personVar = Person::_narrow(objVar)) {

cout << personVar->name() 
<< " is the engineering manager." 
<< endl;

} else { ... } 
// Deal with failure to _narrow().

} else { ... } 
// Deal with failure to _narrow().

} // catch clauses not shown here.
...

}

This code is explained as follows:

1. The client calls CORBA::ORB::resolve_initial_references() to get a 
reference to the root naming context.

2. The client creates a CosNaming::Name structure that contains three 
name components. The client assigns this structure to represent the 
compound name company.engineering.manager-person.

3. A call to resolve() on the root naming context returns the object 
associated with the name company.engineering.manager-person. The 
client resolves the entire compound name with a single call to the 
Naming Service.

4. The object returned in step 3 is an application object that implements the 
IDL interface Person. The client now narrows the returned object to 
type Person.

Iterating through Context Bindings

The following code sample shows a simple example of using the 
BindingIterator interface to list the bindings in a context. This code lists the 
bindings in the context company.staff:
 20



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
// C++
CosNaming::NamingContext_var rootContext, 
staffContext;
CosNaming::BindingList_var bList;
CosNaming::BindingIterator_var bIter;
CosNaming::Name_var name;
CORBA::Object_var objVar;
CORBA::ORB_var orbVar;

try {
orbVar = 

CORBA::ORB_init (argc, argv, "Orbix");

// Find the initial naming context:
1 objVar = orbVar->

resolve_initial_references("NameService");
rootContext = 

CosNaming::NamingContext::_narrow(objVar);
if (!CORBA::is_nil (rootContext)) {

2 name = new CosNaming::Name(2);
name->length(2);
name[0].id = CORBA::string_dup("company");
name[0].kind = CORBA::string_dup("");
name[1].id = CORBA::string_dup("staff");
name[1].kind = CORBA::string_dup("");

3 objVar = rootContext->resolve(name);
staffContext = CosNaming::

NamingContext::_narrow(objVar);

if (!CORBA::is_nil (staffContext)) {
const CORBA::ULong batchSize = 10;

4 staffContext->list(batchSize,bList,bIter);
CORBA::ULong i;

5 for (i = 0; i < bList.length(); i++) {
cout << bList[i].binding_name[0].id 

<< "-"; 
cout << bList[i].binding_name[0].kind 

<< endl;
}

// If more than batchSize bindings in 
// context, obtain them using next_n().
21



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
6 if ( !CORBA::is_nil(bIter) ) {
while(bIter->next_n(batchSize, bList) {

for (i=0; i < bList.length(); i++) {
cout << bList[i].

binding_name[0].id << "-" 
cout << bList[i].

binding_name[0].kind 
<< endl;

}
}

} else { ... } 
// Deal with failure to _narrow().

} else { ... } 
// Deal with failure to _narrow().

} // catch clauses not shown.

The information retrieved by this code may be useful to either a client or a 
server. The functionality of this code is:

1. The application calls CORBA::ORB::resolve_initial_references() to 
get a reference to the root naming context.

2. It then creates a CosNaming::Name structure that contains two name 
components. The client assigns this structure to represent the compound 
name company.staff, which is bound to a naming context.

3. The application calls resolve() on the root naming context to obtain a 
reference to the company.staff context object.

4. A call to list() on this context object returns a list of at most ten 
bindings contained in this context. 

5. The application examines each element in the list of bindings returned in 
step 4.

6. If more than ten bindings are available in context company.staff, the 
CosNaming::BindingIterator object bIter contains all the bindings not 
returned in step 4. The application calls the operation next_n() to 
retrieve a list of these additional bindings.

For more information about operation CosNaming::NamingContext::list(), 
refer to “CosNaming::NamingContext::list()” on page 157. For more 
information about the interface CosNaming::BindingIterator, refer to 
“CosNaming::BindingIterator” on page 149.
 22



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
Finding Unreachable Context Objects

Applications can create naming contexts with no associated name binding. If such 
an application exits without destroying these contexts, the context objects 
remain in the Naming Service but are unreachable and cannot be deleted. For 
example, an application could do this by calling the operation 
CosNaming::NamingContext::unbind() to unbind a context name, without 
calling CosNaming::NamingContext::destroy() to destroy the corresponding 
context object.

On start-up, OrbixNames automatically creates a naming context to handle this 
problem. This context is named lost+found. If you create a context without 
binding a name to it, or unbind a context name without destroying the context 
object, OrbixNames gives the context a special name within the lost+found 
context. The format of this name is as follows:

NC_number time

The number value is a random number assigned by OrbixNames. The time value 
indicates the date and time at which the name was created in the lost+found 
context. The combination of the number and time values uniquely identifies the 
naming context in lost+found.

Of course, this naming format makes it almost impossible to determine which 
context in lost+found came from which application. However, this is not 
important because the lost+found context simply allows you to ensure that the 
Bindings Repository does not become cluttered with unreachable context 
objects. For example, you might want to destroy all contexts in lost+found 
created before a certain date. This is quite straightforward. First, list the 
contents of lost+found using the OrbixNames lsns utility and then delete the 
appropriate contexts using the OrbixNames rmns utility. These utilities are 
described in Chapter 6.

For example, the following command deletes the context object associated with 
the name "NC_9Thu Dec 10 11-09-02 GMT+00-00 1998" in the lost+found 
context:

rmns -x lost+found.NC_9Thu Dec 10 11-09-02 GMT+00-00 1998

Before you delete a context in lost+found, ensure that the context is no longer 
required by your applications. For example, if an application uses 
CosNaming::NamingContext::new_context() to create a context that it 
intends to name later, the context is stored temporarily in lost+found until the 
23



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
application binds a name to it. You should take care to avoid deleting such 
contexts. Deleting contexts created before a given date is one way to achieve 
this.

The lost+found context is most useful during application testing, because 
leaving unreachable contexts in the Naming Service is bad application behavior. 
When coding your applications, try to ensure that they avoid doing this.

Compiling and Running an Application
This section describes how to build an application that uses OrbixNames, the 
configuration variables that are required, how to register an OrbixNames server 
in the Implementation Repository, and the options that are available on the 
server executable.

The following steps are required to build an application that uses OrbixNames:

1. Generate stub code for the OrbixNames server by passing the 
OrbixNames IDL file, NamingService.idl, through your IDL compiler. 
Link your application with the client stub code. For example, you can run 
the Orbix IDL compiler as follows:

idl NamingService.idl

This generates three files: NamingService.hh, NamingServiceC.cc, and 
NamingServiceS.cc. Include the header file NamingService.hh in your 
application code and link your application with the object code for 
NamingServiceC.cc. Discard NamingServiceS.cc.

If your application uses the load balancing features of OrbixNames, 
described in Chapter 3 on page 37, you must also pass the other 
OrbixNames IDL file, LoadBalancing.idl, through your IDL compiler, 
for example:

idl LoadBalancing.idl

Again, this generates three files: LoadBalancing.hh, 
LoadBalancingC.cc, and LoadBalancingS.cc. Include the header file 
LoadBalancing.hh in your application code and link your application 
with the object code for LoadBalancingC.cc. Discard 
LoadBalancingS.cc.

2. Register the OrbixNames server in the Implementation Repository as 
described in “Registering the OrbixNames Server” on page 25.
 24



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
3. Configure the Orbix locator to make the OrbixNames server known to 
CORBA::ORB::resolve_initial_references(). Assuming that the 
OrbixNames server is registered in the Implementation Repository with 
the name NS on host alpha, this can be achieved by adding the following 
line to the Orbix.hosts or orbix.hst file:

NS:alpha:

Configuring OrbixNames

When you install OrbixNames, the configuration file orbixnames3.cfg is added 
to your system, in the OrbixNames config directory. This file contains the 
configuration variables that relate to OrbixNames and it is included in the Orbix 
configuration file iona.cfg, as described in theOrbix C++ Administrator’s Guide.

On UNIX, you can set the OrbixNames configuration variables in the 
orbixnames3.cfg configuration file using the Orbix Configuration Explorer 
described in the Orbix C++ Administrator’s Guide. They may also be set as 
environment variables. On Windows NT these values are set in either the 
configuration file or the system registry.

When setting the values of these variables in the file orbixnames3.cfg, define 
each variable in the OrbixNames scope, that is OrbixNames.IT_NAMES_SERVER, 
OrbixNames.IT_NS_HOSTNAME, OrbixNames.IT_NAMES_PATH, and so on.

For a comprehensive description of OrbixNames and common configuration 
variables, refer to Appendix A, “Configuration Variables”. 

Registering the OrbixNames Server

As a normal Orbix server, the OrbixNames server must be registered with the 
Orbix Implementation Repository. 

As usual, the server is registered using either the Graphical Server Manager 
utility or the putit utility. Using putit, a typical command to register an 
OrbixNames server is:

putit NS "/orbix/bin/ns"

Once registered with the Implementation Repository, the server can be 
activated by the Orbix daemon or launched manually.
25



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
You can terminate the OrbixNames server in the same way as any Orbix server; 
that is, by using the killit utility on UNIX, or the Graphical Server Manager 
utility.

Options to the OrbixNames Server

The OrbixNames server executable is named ns; it takes the following options:

ns [-v] [-r <repository path>] \
[-I <ns ior file>] [-l] [-h <hashtable size>] \
[-p <thread pool size>] [-e <cache size>] [-j]
[-semisecure] [-secure]

The options are

-v Outputs version information. Specifying -v does not 
cause the OrbixNames server to run.

-r Specifies the directory to be used as the Bindings 
Repository. This overrides the value of 
IT_NAMES_PATH, as set in Orbix.cfg (or the system 
registry on Windows NT).

-I <ns ior file> Specifies a file where the server will store the root 
context IOR as it starts up.

-l Starts the OrbixNames server in load balancing 
mode. If you wish to use object groups, you must 
start the server with this option.

-h <hash table size> In OrbixNames, each naming context has an 
associated hash table. A naming context uses this 
table to store references to bindings the context 
contains. The -h switch allows you to specify the 
size of this hash table.

The default hash table size is 23. If you expect your 
naming contexts to contain more than this number 
of bindings, increase the hash table size to reduce 
the number of times the hash table resizes. If you 
expect less than this number, decrease the hash 
table size to improve performance.
 26



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
-p <thread pool size> The OrbixNames server is a multithreaded 
application. The -p switch sets the size of the 
thread pool used to handle incoming requests. The 
default value is 10.

-e <cache size> The OrbixNames server caches naming contexts in 
memory to improve performance. The -e switch 
specifies how many contexts should be cached. The 
default value is 10.

-j The OrbixNames server is a Java application. On 
platforms other than Solaris, you can instruct the 
server to pass command-line switches directly to 
the Java interpreter. To do this, use the -j switch 
to the OrbixNames server.

For example, to increase the virtual memory used 
by the interpreter when running OrbixNames, start 
the server as follows:

ns -j -mx9000000

-semisecure The default OrbixNames server possesses no 
security. This switch forces the server to accept 
both secure (SSL) and insecure (non-SSL) 
connections. You will be prompted for a password 
that should correspond to the SSL certificates 
referenced in the OrbixNames section of the 
orbixssl.cfg configuration file.

-secure The default OrbixNames server possesses no 
security. This switch forces the server to accept 
Secure Sockets Layer (SSL) connections only. You 
will be prompted for a password that should 
correspond to the SSL certificates referenced in the 
OrbixNames section of the orbixssl.cfg 
configuration file.
27



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Running OrbixNames in a Secure System
OrbixSSL enables you to create Orbix and OrbixWeb applications that 
communicate using Secure Sockets Layer (SSL) security. If you run secure 
applications that use OrbixNames, the OrbixNames server must also 
communicate using SSL.

When running OrbixNames with OrbixSSL, you must:

1. Configure SSL support in OrbixNames.

2. Write the OrbixNames Interoperable Object Reference (IOR) to a file.

3. Configure clients to read the OrbixNames IOR from a file.

4. Run the OrbixNames server.

5. If required, run the OrbixNames utilities.

This section briefly describes each of these steps. Refer to the OrbixSSL 
documentation for more information about OrbixSSL and SSL security.

Configuring SSL Support in OrbixNames

As described in the OrbixSSL documentation, the OrbixSSL configuration file, 
orbixssl.cfg, controls how a program uses SSL. To configure the use of SSL in 
OrbixNames, you must add several configuration values to orbixssl.cfg.

Adding SSL Security to OrbixNames

First, you must instruct OrbixNames to use SSL. To do this, add the following 
text to the OrbixSSL configuration file:

OrbixNames {
Server {

IT_SECURITY_POLICY = "SECURE";
};

};

The configuration variable OrbixNames.IT_SECURITY_POLICY can take one of 
the following values:

SECURE The OrbixNames server accepts only secure communications.
 28



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
If you do not set this variable in the configuration file, OrbixNames does not use 
SSL security. If you set the value to SECURE, you must then configure SSL 
authentication.

Configuring SSL Authentication in OrbixNames

SSL authentication allows one SSL program to verify the identity of another. 
Each authenticated program has an associated certificate and a private key that it 
uses to prove its identity. Each certificate is signed by a Certification Authority 
(CA) that guarantees that the certificate is valid. By default, only OrbixSSL server 
programs are authenticated.

To ensure that the OrbixNames server can prove its identity during 
authentication, you must specify the location of the OrbixNames certificate and 
private key files in the OrbixSSL configuration file. By default, OrbixNames uses 
the certificate file orbix_names and the private key file orbix_names.jpk, both 
located in the OrbixSSL certificates/services directory.

To configure OrbixNames to use these files, add the following settings to the 
OrbixSSL configuration file:

OrbixNames {
Server {

IT_CERTIFICATE_FILE = "OrbixSSL directory/
certs/services/orbix_names";

IT_PRIVATEKEY_FILE = "OrbixSSL directory/
certs/services/orbix_names.jpk"

};
};

Replace the OrbixSSL directory value with the actual directory in which 
OrbixSSL is installed. In a fully secure system, where you do not use the 
OrbixSSL demonstration certificates, you must change these settings to 
associate your chosen certificate and private key with OrbixNames.

INSECURE The OrbixNames server accepts only insecure 
communications.

SEMI_SECURE The OrbixNames server accepts both secure and insecure 
communications.
29



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Adding Client Authentication to OrbixNames

If required, OrbixNames can authenticate programs that connect to it. In this 
case, the communicating program must have an associated certificate and the 
certificate must be signed by a trusted CA.

If you want to enable client authentication by OrbixNames, add the following 
setting to the OrbixSSL configuration file:

OrbixNames {
Server {

IT_AUTHENTICATE_CLIENTS = "TRUE";
};

};

To specify the file that contains the list of trusted CAs, add the following:

OrbixNames {
Server {

IT_CA_LIST_FILE = "OrbixSSL directory/
/ca_lists/demo_ca_list_1";

};
};

In a fully secure system, change this setting to your actual certificate list file.

Configuring the SSL Port for the OrbixNames Server

When the OrbixNames server is SSL-enabled, it requires an additional port on 
which it listens for incoming secure communications. To set this port value, add 
the following variable to the OrbixNames configuration file:

OrbixNames {
IT_SSL_IIOP_LISTEN_PORT = "portnumber";

};

Replace the portnumber value with any available port number.

Writing the OrbixNames IOR to a File

Before running the OrbixNames server with OrbixSSL, you must instruct the 
server to publish its IOR to a file. To do this, use the -I switch as follows:

ns -I filename
 30



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
This causes the server to write its IOR to the file specified in filename.

Configuring Clients to Read the OrbixNames IOR

After the OrbixNames server writes its IOR to a file, you must configure your 
clients to read this IOR when making contact with the CORBA Naming Service.

For Orbix clients, add the following setting to the OrbixNames configuration 
file:

Common {
Services {

NameService = "IOR";
};

};

In this case, IOR is the OrbixNames IOR copied from file. For OrbixWeb clients, 
add the following to the OrbixNames configuration file:

OrbixWeb {
IT_INITIAL_REFERENCES = "NameService IOR";

};

When the client calls resolve_initial_references() to obtain a reference to 
the OrbixNames server, these settings ensure that it uses the correct IOR. The 
only way that clients can contact a secure OrbixNames server is by using 
resolve_initial_references() in this manner.

Running the OrbixNames Server

To use security with OrbixNames, you must launch the OrbixNames server 
manually. It cannot be launched automatically. For example, run the server as 
follows:

ns

To gain access to its private key, OrbixNames must supply the pass phrase that 
was used to encrypt the key. When you start the server, it instructs you to 
enter this pass phrase. If you use the OrbixSSL demonstration certificates and 
private keys, enter the pass phrase demopassword. Otherwise, enter the correct 
pass phrase for the private key specified in the 
OrbixNames.Server.IT_PRIVATEKEY_FILE configuration value in 
orbixssl.cfg.
31



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
When running the OrbixNames server, you can override the security setting 
specified by the OrbixNames.Server.IT_SECURITY_POLICY variable in 
orbixssl.cfg. 

To do this, use the -secure switch or -insecure switch, for example:

ns -insecure

Running the OrbixNames Utilities

Using a secure OrbixNames server, you can run only the C++ OrbixNames 
utilities, for example lsns. You cannot run the Java utilities. For example, lsnsj 
cannot use SSL security.

If the OrbixNames server uses client authentication, the utilities must be able to 
supply a certificate and gain access to a private key. During installation, each 
utility is configured to use the orbix demonstration certificate from the 
OrbixSSL certificates/services directory. The OrbixSSL C++ Programmer’s 
and Administrator’s Guide describes how to replace this certificate and update 
the utilities with a new private key pass phrase.

Federation of Name Spaces
The collection of all valid names recognized by the Naming Service is called a 
name space. A name space is not necessarily located on a single OrbixNames 
server, because a context in one OrbixNames server can be bound to a context 
in another OrbixNames server on the same host or on a different host. The 
name space provided by a Naming Service is the association or federation of the 
name spaces of each individual OrbixNames server that comprises the Naming 
Service. 

Figure 2.2 shows a Naming Service federation that comprises two OrbixNames 
servers running on different hosts. In this example, names relating to the 
company’s engineering and PR divisions are served by one server, and names 
relating to the company’s marketing division are served by a separate server. A 
request to resolve a name starts in one OrbixNames server, but may continue in 
another server’s database. Clients do not have to be aware that more than one 
server is involved in the resolution of a name, and they do not need to know 
which server interprets which part of a compound name. 
 32



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
The following code sample shows how to create the naming context company on 
host A and the naming context marketing, which is a sub-context of company, 
on host B:

// C++
#include <Naming.hh>
...
int main (int argc, char** argv) {

const char* hostA = "A";
const char* hostB = "B";
char* ior;
CORBA::Object_var objVar;
CosNaming::NamingContext_var hostAContext,

hostBContext, companyContext, 
marketingContext;

CosNaming::Name_var name;
CORBA::ORB_var orbVar;

try {
orbVar = 

CORBA::ORB_init (argc, argv, "Orbix");

1 // Read IOR for root context on host B 
// from a file into the string ior.
// (Not shown.)
...
objVar = orbVar->string_to_object (ior);

Figure 2.2: Naming Graph Spanning Two OrbixNames Servers

marketing

company

engineering PR

Host A

Host B
33



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
hostBContext =
CosNaming::NamingContext::_narrow 
(objVar);

2 name = new CosNaming::Name(1);
name->length(1);
name[0].id = CORBA::string_dup("marketing");
name[0].kind = CORBA::string_dup("");

3 marketingContext = 
hostBContext->bind_new_context (name);

4 // Read IOR for root context on host A 
// from a file into the string ior.
// (Not shown.)
...
objVar = orbVar->string_to_object (ior);

hostAContext =
CosNaming::NamingContext::_narrow 
(objVar);

5 name[0].id = CORBA::string_dup("company");
name[0].kind = CORBA::string_dup("");

6 companyContext = 
hostAContext->bind_new_context (name);

7 name[0].id = CORBA::string_dup("marketing");
name[0].kind = CORBA::string_dup("");

8 companyContext->bind_context (
name, marketingContext);

...
} // catch clauses not shown here.
...

}

This code is explained as follows:
 34



C+ +  P r o g r amm in g  w i t h  O r b i x N ame s
1. The application assumes that the IORs for the root naming contexts on 
hosts A and B have been written to files, as described in “Making Initial 
Contact with the Naming Service” on page 15. The application then 
obtains a reference to the root naming context associated with the 
OrbixNames server on host B.

2. The application creates a name structure with a single element. This 
structure represents the name of the marketing context on host B.

3. A call to bind_new_context() creates a new context on host B and 
binds the name marketing to it.

4. The application gets a reference to the root naming context associated 
with the OrbixNames server on host A.

5. The application modifies the name structure to contain the name of the 
company context.

6. A call to bind_new_context() creates a new context on host A and 
binds the name company to it.

7. The application modifies the name structure to contain the name of the 
marketing context, which is a sub-context of company on host A.

8. The operation bind_context(), called on the company context, binds 
the name company-marketing to the object reference associated with 
the marketing context on host B. If a client contacts the OrbixNames 
server on host A and resolves a name in the company-marketing 
context, the server on host B completes the name resolution.

You can also create a federated name space using the OrbixNames utilities. 
These utilities are described in detail in Chapter 6. To achieve the same result as 
the code above, firstuse the putnewncns command to create the company 
naming context on host A and the marketing naming context on host B:

putnewncns -h A company 
putnewncns -h B marketing 

Next, instruct OrbixNames to copy the object reference for the marketing 
context object to the file marketing.ior:

catns -h B marketing > marketing.ior

Finally, associate the name of this context with the object reference of the 
marketing context on host B:

putncns -h A company.marketing -f marketing.ior
35



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 36



 3
Load Balancing with OrbixNames 
Using C++

Load balancing is a crucial requirement for many distributed 
applications. This chapter describes the powerful, but easy-to-use 
OrbixNames approach to load balancing in CORBA applications.

The Need for Load Balancing
The role of the CORBA Naming Service is critical in large-scale distributed 
applications. The Naming Service acts as a central repository of objects, which 
clients use to locate server applications. Administrators can relocate or upgrade 
server applications by modifying the contents of the Naming Service. This 
requires no coding modifications on the client side.

Figure 3.1 on page 38 shows a typical OrbixNames environment:

• The Bank server binds an object obj1, to a name name1, in the Naming 
Service.

• Clients 1...N resolve this name by obtaining a proxy for obj1. 

• Clients 1...N then invoke obj1 directly.
37



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Figure 3.1: Example of Typical OrbixNames Usage

As the number of deployed clients increases, the load on an individual server 
may become excessive. To redress this problem, server load balancing through 
replication may be required.

In the example shown in Figure 3.1, replication involves creating a new server 
Bank_replica, which contains an object obj1_replica. This is an object 
offering an identical service to obj1. The new server registers the replica object 
in the Naming Service under the name name1_replica. Clients can choose to 
resolve either name1 or name1_replica, to access either obj1 or 
obj1_replica respectively. This approach is simple and practical, but requires a 
significant amount of application-specific coding.

Code changes on the client side are especially problematic. For example, if the 
clients are installed extensively in an enterprise, each installation will need to be 
upgraded when clients are modified to select different replica objects. Similarly, if 
two servers are insufficient, another server Bank_replica_2 will be required, 
necessitating further code modifications.

This simple approach to replication does not scale very well because, unlike 
upgrading or relocating servers, it involves code changes on the client side. 
However, the Naming Service is a useful candidate for handling server 
replication and OrbixNames provides a solution to the scalability problem.
 38



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
Introduction to Load Balancing in OrbixNames
The CORBA Naming Service defines a repository of names that map to objects. 
A name maps to one object only. OrbixNames extends the CORBA Naming 
Service model to allow a name to map to a group of objects. An object group is a 
collection of objects that can increase or decrease in size dynamically. For 
example, {obj1, obj1_replica, obj1_replica_2} would constitute an object 
group.

Each object group has a selection algorithm. This algorithm is applied when a 
client resolves the name associated with the object group. Two algorithms are 
supported: round-robin selection and random selection.

OrbixNames supports object groups by introducing new IDL interfaces to the 
Naming Service. These interfaces enable you to create object groups, add 
objects to and remove objects from groups, and to find out which objects are 
members of a particular group. If you want to take advantage of object groups, 
you can use these interfaces in your servers to create and manipulate groups. 
Your client code can remain unchanged. 

Figure 3.2 illustrates the concept of binding a name to multiple objects using an 
object group.

Figure 3.2: Associating a Name with an Object Group

   Name

   Name

 

  Object 1

  Object

  Object 3

    Object 2

                              Object Group

Pure CORBA
Naming Service

OrbixNames
Extension
39



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
The Interface to Object Groups in OrbixNames

The IDL module LoadBalancing, defined in the IDL file LoadBalancing.idl, 
provides access to the load balancing features of OrbixNames:

module LoadBalancing {
exception no_such_member{};
exception duplicate_member{};
exception duplicate_group{};
exception no_such_group{};
typedef string memberId;
typedef sequence<memberId> memberIdList;
typedef string groupId;
typedef sequence<groupId> groupList;

struct member {
Object obj;
memberId id;

};

interface ObjectGroup;
interface RoundRobinObjectGroup;
interface RandomObjectGroup;

interface ObjectGroupFactory {
RoundRobinObjectGroup createRoundRobin(in groupId id)

raises (duplicate_group);
RandomObjectGroup createRandom(in groupId id) 

raises (duplicate_group);
ObjectGroup findGroup(in groupId id) raises (no_such_group);
groupList rr_groups();
groupList random_groups();

};
interface ObjectGroup {

readonly attribute string id;

Object pick();
void addMember(in member mem) raises (duplicate_member);
void removeMember(in memberId id) raises (no_such_member);
Object getMember(in memberId id) raises (no_such_member);
memberIdList members();
void destroy();

};
 40



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
interface RandomObjectGroup : ObjectGroup {};
interface RoundRobinObjectGroup : ObjectGroup {};

};

Part IV of this guide provides a complete reference for these definitions.

Using Object Groups in OrbixNames

Because object groups are designed to be transparent to clients, you generally 
use the LoadBalancing module when writing servers. There are four common 
tasks for which servers use this module:

• Creating a new object group and adding objects to it.

• Adding objects to an existing object group.

• Removing objects from an object group.

• Removing an object group.

The remainder of this section describes how to do each of these operations.

Creating a New Object Group
To create a new object group and add objects to it:

1. Get a reference to a naming context, for example the root naming 
context.

2. On the naming context object, call the operation 
CosNaming::NamingContext::OBfactory(). This returns a reference to 
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation 
LoadBalancing::ObjectGroupFactory::createRandom() or 
LoadBalancing::ObjectGroupFactory::createRoundRobin() to 
create an object group that uses the selection algorithm you want. Each 
of these operations returns a reference to an object that inherits 
interface LoadBalancing::ObjectGroup.

4. Use the operation LoadBalancing::ObjectGroup::addMember() to add 
your application objects to the newly created object group. 

5. Use the operation CosNaming::NamingContext::bind() to bind a name 
to the LoadBalancing::ObjectGroup object in the usual way.
41



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
When creating the object group in step 3, you must specify a group identifier. 
This identifier is a string value unique to that object group. 

Similarly, when adding a member to the object group, you must provide a 
reference to the object and a corresponding member identifier. This identifier is a 
string value that must be unique within the object group. 

In both cases, you decide the format of the identifier string. OrbixNames does 
not interpret these identifiers.

Adding Objects to an Existing Object Group
Before adding objects to an existing object group, you must get a reference to 
the corresponding LoadBalancing::ObjectGroup object. You can do this using 
the group identifier or the name bound to the object group. This section uses 
the group identifier.

To add objects to an existing object group:

1. Get a reference to a naming context, for example the root naming 
context.

2. On the naming context object, call the operation 
CosNaming::NamingContext::OBfactory(). This returns a reference to 
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation 
LoadBalancing::ObjectGroupFactory::findGroup(), passing the 
identifier for the group as a parameter. This operation returns a 
reference to the LoadBalancing::ObjectGroup object associated with 
the object group.

4. Use the operation LoadBalancing::ObjectGroup::addMember() to add 
your application objects to the object group.

Removing Objects from an Object Group
Removing an object from a group is quite straightforward if you know the object 
group identifier and the member identifier for the object:

1. Get a reference to a naming context, for example the root naming 
context.
 42



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
2. On the naming context object, call the operation 
CosNaming::NamingContext::OBfactory(). This returns a reference to 
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation 
LoadBalancing::ObjectGroupFactory::findGroup(), passing the 
identifier for the group as a parameter. This operation returns a 
reference to the LoadBalancing::ObjectGroup object associated with 
the object group.

4. On the object group, call the operation 
LoadBalancing::ObjectGroup::removeMember() to remove the 
required object from the group. You must specify the member identifier 
for the object as a parameter to this operation.

If you already have a reference to the LoadBalancing::ObjectGroup object 
associated with the object group, steps 1 to 3 are unnecessary.

Removing an Object Group
If you do not have a reference to the object group you want to remove, do the 
following:

1. Get a reference to the root naming context.

2. Use the root naming context to unbind the name associated with the 
object group, by calling CosNaming::NamingContext::unbind() in the 
usual way.

3. On the root naming context object, call the operation 
CosNaming::NamingContext::OBfactory(). This returns a reference to 
a LoadBalancing::ObjectGroupFactory object.

4. On the object group factory, call the operation 
LoadBalancing::ObjectGroupFactory::findGroup(), passing the 
identifier for the group as a parameter. This operation returns a 
reference to the LoadBalancing::ObjectGroup object associated with 
the object group.

5. On the object group, call the operation 
LoadBalancing::ObjectGroup::destroy() to remove the group from 
the Naming Service.

If you already have a reference to the target LoadBalancing::ObjectGroup 
object, steps 3 and 4 are unnecessary.
43



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Finding an Object Group without the Group Identifier

The procedures described in the previous sections assume that your application 
gets a reference to an object group using the group identifier. You can also get a 
reference to an object group if you know the name bound to the group in the 
Naming Service. To do this, call the operation 
CosNaming::NamingContext::resolve_object_group(). This operation is 
described in detail on page 163.

Example of Load Balancing with Object Groups
This section uses sample code to show how you can take advantage of object 
groups in your CORBA applications. The example described here is a very 
simple stock market system. In this example, a CORBA object has access to all 
current stock prices. Clients request stock prices from this CORBA object and 
display those prices to the user of the application.

In any realistic stock market application, there are potentially many stock prices 
available and many clients that require price updates without delay. Given such a 
high processing load, a single CORBA object may not be able to satisfy client 
requirements. A simple solution to this problem is to replicate the CORBA 
object, invisibly to the client, using object groups.

Sample code for the application described in this section is available in the 
load_balancing demonstration directory of your OrbixNames installation. 
This sample code may differ slightly from the code described in this section.

Defining the IDL for the Application

The architecture for the stock market system is shown in Figure 3.3 on page 45. 
Two servers process client requests for stock price information. The server 
stockmarketserver1 creates two CORBA objects for this purpose. Server 
stockmarketserver2 creates an additional CORBA object which, from a client 
perspective, provides exactly the same service as the objects in 
stockmarketserver1.

The IDL for this application requires only a single interface definition. This 
interface, called StockMarketFeed, is implemented by each of the three CORBA 
objects. 
 44



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
Interface StockMarketFeed is defined in the module ObjectGroupDemo:

// IDL
module  ObjectGroupDemo {

interface StockMarketFeed {
enum feedFailureDetails {

service_interruption, stock_feed_terminated};

exception stock_unavailable {};
exception stock_feed_failure {

feedFailureDetails reason;
};

long read_stock (in string stock_name)
raises (stock_unavailable, stock_feed_failure);

};
};

Figure 3.3: Architecture of the Stock Market Example

6WRFN0DUNHW)HHG�

VWRFNPDUNHWVHUYHU�

6WRFN0DUNHW)HHG�

VWRFNPDUNHWVHUYHU�

2EMHFW*URXS

2UEL[1DPHV

&OLHQW

&UHDWH�JURXS

%LQG�QDPH�WR�JURXS

$GG�60)��DQG
60)��WR�JURXS

$GG
�60

)��W
R�JU

RXS

*HW�VWRFN�SULFHV

5HVROYH�JURXS�QDPH

6WRFN0DUNHW)HHG�
45



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
The interface StockMarketFeed includes a single operation, read_stock(), 
which returns the current price of the stock associated with a specified stock 
name. A name is a string identifier unique to each stock. This operation can raise 
the following exceptions:

Creating an Object Group and Adding Objects

After you define your IDL, the next step in developing an application is to 
implement your interfaces. Using object groups has no effect on how you do 
this, therefore this section assumes that you have defined a C++ class, 
StockMarketFeedImpl, which implements the interface StockMarketFeed.

When you have implemented your IDL interfaces, you must develop a server 
program that contains and manages your implementation objects. In our 
application, we have two servers. The first, stockmarketserver1, creates two 
StockMarketFeed implementation objects, creates an object group in the 
Naming Service, and adds the implementation objects to this group. The second 
server, stockmarketserver2, creates an additional StockMarketFeed 
implementation object and adds this to the existing object group.

The source code for the main() routine of stockmarketserver1 is:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"
#include "common.h"

int main () {
CosNaming::NamingContext_var root_context_var;
LoadBalancing::ObjectGroupFactory_var ogfactory_var;
LoadBalancing::ObjectGroup_var object_group_var;
ObjectGroupDemo::StockMarketFeed_var stock_market_feed1;
ObjectGroupDemo::StockMarketFeed_var stock_market_feed2;

stock_unavailable This exception is raised by read_stock() to indicate 
that the specified stock name is not valid.

stock_feed_failure A stock_feed_failure indicates that an error 
occurred in communications between the server and 
the source of stock prices.
 46



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
CORBA::Object_var object_var;

CORBA::ORB_ptr orb_p;
CORBA::BOA_ptr boa_p;
CORBA::ORB_var orb_var;
CORBA::BOA_var boa_var;

// Initialize the ORB and BOA.
orb_var = CORBA::ORB_init (argc, argv, "Orbix");
boa_var = orb_var->BOA_init (argc, argv, "Orbix_BOA");
orb_p = orb_var;
boa_p = boa_var;

// Initialize the server name. (Not shown here.)
...

// Create implementation objects.
1 stock_market_feed1 = new StockMarketFeedImpl ();

stock_market_feed2 = new StockMarketFeedImpl ();

try  {
// Get root context.

2 root_context_var = get_root_context ();
if (CORBA::is_nil (root_context_var))

return 1;

// Get object group factory from root context.
3 object_var = root_context_var->OBfactory ();

ogfactory_var = 
LoadBalancing::ObjectGroupFactory::_narrow (object_var);

if (CORBA::is_nil ((LoadBalancing::ObjectGroupFactory_ptr) 
ogfactory_var)) {
cerr << "Failed to get object group factory." << endl;
return 1;

}

// Create a group and bind a name to it.
LoadBalancing::groupId_var sms_group_identifier = 

CORBA::string_dup ("StockMarketServices");
CORBA::String_var sms_object_group_name = 

CORBA::string_dup ("stockmarketgroupserver");
if (!(object_group_var = 
47



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
4 create_group (ogfactory_var, sms_group_identifier, 
sms_object_group_name, root_context_var)))
return 1;

// Add two stock market feed objects to the group.
5 if (!add_object_to_group (stock_market_feed1, 

"StockMarketFeed1", object_group_var)) {
cerr << "Failed to add object to group." << endl;
return 1;

}

// Add two stock market feed objects to the group.
if (!add_object_to_group (stock_market_feed2, 

"StockMarketFeed2", object_group_var)) {
cerr << "Failed to add object to group." << endl;
return 1;

}

// Handle client requests.
6 boa_var->impl_is_ready ("stockmarketserver1");

}
catch (CORBA::SystemException &se) {

cerr << "Unexpected exception:" << endl;    
cerr << &se;
return 1;

} 
catch (...) {

cerr << "Unknown exception." << endl;
return 1;

}

return 0;
}

 48



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
The functionality of this code is as follows:

1. The server creates two implementation objects of type 
StockMarketFeedImpl.

2. The function get_root_context() returns a reference to the root 
naming context in the Naming Service. The implementation of this 
function is shown in “Getting the Root Naming Context”.

3. The server calls the operation OBfactory() on the root naming context. 
This operation is implemented by the Naming Service and returns a 
factory object, of type LoadBalancing::ObjectGroupFactory, which 
the server can use to create object groups.

4. The server calls the function create_group(). This function uses the 
object group factory to create a new group with the specified identifier. It 
then binds a specified Naming Service name to this group. The 
implementation of create_group() is shown in “Creating an Object 
Group” on page 50.

5. The function add_object_to_group() adds the StockMarketFeedImpl 
objects to the object group created in step 4. The implementation of this 
function is shown in “Adding an Object to an Object Group” on page 53.

6. Finally, the server prepares to receive client requests by calling 
CORBA::BOA::impl_is_ready() as usual.

Getting the Root Naming Context
The programs in this chapter use the following simple function to get a reference 
to the root naming context:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"

CosNaming::NamingContext_ptr get_root_context () {
CORBA::Object_var object_var;
CosNaming::NamingContext_ptr root_context_p;
CORBA::ORB_var orb_var;

try {
orb_var = 
49



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
CORBA::ORB_init (argc, argv, "Orbix");
object_var = 

orb_var->resolve_initial_references ("NameService");

root_context_p = 
CosNaming::NamingContext::_narrow (object_var);

}
catch (CORBA::SystemException &se) {

cerr << "Unexpected system exception:" << endl;
cerr << &se;
return CosNaming::NamingContext::_nil ();

}
catch (...) {

cerr << "Unknown exception." << endl;
return CosNaming::NamingContext::_nil ();

}

if (CORBA::is_nil (root_context_p)) {
cerr << "Narrow to root context failed." << endl;
return CosNaming::NamingContext::_nil ();

}

return root_context_p;
}

Creating an Object Group
In this example, the server calls the function create_group() to create an 
object group and bind a Naming Service name to it. You can implement this 
function as follows:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"
...

LoadBalancing::ObjectGroup_ptr create_group (
LoadBalancing::ObjectGroupFactory_ptr factory_p,
LoadBalancing::groupId_var id,
CORBA::String_var name,
CosNaming::NamingContext_ptr context_p) {
 50



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
LoadBalancing::ObjectGroup_ptr group_p;
try {

1 group_p = factory_p->createRoundRobin (id);

2 if (!bind_name_to_group (name, group_p, context_p))
return 0;

}
catch (LoadBalancing::duplicate_group& dg) {

cout << "Group already exists." << endl;

try  {
group_p = factory_p->findGroup (id);

}
catch (LoadBalancing::no_such_group& nsg) {

cerr << "Failed to find group." << endl;
return 0;

}
}

return group_p;
}

The function create_group() takes four parameters: a reference to the object 
group factory, a string value used to identify the new group, a string value used 
to create the name associated with all objects in the group, and a reference to 
the naming context in which this name should be bound.

The function create_group() makes two important calls:

1. It calls the operation createRoundRobin() on the object group factory in 
the Naming Service. This operation returns a new object group in which 
objects are selected on a round-robin basis.

2. Function create_group() then calls bind_name_to_group(), a local 
function that binds a Naming Service name to the newly created group.
51



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Binding a Name to an Object Group

The function create_group() calls the function bind_name_to_group() to bind 
a name to the object group. When a client resolves this name, it receives a 
reference to one of the group’s member objects, selected by the Naming Service 
in accordance with the group selection algorithm. The client does not know that 
the name is actually bound to a group of objects.

You can code bind_name_to_group() as follows:

// C++
int bind_name_to_group (

const char *name_str, 
CORBA::Object_ptr object_p,
CosNaming::NamingContext_ptr context_p) {
CosNaming::Name_var group_name = new CosNaming::Name (2);
group_name->length (2);

// Bind name in context LoadBalancingDemo.
// Assume this context already exists.
group_name[0].id = CORBA::string_dup ("LoadBalancingDemo");
group_name[0].kind = CORBA::string_dup ("");
group_name[1].id = CORBA::string_dup (name_str);
group_name[1].kind = CORBA::string_dup ("");

try  {
context_p->bind (group_name, object_p);

}
catch (CosNaming::NamingContext::NotFound) {

cerr << "NotFound exception." << endl;
return 0;

}
catch (CosNaming::NamingContext::CannotProceed) {

cerr << "CannotProceed exception." << endl;
return 0;

}
catch (CosNaming::NamingContext::InvalidName) {

cerr << "InvalidName exception." << endl;
return 0;

}
catch (CosNaming::NamingContext::AlreadyBound) {

cerr << "AlreadyBound exception." << endl;
return 0;
 52



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
}
catch (CORBA::SystemException &se){

cerr << "Unexpected exception:" << endl;
cerr << &se << endl;
return 0;

}
return 1;

}

The functionality of bind_name_to_group() is quite straightforward. This 
function simply calls bind() on a naming context to associate a Naming Service 
name with an object. In this case, the object’s true type is 
LoadBalancing::ObjectGroup, so the name is associated with an object group.

In this example, the object group name is bound in the context 
LoadBalancingDemo. The code assumes that this naming context already exists. 
For example, you could create this context in the initialization code for 
stockmarketserver1. Alternatively, you could use the OrbixNames 
putnewncns or putnewncnsj utilities, described in Chapter 6 on page 113.

Adding an Object to an Object Group

After creating the object group, stockmarketserver1 adds its 
StockMarketFeed implementation objects to the group. To do this, the server 
calls the function add_object_to_group():

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"

int add_object_to_group (
ObjectGroupDemo::StockMarketFeed_ptr object_p,
const char* id, 
LoadBalancing::ObjectGroup_ptr objectGroup_p) {

LoadBalancing::member memberDetails;

try {
1 memberDetails.obj = 

ObjectGroupDemo::StockMarketFeed::_duplicate (object_p);
memberDetails.id = CORBA::string_dup (id);
53



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
2 objectGroup_p->addMember (memberDetails);
}

3 catch (LoadBalancing::duplicate_member& dm)   {
cerr << "Member with id " << memberDetails.id 

<< " already exists." << endl;
return 0;

}
catch (CORBA::SystemException& se) {

cerr << "Unexpected exception:" << endl;
cerr << &se << endl;
return 0;

}
return 1;

}

The function add_object_to_group() takes three parameters: the object to be 
added to the object group, a string that uniquely identifies the object within the 
group, and a reference to the object group itself. The member identifier has no 
effect on the naming of the object within the Naming Service. To obtain a 
reference to the object, a client resolves the name bound to the object group.

The functionality of add_object_to_group() is as follows:

1. The server creates an IDL struct of type LoadBalancing::member 
which contains two items: a reference to the StockMarketFeedImpl 
object, and a string that identifies the object within the group.

2. The server adds the new member to the object group in the Naming 
Service by calling the operation addMember() on the corresponding 
LoadBalancing::ObjectGroup object.

3. If the string identifier of the new member clashes with an existing 
member identifier, the operation addMember() throws an exception of 
type LoadBalancing::duplicate_member to indicate this. In this case 
addMember() does not update the contents of the object group in the 
Naming Service.
 54



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
Creating Replicated Objects

In this example, the server stockmarketserver2 replicates the behavior of 
stockmarketserver1.  To do this, it creates a new StockMarketFeed 
implementation object that provides the same service to clients as the object in 
stockmarketserver1. It then adds this object to the existing object group, 
which is associated with the group identifier StockMarketServices and the 
name LoadBalancingDemo-stockmarketgroupserver in the Naming Service.

The source code for the main() routine of stockmarketserver2 is:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"
#include "common.h"

int main () {
CosNaming::NamingContext_var root_context_var;
LoadBalancing::ObjectGroup_var group_var;
CORBA::Object_var object_var;
CORBA::String_var group_id;
ObjectGroupDemo::StockMarketFeed_var feed_object;

CORBA::ORB_ptr orb_p;
CORBA::BOA_ptr boa_p;
CORBA::ORB_var orb_var;
CORBA::BOA_var boa_var;

// Initialize the ORB and BOA.
orb_var = CORBA::ORB_init (argc, argv, "Orbix");
boa_var = orb_var->BOA_init (argc, argv, "Orbix_BOA");
orb_p = orb_var;
boa_p = boa_var;

// Initialize the server name. (Not shown here.)
...

group_id = CORBA::string_dup ("ObjectDemoGroup");
feed_object = new StockMarketFeedImpl ();

try  {
55



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
1 group_var = find_group (group_id);

if (CORBA::is_nil (group_var)) {
cerr << "Failed to get object group." << endl;
return 1;

}
// Add stock market feed object to the group.

2 if (!add_object_to_group (
feed_object, "StockMarketFeed3", group_var)) {
cerr << "Failed to add object to group." << endl;
return 1;

}

// Handle client requests.
3 boa_var->impl_is_ready ("stockmarketserver2");

}
catch (CORBA::SystemException &se) {

cerr << "Unexpected exception:" << endl;    
cerr << &se;
return 1;

} 
catch (...) {

cerr << "Unknown exception." << endl;
return 1;

}

return 0;
}

The functionality of this code is as follows:

1. The server calls the function find_group(), which contacts the Naming 
Service to get a reference to the required object group. This function is 
described in detail in “Finding an Existing Object Group” on page 57.

2. The server calls add_object_to_group() to make the object a member 
of the existing object group.

3. The server prepares to receive client requests by calling 
CORBA::BOA::impl_is_ready() as usual.
 56



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
Finding an Existing Object Group

The most important partof stockmarketserver2 is the function find_group(), 
which retrieves a reference to an existing object group. One way to do this is as 
follows:

// C++
#include <stdlib.h>
#include <iostream.h>
#include "NamingService.hh"
#include "StockMarketFeedImpl.h"
...

LoadBalancing::ObjectGroup_ptr find_group (
CORBA::String_var group_id) {

CosNaming::NamingContext_var root_context_var;
LoadBalancing::ObjectGroupFactory_var factory_var;
LoadBalancing::ObjectGroup_var group_var;
CORBA::Object_var object_var;

try  {
// Get root context.

1 if (!(root_context_var = get_root_context ()))
return LoadBalancing::ObjectGroup::_nil ();

// Get object group factory from root context.
2 object_var = root_context_var->OBfactory ();

factory_var = 
LoadBalancing::ObjectGroupFactory::_narrow (object_var);

if (CORBA::is_nil ((LoadBalancing::ObjectGroupFactory_ptr) 
factory_var)) {
cerr << "Failed to get object group factory." << endl;
return LoadBalancing::ObjectGroup::_nil ();

}

3 group_var = factory_var->findGroup (group_id);
}

57



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
catch (LoadBalancing::no_such_group &nsg) {
cerr << "no_such_group exception." << endl;    
return LoadBalancing::ObjectGroup::_nil ();

}
catch (CORBA::SystemException &se) {

cerr << "Unexpected exception:" << endl;    
cerr << &se;
return LoadBalancing::ObjectGroup::_nil ();

} 

return LoadBalancing::ObjectGroup::_duplicate (group_var);
}

The functionality of this code is as follows:

1. A call to get_root_context() returns a reference to the root naming 
context.

2. The server calls OBfactory() on the root naming context to get a 
reference to an object group factory.

3. The server calls the operation findGroup() on the object group factory. 
The operation findGroup() is defined on the interface 
LoadBalancing::ObjectGroupFactory. Given a group identifier, this 
operation returns a reference to the corresponding 
LoadBalancing::ObjectGroup object.

Accessing the Objects from a Client

All objects in an object group provide the same service to clients. A client that 
resolves a name in the Naming Service does not know if the name is bound to an 
object group or a single object. The client receives a reference to one object 
only. A client program resolves an object group name in exactly the same way as 
it resolves a name bound to just one object. 

For example, the main() routine of thestock market example client could look 
like this:

// C++
#include <iostream.h>
#include <stdlib.h>
#include "ObjectGroupDemo.hh"
#include "NamingService.hh"
 58



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  C++
int main () {
CosNaming::NamingContext_var root_context_var;
ObjectGroupDemo::StockMarketFeed_var feed_var;
CORBA::Object_var object_var;
CosNaming::Name_var name;

// Create name to be resolved.
name = new CosNaming::Name(2);
name->length (2);
name[0].id = CORBA::string_dup ("LoadBalancingDemo");
name[0].kind = CORBA::string_dup ("");
name[1].id = CORBA::string_dup ("stockmarketgroupserver");
name[1].kind = CORBA::string_dup ("");

try {
// Get root context.
root_context_var = get_root_context ();

// Resolve name.
object_var = root_context_var->resolve (name);

if (CORBA::is_nil (object_var)) {
cerr << "Failed to resolve name." << endl;
return 1;

}

feed_var 
= ObjectGroupDemo::StockMarketFeed::_narrow (object_var);

// Use stock market feed object. (Not shown.)
...

}

catch (CosNaming::NamingContext::NotFound) {
cerr << "NotFound exception." << endl;
return 1;

}
catch (CosNaming::NamingContext::CannotProceed) {

cerr << "CannotProceed exception." << endl;
return 1;

}

59



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
catch (CosNaming::NamingContext::InvalidName) {
cerr << "InvalidName exception." << endl;
return 1;

}
catch (CORBA::SystemException &se){

cerr << "Unexpected exception:" << endl;
cerr << &se;
return 1;

}

return 0;
}

 60



Part III
OrbixNames Java
Programmer’s Guide





 4
Java Programming with 
OrbixNames

This chapter describes how you can use OrbixNames to make objects 
available in CORBA servers and to locate those objects in clients. The 
examples in this chapter use a Java programming interface to the 
Naming Service introduced in Chapter 1.

OrbixNames implements the CORBA Naming Service. To develop applications 
that access the Naming Service, you must use two components of OrbixNames:

• The OrbixNames IDL files contain the IDL definitions for the interfaces to 
the CORBA Naming Service and the load balancing features of 
OrbixNames.

• The OrbixNames server is a normal Orbix server, provided by IONA 
Technologies, that implements the functionality of the CORBA Naming 
Service.

When you write a CORBA program that uses the Naming Service, this program 
contacts the OrbixNames server using the OrbixNames IDL definitions. In this 
way, any CORBA client or server that uses the Naming Service simply acts as a 
client to the OrbixNames server. The examples in this chapter show how to 
develop, compile, and run such programs.
63



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Developing an OrbixNames Application
Consider a software engineering company that maintains an administrative 
database of personnel records which includes details of names, login names, 
addresses, salaries, and holiday entitlements. These records are used for various 
administrative purposes, and it is convenient to use the Naming Service to locate 
an employee record by name. Figure 4.1 shows part of a naming context graph 
designed for this purpose.

The nodes company, staff, engineering, and support represent naming 
contexts. A name such as company.staff.paula-person names an application 
object. The same object may have more than one name; for example, each 
person is listed in the generic company.staff context and is also listed in a 
particular division such as company.engineering or company.sales.

In addition, it is convenient to use abstract names so that, for example, the 
engineering manager can be found by looking up the name 
company.engineering.manager.

Figure 4.1: A Naming Context Graph

john managerpaulajames paulajohn
support

james manager

engineering

company

staff
 64



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
Allowing different paths to the same object facilitates the many uses that might 
be made of the Naming Service. For example, a payroll system might be 
interested only in the company.staff context; the engineering manager might 
want the holiday records for all of the employees with entries in the 
company.engineering context to be written to a spreadsheet, and so on.

The remainder of this section shows some sample code based on the naming 
context graph in Figure 4.1. The full source code for this example is available in 
the directory demo/naming/staff of your OrbixNames installation.

Making Initial Contact with the Naming Service

Whether you are writing a client or server application, the first step in 
communicating with the Naming Service is to obtain a reference to the root 
naming context. There are two ways for an application to do this:

• The recommended way is to use the CORBA Initialization Service. This 
approach is fully CORBA compliant. To use the Initialization Service, pass 
the string NameService to the following Java function call on the ORB:

// Java
// In class org.omg.CORBA.ORB
org.omg.CORBA.Object resolve_initial_references

(String identifier)

The result must be narrowed using 
CosNaming.NamingContextHelper.narrow() to obtain a reference to 
the naming context.

The call to resolve_initial_references() succeeds if an OrbixNames 
server is running on the local host or the locator is appropriately 
configured as described in “Compiling and Running an Application” on 
page 74. 

The name of the OrbixNames server as registered in the Implementation 
Repository is assumed to be NS by default. To contact an OrbixNames 
server registered with a different name, the configuration entry 
IT_NAMES_SERVER must identify that name, as described in “Configuring 
OrbixNames” on page 76.

• The second approach is to read the root naming context IOR from a 
shared file. To do this, use the -I switch to specify a file name when 
running the OrbixNames server, NS:
65



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
ns -I /sharedIORs/ns.ior

When you run the server in this way, it stores the root naming context 
IOR in the specified file. You can use this file later to get the initial naming 
context:

// Java
import org.omg.CORBA.ORB;
...
String rootIOR;
org.omg.CORBA.Object objRef;

// Read the contents of file /sharedIORs/ns.ior
// into the string rootIOR...
...
try {

ORB orb = ORB.init(args, null);
objRef = orb.string_to_object(rootIOR);

}
...

The resulting object reference must subsequently be narrowed using the 
following call:
CosNaming.NamingContextHelper.narrow().

Once you get a reference to the root naming context, you can look up names in 
contexts held by the corresponding OrbixNames server. This allows you to 
obtain a reference to a particular context or to an application object.

Binding Names to Objects

The following sample server code shows how to build the company and 
company.staff naming contexts shown in Figure 4.1 on page 64. It then shows 
how to bind the name company.staff.john-person to the object referenced 
by the variable johnVar (which supports the IDL interface Person implemented 
by class PersonImpl).

// Java
// An OrbixWeb server

import org.omg.CORBA.ORB;
import org.omg.CosNaming.*
...
 66



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
public class javaserver1 {

static NamingContext rootContext = null;
static NamingContext companyContext = null;
static NamingContext staffContext = null;

static org.omg.CORBA.ORB orb = null;
public static void main (String args[]) {

orb = ORB.init (args,null);
...

// find the initial naming context
try {

1 org.omg.CORBA.Object initNCRef =
orb.resolve_initial_references ("NameService");

rootContext = NamingContextHelper.narrow
 (initNCRef);

}
catch() {}
// catch clause not implemented here

PersonImplementation john = null;
PersonImplementation colm = null;
PersonImplementation john = null;

try {
john = new PersonImplementation

("John","Engineer");
}
catch() {}
// catch clause not implemented here

// A NameComponent[] is an array of structs
2 NameComponent[] name = new NameComponent[1]; 

name[1]  = new NameComponent
("company","company");

// Try to resolve the "company" context
// in the root context
try {

rootContext.resolve (name);
}
catch() {}
67



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
// catch clause not implemented here

...
// If company context does not exist, then
// create a new context.

// Bind it relative to the initial context
try {

3 companyContext =
rootContext.bind_new_context(name);

}

// Modify name, assign "staff"
4 name[1]  = new NameComponent ("staff","staff");

try {
// Create a new context, and bind it
// relative to the initial context

5 staffContext =
companyContext.bind_new_context(name);

}

6 name[1] = new NameComponent ("john","person");

// Bind name to john object
// in context company.staff
try {

7 staffContext.bind (name, john);
}

...

This code is explained as follows:

1. The server calls org.omg.CORBA.Object 
resolve_initial_references() to get a reference to the root 
naming context.

2. The server creates a NameComponent[] structure that contains a single 
component with ID company and company kind value.

3. A call to bind_new_context() on the root context binds the newly 
created name to a new context object. The new context object is directly 
within the scope of the root naming context.
 68



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
4. The server modifies the NameComponent[] structure, assigning ID 
staff and a staff kind value to the single name component.

5. The server calls bind_new_context() on a reference to the company 
context object created in step 3. The Naming Service creates a new 
context object and binds the name company.staff to it.

6. The server again modifies the NameComponent[] structure, assigning ID 
john and kind person to the single name component.

7. A call to bind() on the company.staff naming context associates the 
name company.staff.john-person with the application object john

The server code builds up a naming graph by creating individual naming contexts 
and then binding a name to the application object within the scope of those 
contexts.

Resolving Object Names in Clients

For a client, a typical use of the Naming Service is to find the initial naming 
context and then to resolve a name to obtain an object reference. The following 
code sample illustrates this. It finds the object named 
company.engineering.manager-person and then prints the manager’s name. 

The following IDL definition is assumed:

// IDL
interface Person {

readonly attribute name;
...

};

The client is written as:

// Java
// An OrbixWeb client

import org.omg.CORBA.ORB;
import IE.Iona.OrbixWeb.CosNaming.*;
...

public class javaclient1 {

static NamingContext rootContext = null;
69



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
static namesStaff.Person personRef = null;
static org.omg.CORBA.ORB orb = null;

public static void main( String[] args ) {
....
NamingContext rootContext = null;

orb = ORB.init (args,null); 

// find initial naming context
try {

1 org.omg.CORBA.Object initNCRef =
orb.resolve_initial_references ("NameService");

rootContext = NamingContextHelper.narrow
(initNCRef);

}
catch() {}
// catch clause not implemented here

2 NameComponent[] name = new NameComponent[3];
org.omg.CORBA.Object objRef = null;

name[0] = new NameComponent
("company","company");

name[1] = new NameComponent
("engineering","engineering"); 

name[2] = new NameComponent
("manager","person");

3 objRef = rootContext.resolve (name);

4 personRef = namesStaff.PersonHelper.narrow
(objRef);

// Haven’t dealt with failures to narrow()
printDetails (personRef);
...

This code is explained as follows:

1. The client calls org.omg.CORBA.Object 

resolve_initial_references () to get a reference to the root 
naming context.
 70



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
2. The client creates a NameComponent[] structure that contains three 
name components. The client assigns this structure to represent the 
compound name company.engineering.manager-person.

3. A call to resolve() on the root naming context returns the object 
associated with the name company.engineering.manager-person. The 
client resolves the entire compound name with a single call to the 
Naming Service.

4. The object returned in step 3 is an application object that implements the 
IDL interface Person.The client now narrows the returned object to type 

Person.

Iterating through Context Bindings

The following code sample shows a simple example of using the 
BindingIterator interface to list the bindings in a context. This code lists the 
bindings in the context company.staff:

// Java
// Client code extract 
// List all the staff context:
...
BindingListHolder bList=new BindingListHolder () ;
BindingIteratorHolder biterHolder

= new BindingIteratorHolder ();
BindingHolder binding = new BindingHolder ();

1 NameComponent[] name = new NameComponent[2];
name[0] = new NameComponent

("Company", "Company");
name[1] = new NameComponent ("Staff", "Staff");

2 objRef = rootContext.resolve (name);

staffContext = NamingContextHelper.narrow
(objRef);

3 staffContext.list (3,bList,biterHolder);

System.out.println
("\Contents of staff context:");
71



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
System.out.println
("The length of the list is "

+ bList.value.length);
4 System.out.println

(bList.value[0].binding_name[0].id);
System.out.println

(bList.value[1].binding_name[0].id);
System.out.println

(bList.value[2].binding_name[0].id);
System.out.println

("\nPrint the remaining objects"); 

// print the remaining objects
5 if (biterHolder.value != null ) {

while ( biterHolder.value.next_one (binding))
System.out.println

(binding.value.binding_name[0].id);
...

The information retrieved by this code may be useful to either a client or a 
server. The functionality of this code is:

1. The application creates a CosNaming::Name structure that contains two 
name components. The client assigns this structure to represent the 
compound name company.staff, which is bound to a naming context.

2. The application calls resolve() on the root naming context to obtain a 
reference to the company.staff context object.

3. A call to list() on this context object returns a list of at most three 
bindings contained in this context. 

4. The application begins to output each element in the list of bindings 
returned in step 3.

5. If more than three bindings are available in context company.staff, the 
BindingIteratorHolder object biterHolder contains all the 
bindings not returned in step 3. While biterHolder.value is not null, 
the application calls the operation biterHolder.value.next_one to 
retrieve a list of these additional bindings.

For more information about operation CosNaming::NamingContext::list(), 
refer to “CosNaming::NamingContext::list()” on page 157. For more 
information about the interface CosNaming::BindingIterator, refer to 
“CosNaming::BindingIterator” on page 149.
 72



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
Finding Unreachable Context Objects

Applications can create naming contexts with no associated name binding. If such 
an application exits without destroying these contexts, the context objects 
remain in the Naming Service but are unreachable and cannot be deleted. For 
example, an application could do this by calling the operation 
CosNaming::NamingContext::unbind() to unbind a context name, without 
calling CosNaming::NamingContext::destroy() to destroy the corresponding 
context object.

On start-up, OrbixNames automatically creates a naming context to handle this 
problem. This context is named lost+found. If you create a context without 
binding a name to it, or unbind a context name without destroying the context 
object, OrbixNames gives the context a special name within the lost+found 
context. The format of this name is as follows:

NC_number time

The number value is a random number assigned by OrbixNames. The time value 
indicates the date and time at which the name was created in the lost+found 
context. The combination of the number and time values uniquely identifies the 
naming context in lost+found.

Of course, this naming format makes it almost impossible to determine which 
context in lost+found came from which application. However, this is not 
important because the lost+found context simply allows you to ensure that the 
Bindings Repository does not become cluttered with unreachable context 
objects. For example, you might want to destroy all contexts in lost+found 
created before a certain date. This is quite straightforward. First, list the 
contents of lost+found using the OrbixNames lsns utility and then delete the 
appropriate contexts using the OrbixNames rmns utility. These utilities are 
described in Chapter 6.

For example, the following command deletes the context object associated with 
the name "NC_9Thu Dec 10 11-09-02 GMT+00-00 1998" in the lost+found 
context:

rmns -x lost+found.NC_9Thu Dec 10 11-09-02 GMT+00-00 1998

Before you delete a context in lost+found, ensure that the context is no longer 
required by your applications. For example, if an application uses 
CosNaming::NamingContext::new_context() to create a context that it 
intends to name later, the context is stored temporarily in lost+found until the 
73



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
application binds a name to it. You should take care to avoid deleting such 
contexts. Deleting contexts created before a given date is one way to achieve 
this.

The lost+found context is most useful during application testing, because 
leaving unreachable contexts in the Naming Service is bad application behavior. 
When coding your applications, try to ensure that they avoid doing this.

Compiling and Running an Application
This section describes how to build an application that uses OrbixNames, the 
configuration variables that are required, how to register an OrbixNames server 
in the Implementation Repository, and the options that are available on the 
server executable.

The following steps are required to build an application that uses OrbixNames:

1. Generate stub code for the OrbixNames server by passing the 
OrbixNames IDL file, NamingService.idl, through your IDL compiler. 
Link your application with the client stub code. For example, you can run 
the Orbix IDL compiler as follows:

idl NamingService.idl

This generates several Java constructs that implement Java classes and 
interfaces to serve specific roles. You may choose to use either the TIE 
or the ImplBase approach. For further details, refer to “OrbixWeb IDL 
Compilation” in the OrbixWeb Programmer’s Guide.

If your application uses the load balancing features of OrbixNames, 
described in Chapter 3 on page 37, you must also pass the other 
OrbixNames IDL file, LoadBalancing.idl, through your IDL compiler, 
for example:

idl LoadBalancing.idl

Again, this generates several Java constructs for use during application 
implementation. Refer to “OrbixWeb IDL Compilation” in the OrbixWeb 
Programmer’s Guide for further information.

2. Register the OrbixNames server in the Implementation Repository as 
described in “Registering the OrbixNames Server” on page 76.
 74



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
3. Configure the Orbix locator to make the OrbixNames server known to 
org.omg.CORBA.Object resolve_initial_references(). 
Assuming that the OrbixNames server is registered in the 
Implementation Repository with the name NS on host alpha, this can be 
achieved by adding the following line to the Orbix.hosts or orbix.hst 
file:

NS:alpha:

Compiling and Running the demo Application

This section outlines how to build a demonstration program that uses the Naming Service. 
It describes what configuration variables are required, how to register a naming server in 
the Implementation Repository and what options are available on the naming server 
executable.

Building the OrbixWeb Naming Service Demonstration 
Application

The Naming Service demonstration program is located in the \demos\namesStaff 
directory of your OrbixWeb installation.

Use the following steps for running the demonstration application:

1. To build the application on Solaris use gmake; on Windows run the 
compile.bat batch program. 

2. Register the Naming Service by entering the following command:

        putit -j NS IE.Iona.OrbixWeb.CosNaming.NS

3. Register the Staff server by entering the following command:

        putit -j Staff namesStaff.javaserver1

4. Start the Java server by running the javaserver1 script on Solaris or 
javaserver1.bat on Windows. This launches the Naming Service and 
populates it with names.

5. Start the Java client by running the javaclient1 script on Solaris or 
javaclient1.bat on platforms. This establishes a connection with the 
Naming Service and resolves the names bound by the Java server.
75



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Configuring OrbixNames

When you install OrbixNames, the configuration file orbixnames3.cfg is added 
to your system, in the OrbixNames config directory. This file contains the 
configuration variables that relate to OrbixNames and it is included in the Orbix 
configuration file iona.cfg, as described in theOrbixWeb Administrator’s Guide.

On UNIX, you can set the OrbixNames configuration variables in the 
orbixnames3.cfg configuration file using the Orbix Configuration Explorer 
described in the OrbixWeb Administrator’s Guide. They may also be set as 
environment variables. On Windows NT these values are set in either the 
configuration file or the system registry.

When setting the values of these variables in the file orbixnames3.cfg, define 
each variable in the OrbixNames scope, that is OrbixNames.IT_NAMES_SERVER, 
OrbixNames.IT_NS_HOSTNAME, OrbixNames.IT_NAMES_PATH, and so on.

For a comprehensive description of OrbixNames and common configuration 
variables, refer to Appendix A, “Configuration Variables”. 

Registering the OrbixNames Server

As a normal Orbix server, the OrbixNames server must be registered with the 
Orbix Implementation Repository. 

As usual, the server is registered using either the Graphical Server Manager 
utility or the putit utility. Using putitj, a typical command to register an 
OrbixNames server is:

putitj NS "/orbix/bin/ns"

Once registered with the Implementation Repository, the server can be 
activated by the Orbix daemon or launched manually.

You can terminate the OrbixNames server in the same way as any Orbix server; 
that is, by using the killitj utility on UNIX, or the Graphical Server Manager 
utility.

Options to the OrbixNames Server

The OrbixNames server executable is named ns; it takes the following options:

ns [-v] [-r <repository path>] \
 76



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
[-I <ns ior file>] [-l] [-h <hashtable size>] \
[-p <thread pool size>] [-e <cache size>] [-j]
[-semisecure] [-secure]

The options are

-v Outputs version information. Specifying -v does not 
cause the OrbixNames server to run.

-r Specifies the directory to be used as the Bindings 
Repository. This overrides the value of 
IT_NAMES_PATH, as set in Orbix.cfg (or the system 
registry on Windows NT).

-I <ns ior file> Specifies a file where the server will store the root 
context IOR as it starts up.

-l Starts the OrbixNames server in load balancing 
mode. If you wish to use object groups, you must 
start the server with this option.

-h <hash table size> In OrbixNames, each naming context has an 
associated hash table. A naming context uses this 
table to store references to bindings the context 
contains. The -h switch allows you to specify the 
size of this hash table.

The default hash table size is 23. If you expect your 
naming contexts to contain more than this number 
of bindings, increase the hash table size to reduce 
the number of times the hash table resizes. If you 
expect less than this number, decrease the hash 
table size to improve performance.

-p <thread pool size> The OrbixNames server is a multithreaded 
application. The -p switch sets the size of the 
thread pool used to handle incoming requests. The 
default value is 10.

-e <cache size> The OrbixNames server caches naming contexts in 
memory to improve performance. The -e switch 
specifies how many contexts should be cached. The 
default value is 10.
77



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Running OrbixNames in a Secure System
OrbixSSL enables you to create Orbix and OrbixWeb applications that 
communicate using Secure Sockets Layer (SSL) security. If you run secure 
applications that use OrbixNames, the OrbixNames server must also 
communicate using SSL.

When running OrbixNames with OrbixSSL, you must:

1. Configure SSL support in OrbixNames.

2. Write the OrbixNames Interoperable Object Reference (IOR) to a file.

3. Configure clients to read the OrbixNames IOR from a file.

-j The OrbixNames server is a Java application. On 
platforms other than Solaris, you can instruct the 
server to pass command-line switches directly to 
the Java interpreter. To do this, use the -j switch 
to the OrbixNames server.

For example, to increase the virtual memory used 
by the interpreter when running OrbixNames, start 
the server as follows:

ns -j -mx9000000

-semisecure The default OrbixNames server possesses no 
security. This switch forces the server to accept 
both secure (SSL) and insecure (non-SSL) 
connections. You will be prompted for a password 
that should correspond to the SSL certificates 
referenced in the OrbixNames section of the 
orbixssl.cfg configuration file.

-secure The default OrbixNames server possesses no 
security. This switch forces the server to accept 
Secure Sockets Layer (SSL) connections only. You 
will be prompted for a password that should 
correspond to the SSL certificates referenced in the 
OrbixNames section of the orbixssl.cfg 
configuration file.
 78



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
4. Run the OrbixNames server.

5. If required, run the OrbixNames utilities.

This section briefly describes each of these steps. Refer to the OrbixSSL 
documentation for more information about OrbixSSL and SSL security.

Configuring SSL Support in OrbixNames

As described in the OrbixSSL documentation, the OrbixSSL configuration file, 
orbixssl.cfg, controls how a program uses SSL. To configure the use of SSL in 
OrbixNames, you must add several configuration values to orbixssl.cfg.

Adding SSL Security to OrbixNames

First, you must instruct OrbixNames to use SSL. To do this, add the following 
text to the OrbixSSL configuration file:

OrbixNames {
Server {

IT_SECURITY_POLICY = "SECURE";
};

};

The configuration variable OrbixNames.IT_SECURITY_POLICY can take one of 
the following values:

If you do not set this variable in the configuration file, OrbixNames does not use 
SSL security. If you set the value to SECURE, you must then configure SSL 
authentication.

SECURE The OrbixNames server accepts only secure communications.

INSECURE The OrbixNames server accepts only insecure 
communications.

SEMI_SECURE The OrbixNames server accepts both secure and insecure 
communications.
79



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Configuring SSL Authentication in OrbixNames

SSL authentication allows one SSL program to verify the identity of another. 
Each authenticated program has an associated certificate and a private key that it 
uses to prove its identity. Each certificate is signed by a Certification Authority 
(CA) that guarantees that the certificate is valid. By default, only OrbixSSL server 
programs are authenticated.

To ensure that the OrbixNames server can prove its identity during 
authentication, you must specify the location of the OrbixNames certificate and 
private key files in the OrbixSSL configuration file. By default, OrbixNames uses 
the certificate file orbix_names and the private key file orbix_names.jpk, both 
located in the OrbixSSL certificates/services directory.

To configure OrbixNames to use these files, add the following settings to the 
OrbixSSL configuration file:

OrbixNames {
Server {

IT_CERTIFICATE_FILE = "OrbixSSL directory/
certs/services/orbix_names";

IT_PRIVATEKEY_FILE = "OrbixSSL directory/
certs/services/orbix_names.jpk"

};
};

Replace the OrbixSSL directory value with the actual directory in which 
OrbixSSL is installed. In a fully secure system, where you do not use the 
OrbixSSL demonstration certificates, you must change these settings to 
associate your chosen certificate and private key with OrbixNames.

Adding Client Authentication to OrbixNames

If required, OrbixNames can authenticate programs that connect to it. In this 
case, the communicating program must have an associated certificate and the 
certificate must be signed by a trusted CA.

If you want to enable client authentication by OrbixNames, add the following 
setting to the OrbixSSL configuration file:

OrbixNames {
Server {

IT_AUTHENTICATE_CLIENTS = "TRUE";
};
 80



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
};

To specify the file that contains the list of trusted CAs, add the following:

OrbixNames {
Server {

IT_CA_LIST_FILE = "OrbixSSL directory/
/ca_lists/demo_ca_list_1";

};
};

In a fully secure system, change this setting to your actual certificate list file.

Configuring the SSL Port for the OrbixNames Server

When the OrbixNames server is SSL-enabled, it requires an additional port on 
which it listens for incoming secure communications. To set this port value, add 
the following variable to the OrbixNames configuration file:

OrbixNames {
IT_SSL_IIOP_LISTEN_PORT = "portnumber";

};

Replace the portnumber value with any available port number.

Writing the OrbixNames IOR to a File

Before running the OrbixNames server with OrbixSSL, you must instruct the 
server to publish its IOR to a file. To do this, use the -I switch as follows:

ns -I filename

This causes the server to write its IOR to the file specified in filename.

Configuring Clients to Read the OrbixNames IOR

After the OrbixNames server writes its IOR to a file, you must configure your 
clients to read this IOR when making contact with the CORBA Naming Service.

For Orbix clients, add the following setting to the OrbixNames configuration 
file:

Common {
Services {
81



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
NameService = "IOR";
};

};

In this case, IOR is the OrbixNames IOR copied from file. For OrbixWeb clients, 
add the following to the OrbixNames configuration file:

OrbixWeb {
IT_INITIAL_REFERENCES = "NameService IOR";

};

When the client calls resolve_initial_references() to obtain a reference to 
the OrbixNames server, these settings ensure that it uses the correct IOR. The 
only way that clients can contact a secure OrbixNames server is by using 
resolve_initial_references() in this manner.

Running the OrbixNames Server

To use security with OrbixNames, you must launch the OrbixNames server 
manually. It cannot be launched automatically. For example, run the server as 
follows:

ns

To gain access to its private key, OrbixNames must supply the pass phrase that 
was used to encrypt the key. When you start the server, it instructs you to 
enter this pass phrase. If you use the OrbixSSL demonstration certificates and 
private keys, enter the pass phrase demopassword. Otherwise, enter the correct 
pass phrase for the private key specified in the 
OrbixNames.Server.IT_PRIVATEKEY_FILE configuration value in 
orbixssl.cfg.

When running the OrbixNames server, you can override the security setting 
specified by the OrbixNames.Server.IT_SECURITY_POLICY variable in 
orbixssl.cfg. 

To do this, use the -secure switch or -insecure switch, for example:

ns -insecure
 82



J a v a  P r o g r amm in g  w i t h  O r b i x N ame s
Running the OrbixNames Utilities

Using a secure OrbixNames server, you can run only the C++ OrbixNames 
utilities, for example lsns. You cannot run the Java utilities. For example, lsnsj 
cannot use SSL security.

If the OrbixNames server uses client authentication, the utilities must be able to 
supply a certificate and gain access to a private key. During installation, each 
utility is configured to use the orbix demonstration certificate from the 
OrbixSSL certificates/services directory. The OrbixSSL C++ Programmer’s 
and Administrator’s Guide describes how to replace this certificate and update 
the utilities with a new private key pass phrase.

Federation of Name Spaces
The collection of all valid names recognized by the Naming Service is called a 
name space. A name space is not necessarily located on a single OrbixNames 
server, because a context in one OrbixNames server can be bound to a context 
in another OrbixNames server on the same host or on a different host. The 
name space provided by a Naming Service is the association or federation of the 
name spaces of each individual OrbixNames server that comprises the Naming 
Service. 

Figure 4.2 shows a Naming Service federation that comprises two OrbixNames 
servers running on different hosts. In this example, names relating to the 
company’s engineering and PR divisions are served by one server, and names 
relating to the company’s marketing division are served by a separate server. A 
request to resolve a name starts in one OrbixNames server, but may continue in 
another server’s database. Clients do not have to be aware that more than one 
server is involved in the resolution of a name, and they do not need to know 
which server interprets which part of a compound name. 

You can create a federated name space using the OrbixNames utilities. These 
utilities are described in detail in Chapter 6. To implement the Figure 4.2 
federated namespace, use the putnewncns command to create the company 
naming context on host A and the marketing naming context on host B:

putnewncnsj -h A company 
putnewncnsj -h B marketing 
83



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Next, instruct OrbixNames to copy the object reference for the marketing 
context object to the file marketing.ior:

catnsj -h B marketing > marketing.ior

Finally, associate the name of this context with the object reference of the 
marketing context on host B:

putncns -h A company.marketing -f marketing.ior

Figure 4.2: Naming Graph Spanning Two OrbixNames Servers

marketing

company

engineering PR

Host A

Host B
 84



 5
Load Balancing with OrbixNames 
Using Java

Load balancing is a crucial requirement for many distributed 
applications. This chapter describes the powerful, but easy-to-use 
OrbixNames approach to load balancing in CORBA applications.

The Need for Load Balancing
The role of the CORBA Naming Service is critical in large-scale distributed 
applications. The Naming Service acts as a central repository of objects, which 
clients use to locate server applications. Administrators can relocate or upgrade 
server applications by modifying the contents of the Naming Service. This 
requires no coding modifications on the client side.

Figure 5.1 on page 86 shows a typical OrbixNames environment:

• The Bank server binds an object obj1, to a name name1, in the Naming 
Service.

• Clients 1...N resolve this name by obtaining a proxy for obj1. 

• Clients 1...N then invoke obj1 directly.
85



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Figure 5.1: Example of Typical OrbixNames Usage

As the number of deployed clients increases, the load on an individual server 
may become excessive. To redress this problem, server load balancing through 
replication may be required.

In the example shown in Figure 5.1, replication involves creating a new server 
Bank_replica, which contains an object obj1_replica. This is an object 
offering an identical service to obj1. The new server registers the replica object 
in the Naming Service under the name name1_replica. Clients can choose to 
resolve either name1 or name1_replica, to access either obj1 or 
obj1_replica respectively. This approach is simple and practical, but requires a 
significant amount of application-specific coding.

Code changes on the client side are especially problematic. For example, if the 
clients are installed extensively in an enterprise, each installation will need to be 
upgraded when clients are modified to select different replica objects. Similarly, if 
two servers are insufficient, another server Bank_replica_2 will be required, 
necessitating further code modifications.

This simple approach to replication does not scale very well because, unlike 
upgrading or relocating servers, it involves code changes on the client side. 
However, the Naming Service is a useful candidate for handling server 
replication and OrbixNames provides a solution to the scalability problem.
 86



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
Introduction to Load Balancing in OrbixNames
The CORBA Naming Service defines a repository of names that map to objects. 
A name maps to one object only. OrbixNames extends the CORBA Naming 
Service model to allow a name to map to a group of objects. An object group is a 
collection of objects that can increase or decrease in size dynamically. For 
example, {obj1, obj1_replica, obj1_replica_2} would constitute an object 
group.

Each object group has a selection algorithm. This algorithm is applied when a 
client resolves the name associated with the object group. Two algorithms are 
supported: round-robin selection and random selection.

OrbixNames supports object groups by introducing new IDL interfaces to the 
Naming Service. These interfaces enable you to create object groups, add 
objects to and remove objects from groups, and to find out which objects are 
members of a particular group. If you want to take advantage of object groups, 
you can use these interfaces in your servers to create and manipulate groups. 
Your client code can remain unchanged. 

Figure 5.2 illustrates the concept of binding a name to multiple objects using an 
object group.

Figure 5.2: Associating a Name with an Object Group

   Name

   Name

 

  Object 1

  Object

  Object 3

    Object 2

                              Object Group

Pure CORBA
Naming Service

OrbixNames
Extension
87



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
The Interface to Object Groups in OrbixNames

The IDL module LoadBalancing, defined in the IDL file LoadBalancing.idl, 
provides access to the load balancing features of OrbixNames:

module LoadBalancing {
exception no_such_member{};
exception duplicate_member{};
exception duplicate_group{};
exception no_such_group{};
typedef string memberId;
typedef sequence<memberId> memberIdList;
typedef string groupId;
typedef sequence<groupId> groupList;

struct member {
Object obj;
memberId id;

};

interface ObjectGroup;
interface RoundRobinObjectGroup;
interface RandomObjectGroup;

interface ObjectGroupFactory {
RoundRobinObjectGroup createRoundRobin(in groupId id)

raises (duplicate_group);
RandomObjectGroup createRandom(in groupId id) 

raises (duplicate_group);
ObjectGroup findGroup(in groupId id) raises (no_such_group);
groupList rr_groups();
groupList random_groups();

};
interface ObjectGroup {

readonly attribute string id;

Object pick();
void addMember(in member mem) raises (duplicate_member);
void removeMember(in memberId id) raises (no_such_member);
Object getMember(in memberId id) raises (no_such_member);
memberIdList members();
void destroy();

};
 88



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
interface RandomObjectGroup : ObjectGroup {};
interface RoundRobinObjectGroup : ObjectGroup {};

};

Part IV of this guide provides a complete reference for these definitions.

Using Object Groups in OrbixNames

Because object groups are designed to be transparent to clients, you generally 
use the LoadBalancing module when writing servers. There are four common 
tasks for which servers use this module:

• Creating a new object group and adding objects to it.

• Adding objects to an existing object group.

• Removing objects from an object group.

• Removing an object group.

The remainder of this section describes how to do each of these operations.

Creating a New Object Group
To create a new object group and add objects to it:

1. Get a reference to a naming context, for example the root naming 
context.

2. On the naming context object, call the operation 
CosNaming::NamingContext::OBfactory(). This returns a reference to 
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation 
LoadBalancing::ObjectGroupFactory::createRandom() or 
LoadBalancing::ObjectGroupFactory::createRoundRobin() to 
create an object group that uses the selection algorithm you want. Each 
of these operations returns a reference to an object that inherits 
interface LoadBalancing::ObjectGroup.

4. Use the operation LoadBalancing::ObjectGroup::addMember() to add 
your application objects to the newly created object group. 

5. Use the operation CosNaming::NamingContext::bind() to bind a name 
to the LoadBalancing::ObjectGroup object in the usual way.
89



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
When creating the object group in step 3, you must specify a group identifier. 
This identifier is a string value unique to that object group. 

Similarly, when adding a member to the object group, you must provide a 
reference to the object and a corresponding member identifier. This identifier is a 
string value that must be unique within the object group. 

In both cases, you decide the format of the identifier string. OrbixNames does 
not interpret these identifiers.

Adding Objects to an Existing Object Group
Before adding objects to an existing object group, you must get a reference to 
the corresponding LoadBalancing::ObjectGroup object. You can do this using 
the group identifier or the name bound to the object group. This section uses 
the group identifier.

To add objects to an existing object group:

1. Get a reference to a naming context, for example the root naming 
context.

2. On the naming context object, call the operation 
CosNaming::NamingContext::OBfactory(). This returns a reference to 
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation 
LoadBalancing::ObjectGroupFactory::findGroup(), passing the 
identifier for the group as a parameter. This operation returns a 
reference to the LoadBalancing::ObjectGroup object associated with 
the object group.

4. Use the operation LoadBalancing::ObjectGroup::addMember() to add 
your application objects to the object group.

Removing Objects from an Object Group
Removing an object from a group is quite straightforward if you know the object 
group identifier and the member identifier for the object:

1. Get a reference to a naming context, for example the root naming 
context.
 90



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
2. On the naming context object, call the operation 
CosNaming::NamingContext::OBfactory(). This returns a reference to 
a LoadBalancing::ObjectGroupFactory object.

3. On the object group factory, call the operation 
LoadBalancing::ObjectGroupFactory::findGroup(), passing the 
identifier for the group as a parameter. This operation returns a 
reference to the LoadBalancing::ObjectGroup object associated with 
the object group.

4. On the object group, call the operation 
LoadBalancing::ObjectGroup::removeMember() to remove the 
required object from the group. You must specify the member identifier 
for the object as a parameter to this operation.

If you already have a reference to the LoadBalancing::ObjectGroup object 
associated with the object group, steps 1 to 3 are unnecessary.

Removing an Object Group
If you do not have a reference to the object group you want to remove, do the 
following:

1. Get a reference to the root naming context.

2. Use the root naming context to unbind the name associated with the 
object group, by calling CosNaming::NamingContext::unbind() in the 
usual way.

3. On the root naming context object, call the operation 
CosNaming::NamingContext::OBfactory(). This returns a reference to 
a LoadBalancing::ObjectGroupFactory object.

4. On the object group factory, call the operation 
LoadBalancing::ObjectGroupFactory::findGroup(), passing the 
identifier for the group as a parameter. This operation returns a 
reference to the LoadBalancing::ObjectGroup object associated with 
the object group.

5. On the object group, call the operation 
LoadBalancing::ObjectGroup::destroy() to remove the group from 
the Naming Service.

If you already have a reference to the target LoadBalancing::ObjectGroup 
object, steps 3 and 4 are unnecessary.
91



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Finding an Object Group without the Group Identifier

The procedures described in the previous sections assume that your application 
gets a reference to an object group using the group identifier. You can also get a 
reference to an object group if you know the name bound to the group in the 
Naming Service. To do this, call the operation 
CosNaming::NamingContext::resolve_object_group(). This operation is 
described in detail on page 163.

Example of Load Balancing with Object Groups
This section uses sample code to show how you can take advantage of object 
groups in your CORBA applications. The example described here is a very 
simple stock market system. In this example, a CORBA object has access to all 
current stock prices. Clients request stock prices from this CORBA object and 
display those prices to the user of the application.

In any realistic stock market application, there are potentially many stock prices 
available and many clients that require price updates without delay. Given such a 
high processing load, a single CORBA object may not be able to satisfy client 
requirements. A simple solution to this problem is to replicate the CORBA 
object, invisibly to the client, using object groups.

Sample code for the application described in this section is available in the 
load_balancing demonstration directory of your OrbixNames installation. 
This sample code may differ slightly from the code described in this section.

Defining the IDL for the Application

The architecture for the stock market system is shown in Figure 5.3 on page 93. 
Two servers process client requests for stock price information. The server 
stockmarketserver1 creates two CORBA objects for this purpose. Server 
stockmarketserver2 creates an additional CORBA object which, from a client 
perspective, provides exactly the same service as the objects in 
stockmarketserver1.

The IDL for this application requires only a single interface definition. This 
interface, called StockMarketFeed, is implemented by each of the three CORBA 
objects. 
 92



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
Interface StockMarketFeed is defined in the module ObjectGroupDemo:

// IDL
module  ObjectGroupDemo {

interface StockMarketFeed {
enum feedFailureDetails {

service_interruption, stock_feed_terminated};

exception stock_unavailable {};
exception stock_feed_failure {

feedFailureDetails reason;
};

long read_stock (in string stock_name)
raises (stock_unavailable, stock_feed_failure);

};
};

Figure 5.3: Architecture of the Stock Market Example

6WRFN0DUNHW)HHG�

VWRFNPDUNHWVHUYHU�

6WRFN0DUNHW)HHG�

VWRFNPDUNHWVHUYHU�

2EMHFW*URXS

2UEL[1DPHV

&OLHQW

&UHDWH�JURXS

%LQG�QDPH�WR�JURXS

$GG�60)��DQG
60)��WR�JURXS

$GG
�60

)��W
R�JU

RXS

*HW�VWRFN�SULFHV

5HVROYH�JURXS�QDPH

6WRFN0DUNHW)HHG�
93



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
The interface StockMarketFeed includes a single operation, read_stock(), 
which returns the current price of the stock associated with a specified stock 
name. A name is a string identifier unique to each stock. This operation can raise 
the following exceptions:

Creating an Object Group and Adding Objects

After you define your IDL, the next step in developing an application is to 
implement your interfaces. Using object groups has no effect on how you do 
this, therefore this section assumes that you have defined a Java class, 
StockMarketFeedImpl, which implements the interface StockMarketFeed.

When you have implemented your IDL interfaces, you must develop a server 
program that contains and manages your implementation objects. In our 
application, we have two servers. Two StockMarketFeed implementation 
objects are created by StockMarketServer1, which extends the base 
StockMarketServer class. This creates an object group in the Naming Service, 
and adds the implementation objects to this group. The second server, 
StockMarketServer2, also extends StockMarketServer, creates an additional 
StockMarketFeed implementation object and adds this to the existing object 
group.

The key parts of the StockMarketServer class are:

// Java
// StockMarketServer.java

import org.omg.CORBA.*;
import org.omg.CosNaming.*;

import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb.LoadBalancing.*;

import Demos.LoadBalancing.ObjectGroupDemo.*;

stock_unavailable This exception is raised by read_stock() to indicate 
that the specified stock name is not valid.

stock_feed_failure A stock_feed_failure indicates that an error 
occurred in communications between the server and 
the source of stock prices.
 94



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
import 
Demos.LoadBalancing.ObjectGroupDemo.StockMarketFeedPackage.*;
...
public class StockMarketServer
{

...
// Creates and registers the StockMarketFeed
// objects that go into the round-robin load
// balancing object group.
private void registerStockMarketFeeds(ORB orb, 
ObjectGroup object_group, int number_of_feeds,

int start_feed_number) throws Exception
  {
    for (int i = 0; i < number_of_feeds; i++)
    {

// Create the stock market feed object
// and connect to the orb

1       StockMarketFeedImpl stock_feed = new 
StockMarketFeedImpl(SMS_STOCK_MARKET_FEED_PREFIX
+ String.valueOf(start_feed_number + i));
      orb.connect(stock_feed);
...
}

// Create the Load Balancing
// round-robin object group
private ObjectGroup getObjectGroup()

throws Exception
{

...
2  root_naming_context = getRootContext();

resolved_obj = 
root_naming_context.resolve(name_components);

...
}

// Get the ObjectGroupFactory,
// return ObjectGroupFactory
private ObjectGroupFactory getObjectGroupFactory()

throws Exception
  {
    // Get the Object Group Factory object
    //
95



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
3     org.omg.CORBA.Object object =
 getRootContext().OBfactory();

    ObjectGroupFactory object_group_factory =
 ObjectGroupFactoryHelper.narrow(object);

...
return object_group_factory;

}
...

// StockMarketServer constructor
public StockMarketServer

(ORB orb, String server_name,
int number_of_feeds, int start_feed_number)

throws Exception
{

...
// Create a round-robin object group
// for load balancing

4     ObjectGroup object_group =
createRoundRobinObjectGroup(orb,
SMS_GROUP_IDENTIFIER, SMS_OBJECT_GROUP_NAME);

// Creates and registers the StockMarketFeed
// objects that go into the round-robin load
// balancing object group.

5     registerStockMarketFeeds(orb, object_group,
number_of_feeds, start_feed_number);

...
// Handle client requests

6 _OrbixWeb.ORB(orb).impl_is_ready(server_name, 0);
...
}
...

}

 96



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
The functionality of this code is as follows:

1. The server creates implementation objects of type 
StockMarketFeedImpl.

2. The function getRootContext() returns a reference to the root naming 
context in the Naming Service. The implementation of this function is 
shown in “Getting the Root Naming Context”.

3. The server calls the operation OBfactory() on the root naming context. 
This operation is implemented by the Naming Service and returns a 
factory object, of type LoadBalancing.ObjectGroupFactory, which 
the server can use to create object groups.

4. The server calls the function createRoundRobinObjectGroup(). This 
function uses the object group factory to create a new group with the 
specified identifier. It then binds a specified Naming Service name to this 
group. The implementation of createRoundRobinObjectGroup() is 
shown in “Creating an Object Group” on page 99.

5. The function registerStockMarketFeeds() adds the 
StockMarketFeedImpl objects to the object group created in step 4. The 
implementation of this function is shown in “Adding an Object to an 
Object Group” on page 101.

6. Finally, the server prepares to receive client requests by calling 
_OrbixWeb.ORB(orb).impl_is_ready.

Getting the Root Naming Context

The programs in this chapter use the following simple function to get a reference 
to the root naming context:

// Java
// StockmarketServer.java
// Gets the root context in the Naming Service
 private NamingContext getRootContext()
    throws Exception
  {    
    if (m_root_naming_context == null)
    {
      org.omg.CORBA.Object naming_context_obj = null;
      
      // Get the object reference.
      //
97



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
      try
      {
        displayMessage("getRootContext(): 

Getting NameService object reference");
        naming_context_obj =

m_orb.resolve_initial_references("NameService");
        displayMessage("getRootContext(): 

Got NameService object reference");
      }
      catch (org.omg.CORBA.ORBPackage.InvalidName in)
      {
        throw new Exception(getServerName() 

+ " - Could not retrieve NameService reference");
      }
      catch (org.omg.CORBA.SystemException se)
      {
        throw new Exception(getServerName() 

+ " - Error retrieving NameService reference: " 
+ se.getMessage());

      }
      if (naming_context_obj == null)
      {
        throw new Exception(getServerName() + 

" - orb.resolve_initial_references(\"NameService\")
returned a null object reference");

      }
  
      // Narrow the object reference.
      //
      try
      {
        displayMessage("getRootContext(): 

Narrowing Object reference to NamingContext");
        m_root_naming_context =

NamingContextHelper.narrow(naming_context_obj);
        displayMessage("getRootContext(): 

Have narrowed NamingContext reference");
      }
      catch (SystemException se)
      {
        throw new Exception(getServerName() + 

" - NamingContextHelper.narrow() failed: "
+ se.getMessage());
 98



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
      }
      
      if (m_root_naming_context == null)
      {
        throw new Exception(getServerName() 

+ " - NamingContextHelper.narrow()
returned a null object reference");

      }
    }
    
    return m_root_naming_context;
  }

Creating an Object Group
In this example, the server calls the function createRoundRobinObjectGroup() 
to create an object group and bind a Naming Service name to it. You can 
implement this function as follows:

// Java
// StockMarketServer.java
...
// Create the Load Balancing round-robin object group
  private ObjectGroup createRoundRobinObjectGroup(ORB orb, String 
group_identifier, String group_name)
    throws Exception
  {
    ObjectGroup         object_group;
    ObjectGroupFactory  object_group_factory = 
getObjectGroupFactory();
    
    try
    {

1       object_group =
object_group_factory.createRoundRobin(group_identifier);

2       bindNameToObjectGroup(orb, group_name, object_group);
    }
    catch (duplicate_group dg)
    {
      displayMessage("Object Group " + group_identifier 

+ " already exists, trying to find it ...");
      try  
      {
99



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
        object_group = 
object_group_factory.findGroup(group_identifier);

      } 
      catch (no_such_group nsg)    
      {
        throw new Exception(getServerName() 

+ " - Couldn’t find Object Group " + group_identifier);      
      }
    }
    return object_group;
  }

...

The function createRoundRobinObjectGroup() takes four parameters: a 
reference to the object group factory, a string value used to identify the new 
group, a string value used to create the name associated with all objects in the 
group, and a reference to the naming context in which this name should be 
bound.

The function createRoundRobinObjectGroup() makes two important calls:

1. It calls the operation createRoundRobin() on the object group factory in 
the Naming Service. This operation returns a new object group in which 
objects are selected on a round-robin basis.

2. Function createRoundRobinObjectGroup() then calls 
bindNameToObjectGroup(), a local function that binds a Naming Service 
name to the newly created group.

Binding a Name to an Object Group
The function createRoundRobinObjectGroup() calls the function 
bindNameToObjectGroup() to bind a name to the object group. When a client 
resolves this name, it receives a reference to one of the group’s member 
objects, selected by the Naming Service in accordance with the group selection 
algorithm. The client does not know that the name is actually bound to a group 
of objects.

You can code bindNameToObjectGroup() as follows:

// Java
// StockMarketServer.java
// Binds a new ObjectGroup to a name in the
// Naming Service that the clients can refer to and bind to
 100



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
private void bindNameToObjectGroup(ORB orb,
String object_group_name, ObjectGroup object_group)

    throws Exception
  {
    // create a sequence of names for the resolve
    NameComponent[] name_components =
      new NameComponent[]
      {
        new NameComponent(LOAD_BALANCING_CONTEXT_NAME, ""),
        new NameComponent(object_group_name, "")
      };

    // Get the root context in the Naming service
    displayMessage("binding name " + LOAD_BALANCING_CONTEXT_NAME

+ "+" + object_group_name + " ...");
    getRootContext().bind(name_components, object_group);
  }

The functionality of bindNameToObjectGroup() is quite straightforward. This 
function simply calls getRootContext().bind() on a naming context to 
associate a Naming Service name with an object. In this case, the object’s true 
type is LoadBalancing::ObjectGroup, so the name is associated with an object 
group.

In this example, the object group name is bound in the context 
LOAD_BALANCING_CONTEXT_NAME. The code assumes that this naming context 
already exists. For example, you could create this context in the initialization 
code for StockMarketServer. Alternatively, you could use the OrbixNames 
putnewncns or putnewncnsj utilities, described in Chapter 6 on page 113.

Adding an Object to an Object Group
After creating the object group, StockMarketServer adds its StockMarketFeed 
implementation objects to the group. To do this, the server calls the function 
registerStockMarketFeeds():

// Java
// StockMarketServer.java
// Creates and registers the StockMarketFeed objects
// that go into the round-robin load balancing object group.
...
101



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
private void registerStockMarketFeeds(ORB orb,
ObjectGroup object_group, int number_of_feeds, 

int start_feed_number)
    throws Exception
  {
    for (int i = 0; i < number_of_feeds; i++)
    {
      // Create the stock market feed object and connect to the orb

1       StockMarketFeedImpl stock_feed = 
new StockMarketFeedImpl(SMS_STOCK_MARKET_FEED_PREFIX 

+ String.valueOf(start_feed_number + i));
      orb.connect(stock_feed);
      

2       member new_member = 
new member(stock_feed, SMS_STOCK_MARKET_FEED_PREFIX

+ String.valueOf(start_feed_number + i));
      
      // Add stock market feed object to this object group
      displayMessage("adding member " + new_member.id + 

" to object group " + object_group.id());
      try
      {

3         object_group.addMember(new_member);
      }

4       catch (duplicate_member dm)   
      {

// Remove existing duplicate and
// then try to add our member again

try
{

          object_group.removeMember(new_member.id);
          object_group.addMember(new_member);

}
catch (no_such_member nsm)   
{

          throw new Exception(getServerName() + 
" - problem adding member " + new_member.id 

+ " in object group " + object_group.id());
}
catch (duplicate_member dm2)   
{

 102



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
          throw new Exception(getServerName() 
+ " - problem adding member " + new_member.id 
+ " in object group " + object_group.id());

}
}

}

The function registerStockMarketFeeds() takes four parameters: the server’s 
ORB, the object group, the number of stock market feed objects added by this 
server, and the starting number for the first stock market feed object added. The 
member identifier new_member.id has no effect on the naming of the object 
within the Naming Service. To obtain a reference to the object, a client resolves 
the name bound to the object group.

The functionality of registerStockMarketFeeds() is as follows:

1. The server creates a new StockMarketFeedImpl object, connecting it to 
the ORB using connect().

2. The server creates an IDL struct of type LoadBalancing::member which 
contains two items: a reference to the previously created 
StockMarketFeedImpl object, and a string that identifies the object 
within the group.

3. The server adds the new member to the object group in the Naming 
Service by calling the operation addMember() on the corresponding 
LoadBalancing::ObjectGroup object.

4. If the string identifier of the new member clashes with an existing 
member identifier, the operation addMember() throws an exception of 
type LoadBalancing::duplicate_member to indicate this. In this case 
addMember() does not update the contents of the object group in the 
Naming Service, and the catch cause checks various possible reasons for 
failure.

Creating Replicated Objects

 In this example, StockMarketServer1 and StockMarketServer2 extend 
StockMarketServer and implement the creation of the required stock market 
feeds. To do this, they create new StockMarketFeed implementation objects by 
calling their StockMarketServer superclass and inheriting the Naming Service-
related functions originally defined there.
103



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
// Java
// StockMarketServer1 - 2 server feeds
import org.omg.CORBA.ORB;

public class StockMarketServer1
  extends StockMarketServer
{
  public static void main(String args[])
  {
    try
    {
      // initialize the ORB

org.omg.CORBA.ORB orb = ORB.init(args,null);
      
      // Create a new server and let it go ...

1 new StockMarketServer1(orb);
    }
    catch (Exception ex)
    {
      ex.printStackTrace();
      System.exit(1);
    } 

...
  }
  
  // Stock market server 1 constructor.

public StockMarketServer1 (ORB orb)
    throws Exception
  {

2     super(orb, "stockmarketserver1", 2, 1);
  }
}

// Java
// StockMarketServer2 - 1 feed
public class StockMarketServer2
  extends StockMarketServer
{

...
3 new StockMarketServer2(orb);

...
public StockMarketServer2 (ORB orb)
 104



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
    throws Exception
  {

4     super(orb, "stockmarketserver2", 1, 3);
  }
}

The functionality of this code is as follows:

1. Create the new StockMarketServer1 object.

2. Constructor for the new StockMarketServer1 object that specifies two 
StockMarketFeedImpl objects through its superclass.

3. Create the new StockMarketServer2 object.

4. Constructor for the new StockMarketServer2 object that specifies one 
StockMarketFeedImpl object through its superclass.

Finding an Existing Object Group

A key part of StockMarketServer is the function find_group(), which 
retrieves a reference to an existing object group. The function 
createRoundRobinObjectGroup() accomplishes this as follows:

// Java
// StockMarketServer.java
...// Creates the Load Balancing round-robin object group
  private ObjectGroup createRoundRobinObjectGroup(ORB orb, String 
group_identifier, String group_name)
    throws Exception
  {
    ObjectGroup         object_group;
    ObjectGroupFactory  object_group_factory = 

getObjectGroupFactory();
    
    try
    {
      object_group =

object_group_factory.createRoundRobin(group_identifier);
      bindNameToObjectGroup(orb, group_name, object_group);
    }
    catch (duplicate_group dg)
    {
      displayMessage("Object Group " + group_identifier 

+ " already exists, trying to find it ...");
105



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
      try  
      {
1 object_group = 

object_group_factory.findGroup(group_identifier);
      } 
      catch (no_such_group nsg)    
      {
        throw new Exception(getServerName() 

+ " - Couldn’t find Object Group " + group_identifier);      
      }
    }
    return object_group;

} ...

The functionality of this code is as follows:

1. The server calls the operation findGroup() on the object group factory. 
The operation findGroup() is defined on the interface 
LoadBalancing::ObjectGroupFactory. Given a group identifier, this 
operation returns a reference to the corresponding 
LoadBalancing::ObjectGroup object.

Accessing the Objects from a Client

All objects in an object group provide the same service to clients. A client that 
resolves a name in the Naming Service does not know if the name is bound to an 
object group or a single object. The client receives a reference to one object 
only. A client program resolves an object group name in exactly the same way as 
it resolves a name bound to just one object. 

For example, the stock market example client could look like this:

// Java
// StockMarketClient

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import IE.Iona.OrbixWeb.LoadBalancing.*;
import Demos.LoadBalancing.ObjectGroupDemo.*;
import Demos.LoadBalancing.ObjectGroupDemo.

StockMarketFeedPackage.*;
...
public class StockMarketClient
 106



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
{
  public static void main(String args[])
  {
    try
    {
      //
      // initialize the ORB
      org.omg.CORBA.ORB orb = ORB.init(args,null);
      
      //
      // Create a new client and let it go ...
      new StockMarketClient (orb);
    }
    catch (Exception ex)

{
      ex.printStackTrace();

}    
}

  
...

}

// Reads and displays the stock prices for the list of stocks.
public void readStockPrices(String[] stock_names_list)

    throws Exception
  {
    StockMarketFeed stock_market_feed;
    String stock_name;
    int stock_price = 0;

...
}

   
// Get a StockMarketFeed.
private StockMarketFeed getStockMarketFeed()

    throws Exception
  {
    StockMarketFeed        stock_market_feed;
    org.omg.CORBA.Object   resolved_obj;
    
    // Pick the next StockMarketFeed object from the object group
    resolved_obj = getObjectGroup().pick();
    
    m_current_feed_id = getIdForMember(resolved_obj);
107



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
    
    if (resolved_obj == null) 
    {
      throw new Exception("getStockMarketFeed() -

Resolved object is null ...");      
    }

stock_market_feed = StockMarketFeedHelper.narrow(resolved_obj);

   ... 
    return stock_market_feed;
  }

    // Get the Object Group containing our StockMarketFeeds.
private ObjectGroup getObjectGroup()

    throws Exception
  {
    if (m_object_group == null)
    {
      NamingContext          root_naming_context;
      org.omg.CORBA.Object   resolved_obj;
      
      // create a sequence of names for the resolve
      NameComponent[] name_components =
        new NameComponent[]
        {
          new NameComponent(LOAD_BALANCING_CONTEXT_NAME, ""),
          new NameComponent(GROUP_SERVER_NAME, "")
        };
  
      // Get the root context in the Naming service
      root_naming_context = getRootContext()

      resolved_obj = 
root_naming_context.resolve(name_components);

  
      if (resolved_obj == null) 
      {
        throw new Exception("getObjectGroup() - 

Resolved object is null ...");      
      }

      m_object_group = ObjectGroupHelper.narrow(resolved_obj);
 108



L o ad  B a l a n c i n g  w i t h  O r b i xN ame s  U s i n g  J a v a
  
...
return m_object_group;

  }

// Gets the root context in the Naming Service
private NamingContext getRootContext()

    throws Exception
  {    
    if (m_root_naming_context == null)
    {
      org.omg.CORBA.Object naming_context_obj = null;
      
      // Get the object reference.
      try
      {
        naming_context_obj = 

m_orb.resolve_initial_references("NameService");
      }
      ... 
      // Narrow the object reference.
      try
      {
        m_root_naming_context =

NamingContextHelper.narrow(naming_context_obj);
      }

...
return m_root_naming_context;

  }  
  

// Returns the ID for a group member.
private String getIdForMember(org.omg.CORBA.Object member_obj)

  {
    try
    {
      String[] member_ids = getObjectGroup().members();
      
      for (int i = 0; i < member_ids.length; i++)
      {
        if (getObjectGroup().getMember(member_ids[i]).

toString().equals(member_obj.toString()))
        {
          return member_ids[i];
109



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
        }
      }
    }

...
return "Unknown";

  }
   

...
}

 110



Part IV
OrbixNames
Administrator’s Guide





 6
Using the OrbixNames Utilities

OrbixNames provides a set of command line utilities that allow you 
to monitor and manage the Naming Service externally to your 
applications. This chapter describes these utilities.

The OrbixNames command line utilities allow you to manipulate the contents of 
the Naming Service directly. It is often useful to do this. For example, the 
utilities are especially convenient when testing applications that use the Naming 
Service.

There are two general categories of OrbixNames utilities:

• The name management utilities allow you to create, delete, and examine 
name bindings in the Names Repository.

• The object group management utilities allow you to create, delete, and 
manage the contents of object groups.

This chapter examines both types of utility in detail.
113



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Managing Name Bindings
The name management utilities allow you to create and manipulate name 
bindings directly from the command line. You can use these utilities to construct 
and navigate a naming graph. The name management utilities are available as both 
native and Java executables with similar functionality.

Note: One important difference between the native and Java executable name 
management utilities is that the Java versions cannot communicate with 
an SSL-enabled OrbixNames server. Refer to “Syntax of the Name 
Management Utilities” on page 120 for further details.

The name management utilities are:

Native Java Functionality

catns catnsj Given a name, outputs a reference to the object 
to which the name is bound. If the object 
reference is an Interoperable Object Reference 
(IOR), the reference is parsed and the 
information displayed.

lsns lsnsj Lists bindings in a context.

newncns newncnsj Creates a new unbound context. You can 
subsequently bind a name to the context using 
putns or putnsj.

putns putnsj Binds a name to an object.

putncns putncnsj Binds a name to an unbound context created 
using newncns or newncnsj.

putnewncns putnewncnsj Creates a new context and binds a name to it.

reputns reputnsj Rebinds a name to an object.

reputncns reputncnsj Rebinds a context, removing the original binding.

rmns rmnsj Removes a name binding and optionally deletes a 
naming context.
 114



U s i n g  t h e  O r b i xN ame s  U t i l i t i e s
The remainder of this uses these utilities to build a naming graph and populate it 
with name bindings. The full syntax for the utilities is given in “Syntax of the 
Name Management Utilities” on page 120. Examples use the native name 
management utilities; you may generally substitute the “j” java name management 
utilities throughout.

Note: Many of these utilities take object references as command line 
arguments. These object references are expected in the string format 
returned from the function CORBA::ORB::object_to_string(). By 
default, this string format represents an Interoperable Object Reference 
(IOR). In this chapter, all object references are shown in native Orbix 
format for convenience. To use IORs, do not specify the -orbixprot 
option when running the utilities.

Using the Name Utilities

This section uses the OrbixNames utilities to build the naming graph used in 
Chapters 2 and 4. Figure 6.1 recalls the structure of this graph.

Figure 6.1: A Naming Context Graph

john managerpaulajames paulajohn
support

james manager

engineering

company

staff
115



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Creating Naming Contexts

The simplest way to create a naming context is to use the putnewncns utility. 
For example, the following command creates a new context bound to the name 
with the ID company and an empty kind value:

putnewncns -orbixprot company

The name is given in the format id-kind. The combination of ID and kind fields 
must unambiguously specify the name.

Further examples are:

• Create a new naming context bound to the name company.engineering 
(the context company must already exist).

putnewncns -orbixprot company.engineering

• Create a new context bound to the name 
company.engineering.support (the context company.engineering 
must already exist).

putnewncns -orbixprot company.engineering.support

You can also use the newncns utility to create an unbound context:

newncns -orbixprot
Created new UNBOUND Naming Context with object reference 
:\host.iona.com:NS:NC_3::IR:CosNaming_NamingContext

A context created using newncns can be bound using the putncns utility. The 
following command binds the new context to the name company.staff. 

putncns -orbixprot company.staff \
":\host.iona.com:NS:NC_3::IR:CosNaming_NamingContext"

Creating Name Bindings
To bind a name to an object, use the putns utility. Given the naming context 
graph show in Figure 6.1 on page 115, the examples in this section assume the 
following object reference strings are associated with the application objects:

james :\host.iona.com:staff:0::IR:Person

john :\host.iona.com:staff:1::IR:Person

paula :\host.iona.com:staff:2::IR:Person
 116



U s i n g  t h e  O r b i xN ame s  U t i l i t i e s
You can bind these objects to appropriate names within the company.staff 
naming context as follows:

putns company.staff.james-person \
":\host.iona.com:staff:0::IR:Person" -orbixprot

putns company.staff.john-person \
":\host.iona.com:staff:1::IR:Person" -orbixprot

putns company.staff.paula-person \
":\host.iona.com:staff:2::IR:Person" -orbixprot

Each of these employee records has been assigned the kind record in the final 
component of its name. 

To build the naming graph further, create additional bindings based on the 
divisions that employees are assigned to:

putns company.engineering.john-person \
":\host.iona.com:staff:1::IR:Person" -orbixprot

putns company.engineering.paula-person \
":\host.iona.com:staff:2::IR:Person" -orbixprot

putns company.engineering.support.james-person \
":\host.iona.com:staff:0::IR:Person" -orbixprot

To allow an application to find the manager of a division easily, add the following 
bindings:

putns company.engineering.manager-person \
":\host.iona.com:staff:2::IR:Person" -orbixprot

putns company.engineering.support.manager-person \
":\host.iona.com:staff:0::IR:Person" -orbixprot

Note that the names company.staff.paula-person, 
company.engineering.paula-person and company.engineering.manager-
person now all resolve to the same object.

The naming contexts and name bindings created by the above sequence of 
commands builds the complete naming graph shown in Figure 6.1 on page 115.
117



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Listing Name Bindings

The utility lsns lists all the bindings in a naming context. The following command 
lists the bindings in the context company.engineering in the OrbixNames 
server on host alpha:

lsns -h alpha -orbixprot company.engineering
Contents of company.engineering

paula (Object)
support (Context)
john (Object)
manager (Object)

The type of the binding is also listed. A binding of type Object names an object; 
a binding of type Context names a naming context, that is a node in the naming 
graph that participates in name resolution.

By default, only the ID of each name is listed by lsns. However, lsns supports a 
-k switch that allows you see both the ID and kind in the listing:

lsns -h host -k -orbixprot company.engineering
Contents of company.engineering

paula-person (Object)
support- (Context)
john-person (Object)
manager-person (Object)

Regardless of whether the -k switch is specified, lsns can always accept a 
command line argument in the id-kind format. 

Finding Object References by Name

The catns utility outputs the object reference for the application object or 
context object to which a name is bound. For example:

catns -orbixprot company.engineering
:\host.iona.com:NS:NC_1::IR:CosNaming_NamingContext

The names company.staff.paula-person and 
company.engineering.manager-person resolve to the same object:

catns -orbixprot company.staff.paula-person
:\host.iona.com:staff:2::IR:Person

catns -orbixprot company.engineering.manager-person
:\host.iona.com:staff:2::IR:Person
 118



U s i n g  t h e  O r b i xN ame s  U t i l i t i e s
Rebinding a Name to an Object or Naming Context

The reputns utility changes the binding for an object name. This is analogous to 
the CosNaming::NamingContext::rebind() operation. For example, the name 
company.engineering.paula-person and the name 
company.engineering.manager-person currently resolve to the same object. 
To give john responsibility for management, you can rebind the name 
manager-person in the context company.engineering:

catns -orbixprot company.engineering.john-person
:\host.iona.com:staff:1::IR:Person
reputns -orbixprot \

company.engineering.manager-person \
":\host.iona.com:staff:1::IR:Person"

The reputncns utility changes the binding for a naming context. This is 
analogous to the CosNaming::NamingContext::rebind_context() operation. 
To illustrate the use of this utility, first create a new context bound to the name 
company.staff.supportStaff:

putnewncns -orbixprot company.staff.supportStaff

Suppose now that the context company.staff.suppportStaff should contain 
the same information as company.engineering.support. Rather than 
maintaining two separate contexts, a better option is to rebind the name 
company.staff.supportStaff so that it points to the 
company.engineering.support context:

catns -orbixprot company.engineering.support
":\host.iona.com:NS:NC_2::IR:CosNaming_NamingContext"

reputncns -orbixprot company.staff.supportStaff 
":\host.iona.com:NS:NC_2::IR:CosNaming_NamingContext"

lsns -k -orbixprot company.staff.supportStaff
Contents of company.staff.supportStaff

james-person (Object)
manager-person (Object)

This sequence of commands leaves the context previously named by 
company.staff.supportStaff unreachable; that is, the naming context object 
exists in the Naming Service, but it has no corresponding name binding. In this 
119



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
case, the naming context is assigned a name in the OrbixNames lost+found 
context, as described in “Finding Unreachable Context Objects” on page 23 
(C++) or on page 73 (Java).

Removing Name Bindings
The rmns utility removes a name binding. For example, the following commands 
remove the manager bindings:

rmns -orbixprot company.engineering.manager-person
rmns -orbixprot \

company.engineering.support.manager-person

Take care not to leave naming contexts unreachable. For example:

rmns -orbixprot company.engineering

This command unbinds the name company.engineering and moves the 
corresponding naming context object into the lost+found context. 

Syntax of the Name Management Utilities

The following is a summary of the command syntax for the name management 
utilities:

catns [-v] [-s] [-h <host>] [-orbixprot] <name>
catnsj [-v] [-h <host>] [-orbixprot] <name>

lsns [-v] [-s] [-h <host>] [-k] [-c] [-orbixprot] [name]
lsnsj [-v] [-h <host>] [-k] [-c] [-orbixprot] [name]

newncns [-v] [-s] [-h <host>] [-orbixprot] 
newncnsj [-v] [-h <host>] [-orbixprot] 

putncns [-v] [-s] [-h <host>] [-orbixprot] \
<name> { <context-ref> | -f <file> }

putncnsj [-v] [-h <host>] [-orbixprot] \
<name> { <context-ref> | -f <file> }

putnewncns [-v] [-s] [-h <host>] [-orbixprot] <name>
putnewncnsj [-v] [-h <host>] [-orbixprot] <name>

putns [-v] [-s] [-h <host>] <name> \
 120



U s i n g  t h e  O r b i xN ame s  U t i l i t i e s
{ <object-ref> | -f <file> } [-orbixprot] 
putnsj [-v] [-h <host>] <name> \

{ <object-ref> | -f <file> } [-orbixprot] 

reputncns [-v] [-s] [-h <host>] [-orbixprot] \
<name> { <context-ref> | -f <file> }

reputncnsj [-v] [-h <host>] [-orbixprot] \
<name> { <context-ref> | -f <file> }

reputns [-v] [-s] [-h <host>] [-orbixprot] \
<name> { <object-ref> | -f <file> }

reputnsj [-v] [-h <host>] [-orbixprot] \
<name> { <object-ref> | -f <file> }

rmns [-v] [-s] [-h <host>] [-x] [-orbixprot] <name>
rmnsj [-v] [-h <host>] [-x] [-orbixprot] <name>

The common options are:

-h <host> Specifies the host on which the OrbixNames server is located. By 
default, the utilities use the Initialization Service to locate the 
server. The -h switch forces the utilities to use _bind() instead.

-f <file> Any utilities which take an object reference or context reference 
as an argument can optionally specify a file, using this switch, 
instead of putting the object reference on the command line itself.

-orbixprot Communicates with OrbixNames using the Orbix protocol. The 
default is the CORBA Internet Inter-ORB Protocol (IIOP).

-s Required for all the native (that is, non-Java) utilities to 
communicate with an SSL-enabled OrbixNames server. The utility 
will prompt for a password. OrbixSSL must have been installed 
and the OrbixSSL-specific update utility executed. Refer to the 
OrbixSSL documentation for further information.

-v Outputs version information. Specifying -v does not cause the 
utility to run. 

-x This switch only applies when removing a naming context. This 
switch unbinds the context and then destroys it.
121



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Managing Object Groups
In addition to the name management utilities, OrbixNames provides utilities that 
allow you to manipulate object groups and their members. The object group 
management utilities are available as both native and Java executables with 
similar functionality.

These utilities are:

Using the Object Group Utilities

This section provides examples of each of the object group utilities. When using 
these utilities, you can identify a group by specifying the group identifier, with the 
-i switch, or the name bound to the group, with the -n switch. 

Creating and Deleting Object Groups
To create an object group and bind a name to it, use the new_group utility. For 
example:

new_group marketing_file_server_group \
company.marketing.file_server -random

Native Java Functionality

new_group new_groupj Creates an object group and binds it to a 
name in OrbixNames.

del_group del_groupj Deletes an object group.

cat_group cat_groupj Returns the stringified object reference of an 
object group.

list_members list_membersj Lists the members of an object group.

add_member add_memberj Adds a member to an object group.

del_member del_memberj Deletes a member from an object group.

cat_member cat_memberj Returns the stringified object reference of a 
member of an object group.

pick_member pick_memberj Selects a member of an object group.
 122



U s i n g  t h e  O r b i xN ame s  U t i l i t i e s
This command creates an object group with group identifier 
marketing_file_server_group and binds it to the name 
company.marketing.file_server. OrbixNames uses a random selection 
algorithm to choose an object from this group. 

To associate a round-robin selection algorithm with the group, use the 
-round_robin switch:

new_group engineering_file_server_group \
company.engineering.file_server -round_robin

To list all the existing object groups, use the list_groups utility:

list_groups 

Round Robin Object Group List 
engineering_file_server_group 

Random Object Group List 
marketing_file_server_group

To delete an object group, use the del_group utility:

del_group -i engineering_file_server_group

This command deletes the object group with identifier 
engineering_file_server_group. Use the -i switch only if the group has no 
associated name. If a name is bound to the group, specify this name using the -n 
switch:

del_group -n company.marketing.file_server

Managing the Members of an Object Group
Each member of an object group requires a unique identifier. To add a member 
to a group, use add_member. For example:

add_member -i engineering_file_server_group \ 
member_1 IOR string 

This command adds a new member member_1 to the object group 
engineering_file_server_group. You can also identify the object group using 
the group name:

add_member -n company.engineering.file_server \
member_2 IOR string

Use the list_members utility to list the members of an object group:
123



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
list_members -ncompany.engineering.file_server
member_1 
member_2

Use the del_member utility to remove a member from an object group:

del_member -ncompany.engineering.file_server \
member_2

To retrieve the object reference associated with an object group member, use 
the cat_member utility:

cat_member member_2 \
-ncompany.engineering.file_server

The pick_member utility cycles through the members of an object group:

pick_member -ncompany.engineering.file_server
First IOR string

pick_member -ncompany.engineering.file_server
Second IOR string

Syntax of the Object Group Utilities

This section summarizes the command syntax for the object group utilities:

add_member [-i <object group id> | -n <object group name>] 
<member id> <obj> [-h <host>] [-orbixprot] [-v]

cat_group [-i <object group id> | -n <object group name>] 
[-h <host>] [-orbixprot] [-v]

cat_member [-i <object group id> | -n <object group name>] 
<member_id>  [-h <host>] [-v] 

del_group [-i <object group id> | -n <object group name>] 
[-h <host>] [-v] 

del_member -i <object group id> | -n <object group name>] 
<member_id> [-h <host>] [-orbixprot] [-v] 

list_groups [-h <host>] [-orbixprot] [-v] 

list_members [-i <object group id> | -n <object group name>] 
[-h <host>] [-orbixprot] [-v] 
 124



U s i n g  t h e  O r b i xN ame s  U t i l i t i e s
new_group <object group id> <object group name> 
{-random | -round_robin} [-h <host>] -orbixprot] [-v] 

pick_member  [-i <object group id> | -n <object group name>] 
[-h <host>] [-orbixprot] [-v] 

The common options are:

-h <host> Specifies the target host on which OrbixNames is running. This 
switch defaults to the local host.

-v Outputs version information.

-i Identifies an object group by specifying the identifier.

-n Identifies an object group by specifying the name bound to it.

-orbixprot Communicates with the OrbixNames server using the Orbix 
protocol. The default protocol is CORBA Internet Inter-ORB 
Protocol (IIOP).
125



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 126



 7
The OrbixNames Browser

The OrbixNames Browser provides a graphical interface to 
OrbixNames. Like the OrbixNames utilities, the browser allows you 
to monitor and manage the Naming Service externally to your 
applications.

The OrbixNames Browser provides full access to the contents of the Naming 
Service. Using the browser, you can manipulate the contents of the Naming 
Service directly. For example, you can create naming contexts, bind names to 
objects, create and modify object groups, and examine the existing name 
bindings in the Naming Service.
127



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Starting the OrbixNames Browser
On UNIX, start the OrbixNames Browser by running the command nsgui, 
located in the bin directory of your Orbix installation. On Windows, you can 
run the OrbixNames Browser from the Windows Start menu. The main 
browser window appears as shown in Figure 7.1. 

The browser interface includes the following elements:

• A menu bar.

• A toolbar.

• A navigation tree. This tree displays a graphical representation of the 
names and naming contexts stored in OrbixNames.

Figure 7.1: The Main OrbixNames Browser Window
 128



T h e  O r b i x N ame s  B r ow s e r
Connecting to an OrbixNames Server
To connect to an OrbixNames server on a host in your network:

1. Select Connect→Connect Name Service, as shown in Figure 7.2.

2. The Connect to Naming Service dialog box appears as shown in 
Figure 7.3.

3. In the Host Name (IP Address) text box, enter the name or IP 
address of the target host.

Figure 7.2: Activating the Naming Service Connection

Figure 7.3: Connecting to an OrbixNames Server
129



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
4. Select Connect. The browser navigation tree displays an unexpanded 
view of the current name bindings for the OrbixNames server at the 
target host, as shown in Figure 7.4.

If you wish to connect to an OrbixNames server on a second host, repeat these 
steps for the new host. You do not need to disconnect from the original host.

Connecting to a Secure OrbixNames Server
Naming Services may be Secure Sockets Layer-enabled to provide security. 
Refer to the OrbixSSL documentation for further information.

Figure 7.4: Current Bindings For a Selected Host
 130



T h e  O r b i x N ame s  B r ow s e r
Note: OrbixSSL must be installed to allow connection to secure Naming 
Services and other SSL-enabled CORBA services that will only accept 
secure connections.

To connect to a secure OrbixNames server on a host in your network:

1. Select Connect→Connect Name Service, as before.

2. The Connect to Naming Service dialog box appears as shown in 
Figure 7.5.

3. In the Host Name (IP Address) text box, enter the name or IP 
address of the target host.

4. Click the Security>> button. The Connect to Naming Service dialog 
box expands to display SSL-specific security options, as shown in 
Figure 7.6. If the Security>> button is ghosted, then a suitable SSL 
security layer has not been installed.

5. Select the Make secure connection tickbox to request a secure 
connection. The location of the trusted Certificate Authority Certificates 
is set in the Configuration Explorer as IT_CA_LIST_FILE.

6. If the secure Naming Service requests a client certificate, select the 
Connect using the following client certificate tickbox, then click Browse 
to locate a suitable certificate file.

7. You may select a Java RSA private key using the appropriate Browse 
option.

8. You may also enter the RSA password for the private key file in the 
appropriate text box.

Figure 7.5: Connecting to an OrbixNames Server
131



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
9. Select Connect. The browser navigation tree displays the current name 
bindings for the OrbixNames server at the target host.

Note: You may have only one secure connection active at any one time. 
Therefore, although you may have multiple insecure connections active in 
addition to a single secure connection, attempting a second secure 
connection will result in an exception. You must first disconnect from the 
original secure connection.

Figure 7.6: Connection to Naming Service Security Options
 132



T h e  O r b i x N ame s  B r ow s e r
Disconnecting from an OrbixNames Server
To disconnect from an OrbixNames server:

1. In the navigation tree, select the host icon for the Naming Service you 
wish to disconnect from.

2. Select Connect→Disconnect Name Service. A Warning dialog box 
is displayed, as shown in Figure 7.8.

3. Select Yes to disconnect from the indicated Naming Service host.

4. Alternatively, clicking the secondary mouse button while a Naming 
Service host is selected will bring up a context dialog box, as shown in 
Figure 7.8. This also allows connection or disconnection.

Figure 7.7: Disconnecting from the Naming Service

Figure 7.8: Context-Sensitive Connection Dialog
133



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Managing Naming Contexts
The OrbixNames Browser allows you to create new naming contexts, modify 
existing naming contexts, and remove naming contexts from an OrbixNames 
server. 

Note that removing a naming context recursively removes all context and name 
objects below that naming context.

Creating a Naming Context

To create a naming context:

1. In the browser navigation tree, navigate to the naming context within 
which you wish to create the new context.

2. Select Edit→Create Name Context. A new context is displayed as 
shown in Figure 7.9.

3. Enter a context name in the Ctxt. Name text box.

4. If you wish, you can enter a context kind in the Kind text box.

5. Paste an object reference into the Reference text box. If you do not 
paste a reference, one will be created for you.

6. Click the Apply button. The new context’s details are displayed.

Note that a kind value for a name in the CORBA Naming Service cannot be null. 
If you do not specify a kind value when assigning a name to a naming context, 
the OrbixNames Browser sets the kind to the null string.

Modifying a Naming Context
The OrbixNames Browser allows you to change the object reference associated 
with a specified naming context. Using this feature, you can link an existing 
context name to a context object associated with another name. 

To change the object reference associated with a naming context:

1. In the browser navigation tree, navigate to the naming context you want 
to modify.

2. To change either the name or the kind of the naming context, enter a 
new name into either the Ctxt. Name or the Kind text box.
 134



T h e  O r b i x N ame s  B r ow s e r
3. To change the object reference, paste a new object reference into the 
Reference text box, as shown in Figure 7.10.

4. Click the Apply button. The context’s new details are displayed.

5. You can select Edit→Refresh to ensure that the navigation tree shows 
the updated context details.

Figure 7.9: Creating a New Naming Context

Figure 7.10: The Reference Text Box in the Context Details
135



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Removing a Naming Context
To remove a naming context:

1. Select the icon of the naming context you want to remove.

2. Select Edit→Delete Name Context. A confirmation dialog box 
appears.

3. Select Yes to confirm the removal of the naming context.

4. Alternatively, clicking the secondary mouse button while a naming 
context is selected will bring up a context dialog box, as shown in 
Figure 7.11. This allows the creation or deletion of the selected naming 
context.

Managing Object Names
The OrbixNames Browser allows you to bind a name to an object in a CORBA 
application, modify the object binding for an existing name, and remove an object 
name from an OrbixNames server.

Figure 7.11: Context-Sensitive Naming Context Dialog
 136



T h e  O r b i x N ame s  B r ow s e r
Binding a Name to an Object

Before attempting to bind a name to an object, ensure that you have access to 
the string form of the object reference. To get the string form of an object 
reference, pass the object reference as a parameter to the function 
CORBA::ORB::object_to_string() in the source code of your application.

To bind a name to an object:

1. Get the string form of a reference to the object.

2. In the browser navigation tree, navigate to the naming context in which 
you want to create the object name.

3. Select Edit→Create Name. A new name binding appears as shown in 
Figure 7.12.

4. In the Name text box, enter the identifier value for the new id.

5. In the Kind text box, enter your desired kind value. 

Figure 7.12: Creating a Name Binding
137



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
6. Paste the object reference string into the Reference text box.

7. Click the Apply button. The new object details are displayed, similar to 
the display in Figure 7.13. 

If you do not specify a kind value when assigning a name to a CORBA object, 
the OrbixNames browser sets the kind to the null string.

Figure 7.13: Viewing an Object Name in the Main Browser Window
 138



T h e  O r b i x N ame s  B r ow s e r
Modifying an Object Binding

To change the object reference associated with a name in the CORBA Naming 
Service:

1. In the browser navigation tree, navigate to the object you want to modify.

2. To change the id, select the Name text box and enter the identifier 
value for the new name. To change the kind, select the Kind text box 
enter the kind value for the new name. 

3. To change the object reference, paste the new object reference string 
into the Reference text box.

4. Click the Apply button to confirm the new object binding.

Removing an Object Name

To remove an object name from the CORBA Naming Service:

1. In the browser navigation tree, navigate to the object you want to modify.

2. Select Edit→Delete Name. A confirmation dialog box appears.

3. Select Yes to confirm the removal of the name.

4. Alternatively, clicking the secondary mouse button while a naming 
context is selected will bring up a context dialog box, as shown in 
Figure 7.14. This allows the deletion of the selected object binding..

Figure 7.14: Context-Sensitive Object Binding Dialog
139



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Navigating the OrbixNames Browser Button Bar

The OrbixNames Browser includes a number of “button bar” tool icons that 
allow quick access to Naming Service functions.

Icon Description

Connect to a Naming Service host.

Disconnect from the selected Naming 
Service host.

Create a naming context.

Delete a naming context.

Create an object binding.

Delete an object binding.

Refresh the naming tree.
 140



Part V
OrbixNames
Programmer’s Reference





CosNaming
Synopsis The CosNaming module, defined in the OrbixNames file NamingService.idl, 

contains all IDL definitions for the CORBA Naming Service and some definitions 
specific to Orbix. To access standard Naming Service functionality, use the 
NamingContext and BindingIterator interfaces defined in this module. These 
interfaces are described in detail in “CosNaming::NamingContext” on page 151, 
and “CosNaming::BindingIterator” on page 149. 

This chapter describes data types, other than the interfaces NamingContext and 
BindingIterator, defined directly within the scope of the CosNaming module.

IDL // IDL
module CosNaming {

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;

interface BindingIterator;
interface NamingContext;

interface NamingContext {
enum NotFoundReason {missing_node, not_context, not_object};
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};
143



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};

void bind (in Name n, in Object obj)
raises (NotFound,CannotProceed,InvalidName,AlreadyBound);

void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);

void bind_context (in Name n, in NamingContext nc)
raises (NotFound,CannotProceed,InvalidName,AlreadyBound);

void rebind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);

NamingContext new_context ();
NamingContext bind_new_context (in Name n)

raises (NotFound,CannotProceed,InvalidName,AlreadyBound);
void destroy () raises (NotEmpty);
void list (in unsigned long how_many,

 out BindingList bl,out BindingIterator bi);
Object resolve_object_group (in Name n)

raises (NotFound, CannotProceed, InvalidName);
Object OBfactory();

};

interface BindingIterator {
boolean next_one (out Binding b);
boolean next_n (in unsigned long how_many,

out BindingList bl);
void destroy ();

};
};
 144



C o sN am in g
CosNaming::Binding

Synopsis struct Binding {
Name binding_name;
BindingType binding_type;

};

Description When browsing a naming graph in the Naming Service, an application can list the 
contents of a given naming context, and determine the name and type of each 
binding in it. To do this, the application calls the operation 
CosNaming::NamingContext::list() on the target NamingContext object. 
This operation returns a list of Binding structures, each structure representing 
a single binding in the naming context.

A Binding structure contains two member fields:

Notes CORBA compliant.

See Also CosNaming::BindingList
CosNaming::BindingType
CosNaming::NamingContext::list()

CosNaming::BindingList

Synopsis typedef sequence<Binding> BindingList;

Description A value of this type contains a set of Binding structures, each of which 
represents a single name binding. An application can list the bindings in a given 
naming context using the CosNaming::NamingContext::list() operation, as 
described in the entry for CosNaming::Binding. An out parameter of this 
operation returns a value of type BindingList.

Notes CORBA compliant.

See Also CosNaming::Binding
CosNaming::BindingType
CosNaming::NamingContext::list()

binding_name The full compound name of the binding.

binding_type The binding type, indicating whether the name is bound to 
an application object or a naming context.
145



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
CosNaming::BindingType

Synopsis enum BindingType {nobject, ncontext};

Description There are two types of name binding in the CORBA Naming Service: names 
bound to application objects, and names bound to naming contexts. Names 
bound to application objects cannot be used in a compound name, except as the 
last element in that name. Names bound to naming contexts can be used as any 
component of a compound name and allow you to construct a naming graph in 
the Naming Service.

The enumerated type BindingType represents these two forms of name 
bindings. This type has two possible values:

Name bindings created using CosNaming::NamingContext::bind() or 
CosNaming::NamingContext::rebind() are nobject bindings. Name bindings 
created using the operations CosNaming::NamingContext::bind_context() 
or CosNaming::NamingContext::rebind_context() are ncontext bindings.

Notes CORBA compliant.

See Also CosNaming::Binding
CosNaming::BindingList

CosNaming::Istring

Synopsis typedef string Istring;

Description Type Istring is a place holder for an internationalized string format, which 
might be added to the CORBA Naming Service definitions by the OMG.

Notes CORBA compliant.

nobject Describes a name bound to an application object.

ncontext Describes a name bound to a naming context in the Naming 
Service.
 146



C o sN am in g
CosNaming::Name

Synopsis typedef sequence<NameComponent> Name;

Description A Name represents the name of an object in the Naming Service. If the object 
name is defined within the scope of one or more naming contexts, the name is a 
compound name. For this reason, type Name is defined as a sequence of name 
components.

Two names that differ only in the contents of the kind field of one 
NameComponent structure are considered to be different names.

Names with no components, that is sequences of length zero, are illegal.

Notes CORBA compliant.

See Also CosNaming::NameComponent

CosNaming::NameComponent

Synopsis struct NameComponent {
Istring id;
Istring king;

};

Description A NameComponent structure represents a single component of a name associated 
with an object in the Naming Service. This structure has two fields:

The id field is intended for use purely as an identifier. The semantics of the kind 
field are application-specific and the Naming Service makes no attempt to 
interpret this value. 

A name component is uniquely identified by the combination of both id and 
kind fields. Two name components that differ only in the contents of the kind 
field are considered to be different components.

Notes CORBA compliant.

See Also CosNaming::Name

id An identifier that corresponds to the name of the component.

kind An element that adds secondary type information to the component 
name.
147



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 148



CosNaming::BindingIterator
Synopsis The operation CosNaming::NamingContext::list() allows you to obtain a list 

of bindings in a naming context. As described in “CosNaming::NamingContext” 
on page 151, this operation allows you to specify a maximum number of bindings 
to be returned. To provide access to all other bindings in the naming context, 
the operation returns an object of type CosNaming::BindingIterator.

A CosNaming::BindingIterator object stores a list of name bindings and 
allows you to access the elements of this list.

IDL // IDL
module CosNaming {

...

interface BindingIterator {
boolean next_one (out Binding b);
boolean next_n (in unsigned long how_many,

out BindingList bl);
void destroy ();

};
};

See Also CosNaming::Binding
CosNaming::BindingList
CosNaming::NamingContext::list()

CosNaming::BindingIterator::destroy()

Synopsis void destroy ();

Description The destroy() operation deletes the CosNaming::BindingIterator object on 
which it is called.

Notes CORBA compliant.
149



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
CosNaming::BindingIterator::next_n()

Synopsis boolean next_n (in unsigned long how_many,
out BindingList bl);

Description The next_n() operation returns the next how_many elements in the list of 
bindings, subsequent to the last element returned by a call to next_n() or 
next_one(). If less than how_many elements remain in the list, all the remaining 
elements are returned.

Parameters

Return Value Returns true if one or more bindings are returned in parameter bl, returns 
false if no more bindings remain.

Notes CORBA compliant.

See Also CosNaming::BindingIterator::next_one()

CosNaming::BindingIterator::next_one()

Synopsis boolean next_one (out Binding b);

Description The next_one() operation returns the next element in the list of bindings, 
subsequent to the last element returned by a call to next_n() or next_one().

Parameters

Return Value Returns true if a binding is returned in parameter b, returns false if no more 
bindings remain.

Notes CORBA compliant.

See Also CosNaming::BindingIterator::next_n()

how_many The maximum number of bindings to be returned in parameter 
bl.

bl The returned list of name bindings.

b The returned name binding.
 150



CosNaming::NamingContext
Synopsis The interface CosNaming::NamingContext provides the operations that allow 

you to access the main features of the CORBA Naming Service, such as binding 
and resolving names. This interface also includes the Orbix-specific operations 
OBfactory() and resolve_object_group(), which you call when using the 
load balancing features of OrbixNames described in Chapter 3 (C++) or 
Chapter 5 (Java).

IDL // IDL
module CosNaming {

...

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {missing_node, 

not_context, not_object};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};

exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};

void bind (in Name n, in Object obj)
raises (NotFound, CannotProceed, 
InvalidName,AlreadyBound);

void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);

void bind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, 
151



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
InvalidName, AlreadyBound);
void rebind_context (in Name n, in NamingContext nc)

raises (NotFound, CannotProceed, InvalidName);
Object resolve (in Name n)

raises (NotFound, CannotProceed, InvalidName);
void unbind (in Name n)

raises (NotFound, CannotProceed, InvalidName);

NamingContext new_context ();
NamingContext bind_new_context (in Name n)

raises (NotFound, CannotProceed, 
InvalidName, AlreadyBound);

void destroy () raises (NotEmpty);
void list (in unsigned long how_many,

 out BindingList bl, out BindingIterator bi);
Object resolve_object_group (in Name n)

raises (NotFound, CannotProceed, InvalidName);
Object OBfactory();

};

...
};

Notes CORBA compliant.

See Also CosNaming

CosNaming::NamingContext::AlreadyBound

Synopsis exception AlreadyBound {};

Description If an application calls an operation that attempts to bind a name to an object or 
naming context, but the specified name has already been bound, the operation 
raises an exception of type AlreadyBound.

The following operations can raise this exception:

CosNaming::NamingContext::bind()
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()

Notes CORBA compliant.
 152



C o sN am in g : : N am i n g Co n t e x t
CosNaming::NamingContext::bind()

Synopsis void bind (in Name n, in Object obj)
raises (NotFound, CannotProceed, 
InvalidName, AlreadyBound);

Description The operation bind() creates a name binding, relative to the target naming 
context, between a name and an object. If the name passed to this operation is a 
compound name with more than one component, all except the last component 
are used to find the sub-context in which to add the name binding. The contexts 
associated with these components must already exist, otherwise the operation 
raises a NotFound exception. 

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::AlreadyBound
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::rebind()
CosNaming::NamingContext::resolve()

CosNaming::NamingContext::bind_context()

Synopsis void bind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Description The bind_context() operation creates a binding, relative to the target naming 
context, between a name and another, specified naming context. This new 
binding can be used in any subsequent name resolutions: the entries in naming 
context nc can be resolved using compound names.

All but the final naming context specified in parameter n must already exist. This 
operation raises an AlreadyBound exception if the name specified by n is already 
in use.

n The name to be bound to the target object, relative to the naming 
context on which the operation is called.

obj The application object to be associated with the specified name.
153



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
The naming graph built using bind_context() is not restricted to being a tree: it 
can be a general naming graph in which any naming context can appear in any 
other naming context.

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::AlreadyBound
CosNaming::NamingContext::bind_new_context()
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::new_context()
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::rebind_context()
CosNaming::NamingContext::resolve()

CosNaming::NamingContext::bind_new_context()

Synopsis NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

Description The operation bind_new_context() creates a new NamingContext object in 
the Naming Service and binds the specified name to it, relative to the naming 
context on which the operation is called. This operation has the same effect as a 
call to CosNaming::NamingContext::new_context() followed by a call to 
CosNaming::NamingContext::bind_context(). 

The new name binding created by this operation can be used in any subsequent 
name resolutions: the entries in the returned naming context can be resolved 
using compound names.

All but the final naming context specified in parameter n must already exist. This 
operation raises an AlreadyBound exception if the name specified by n is already 
in use.

n The name to be bound to the target naming context, relative to the 
naming context on which the operation is called.

nc The NamingContext object to be associated with the specified name. 
This object must already exist. To create a new NamingContext object, 
call CosNaming::NamingContext::new_context().
 154



C o sN am in g : : N am i n g Co n t e x t
Parameters

Return Value Returns a reference to the newly created NamingContext object.

Notes CORBA compliant.

See Also CosNaming::NamingContext::AlreadyBound
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::new_context()
CosNaming::NamingContext::NotFound

CosNaming::NamingContext::CannotProceed

Synopsis exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

Description If a Naming Service operation fails due to an internal error, the operation raises 
a CannotProceed exception. However, the application might be able to use the 
information returned in this exception to complete the operation later. For 
example, if you use a Naming Service federated across several hosts and one of 
these hosts is currently unavailable, a Naming Service operation might fail until 
that host is available again.

A CannotProceed exception includes two member fields:

n The name to be bound to the newly created naming context, relative to 
the naming context on which the operation is called.

cxt The NamingContext object associated with the component at 
which the operation failed.

rest_of_name The remainder of the compound name, after the binding for 
the component at which the operation failed.
155



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
The following operations can raise this exception:

CosNaming::NamingContext::bind()
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()
CosNaming::NamingContext::rebind()
CosNaming::NamingContext::rebind_context()
CosNaming::NamingContext::resolve()
CosNaming::NamingContext::resolve_object_group()
CosNaming::NamingContext::unbind()

Notes CORBA compliant.

See Also CosNaming::Name
CosNaming::NamingContext

CosNaming::NamingContext::destroy()

Synopsis void destroy ()
raises (NotEmpty);

Description The operation destroy() deletes the NamingContext object on which it is 
called. Beforing deleting a NamingContext in this way, ensure that it contains no 
bindings. If you call destroy() on a NamingContext that contains existing 
bindings, the operation raises a CosNaming::NamingContext::NotEmpty 
exception.

To avoid leaving name bindings with no associated objects in the Naming 
Service, call CosNaming::NamingContext::unbind() to unbind the context 
name before calling destroy(). See the entry for 
CosNaming::NamingContext::resolve() for information about the result of 
resolving names of context objects that no longer exist.

Notes CORBA compliant.

See Also CosNaming::NamingContext::NotEmpty
CosNaming::NamingContext::resolve()
CosNaming::NamingContext::unbind()
 156



C o sN am in g : : N am i n g Co n t e x t
CosNaming::NamingContext::InvalidName

Synopsis exception InvalidName {};

Description If an operation receives an in parameter of type CosNaming::Name for which 
the sequence length is zero, the operation raises an InvalidName exception.

The following operations can raise this exception:

CosNaming::NamingContext::bind()
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()
CosNaming::NamingContext::rebind()
CosNaming::NamingContext::rebind_context()
CosNaming::NamingContext::resolve()
CosNaming::NamingContext::resolve_object_group()
CosNaming::NamingContext::unbind()

Notes CORBA compliant.

CosNaming::NamingContext::list()

Synopsis void list (in unsigned long how_many, 
out BindingList bl, out BindingIterator bi);

Description The operation list() returns a list of the name bindings in the naming context 
on which the operation is called. The parameter how_many specifies the 
maximum number of bindings that should be returned in the BindingList 
parameter, bl. 

The BindingList parameter is a sequence of Binding structures where each 
Binding indicates the name and type of the binding—the type indicates whether 
the name is that of an object, or whether it is the name of a node in the naming 
graph which participates in name resolution.

If the naming context contains more than the requested number (how_many) of 
bindings, the list() operation returns a BindingIterator which contains the 
remaining bindings. This is returned in parameter bi. If the naming context does 
not contain any additional bindings, the parameter bi is a nil object reference.
157



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Parameters

Notes CORBA compliant.

See Also CosNaming::BindingIterator
CosNaming::BindingList

CosNaming::NamingContext::new_context()

Synopsis NamingContext new_context ();

Description The operation new_context() creates a new NamingContext object in the 
Naming Service, without binding a name to it. After you create a naming context 
with this operation, you can bind a name to it by calling 
CosNaming::NamingContext::bind_context().

Return Value Returns a reference to the newly created NamingContext object. There is no 
relationship between this object and the NamingContext object on which you 
call the operation.

Notes CORBA compliant.

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()

CosNaming::NamingContext::NotEmpty

Synopsis exception NotEmpty {};

how_many The maximum number of bindings to be returned in parameter 
bl.

bl A list of at most how_many bindings contained in the naming 
context on which the operation is called.

bi A BindingIterator object that provides access to all remaining 
bindings contained in the naming context on which the operation 
is called.
 158



C o sN am in g : : N am i n g Co n t e x t
Description An application can call the operation CosNaming::NamingContext::destroy() 
to delete a naming context object in the Naming Service. For this operation to 
succeed, the naming context must contain no bindings. If bindings exist in the 
naming context, the operation raises a NotEmpty exception.

Notes CORBA compliant.

CosNaming::NamingContext::NotFound

Synopsis exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

Description Several operations in the interface CosNaming::NamingContext require an 
existing name binding to be passed as an in parameter. If such an operation 
receives a name binding that it determines is invalid, the operation raises a 
NotFound exception. This exception contains two member fields:

The following operations can raise this exception:

CosNaming::NamingContext::bind()
CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::bind_new_context()
CosNaming::NamingContext::rebind()
CosNaming::NamingContext::rebind_context()
CosNaming::NamingContext::resolve()
CosNaming::NamingContext::resolve_object_group()
CosNaming::NamingContext::unbind()

Notes CORBA compliant.

See Also CosNaming::NamingContext::NotFoundReason

why The reason why the name binding is invalid. See the entry for 
CosNaming::NamingContext::NotFoundReason for more 
details.

rest_of_name The remainder of the compound name following the 
component that the operation determined to be invalid.
159



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
CosNaming::NamingContext::NotFoundReason

Synopsis enum NotFoundReason {missing_node, not_context, not_object};

Description If an operation raises a NotFound exception, a value of enumerated type 
NotFoundReason indicates the reason why the exception was raised:

Notes CORBA compliant.

See Also CosNaming::NamingContext::NotFound

CosNaming::NamingContext::OBfactory()

Synopsis Object OBfactory ();

Description The operation OBfactory() returns a reference to the object group factory in 
the Naming Service. Before using the returned object, narrow it to type 
LoadBalancing::ObjectGroupFactory. You can then use this object to create 
new object groups and to find existing groups, as described in Chapter 3 (C++) 
or Chapter 5 (Java).

Return Value Returns a reference to the object group factory. To use this object reference, 
first narrow it to type LoadBalancing::ObjectGroupFactory.

Notes OrbixNames specific.

See Also LoadBalancing
LoadBalancing::ObjectGroup
LoadBalancing::ObjectGroupFactory

missing_node A component of the name passed to the operation did not 
exist in the Naming Service.

not_context The operation expected to receive a name bound to a 
naming context, for example using 
CosNaming::NamingContext::bind_context(), but the 
name received did not satisfy this requirement.

not_object The operation expected to receive a name bound to an 
application object, for example using 
CosNaming::NamingContext::bind(), but the name 
received did not satisfy this requirement.
 160



C o sN am in g : : N am i n g Co n t e x t
CosNaming::NamingContext::rebind()

Synopsis void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);

Description The operation rebind() creates a binding between a name that is already bound 
in the target naming context and an object. The previous name is unbound and 
the new binding is created in its place. As is the case with 
CosNaming::NamingContext::bind(), all but the last component of a 
compound name must exist, relative to the naming context on which you call the 
operation.

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::bind()
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::resolve()

CosNaming::NamingContext::rebind_context()

Synopsis void rebind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName);

Description The rebind_context() operation creates a binding between a name that is 
already bound in the context on which the operation is called, and a naming 
context. The previous name is unbound and the new binding is made in its place. 
As is the case for CosNaming::NamingContext::bind_context(), all but the 
last component of a compound name must name an existing NamingContext.

n The name to be bound to the specified object, relative to the naming 
context on which the operation is called.

obj The application object to be associated with the specified name.
161



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::bind_context()
CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::resolve()

CosNaming::NamingContext::resolve()

Synopsis Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Description The resolve() operation returns the object reference bound to the specified 
name, relative to the naming context on which the operation was called. The 
first component of the specified name is resolved in the target naming context.

The return type is IDL Object, which maps to type CORBA::Object_ptr in C++ 
or to type org.omg.CORBA.Object in Java. You must narrow the result to the 
appropriate type before using it in your application.

If the name n refers to a naming context, it is possible that the corresponding 
NamingContext object no longer exists in the Naming Service. For example, this 
could happen if you call CosNaming::NamingContext::destroy() to destroy a 
context without first unbinding the context name. In this case, resolve() raises 
a CORBA system exception.

Parameters

Return Value Returns a reference to the object associated with the specified name.

Notes CORBA compliant.

n The name to be bound to the specified naming context, relative to the 
naming context on which the operation is called.

nc The naming context to be associated with the specified name.

n The name to be resolved, relative to the naming context on which the 
operation is called.
 162



C o sN am in g : : N am i n g Co n t e x t
See Also CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound
CosNaming::NamingContext::resolve_object_group()

CosNaming::NamingContext::resolve_object_group()

Synopsis Object resolve_object_group (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Description The operation resolve_object_group() returns the 
LoadBalancing::ObjectGroup object associated with a name binding. Before 
using the returned object, narrow it to type LoadBalancing::ObjectGroup. 
You can then use this object to manipulate the contents of the object group, as 
described in Chapter 3 (C++) or Chapter 5 (Java).

The required LoadBalancing::ObjectGroup object must already exist and the 
specified name must be bound to it. To create a LoadBalancing::ObjectGroup 
object, first call the operation OBfactory() on a naming context to create a 
LoadBalancing::ObjectGroupFactory object, then use this object to create 
the required type of object group.

If the name passed to resolve_object_group() is bound to an object that is 
not of type LoadBalancing::ObjectGroup, the operation returns the 
associated object reference. However, if you then attempt to narrow this object 
to type LoadBalancing::ObjectGroup, the narrow operation will fail.

Parameters

Return Value Returns a reference to the object group to which the specified name is bound. 
To use this object reference, first narrow it to type 
LoadBalancing::ObjectGroup.

Notes OrbixNames specific.

See Also LoadBalancing
LoadBalancing::ObjectGroup

n The name bound to the required object group, relative to the naming 
context on which the operation is called.
163



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
CosNaming::NamingContext::unbind()

Synopsis void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);

Description The operation unbind() removes the binding between a specified name and the 
object associated with it. Unbinding a name does not delete the application 
object or naming context object associated with the name. For example, if you 
wish to remove a naming context completely from the Naming Service, you 
should first unbind the corresponding name, then delete the NamingContext 
object by calling CosNaming::NamingContext::destroy().

Parameters

Notes CORBA compliant.

See Also CosNaming::NamingContext::CannotProceed
CosNaming::NamingContext::destroy()
CosNaming::NamingContext::InvalidName
CosNaming::NamingContext::NotFound

n The name to be unbound in the Naming Service, relative to the naming 
context on which the operation is called.
 164



LoadBalancing
Synopsis The module LoadBalancing, defined in the OrbixNames file 

LoadBalancing.idl, provides access to the load balancing features of 
OrbixNames described in Chapter 3 (C++) or Chapter 5 (Java). The definitions 
in this module are specific to OrbixNames.

There are four IDL interfaces in the module LoadBalancing: ObjectGroup, 
ObjectGroupFactory, RandomObjectGroup, and RoundRobinObjectGroup. This 
chapter describes all data types defined directly within the scope of the 
LoadBalancing module, other than these four interfaces. These four interfaces 
are described in detail in subsequent chapters.

IDL // IDL
module LoadBalancing {

exception no_such_member{};
exception duplicate_member{};
exception duplicate_group{};
exception no_such_group{};

typedef string memberId;
typedef sequence<memberId> memberIdList;

struct member {
Object obj;
memberId id;

};

typedef string groupId;
typedef sequence<groupId> groupList;

interface ObjectGroup;
interface RoundRobinObjectGroup;
interface RandomObjectGroup;
165



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
interface ObjectGroupFactory {
RoundRobinObjectGroup createRoundRobin (in groupId id)

raises (duplicate_group);
RandomObjectGroup createRandom (in groupId id)

raises (duplicate_group);
ObjectGroup findGroup (in groupId id) 

raises (no_such_group);
groupList rr_groups();
groupList random_groups();

};

interface ObjectGroup { 
readonly attribute string id;
Object pick();
void addMember (in member mem) 

raises (duplicate_member);
void removeMember (in memberId id) 

raises (no_such_member);
Object getMember (in memberId id) 

raises (no_such_member);
memberIdList members();
void destroy();

};

interface RandomObjectGroup : ObjectGroup {};
interface RoundRobinObjectGroup : ObjectGroup {};

}; 

See Also CosNaming::NamingContext::OBfactory()
CosNaming::NamingContext::resolve_object_group()

LoadBalancing::no_such_group

Synopsis exception no_such_group {};

Description The operation LoadBalancing::ObjectGroupFactory::findGroup() returns 
a reference to a specified object group. This operation takes the group identifier 
as an in parameter and then searches for the group in the Naming Service. If no 
group exists for the specified identifier, the operation raises a no_such_group 
exception.

Notes OrbixNames specific.
 166



L oa d B a l a n c i n g
LoadBalancing::no_such_member

Synopsis exception no_such_member {};

Description An operation that finds or removes an existing member of an object group takes 
a member identifier as an in parameter. In such cases, the identifier must 
correspond to an existing group member. If it does not, the operation raises a 
no_such_member exception.

The following operations can raise this exception:

LoadBalancing::ObjectGroup::getMember();
LoadBalancing::ObjectGroup::removeMember();

Notes OrbixNames specific.

LoadBalancing::duplicate_group

Synopsis exception duplicate_group {};

Description An operation that creates an object group takes the new group identifier as a 
parameter. If the group identifier is already used in the Naming Service, the 
operation raises a duplicate_group exception.

The following operations can raise this exception:

LoadBalancing::ObjectGroupFactory::createRandom();
LoadBalancing::ObjectGroupFactory::createRoundRobin();

Notes OrbixNames specific.

LoadBalancing::duplicate_member

Synopsis exception duplicate_member {};

Description The operation LoadBalancing::ObjectGroup::addMember() adds a member 
to an object group. This operation takes a parameter that specifies the object to 
be added to the group, and the member identifier to be associated with the 
object. If the member identifier is already used in the group, the operation raises 
a duplicate_member exception.

Notes OrbixNames specific.
167



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
LoadBalancing::groupId

Synopsis typedef string groupId;

Description Each object group has an associated identifier, of type groupId. The format of 
this identifier is application specific and is not specified by OrbixNames. 
However, the identifier for each group must be unique within the Naming 
Service. 

Notes OrbixNames specific.

See Also LoadBalancing::groupList

LoadBalancing::groupList

Synopsis typedef sequence<groupId> groupList;

Description The operations LoadBalancing::ObjectGroupFactory::random_groups() 
and LoadBalancing::ObjectGroupFactory::rr_groups() allow you to obtain 
a list of object groups in the Naming Service. These operations return a list of 
group identifiers, as type groupList.

Notes OrbixNames specific.

See Also LoadBalancing::groupId
LoadBalancing::ObjectGroupFactory::random_groups()
LoadBalancing::ObjectGroupFactory::rr_groups()

LoadBalancing::member

Synopsis struct member {
Object obj;
memberId id;

};

Description An object group contains a set of member objects. For each object in the group, 
the group maintains a reference to the object and an identifier that is unique 
within the group. This information is stored in a member structure.
 168



L oa d B a l a n c i n g
A member structure contains two fields:

Notes OrbixNames specific.

See Also LoadBalancing::memberId

LoadBalancing::memberId

Synopsis typedef string memberId;

Description Each object reference in an object group has an associated member identifier, of 
type memberId. The format of this identifier is application specific and is not 
specified by OrbixNames. However, each member identifier must be unique 
within a given object group.

Notes OrbixNames specific.

See Also LoadBalancing::member
LoadBalancing::memberIdList

LoadBalancing::memberIdList

Synopsis typedef sequence<memberId> memberIdList;

Description The operation LoadBalancing::ObjectGroup::members() returns a list of the 
member identifiers in a given object group. This list is returned as type 
memberIdList, which is a sequence of memberId values.

Notes OrbixNames specific.

See Also LoadBalancing::memberId
LoadBalancing::ObjectGroup::members()

obj A reference to the member object.

id The member identifier for the object. This value must be unique within 
the object group.
169



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 170



LoadBalancing::ObjectGroup
Synopsis The interface LoadBalancing::ObjectGroup allows you to manage the 

contents of an existing object group. This interface is usually accessed in server 
applications.

This interface also supports the operation pick(), which OrbixNames calls 
when a client resolves a name bound to an object group. This operation selects 
a member of the group in accordance with the group selection algorithm.

The interfaces LoadBalancing::RandomGroup and 
LoadBalancing::RoundRobinGroup inherit this interface.

IDL // IDL
module LoadBalancing {

...

interface ObjectGroup { 
readonly attribute string id;

Object pick();
void addMember (in member mem) 

raises (duplicate_member);
void removeMember (in memberId id) 

raises (no_such_member);
Object getMember (in memberId id) 

raises (no_such_member);
memberIdList members();
void destroy();

};

...
}; 

See Also CosNaming::NamingContext::resolve_object_group()
LoadBalancing::ObjectGroupFactory
LoadBalancing::RandomObjectGroup
LoadBalancing::RoundRobinObjectGroup
171



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
LoadBalancing::ObjectGroup::addMember()

Synopsis void addMember (in member mem)
raises (duplicate_member);

Description An Orbix server calls the operation addMember() to add a member object to a 
group. This operation takes an in parameter, of type member, that specifies the 
member identifier and provides a reference to the object. The member identifier 
must not already exist in the object group on which the operation is called. If the 
identifier exists, addMember() raises a duplicate_member exception.

Parameters

Notes OrbixNames specific.

See Also LoadBalancing::member

LoadBalancing::ObjectGroup::destroy()

Synopsis void destroy ();

Description Calling operation destroy() on an object group completely removes that group 
from the Naming Service. It is not necessary to remove the members of a group 
before calling destroy().

Operation destroy() does not affect the name binding associated with the 
group. Before calling destroy(), call CosNaming::NamingContext::unbind() 
to remove the associated name binding.

Notes OrbixNames specific.

See Also CosNaming::NamingContext::unbind()

mem A structure containing a reference to the new member object and the 
member identifier.
 172



L o a dB a l an c i n g : : O b j e c t G r ou p
LoadBalancing::ObjectGroup::getMember()

Synopsis Object getMember (in memberId id)
raises (no_such_member);

Description An application calls the operation getMember() to obtain a reference to a 
specific member object in an object group. This operation takes the member 
identifier as an in parameter, of type memberId. If this identifier does not 
correspond to an object in the group on which getMember() is called, the 
operation raises a no_such_member exception.

Parameters

Return Value Returns a reference to the object associated with the specified member 
identifier.

Notes OrbixNames specific.

See Also LoadBalancing::memberId

LoadBalancing::ObjectGroup::id

Synopsis readonly attribute string id;

Description This attribute stores the identifier of the object group. The format of this 
identifier is application specific and is not specified by OrbixNames. However, 
the group identifier must be unique within the Naming Service.

Notes OrbixNames specific.

LoadBalancing::ObjectGroup::members()

Synopsis memberIdList members ();

Description The operation members() returns a list of all members in the group on which it 
is called. Only the identifier for each member is returned. To obtain a reference 
to a member object associated with a specific identifier, call the operation 
LoadBalancing::ObjectGroup::getMember().

id The identifier of the member object for which an object reference is 
required.
173



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Return Value Returns a list of identifiers of all members in the object group.

Notes OrbixNames specific.

See Also LoadBalancing::memberIdList
LoadBalancing::ObjectGroup::getMember()

LoadBalancing::ObjectGroup::pick()

Synopsis Object pick();

Description The operation pick() selects a member of an object group and returns a 
reference to the member object. In a round-robin selection object group, the 
operation pick() implements a round-robin selection algorithm to choose a 
member of the object group. In a random selection object group the operation 
pick() randomly chooses a member of the group.

When a client resolves a Naming Service name that has been bound to an object 
group, OrbixNames calls operation pick() to determine which member object 
the name should resolve to.

Return Value Returns a reference to the object selected by OrbixNames.

Notes OrbixNames specific.

LoadBalancing::ObjectGroup::removeMember()

Synopsis void removeMember (in memberId id) raises (no_such_member);

Description An Orbix server calls the operation removeMember() to remove a member 
object from a group. This operation takes an in parameter, of type memberId, 
which specifies the identifier of the member object to be removed. If this 
identifier does not correspond to an object in the group on which 
removeMember() is called, the operation raises a no_such_member exception.

Parameters

Notes OrbixNames specific.

See Also LoadBalancing::memberId

id The identifier of the member to be removed.
 174



LoadBalancing::
ObjectGroupFactory
Synopsis The interface LoadBalancing::ObjectGroupFactory allows you to create 

object groups and find existing groups in the Naming Service. To obtain a 
reference to a LoadBalancing::ObjectGroupFactory, call 
CosNaming::NamingContext::OBfactory() on any 
CosNaming::NamingContext object.

IDL // IDL
module LoadBalancing {

...

interface ObjectGroupFactory {
RoundRobinObjectGroup createRoundRobin (in groupId id)

raises (duplicate_group);
RandomObjectGroup createRandom (in groupId id)

raises (duplicate_group);
ObjectGroup findGroup (in groupId id) 

raises (no_such_group);
groupList rr_groups();
groupList random_groups();

};

...
}; 

See Also CosNaming::NamingContext::OBfactory()
LoadBalancing::ObjectGroup
175



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
LoadBalancing::ObjectGroupFactory::createRandom()

Synopsis RandomObjectGroup createRandom (in groupId id)
raises (duplicate_group);

Description This operation creates a new object group. When OrbixNames calls the 
operation LoadBalancing::ObjectGroup::pick() to choose a member from 
the resulting group, a random selection algorithm is used.

The operation createRandom() takes a group identifier as an in parameter. This 
identifier must be unique within the Naming Service. If an existing group is 
already associated with this identifier, the operation raises a 
LoadBalancing::duplicate_group exception.

Parameters

Return Value Returns a reference to the RandomObjectGroup object for the newly created 
group.

Notes OrbixNames specific.

See Also LoadBalancing::duplicate_group
LoadBalancing::groupId
LoadBalancing::RandomObjectGroup

LoadBalancing::ObjectGroupFactory::
createRoundRobin()

Synopsis RoundRobinObjectGroup createRoundRobin (in groupId id)
raises (duplicate_group);

Description This operation creates a new object group. When OrbixNames calls the 
operation LoadBalancing::ObjectGroup::pick() to choose a member from 
the resulting group, a round-robin selection algorithm is used.

The operation createRoundRobin() takes a group identifier as an in parameter. 
This identifier must be unique within the Naming Service. If an existing group is 
already associated with this identifier, the operation raises a 
LoadBalancing::duplicate_group exception.

id The group identifier for the new object group. This value must be unique 
within the Naming Service.
 176



L o ad B a l a n c i n g : :  O b j e c t G r ou p F a c t o r y
Parameters

Return Value Returns a reference to the RoundRobinObjectGroup object for the newly 
created group.

Notes OrbixNames specific.

See Also LoadBalancing::duplicate_group
LoadBalancing::groupId
LoadBalancing::RoundRobinObjectGroup

LoadBalancing::ObjectGroupFactory::findGroup()

Synopsis ObjectGroup findGroup (in groupId id)
raises (no_such_group);

Description An application calls the operation findGroup() to obtain a reference to a 
specific object group. This operation takes the group identifier as an in 
parameter, of type groupId. If this identifier does not correspond to an existing 
object group in the Naming Service, the operation raises a no_such_group 
exception.

Parameters

Return Value Returns a reference to the ObjectGroup object for the required group.

Notes OrbixNames specific.

See Also LoadBalancing::groupId
LoadBalancing::no_such_group

id The group identifier for the new object group. This value must be unique 
within the Naming Service.

id The group identifier for the required object group.
177



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
LoadBalancing::ObjectGroupFactory::random_groups()

Synopsis groupList random_groups ();

Description The operation random_groups() returns a list of all random groups that 
currently exist in the Naming Service. Only the group identifiers are returned. 
To obtain a reference to a group associated with a specific identifier, call the 
operation LoadBalancing::ObjectGroupFactory::findGroup().

Return Value Returns a list of the identifiers of all random groups in the Naming Service.

Notes OrbixNames specific.

See Also LoadBalancing::groupList
LoadBalancing::ObjectGroupFactory::findGroup()

LoadBalancing::ObjectGroupFactory::rr_groups()

Synopsis groupList rr_groups ();

Description The operation rr_groups() returns a list of all round-robin groups that 
currently exist in the Naming Service. Only the group identifiers are returned. 
To obtain a reference to a group associated with a specific identifier, call the 
operation LoadBalancing::ObjectGroupFactory::findGroup().

Return Value Returns a list of the identifiers of all round-robin groups in the Naming Service.

Notes OrbixNames specific.

See Also LoadBalancing::groupList
LoadBalancing::ObjectGroupFactory::findGroup()
 178



LoadBalancing::
RandomObjectGroup
Synopsis The interface LoadBalancing::RandomObjectGroup represents an object 

group in which OrbixNames applies a random selection algorithm when 
choosing a member object. This interface is a simple specialization of 
LoadBalancing::ObjectGroup, and adds no new attributes or operations.

IDL // IDL
module LoadBalancing {

...

interface RandomObjectGroup : ObjectGroup {
};

}; 

See Also LoadBalancing::ObjectGroup
LoadBalancing::ObjectGroup::pick()
LoadBalancing::RoundRobinObjectGroup
179



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 180



LoadBalancing::
RoundRobinObjectGroup
Synopsis The interface LoadBalancing::RoundRobinObjectGroup represents an object 

group in which OrbixNames applies a round-robin selection algorithm when 
choosing a member object. This interface is a simple specialization of 
LoadBalancing::ObjectGroup, and adds no new attributes or operations.

IDL // IDL
module LoadBalancing {

...

interface RoundRobinObjectGroup : ObjectGroup {
};

}; 

See Also LoadBalancing::ObjectGroup
LoadBalancing::ObjectGroup::pick()
LoadBalancing::RandomObjectGroup
181



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
 182



Part VI
Appendices





Appendix A
Configuration Variables

There are two forms of Orbix configuration variables: those that are common 
to multiple IONA products and variables that are specific to OrbixNames only. 

Common Configuration Variables
You can set the following variables using the Configuration Explorer GUI tool, 
or by editing the common.cfg configuration file, or as environment variables. 

Variable Description

IT_DAEMON_PORT TCP port number for the Orbix daemon.

IT_DAEMON_SERVER_BASE The starting TCP port number for servers launched by the 
Orbix daemon.

IT_DAEMON_SERVER_RANGE The number set in this variable is used together with that 
set in IT_DAEMON_SERVER_BASE to determine the range of 
port numbers available for Orbix servers.

IT_IMP_REP_PATH The full path name of the Implementation Repository 
directory.

IT_INT_REP_PATH The full path name of the Interface Repository directory.

IT_LOCAL_DOMAIN The name of the local internet domain; for example, 
iona.com.

IT_LOCATOR_PATH The full path name of the directory holding the locator files.
185



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
OrbixNames-Specific Configuration Variables
You can set the following variables using the Configuration Explorer GUI tool, 
or by editing the orbixnames3.cfg configuration file, or as environment 
variables: 

Variable Description

IT_NAMES_HOME This variable specifies the full path to the bin directory of 
your Orbix installation.

IT_NAMES_IP_ADDR By default, a call to CORBA::ORB::
resolve_initial_reference("NameService") expects 
the location of the OrbixNames server to be specified in 
the Orbix locator configuration files. You can also specify 
the IP address of the server host by setting the variable 
IT_NAMES_IP_ADDR. This value overrides the Orbix 
locator.

If this value is set, IT_USE_HOSTNAME_IN_IOR must be set 
to false.

IT_NAMES_PORT By default, an application contacts the OrbixNames server 
using the port number defined in the Orbix 
IT_DAEMON_PORT configuration variable. However, if the 
OrbixNames server uses another port, you can override 
IT_DAEMON_PORT by setting the value of IT_NAMES_PORT.

IT_NAMES_REPOSITORY_PATH This variable specifies the path name to the Bindings 
Repository. The Bindings Repository is a persistent 
repository of name bindings maintained by the Naming 
Service. The results of all update operations, such as 
bind(), rebind(), and bind_new_context(), are 
committed to the Bindings Repository.

An alternative approach is to use the ‘-r’ flag of the naming 
service executable. This flag also specifies a Bindings 
Repository and overrides IT_NAMES_REPOSITORY_PATH.
 186



IT_NAMES_SERVER By default, a call to CORBA::ORB::
resolve_initial_reference("NameService") expects 
an OrbixNames server to be registered in the 
Implementation Repository with the name NS.

If this variable is set, resolve_initial_references() 
searches for an OrbixNames server with the name 
specified.

IT_NAMES_SERVER_HOST By default, a call to CORBA::ORB::
resolve_initial_reference("NameService") expects 
the location of the OrbixNames server to be specified in 
the Orbix locator configuration files. You can also specify 
the server host name by setting the variable 
IT_NAMES_SERVER_HOST. This value overrides the Orbix 
locator.

If this value is set, IT_USE_HOSTNAME_IN_IOR must be set 
to true.

IT_USE_HOSTNAME_IN_IOR When OrbixNames stores an IOR in the Bindings 
Repository, the host on which the object runs is embedded 
in the IOR. If IT_USE_HOSTNAME_IN_IOR is set to true, the 
name of the host is embedded in the IOR; if it is set to 
false, the IP address is embedded. The default setting is 
true.

IT_NS_HASH_TABLE_SIZE This variable specifies the size of the hash table associated 
with each naming context to store references to bindings. 
By default, this variable is set to 23.

You can also alter this value when executing the 
OrbixNames server using the
-h <hash table size> flag.

Variable Description
187



O r b i x N ame s  P r o g r amme r ’ s  a n d  A d m in i s t r a t o r ’ s  G u i d e
Note: Entries in IONA configuration files are scoped with a prefix; for example, 
Common.IT_DAEMON_PORT or 
OrbixNames.IT_NAMES_REPOSITORY_PATH. Environment variables are 
not scoped.

For further details of Orbix-specific configuration variables, refer to the Orbix 
C++ Administrator’s Guide or the OrbixWeb Administrator’s Guide.

IT_NAMES_TIMEOUT This specifies the amount of time, in seconds, that the 
server may remain idle before timing out. The default value 
is -1, or infinite. This means that the server does not time 
out.

You can also alter this value when executing the 
OrbixNames server using the -t <timeout> flag.

IT_NAMES_DIAGNOSTICS This variable specifies the diagnostic level used by 
OrbixWeb within the naming service. The default value is 
0, with a maximum value of 255.

IT_NAMES_THREAD_POOL_SIZE This variable sets the size of the thread pool used to handle 
incoming requests to the multi-threaded OrbixNames 
server. The default value of this variable is 11.

You can also alter this value when executing the 
OrbixNames server using the -p <thread pool size> 
flag.

IT_NAMES_CACHE_SIZE This variable sets the number of naming contexts that 
should be cached in memory by the OrbixNames server. 
The default value of this variable is 10.

You can also alter this value when executing the 
OrbixNames server using the -e <cache size> flag.

Variable Description
 188



Index
A
add_member utility 122, 123, 124
add_object_to_group() function 49, 53, 101
adding objects to object groups 42, 46, 49, 53, 90, 

94, 101, 123, 172
addMember() operation 41, 54, 89, 103, 167, 172
algorithms, selection 41, 89, 123, 174

random 176, 178, 179
round-robin 176, 178, 181

AlreadyBound exception 152
associating names

with naming contexts 153, 154
with object groups 52, 100
with objects 6, 16–18, 66–69, 114, 116, 137, 

153
authentication, SSL 29, 79

authenticating clients 30, 80

B
bind() operation 6, 16–18, 66–69, 146, 153
bind_context() operation 154
bind_name_to_group() function 51, 52, 53, 100, 

101
bind_new_context() operation 8, 18, 68, 154
binding names

to naming contexts 153, 154
to object groups 52, 100
to objects 6, 16–18, 66–69, 114, 116, 137, 153

Binding structure 145, 157
BindingIterator interface 5, 22, 143, 149–150, 157
BindingList type 145, 157
Bindings Repository 186, 187
bindings. See name bindings 4
BindingType enumerated type 146
browser, OrbixNames 127–140

connecting to OrbixNames server 129
disconnecting from OrbixNames server 133
starting 128

C
CA 29, 80
caching in the OrbixNames server 27, 77
cat_group utility 122, 124
cat_member utility 122, 124
catns utility 114, 118, 120
catnsj utility 114, 120
certificates 29, 80
Certification Authority 29, 80
client authentication 30, 80
code examples 15, 65
compiling OrbixNames applications 24, 74
components 4, 147, 153
compound names 4, 7, 153
configuration

file 25, 76
IT_NAMES_CACHE_SIZE variable 188
IT_NAMES_DIAGNOSTICS variable 188
IT_NAMES_HOME variable 186
IT_NAMES_IP_ADDR variable 186
IT_NAMES_PATH variable 26, 77
IT_NAMES_PORT variable 186
IT_NAMES_REPOSITORY_PATH variable 186
IT_NAMES_SERVER variable 15, 65, 187
IT_NAMES_SERVER_HOST variable 187
IT_NAMES_THREAD_POOL_SIZE 

variable 188
IT_NAMES_TIMEOUT variable 188
IT_NS_HASH_TABLE_SIZE variable 187
IT_USE_HOSTNAME_IN_IOR variable 187
of locator for OrbixNames server 25, 75
OrbixNames scope 25, 76
server switches 26, 76
SSL

IT_AUTHENTICATE_CLIENTS variable 30, 
80

IT_CA_LIST_FILE variable 30, 81
IT_CERTIFICATE_FILE variable 29, 80
IT_PRIVATEKEY_FILE variable 29, 80
IT_SECURITY_POLICY variable 28, 79

contacting the Naming Service 6, 15, 16, 65, 66
contexts. See naming contexts
CORBA Initialization Service 15, 65
CORBA module

BOA interface
impl_is_ready() operation 49, 56

ORB interface
resolve_initial_references() operation 15, 22, 
189



O r b i x N ame s  P r o g r amme r ’ s  a n d  A dm i n i s t r a t o r ’ s  G u i d e
65, 68
CORBA Naming Service. See Naming Service
CORBAservices specification 3
CosNaming module 4, 143–147

Binding structure 145, 157
BindingIterator interface 5, 22, 143, 149–150, 

157
destroy() operation 149
next_n() operation 22, 72, 150
next_one() operation 150

BindingList type 145, 157
BindingType enumerated type 146
Istring type 5, 146
Name type 5, 18, 22, 68, 69, 72, 147
NameComponent structure 5, 147
NamingContext interface 5, 143, 151

AlreadyBound exception 152
bind() operation 6, 16–18, 66–69, 146, 153
bind_context() operation 153, 154
bind_new_context() operation 18, 68, 154
CannotProceed exception 155
destroy() operation 8, 156
InvalidName exception 157
list() operation 22, 72, 145, 149, 157
new_context() operation 23, 73, 154, 158
NotEmpty exception 158
NotFound exception 159
NotFoundReason enumerated type 160
OBfactory() operation 41, 49, 89, 97, 151, 

160, 175
rebind() operation 119, 146, 161
rebind_context() operation 161
resolve() operation 6, 22, 72, 162
resolve_object_group() operation 44, 92, 

151, 163
unbind() operation 8, 156, 164, 172

NamingContext interface0
bind_new_context() operation 8

create_group() function 49, 50, 51, 97, 99, 100
createRandom() operation 41, 89, 176
createRoundRobin() operation 51, 100, 176
creating

name bindings 116, 137, 153
naming contexts 8, 114, 116, 134, 154, 158
object groups 41, 46, 50, 51, 89, 94, 122, 160, 

163, 176

D
del_group utility 122, 123, 124
del_member utility 122, 124
 190
destroy() operation 8, 43, 91, 149, 156, 172
domains 185
duplicate_group exception 167
duplicate_member exception 54, 103, 167

E
-e switch to the OrbixNames server 26, 27, 77, 

78
environment variables 25, 76
examples

code 15, 65
load balancing 44, 92

F
-f switch to the OrbixNames utilities 121
factories, object group 41, 89, 160, 175
federation of name spaces 32–35, 83–84, 155
files, IDL 13, 24, 63, 74
find_group() function 57, 105
findGroup() operation 42, 58, 90, 106, 166, 177
finding

members of object groups 173
object groups 44, 57, 92, 105, 163, 177
objects by name 6, 19–20, 69–71, ??–71, 114, 

118
format of names 4, 9, 147

in lost+found naming context 23, 73

G
get_root_context() function 49, 97
getMember() operation 173
graphs, naming 154

example of 14, 64
group identifiers 42, 44, 90, 92
groupId type 168
groupList type 168
groups, object. See object groups

H
-h switch to the OrbixNames server 26, 77
-h switch to the OrbixNames utilities 121, 125
hash tables for naming contexts 26, 77

I
-I switch to the OrbixNames server 15, 26, 65, 77
-i switch to the OrbixNames utilities 123, 125
id attribute 173
identifiers



I n d e x
in name components 5, 147
of object group members 42, 90, 169
of object groups 42, 90, 168, 173

IDL files, OrbixNames 13, 24, 63, 74
IIOP 121, 125
impl_is_ready() operation 49, 56
Implementation Repository 25, 75

directory path 185
Initialization Service 15, 65, 121
-insecure switch to the OrbixNames server 32, 

82
internet domains 185
Internet Inter-ORB Protocol. See IIOP
Interoperable Object References. See IORs
InvalidName exception 157
IORs 187
Istring type 5, 146
IT_AUTHENTICATE_CLIENTS variable 30, 80
IT_CA_LIST_FILE variable 30, 81
IT_CERTIFICATE_FILE variable 29, 80
IT_DAEMON_PORT 185
IT_DAEMON_SERVER_BASE 185
IT_DAEMON_SERVER_RANGE 185
IT_IMP_REP_PATH 185
IT_INT_REP_PATH 185
IT_LOCAL_DOMAIN 185
IT_LOCATOR_PATH 185
IT_NAMES_CACHE_SIZE variable 188
IT_NAMES_DIAGNOSTICS variable 188
IT_NAMES_HOME variable 186
IT_NAMES_IP_ADDR variable 186
IT_NAMES_PATH variable 26, 77
IT_NAMES_PORT variable 186
IT_NAMES_REPOSITORY_PATH variable 186
IT_NAMES_SERVER variable 15, 65, 187
IT_NAMES_SERVER_HOST variable 187
IT_NAMES_THREAD_POOL_SIZE variable 188
IT_NAMES_TIMEOUT variable 188
IT_NS_HASH_TABLE_SIZE variable 187
IT_PRIVATEKEY_FILE variable 29, 80
IT_SECURITY_POLICY variable 28, 79
IT_USE_HOSTNAME_IN_IOR variable 187

K
-k switch to the OrbixNames utilities 118
keys, private 29, 80
killing the OrbixNames server 26, 76
kind values in name components 5, 147
L
-l switch to the OrbixNames server 26, 77
libraries 75
list() operation 22, 72, 145, 149, 157
list_group utility 123
list_groups utility 124
list_member utility 122
list_members utility 123, 124
listing

bindings in a context 20–22, 71–72, 114, 118, 
145, 149, 157

members of object groups 123, 169, 173
object groups 123, 168, 178

load balancing 26, 37–60, 77, 85–??, 165
example of 44, 92

LoadBalancing module 40, 88, 165–169
duplicate_group exception 167
duplicate_member exception 54, 103, 167
groupId type 168
groupList type 168
member structure 54, 103, 168
memberId type 169
memberIdList type 169
no_such_group exception 166
no_such_member exception 167
ObjectGroup interface 41, 89, 163, 165, 171–

174
addMember() operation 41, 54, 89, 103, 167, 

172
destroy() operation 43, 91, 172
getMember() operation 173
id attribute 173
members() operation 169, 173
pick() operation 171, 174, 176
removeMember() operation 43, 91, 174

ObjectGroupFactory interface 41, 89, 165, 
175–178

createRandom() operation 41, 89, 176
createRoundRobin() operation 41, 51, 89, 

100, 176
findGroup() operation 42, 58, 90, 106, 166, 

177
random_groups() operation 168, 178
rr_groups() operation 168, 178

RandomObjectGroup interface 165, 179
RoundRobinObjectGroup interface 165, 181

LoadBalancing.idl file 24, 40, 74, 88
locator, configuring for OrbixNames server 25, 

75
looking up names. See resolving names
191



O r b i x N ame s  P r o g r amme r ’ s  a n d  A dm i n i s t r a t o r ’ s  G u i d e
lost+found naming context 23, 73, 120
lsns utility 114, 118, 120
lsnsj utility 114, 120

M
member structure 54, 103, 168
memberId type 169
memberIdList type 169
members() operation 169, 173
members, object group 42, 90, 123, 172

finding 173
identifiers 42, 90, 123, 169
listing 123, 169, 173
removing 124, 174
viewing object references for 124

N
-n switch to the OrbixNames utilities 123, 125
name bindings 4

creating 6, 16–18, 66–69, 116, 137, 153
listing in a context 20–22, 71–72, 114, 118, 145, 

149, 157
managing 114
removing 8, 114, 120, 139, 164
types 4, 145, 146

name management utilities 113–121
name spaces, federation of 32–35, 83–84, 155
Name type 5, 18, 22, 68, 69, 72, 147
NameComponent structure 5, 147
names

associating with naming contexts 153, 154
associating with objects 6, 16–18, 66–69, 114, 

116, 137, 153
compound 4, 7, 153
differentiating 5, 147
format in Naming Service 4, 147
IDL type of 5
of length zero 157
rebinding

to contexts 161
to objects 114, 119, 161

removing association with objects 8, 114, 120, 
139, 164

resolving 6, 19–20, 69–71, ??–71, 114, 118, 162
string format of 9
unbinding 8, 114, 156, 164

naming contexts 4
associating names with 8, 153, 154
caching in the OrbixNames server 27, 77
 192
creating 8, 114, 116, 134, 154, 158
finding unreachable contexts 23, 73
getting the root naming context 6, 15, 16, 49, 

65, 66, 97
hash tables for 26, 77
listing bindings in 20–22, 71–72, 114, 118, 145, 

149, 157
lost+found 23, 73, 120
rebinding names to 161
removing 8, 23, 73, 114, 136, 156

naming graphs 154
example of 14, 64

Naming Service
applications

compiling 75
running 75

contacting 6, 15, 16, 65, 66
format of names 4
IDL definitions 13, 63
interface to 4
introduction to 3

NamingContext interface 5, 143, 151
NamingService.idl file 24, 74
ncontext binding type 146
new_context() operation 23, 73, 154, 158
new_group utility 122, 125
new_groupj utility 122
newncns utility 114, 116, 120
newncnsj utility 114, 120
next_n() operation 22, 72, 150
next_one() operation 150
no_such_group exception 166
no_such_member exception 167
nobject binding type 146
NotEmpty exception 158
NotFound exception 159
NotFoundReason enumerated type 160

O
OBfactory() operation 41, 49, 89, 97, 151, 160, 

175
object groups 39–60, 87–??, 171

accessing from clients 58, 106
adding objects to 42, 46, 53, 90, 94, 101, 123, 

172
binding names to 52, 100
creating 41, 46, 50, 51, 89, 94, 122, 160, 163, 

176
factories for 41, 89, 160, 175
finding 44, 57, 92, 105, 163, 177



I n d e x
finding members of 173
group identifiers 42, 90, 168, 173
listing 123, 168, 178
listing members of 123, 169, 173
member identifiers 42, 90, 169
removing 43, 91, 122, 123, 172
removing objects from 42, 90, 124, 174
selection algorithms 41, 89, 123
utilities 113, 122–125

Object Management Group. See OMG
ObjectGroup interface 163, 165, 171–174
ObjectGroupDemo module 45, 93
ObjectGroupFactory interface 41, 89, 165, 175–

178
objects

associating names with 6, 16–18, 66–69, 114, 
116, 153

finding by name 6, 19–20, 69–71, ??–71, 118
rebinding names to 114, 139, 161
removing association with names 8, 120, 139, 

164
removing from object groups 42, 90

OMG 3
options to the OrbixNames server 26, 76
Orbix protocol 121, 125
OrbixNames

browser 127–140
configuration file 25, 76
IDL files 13, 24, 63, 74
server 13, 15, 24, 25, 63, 65, 74, 76

-e switch 26, 27, 77, 78
-h switch 26, 77
-I switch 15, 26, 65, 77
-insecure switch 32, 82
-l switch 26, 77
-p switch 27, 77
-r switch 26, 77
running securely 30, 31, 81, 82
-secure switch 32, 82
switches to 26, 76
-v switch 26, 77

utilities 9, 35, 83, 113–125
add_member 122, 123, 124
cat_group 122, 124
cat_member 122, 124
catns 114, 118, 120
catnsj 114, 120
del_group 122, 123, 124
del_member 122, 124
list_group 123
list_groups 124
list_member 122
list_members 123, 124
lsns 114, 118, 120
lsnsj 114, 120
new_group 122, 125
new_groupj 122
newncns 114, 116, 120
newncnsj 114, 120
pick_member 122, 124, 125
putncns 114, 116, 120
putncnsj 114, 120
putnewncns 114, 116, 120
putnewncnsj 120
putns 114, 116, 120
putnsj 114, 121
reputncns 114, 119, 121
reputncnsj 114, 121
reputns 114, 119, 121
reputnsj 114, 121
rmns 114, 120, 121
rmnsj 114, 121
running securely 32, 83
syntax of 120, 124

version information 121, 125
OrbixNames scope in configuration files 25, 76
-orbixprot switch to the OrbixNames 

utilities 115, 121, 125
OrbixSSL 28–32, 78–83

P
-p switch to the OrbixNames server 27, 77
pick() operation 171, 174, 176
pick_member utility 122, 124, 125
port for OrbixNames server 186
ports

for Orbix daemon 185
for servers 185

private keys 29, 80
protocols

IIOP 121, 125
Orbix 121, 125

putncns utility 114, 116, 120
putncnsj utility 114, 120
putnewncns utility 114, 116, 120
putnewncnsj utility 120
putns utility 114, 116, 120
putnsj utility 114, 121
193



O r b i x N ame s  P r o g r amme r ’ s  a n d  A dm i n i s t r a t o r ’ s  G u i d e
R
-r switch to the OrbixNames server 26, 77
random selection algorithm 176, 178, 179
random_groups() operation 168, 178
RandomObjectGroup interface 165, 179
rebind() operation 119, 146, 161
rebind_context() operation 161
rebinding names

to naming contexts 161
to objects 114, 119, 139, 161

registering the OrbixNames server 25, 75, 76
registry, system 25, 26, 76, 77
removeMember() operation 43, 91, 174
removing

members of object groups 124
name bindings 8, 114, 120, 139
naming contexts 8, 23, 73, 114, 136, 156
object groups 43, 91, 122, 123, 172
objects from object groups 42, 90, 174

Repository, Bindings 186, 187
reputncns utility 114, 119, 121
reputncnsj utility 114, 121
reputns utility 114, 119, 121
reputnsj utility 114, 121
resolve() operation 6, 22, 72, 162
resolve_initial_references() operation 15, 22, 65, 

68
resolve_object_group() operation 44, 92, 151, 

163
resolving names 6, 19–20, 69–71, ??–71, 114, 118, 

162
of object groups 58, 106

rmns utility 114, 120, 121
rmnsj utility 114, 121
root naming context 6, 49, 97
-round_robin switch to the OrbixNames 

utilities 123
round-robin selection algorithm 123, 176, 178, 

181
RoundRobinObjectGroup interface 165, 181
rr_groups() operation 168, 178
running

OrbixNames applications 24, 74
the OrbixNames server 26, 76

S
-s switch to the OrbixNames utilities 121
scoping configuration variables 25, 76
-secure switch to the OrbixNames server 32, 82
security, SSL 28–32, 78–83
 194
selecting object group members 174
selection algorithms 174

random 176, 178, 179
round-robin 123, 176, 178, 181

server locator
directory path 185

server, OrbixNames 13, 15, 24, 25, 63, 65, 74, 76
connecting to 129
disconnecting from 133
-I switch 15, 65
running securely 30, 31, 81, 82
switches to 26, 76

SSL security 28–32, 78–83
authentication 29, 79

starting the OrbixNames server 26, 76
stock market example 44, 92
stopping the OrbixNames server 26, 76
string format of names 9
switches

to the OrbixNames server 26, 76
-e 26, 27, 77, 78
-h 26, 77
-I 26, 77
-l 26, 77
-p 27, 77
-r 26, 77
-v 26, 77

to the OrbixNames utilities 120
-f 121
-h 121, 125
-i 123, 125
-k 118
-n 123, 125
-orbixprot 115, 121, 125
-round_robin 123
-s 121
-v 121, 125
-x 121

syntax
of object group utilities 124
of the name management utilities 120

system registry 25, 26, 76, 77

T
tables, hash 26, 77
thread pool in OrbixNames server 27, 77
types of name binding 145, 146



O r b i x N ame s  P r o g r amme r ’ s  a n d  A dm i n i s t r a t o r ’ s  G u i d e
U
unbind() operation 8, 156, 172
unbinding names 8, 156
unreachable naming contexts 23, 73
utilities 9

name management 113–121
catns 114, 118, 120
catnsj 114, 120
lsns 114, 118, 120
lsnsj 114, 120
newncns 114, 116, 120
newncnsj 114, 120
putncns 114, 116, 120
putncnsj 114, 120
putnewncns 114, 116, 120
putnewncnsj 120
putns 114, 116, 120
putnsj 114, 121
reputncns 114, 119, 121
reputncnsj 114, 121
reputns 114, 119, 121
reputnsj 114, 121
rmns 114, 120, 121
rmnsj 114, 121
syntax of 120

object group 113, 122–125
add_member 122, 123, 124
cat_group 122, 124
cat_member 122, 124
del_group 122, 123, 124
del_member 122, 124
list_group 123
list_groups 124
list_member 122
list_members 123, 124
new_group 122, 125
new_groupj 122
pick_member 122, 124, 125
syntax of 124

OrbixNames 35, 83, 113–125
running securely 32, 83

V
-v switch to the OrbixNames server 26, 77
-v switch to the OrbixNames utilities 121, 125
version information for OrbixNames 121, 125

X
-x switch to the OrbixNames utilities 121
 195
Z
zero length names 157


	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Part I. Introduction
	1. Introduction to the CORBA Naming Service
	The Interface to the Naming Service
	Format of Names in the Naming Service
	IDL Interfaces to the Naming Service

	Using the Naming Service
	Associating a Name with an Object
	Using Names to Find Objects
	Associating a Compound Name with an Object
	Removing Bindings from the Naming Service

	Convention for String Format of Names


	Part II. OrbixNames C++ Programmer’s Guide
	2. C++ Programming with OrbixNames
	Developing an OrbixNames Application
	Making Initial Contact with the Naming Service
	Binding Names to Objects
	Resolving Object Names in Clients
	Iterating through Context Bindings
	Finding Unreachable Context Objects

	Compiling and Running an Application
	Configuring OrbixNames
	Registering the OrbixNames Server
	Options to the OrbixNames Server

	Running OrbixNames in a Secure System
	Configuring SSL Support in OrbixNames
	Writing the OrbixNames IOR to a File
	Configuring Clients to Read the OrbixNames IOR
	Running the OrbixNames Server
	Running the OrbixNames Utilities

	Federation of Name Spaces

	3. Load Balancing with OrbixNames Using C++
	The Need for Load Balancing
	Introduction to Load Balancing in OrbixNames
	The Interface to Object Groups in OrbixNames
	Using Object Groups in OrbixNames

	Example of Load Balancing with Object Groups
	Defining the IDL for the Application
	Creating an Object Group and Adding Objects
	Creating Replicated Objects
	Accessing the Objects from a Client



	Part III. OrbixNames Java Programmer’s Guide
	4. Java Programming with OrbixNames
	Developing an OrbixNames Application
	Making Initial Contact with the Naming Service
	Binding Names to Objects
	Resolving Object Names in Clients
	Iterating through Context Bindings
	Finding Unreachable Context Objects

	Compiling and Running an Application
	Compiling and Running the demo Application
	Configuring OrbixNames
	Registering the OrbixNames Server
	Options to the OrbixNames Server

	Running OrbixNames in a Secure System
	Configuring SSL Support in OrbixNames
	Writing the OrbixNames IOR to a File
	Configuring Clients to Read the OrbixNames IOR
	Running the OrbixNames Server
	Running the OrbixNames Utilities

	Federation of Name Spaces

	5. Load Balancing with OrbixNames Using Java
	The Need for Load Balancing
	Introduction to Load Balancing in OrbixNames
	The Interface to Object Groups in OrbixNames
	Using Object Groups in OrbixNames

	Example of Load Balancing with Object Groups
	Defining the IDL for the Application
	Creating an Object Group and Adding Objects
	Creating Replicated Objects
	Accessing the Objects from a Client



	Part IV. OrbixNames Administrator’s Guide
	6. Using the OrbixNames Utilities
	Managing Name Bindings
	Using the Name Utilities
	Syntax of the Name Management Utilities

	Managing Object Groups
	Using the Object Group Utilities
	Syntax of the Object Group Utilities


	7. The OrbixNames Browser
	Starting the OrbixNames Browser
	Connecting to an OrbixNames Server
	Connecting to a Secure OrbixNames Server
	Disconnecting from an OrbixNames Server
	Managing Naming Contexts
	Creating a Naming Context
	Modifying a Naming Context
	Removing a Naming Context

	Managing Object Names
	Binding a Name to an Object
	Modifying an Object Binding
	Removing an Object Name
	Navigating the OrbixNames Browser Button Bar



	Part V. OrbixNames Programmer’s Reference
	CosNaming
	CosNaming::Binding
	CosNaming::BindingList
	CosNaming::BindingType
	CosNaming::Istring
	CosNaming::Name
	CosNaming::NameComponent

	CosNaming::BindingIterator
	CosNaming::BindingIterator::destroy()
	CosNaming::BindingIterator::next_n()
	CosNaming::BindingIterator::next_one()

	CosNaming::NamingContext
	CosNaming::NamingContext::AlreadyBound
	CosNaming::NamingContext::bind()
	CosNaming::NamingContext::bind_context()
	CosNaming::NamingContext::bind_new_context()
	CosNaming::NamingContext::CannotProceed
	CosNaming::NamingContext::destroy()
	CosNaming::NamingContext::InvalidName
	CosNaming::NamingContext::list()
	CosNaming::NamingContext::new_context()
	CosNaming::NamingContext::NotEmpty
	CosNaming::NamingContext::NotFound
	CosNaming::NamingContext::NotFoundReason
	CosNaming::NamingContext::OBfactory()
	CosNaming::NamingContext::rebind()
	CosNaming::NamingContext::rebind_context()
	CosNaming::NamingContext::resolve()
	CosNaming::NamingContext::resolve_object_group()
	CosNaming::NamingContext::unbind()

	LoadBalancing
	LoadBalancing::no_such_group
	LoadBalancing::no_such_member
	LoadBalancing::duplicate_group
	LoadBalancing::duplicate_member
	LoadBalancing::groupId
	LoadBalancing::groupList
	LoadBalancing::member
	LoadBalancing::memberId
	LoadBalancing::memberIdList

	LoadBalancing::ObjectGroup
	LoadBalancing::ObjectGroup::addMember()
	LoadBalancing::ObjectGroup::destroy()
	LoadBalancing::ObjectGroup::getMember()
	LoadBalancing::ObjectGroup::id
	LoadBalancing::ObjectGroup::members()
	LoadBalancing::ObjectGroup::pick()
	LoadBalancing::ObjectGroup::removeMember()

	LoadBalancing:: ObjectGroupFactory
	LoadBalancing::ObjectGroupFactory::createRandom()
	LoadBalancing::ObjectGroupFactory:: createRoundRobin()
	LoadBalancing::ObjectGroupFactory::findGroup()
	LoadBalancing::ObjectGroupFactory::random_groups()
	LoadBalancing::ObjectGroupFactory::rr_groups()

	LoadBalancing:: RandomObjectGroup
	LoadBalancing:: RoundRobinObjectGroup

	Part VI. Appendices
	Appendix A. Configuration Variables

	Index

