
Relativity Java Client for
RM/COBOL™

Copyright 2023 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors
("Open Text") are as may be set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an
additional warranty. Open Text shall not be liable for technical or editorial errors or
omissions contained herein. The information contained herein is subject to change without
notice.

"Micro Focus" and Relativity are trademarks or registered trademarks of Micro Focus.
"OpenText" and Relativity are trademarks or registered trademarks of Open Text. All other
marks are the property of their respective owners.

2023-11-10

ii

Contents

Introduction to the Relativity Java Client ...4
About JDBC .. 5
About the Documentation ... 6
Technical Support .. 7
Installation .. 9

System Requirements ...9
Before You Install Relativity Java Client .. 9
Installing Relativity Java Client on Windows ... 10
Installation Messages ..10
Verifying Installation of the Relativity Java Client .. 10

Connecting to Data Sources ... 12
Instructions ..12
Sample Code .. 13

Implementing Multi-Threaded Access ..15
Using the Sample ... 16

Required Directory Structure .. 16
Usage ..16

JDBC Core API Interfaces ... 18
Appendix B: JDBC Extensions ... 20

RelativityPreparedStatement .. 20
RelativityParameterMetaData ... 20

Copyright and Disclaimer ..21

Contents | iii

Introduction to the Relativity Java Client
Relativity Java Client is the universal JDBC client-side driver component of Relativity Client/Server. It
provides relational access of legacy data to a Java application.

The Relativity Java Client can be installed on a Windows or UNIX server that has a Java runtime
environment and can be used from a Java application to access data on a Relativity Data Server. The
Relativity Data Server component can be installed on a Windows or UNIX server and provides access to
legacy data through its server data sources.

Relativity Java Client is a Type 4 JDBC driver, written completely in Java, capable of connecting to any
Relativity Data Server data source from Java JDBC-enabled applications without using a JDBC-ODBC
Bridge.

4 | Introduction to the Relativity Java Client

About JDBC
Java Database Connectivity (JDBC) is a set of standard interfaces that enable Java applications to access
multiple database management systems using Structured Query Language (SQL). The JDBC Driver
Manager handles multiple drivers connecting to different data sources.

Relativity Java Client implements the JDBC 4.3 standard and throws SQLFeatureNotSupportedException
for any unimplemented methods from JDBC 4.3 Specifications. Also, it does not implement pooled
PreparedStatements. If you find an unimplemented method from the standard that is important to your
business needs, please contact OpenText Support for Micro Focus Products.

About JDBC | 5

https://www.microfocus.com/en-us/support

About the Documentation
This manual contains information specific to installing Relativity Java Client, deploying it with Java
applications, and setting up data source connections. For information about installing and using the
Relativity Data Server, see the Client/Server for Windows Installation Guide or Client/Server for UNIX
Installation Guide. Note, however, that the chapters in those guides referring to the data client are ODBC-
specific, and you should consult this manual for JDBC-specific information.

This document contains visual cues to help the reader identify important information

Table Convention Indicates

Initial Capitals Menu names, command names, and dialog box, window,
and form titles.

Bold Menu, command, and button names. Other elements to
be selected or typed to accomplish an action. Label on
input media used during installation.

Italic Reference to a topic in the current document or another
Relativity document. Reference to another document.
Emphasis.

Bold Italic Variables.

6 | About the Documentation

Technical Support
OpenText is dedicated to helping you achieve the highest possible performance from the RM/COBOL
family of products. The technical support staff are committed to providing prompt and professional service
to you when you have problems or questions about your Micro Focus products.

Technical support services are subject to OpenText's prices, terms, and conditions in place at the time the
service is requested.

While it is not possible to maintain and support specific releases of all software indefinitely, we offer priority
support for the most current release of each product. For customers who elect not to upgrade to the most
current release of the products, there is free support available on the OpenText Community Forum:
community.microfocus.com

Support Guidelines

When you need assistance, you can expedite your call by having the following information available for the
technical support representative:

• Company name and contact information.
• Micro Focus Relativity product serial number (found in the Electronic Product Delivery email, or in the

License Certificate).
• Micro Focus Relativity product version number.
• Operating system and version number.
• Hardware, and related equipment.
• Exact message appearing on screen.
• Concise explanation of the problem and process involved when the problem occurred.

Test Cases

You may be asked for an example (test case) of the source that demonstrates the problem.

• The smaller the test case is, the faster we will be able to isolate the cause of the problem.
• Do not send full applications.
• Reduce the test case to the smallest possible combination of components required to reproduce the

problem.
• If you have very large data files, write a small program to read in your current data files and to create

new data files with as few records as necessary to reproduce the problem.
• Test the test case before sending it to us to ensure that you have included all the necessary

components to run the test case.

When submitting your test case, please include the following items:

1. README text file that explains the problems. This file must include information regarding the hardware,
operating system, and versions of all relevant software (including the operating system and all Micro
Focus products). It must also include step-by-step instructions to reproduce the behavior.

2. Program source files. We require source for any program that is called during the course of the test
case. Be sure to include any copy files necessary for recompilation.

3. Relativity catalog. We require a Relativity catalog file that demonstrates the problem.
4. Data files required by the programs. These files should be as small as possible to reproduce the

problem described in the test case.

Contact Information

Our Web site gives up-to-date details of contact numbers and addresses.

Technical Support | 7

http://community.microfocus.com

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information, including the WebSync service,
where you can download fixes and documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the OpenText home page.

If you are a OpenText Support for Micro Focus Products customer, please see your Support Handbook for
contact information. You can download it from our Web site or order it in printed form from your sales
representative. Support from OpenText may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/products/relativity/ (trial software download and OpenText Community files)
• https://www.microfocus.com/support-and-services/documentation/ (documentation updates and PDFs)

8 | Technical Support

http://www.microfocus.com
https://www.microfocus.com/products/relativity/
https://www.microfocus.com/support-and-services/documentation/

Installation
This chapter lists the system requirements and describes how to install the Relativity Java Client
component on a Microsoft Windows or UNIX server.

You can install the Relativity Java Client to a hard drive for use with a Java application. If you are installing
to an internet server, be sure to specify the internet server's www directory as the installation directory. If
you install the documentation or sample java application to this directory, they will be available on your web
site.

While this is desirable in a development environment, it is not desirable when deploying your application.

System Requirements
Installation of the Relativity Java Client on a Windows-based or UNIX workstation for application
development requires the following components:

• Java Development Kit version 1.8.x.
• The CLASSPATH environment variable should contain the complete pathname of the RelJDBC.jar

file. See Setting the CLASSPATH Variable for more information.
• Relativity Data Server Version 12.20 for Relativity for RM/COBOL installed on a Windows or UNIX

server.

Supported Windows platforms are Windows 7 or later, Windows Server 2008 R2, 2012 R2, 2016 and 2019.
Supported UNIX platforms are AIX 7.1 TL4 SP0 or later, RedHat 5.9 or later and SUSE 11 SP2 or later.

Before You Install Relativity Java Client
Before you install, check to make sure that the following system requirements have been met. The client
and server may not be ready to handle data access until these recommended steps have been taken. This
checklist is a suggestion to minimize disruption to end users.

Recommended Server Configuration

• Relativity Data Server for Windows or UNIX must be installed and running on at least one server that is
accessible from the client machine.

• TCP/IP networking option must be installed and running.
• Configure at least one server data source using the Relativity Server Administration utility to test with

Relativity Java Client after installation.

See the Relativity Client/Server for Windows Installation Guide or Relativity Client/Server for UNIX
Installation Guide for details. The examples in this document assume that the Verify data source (created
as part of the Installation and Verification of Relativity Data Client for Catalog Development chapter) has
been set up.

Recommended Client Configuration

• TCP/IP networking option must be installed and running. The client must be able to connect to the
Relativity Data Server.

Installation | 9

Setting the CLASSPATH Variable

Before using Relativity Java Client and the sample JdbcSample, you need to set the CLASSPATH variable
to include the following files:

• RelJDBC.jar

• JdbcSample.jar

On Windows, the default installation location for RelJDBC.jar is C:\Program Files (x86)\Micro
Focus\RM\Relativityv12\JDBC43 installed by the Relativity Client installer. The default installation
location for JdbcSample.jar is %PUBLIC%\Documents\Micro Focus\RM\Relativity
\JClient43.

Installing Relativity Java Client on Windows
To install Relativity Java Client on a Windows PC, perform the following steps:

1. If you don't have the installation program, visit Micro Focus Support, click Downloads and enter your
login details, and then download the Relativity Java Client for Windows from your order. This installer
will have a name like rmrelativityversion_reljdbc.msi.

2. Start the installer by double-clicking the .msi file.
3. Follow the instructions presented by the installation program.

Important: If you are installing the Relativity Java Client on an Internet server, select the root
document directory as the destination directory. For example, for IIS, this is often C:\inetpub
\wwwroot.

4. Continue to follow the instructions until you have completed the installation process.
5. Click Finish to close the Relativity Installation window or click the Micro Focus icon to visit the Micro

Focus Web site to register your product.
6. To test the installation, proceed to the section Verifying Installation of the Relativity Java Client in this

chapter.

Installation Messages
The following messages may appear during the installation of the Relativity Java Client.
Beginning installation.

This message indicates that the installation script is beginning installation of the Java Client.
Installing files in /home/user/RelJDBC.

This message precedes the copying of the installation files into the installation directory. If the copy fails, a
message indicating the source of the failure will appear instead, and the installation will terminate.
Install was successful.

This message indicates that the installation was successful.

Verifying Installation of the Relativity Java Client
The installation can be verified by running the sample application, JdbcSample. This application runs
directly from the Java Application Launcher (java). A Java Development Kit (JDK) 1.8 or later is required.

1. On the Relativity server, create a data source. For example, create a data source Shirt3Server using
the sample Shirt3.rcg.

10 | Installation

https://www.microfocus.com/en-us/support/Relativity

2. Launch the JdbcSample JDBC application. To launch the sample application from the Java Application
Launcher, make the installation directory be your current directory and issue the following command:

 java -cp JdbcSample.jar;RelJDBC.jar JdbcSample -d Shirt3Server -u
"DB3OWNER" -p 1234 -q "SELECT * from backorder"

3. The -cp sets the classpath. The remaining options are command line arguments of JdbcSample. To
see the full list of JdbcSample command line arguments enter:

 java -cp JdbcSample.jar;RelJDBC.jar JdbcSample

4. You may need to grant some permissions to JdbcSample. To do so, add a Java command line option
to redefine java.security.policy. For example:

 java -Djava.security.policy=JdbcSample.pol -cp JdbcSample.jar;RelJDBC.jar
JdbcSample -d Shirt3Server -u "DB3OWNER" -p 1234 -q "SELECT * from
backorder"

Installation | 11

Connecting to Data Sources
This chapter provides instructions for and examples of developing and connecting to the Relativity Java
Client driver. It assumes you have a basic knowledge of Java and SQL. For a detailed description of Java
and the JDBC standard, visit JDBC 4.3 Specification. For further information about SQL, consult the
documentation of your database management system.

Instructions
You can connect to a data source in four easy steps. Refer to the Sample Code at the end of these steps
for more details.

1. Load and register the driver with the JDBC Driver Manager. A driver can be loaded and registered in
three ways:

a. Call the Class.forName() with the following syntax:

Class.forName("relativity.jdbc.Driver");

The driver will automatically register itself with the JDBC Driver Manager when it is loaded.
b. Create an instance of the driver with the following syntax:

relativity.jdbc.Driver sd = new
relativity.jdbc.Driver();

Add the driver to the java.lang.System property "jdbc.drivers". This is a list of driver class names,
separated by colons, that the DriverManager class loads. When the DriverManager class is
initialized, it looks for the system property "jdbc.drivers", and if the user has entered one or more
drivers, the DriverManager class attempts to load them.

2. Create a JDBC URL specifying which data source with which you want to connect. The format of a
JDBC URL is:

jdbc:relativity://<server name>:<server port>/<data source name>

Table 1: Table 1: JDBC URL parameters

JDBC URL parameters Description

jdbc:relativity Identifies the driver.

<server name> The name of the Data Server.

<server port> The port that the Data Server is listening on. This value
must be an integer. The standard value is 1583.

<data source name> The ODBC name of the data source.

3. Create and set the connection properties. Properties can simply be the user name and password or
more detailed properties for more advanced data sources. For a list of advanced properties that can be
set for the Relativity Data Server, see Table 2: Java Client Properties.

4. Call DriverManager.getConnection to specify the URL and any data source-specific properties and
Relativity-specific connection properties. The following table lists the Relativity-specific properties.

Table 2: Table 2: Java Client Properties

Connection Property Description

12 | Connecting to Data Sources

https://download.oracle.com/otn-pub/jcp/jdbc-4_3-mrel3-eval-spec/jdbc4.3-fr-spec.pdf

ArrayFetchOn Turns array fetching on or off. Setting this value to 1
turns array fetching on and 0 turns it off. Default is 1
(optional).

ArrayBufferSize Sets the network transmission size when array fetching
is on. Default is 8 KB. Note that the range for this value
should be between 1 and 64. Values greater than 16
have not shown to give any performance benefit.

User Specifies the username with which to connect to the
data source.

Password Specifies the password with which to attempt to connect
to the data source.

ExecDesc Short description of application/applet that will appear in
Server Status dialog of the Relativity Server control
panel applet.

Note: Connection properties that are not recognized by Java Client will be added to the ODBC
connection string passed to the Data Server.

Sample Code
import java.sql.*;
import java.util.Properties;
public class sample {
 public static void main(String[] args) {
 Connection m_Connection = null;
 String szURL = new String("jdbc:relativity://DataServerName:1583/
Verify");
 // Load and register the driver
 try {
 Class.forName ("relativity.jdbc.Driver");
 } catch (java.lang.ClassNotFoundException e) {
 System.out.println("The driver could not be loaded : " +
e.getMessage());
 }
 //Create the connection properties
 Properties props = new Properties();
 props.put("user", "DB3 Owner"); //username
 props.put("password", "1234"); //password
 props.put("ExecDesc", "Sample"); //Executable Description
 props.put("ArrayFetchOn", "1"); //Turn array fetching on
 props.put("ArrayBufferSize", "8"); //Set array fetching size to
8K
 try {
 m_Connection = DriverManager.getConnection(szURL, props);
 /* Below is an alternative means of obtaining a connection.
 m_Connection = DriverManager.getConnection(szURL, "DB3 Owner",
"1234"); */
 m_Connection.clearWarnings();
 } catch (SQLException e) {
 System.out.println("The driver could not connect : " +
e.getMessage());
 }
 try {
 m_Connection.close();
 } catch (java.sql.SQLException e) {
 System.out.println("Cannot close connection: " + e);
 System.exit(1);
 }

Connecting to Data Sources | 13

 }
}

14 | Connecting to Data Sources

Implementing Multi-Threaded Access
Relativity Java Client is thread safe and supports multi-threaded applications. However, if you are using
multi-threaded database access regularly, it is better to create multiple connections for each thread. If only
one connection is used with multiple threads, only one thread is allowed to communicate over the network
at once. This potential bottleneck is removed if each thread has its own connection.

Implementing Multi-Threaded Access | 15

Using the Sample
Included with the Relativity Java Client is a sample applet. Use this sample, JdbcSample, to test your data
source connection.

Required Directory Structure
For JdbcSample to work, the RelJDBC.jar file must be in the same directory as JdbcSample.jar or
referenced by CLASSPATH. (See Setting the CLASSPATH Variable in the Installation chapter for more
information.)

File Description

JcbcSample.java JdbcSample.class source code.

JdbcSample.jar Sample application.

RelJDBC.jar The Relativity Java Client JDBC Driver itself.

Usage
java JdbcSample -d dsn [-u user] [-p pwd] [-port port] [-s server] [-q query]

where:

• dsn is the data source name of the Relativity database. This is required.
• user is the username to log in as
• pwd is the password for the user
• server is the Relativity server name or IP
• port is the port of the Relativity protocol
• query is the SELECT statement

All arguments except dsn are optional. user, pwd and query default to empty strings. server defaults to
localhost. port defaults to 1583. If query is the empty string, then TestConnection connects to the
Relativity database and immediately disconnects. Otherwise, it connects, runs the query, shows the results,
and disconnects.

Given that Shirt3Server provides access to the sample Shirt3 catalog, the following is a console capture of
the sample. The sample retrieves and displays the rows from the backorder table.

c:\Users\Public\Documents\ Documents\Micro Focus\RM\Relativity
\JClient43>java.exe -cp "JdbcSample.jar;c:\Program Files\ Micro Focus\RM
\Relativityv12\JDBC43\RelJDBC.jar" JdbcSample -d Shirt3Server -u "DB3 OWNER" -
p 1234 -q "SELECT * from backorder"
Relativity URL: jdbc:relativity:localhost:1583/Shirt3Server
User: DB3 OWNER
Connecting to database...
Connected.
Creating query statement...
Created.
Extracting data...
ProductNumber,ProductSize,Color,PricePerUnit,Price4OrMore,BackOrderQuantity,Da
teStockExpected
AP1927367D,20W ,17,32.00,29.99,22,19940803
AP1927466D,24W ,03,12.00,10.00,0,19940705
AP2823987D,ML ,03,19.99,17.00,20,19940721

16 | Using the Sample

AP2824597D,ML ,17,28.00,25.99,30,19940701
AP2824621D,MS ,45,20.00,16.99,120,19940824
AP2824712D,MM ,03,12.00,10.00,26,19940724
PF5430319B,S ,37,18.00,15.30,120,19940615
PF5430442B,S ,37,16.00,13.60,100,19940615
PF5430467B,M ,73,16.00,13.60,50,19940601
PF5431036D,L ,78,22.99,18.79,2,19940630
PF5432000D,L ,26,24.00,20.40,102,19940715
PG5430418D,XLXT,34,20.00,17.00,40,19940630
PG5430418D,XLXT,37,20.00,17.00,10,19940614
PG5430418D,XLXT,73,20.00,17.00,130,19940701
Extracted.
Disconnected.

Using the Sample | 17

JDBC Core API Interfaces
A set of interfaces is included in the standard JDBC API for application programmers to open connections
to data sources, execute SQL, and process results. A brief description of the interfaces and classes is
given here. For more detailed information, see the JDBC 4.3 Specification.

Table 3: Table 3: JDBC Interfaces

Interface Name Description

java.sql.Driver The Driver interface is responsible for creating a
connection to the data source.

java.sql.Connection The Connection interface represents a connection to the
data source. It can create all types of statements as well
as provide information about the data source through the
java.sql.DatabaseMetaData interface.

java.sql.DatabaseMetaData The DatabaseMetaData interface provides detailed
information about a data source and a database
management system's (DBMS) capabilities and
requirements.

java.sql.Statement The Statement interface is created from a connection. It
allows the user to execute simple SQL statements.

java.sql.PreparedStatement The PreparedStatement interface is a statement that is
pre-compiled by the DBMS for higher performance. It has
input parameters that can be changed between
executions.

java.sql.CallableStatement The CallableStatement is much like a prepared
statement. It also allows output parameters as well as
input parameters. This interface is useful for executing
stored procedures that have output parameters.

java.sql.ResultSet The ResultSet interface is returned by any of the
statement interfaces when a SQL query is executed. This
interface allows the use to retrieve the results of the query
in several formats.

java.sql.ResultSetMetaData The ResultSetMetaData interface describes a result set.
It provides information like how many rows there are and
what data type is in each row.

javax.sql.DataSource A factory for connections to the physical data source that
this DataSource object represents. An alternative to the
DriverManager facility, a DataSource object is the
preferred means of getting a connection. An object that
implements the DataSource interface will typically be
registered with a naming service based on the Java™

Naming and Directory (JNDI) API.

javax.sql.PooledConnection An object that provides hooks for connection pool
management. A PooledConnection object represents a
physical connection to a data source. The connection can
be recycled rather than being closed when an application
is finished with it, thus reducing the number of
connections that need to be made.

javax.sql.ConnectionPoolDataSource A factory for PooledConnection objects. An object that
implements this interface will typically be registered with a

18 | JDBC Core API Interfaces

https://download.oracle.com/otn-pub/jcp/jdbc-4_3-mrel3-eval-spec/jdbc4.3-fr-spec.pdf

naming service that is based on the Java™ Naming and
Directory Interface (JNDI).

javax.sql.RowSet A RowSet object contains a set of rows from a result set
or some other source of tabular data, like a file or
spreadsheet. Because a RowSet object follows the
JavaBeans™ model for properties and event notification,
it is a JavaBeans component that can be combined with
other components in an application.

Table 4: Table 4: JDBC Classes

Class Name Description

java.sql.DriverManager The DriverManager class handles all of the JDBC drivers.
It provides methods to get connections to data sources. It
decides if any driver is appropriate for the specific
connection requested and then communicates with that
driver. Any JDBC driver that may be used should be
registered with the DriverManager.

java.sql.DriverPropertyInfo The DriverPropertyInfo class contains methods to
determine the information the driver needs to connect
with a data source.

java.sql.Types The Types class is an enumeration of all of the SQL data
types.

java.sql.Time The Time class represents a SQL time data type.

java.sql.TimeStamp The TimeStamp class represents a SQL timestamp data
type.

java.sql.Date The Date class represents a SQL date data type.

JDBC Core API Interfaces | 19

Appendix B: JDBC Extensions
The following member functions are available from the Relativity Java Client classes, in addition to the
functionality provided by the JDBC 4.3 Specification.

Note: To use the Relativity Java Client-specific extensions to JDBC, you must cast the java.sql
interface to the Relativity type.

For example:

import java.sql.DriverManager;
import relativity.jdbc.*;

java.sql.Connection connection = DriverManager.getConnection(url, "sa", "");
java.sql.PreparedStatement preparedStmt;
relativity.jdbc.RelativityParameterMetaData parameterMetaData;
 preparedStmt = connection.prepareStatement(sql);
 parameterMetaData =
(RelativityPreparedStatement)preparedStatement).getParameterMetaData();

RelativityPreparedStatement
Function Name Function Description

getParameterMetaData() This function returns a class that describes parameters in
a prepared statement if it is available. If the statement
contains no parameters this function returns null. The
RelativityParameterMetaData class is provided below.

RelativityParameterMetaData
The RelativityParameterMetaData class is provided to describe parameters for prepared and callable
statements.

Name Description

int getParameterCount() Returns the number of parameters in the statement.

int getParameterType(int param) Returns the SQL type of the parameter, will be one of the
enumerated types in java.sql.Types.

String getParameterTypeName(int param) Returns the name of the parameter's SQL type.

int getPrecision(int param) Returns the precision of the parameter.

int getScale(int param) Returns the scale of the parameter.

int isNullable(int param) Returns whether the parameter can be null or not.

20 | Appendix B: JDBC Extensions

https://download.oracle.com/otn-pub/jcp/jdbc-4_3-mrel3-eval-spec/jdbc4.3-fr-spec.pdf

Copyright and Disclaimer
Copyright 2023 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors ("Open Text") are
as may be set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Open Text shall not be liable for
technical or editorial errors or omissions contained herein. The information contained herein is subject to
change without notice.

Copyright and Disclaimer | 21

	Contents
	Introduction to the Relativity Java Client
	About JDBC
	About the Documentation
	Technical Support
	Installation
	System Requirements
	Before You Install Relativity Java Client
	Installing Relativity Java Client on Windows
	Installation Messages
	Verifying Installation of the Relativity Java Client

	Connecting to Data Sources
	Instructions
	Sample Code

	Implementing Multi-Threaded Access
	Using the Sample
	Required Directory Structure
	Usage

	JDBC Core API Interfaces
	Appendix B: JDBC Extensions
	RelativityPreparedStatement
	RelativityParameterMetaData

	Copyright and Disclaimer

