Scrittura

Software Version 4.4.10.5

Administration Guide

Document Release Date: October 2021
Software Release Date: October 2021

Administration Guide

Legal notices

Copyright notice
© Copyright 2018-2021 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are
as may be set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
Document Release Date, which changes each time the document is updated.
Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/documentation/scrittural/.

Support

Visit the MySupport portal to access contact information and details about the products, services, and support
that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

« Search for knowledge documents of interest
« Access product documentation

« View software vulnerability alerts

« Enter into discussions with other software customers

« Download software patches

« Manage software licenses, downloads, and support contracts
« Submit and track service requests

« Contact customer support

« View information about all services that Support offers

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted to
sign in. To learn about the different access levels the portal uses, see the Access Levels descriptions.

About this PDF version of online Help

This document is a PDF version of the online Help.
This PDF file is provided so you can easily print multiple topics or read the online Help.

Because this content was originally created to be viewed as online help in a web browser, some topics may not
be formatted properly. Some interactive topics may not be present in this PDF version. Those topics can be
successfully printed from within the online Help.

Scrittura (4.4.10.5) Page 2 0of 430

https://www.microfocus.com/documentation/scrittura/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Administration Guide

Contents

Chapter 1: Getting Started 14
Scrittura OVEIVIEW 14
General Architecture 14
Key Modules and Features 15
General Features 16
MeSSage ProCESSINGo 16
OUIDOUNG ... 17
INDOUNG . 19
Integration and Deployment 20
External Scrittura Components 20
SOV IS 22
Deployment Diagrams 22
Implementation Guidance ...l 23
Chapter 2: Scrittura Configuration 27
Scrittura Configuration Overview 27
Scrittura Configuration Files ... 27
Configuration Folders 29
Mandatory and Optional Configurations 30
Configuration File Validation 30
Reloading the Configuration ... 31
Scrittura-config.xml File 31
<scrittura-config> Node 32
<wordml-processor> NOde 39
<product-def> Node 39
<dms-field-ref> Node 40
<global-role> Node 40
<message-type> NOde 41
<image-processing> NOde 42
<MENU> NOAE ... o 43
SVIBW> NOGE ..o 47
<audit-types> Node 47
<audit-user-actions>Node 47
<column-set> NOAe 48
<search-columns>Node ... 48
<indexVariable> Node ... 49
<reports™> NOAe .. 50
<annotations> NOde 50
<report-dOCS> NOGE 51

Scrittura (4.4.10.5) Page 3 0f 430

Administration Guide

<startup-Classes™> NOGE 51
<saved-searches> NoOde 52
<archive> NOGe ..l 53
<search-queue> and <quick-search-queue>Nodes .. 54
Chapter 3: Product Definitions ... 55
Product Definitions Overview 55
Product Definition XML File 56
Sub-Product Definition Inclusion 56
Workflow Introduction Step 57
DocManager Hierarchy 57
ANNOtatioONS . 58
DoCUMENt TYPES o 59
SIGNAtUMES .. o 59
Variable Definition 60
VWS 63
Binary Large OBjects 63
Built-in Variables 64
USERID, LastEditUser, and LastForwardUser ... 66
[TITLE OF DOCICOUNt . 67
CurrentManualProcess and CurrentManualQueue ... 67
CommonReferencelD 68
ProductDeflD and ProductDefDisplay ... 68
Common Variables 68
Detect Variable Changes 69
Array Handling ... 69
Specifying Arrays in Product Definitions ... 69
Specifying No Default Values 70
Referencing Array Variables 71
Set up Categories of Variables with audit-type 71
Chapter 4: Workflow Configuration ... 73
Workflow Manager 73
Workflow Manager Terminology ... 73
Workflow Transitions Between Activities 74
Workflow Modeler .. . 75
Workflow Packages ... 75
Workflow Engine Specifications 76
Extended Attributes and Settings ... 77
Process Settings ...l 77
Common Activity Settings ... 79
Activities and Transitions 79

Scrittura (4.4.10.5) Page 4 of 430

Administration Guide

Start ACHIVItY . 80
BN AVt o 80
ClasstOOl ACtIVItY ... 80
BeanShell Activity ... 80
Subworkflow Activity ... 81
ROULE ACHIVItY . 82
SIEED ACIVITY ..o 82
XOR Split and JOIN ... 82
AND Splitand JoiN ... 83
ApPPliCatioN ACtIVItIES ... 83
Workflow Transitions 84
Example Using the Workflow Modeler 85
Get Started with a Visio Workflow Definition ... 85
Create a Start Pointand End Point 85
Add ACtIVItieS . 85
Add and Identify Transitions 86
Define Conditions 88
Define Classes and Extended Attributes 90
Define an XOR Split ... 91
Link to a Sub-Workflow 93
Define Process Settings 94
Generatethe XML . 95
Configure a New Workflow in Scrittura 95
Amend workflow.xml for the New Workflow 95
Control Audit Behavior 96
Amend scrittura-config.xml for the New Workflow ... 97
Workflow User Interface 98
Scrittura Workflow Architecture 98
Workflow Organization in Scrittura 98
Workflow ENgine ProCessing 100
Workflow Reporting Module ... 101
Module Distribution CONteNnts 101
report-config.Xml .. 102
Runthe Report . 109
Condition Parser ... 109
CUStOM Parser . 110
Valid OPEIators ... 110
Quote Delimiters 111
EX ML S . 111
Handling of NULLS ... 111
Handling of Undefined Variables 111
Supported String Operations ... 111
Use of Escaping Quote Marks 111
Comparison of Different Datatypes ... 112
BeanShell Scripting Syntax 113

Scrittura (4.4.10.5) Page 5 0f 430

Administration Guide

BeanShell Scripts for Message Ticket Variables ... 113
BeanShell Accesstothe HashMap Table 113
BeanShell Scripts for Product Instance Variables ... 115
Link from One BeanShell Scriptto Another ... 116
Use 'Else' to Map a Set of VariablesinBeanShell .. 118
BeansShell Functions 119
Example: String Manipulation and TeStS ... 120
Example: Setting a Date Variable 120
Example: Testinga Date Variable 121
Log Activity in BeanShell 121
Chapter 5: DocManager Configuration and Administration 122
DocManager OVerVIieWl 122
DocManager Storage Configurations 124
DocManager User Interface 124
Page Navigation ... 124
DocManager EXplorer Pane 125
Virtual Folders . 125
Resource Properties Pane 125
Drag and Drop ... 126
BNty MOd el 126
Indexes and Fields 126
Entity Type Configuration 127
DocManager Configuration Files ... 130
docmgr-config. Xml . . 130
N Y DS . 136
MM CONS . 137
Custom Validator Classes 137
Entity Type Custom Validation ... 137
Index and Field Type Custom Validation 137

SO UMY 138
Access Control Lists 138
DocManager Rights 138
Groups and USers 139
Security Model Configuration 139
Workings of the Default Security Model 139
Core OperatioNs .. . 140
SCaANCN . 142
Full-Text Search .. . 142
In-Browser Text EQiting 143
Linking to an External DM S .. 143
External DMS Configuration 143

Scrittura (4.4.10.5) Page 6 of 430

Administration Guide

Filesystem DocManager 144
Custom Indexing FOrms ... 147
Field Validation 147

Field Validation Configuration 148
IMIP Ot DA MION . 149

Import Daemon Configuration 149

Import XML Metadata Files ... 150

Use of the DocMgr.vsd Visio File 151
Audit Trail . 152
DocManager Faxingand Email 153

GUI Method for Faxingand Emailing ... 153

Faxing and Emailing Configuration ... 154
DoCMaNAgEr AP 154

DocManager Interface Configuration Location ... 155

How to Call the Resource Interfaces 155

API Example: Document Creation and Version Addition ... 155

API Example: Folder Creation 156

Chapter 6: User Interface Configuration ... 157
Scrittura MV C Model ... 157

CUSIOM JS P Pages .. 157

Validate View Data 158

Add Custom Events 158

Configure Application APPearanCe 159

JSP Tag Library ReferencCe ... 163
General User Interface Configuration ... 177

Workflow View and Queue Lists 178

Bulkand Trade Panels 182

Panel JSPs and Process Handlers 184

Search ResUIts Pages ... 185

AUudit Tracking SCreENSo e 185
Bulk Screen Configuration 187

Bulk Screen Functionality 187

Custom Action Panels 187

NaVIgation Bar ... 187

Trade List .l 188

Queue Screen Configurations 188
Trade Detail Screen Configuration 196

Economic Panels .. . 196

Chapter 7: BLogic Business ENgine ... 203
BLogic Business Engine Overview 203

Scrittura (4.4.10.5) Page 7 of 430

Administration Guide

BLogic User Interface 203

S O AGE .. 203
BLogic Integration with Scrittura 204
Example of the BLogic Classtool in a Scrittura Workflow .. 204
Example Specification of Multiple Workbooks in the Workflow System 204
BLogic General Configuration 205
BLogic Factory Initialization 206
BLOGIC ENVIrONMENt 207
Microsoft Excel Front-End 208
Example Excel Business Rule Spreadsheet ... 209
Rule Spreadsheet COIUMNS 209
Variable Condition ColumNs 211
Greater Than Operator 216
Rule Validation 218
Chapter 8: Searchand Reporting ... 220
Scrittura Search Capabilities ... 220
Configure the Advanced and Quick Search 220
Using the Scrittura Search Functionality ... 222
Queue-Style Search ... 224
Queue FIlters .. 232
Jasper Reports and Style Reports 232
BIR T REPOMS .o 233
Prerequisites for Integrating BIRT ... 233
Configuration of BIRT Integration ... 234
Scrittura User Interface Configuration for BIRT Integration 237
BIRT Report Design 237
Chapter 9: Static Data Framework ... 238
Static Data Framework Overview 238
Definethe Data Model 238
Data Mapping Configuration ... 239
ROOtINOGE . 240
Custom Value TYPeS 241
Data-Mapping Attributes 242
Data Mapping Child NOAES ... 242
User PermissiONS 242
Table RelationNsShips ... 247
Createthe Database Tables ... 250
Configure the User Interface 250
Static Data Framework User Interface Layout 251
General Static Data Framework User Interface Configuration 251

Scrittura (4.4.10.5) Page 8 0of 430

Administration Guide

<page> Attributes ... 254
<welcome-message™> NOAE 254
<data> NOde .. 255
<child-records> NOAE 256
<action-list> NOde 256
<search-criteria> Node 257
Sample Table and Record Page Configurations 258
Interaction with the Framework 260
Main Clas S S 260
Essential Operations 262
Chapter 10: Scrittura Utility Modules ... 267
Job Scheduler . . 267
Job Scheduler Configuration ... 267
Create a Scheduled Task 269
Cronjobs Running in Synchronous Mode 270
Cronjobs Running in Asynchronous Mode 270
Builtin Scheduled Tasks 270

AT CNIVING 274
Archiving Configuration 274
Base Archiving Parameters ... 274
Archive Processes SUMMAIY 277
ArChiVINg WK OW 278
EVOIVING Sy S OMIS o 280
Archiving Caveats 280
Chapter 11: Message Processing Workflow ... 281
Generic XML Parser . 281
Parser Instance Configuration 281
Integration with Scrittura ... 287
Data Derivation ... 289
Using BLogic for Data Derivation ... 290
Using BeanShell Scripts for Data Derivation 290
Message SeqUENCET .. . 290
Data Model SetUDo 291
Workflow Setup for Message Sequencer 291
Message Sequence Configuration 292
Interface Implementation 294
Chapter 12: Outbound Workflows ... 296
Document Generation OVEIVIEW 296
Draft Document Generation 297

Scrittura (4.4.10.5) Page 9 0f 430

Administration Guide

PDF Document Generation 297
Lengthy Document Generation Tasks ... 298
Bulk and Document Signatures 298
Bulk and Document Signature Configuration ... 299
Manual Signature 300
Automatic Signature 301
RemMOVE SigNatures ... 302
Apply Signatures to the Document ... 302
Automatic Signature Workflow Example 302
Electronic Messaging ... 303
Hand Off to @ FaX SerVer 303
General Email Dispatch Capabilities ... 304
Email Dispatch Configuration 304
Design Email Body Templates ... 307
Integrate Email Dispatch with Scrittura ... 308
Chapter 13: Inbound Workflow ... 309
IMage ProCesSSINg SeIVer . 309
Image Process Server Configuration ... 309
Tasman Barcode Detection Plug-in ... 317
DataMatrixX . 322
Customization 322
TIFF Images and BroWSErs 324
Inbound Workflow .. . 324
Sample Implementations 328
OCR Using Teleform and IDOL Image Server 332
Scrittura OCR Solution 332
Configure the OCR CoOmMPONENtSo i 334
Set Up Communication between IDOL Image Server and Scrittura 338
Signature Matching Configuration in Scrittura 339
Runtime Inbound Process 340
Signature of Inbound Documents 343
Chapter 14: Electronic Messaging ..o 344
Electronic Messaging Overview 344
DT CC MeSSagINg ... o 344
Install DTCC MeSSaging 345
Message Generation Configuration for DTCC Messagingccooiioiiii .. 345
Inbound Message Configuration for DTCC Messagingcccooviviieiiiiiiii. 346
ICE MESSAGING ... 347
SWIFT MESSAQING ..o e 348
General Configuration for SWIFT Messaging ... 348

Scrittura (4.4.10.5) Page 10 of 430

Administration Guide

Message Generation Configuration for SWIFT Messagingocoo. 350
Variable Mapping Configuration ... 350
Chapter 15: Structured Products ... 352
Structured Products OVEIVIEW 352
Confirmation GrOUPS ... 352
Structure Handling in Scrittura ... 353
Structured Product Configuration and Setup ... 354
Structured Product Configuration 354
Product Definitions 356
MESSagE ParSiNg ... 358
Workflow Setupand EventHandling ... 359
Linking and GroUping ... 363
Trade LiNKING ... 363
Component GrOUPING ... 363
User Interface 364
Document Generation for Structures ... 367
Product View Design ... 367
Template Design and Document Generation ... 368
Chapter 16: Scrittura Administration and Run-Time ... 369
Scrittura Administration CoNSO0le 369
Access the Scrittura Administration Console ... 369
General Tab ... 370
Database Operations Tab 371
MO OIING Tab . 371
Check Config Tab ... 372
Service Pack Tab ... 373
SetConfig ProCess 373
SetConfig Process Configuration ... 373
PassWOrd ENCryplion ... 379
SCrttUra COUN IS .. 379
Server Hostname, Port, and Protocol ... 380
Startup Options and Custom Properties ... 381
Run the SetConfig ProCess ... 381
Fast Access Tablesl 382
Fast Access Tables OVEIVIEW 382
Configure the Fast Access Tables 382
Trade Simulation ... 383
Trade Simulation PrerequUisites 383
Trade Simulation Configuration 384
Trade Simulation User Interface ... 387

Scrittura (4.4.10.5) Page 11 0of 430

Administration Guide

IT Administration TasKs 388
AAMIN Uy 388
DocManager Runtime Operations 390
DocManager Migration TOOl ... 391
Roles and Users in Scrittura ... 392
SCMUrA LOgS . 398

Workflow NOtifiCatioNs 400
Email NOtification 400
Workflow Error Notification ... 400
Stalled Item Email Notifications ... 401

Performance TUNING ... 402
Possible Performance ISSUES 402
Performance Recommendations ... 403
Scalability 407

Appendix A: Scrittura DataModel ... 409

Data Model OVEIVIEW 409

Data Model: Administration Category 411

Data Model: Audit Category ... 411

Data Model: Business Model Category ... 411

Data Model: DocManager Category 412

Data Model: Sequencer Category ... 413

Data Model: Static Data Category ... 413

Data Model: Workflow Category 413

Appendix B :Sample Trade Detail and Bulk ScreenPanels 414

BUIK Panel Sample 414

Bulk Trade Handler Sample 415

Trade Detail Panel Sample 417

Single Trade Handler Sample ... 418

Appendix C: Configuration Files ... 419
Sample: doemgr-Config. XMl ... 419
Sample: entity-tyPes. XMl .. 420

Appendix D: DocManager Wrapper APl .. 424

DocManager Wrapper APLOVEIVIEW 424
Making Calls SimPIEro 424
Error Handling ... 424

Scrittura (4.4.10.5) Page 12 0of 430

Administration Guide

Nalidation o 424
Interactions with the External DMS 425
Using the Wrapper APl 425
Interface LoCation 425
Calling the Wrapper APl . 425
Code Samples Using the Wrapper APl . . . 425
Document Creation and Version Creation 426
Folder Creation 428
Setting Indexes and Fields Using the DocmgrConfiginterface 429
DocManager CoNStaNtS o 429
Send documentation feedback ... 430

Scrittura (4.4.10.5) Page 13 0of 430

Administration Guide
Chapter 1: Getting Started

Chapter 1: Getting Started

This section contains the following topics:

Scrittura Overview, below

General Architecture, below

Key Modules and Features, on the next page
Integration and Deployment, on page 20

Implementation Guidance, on page 23

Scrittura Overview

Scrittura is a specialized platform that delivers full automation and control for OTC derivative trade
confirmation processing. It mitigates risks by eliminating inconsistencies that would arise from
manual processing, while increasing productivity through automation. The Scrittura workflow
manages the whole life cycle of trades allowing STP processing (Straight-Through- Processing) of
trades or business exceptions to be handled and manually reviewed.

For example, Scrittura:

Automatically matches trade confirmations with barcodes and document identifiers.
Automatically matches incoming counterparty documents to outgoing trades.

Uncovers the conceptual understanding of all data related to trade processing.

Provides familiar Microsoft Word template management and document creation environment.
Removes IT bottleneck related to template creation and updates.

Provides annotation capability to record disputes and offers full audit trail of audit confirmation
processing.

Lets authorized users stamp confirmed trades with electronic signatures.

Lets users bypass manual review and avoid unintended external edits or version discrepancies
that may be overlooked in a manual review.

Meets the compliance requirements in the derivatives industry.

General Architecture

The following diagram summarizes the key components of Scrittura internal architecture
(components are represented with some of their main modules only):

Scrittura (4.4.10.5) Page 14 of 430

Administration Guide
Chapter 1: Getting Started

MVC Controller

a N

Trade Navigation Search

Management

/ Scrittura Business Layer \ / Data Model \

/

et

h&%

Business Logic Access Control Audit Rep

\G\r\
-

w5

J @ @)
Product Message
Instance Ticket
ocument Generator Workifow DocManager % ‘

DocManager DocManager
8 I Resource Resource File

§® Doc. Storage \ /

The following components make up the Scrittura core architecture.

e

Doc. Generation

« DocManager is Scrittura's built-in Document Management System that manages document
storage and versioning. DocManager has its own user interface, but is integrated with the
Scrittura application.

« Scrittura Business Layer handles the business entities and logic in Scrittura. It relies on key
components and features such as trade model (Product Instances, Message Tickets), BLogic
Rule Engine, Static Data Framework, etc.

« Scrittura Workflow defines the sequencing and configuration of the business flow and logic
throughout the lifecycle of a trade.

« Document Generator is used to generate documents from a set of pre- defined templates as
well as live data from the system. In its later version, Document Generator uses the Document
Generation Suite (DGS) and is based on Microsoft Word DOCX templates. Templates are
designed using Template Manager.

NOTE: Previous solutions (HTML, JSP, and WordML templating) are still supported by Scrittura,
although moving to the Document Generation Suite is recommended.

The Scrittura Data Model holds Scrittura database tables required for data persistence throughout
the application. For detailed information about these tables and their relationships, see Appendix A:
Scrittura Data Model, on page 409.

Key Modules and Features

This section provides a quick overview of the native key modules and features of the Scrittura core
distribution. They are presented here within the phase in the trade lifecycle where they are most likely
to be used (Message Processing, Outbound, Inbound), although they can generally be used
throughout the whole lifecycle of the trade. Some features are more application-level capabilities,

Scrittura (4.4.10.5) Page 15 0f 430

Administration Guide
Chapter 1: Getting Started

and are therefore presented as general features. Full details on all modules, their deployment, and
configuration are provided throughout this document.

General Features

The following Scrittura application-level components and features are used not only during the whole
lifecycle of a trade but also create a richer user experience (user interface, platform management,
and so on).

¥ —

)

Reporting § \

=
Search
W <:\ \ﬂ§

v

Access Control

Audit

Any action in Scrittura—automatic or manual (such as trade move, document creation)—is audited in
the system, audit records are persisted in the database.

Access Control

Security is essential in Scrittura and only valid authenticated users can access the application over
HTTP or HTTPS connections. Permissions within the application are role-based; different types of
access and permissions can be configured within the application for the different roles.

Search
Search criteria can be configured in the application for users to look for specific trades.
Reporting

Scrittura provides a default reporting framework, letting you define on- demand reports and
automated reports that can be run at a specific time of the day.

Cronjobs

Batch jobs (or cronjobs) can be defined to schedule specific tasks to run (such as reports). Scrittura
does not require compulsory housekeeping tasks to be performed on a regular schedule.

Administration

Administration features help the IT team manage the Scrittura platform and its configuration.

Message Processing

The Message Processing phase begins as soon as a trade message reaches Scrittura. Different
operations can be performed at this stage, leading to the creation of the actual trade object in
Scrittura (Product Instance).

Scrittura (4.4.10.5) Page 16 of 430

Administration Guide
Chapter 1: Getting Started

/ Message Processing

Trade Capture BlLogic Engine

&P —

<8
Message Parsing Static Pata

A
.
Sequéncer Product C

Trade Capture

This module allows the capture of trades from upstream system. Trades are generally sent to
Scrittura as text or XML files, via DropBox or over JMS. Scrittura natively supports DropBox
mechanisms and listens to a series of incoming JMS queues, the Message Ticket queues.

Message Parsing

Following their capture, incoming messages are parsed for the economic data of the trade to be
collected by Scrittura. Although custom parsers can be implemented if need be, Scrittura provides
default parser implementations including a generic XML parser.

Sequencer

This module allows the definition of a Sequence in the Message Processing workflow. A Sequence is
a section of the workflow where only one single message related to the same trade (or group of
trades) can be processed. It guarantees the correct ordering when processing events and market
operations related to a trade.

BLogic Engine

Scrittura Business Logic Engine, or BLogic, allows the execution of a list of logic rules. Depending on
the rule evaluation result, data derivation can be applied or specific actions triggered. Rules are
conveniently entered and organized within Microsoft Excel spreadsheets, where they are executed in
the order defined by their priority or from top to bottom when none is specified.

Static Data

The Static Data Framework allows the configuration, storage, and use of static data in the system (for
example, counterparty information). The content of the static data is fully configurable as desired and
is persisted in the database. Database tables are dynamically generated at runtime as defined by the
configuration.

Product Creation

This is the ultimate step of the Message Processing workflow, where the representation of a trade—
the Product Instance—or of a subsequent version is created in Scrittura.

Outbound

Once the trade is created, the trade goes through a series of steps (document generation, review,
signature, dispatch, etc.), some manual and some automated.

Scrittura (4.4.10.5) Page 17 of 430

Administration Guide
Chapter 1: Getting Started

/ Outbound

Static Data Dispatch
BLogic Engine

Chasers

Structure \ / chiv

Handling
Document Document Document Document

E] s
Generation Store Editon Signature

S

Document Generation

Document generation (draft and final) is a key component of Scrittura. It allows the generation of
documents from pre-defined templates and live system data.

Document Edition

Documents generated using the DGS or WordML can be edited from within Scrittura and their
content amended. Changes made to economic data in the edited document can be saved against the
corresponding Pl. Change tracking can be activated when using the DGS.

Document Storage

Document storage is managed by DocManager, Scrittura's built-in Document Management System,
which offers the following possible configurations:

« Filesystem storage
« Database storage

« Storage on an external DMS

Document Signature

Once the confirmation has been reviewed or is marked STP, the confirmation goes through the
signature step. Signature can be automated or manual if required. The document signature step is
configurable using the available tools (such as, Scrittura signature applet for manual signature).

Dispatch

Once signed, the final confirmation is ready to be dispatched to the counterparty using the preferred
medium (fax, email, paper). Scrittura comes with a range of configurable tools to facilitate this step
and to integrate with third-party systems.

NOTE: In addition to paper confirmation, trades can be confirmed electronically (such as, through
DTCC and ICE).

Chasers

Scrittura (4.4.10.5) Page 18 of 430

Administration Guide
Chapter 1: Getting Started

Chasers can be generated and sent to counterparties whose trades are awaiting matching. Chasers
can be single or multiple, and generated manually or automatically using Scrittura cronjobs.

Structure Handling

A composite economic model is implemented by default in Scrittura in order to handle structured
trades (known as Structures). When used in conjunction with the DGS, confirmations can be
generated and managed for the whole Structure, independent components, or groups of components
within the Structure.

Static Data

The Static Data Framework allows the configuration, storage, and use of static data in the system (for
example, counterparty information). The content of the static data is fully configurable as desired and
is persisted in the database. Database tables are dynamically generated at runtime as defined by the
configuration.

BLogic Engine

Scrittura Business Logic Engine, or BLogic, allows the execution of a list of logic rules. Depending on
the rule evaluation result, data derivation can be applied or specific actions triggered. Rules are
conveniently entered and organized within Microsoft Excel spreadsheets, where they are executed in
the order defined by their priority or from top to bottom when none is specified.

Archiving

Scrittura offers a standard archiving solution that allows archiving matured trades or live trades that
have not been accessed for a long time.

Archiving can be automated using Scrittura cronjobs, and archiving criteria is fully configurable.

Inbound

The inbound phase consists in capturing confirmations sent by counterparties and matching them
against existing trades in Scrittura.

@ / Inbound \ /ﬂ,

Auto Mateching

Barcode Detection
OCR
Signature Matching Manual Matching

Barcode Detection and OCR

Barcode detection is a native and configurable feature performed by Scrittura IPS. Advanced OCR
(Optical Character Recognition) capabilities are also available when using the OCR Suite of
products.

Signature Matching

Signatures of inbound documents can automatically be matched against known signatures. Results
are provided with a level of confidence, depending on which document matching can be automated.
The use of this capability involves the OCR Suite of products.

Auto-Matching

Scrittura (4.4.10.5) Page 19 0f 430

Administration Guide
Chapter 1: Getting Started

Matching of inbound confirmations can be automated using barcode detection, OCR, signature
matching, or any combination of the three.

Manual Matching

When auto-matching is not possible or not in use, inbound confirmations can be manually matched
against the original trade in the system.

Scrittura provides search capabilities on outbound trades and comparison tools in order to perform
this task in a user-friendly manner.

Integration and Deployment

Some Scrittura modules are delivered as components external to the core platform (for example,
separate servers). Scrittura can also integrate with other servers or with the customer’s infrastructure
(for example, upstream front-office systems, downstream fax servers, and so on). This section
provides an overview of those external components and how they can be integrated to the Scrittura
application.

External Scrittura Components

Some services provided by Scrittura, although part of the Scrittura suite, run as separate servers
outside the main application.

DocGen Server

Part of DGS, DocGen Server allows the generation of DOCX documents from a set of templates and
live data. It communicates with Scrittura over HTTP/S.

A single instance of DocGen Server can be used to serve requests coming from Scrittura. However,
in case of high trade volume, it may be advisable to deploy multiple DocGen Servers and dispatch
the requests between the different servers.

Any number of DocGen Servers can be instantiated, on the same or separate boxes. All DocGen
Servers must be of the same version for compatibility purposes. A proxy will front the group of
servers in order to load-balance the HTTP requests coming from Scrittura.

There are two types of requests to/from DocGen, both over HTTP/S:
« DocGen Requests, initiated by Scrittura in order to generate documents

« WebDAV requests, initiated by DocGen in order to retrieve templates from Scrittura
DocManager

The following illustration summarizes the integration of DocGen to Scrittura.

Scrittura (4.4.10.5) Page 20 of 430

Administration Guide
Chapter 1: Getting Started

DocGan
Servers

Scrittura

DocGen Servers are standalone stateless applications that only serve HTTP requests, and are
therefore not deployed as a cluster. Adequate process monitoring procedures should be put in place
to monitor the state of the servers. In case of failure of a server, restarting the failed server is
generally sufficient for it to resume its normal operations.

PDF Conversion Server

Part of the DGS, the PDF Conversion Server converts DOCX documents into PDF. It communicates
with Scrittura over HTTP/S.

Similarly to DocGen, single or multiple instances of PDF Server can be used. When multiple
instances are used, those should run on separate boxes (one server per box) and fronted by a proxy.

Unlike the deployment of a non-clustered Scrittura application, a single WordML-processor should be
declared in Scrittura main configuration file, scrittura-config.xml, and should point to the proxy
itself.

The following illustration summarizes the integration of PDF Server to Scrittura.

PDF
Servers

Scrittura

PDF Servers are standalone stateless applications, and therefore are not deployed as a cluster.
Adequate process monitoring procedures should be put in place to monitor the state of the servers. In
case of failure of a server, restarting the failed server is generally sufficient for it to resume its normal
operations.

Scrittura (4.4.10.5) Page 21 of 430

Administration Guide
Chapter 1: Getting Started

Image Processing Server

The Image processing Server (IPS) is a standalone application that captures inbound documents
e.g. from a fax server. It performs essential operations like barcode recognition prior to sending
results and documents to Scrittura for further processing and matching.

The IPS takes TIF orimage PDF as an input, generally from a scanner or a fax server. It performs
image processing like barcode detection prior to sending to Scrittura the document itself as well as an
XML message containing the document information (such as, name or barcode content). The XML
message is sent over JMS whereas the document is retrieved by Scrittura from a dropbox.

IPS is generally mono-instantiated and communicates with Scrittura by way of dropbox. When setting
up the deployment you must make sure that all nodes from the Scrittura cluster have access to the
inbound dropbox.

EnConnect

EnConnect is a highly configurable, platform-independent, message- oriented integration server and
is part of Scrittura Connectivity Suite. It performs message transformation prior to routing them to
their target downstream system.

EnConnect is also mono-instantiated in itself, although each instance may involve multiple Java
processes. It communicates with Scrittura via JMS or DropBox. In case the dropbox connectivity is
used, you must make sure that only one Scrittura node consumes messages from the DropBox, as
detailed elsewhere in this document.

TradeConfirm Server

The TradeConfirm Server is part of the Scrittura Connectivity Suite, although it can be integrated
directly with Scrittura. It is dedicated to electronic third-party messaging and is responsible for
generating and parsing those messages. The TradeConfirm Server currently supports ICE and
certain SWIFT standards, those being available as pluggable libraries, both being subject to specific
licensing schemes.

Servers
Scrittura can also be integrated with other servers to enhance Scrittura's native capabilities.
View Server

View Server can be used to convert on-the-fly DOCX documents into HTML so that the documents
can be viewed within a browser.

IDOL

Intelligent Data Operation Layer (IDOL) can be used in conjunction with DocManager in its file
system configuration to provide advanced search features on the document base.

Teleform and Image Server

The Teleform and Image servers provide advanced features such as Optical Character Recognition
(OCR) and signature matching.

Deployment Diagrams

The diagrams in this section depict example Scrittura deployments to highlight how the components
and systems interact.

Scrittura (4.4.10.5) Page 22 of 430

Administration Guide
Chapter 1: Getting Started

In a standalone deployment, Scrittura runs as a single server instance.

o

Upstream Systems

PDF Server

[)
&
Fax Email HTTP

External

EnConnect
DocGen Server MQ

EE Systems
Front-end

Users

In a clustered deployment for large scale systems, multiple Scrittura nodes work collaboratively in a
cluster. In this example, the DocGen Server and the PDF server are also multi-instantiated and run
outside of the Scrittura cluster.

DocGen
Servers

Upstream
Systems

Implementation Guidance

When implementing Scrittura, most tasks can be completed in parallel and are iterative. Use the
following information as guidance for completing your implementation. The remainder of this guide
provides full details on how to configure and customize Scrittura during implementation.

The following are the essential core Scrittura configuration and customization tasks.

Scrittura (4.4.10.5) Page 23 of 430

Administration Guide
Chapter 1: Getting Started

« Data Dictionary Definition

The first essential step is to define which data will be held by trades, in other terms, your Data
Dictionary. Once defined by the business team, the Data Dictionary is translated into its
Scrittura equivalent, the Product Definition.

« DocManager Configuration and Customization

DocManager hierarchy and meta-data are defined by way of configuration. If an external DMS
is used to store documents, the corresponding connector should be developed in order for
DocManager to interact with this external DMS.

« Workflow Creation

The workflow defines the processing performed on trades throughout their lifecycle. This step
includes configuration using the Workflow Modeler and Scrittura configuration to add the new
workflow. This typically involves the creation of the trade pre-processing workflow
(MessageProcessing), outbound workflows, and inbound workflow. At this stage, any custom
logic should be implemented or business rules configured. The confirmation medium (paper or
electronic) should also be identified at this stage.

« Global Scrittura Configuration

Global Scrittura configuration involves defining permissions, audit details, and search criteria
users will have access to. User permissions are essential to control user access to the queues
in the system. Permissions also define which documents or queues and trades are visible to the
users.

« User Interface Configuration and Customization

A large part of the user interface can be configured directly in the Scrittura configuration (queue
views, trade detail screens, and so on). If needed, custom pages can also be added to the
Scrittura application. The various features offered to end users are defined at this stage.

In addition to the core configurations, the following tasks are performed during implementation.
« Template Design

Scrittura offers a powerful document generation solution based on Microsoft Word DOCX
templates. Documents are generated using these templates and trade data from the live
system.

« Report Customization

Custom reports can be defined using standard solutions like BIRT or Jasper Reports. Once
reports are designed, they are integrated into the Scrittura configuration.

« Administration Tools Customization

Scrittura includes a series of tools for administration purposes. Among others, housekeeping
tasks can be implemented using Scrittura cronjobs and the archiving process can be
customized as appropriate for your environment.

« Integration with Other Systems

Scrittura integrates with upstream and downstream systems in order to perform its duties.
Upstream systems are generally front-office systems while downstream systems can be fax,

Scrittura (4.4.10.5) Page 24 of 430

Administration Guide
Chapter 1: Getting Started

email server, or electronic messaging systems such as, DTCC, ICE or SWIFT. Connectivity to
these systems must be established.

For new Scrittura implementations, you should first deploy the out-of-the-box default Scrittura client
in order to better understand the concepts developed in this guide.

Scrittura (4.4.10.5) Page 25 of 430

Administration Guide
Chapter 1: Getting Started

Scrittura (4.4.10.5) Page 26 of 430

Administration Guide
Chapter 2: Scrittura Configuration

Chapter 2: Scrittura Configuration

This section provides an overview of the different files and folders involved in the configuration of the
Scrittura application. Also included are the details of one of the main configuration files, scrittura-

config.xml.

This section contains the following topics:

« Scrittura Configuration Overview, below

« Scrittura-config.xml File, on page 31

Scrittura Configuration Overview

This section provides a general overview as to how the Scrittura configuration is organized and which
files or folders are involved in the configuration.

Scrittura Configuration Files

Scrittura uses XML or properties files for its configuration. These configuration files, all located under
the /config folder of the live repository, let you customize the application without changing the core

functionality.

The following table lists the Scrittura configuration files for the different modules available in the
distribution, with a reference to the location in this guide where full explanations can be found.

File Name

scrittura-config.xml

docmgr-config.xml
entity-types.xml

docmgr-external- config.xml

workflow.xml

scheduler.xml

signatures.xml

Scrittura (4.4.10.5)

Description

Scrittura core configuration files.

DocManager configuration files,

including the configuration of the
hierarchy model and integration

with an external Document

Management System.

Workflow engine configuration

file.

Scheduling of Jobs.

Configuration of applicable

Signatories and signature

Reference

Scrittura Configuration,
above

DocManager
Configuration and
Administration, on
page 122

Workflow Configuration,
onpage 73

Scrittura Utility Modules,
on page 267: Job
Scheduler Configuration,
on page 267 and
Archiving, on page 274

Outbound Workflows, on
page 296

Page 27 of 430

Administration Guide
Chapter 2: Scrittura Configuration

signature-config.xml

inbound-config.xml

log.cfg
encryption-key.ky
startup-config.xml

custom.properties trade-
simulation- config.xml

roles

matching.dict

mime.types

mime.icons

adg.conf

mvc-extend.cfg

scrittura-queue-view-
config.xml

economic-panel- config.xml

general-ui-config.xml

birt-report-config.xml

blogic- factory.properties

docgen-config.xml

confirmation-group-

Scrittura (4.4.10.5)

process.

Inbound module configuration.

Scrittura run-time administration
files:

« Log configuration
« Password encryption key

« Startup configuration

« Optional run-time properties

« Trade simulation (for
development and testing
only)

Scrittura Roles configuration file.

Matching dictionary for Inbound
module.

MIME types configuration files.

V2 template parameter
configuration file

User interface configuration:
o Custom events
o Bulk screens

o Trade detail screen
economic panels

« General user interface
configurability

BIRT reporting configuration

BLogic configuration

DOCX document generation
configuration

Inbound Workflow, on
page 309

Scrittura Administration
and Run-Time, on
page 369

Scrittura Administration
and Run-Time, on
page 369

Inbound Workflow, on
page 309

DocManager
Configuration and
Administration, on
page 122

See previous versions of
the documentation

User Interface
Configuration, on
page 157

Search and Reporting,
on page 220

BLogic Business Engine,
on page 203

Outbound Workflows, on
page 296

Page 28 of 430

Administration Guide
Chapter 2: Scrittura Configuration

mapping.xml

datamapping-config.xml

datamapping-ui-config.xml

email-dispatch-config.xml

sequencer.properties

spring-config-http.xml

structured-product-
config.xml

Static Data Framework data
model and user interface
configuration

Email dispatch configuration
Sequencer configuration

Spring services configuration

Structured Product configuration

Static Data Framework,
on page 238

Outbound Workflows, on
page 296

Message Processing
Workflow, on page 281

Outbound Workflows, on
page 296

Structured Products, on
page 352

NOTE: All configuration files are located in the Scrittura \config folder of the live folder, except
custom.properties which is located directly under the live folder.

Configuration Folders

Core and optional Scrittura modules may include additional folders as part of their configuration.
Those folders contain a series of business configuration files for that module (such as, rule files,
templates) that are loaded by Scrittura along with the module base configuration files.

The following table lists the folders used by Scrittura, and modules they apply to with a reference to
the location in this guide where full explanations can be found.

Folder

\birt

\blogic

\DGSTemplates

\productviews

\emailTemplates

\products

\signatures

Scrittura (4.4.10.5)

Description

BIRTreport templates

BLogic rule files

DOCX templates and product
views to use with Document
Generation Suite (DGS)

Email templates

Scrittura Product Definitions

Signature images

Reference

Search and Reporting,
on page 220

BLogic Business Engine,
on page 203

Outbound Workflows, on
page 296

Outbound Workflows, on
page 296

Product Definitions, on
page 55

Outbound Workflows, on
page 296

Page 29 of 430

Administration Guide
Chapter 2: Scrittura Configuration

\templates BeanShell scripts and HTML Outbound Workflows, on
templates page 296
\xmlParserConfig CSV configurations used by the Message Processing
generic XML parser Workflow, on page 281
\workflow Scrittura workflows Workflow Configuration,
on page 73

NOTE: Configuration folders are located directly under the live folder.

Mandatory and Optional Configurations

A part of the configuration is mandatory for Scrittura to be able to run, whereas other modules may be
optional.

For example, Scrittura requires at least one workflow, one Product Definition, and that DocManager
is configured. On the other hand, the use of some modules, such as the “BIRT” module, is optional
and would depend on the business requirements.

Optional modules are listed in the Scrittura startup configuration defined in startup-config.xml. If
not required, those modules can be disabled. For full details, see Scrittura Administration and Run-
Time, on page 369.

Configuration File Validation

When loaded by Scrittura, XML configuration files are validated against a DTD or XSD. DTDs are
located under the /dtd folder of the live repository; they are copied there from the Scrittura distribution
during the deployment process.

The following DTDs and XSDs are used to validate the different configuration files.
Configuration File DTD or XSD
birt-report-config.xml birt-report-config.dtd

confirmation-group-mapping.xml confirmation-group-mapping.dtd

datamapping-config.xml datamapping-config.dtd
datamapping-ui-config.xml datamapping-ui-config.dtd
docgen-config.xml docgen-config.dtd
docmgr-config.xml dms-config1_0.dtd
docmgr-external-config.xml spring-beans-2.0.xsd

spring-aop-2.0.xsd

economic-panel-config.xml economic-panels-config.dtd

Scrittura (4.4.10.5) Page 30 of 430

Administration Guide
Chapter 2: Scrittura Configuration

email-dispatch-config.xml
entity-types.xml
general-ui-config.xml
inbound-config.xml
scheduler.xml

scheduler.dtd
scrittura-queue-view- config.xml
signatures.xml
signature-config.xml
spring-config-http.xml
startup-config.xml
structured-product- config.xml
trade-simulation-config.xml
TransformVariableConfig.xml
workflow.xml

Product Definition files

XML Workflow files

environment.xml (BLogic)

Reloading the Configuration

email-dispatch-config.dtd
etype1_0.dtd
general-ui-config.dtd
inbound-config1_0.dtd
scheduler.dtd
scrittura-config.dtd
scrittura-queue-view- config.dtd
signatures.dtd
signature-config.dtd
spring-beans.xsd
startup-config.dtd
structured-product- config.dtd
trade-simulation-config.dtd
TransformVariableConfig.dtd
workflows.dtd

proddef.dtd

xpdl.dtd

blogic-env.dtd

In order to prevent any uncontrolled change in the live configuration that would be caused by human
error, Scrittura does not load its configuration directly from the filesystem upon restart but from the
database. Therefore, the Scrittura configuration must be reloaded into the database following any
configuration change so that the live system can subsequently reload it.

A special Scrittura process fulfills this purpose, the SetConfig process. This process loads the
configuration from the filesystem to the database and to the live system. The SetConfig process must
be run after any change made to the configuration files in order to apply those changes to the live

system.

For full details, see Scrittura Administration and Run-Time, on page 369.

Scrittura-config.xml File

The scrittura-config.xml file, located in the \config folder of the Scrittura live repository, controls
major aspects of Scrittura. In addition to defining general settings in the application, it links together

Scrittura (4.4.10.5)

Page 31 of 430

Administration Guide
Chapter 2: Scrittura Configuration

the core modules whose configurations are mandatory in Scrittura. These core modules include, but
are not limited to the following.

The following node elements can be defined in the scrittura-config.xml file.

Scrittura workflows to be used in the system
Workflow queue organization and access
DocManager hierarchy and mapping

Audit threads

Public searches, filters, and search variables

Archiving

<scrittura-config> Node, below
<wordml-processor> Node, on page 39
<product-def> Node, on page 39
<dms-field-ref> Node, on page 40
<global-role> Node, on page 40
<message-type> Node, on page 41
<image-processing> Node, on page 42
<menu> Node, on page 43

<view> Node, on page 47
<audit-types> Node, on page 47
<audit-user-actions> Node, on page 47
<column-set> Node, on page 48
<search-columns> Node, on page 48
<indexVariable> Node, on page 49
<reports> Node, on page 50
<annotations> Node, on page 50
<report-docs> Node, on page 51
<startup-classes> Node, on page 51
<saved-searches> Node, on page 52
<archive> Node, on page 53

<search-queue> and <quick-search-queue> Nodes, on page 54

<scrittura-config> Node

The <scrittura-config> node is the root node of the scrittura- config.xml file and has the
following attributes.

Scrittura (4.4.10.5)

Page 32 of 430

Administration Guide

Chapter 2: Scrittura Configuration

Attribute

CommonReferencelD-
field

database

date-format
date-parse-format

decimal

docmgr-path

document-version-field

enable-refresh

Scrittura (4.4.10.5)

Required/
Optional

Optional

Required

Required
Required

Required

Required

Required

Required

Description

Defines the field in the entity model to be used in order
to keep track of the CommonReferencelID of a trade that a
DocManager document references.

Defines the database type used by Scrittura.

Possible values: Sybase, MSSQL, or Oracle
Defines the display format for dates.
Defines the default user interface input format for dates.

Defines the character used as the decimal separator for
Currency fields.

Default DocManager folder structure for the Product
Instances (PI), which can be overridden in the Product
Definitions.

This path must correspond with the entity type model as
defined in the file entity-types.xml. The Pl folder can
be created either by being attached to the DocManager
Library Root or by being hidden as a rootless folder.
Defining the path with or without a "\" at the beginning
determines the behavior when creating the Pl folder. For
example:

Rootless folder:
docmgr-path=Counterparty\Product\Deal
Root folder:

docmgr-path=\Counterparty\Product\Deal

Defines the field in the entity-model to be used as a
tracker that keeps track of which version of a trade a
DocManager document references. The Scrittura
system uses this information to determine when to
create new versions of the document.

True/false indicator that lets you ask for a refresh
every 5 seconds of your present queue list, by clicking
on the circle of arrows next to the queue list title.

When you leave the queue list, the refresh feature shuts
off until it is requested. Each request performs a
potentially expensive database query, so the default
behavior is to keep this refresh off. The refresh-secs
attribute determines the number of seconds between
refresh cycles.

Page 33 of 430

Administration Guide

Chapter 2: Scrittura Configuration

fa-default-length

fa-table-column-size

history-view

host-name
local-port

lock-expiration-secs

log-session-locks

logic-folder

max-items-in-cache

message-process

message-activity

Scrittura (4.4.10.5)

Optional

Optional

Required

Optional
Optional

Optional

Optional

Required

Optional

Optional

Default character length for each of the variables in FA
and Archiving Tables.

This default length is used for the FA table only, and is
not applied to the actual length of the variable in the
BLOB.

For example, if fa-default-length=50, and the
variable does not have a max-length defined, a value of
70 characters long will be stored fully as 70 characters in
the BLOB, but only the first 50 characters are stored in
the FA table. Hence, only the first 50 characters can be
used in the search term.

Format: positive integer; 50 if not defined

Specifies the column size that holds the variable names
in FA and Archiving Tables. The default is set to 30
characters.

Defines the view file for inclusion in the audit/history
page.
Scrittura server hostname.

Scrittura server HTTP port.

Defines the number of seconds after which a user's lock
on an activity expires. This prevents users from holding
locks for days (for example, if a user exits the browser
without closing a view).

Default: 43200 seconds (12 hours)

Boolean value specifying whether the debug information
about session or session object locking should be
logged.

The session or session object locking is used in the
MVC Controller and Scrittura tags to prevent a duplicate
submission of the form.

Possible values: true or false; false if not defined
Location of the BeanShell scripts

Integer defining the maximum size of the Scrittura
cache.

Default: 100

Default process and activity to be used as a start point
for workflow items, unless overridden in the Product
Definition.

Page 34 of 430

Administration Guide
Chapter 2: Scrittura Configuration

monitor-ext Optional The extension (case sensitive) of the files to pick up
from the monitor folders.

Files with any other extension not defined in this
attribute are ignored by the import process. Leaving this
attribute blank results in every file in the monitor folders
being picked up. The files themselves may be in XML
format or Scrittura tag file format, but they must use a
common extension, such as . IN.

For example: monitor-ext=.IN

When designing an interface to put files in the monitored
folder(s), complete in the following order to avoid errors
with partial file writes:

1. Create the new tag file with a temporary extension
- not the configured monitor-ext value above.

2. Write the file.
3. Close thefile.

4. Rename the file to use the monitor-ext extension
specified above.

monitor-file-access Optional Specify the locking mechanism to handle concurrent
accesses to the dropbox. It can take one of the following
three values:

« read. Files waiting in the dropbox are read then
deleted by the monitor, which does not apply any
locking mechanism. This is the default option and
the fastest. For this option to work correctly, files
must be written in the dropbox in an atomic
manner, such as, by a “move” operation rather
than a “copy”.

« lock. This option should be selected when
Scrittura runs in a cluster where multiple nodes
access the same dropbox. Prior to reading a file
from the dropbox, the monitor attempts to create a
ck file and only consumes the file when this
creation is successful. Then similarly to the read
option, the dropbox file is read and deleted along
with its . 1ck file once complete. This prevents two
nodes from reading the same file from the dropbox
and creating duplicate trades in the system.

« exclusive. In addition to creating a .Ick file as for
the lock option, the monitor attempts to take an
exclusive lock on the dropbox file itself and only
consumes the file if both operations are
successful.

Scrittura (4.4.10.5) Page 35 0f 430

Administration Guide
Chapter 2: Scrittura Configuration

The purpose is to prevent the monitor from
consuming a partial file when a “slow” external file
publisher is used. Note that the file publisher must
also take an exclusive lock for this option to work.
Operating System constraints and limitations may
also apply.

monitor-folders Optional Dropbox directory paths that Scrittura monitors for
message files being dropped in for processing. The
monitor waits ten seconds between checks for
additional dropped files.

If multiple directories are listed, they must be separated
with space characters. Also, spaces inside directory
names are not supported. Using this technique for
dropping in messages (as opposed to an MQ Series or
JMS queue) requires the inclusion of the startup class
com.ipicorp.scrittura.util.LoadTagThread . See the
startup-classes attribute. The Trade Monitor view
specifically monitors the activity of this class: http://
[machinename]:[port]/scrittura
/jsp/importstatus.jsp

This view appears by default in the top menu and is by
default accessible only to users in the '‘admins' role. It
shows the last time the directory was checked for
dropped files and allows a forced manual restart.
Classes for interpreting the dropped files must be
configured in the <message-type> attribute. (These
classes must also be specified for JMS and MQ Series
queues.) The following is an example of monitoring two
directories for dropped files. Note the use of forward
slashes:

monitor-folders="c:/temp/scritturadrop
//netmachine/f$/temp/scritturadrop”

record-size Optional Maximum width of a record in FA tables. SQL scripts
that create FA tables are generated in a way that the
number of bytes in each record is not over this value. If
this attribute is not defined, the default value used
depends on the type of database: 1908 for Sybase,
65535 for Oracle, and 8060 for Microsoft SQL Server.

Format: positive integer

refresh-secs Optional Defines the number of seconds between refresh cycles
when enable-refresh is setto true.

scratchpad Optional Temporary folder used along with scratchpad-
template.

Scrittura (4.4.10.5) Page 36 of 430

Administration Guide
Chapter 2: Scrittura Configuration

scratchpad-template Optional Location of the WordML or JSP base templates for
document generation.

separator Required Defines the character used as the thousands separator
for Currency.

simfiles-folder Required Defines the location of tag files for trade.

ssl-port Optional Scrittura server SSL port.

template-folder Required Defines the location of the base HTML templates for
document generation.

templates-in-dms Optional When set to true, Scrittura checks for customized JsP

files (for example, templates) in the database first. If it
does not find any, it uses files from the EAR file. When
set to false, Scrittura uses files from the EAR file.

Possible values: true or false; false if not defined

template-recheck-sec Optional Number of seconds to wait before checking for updated
pages in DocManager. This value can be changed in the
SetConfig screen.

Default =10 seconds.

trade-throttle-secs Optional The amount of time, in seconds to throttle message
delivery, whose default value is 10 seconds.

The throttles are linked to up to five configurable
Scrittura ticket listener MDBs. Each of these MDBs can
listen to a JMS queue (for example, scrittura_
tickets). For each of these additional JMS queues, you
can set up a separate throttle (trade-throttle-secs2
to trade-throttle- secs5).

Any value from 0 to the configured JTA timeout value on
the J2EE container is valid. Values greater than the JTA
timeout value will work but will generate a
TransactionTimeoutExceptions entryin the log.

This parameter controls the rate at which inbound JMS
messages are accepted. At most, one message is
accepted every trade-throttle-secs. For example, if the
value is 10 and three messages arrive simultaneously at
time T, all three are delivered to the JMS queue
immediately but will be processed (that is, sent into the
workflow) at:

T
T+10

T+20

Scrittura (4.4.10.5) Page 37 of 430

Administration Guide
Chapter 2: Scrittura Configuration

Ifat T+15, two more messages arrive, they are
processed at:

T+30
T+40

If two more messages arrive at T+53 (13 secs after the
last message), they are processed at:

T+53
T+63

In general, for best performance, configure this value to
represent the average amount of time an item takes
from drop-in until it reaches its first queue. This prevents
the workflow engine from spending all its time
processing new messages. Adjustments to this value do
not substantially improve actual performance of the
workflow engine (in terms of actions per second).
Rather, performance improvement may be perceived by
making adjustments that control the rate at which the
engine processes new messages (a process that is
typically more processor-intensive than user activity on
existing product instances).

use-oracle-rule- Optional Provides control over whether to use cost-based or rule-

optimizer based optimization when using ORACLE. This controls
whether the generated SQL includes the /*+ RULE*/
optimizer hint. It affects what optimization strategy
Oracle uses to construct its query. The default remains
backwards compatible.

Possible values: true or false

Default: true

use-upper-searches Optional Boolean flag to be set to true in order to perform case-
insensitive Scrittura trade searches (quick search and
advanced search). Default; false

NOTE: This flag has no effect on DocManager and
Static Data Framework searches, which are case-
insensitive.

use-upper Optional Boolean flag to be set to true in order to use case-
insensitive role conditions. Default: false

user-preference- Optional Name of the class used to determine user preference

manager (date format and currency format) behavior, by default:
com.ipicorp.scrittura.util
.IpiUserPreferenceManager

Scrittura (4.4.10.5) Page 38 of 430

Administration Guide
Chapter 2: Scrittura Configuration

v2-font-color Optional Sets the font color for variables modified by users when
they appear in documents generated from HTML
templates. This is opposed to variables in JSP
templates, which take on the font color specified in the
style sheet.

v2-sys-font-color Optional Color used to indicate system changes to variables
before passing them to the version 2 HTML-based
document generation engine. Its values are the
standard color names (such as red, blue, and so on).

<wordml-processor> Node

The <wordml-processor> node can be multi-instantiated and allows the declaration of the PDF
Conversion Servers (also called WordML Processors) to be used for converting Microsoft Word
confirmations (DOC or DOCX) to PDF.

The <wordml-processor> node has the following attributes.

Attribute Required/ Optional Description

hostname Required Hostname of the PDF server to use.
port Required Port of the PDF server to use
ssl Optional Boolean flag that, when set to true, allows the use of HTTPS.

PDF conversion may be a lengthy step in the Scrittura workflow, depending on the number of pages
the document may contain. Although the bulk of the PDF processing takes place outside Scrittura on
a separate server, items in the workflow have to wait for its completion prior to moving and
sometimes have to queue for previous items to be processed.

To prevent potential workflow bottlenecks, multiple PDF servers can be defined, one per <wordml-
processor> node. The load is then dispatched by Scrittura between the different PDF servers
available.

<product-def> Node

The <product-def> node contains the name of an XML Product Definition document stored in
DocManager in the Product Definitions folder.

Only the Product Definitions listed in such a <product-def> node are recognized by the application
when a SetConfig operation is performed.

<product-def> does not have any attributes; its body contains the name of the XML Product
Definition file, located under the \products repository.

Example

<product-def>proddef-fxo.xml</product-def>

Scrittura (4.4.10.5) Page 39 of 430

Administration Guide
Chapter 2: Scrittura Configuration

<dms-field-ref> Node

The <dms-field-ref> node defines the mapping between the indexes and fields used by the
DocManager entity types (as defined in entity- types.xml)and the Scrittura Product Instance
variables.

The <dms-field-ref> node has the following attributes.

Attribute Required/ Optional Description
name Required Name of the DocManager field or index.
ref Required Scrittura variable to substitute for this value.

The mapping defined by <dms-field-ref> can be overridden at the product level by adding the
superseding mapping directly in the corresponding Product Definition. For full details, see Product
Definitions, on page 55.

<global-role> Node
Global roles act as keys to data. Users have access to all the data for which they have a key.

Queue roles act as filters. These roles also apply to search conditions, search- based reports, and
document generation.

Note the following:
« Global roles may be overridden in a queue.

« Ifanyrole in the queue requests an override, that override applies only to a global condition for
the same role name.

« Tooverride ALL global conditions, you must have an override role for each global condition.
« There are override flags on the queue that will ignore global roles for this queue.

« You cannot override the global roles in search results.

Queue roles, global roles and conditions are unioned, meaning that you can see an item if any
condition allows it. The results represent the intersection of the two sets. You can see all the items for
which any queue-specific role condition grants you access AND any global role condition grants you
access. However, if you are granted access through a role condition but not a global condition (or
vice versa), you do not have access.

Conditions can be defined in this element, but require SQL syntax as opposed to standard Java
syntax, as in the following examples:

Example: Equal

<global-role name="signers_a">
<condition>TradeType = 'VCO'</condition>
</global-role>

Example: Not Equal

Scrittura (4.4.10.5) Page 40 of 430

Administration Guide
Chapter 2: Scrittura Configuration

<global-role name="signers_a">

<condition>TradeType <> 'VCO'</condition>

</global-role>

Example: Joins

<global-role name="signers_a">

<condition>TradeType = 'VCO' AND Currency = 'USD'</condition>
</global-role>

Both <queue> and <role><condition> nodes have a corresponding optional true/false attribute,
override-global

Example 1:

<queue name="" activity="" override-global="true">
Example 2:

<role name="signers_a">

<condition override-global="true"> TradeType='NDF'

</condition>

</role>

<message-type> Node

The <message-type> node is used to specify the Message Parsing classes, used for parsing different
formats of input messages. Scrittura must parse inbound messages into value pair maps before it
can use them.

Inbound messages can be delivered through JMS or MQ Series queues or they can be dropped into
the dropbox (an attribute of <scrittura-config>).

The <message-type> node has the following attributes.

Attribute Required/ Optional Description
name Required Name of the parser.
class Required Parser processing class.

Scrittura natively provides the following parsers and also provides the ability to define custom

parsers.
Message Type Class
Flat XML com.ipicorp.scrittura.messages.FlatXmlParser

Scrittura (4.4.10.5) Page 41 of 430

Administration Guide
Chapter 2: Scrittura Configuration

Generic XML com.ipicorp.scrittura.messages .GenericXmlParser

Tadfile com.ipicorp.scrittura.messages .TagMessageParser

When parsing a message, Scrittura attempts to use the parsers in the order defined in scrittura-
config.xml and will return a successful result as soon as it finds an applicable parser.

« Generic XML Parser. Scrittura’s Generic XML Parser allows the parsing of XML messages
that follows any schema. It is based on XPath-like expressions, variable mapping being defined
in configurable CSV files. It comes in two flavors, one for standalone trades, and one for
Structured Products.

For full details, see Message Processing Workflow, on page 281.

« Tadfile Parser. The Tag format follows a simple "variable value pair" structure, the variable
name being delimited with curly braces:

{CommonReferenceID}=123

{ProductDefID}=swap

{Countarparty}=Bank of the North

{Currency[A]}=USD

{Currency[B]}=JPY

{SettlementInstructions}=Line 1 of instructions line two of instructions

« Custom Parsers.Although Scrittura natively offers a series of parsers to parse the most
common message format, it is possible to define custom parsers and add them to the list of
parsers in scrittura-config.xml as <message-type> nodes.

Custom parsers must extend the MessageParser interface located in the
com.ipicorp.scrittura.remote package and implement the following method, whose argument is
the content of the message to parse.

public Map parseMessage(String msg) throws MessageException;

This method should return the map of variables/values retrieved from the message, or null if the
message format is not the one expected by the parser.

<image-processing> Node

If Scrittura receives image processing results through JMS, you must specify the class or classes that
receive and process the results within Scrittura.

This is accomplished by adding <processor> nodes as child nodes of <image-processing>. A
<processor> node has the following attributes.

Attribute Required/ Description
Optional

name Required Name of the image processor class. If the JMS header matches this
name, then this processor is used for processing the image

Scrittura (4.4.10.5) Page 42 of 430

Administration Guide
Chapter 2: Scrittura Configuration

processing results.

class Required Class for this image processor. The default class for receiving and
processing JMS image processing results is the following:

<processor name="imageprocessing"
class="com.ipicorp.scrittura.imagep
rocessing.JMSInboundImageProcessor" />

<menu> Node

The <menu> node defines the organization, visibility, and access to Scrittura workflow queues from
within the web application.

<menu> has a single required attribute, name, which is used to assign a name to this menu. <menu>
supports any number of <queue> nodes as child nodes.

A <queue> node is used to define a business queue within the application. It maps to one or multiple
workflow manual queues and views, and access to this queue can be defined there. A <queue> child
node has the following attributes.

Attribute Required/ Description
Optional

name Required Name of the queue as it will be known by the Scrittura platform.

activity Required Fully qualified name of the main workflow activity this queue maps to,
using the following syntax:

[ProcessID].[ActivityID]

If the workflow process ID or activity ID has been defined to contain
space characters, those should be replaced by an underscore.

Example
standardOutbound.Pending_Review

When an activity is set to "empty", a blank row displays in the queue
list (or the display name displays, centered).

NOTE: Itis possible to add secondary queues.

override- Optional Allows overriding global roles in order to specify queue- specific roles.
global

Example
<menu name="Outbound">

<queue name="Pending Review" activity="Outbound.Pending_Review">

</queue>

Scrittura (4.4.10.5) Page 43 of 430

Administration Guide
Chapter 2: Scrittura Configuration

</menu>
A <queue> node can have multiple child nodes that allow the definition of the following.
« Columns that will display for this queue
« JSP views that will be used for the queue trade list and individual trades
« Roles to define user access to the queue and conditional role-based views
« Additional activities to include in that queue
Queue Columns
Queue columns are defined child nodes of the <queue> node as one of the following.
« A<column-set> node, in order to define the whole set of columns at once

« Individual <column> nodes, one per column to display

<column-set> has the following attribute.

Attribute Required/ Description
Optional

name Required Name of the column set to use for this queue.

Column Sets are defined in another part of scrittura-
config.xml, as <column-set> nodes.

For more information, see <column-set> Node, on page 48

<column> has the following attributes.

Attribute Required/ Description
Optional

display Optional Column header.

To force a carriage return (such as
 tag) in this header, use the
HTML codes &1t and > within this display variable.

For example, with a value of "Document&1t;br>Specialist", the
header will be displayed on two separate lines, as follows:

Document
Specialist
variable Required The Product Instance variable to display.
NOTE: Itis possible to mix <column-set> and <column> nodes, when additional columns are
required.

Views

Scrittura (4.4.10.5) Page 44 of 430

Administration Guide

Chapter 2: Scrittura Configuration

Views are defined using the <view> child node of the <queue> node and have the following

attributes.

Attribute

name

type

view

frameset
script

show-on-
search

validator-
class

Roles

Required/

Optional
Required

Required

Required

Optional
Optional

Optional

Optional

Description

Name of the view element.

Type of the view element, either bulk (bulk screens), edit (data
enhancement), view (property sheet), or custom.

URL of the pane that displays the actual trade details (left side of the
page).

Frameset to use for the trade detail screen.
BeanShell script, run when the view is closed.

Boolean option that specifies whether to offer this view as a link in the
bulk screens.

Name of the class responsible for validating any data saved from the
view.

User access to the different queues is based on their role. It is possible to define which roles will have
access with which permissions (read or write). Conditional views based on the user role can also be

defined.

Role-based restrictions for a queue are defined using the <role> child nodes of the <queue> node
for each queue. If none is present, the queue is open to all users as read-only. If any roles are present
then the queue is restricted to the specified users with the access rights. To be recognized by
Scrittura, roles must be defined as groups in the application server security realm and listed in the
roles configuration file.

A <role> child node has the following attributes.

Attribute

name

access

Required/
Optional

Required

Optional

Description

Name of the Scrittura role.

Defines the access rights to a queue for users in that role. Possible
values are read or write.

The default access rights are set to read only. The write permission
also provides read access.

If users are members of more than one role, they are granted write
access in an additive manner, such that if they are in any role with
write access, they have write access.

Role-based views can be defined by adding <view> tags as child nodes of the <role> node.

Scrittura (4.4.10.5)

Page 45 of 430

Administration Guide
Chapter 2: Scrittura Configuration

Example: users in the Drafters role (and only them) will see the bulk view specified by the
nested <view> tag

<role name="Drafters" access="write">

<view name="Review"

type="view" view="/jsp/bulkBase.jsp?panels=next" />
</role>

Conditions can also be added would the access permissions need to be refined. A condition is
specified as a <condition> node, child of the <role> node, whose body is a pseudo-SQL conditional
expression that determines which items this applies to. The expression must be wrapped with CDATA.

Example: users need to belong to the Drafters role in order to see the bulk view
specified by the nested <view> tag, but will only have access to trades whose
variable drafterUserl matches their user principal:

<role name="Drafters" access="write">
<condition><![CDATA[drafterUserl="USERID']]></condition>
<view name="Review"

type="view" view="/jsp/bulkBase.jsp?panels=next" />

</role>

Following are pseudo SQL examples:
<condition><![CDATA[Generate_As_SWIFT<>'YES']]></condition>
<condition>

<! [CDATA[(Generate_As_SWIFT<>'YES'

AND Front_Office_System="'IRP' AND (Portfolio_Group_Name='WTTT' OR Portfolio_Group_
Name="'WTTF"'

OR Portfolio_Group_Name='WTSO'))]]>
</condition>

The system supports only one condition per role. That means that instead of a
configuration such as:

<condition><![CDATA[TradeType="'Swap']]></condition>
<condition><![CDATA[Currency="USD']]></condition>
you must define a single condition such as:

<condition>

<! [CDATA[(TradeType="Swap' AND Currency="USD")]]>
</condition>

Additional Activities

Itis possible (though optional) to include additional workflow activities to the queue. Each additional
activity is defined as an <additional-activity> node, child of the <queue> node, its body containing

Scrittura (4.4.10.5) Page 46 of 430

Administration Guide
Chapter 2: Scrittura Configuration

the fully qualified name of the workflow activity following the same syntax as the activity attribute of
the <queue> node.

Example
<additional-activity>
outbound.Validation_1st Level
</additional-activity>

This feature allows users to access workitems across multiple workflow activities in a single queue.
The permission defined on the queue applies to all eligible workitems in all activities for the queue.

<view> Node

The <view> node lets you set global views and is defined similarly to the <view> child nodes of the
<queue> node. For more information, see "Views" within <menu> Node, on page 43.

<audit-types> Node

The <audit-types> node controls a list of predefined and deployment- defined audit message types,
each of which is defines within a child <audit- type> node.

A <audit-type> child node has the following attribute.

Attribute Required/ Optional Description

name Required Name of the audit type.

Scrittura has the following built-in audit types, which determine the selection options available in the
history window.

o user
« signature
« workflowedit
« edit-detail

« auto

<audit-user-actions> Node

The <audit-user-actions> node provides access to a list of user actions available from within the
audit/history page. Audit user actions are defined within <audit-action> child nodes of the <audit-
user-actions> tag.

A <audit-action> child node has the following attribute.

Attribute Required/ Description
Optional
action Required Label of the audit user action, such as "Comment, "Phone Call",
and soon.

Scrittura (4.4.10.5) Page 47 of 430

Administration Guide
Chapter 2: Scrittura Configuration

<column-set> Node

The <column-set> node provides the ability to define a column set to be used by the different queues
(see "Queue Columns" in <menu> Node, on page 43).

Column sets are defined within <column> child nodes of the <column-set> tag. A <column> child
node has the following attributes.

Attribute Required/ Description

Optional
display Optional Name that displays in the column header
variable Required Pl variable that corresponds to the column
visibility Optional Column visibility in the queue screen.

Possible values: always-visible, always-hidden, default-
visible, default-hidden

Example

<column-set name="MyColumnSet">

<column display="Trade ID"

variable="tradeID" visibility="default-visible" />

<column display="Struct. ID" variable="tradelLinkID" visibility="default-visible" />
</column-set>

The column set can then be included in the queue element instead of the column elements:

<queue name="First Signature" activity="Scrittura.Signature_A">

<column-set name="MyColumnSet" />

</queue>

<search-columns> Node

The <search-column> node allows the definition of search variable in the Scrittura application. Those
search variables are added to Scrittura FA Tables for optimized access in order to be available as
search criteria.

NOTE: Before adding a variable as a search variable, its FA Table details must be set up in the
corresponding Product Definition.

The <search-columns> node has the following attribute.

Attribute Required/ Description

Scrittura (4.4.10.5) Page 48 of 430

Administration Guide

Chapter 2: Scrittura Configuration

exporting-
tool

Optional

Optional

Reporting tool used to export search results. Possible values are
JasperReport (for Jasper reports) or StyleReport (for Style reports).

Search variables are defined within the <column> child nodes of the <search-column>tag. A
<column> node has the following attributes.

Attribute

variable

display

quicksearch

hidden

isarray

Required/
Optional

Required .

Optional

Optional

Optional

Optional

Description

Pl variable referenced as a search variable.

Variable label as it displays in the search criteria dropdown list, or
as column header.

Set to true to make this variable available in the Quick Search
criteria.

Default: false

Set to true to allow this variable to be added to the FA table without
displaying as a search criteria. To be used for internal search
variables not to be exposed to end users.

Default: false

isarray Optional Set to true if this variable is an array. The cells of
the array are searchable and their values added to the SCRITTURA_
FA_IDX FAtable.

Default: false

Optional role specifications can be defined for a column by adding child <role> attributes and child
nodes. For more information about the <role> attributes and child nodes, see <menu> Node, on

page 43 .

<indexVariable> Node

The <indexVvariable> node lets you specify which variables should be indexed in FA tables. The
variables declared in this node are used for indexing when generating DDL (Data Definition
Language) for the FA tables.

Example

<indexVariable>

<internalName>VAR1</internalName>

<internalName>VAR2</internalName>

</indexVariable>

Scrittura (4.4.10.5)

Page 49 of 430

Administration Guide
Chapter 2: Scrittura Configuration

NOTE: Only variables that are often used in searches should be indexed. While assigning many
indexes to variables in FA tables might improve speed of searches, alternatively it might resultin a
database slowdown when the FA tables and variable indexes are being updated.

<reports> Node

The <reports> node allows for the specification of reports, each report being defined under the
<report> child node.

A <report> child node has the following attributes.

Attribute Required/ Optional Description

name Required Defines the name of the report.

id Required . Defines the report identifier.

class Required Defines the class that implements the report.

<annotations> Node

The <annotations> node lets you specify the annotations that will be added by default to every
Product Instance entering the workflow. Annotations can also be added by default to individual
product definitions.

Each annotation thread is defined as a <thread> child node of the <annotations> tag.

A <thread> child node has the following attribute.
Attribute Required/ Optional Description
name Required Name of the annotation thread.
Roles can optionally be defined for each annotation thread in order to control which permissions are

granted to users when accessing annotation threads. This is defined by <thread-role> child nodes
of the <thread> node.

A <thread-role> child note has the following attributes.

Attribute Required/ Optional Description
name Required Name of the role given access to the thread.
access Required . Permission for this role in this thread.

read orwrite

Example
<annotations>
<thread name="Drafting comments">

<thread-role name= access="write"/>

Scrittura (4.4.10.5) Page 50 of 430

Administration Guide
Chapter 2: Scrittura Configuration

</thread>
<thread name="Legal comments">

<thread-role name="" access="read"/>
<thread-role name="Legal" access="write"/>
</thread>

<thread name="Administrative comments">
<thread-role name="admins" access="write"/>

</thread>

</annotations>

<report-docs> Node

The <report-docs> node is required for multi-trade documents, such as HTML Multi-Chasers.

The <report-docs> node is defined by <template> child nodes. A <template> child node has the
following attributes.

Attribute Required/ Description
Optional
name Required Document name.
file Required . Appropriate template file and its location relative to the HTML

template base directory.

<startup-classes> Node

The <startup-classes> node allows the specification of additional classes to be loaded on startup
and on reload of the scrittura-config.xml file. These can be used to pre-cache data, initiate other
systems, initiate the job scheduler, and start additional threads.

The <startup-classes> node is defined by <class> child nodes that define the name of the class to
be loaded.

Example

<startup-classes>
<class>com.ipicorp.scrittura.util.LoadTagThread</class>
</startup-classes>

The following example shows a startup Java class that runs a new thread.
package com.ipicorp.scrittura.test;

public class TestStartupClass

{
public TestStartupClass() throws Exception

Scrittura (4.4.10.5) Page 51 of 430

Administration Guide
Chapter 2: Scrittura Configuration

{
System.out.println("Startup up TestClass");

Thread t = new Thread(new TestThread(), "Test Thread"); t.start():

}
}

class TestThread implements Runnable { public TestThread(){}
public void run() {

for(int i =0; i < 10; i++)

{

System.out.println("Startup Test Class:

")
try

{

Thread.sleep(1000);

}

catch(InterruptedException e)

{

System.out.println("Test Startup Interrupted"); return;
}

}

System.out.println("Test Complete");

}

}

When the scrittura-config.xml file is reloaded, each of the startup classes attempts a restart. Any
additional custom startup classes must include logic to gracefully handle such cases.

<saved-searches> Node

The <saved-searches> node allows for pre-defined search categories where users can save or
access searches depending on their role.

Users with read access can run a report in the category. Users with write access can save, change,
and delete reports in that category.

The <saved-searches> node has the following attribute.

Attribute Required/ Description
Optional

Scrittura (4.4.10.5) Page 52 of 430

Administration Guide
Chapter 2: Scrittura Configuration

allow-user- Required Boolean flag that provides the ability for all users to save their own
saves personal searches under specified categories

Search categories are defined by <search-category> child nodes of the <saved-searches> tag. A
<search-category> child node has the following attribute.

Attribute Required/ Optional Description

name Required Name of the category as displayed in the web user interface.

For each category, role permissions are specified by optional <search-role> tags, child of <search-
category> nodes. A <search-role> tag has the following attributes.

Attribute Required/ Description

Optional
name Required Name of the role.
access Required Access to the search category for users belonging to this role.

Possible values are read or write

Example

Users in the signers_b role can read and write reports in the Category 1 category. All users can run
reports in the Category 2 category. No user can save personal reports.

<saved-searches allow-user-saves="false">
<search-category name="Category 1">
<search-role name="signers_b" access="write"/>
<search-role name="signers_a" access="read"/>
</search-category>

<search-category name="Category 2">
<search-role name="admins" access="write"/>

<search-role name="" access="read"/>

</search-category>

</saved-searches>

At a minimum, the bare specification must be configured in scrittura- config.xml.

<saved-searches allow-user-saves="false"/>

<archive> Node

The <archive> node specifies the configuration of the Scrittura archiving model.

For full details on the configuration of the archive module and its capabilities, see Archiving, on
page 274.

Scrittura (4.4.10.5) Page 53 of 430

Administration Guide
Chapter 2: Scrittura Configuration

<search-queue> and <quick-search-queue> Nodes

The <search-queue> and <quick-search-queue> nodes specify the configuration of the Queue
Style Searches that let you display the search results using the same user interface as the Scrittura
bulk screens. This provides the powerful capabilities offered by the bulk screens.

For full details on this configuration and Queue Style Search capabilities, see Search and Reporting,
on page 220.

Scrittura (4.4.10.5) Page 54 of 430

Administration Guide
Chapter 3: Product Definitions

Chapter 3: Product Definitions

The topics in this section describe the contents of Product Definition files and explain how to create
them.

This section contains the following topics:
« Product Definitions Overview, below
« Product Definition XML File, on the next page
« Binary Large OBjects, on page 63
« Built-in Variables, on page 64
« Common Variables, on page 68
« Detect Variable Changes, on page 69
« Array Handling, on page 69
« Setup Categories of Variables with audit-type, on page 71

Product Definitions Overview

Each product implemented in Scrittura is associated with a Product Definition. The role of the Product
Definition is to contain all data necessary in Scrittura for the product: it can be its economic data (also
called Data Dictionary) or a list of technical fields internally used by Scrittura (such as, for workflow
routing purposes) with no business meaning.

The data is used to populate the Product Instance of the trade once it is created in Scrittura. Amongst
other information, Product Definitions contain the following data:

« Product variables, along with their audit and data types

« Workflow start activity

« Confirmation signatures

« Templates (HTML, JSP and WordML document generation only)

Although each Product Definition corresponds to a specific product, it is possible to organize the
whole set of product definitions by creating sub- product definitions that contain common variables to
be reused throughout the different product definitions. A specific Product Definition file,
commonvars.xml, defines variables available for all product definitions and should contain all
mandatory Scrittura variables.

All variables used by a product in Scrittura should be declared in its corresponding Product Definition
(or a sub-Product Definition). This is where essential data like the audit type, the variable type (such
as, currency amount, integer) are defined for the different variables. For example, the variable type
defines the Java type of the corresponding Product Instance variable. Not defining a product variable
in the Product Definition will not break the system, but this variable will default as a string variable and
will not be audited.

Scrittura (4.4.10.5) Page 55 of 430

Administration Guide

Chapter 3: Product Definitions

Product Definitions are defined as XML files located under the /products repository of the Scrittura
live folder. Once created, a Product Definition file must be declared in scrittura-config.xml under
a product-def tag in order to be included by Scrittura into its configuration.

Product Definition XML File

The root node of a Product Definition file is ProductDefinition, which takes no attribute and has the

following child nodes.

Child Node

name

shortName

include
workflowStart

docmgr

annotations

documentTypes

signature

documentation

VariableDefinition

Views

Required/
Optional
Required

Required

Optional
Required

Optional

Optional

Required

Optional

Optional

Optional

Required

Description

The body of this tag specifies the Product definition display
name.

The body of this tag specifies the Product Definition internal
name, as referenced by the application.

Include a sub-Product Definition into this Product Definition.
Workflow process introduction step.

DocManager hierarchy specific to this Product Definition,
which supersedes the default one defined in scrittura-
config.xml.

Annotations to be added by default to every instance of this
product entering the workflow. Annotations can also be
added globally to all products in scrittura-config.xml.

This node defines the templates to be used for the different
document types. It only applies to HTML, JSP and WordML
templates.

Definition of the different signature levels used by that
product.

Textual description of the product, specified via its optional
child nodes, text and url.

Definition for each variable of the product.

Section containing auto-generated views. These sections are
read by the ViewGen command to generate JSP pages.

Sub-Product Definition Inclusion

Including a sub-Product Definition into a Product Definition is accomplished using the include tag.
This tag references in its body the internal name of the sub-Product Definition to include (as specified

by its shortName tag).

Example

Scrittura (4.4.10.5)

Page 56 of 430

Administration Guide
Chapter 3: Product Definitions

The following XML Product Definition extract includes into the “FXO” Product Definition the sub-
product definition whose short name is “BaseVars”.

<ProductDefinition>
<name>FX0</name>
<shortName>FX0</shortName>

<include>BaseVars</include>

</ProductDefinition>

Variable definitions in an included definition override the original Product Definition. For example, if
you do multiple includes such as Product Definition A includes B includes C, and a variable is present
in all three definitions, you get the variable as defined in C.

The included components are limited to variables, templates, and annotation definitions. View
definitions are not included.

NOTE: Sub-Product Definitions must also be declared under a product-def node in scrittura-
config.xml.

Workflow Introduction Step

The workflow introduction step is specified by the <workflowStart> tag, which has the following
attributes.

Attribute Required/ Optional Description
process Required Workflow process ID where trades will be injected.

activity Required Workflow activity ID where trades will be introduced.

DocManager Hierarchy

DocManager hierarchy allows for a specific Product Definition to override the default DocManager
hierarchy and index mapping defined in scrittura- config.xml (respectively, by the docmgr-path
root attribute and dms- field-ref nodes)

The entity-type hierarchy used to create the Scrittura Product Instance folder is in DocManager. Each
element is the name of an entity type. If the first character is "\ ", the folders are created in the library
root. Otherwise, they are created as "rootless" folders.

The node to override the default DocManager settings is <docmgr>, which has the following
attributes.

Attribute Required/ Description
Optional
docmgr-path Required DocManager hierarchy of the Product Instance
folder.

Scrittura (4.4.10.5) Page 57 of 430

Administration Guide
Chapter 3: Product Definitions

document-version- Required Document version field.
field

The <docmgr> node accepts an unlimited number of <dms-field-ref> child nodes. These child
nodes are required to specify the mapping of DocManager indexes against Product Instance
variables or to override the default mapping defined in scrittura-config.xml.

<dms-field-ref> nodes follow the same schema as in scrittura- config.xml and have the
following attributes. For full details about scrittura-config.xml, see Scrittura Configuration, on
page 27.

Attribute Required/ Optional Description

name Required DocManager index name.

ref Required Product Instance variable mapped to this index.
Example

<docmgr docmgr-path="\Counterparty\product\Deal" document-version-field="3">
<dms-field-ref name="Counterparty" ref=cptyRef""/>

<dms-field-ref name="Producy" ref="productGroup"/>

<dms-field-ref name="Deal" ref="CommonReferenceID"/>

</docmgr>

Annotations

Annotations to be added specifically for this Product Definition are specified under the
<annotations> tag, which does not have any attributes. Each annotation is defined by a single
<thread> tag, and one or more <thread- role> tags that define access to the annotation thread.

A <thread> node has the following attribute.

Attribute Required/ Optional Description

name Required Name of the annotation thread automatically added.

A <thread-role> node has the following attributes.

Attribute Required/ Description
Optional
name Required Name of the role given access to the thread.
access Required Permission for this role in this thread, whose possible values are

read or write.

Example

<annotations>

Scrittura (4.4.10.5) Page 58 of 430

Administration Guide
Chapter 3: Product Definitions

<thread name="Drafting comments" />

<thread-role name= access="write" />

<thread name="Legal comments" />

<thread-role name= access="read" />
<thread-role name="Legal" access="write" />
<thread name="Administrative comments" />
<thread-role name="admins" access="write" />

</annotations>

Document Types

For trades using HTML, JSP or WordML document generation, valid document types and templates
used for those document types are specified within the

<documentTypes> node, as <DocumentType> child nodes.

A <DocumentType> child node has the following attributes.

Attribute Required/ Description

Optional
type Required Name of the document type.
baseTemplate Required The path of the base template.

HTML templates should be stored in the templates folder of the
live repository and must be manually loaded using the
SetConfig command when changed. JSP templates should be
stored in the custom folder and require redeployment when
changed.

Signatures

Signatures can be specified for the product using the <signature> tag, one for each signature level.
<signature> is an empty tag that has the following attributes.

Attribute Required/ Description

Optional
level Required Signature level, specified as an alphanumeric character (A...Z or
1...n).
type Required Specifies the type of signatory whose possible values are user or
group.

The user name will be used as the signatory for signatures of type
user, whereas the role name will be used for signatures of type group.

Scrittura (4.4.10.5) Page 59 of 430

Administration Guide
Chapter 3: Product Definitions

role Required Name of the role for this signature level.

Variable Definition
Variables are added to a Product Definition using the

<VariableDefinition> tag. A Product Definition file contains any number of
<VariableDefinition> entities.

A <variableDefinition> node has the following attributes.

Attribute Required/ Description
Optional
valueType Optional Type of the variable. If not specified, the default value is
String.

Possible values: Integer, Double, String,
CurrencyAmount, Date, Boolean, LongString, OneOf,
or Image

audit-type Optional Audit class to log changes to this variable. Default value is
edit-detail if not specified.

subscript1istLimit Optional Upper bound of the first array dimension for array variables.
If no dimension is specified, the variable is a scalar.

subscript2ListLimit Optional Upper bound of the second array dimension for array
variables.
no-default Optional Boolean value (set to false by default) that specifies

whether the variable should be populated with a default
value on Product Instance creation.

Itis mainly used for array variables. Once given a value, the
element is not removed from the Product Instance if it
subsequently becomes empty. The aim is to avoid
unnecessary database inserts in the event of such large
arrays or 2D arrays that may be mostly empty.

NOTE: If set to true, there should also be no
defaultValue child tag specified (see
VaraiableDefinition child nodes in the following table),
even an empty one.

NOTE: The first array element is always inserted even
when this attribute is set to true.

external-class Optional Fully qualified Java class name when variables should be
stored in an external BLOB.

Scrittura (4.4.10.5) Page 60 of 430

Administration Guide
Chapter 3: Product Definitions

A <variableDefinition> node has the following child nodes.

Child Node Required/ Description
Optional
internalName Required Internal variable name used in conditions, workflows, and
scripts.
visiblename Required Display name for the variable.
FATableName Optional Suffix of the FA table name where this variable should be

stored, would it be set as a search variable. For example,
specify DEFAULT to store it into SCRITTURA_FA_DEFAULT.

FAColumnName Optional Name of the FA table column where this variable should be
stored, would it be set as a search variable. Itis
recommended to use the same name as specified by
internalName.

editRole Optional Name of role granted edit rights on this variable. If not
specified, all users have rights.

documentation Optional Documentation on this product variable (unused by Scrittura
but available for XML readability purposes).

defaultValue Optional Default value for the variable, in case the variable is not
populated in the incoming message. An empty tag is
considered as an existing, but empty default value; hence
the variable will be created in the PI.

VariableValidation Optional Validation criteria for the variable, as defined in the following
table.
Widget Optional Specify the appearance of the control used when editing the

variable using the scrittura:edit JSP tag, as detailed in
the next paragraph

NOTE: FATableName and FAColumnName are only required when variables need to be added as
search variables into the FA Tables.

A <variableValidation> node allows the definition of validation criteria for the variable and has the
following attributes.

Attribute Required/ Description

Optional
onlnitiation Optional logAndWarn, refuse, orNone (default). Specifies whether to
warn on validation errors when the current value is null.
onEdit Optional logAndWarn, refuse, or None (default). Specifies whether to

warn on validation errors when the value changes.

A <variablevalidation> node has the following child nodes.

Scrittura (4.4.10.5) Page 61 0of 430

Administration Guide
Chapter 3: Product Definitions

Child Node Required/ Description

Optional

failureString Optional Display prefix for validation errors.

minValue Optional Minimum value.

maxValue Optional Maximum value.

minLength Optional Minimum string length (integer representing a number of
characters).

maxLength Optional Maximum string length (integer representing a number of
characters).

legalValues Optional Specifies the list of valid values. This node is generally optional,

except for "one of" variables). This tag takes a single optional
attribute, className, which specifies the class to use for the
validation. Each valid value is under an empty child node,
Legalvalue, whose attributes are value (to specify the value) and
label (to specify the label to display when using the scrittura:edit
tag in the JSPs).

Example
<legalvalues>

<LegalValue value="USD"
label="United States Dollar"/>

<LegalValue value="JPY"
label="Japanese Yen"/>

</legalvalues>

The <variablevalidation> tag specifies that if a data message enters Scrittura (onInitiation)
with an invalid value for a specific variable, the event is logged and a warning is added to the screen
for this data message (logAndWarn).

The three choices for onInitiation and onEdit are none, logAndWarn, and refuse.

If a user attempts to edit the value of a specific variable to pick an invalid legal value, the
onEdit=refuse specification rejects this attempt. (Such an attempt would be highly unlikely,
however, as this variable is specified to be displayed with a widget of type dropDownList.)

Itis possible to specify a className attribute to the legalvalues elementin order to force validation
against a separately generated set of valid values, such as a valid counterparty list from another
database, made available through a Java class. This class must extend the
com.ipicorp.scrittura.remote.vValidvalues class.

<Widget> (child node of <variableDefinition>)is used to specify the HTML control when editing
the variable. <Widget> is an empty tag and has the following attributes.

Attribute Required/ Description

Scrittura (4.4.10.5) Page 62 of 430

Administration Guide
Chapter 3: Product Definitions

Optional
type Optional Type of control to use, one of: overrideDropDownlList,
dropDownList, multiChoicelist, checkbox, radioButton,
textarea or text.
rows Optional Number of rows for the control (defaultis 1).
cols Optional Number of columns for the control (default is 15).

Example Variable Definition

<VariableDefinition valueType="String">
<internalName>Trader</internalName>
<visibleName>Trader</visibleName>

<documentation>

<text>The trader associated with the trade.</text>
</documentation>

In this example, the XML sets the valueType String for the variable Trader that is to be displayed to
end users as "Trader". The optional documentation section includes a short note for internal
documentation purposes. This text could also refer to a URL, if an online documentation reference
exists.

This variable will, by default, be displayed in views with a standard text box widget. This display
specification can be overridden. No data validation takes place on this, as defined in the example.

Views

For data enhancement purposes, Product Definitions can include a Views section, specified as a
collection of DEViews tags (Data Enhancement Views).

Although this feature is supported, it was designed to be used with trades whose documents are
generated from HTML or JSP templates. Full details on this configuration can be found in previous
versions of the documentation.

For WordML or DOCX trades, economic panels, custom panels, and data enhancement using
document edition should be used instead.

Binary Large OBjects

Trades in Scrittura can have their variables (as defined in the Product Definition) stored in external
large binary objects (BLOBs). However, the following access restrictions are imposed on these
variables:

« Cannot be displayed in Queues.

« Cannot be displayed within the <column display="" variable="" /> tags.

Scrittura (4.4.10.5) Page 63 of 430

Administration Guide
Chapter 3: Product Definitions

« Cannot be used in global or queue roles.

« Cannot be searched for within Scrittura.

Specify the external storage class in the Product Definition for all variables that should be stored in
the external BLOB by setting the VariableDefinition external-class attribute to
com.ipicorp.scrittura.util.BlobExternalData.

Example

<VariableDefinition

valueType="String" audit-type="NONE" external-class=

"com.ipicorp.scrittura.util.BlobExternalData">

<internalName>MyVariable</internalName>

<visibleName/>

</VariableDefinition>

Built-in Variables

The following table lists the built-in Scrittura variables defined for Product Instances (PI).

Additional built-in variables are defined for Structured Products, see Structured Products, on

page 352.

Variable

CommonReferencelD

ProductDefID
ProductDefDisplay
ProductinstanceVersion

Signature][]

SignatureDocx(]

SignatureName]]

SignatureNameDocx(]

SignatureTitle[]
SignatureTitleDocx(]

Scrittura (4.4.10.5)

Description

Common reference ID, the internal unique Scrittura reference for
atrade.

Product type.
Display name of the product.
Current version of the trade.

Name of the person who signed the document. The edit control is
a signature check box. This value can be set though scripting to
force a specific signature.

The Docx-suffixed variable is used when signing DOCX
documents, the other one being for other document types.

Name of the actual signer based on the role and signatory
configuration.

The Docx-suffixed variable is used when signing DOCX
documents, the other one being for other document types.

Title of the actual signer based on the role and signatory
configuration.

Page 64 of 430

Administration Guide
Chapter 3: Product Definitions

Signaturelmage(]

SignaturelmageDocx(]

IsSigned[]

workflowWorkitemID

BulkSignature

USERID
LastEditUser
LastForwardUser

Last[TITLE OF DOC IN DOC
MGR]Date

[TITLE OF DOC INDOC
MGR]Count

CurrentManualQueues

CurrentManualQueue

CurrentManualProcess

scrHoldSequencedMessage

The Docx-suffixed variable is used when signing DOCX
documents, the other one being for other document types.

Signature image URL or reference corresponding to the actual
signer based on the role and signatory configuration.

The Docx-suffixed variable is used when signing DOCX
documents, the other one being for other document types.

Boolean value usedto check whether the Signature[] array is
empty.

Workflow workitem ID of the message.

Similar to the Signature[] variable except that the behavior is
tailored for bulk signatures.

Current user.
Last user to edit the document.
Last user to forward the document to a new activity.

Time stamp when document is saved.

Count when a generated document is saved.

Comma-separated list of all the manual activities where a Pl can
currently be found. This variable is used primarily to return
Search results.

Using this in JSP code requires checking for characters within the

string such as:

<scrittura:if
condition="CurrentManualQueues.lastIndex0Of
(\"Executed\") != -1" />

Name of the manual activity where the trade sits. This value is
blank when a trade is in an automated activity.

Name of the workflow containing the manual queue where the
trade sits.

Boolean variable used by the sequencer and set to true when a
Message Ticket must be held in the Sequence queue. For full
details, see Message Sequencer, on page 290.

The following variables are available for Message Tickets (such as, when a message has just
entered the workflow but has not yet been identified as a particular product type).

Scrittura (4.4.10.5)

Page 65 of 430

Administration Guide
Chapter 3: Product Definitions

Variable Description

cridExists Boolean value to check whether the Common Reference ID already has
a in the database.

workflowWorkItemID Workflow workitem Product Instance ID of the message.

USERID, LastEditUser, and LastForwardUser

The USERID, LastEditUser, and LastForwardUser variables can be used to impose mutually
exclusive functionality where the same user cannot edit a document and push it forward to an
approval queue.

You can accomplish this by adding to the role definition for an activity in the workflow definition:

<role name="">

<condition>

<! [CDATA[LastForwardUser <> 'USERID']]>
</condition>

</role>

or

<role name="">
<condition><![CDATA[LastEditUser <> 'USERID']]></condition>
</role>

The USERID variable is not available in JSP tags but the USERID variable is available in conditions.
Therefore, you can use the following code in a JSP frame to determine if the current user is the same
user who previously forwarded the document:

<%

// Ensure that the same user cannot save and forward the trade

// in both the previous and present queue

String userld = request.getUserPrincipal().getName(); ProductInstancelLocal pi =

(ProductInstanceLocal)request.getAttribute("pi"); String lastUser =
(String)pi.getValue("LastForwardUser"); boolean sameUser = false;

if(userld.equals(lastUser))
{

sameUser = true;

Scrittura (4.4.10.5) Page 66 of 430

Administration Guide
Chapter 3: Product Definitions

[TITLE OF DOC]Count

When a generated document is saved, the following two product variables are updated:
Last[TITLE OF DOC]Date = now

[TITLE OF DOC]Count = [TITLE OF DOC]Count + 1

(or, 1 the first time around)

For example, for a document title of Chaser, you will get the variables LastChaserDate and
ChaserCount. If Title = Confirmation, you will get the variables LastConfirmationDate and
ConfirmationCount.

Spaces in the title are replaced with "_".

Document titles are defined in the product definitions. In the following Product Definition XML file
excerpt, the title is Confirmation.

<documentTypes>
<DocumentType type="Confirmation"
baseTemplate="bt_CollarTest.html"/>

</documentTypes>

CurrentManualProcess and CurrentManualQueue

The CurrentManualQueue and CurrentManualProcess variables are often used with
<scrittura:if> tagsto check a condition.

The following is a code sample in a JSP file:
<table class="normal">

<scrittura:if condition='CurrentManualQueue.equals(\"Outstanding_Review_Confir
mation\") && CurrentManualProcess.equals(\"OtherDocuments\")"'>

<tr>

<td class="cell" align="left">
<scrittura:label name="OutboundOCNextQueue" />
</td>

<td class="normal">

<scrittura:edit name="OutboundOCNextQueue" />
</td>

</tr>

</scrittura:if>

In this example, the OutboundOCNextQueue variable (both the label and value) are displayed in the
table of the JSP page if the condition is true.

Scrittura (4.4.10.5) Page 67 of 430

Administration Guide
Chapter 3: Product Definitions

CommonReferencelD

The CommonReferencelD (also referred to as CRID) variable is the unique identifier for each PI. This
variable is one of two mandatory variables that are required to create a Pl in Scrittura. The other
mandatory variable is ProductDefID.

This variable should be used as an internal reference to the trade. Business trade references should
be stored in different variables.

ProductDefID and ProductDefDisplay

The ProductDefID and ProductDefDisplay variables are used in connection with Product
Definitions. Like CommonReferencelD, the ProductDefID variable is a mandatory variable.

To map a tag file to a Product Definition XML file, the value for the ProductDefID variable in the tag
file must map to the value in the <short name> tag in the Product Definition XML file.

Example Product Definition XML
<ProductDefinition>
<name>opbd</name>

<shortName>opbd</shortName>

</ProductDefinition>
In this example, the product opbd corresponds to the Product Definition <name> and <shortName>.

The ProductDefDisplay variable contains the long name of the Product Definition (defined in the
<name> tag) the trade belongs to. It can be used to create folder indexing in DocManager upon
creation of a P

Sample XML extract scrittura-config.xml:

<dms-field-ref name="Counterparty" ref="Counterparty"/>
<dms-field-ref name="Address" ref="cp_addressi"/>
<dms-field-ref name="Product Type" ref="ProductDefDisplay"/>

In this example the configuration file maps the Scrittura variable ProductDefDisplay to a
DocManager field "Product Type." This DocManager variable can then be used for indexing or as a
folder title in DocManager.

Common Variables

Variables common to all products in a workflow may be defined in the commonvars.xml file, which
must also be declared as a Product Definition in scrittura-config.xml. This sub-Product Definition
is always included in all Product Definitions even if not explicitly added as an include tag.

Variable definitions in the commonvars.xml take precedence over similarly named variables in an
individual Product Definition file.

Scrittura (4.4.10.5) Page 68 of 430

Administration Guide
Chapter 3: Product Definitions

At server startup, the Scrittura log warns of any situations where variable definitions seem duplicated.
The same variable name may be defined across multiple Product Definitions, but these variables
must also share the same datatype.

Detect Variable Changes

Scrittura stores one of the following change statuses for each variable.

Status Description

0 Unchanged

1 Changed by the system (data feed, BSH, or classtool)
2 Changed by a user using the user interface

You can query change status by using the isChanged method of the ProductInstancelLocal
interface, as shown in the following example.

int status = pi.isChanged("varName");
or

if(pi.isChanged("varName") > 0)

{

changesToTrade = true;

}

You can use the change status information to route documents to different workflow activities based
on changes to specific variables.

When a new version of a Product Instance is created, the change status is cleared for each variable.
This can also be done programmatically by calling the following:

pi.clearChangedFlags();

Array Handling

This section details how to specify and handle arrays in Product Definitions.

Specifying Arrays in Product Definitions

Scrittura can define variables as single or double indexes, that is, one or two- dimensional arrays. For
example this might be required when listing an arbitrary number of holiday cities per security leg, or
an arbitrary number of fax numbers for each counterparty to a trade.

Variables are specified as indexes or double indexes in the Product Definition using the
subscriptllListLimit and subscript2ListLimit attributes.

Scrittura (4.4.10.5) Page 69 of 430

Administration Guide
Chapter 3: Product Definitions

Indexes can be alphabetical (A, B ... Z) or numeric (1, 2, etc.). Each array index will begin at either
the letter 'A' or the number'0' or '1". It is however recommended to use integer indexes and populate
arrays starting from index 1 rather than 0.

Once a variable is defined as a double array, each value in the array can be referenced in different
ways depending on the language/context.

The following examples define a variable called MultipleExercise.
<VariableDefinition valueType="Boolean" subscriptllistLimit="3">
<internalName>MultipleExercise</internalName>
<visibleName>Multiple Exercise</visibleName>

<documentation>

<text>only for American/Bermuda swaptions</text>
</documentation>

<VariableDefinition>

The subscriptiListLimit value of 3 in this sample indicates that this definition supports values for
an array of MultipleExercise[1], MultipleExercise[2], andMultipleExercise[3].

To specify two-dimensional arrays:

<VariableDefinition valueType="String"
subscriptllListLimit="B" subscript2ListLimit="4">
<internalName>TradeLegHolCal</internalName>
<visibleName>Trade Leg Holiday Calendar</visibleName>
<documentation>

<text>array of city codes to apply to each leg</text>
</documentation>

</VariableDefinition>

This example sets up a two dimensional array of strings. The primary dimension is indexed as [A-B],
the other as [1-4].

This corresponds to eight variables, usable in templates as TradeLegHolCal[A][1],
TradelLegHolCal[A][2],... and so forth.

Specifying No Default Values

Itis recommended that you do not set default values for each variable in an array; extra database
overhead is required to initialize each variable in the array.

In order to do so, set the no-default attribute to true and do not include a defaultvalue tag for this
array variable. The array variable will then not be created upfront upon Product Instance creation.

The same principles apply to non-array variables, if you do not want to define them with a default
value.

Scrittura (4.4.10.5) Page 70 of 430

Administration Guide
Chapter 3: Product Definitions

Referencing Array Variables

This section details how to reference arrays from within the Scrittura application (such as, JSPs,
BeanShells, and so on).

Double-indexed Variables in the JSP Tag library

To use double-indexed variables in the tag library for JSP templates and views:
<scrittura:value name="Varname[IndexVar]" ...>

<scrittura:value name="Varname[IndexVarl][IndexVar2]" ...>
<scrittura:label name="Varname[IndexVar]" ...>

<scrittura:label name="Varname[IndexVarl][IndexVar2]" ...>
<scrittura:edit name="Varname[IndexVar]" ...>

<scrittura:edit name="Varname[IndexVarl][IndexVar2]" ...>

NOTE: The double indirection is not supported. For example, the following will not work:

<scrittura:value name="Varnane[IndexVar[A]]">.

Double-indexed Variables in HTML templates

In HTML-based scripts and templates, the Scrittura generation engine recognizes double-indexed
variables using the following syntax.

Varname[{IndexVarl}][{IndexVar2}]
Double indirection is also supported, such as:
Varname[{IndexVar[{Index2}]}].
Double-indexed Variables in Beanshell
In BSH scripts, array indexing follows the following syntax.
« Integerindexes
Varname[IndexVar]
Varname[IndexVarl][IndexVar2]
« String indexes
Varname[eval(IndexVar)]

Varname[eval(IndexVarl)] [eval(IndexVar2)]

Double indirection is supported: Varname[IndexVar[Index2]].

Set up Categories of Variables with audit-type

In Scrittura, each variable can be categorized by "audit-type" for audit history reporting purposes.

The Scrittura application's History page lets you pick specific categories of variables of interest:

Scrittura (4.4.10.5) Page 71 of 430

Administration Guide
Chapter 3: Product Definitions

Scrittura distinguishes between build-in audit types and custom audit types (defined by customer and
assigned individually to variables in product definitions).

To display audit types in the History page, add them to the scrittura- config.xml file (see attribute
<audit-type> in <audit-types> Node, on page 47).

In the variable definition below, AmortizationAmount[A] and [B] are defined to be an economic
audit-type:

<VariableDefinition valueType="Date"
audit-type="economic" subscriptllListLimit="B">
<internalName>ExerciseDate</internalName>
<visibleName>Exercise Date</visibleName>

</VariableDefinition>

Scrittura (4.4.10.5) Page 72 of 430

Administration Guide
Chapter 4: Workflow Configuration

Chapter 4: Workflow Configuration

The topics in this section describe how to configure and manage Scrittura workflows. They also
describe the Workflow Reporting Module.

This section contains the following topics:
o Workflow Manager, below
« Extended Attributes and Settings, on page 77
« Activities and Transitions, on page 79
« Example Using the Workflow Modeler, on page 85
« Configure a New Workflow in Scrittura, on page 95
« Scrittura Workflow Architecture, on page 98
« Workflow Reporting Module, on page 101
« Condition Parser, on page 109

« BeanShell Scripting Syntax, on page 113

Workflow Manager

The Scrittura Workflow Manager provides a J2EE compliant workflow engine based upon the WFMC
standard, also known as WMFC Interface 1. Refer to http://www.wfmc.org/ for details.

The Scrittura Workflow Manager consists of the following components:
« The Workflow EJB Objects
« The Workflow Engine Process

« The Workflow Modeler, a Microsoft Visio template (XPDL Workflow Model.vst) and stencil (IPI
XPDL.vss) for creating workflow models and their XPDL description files

« The Workflow EJB client and Activity APls

Workflow Manager Terminology

The following terminology is used in Workflow Manager.

« Workflow Package. A collection of workflow processes. A workflow package includes all the
processes to be run by the workflow engine, and must be internally complete. Each application
that includes the Workflow Manager will need to load a workflow package for the engine to run.

« Workflow Process. A formalized view of a business process, represented as a coordinated
(parallel and/or serial) set of process activities that are connected in order to achieve a common
goal. A process can be complete and stand-alone or can be a sub-process that must interact

Scrittura (4.4.10.5) Page 73 of 430

http://www.wfmc.org/

Administration Guide
Chapter 4: Workflow Configuration

with other processes to form a complete workflow definition.

In the Workflow Manager, each process must contain at least one start (work introduction) step
and at least one end (delete) step.

« Work Item (Workitem). The representation of the work to be processed in the system. A work
item includes data, in the form of a remote work item reference and a property bag, but does not
include workflow-process- state information. A work item can be active in more than one activity
(as the result of a split) and in more than one process (as the result of a sub- flow call).

« Work List (Worklist). The set of work items currently in an activity waiting to be processed.
Typically a work list is presented to the user in a manual activity. Automated activities process
items in the order they are received.

« Activity (Step). A description of a piece of work that forms one logical step within a process. An
activity may be a manual activity, which is not automated by the workflow engine, or a workflow
(automated) activity.

An automated activity consists of an activity that is performed by invoking an application as
specified by the workflow designer. In this Workflow Manager, an automated activity can either
be invoked in the workflow engine process (a classtool) or in the process of the owning
application via a callback (an application). An automated activity can also be a predefined
workflow action, such as delete or sleep.

A manual activity is typically a workflow manual queue and served outside of the workflow
engine.

« Transition (State Transition). A point during the execution of a process instance where one
activity completes and the thread of control passes to another, which starts.

A transition may be unconditional, such that completion of one activity always leads to the start
of another, or conditional, where the sequence of operation depends upon one or more
Transition Conditions.

Where multiple transitions exist, a single unconditional transition is considered an "otherwise"
transition. All conditional transitions are evaluated first, and then the otherwise transition is
considered.

For an XOR Split, the conditions can be considered "if ... else if ... else if...else" expressions
where the otherwise condition is the final else.

For an AND Split, the otherwise condition is only considered if none of the conditional
transitions are taken.

Transitions can be cascaded using route activities to provide sophisticated routing logic, such
as nested ifs.

Workflow Transitions Between Activities
A workflow is modeled in a Microsoft Visio diagram, where activities are linked with transitions.
Transitions may be defined to contain conditions. These conditions determine routing directions.

Conditions operate on variables in the Product Instance (Pl) or Message Ticket passing through the
workflow. The Pl is the object that passes through the main workflows and contains links to
documents and variables defined in Product Definitions. The Message Ticket is the object that

Scrittura (4.4.10.5) Page 74 of 430

Administration Guide
Chapter 4: Workflow Configuration

passes through the Message Processing workflow (see Message Processing Workflow, on page 281

).

NOTE: Variables must be specifically defined in Product Definitions to be used in the Scrittura
workflows.

Workflow activities can be defined to run specific applications or classes (such as document
generation or bean shell scripts). You can set parameters for these class activities directly in Visio
through extended attributes.

Workflow Modeler

Activities and transitions are modeled using Microsoft Visio and saved in a Visio VSD file. A macro
included with the Scrittura Visio stencil converts these activities and transitions into an XML file. Each
generated XML file defines a package. The XML package file should be saved in the workflow folder
of your Scrittura application. The generated XML package conforms to the standard DTD set forth by
the Workflow Management Coalition (WfMC).

To use the workflow modeler

1. Access Microsoft Visio and open the XPD Workflow Model template. A new document is
created with the IPI_XPDL stencil loaded.

2. Use the editor to create your workflow.

Make sure that each activity and transition has a unique name and that the custom properties
are configured for each activity and transition.

3. Save your document and use the IPl Workflow menu to generate your XML file.

The XML file is saved in the same folder as your VSD document, with the same file name but
the ".xml" extension.

CAUTION: The transition from Visio VSD to XML file format is not reversible. In other words,
if you configure Scrittura by directly changing the XML file, Scrittura will accept your
changes, but Visio will not read the changed XML file and visually represent your
changes.Therefore, manual editing of the XML package contents is not recommended.

Different pre-defined shapes are available in the workflow stencil. Shapes are included into the
workflow by dragging and dropping them from the stencil to the page body. They will subsequently be
linked together, as per the requirements, using conditional or otherwise transitions.

Properties and extended attributes can be associated with the different workflow shapes in order to
configure the workflow. Those can be accessed using the contextual Visio Shape Data window by
right-clicking the shape and selecting Data > Shape Data.

Workflow Packages

The XML package file must be listed as a package in the workflow.xml file located in the Scrittura
configuration folder. The workflow engine may simultaneously deploy multiple packages. Once a PI
has been created from an incoming message, this Pl enters a specific workflow package declared in
the specific Product Definition.

Scrittura (4.4.10.5) Page 75 of 430

Administration Guide
Chapter 4: Workflow Configuration

The workflow. xml file lists package names and package file names to be loaded into the Workflow
Manager. Each package requires a unique package name in workflow.xml. The name of the XML
package file is derived from the Title of the Visio file as defined in Visio under File > Properties.

Workflow Engine Specifications

The following workflow definition features are either not supported by the Workflow Engine or they
require special handling:

Graph Structure

Workflow Manager uses the "Free Graph Structure", meaning that AND Splits do not have to have an
explicit matching convergence AND Join.

The Workflow Engine does not require the workflow processes to be acyclic. It also does not prohibit
or check for recursion and explicitly supports one level of synchronous recursion back into calling a
synchronous process from a sub- process (A calls B calls A). Additional levels of recursion may
cause a work item to stall, waiting return, and never continue.

Transition Validity Checks

Transition conditions are not checked for syntactical validity until they are evaluated. A workflow
definition is a flexible computer program. You can create a workflow definition that is syntactically
correct and that the workflow engine can load successfully, but that is semantically invalid. Such a
process may never terminate, may have conditions that never evaluate, or may enter infinite wait
states.

Loop Activities

Loop activities are not implemented in the Engine. They can be implemented using an XOR Split and
XOR Merge.

Inline block
The initial XPDL draft specification supports an item called an inline block.

These activities are not enforced by the Engine or supported by the Visio tool; such blocks may be
modeled as sub-processes.

Workflow Process

Each page in the Visio diagram corresponds to a Workflow Process. A sub-flow may be used both as
its own Workflow Process and as a sub-flow in another process.

Each Workflow Process must include a start (work introduction) step and at least one end (delete)
step. These rules are required semantically in order for your workflow process to work, but are not
detected or enforced by the Engine itself.

The default behavior for any activity with multiple inbound or outbound transitions is XOR behavior
for all transitions.

With the Visio template, you do not need to use the XOR Split and Join graphical widgets unless you
want to add clarity. AND Joins and AND Splits are supported on any activity in the engine but require
the use of an AND Join or AND Split step in the Visio tool.

BeanShell

Transition conditions are evaluated using BeanShell (which is similar to Java).

Scrittura (4.4.10.5) Page 76 of 430

Administration Guide
Chapter 4: Workflow Configuration

Variables are evaluated in the following order:
1. Internal BeanShell variables.
2. Variables that are part of the workflow system (arrivalTime and arrivalTransition).
3. Variables placed in the Workitem property bag.
4. Variables retrieved though callbacks to the RemoteWorkItem.
5

Primitive types and their classes are automatically converted into BeanShell primitives, so you
should not need to call intvalue() for an integer, and so on.

6. Modeling objects in the XPDL itself, such as Applications, DataFields, Participants, and
FormalParameters, are ignored. They are parsed, but never used. Package and workflow
headers are not used.

For details on the XPDL grammar, refer to the XPDL documentation and DTD available on the
WFMC website.

Extended Attributes and Settings

General workflow settings, as well as extended attributes for each workflow activity, are required for
the Workflow Engine to interpret the workflow. Both are set as "Custom Properties” in the Visio tool.

Process Settings

For each Scrittura workflow general settings must be specified. This is achieved using the Workflow
Modeler within Microsoft Visio.

Open the workflow VSD file, which can be copied from the template provided with the distribution for
new workflows. Make sure the stencil is loaded as well in order to access the pre-defined workflow
shapes.

First set the name of the workflow by typing the process name in the Visio tab.

Other properties are set using the “Process Setting” shape available in the stencil: drag and drop it
from the stencil to the page body and open up the associated Shape Data window. The following
illustration is an example of “Process Setting” shape:

Scrittura (4.4.10.5) Page 77 of 430

Administration Guide
Chapter 4: Workflow Configuration

[} £

Process: standardOutbound

Optimistic Locking
o Idle Timeout: 5(s)
Lock Expiration: 300(s)
Audit Class: com.ipicorp.scrittura.util. ScritturaWorkflowAudit
Clueue Array: 3,29

Shape Data - Process Settings b
Type Page Properties

Optimistic Locking True

Lock Expiration Seconds | 300

Idle Timeout 5

Audit Class com.ipicorp.scrittura,util ScritturaWorkflowAudit

report-variables

Queue Array 3,29

The following attributes are available as extended attribute and to be set using the Shape Data
window.

Attribute Description
Type This has a fixed value of Page Properties.

Optimistic The Scrittura workflow engine and application support both "optimistic" (with a value
Locking of true) and "pessimistic" locking (with a value of false).

Optimistic locking allows simultaneous access to a single work item, while
pessimistic locking forbids simultaneous access.

Should the workflow engine use optimistic locking, the application code must be
designed to handle concurrent access and possible thrown exceptions.

In the case of optimistic locking in the Scrittura application, a user is notified when a
workitem is already opened by another user. The second user is still allowed
access. The original user of the workitem is subject to having his or her work
disregarded on save.

In the case of pessimistic locking, the Scrittura application forbids a second user to
open a given workitem unless the original lock has expired (as set using the lock-
expiration-seconds attribute).

Lock If optimistic locking is disabled, this configures the length of time in seconds a lock is
Expiration held for. After the configured number of seconds elapses, the item is free to be
Seconds locked by any other user.

Idle Time, in seconds, that an activity thread should sleep before checking for waiting
Timeout items. The lower this number, the more system resources the workflow engine will

Scrittura (4.4.10.5) Page 78 of 430

Administration Guide
Chapter 4: Workflow Configuration

use. This number can be set low (5) for testing and set higher (15) in production
when a slight delay between activities is acceptable.

Audit Class The full name of a class that implements the WorkflowAuditor interface and should
receive state change notifications from the workflow engine. Each process can have
its own auditor class.

Report- Coma-separated list of variable whose values will be logged in the tables WF_RAW_
variables STATISTICS for reporting purposes, provided that the custom property
reportEnabled is defined and set to true in custom. properties.

Queue This field is automatically populated after setting up the workflow and cannot be
Array manually changed.

Common Activity Settings

Most activities that can be inserted in the workflow accept the following properties.

Property Description

Type This property holds the type of the activity and cannot be changed.

Queue or "Priority" is a slight misnomer in that the Scrittura workflow engine does not treat
Priority workitems with a 1 priority as 'more important' than workitems with a 15 priority.

Rather, the purpose of setting a priority for each activity is to pick a specific thread
for the workflow engine to use when processing the activity.

As a multi-threaded application, the workflow engine can perform many tasks at
once. Itis recommended that automatic activities that are less time-critical but
more time consuming (such as document generation or Product Instance
initialization) be segregated to their own thread. By separating these activities from
manual activities where users expect fast GUIl response (such as forwarding a
document out of a manual queue), costly activities can be performed without
impact on end-user perceived performance.

Report Boolean attribute in order to include monitoring of this activity into workflow

Enabled reporting.

Extra Report Coma-separated list of additional reporting variables for the activity that will be

Variables treated similarly to the list defined by the report-variables attribute in the Process
Settings.

Description An optional description of the activity.

Activities and Transitions

This section describes the different types of workflow activities available in the Scrittura workflow,
how to configure them, and how to link them together.

Shapes are dragged and dropped from the stencil to the page body and their configuration is done
using the Shape Data window.

Scrittura (4.4.10.5) Page 79 of 430

Administration Guide
Chapter 4: Workflow Configuration

NOTE: In most cases, the properties detailed inCommon Activity Settings, on the previous page
can also be defined but will not be repeated in the next section.

Start Activity

The Start activity is the explicit “Work Introduction” at the beginning of a workflow. This is the activity
where new new work items created by an external client action are placed for workflow processing.

In the Workflow Manager, any activity that has no inbound transitions is considered a "Start" activity;
therefore its use is optional, although recommended.

End Activity

The End activity is the “Delete” activity at the end of the workflow. All workflow process should
contain a Start and an End activity. End is where the arriving instance of the work item is removed
from workflow processing.

If this is the last instance of an item in the process, the process is considered complete and any
processes waiting with the process are released. If this is the last instance of the item in the workflow
package, the work item is removed from the workflow system.

Classtool Activity

A classtool activity allows the implementation of specific automated logic within the workflow. A
classtool is based on Java class, either added to the implementation during the construction phase or
already available as part of the core platform.

Since it is based on Java code, any change to the classtool logic would require rebuilding and
redeploying the application.

The following properties can be configured using the Workflow Modeler.
Property Description

Class Full name of the Java class run by this activity.

Extended Semi-colon delimited list of additional attributes that the classtool may require. This
Attributes listis dependent on the Java class being used and is handled programmatically by
that class. Extended attribute follows the sytax

{property}={value}, such as title=Confirmation.

BeanShell Activity

A BeanShell activity similar to a classtool allows the implementation of specific automated logic. It is
however not based on a Java class but on a BeanShell script (BSH).

Unlike Java classtools, BeanShell scripts can be amended on-the-fly without restarting the
application for the change to take effect.

Scrittura (4.4.10.5) Page 80 of 430

Administration Guide
Chapter 4: Workflow Configuration

From a performance perspective, Java classtools are far more superior than BeanShells. Therefore,
Java classtools should be preferred to implement automated processing and can be used in
conjunction with the BLogic Rule Engine to offer a high level of flexibility and configurability.

The following property can be configured using the Workflow Modeler.

Property Description
Script Name of the BeanShell script run by this activity
Subworkflow Activity

The subworkflow activity is used to call a sub-flow process within the Scrittura workflow.

A sub-flow process (or subworkflow) is a workflow process that is enacted or called from another
(initiating) process (or sub process), and which forms part of the overall (initiating) process. Multiple
levels of sub processes are supported.

A sub-flow process is useful for defining reusable components within other processes.

A sub-flow call may be either synchronous or asynchronous. When a synchronous sub-flow is called,
the calling process waits for the sub-flow to complete before continuing. When an asynchronous sub-
flow is called, the calling process continues immediately. Because the synchronization is a condition
of the call, a sub-flow can be used both synchronously and asynchronously.

The following properties can be configured using the Workflow Modeler.

Property Description
Process ID Name of the sub-flow process to be called.
Activity ID Activity to use as a Start activity in that sub-flow. It would generally be “Start”.

Synchronous Select “SYNC” for synchronous sub-flows and “ASYNC” for asynchronous sub-
flows.

A subflow can be defined in a separate Visio file or in the same Visio file as the main process. To
define the subflow in the same file as the main process, you must create a new page/tab with the
name of the subflow. In either case, ensure that the subflow process name matches the process
name defined in.

There are several possible reasons to define a subworkflow (or subprocess):
« Complex workflows with many activities/transitions

« Inter-department workflows (with each department responsible for maintaining its own
workflow)

« Segregation for a clearer overview and easier maintenance

« Fewer dependencies when changes are required in the future

Scrittura (4.4.10.5) Page 81 0f 430

Administration Guide
Chapter 4: Workflow Configuration

Route Activity

The route activity does not perform any processing and should be used when the next destination
activity of an item is the same as the one it just left. The workflow engine does not indeed directly
support looping back into the same activity and the route activity must be used for that purpose, as
shown by the following illustration.

&

ot dune—»[/ Route
TS /
4>[First Review }q—back to F{|=_=-~riv.=mrJ

i A

finished

¥]

‘ Second Review l
L. .

Sleep activity

The Sleep activity does not perform any processing, but holds the item for the number of seconds
specified.

The following property can be configured using the Workflow Modeler.

Property Description

Seconds Time, in seconds, for the item to sleep

XOR Split and Join

The two XOR activities (Split and Join) are used to route trades within the workflow, based on
exclusive outbound transitions. In the Workflow Manager, all activities except AND activities are
implicitly treated as an XOR Split for outbound items or as an XOR Join for inbound items. Although
recommended for workflow clarity, those activities are optional.

The XOR Split activity is a point within the workflow where a single thread of control makes a decision
upon which branch to take when encountering multiple alternative workflow branches.

An XOR Splitis conditional, and one (single) specific transition to the next activity is selected
according to the outcome of the Transition Conditions.

The XOR Join activity is a point within the workflow where two or more alternative activities' workflow
branches converge to a single common activity as the next step within the workflow. As no parallel
activity execution has occurred at the join point, no synchronization is required.

Scrittura (4.4.10.5) Page 82 of 430

Administration Guide
Chapter 4: Workflow Configuration

AND Split and Join

The two AND activities (Split and Join) are used to perform parallel processing within the workflow.
Any AND Spilit step should generally be followed later on by an AND Join step.

The AND Split activity is a point within the workflow where a single thread of control splits into two or
more threads which are executed in parallel within the workflow, allowing multiple activities to be
executed simultaneously. An AND Split can create additional threads of processing within the

process.

An AND Split with mutually exclusive conditions cannot be logically differentiated from an XOR Split

The AND Join activity is a point within the workflow where two or more parallel executing activities

converge into a single common thread of control. In the workflow engine, synchronization of an AND
Join requires all threads within a process to converge before processing continues. If it is necessary
to join some, but not all threads, a sub-flow must be used.

Application Activities

Applications are built-in Scrittura functions provided with the core distribution. Similar to classtools,
applications are based on internal Java logic.

Applications have very specific scopes that apply to different objects (Message Ticket or Product
Instance) or to parts of the workflow (Message Processing, Outbound, or Inbound workflows).

The following applications apply to Scrittura Message Tickets.

Application

RunLogic

ParseMessage

CreateProduct

CreateNewProductVersion

DeleteMessage

Description

Runs a Bean Shell logic script file=script file

Parses a Raw text/ XML message to its HashMap
representation none

Creates a new Product Instance from the
message

Creates a new Product Instance version from the
message none

Deletes the message ticket. The message is
detached from the workflow workitem and
removed. none

The following applications apply to Scrittura Product Instance (PI).

Application Description Parameters

GenerateDoc Invokes the ADG module for HTML
template based document generation.

Scrittura (4.4.10.5)

Parameters

file=script

file

none

none

none

none

type=document type
setMaster=true/false

Page 83 0f 430

Administration Guide
Chapter 4: Workflow Configuration

NewVersion Creates a new version of the PI. none

Remove Removes the Pl and workflow item, but none
not DocManager files/folders.

RemoveWithDocs Removes the PI, workflow item, and none
DocManager files/folders.

RunBSHLogic Runs a Bean Shell logic script. template=template file

NOTE: Most Scrittura modules offer workflow integration directly through classtools rather than
pre-wired applications. Refer to the specific modules for full details.

For inbound image processing, Scrittura offers a package of classes targeting the identification and
indexing of inbound TIFF images. These images may or may not include encrypted barcode values.

The workflow around such processing is designed such that an external process recognizes an
eligible TIFF image and constructs a Pl message to hand off to the Workflow Engine.

The following applications then act on that Product Instance and are targeted to inbound workflows:
e InboundSetDocmgrbDoc
e BarcodeMapping, BarcodeMapping2
e Matching, Matching2
e PublishStub
e PublishConfirm2

e SetPropBag

Workflow Transitions

Workflow transitions allow items to move from one activity or another. Two similar objects are
available in the stencil, "Conditional Transition" and "Otherwise Transition", which are specialized
cases of workflow transitions.

A Transition, as represented in the stencil by a thin arrow, can apply a logical condition which is
evaluated when the workflow engine decides where to send the workflow item next. The following
property can be configured using the Workflow Modeler.

Property Description

Condition Condition associated to the transition, following the BeanShell syntax. Pl or
Message Ticket variables can be used by simply quoting their name in the condition.

For example, the condition nextDest="docgen’ will be evaluated to true if the
variable nextDest is equal to the string docgen.

Variables used by workflow transitions must be defined in the trade Product
Definition XML file. If this part of the workflow (hence the transition) is used by all
product types, it is recommended to add it to a sub-Product Definition included into
the Product Definitions of all products.

Scrittura (4.4.10.5) Page 84 of 430

Administration Guide
Chapter 4: Workflow Configuration

The Otherwise transition (a thicker arrow) is used to indicate that a workflow item will move from one
activity to another unless another transition logic is first found to be true. Otherwise transitions take
no attributes.

Example Using the Workflow Modeler

This section describes the use of Visio to define a simple Scrittura workflow.

This simple workflow consists of the following main activities and the transitions between each.

Generate Document
Review
Data Enhancement (if the user chooses to edit document variables)

Dispatch (Fax) if a logical condition is met (for example, if DispatchMethod = "Fax" and
CounterpartyFaxNum is set)

Get Started with a Visio Workflow Definition

You can build a workflow definition from scratch or from an existing workflow definition template.

To create a new workflow from a template, open the XPDL Workflow Model .vst template that
already includes the Scrittura workflow stencil and some basic workflow elements.

To build a workflow from scratch

1.
2.

Open Visio and create a new drawing based on a blank drawing.
In the Shapes pane, select More Shapes > Open Stencil.

Navigate to and open the Visio stencil IPI XPDL.vss. This file is typically located in the
/workflow directory under the Scrittura live folder.

A blank document opens with a variety of workflow elements in the left panel.

NOTE: If you are creating a workflow from the defined template, a Start, End, and Process
Settings element are already included in your workspace. If creating a workflow from a new
file, these initial elements are not automatically included and must be created.

Create a Start Point and End Point

Every workflow must have a start point and an end point. If you are not using a template, these
points need to be created.

Add Activities

In this example, Scrittura executes the HTML-based Document Generation. Thisis a
specialized class and the Visio stencil includes a widget specifically configured for this function.

In this procedure, you will add the following activities to the workflow.

Scrittura (4.4.10.5) Page 85 0f 430

Administration Guide
Chapter 4: Workflow Configuration

« GenDoc
« Review, defined as a Manual shape
. Data Enhancement, defined as a Manual shape

« Fax Dispatch, defined as a Class shape and copies the generated document into a
spooling directory for the fax server

Activities and transitions are created in the workflow simply by dragging and dropping them
from the stencil to the document.

To add these activities to your workflow
a. Dragthe GenDoc shape from the stencil and drop it onto the drawing page.
b. Drag the Manual shape and drop it onto the drawing page.
Rename the shape to Review by double-clicking the shape and typing in the new name.
c. Drag the Manual shape and drop it onto the drawing page.

Rename the shape to Data Enhancement by double-clicking the shape and typing in the
new name.

d. Drag the Class shape and drop it onto the drawing page.

Rename the shape to Fax Dispatch by double-clicking the shape and typing in the new
name.

e. Move the shapes on your drawing page as desired, leaving room to add transitions. The
relative positions of objects (activities, transitions, splits, joins, etc.) are ignored in
generation of the Workflow XML, so you can position objects as convenient for you.

Start

i

Gen Doc

Data Enhancement Fax Dispatcl E=

®

End

Add and Identify Transitions

You must add transitions between each of these workflow activities and indicate the direction of the
workflow transition.

Scrittura (4.4.10.5) Page 86 of 430

Administration Guide
Chapter 4: Workflow Configuration

To add and identify transitions

1. Drag the Transition connector shape from the stencil and drop it onto the drawing page.

Start

Gen Doc l%}\\\%\‘

2. Drag the Transition connector so that the 'tail' is over the Start shape until the Start shape
displays a red box, indicating that the connector is glued to the shape.

—

Gen Doc

o N S S ol .

at
5

3. Drag the "head" of the transition arrow over the GenDoc shape until the GenDoc shape displays
a red box, indicating that the connector is glued to the shape.

4. Create similar Transition connectors between the following:
« GenDoc and Review
« Review and Data Enhancement
« Data Enhancement and GenDoc
« Review and Fax Dispatch
« Fax Dispatch and End

The direction the arrow indicates the direction of the workflow transition.

Scrittura (4.4.10.5) Page 87 of 430

Administration Guide
Chapter 4: Workflow Configuration

Stxrt
£ Gen Doc %‘\Q\\%\
4

AT

Drata Enhancement Fax Dispatc E=

End

5. Identify each Transition connector by double-clicking it and typing a name. The only
requirement for these Transition names is that each be unique.

Intyand| ,—.,

B
Ll

Define Conditions

You must add the logic that determines the cases where workflow items will go from Review to Data
Enhancement through the Edit Vars transition.

Scrittura (4.4.10.5) Page 88 of 430

Administration Guide
Chapter 4: Workflow Configuration

To add the logic

1. Right-click on the Edit Vars transition and select View: Custom Properties:

| v
[[Data Enhancement }—Er&it f Fransicnn SRR e
& Cut ¥
Copy o
E Paste Fax Disps
Duplicate
Last Zoorm el
Format 4 Whole Page
Shape k 400% \.
200% }
_lj‘ Reroute iConneckor |T i /l

S0
! Reroute as Needed i 2

;;Dﬂ Reroute on Crossover
rﬂi-' Newver Reroute

&2 Help

ﬁ Laver Properties. ..

The Custom Properties window displays with the option to set a Condition.

L

¥
Editésars —(Review 77

=|[® Custom Propetties - Transition, 26

Condition | true

Replace the "true" condition with logic appropriate for the workflow. In the following illustration,

the workflow will send documents to Data Enhancement where "Need Edits" is "true".

"Need Edits" is a variable which would be included in a Product Definition (likely in the set of
"CommonVars") and set to True or False when users review the trade. An assumption in the
rule below is that "NeedEdits" is defined as a Boolean (true/false) variable.

Scrittura (4.4.10.5)

Page 89 of 430

Administration Guide
Chapter 4: Workflow Configuration

¥

Editars

FEwie

x|F Custom Properties - Transition. 26

WeedEdits J.

The syntax of the Conditions is flexible; other AND and OR examples are included in this

document.

Define Classes and Extended Attributes

The GenDoc and Fax Dispatch workflow activities are defined by classes. The GenDoc class is built

into the Visio Stencil.

1. From the Custom Properties window, click the GenDoc activity. The Custom Properties window

changes to show you the class to be executed by the activity

GenDoc

FALSE

HTML

TRLE

Corfirmation

3

Type
Redline
L togl 1 ¢ Format
i'/— H Set Default
j GenDag Template
El?x' i 'T'ﬂ"" ") Priority
To Review

The Fax Dispatch activity requires a measure of customization.

2. View its custom properties and specify the class com.ipicorp.scrittura.test.CopyDoc (which

sends a copy of the generated document to a specified location).

3. Set Extended Attributes for this class: title=Confirmation;dest=/faxout. In this case, the
CopyDoc class uses the Title to choose the document to copy and test for the copy.

Scrittura (4.4.10.5)

Page 90 of 430

Administration Guide
Chapter 4: Workflow Configuration

Custom Properties - Class.17 : #
Type Class
Class cam.ipicorp. scritbura.kest, CopyDoc

Extended Attributes | tite=Confirmation;dest=/f axout

Priority 3

| FaxDispatch
E};___.____.__q,____. T
Other classes require other specific Extended Attributes; these requirements are documented
elsewhere.
Define an XOR Split

You must add logic only to send the fax if a fax number is set and if the DispatchMethod variable is
set to fax. You must (again) replace the "Send Out" transition, this time by adding an "XOR Split".

1. Delete (again) the "Send Out" Otherwise Transition and drag in an "XOR Split" from the stencil.
Give it the identifier "Fax It."

v

113
REvieany
Fax Dizpatch =

Finizhed

End

NOTE: XOR Split and XOR Merge functions may be synthesized without explicitly using the
'decision box' workflow elements as supplied in the stencil. By directly linking workflow

steps, designers implicitly create these 'decision box' workflow features. These workflow
elements are supplied for design convenience.

Scrittura (4.4.10.5) Page 91 of 430

Administration Guide
Chapter 4: Workflow Configuration

2. Create an Otherwise Transition from Review to the Fax It split to indicate that all workflow items
go from Review to Fax It (unless NeedEdit was set to True).

3. Create aregular Transition from the Fax It split to the Fax Dispatch class. You will attach logic to
this transition in another step.

4. Create an Otherwise Transition from the Fax It split to the End. This indicates the documents
which are finished but not to be faxed are done in this workflow (but potentially still available in
the Document Manager archive, depending on further configuration).

5. Give identifiers to each of these Transitions:

!

Reviewn Diogie Review

g

Send Copy

Mo Fax Fax Dizpatch

Fimizhed

End

6. Add the condition to the Transition from Fax It to Fax Dispatch. Use double-ampersands to
indicate "AND" (or double vertical lines "||" to indicate "OR").

L T — | e
Custom Properties - Transition.33 #

Condition | CounterpartyFaxtum & DispatchMethod. equals("Fa:

Send=Copy

Mo ||:a>< Fax Dispatc

Scrittura (4.4.10.5) Page 92 of 430

Administration Guide
Chapter 4: Workflow Configuration

Link to a Sub-Workflow

To link a subprocess, make sure that the two processes are connected using the Visio workflow
modeler.

To link to a subprocess

1. Drag and Drop the 'Sub Workflow' Activity from the stencil and place it where the subflow
should connect to the main workflow.

2. Assign a label name (for example, SubWorkflow).

3. Connect the inbound transition (that is, the transition from the last activity before jumping to the
subflow) to the subflow.

To Exit2

Subvorkflose

End

4. Connect a transition out of the subflow to another activity or 'end' step.
5. Set properties for the subflow. Complete the following property fields:
« Process ID. Define the name of subflow process (the label on the Visio page) .

« Activity ID. Define the name of the target activity in the subflow (label of "Start" activity in
subflow).

Scrittura (4.4.10.5) Page 93 of 430

Administration Guide
Chapter 4: Workflow Configuration

« Subflow Type. Asynchronous (ASYNC) or Synchronous (SYNC)

| ¥ ¥
E Custom Properties - SubFlow i #
Type SubFlow
Tc
S hdex Process Id SubWE
Activity Id Skart
Synchronous | 8SYHC
t
Checl

|
@ Sukiarkflow p—To Exit2

é\-“- N __,_/é End

Define Process Settings

The final element to add to this simple workflow is the "Process Settings" element.

To add a Process Settings element

1.

If this element was not already present in your template, drag this from the bottom of the stencil
into your workflow area. This element sets the Extended Attributes noted in 0.

Select the large Settings area and View the Custom Properties.

InBbound [;F T
|
Custom Properties - Process Sel ?‘-Wf"___ x|
Type Pags Properties
DOptimistic Locking False Process Seﬂings
Lock Expiration Seconds | 300
Idle Timeout 5
_ | Audit Class com.ipicorp. scritbura, util. Scrittueraio
R i P
I

To Review

Set the Audit Class to com.ipicorp.scrittura.util.ScritturaWorkflowAudit; thisis
standard code provided by Scrittura to create audit trails for all workflow activity. This selection
could be altered or left null for different workflow processes if less auditing is required for the
process.

The Process Settings box may be resized and repositioned. After saving the Visio file, the box
label changes to show the Custom Property settings.

Scrittura (4.4.10.5) Page 94 of 430

Administration Guide
Chapter 4: Workflow Configuration

Generate the XML

Itis necessary to transform the Visio workflow into the XML format. The name of the output XML file
is defined by the Title in the File properties of Visio.

To generate the XML
1. Open File > Properties, click the Summary tab, and define a title.

Scrittura recommends that you map the xml file name to the name of the workflow process (tab
on bottom left of page).

2. Generate the XML file (IPIWorkflow > Generate XPDL), which defines the workflow. If you
defined your workflow by first opening a template or an existing definition file, you should
already have an IP| Workflow menu available to generate the XPDL (eXtended Process
Definition Language).

If this menu item is not available, go to Tools > Macros > IPI XPDL > XPDL Generator and
select ExportXPDLFile. This macro is loaded along with your original stencil.

The generated XML file will be saved alongside your VSD file, with the same base name. It should
then be moved into your Scrittura environment and reloaded.

Itis possible to add new transitions and activities to an existing workflow without disturbing existing
documents and workflow items, but if activities are removed from a workflow definition, you risk
orphaning existing workflow items.

Configure a New Workflow in Scrittura

Itis possible to add new transitions and activities to an existing workflow without disturbing existing
documents and workflow items, but if activities are removed from a workflow definition, you risk
orphaning existing workflow items.

e workflow.xml
e scrittura-config.xml

NOTE: You must also review all variables involved in the workflow to make sure they are declared
in the corresponding Product Definition.

Once those changes are complete, reload the Scrittura configuration in the live system using the
administration pages.

Amend workflow.xml for the New Workflow

Each workflow in a Scrittura configuration must be defined as a <package> in the workflow. xml file.
This file lists the packages available; each incoming message can use a different workflow package
based on its Product Definition.

The following XML extract is an example of workflow xmil:

<workflow-packages

Scrittura (4.4.10.5) Page 95 0of 430

Administration Guide
Chapter 4: Workflow Configuration

stop-on-error="false" items-per-pass="5" requeue-specs="120"
remote-factory="com.ipicorp.scrittura.util
.ScritturaRemoteWorkitemFactory">

<package name="Inbound.xml"/>

<package name="scr_test_msg.xml"/>

<package name="SubWF.xml"/>

<package name="swift.xml"/>

</workflow-packages>

The attribute requeue-secs sets the amount of time an item must be stalled before being requeued
by the workflow engine. The default value for this attribute is 5 minutes (300 seconds). This
parameter is optional.

You can configure requeue-secs to allow class tools to run for a long time (> 5 minutes) without
having the items requeued by the workflow engine.

NOTE: You must also configure the server JTA timeout (configured directly on the J2EE
container) to permit this period of execution time before timeout.

Control Audit Behavior

By default, all audit types are audited unless otherwise specified in workflow.xml. Some types can
be disabled by configuring the <audit- config> node of workflow.xml.

The following is an excerpt from a sample workflow.xml showing the workflow audit configuration.

<workflow-packages ...>

<audit-config>

<audit-type enable="false">workflow</audit-type>
<audit-type enable="true">economic</audit-type>
<audit-type enable="false">auto</audit-type>
<audit-type enable="false">edit</audit-type>
<audit-type enable="false">edit-detail</audit-type>
<audit-type enable="true">auto</audit-type>
<ref-type enable="true">RESID</ref-type>
<ref-type enable="false">CRID</ref-type>
</audit-config>

</workflow-packages>

The built-in audit types include the following:

Scrittura (4.4.10.5) Page 96 of 430

Administration Guide
Chapter 4: Workflow Configuration

« annotation

« auto

« data-init (linked to the checkbox "Show Initializations" on right side of the history screen)
o edit

« edit-detail

o user

« workflow

Other audit types may be specified in various product definitions. The built-in ref-types include the
following:

« CRID: Product Instance audit messages

o MSGTKT: Message Ticket audit messages

« RESID: DocManager audit messages
Use the following to turn off all DocManager auditing:
<ref-type enable="false">RESID</ref-type>
Use the following to turn off all workflow auditing:
<audit-type enable="false">workflow</audit-type>
Use the following to disable all built-in auditing:
<ref-type enable="false">RESID</ref-type>
<ref-type enable="false">CRID</ref-type>

<ref-type enable="false">MSGTKT</ref-type>

Amend scrittura-config.xml for the New Workflow

Manual activities do not automatically appear as queues in the user interface where documents wait
for end users. These queues (such as "Review") require additional configuration in the scrittura-
config.xml file so that they will appear in the application itself. Make sure the manual activities are
configured in this file.

The following XML extract is an example of manual queue definition.

<queue name="Review" activity="Outbound.Review">

<column display="Trade Type" variable="ProductDefID"/>

<column display="Trade Date" variable="TradeDate"/>

<column display="Counterparty" variable="Party[B]"/>

<column display="Amended" variable="TradeAmended"/>

<view name="Review"

type="custom" view="/jps/review.jsp" frameset="/jsp/viewframe.jsp"/>

<role name=""/>

Scrittura (4.4.10.5) Page 97 of 430

Administration Guide
Chapter 4: Workflow Configuration

</queue>

For details about how to configure queues in the application, see Configure Application Appearance,
on page 159.

Workflow User Interface

Scrittura supports additional criteria to narrow the worklist displayed when opening an activity list,
specified as part of the URL.

For example, a normal review activity hyperlink might appear as:
http://localhost:8001/scrittura/controller?e=queue&q=Scrittura. Data%2@Enhancement
The following link adds the condition 'Party[B] LIKE 'B%".

http://localhost:8001/scrittura/controller?e=queue&q=Scrittura.
Data%20Enhancement&sql=Party[B]%20LIKE%20'B%"

The syntax of the conditions is straightforward and Transact-SQL-like. Supported operators include
the following:

« LIKE
« AND/OR (with support for parentheses)

This functionality can be leveraged in custom JSP pages that generate their own hyperlinks, setting
the SQL element as needed.

Scrittura Workflow Architecture

This section summarizes how the different workflows are organized in Scrittura and provides details
on the internal processing performed by the platform.

Workflow Organization in Scrittura

The global processing of a trade uses the following types of workflow:
« Message Processing workflow

« Main workflow

This section details the specifics of those different types of workflow.

Scrittura (4.4.10.5) Page 98 of 430

Administration Guide
Chapter 4: Workflow Configuration

Message Processing Workflow

The Message Processing workflow (available in the MessageProcessing.vsd workflow file) is a
mandatory workflow used for trade preprocessing when a trade reaches Scrittura, such as an XML
message.

Message Processing involves multiple steps, most commons ones being:
« Message parsing
» Data derivation
« Product or new version creation

« Message Ticket suppression

The purpose of this workflow is to capture the details of the incoming trade, perform some data
derivation, and other steps in order to fully qualify the incoming trade. The actual trade, or a new
version of it if the latter already exists in the system, is then created in the system.

When the trade message reaches Scrittura, a Message Ticket is created to handle the trade
processing in the Message Processing workflow. Technically, a Message Ticket is a MessageTicket
EJB that holds the raw data of the incoming message in a HashMap. Keys and values of the
HashMap are of type string and extracted from the incoming message. The naming of the keys is free
and does not have to follow the naming of the incoming message. Also, data being captured from the
message is fully configurable and should follow the implementation needs and requirements.

Example

If the counterparty information is stored in the following part of the incoming XML message and the
counterparty short code and long name must be captured:

<message>

<counterparty>
<shortCode>UNPTR</shortCode>
<longName>United Petroleum</longName>

<country>UK</country>

</counterparty>

<message>

The parser can be configured to capture that information, resulting of the following data stored in the
Message Ticket HashMap:

Key Value
cptyShortCode UNPTR
cptyLongName United Petroleum

Scrittura (4.4.10.5) Page 99 of 430

Administration Guide
Chapter 4: Workflow Configuration

When all the preprocessing of the Message Ticket data is complete, the actual trade (or a new
version for existing trades) is created. This is achieved from within the Message Processing workflow
by calling either the application CreateProduct (to create a new trade) or CreateNewProductVersion
(to create a new version of the trade). During this step, the Product Instance (P1) is created (or
amended), its repository is created, and the Pl is injected into the workflow. That Product Instance
will represent the trade in the main Scrittura workflows. For details on Product Instances and main
workflow, see theMain Workflow, below.

Finally, the Message Ticket must be removed, which is achieved by calling the DeleteMessage
application.

For more details on the steps involved in the Message Processing workflow as well as additional
tools that can be used, see Message Processing Workflow, on page 281.

Main Workflow

A main workflow encompasses all workflows other than the Message Processing workflow, such as
an outbound workflow, or inbound workflow.

In a main workflow, the trade is represented as a Product Instance (PI). Product Instance data is held
in a HashMap, created from the original Message Ticket HashMap. Keys between the Message
Ticket and the Product Instance are identical, the major difference being that values held in the
Product Instance HashMap are converted into the type specified in the corresponding Product
Definition.

NOTE: Itis recommended to declare all variables used by a Pl in a Product Definition. Any
variable not declared in a Product Definition will still be shipped in the PI but will have its type
defaulted to string and will not be auditable.

Main workflows contain all the logic and queues necessary for trade processing. For more
information about outbound and inbound workflows, see Outbound Workflows, on page 296 and
Inbound Workflow, on page 309.

Any number of workflows can be created. Technical workflows can also be created, such as to
process static data updates in an automated manner.

Workflow Engine Processing

This section summarizes the processing that takes place in the Workflow Engine and how it can
interact with other Scrittura components.

« A JMS Message is posted to the scrittura_tickets JMS queue as a TAG file or XML file. This
can be accomplished by dropping a file in the configured monitor folder. The trade drop monitor
reads these files and posts them.

« A Message-Driven Bean (MDB) in Scrittura takes the message and creates a MessageTicket
EJB (with the content of the message stored as a BLOB). This EJB is attached as a
RemoteWorkitem to a new Workitem inserted into (by default) the "MessageProcessing"
workflow at the "Start" activity. This specific activity and process can be overridden in the
scrittura- config.xml file. Creating the new workitem posts a JMS message and triggers the
workflow engine processing.

Scrittura (4.4.10.5) Page 100 of 430

Administration Guide
Chapter 4: Workflow Configuration

The message processing workflow runs (MDB). Either some external action is performed (such
as handling a fax response) and the MessageTicket is deleted, or a new Product Instance (PI)
or new Pl version is created.

The workitem "moves" through the workflow by interpreting the logic defined in the XPDL files.
Transitions between queues post new JMS messages, which are handled in turn by the MDBs.
The Workflow property bag and/or the RemoteWorkitem handles requests for "Variables" by the
workflow conditions. The remote workitems are "instantiated" by the RemoteWorkitemFactory
class, specified in the workflow.xml file. Each "copy" of the workitem is an "Activityltem" bean.
This represents the state of the Workitem in a particular activity.

When a version of a Pl is created, Scrittura uses the WokflowltemID variable and finds all
copies of the item in workflow currently. These are removed from the workflow. Then a new
Workitem is created with the Pl as the RemoteWorkitem for a new Workitem. This Workitem is
put in the workflow at the activity and process defined in the Product Definition for the specific
product type. A DocManager folder may also be created using parameters specified in the
scrittura-config.xml file orin the specific Product Definition.

Workflow activities can specify classes or applications to automatically run on the PI. State
changes on completion cause JMS messages to be posted as new Activityltems are created
and old ones are removed.

Manual processing takes place in queues attached to workflow activities. When a user opens
an item, the WorkflowClient.initiateProcessing() method is called to "lock" the item. A
Scrittura Pl also has its own internal locking. When the user selects "Save & Forward," the
workflow client API uses the WorkflowClient.completeProcessing() method, which
changes the Activityltem state and causes a new JMS message to be posted, waking up the
workflow engine. Selecting "Close" runs WorkflowClient.cancelProcessing().

At some point, the workflow ends. Either the Pl is explicitly deleted (optionally cleaning up
DocManager) or the workitems just "drop out," leaving the Pl around. In the latter case, the Pls
are still available for search within Scrittura; in the former, they are not.

Workflow Reporting Module

The Workflow Reporting module is included in the standard distribution. A cronjob is available to run
the report update on a daily basis.

Module Distribution Contents

The following table displays the contents of the workfow reporting distribution.

Folder or File Description
config Configuration files
lib modules Libraries
logs scritturaReporting.loglog file
Scrittura (4.4.10.5) Page 101 of 430

Administration Guide
Chapter 4: Workflow Configuration

sql sql scripts

templates Reports templates

run.bat Statistics calculation program
runReport.bat Report generation program
ScritturaWFReporter.jar module jar file

report-config.xml

The report-config.xml file is the main configuration file for the Workflow Reporting module. You
can define database connection parameters and the statistics to be run, as well as configure reports
to be generated using the statistics.

<WorkflowReportConfig> Node

The <WorkflowReportConfig> node is the root node of report- config.xml and has the following

attributes.
Attribute Description Possible
Values
deleteUnusedRawData Specifies whether the system automatically true
deletes unused raw data.
false
countBusinessDaysOnly Specifies whether weekend and holidays are true
counted in duration. false

runReportGenAfterStatCalc Specifies whether the report generation tool will ~ true

run following the statistic calculation tool.
false

<DatabaseConfig> Node

The <DatabaseConfig> node has the following attributes.

Attribute Description Possible Values
db Defines the mssql
type of
Scrittura sybase
database oracle
used.
driver Defines the weblogic.jdbc.sqlserver.SQLServerDriver
driver to be

weblogic.jdbc.sybase.SybaseDriver
used to

weblogic.jdbc.oracle.OracleDriver

Scrittura (4.4.10.5) Page 102 of 430

Administration Guide
Chapter 4: Workflow Configuration

connect to the
Scrittura
database.

url Defines the jdbc:bea:sqlserver://myDBServerName:1433
URL fo rthe
type of
Scrittura jdbc:bea:sybase://myDBServerName:2048
database
used.

jdbc:bea:oracle://myDBServerName:1433

user Defines the
username for
the default
Scrittura
database
user.

password Defines the
password for
the default
Scrittura
database
user.

<WorkflowStats> Node

The <WorkflowStats> node specifies statistics to be run against the workflow. The statistics are
defined within the <WorkflowStat> child nodes of <WorkflowStats>.

A <WorkflowStat> node has the following attributes.

Attribute Description Possible Values
typeld Defines the ID 0-6 (positive, whole integers)
of the statistic.
This value
must be
unique
name Defines the true
narr.le.of the false
statistic.
isSummary Specifies true
whether this is
false
a summary
statistic
runSchedule Specifiesthe daily

Scrittura (4.4.10.5) Page 103 of 430

Administration Guide
Chapter 4: Workflow Configuration

frequency with weekly
which the
statistic is
calculated quarterly

monthly

yearly

maxDaysKept Defiles the positive, whole integers -1 (default, always kept)
number of
days the
statistic will be
kept

class Defines the
name of the
class used to
calculate the
statistic.

The start activity for a workflow statistic is configured by a single <StartingActivity> child node
under each <WorkflowStat> node. The <StartingActivity> node has the following attributes.

Attribute Description Possible Values

process Defines the
name of the
workflow
process the
activity
belongs to.

name Defines the
name of the
activity that
will be the
starting
activity for the
duration.

occurrence Specifies first
whether to
use the first
time the
activity was
entered, or the
last time when
an activity can
be visited
multiple times
by a PI.

last

Scrittura (4.4.10.5) Page 104 of 430

Administration Guide

Chapter 4: Workflow Configuration

dateVariableToUse

Defines the
name of a
date- type
variable that
will overwrite
the timestamp
at which the PI
entered the
starting
activity.
Provides the
ability to
calculate
duration from
the "Trade
Date" instead
of the "Start"
activity entry
time.

Valid date-type Pl variable

The end activity for a workflow statistic is configured by a single <EndingActivity> child node under
each <WorkflowStat> node. The <EndingActivity> node has the following attributes.

Attribute

process

name

occurrence

Scrittura (4.4.10.5)

Description

Defines the
name of the
workflow
process the
activity
belongs to.

Defines the
name of the
activity that
will be the
starting
activity for the
duration.

Specifies
whether to
use the first
time the
activity was
entered, or the
last time when
an activity can
be visited

Possible Values

first

last

Page 105 0f 430

Administration Guide
Chapter 4: Workflow Configuration

multiple times
by a PI.

<WorkflowReports> Node

The <WorkflowReports> node specifies the reports to generate and has the following attribute.

Attribute Description

Defines the
same path as
that defined in
the docmgr-
config.xml
file for the
element
<import-dir>
whose
attribute use-
xml- metais
true.

controlFilesDropBoxPath

Possible Values

Unix style path

Reports are defined as <WorkflowReport> nodes and are children of the <WorkflowReports> node.

A <WorkflowReport> node had the following attributes.

Attribute Description

name Defines the name of the report. This
value is the title of the report once
generated.

id Defines the ID of the report. This

value must be unique.

runSchedule Specifies the frequency with which
the statistic is calculated. This value
also represents the length of the

timeframe of the report.

maxAge Defines the time, in days, that the
report is kept.
queryClass Defines the name of the query class

used to generate the report.

Defines the report template to use
(Jasper: .xml file; Style: .srt file)

templateClass

Scrittura (4.4.10.5)

Possible Values

As a convention, initials of the report
name can be used.

daily
weekly
monthly
quarterly

yearly

Page 106 of 430

Administration Guide
Chapter 4: Workflow Configuration

templateTool Specifies the name of the vendor for

the template.

exportPath Defines the path to the folder where
generated reports will be stored. The
reports will also be copied from this
folder into DocManager.

timeFrame Use -1 as the value if the report is to

calculate everything from the
beginning until the last day ("Go Live
date to date").

Example: If timeFrame=1, and
runSchedule=weekly, report running
for the day = 3/15/2014 Tuesday,
then the report is for time between
3/7/2014~3/11/2145. Use another
positive integer N if the report is to
calculate everything that's N
days/weeks/months/quarters/years
before the report running day
according to the runSchedule.

Example: If timeFrame=2 and
runSchedule=monthly, running on

3/15/2014 will return a report with the

time frame: 1/01/2014~1/31/2014. -1
or greater integers

StyleReport
CrystalReport

JFreeReport

Unix style path

-1 or greater integers

The workflow statistics used by a report are defined as <WorkflowStatID> nodes and is a child of
the <WorkflowReports> node. The <WorkflowStatID> node had the following attributes.

Attribute Description

Possible Values

id Defines the ID of the statistic used in this report.

Product Instance variables to be included in a report are defined as <WorkflowvVariable> nodes and
are children of the <WorkflowReports> node. A <WorkflowVariable> node had the following

attributes.
Attribute Description Possible
Values
name Defines the name of the Product Instance variable to include in the valid FA
report. variable
display Defines the name of the variable the will be displayed on the report.

Scrittura (4.4.10.5)

Page 107 of 430

Administration Guide
Chapter 4: Workflow Configuration

type Defines the type of the variable. string, date
bucket For date type variable only and for reports calculating an average, itis = week
possible to create bucket.
month
quarter
year

Activities to include in a report are defined as <Activity> nodes and are children of the
<WorkflowReports> node. An <Activity> node had the following attributes.

Attribute Description Possible
Values

name Defines the name of the activity as defined in the Microsoft Visio
workflow diagram. That activity must have the attribute report- enabled
set to true in the diagram.

display Defines the name of the activity that will be displayed on the report.

<WorkflowGroupReports> Node

The <WorkflowGroupReports> node specifies group reports. Group reports are defined within the
<WorkflowGroupReport> child nodes of <WorkflowGroupReports>.

A <WorkflowGroupReport> node has the following attributes.

Attribute Description Possible Values

name Defines the
name of the
report. This
value is the title
of the report
once
generated.

id Definesthe ID As a convention, initials of the report name can be used.
of the report.
This value must
be unique.

runSchedule Specifies the daily
frequency with
which the
statistic is monthly
calculated.

weekly

quarterly

yearly

Scrittura (4.4.10.5) Page 108 of 430

Administration Guide

Chapter 4: Workflow Configuration

maxAge

templateClass

exportPath

Defines the
time, in days,
that the report
is kept.Not
valid at this
time.

Defines the
report template
to use (Jasper:
.xml file; Style:
.srt file)

Defines the Unix style path
path to the

folder where

generated

reports will be

stored. The

reports will also

be copied from

this folder into

DocManager.

The reports to include in a group report are defined as <WorkflowReportID> nodes and are children
of the <WorkflowGroupReport> node. A <WorkflowReportID> node had the following attributes.

Attribute

id

Run the Report

Description Possible Values

Defines the ID As a convention, initials of the report name can be used.

of the report.
This value
must be
unique.

run.bat executes the main program to calculate the statistics whereas runReport.bat executes the

main program to generate reports. Log properties are defined in log.cfg.

Condition Parser

This section provides details on the condition parser used for both conditional workflow transitions
and the <scrittura:if> JSP tag.

Scrittura (4.4.10.5)

Page 109 of 430

Administration Guide
Chapter 4: Workflow Configuration

Custom Parser

Scrittura can use two parsers to check conditions embedded in the <scrittura:if>tagorin
conditional workflow transitions. One is the original parser using standard BeanShell syntax. The
second is a custom parser that was created to evaluate conditions much more quickly and provide a
more intuitive handling of null and empty values.

This improved parser will handle nearly all BeanShell conditions. Unparseable conditions will fall
back to BeanShell evaluation and log warnings that should be forwarded to Scrittura Client Services
for future support.

The Scrittura custom parser also accepts a simple syntax. For example, the following is a legal
condition:

(a=band c=4d)or (e >f and c !=r)

Missing values are treated as "", so conditions do not need to check for NULL values.

Valid Operators

The following operators are supported.

e ==(synonym for =)

« >=

« and (synonym for &&)
o or(synonym for||)
« ~=-acase-insensitive equals sign.
For example,
var ~= "somestring"
is functionally equivalent to
var.equalsIgnoreCase("somestring")
You can also code a "not approximately equal” condition, similar to the following:

lvariable~='string’

Scrittura (4.4.10.5) Page 110 of 430

Administration Guide
Chapter 4: Workflow Configuration

Quote Delimiters

Strings may be delimited either by single or double quotes. "abc" is equivalent to 'abc'.

Examples

Samples of valid parser syntax:

<scrittura:if condition="ATE = 'Not Applicable'">
<scrittura:if condition='manualkEdit'>

In a workflow transition, with added support for "no" and "NO" and "No" (and "nO"):

stp and middleMarket~="no"

Handling of NULLs

In the custom parser, no value in an evaluation is ever NULL. Any missing value is represented as "".

Handling of Undefined Variables

The custom parser treats undefined variables as empty strings and compares them as such.

Supported String Operations
The following string operations are supported.
« endsWith
« startsWith
« equalsignoreCase
o trim
« toUpperCase
« toLowerCase
« indexOf
« lastindexOf

Use of Escaping Quote Marks
Single quotes inside the double-quoted condition are properly parsed.
Double-quotes inside the double-quoted condition require the \" escape sequence.

Double-quotes inside a single-quoted condition must also be escaped.

Scrittura (4.4.10.5) Page 111 0of 430

Administration Guide
Chapter 4: Workflow Configuration

Comparison of Different Datatypes

The custom parser is also able to compare non-equivalent datatypes. For example, integers can be
directly compared to strings.

The following datatype promotions are attempted during evaluations.

Datatype of left side of Datatype of right side of Evaluation action

evaluation evaluation

int int none required

int float convert int to float

int string parse string to integer and compare,
parse error is false

int date always false

int bool convert into to bool using (int <>0)

float int convert int to float

float float none required

float string parse string to double and compare,
parse error is false

float date always false

float bool convert float to bool using (float <>0)

string int parse string to integer and compare,
parse error is false

string float parse string as double and compare,
parse error is false

string string none required

string date convert date to string and compare

string bool convert string to bool using
equalslgnoreCase("true")

bool int convert int to bool using (int <> 0)

bool float convert float to bool using (float <> 0) -
almost always true

bool string convert string to bool using

equalslgnoreCase("true")

Scrittura (4.4.10.5) Page 112 0f 430

Administration Guide
Chapter 4: Workflow Configuration

bool date always false

bool bool none required

date int always false

date int always false

date float always false

date string convert date to string and compare
date date none required

date bool always false

BeanShell Scripting Syntax

BeanShell represents a scripting language for directly interfacing with Java beans. BeanShell is a
small, free, embeddable, Java source interpreter with object scripting language features, written in
Java. BeanShell runs standard Java statements and expressions, in addition to scripting commands
and syntax.

BeanShell Scripts for Message Ticket Variables

In most cases, BeanShell script will access variables and built-in methods of a given Product
Instance (PI) within a Scrittura workflow. In some cases, however, BeanShell scripts will need to
access a received message before Scrittura has created a proper instance of the product. In these
cases, called "Message Processing" stages, BeanShell has to access variables in the "tags"
(otherwise known as a Message Ticket bean).

BeanShell Access to the Hash Map Table

When using BeanShell scripting in the message processing workflow, you can access the variables
in the tag message, but not directly. They variables are accessed using a hash map table, but are not
validated. Variables in Message Tickets are treated as strings and must be handled as such in
BeanShell.

The standard syntax for scripts referencing variables in Messages is slightly different from the syntax
for referencing variables in a formal Product Instance.

The following sample represents 'getting' a 'tag message' variable in a Message Ticket bean:
if(tags.get("DocType").equals("Master Agreement"))

This is in contrast to same IF condition in BeanShell when referencing a variable in a Pl bean:
if(DocType.equals("Master Agreement "))

Additional sample code for comparing and setting hash map (tag) variables:

if(tags.get("VAR1").equalsIgnoreCase("true"))
{

Scrittura (4.4.10.5) Page 113 0f 430

Administration Guide
Chapter 4: Workflow Configuration

tags.put("IgnoreMessage","false");

}
else if (tags.get("VAR1").equalsIgnoreCase("false"))

{

tags.put("IgnoreMessage","true");

Changing the CommonRefID in BeanShell

The CommonRefID (CRID) can be changed (in Trade Simulator or by means of BeanShell scripting),
but only when operating on a Message Ticket bean. The CRID cannot be changed once the message
is changed into a formal Product Instance using the built in applications CreateProduct or
CreateNewProductVersion.

Creating an Autogenerated CommonRefID

The sample BeanShell script below can be used to generate a unique CommonRefID (CRID) during
message processing workflow.

CounterTool ct = new CounterTool(); if(tags.get("DocType").equals("Master
Agreement") &&

tags.get("GetUniqueID").equals("Yes"))
{

cnt = ct.getNextId("orders");

while((cnt % 5) != 0@ || cnt < 1000)

{
cnt = ct.getNextId("orders");

}

tags.put("CommonReferenceID",

(String) (tags.get("PrependID")) + cnt);
}

NOTE: CounterTool is the Scrittura counter class located in com.ipicorp.tools.remote. See
Scrittura Counters, on page 379

In this example, the baseline being used for the new number is an existing number stored in the
column "Counter" for the record with the Name "order". In this case, we increment by 5 and the first
ID has to be at least the number 1000. The resulting CRID is the concatenation of PrependID and
auto- generated ID.

NOTE: The string "orders" is a randomly selected string. If you want to use the counter tool for

other counting purposes and are replacing the string "orders" with the string "test" for example, a
new counter will be created with the name "test".

Scrittura (4.4.10.5) Page 114 of 430

Administration Guide
Chapter 4: Workflow Configuration

Comparing Date Variables in Message Tickets

Suppose a trading system passes Message Tickets including a SettlementDate variable in the format
"dd MMM yyyy" (that is, "15 Nov 2014"). Also suppose that the Product Instance in question is
configured to include the variable SettlementDate, defined as a "Date" in the product variable XML
definition.

Imagine a workflow configured such that BeanShell-based MessageProcessing code needs to
compare the two SettlementDate values to detect if there has been a change.

A Message Ticket contains a hashmap of 'string' data. In this case, a direct comparison between the
SettlementDate in a message ticket against the SettlementDate in a Product Instance will always fail
with a datatype mismatch error.

The following BeanShell would be used in MessageProcessing to detect if a change had been made
to SettlementDate in a new version of a trade handed off by the trading system. This BeanShell
compares the SettlementDate variable from the MessageTicket as a date rather than a string. Then it
can be meaningfully compared to the SettlementDate date variable in a Product Instance.

SimpleDateFormat formatter

= new SimpleDateFormat ("dd MMM yyyy"); ParsePosition pos = new ParsePosition(0);
Date settlementDate

= formatter.parse(tags.get("SettlementDate"), pos);

if(!settlementDate.equals(pihash.get("SettlementDate").value))

{

// the SettlementDate changed in the message ticket -

// the original trade must have been amended

}

BeanShell Scripts for Product Instance Variables

This section details the use of BeanShell scripts with Product Instances.

String Comparison vs. Void Comparison

When comparing strings, you should use the ".equals" syntax; when comparing to 'void', use '=='
syntax.

For example, the following BeanShell code works to make sure a value is not void but does contain
just an empty string:

if (BulkAnnotation!=void)

{
if (BulkAnnotation.equals(""))

{

/* BulkAnnotation is not void but is an empty string */

Scrittura (4.4.10.5) Page 115 0f430

Administration Guide
Chapter 4: Workflow Configuration

NULL Values in BeanShell

Variables referenced in conditional logic in BeanShell either must first be declared with a default
value (so that it is not 'null') or that condition needs to include a 'null' check.

For example, if the variable "test" is not given a default value in a Product Definition or in
commonvars.xml, the following comparison will fail in BeanShell.

if(test.equals("value")) { ... }

To incorporate a check for null values, code as the following:
if (test!= void)

{

if(test.equals("value")) ...
}

It can be safer to initialize all Product Instance variables with some defaultValue in the Product
Definition XML file, such as:

<VariableDefinition valueType="String" audit-type="status">
<internalName>test</internalName>
<visibleName>test</visibleName>
<defaultValue>value</defaultValue>

</VariableDefinition>

This BeanShell behavior applies to scripts run against both Product Instance beans and message
ticket beans.

if (test!= void)
{

if(test.equals("value")) ...
}

Link from One BeanShell Script to Another

One can reference a BeanShell script in another BeanShell script using the runBSHLogic method on
the Product Instance.

For example:
pi.runBSHLogic("scriptname.bsh");

This technique can be used to create hierarchies of scripts for an activity to execute, rather than a
single script per activity. For example, one master BeanShell script could call others in sequence:

Scrittura (4.4.10.5) Page 116 of 430

Administration Guide
Chapter 4: Workflow Configuration

pi.runBSHLogic("PartyBTranslation.bsh");
pi.runBSHLogic("TranslateCurrencyCodes.bsh");
pi.runBSHLogic("TwoLetterCodes.bsh");
pi.runBSHLogic("ExpirationTime.bsh");

When a top level BeanShell sets or modifies a Pl variable value subsequently accessed by a 'child’
BeanShell' (or vice versa), only assign or reference variables using getValue and setvalue methods
directly on the product instances themselves.

For example, the following scripts should return "This did work, test is now value2."
ParentBeanshell.bsh:

test="valuel"; pi.runBSHLogic("ChildBeanshell.bsh"); if (test.equals("valuel"))
{

log.debug("This did not work, test is still valuel.");

}

if (test.equals("value2"))

{

log.debug("This did work, test is now value2.");

}

if (test.equals("value3"))

{

log.debug("This did not work, test is now value3.");
}
ChildBeanshell.bsh:

The following script should return the log output: "This did not work, test is still value1." The child
script won't know that test is value1, and on return the reassignment of "test" to 'value3' will not be
seen by the parent script.

if (test.equals("valuel"))

{

test="value2";

}

else

{

test="value3";

}

Instead, this should be written using setVar and getVar methods directly on the PI.

Scrittura (4.4.10.5) Page 117 of 430

Administration Guide
Chapter 4: Workflow Configuration

ParentBeanshell.bsh:

pi.setVar("test","valuel"); pi.runBSHLogic("ChildBeanshell.bsh"); if test.equals
("valuel™)

{

log.debug("This did not work, test is still valuel.");
}

if test.equals("value2")

{

log.debug("This did work, test is now value2.");

}

if test.equals("value3")

{

log.debug("This did not work, test is now value3.");
}

ChildBeanshell.bsh:

if (pi.getValue("test")="valuel");

{

pi.setValue("test","value2");

}

else

{

pi.setValue("test","value3");

}

Use 'Else' to Map a Set of Variables in BeanShell

To translate a simple set of beforevar value to afterVar values, such as"A" to "a", "B" to "b", and
"C"to "c", the BeanShell script should use if ... else statements in order to maximize performance.

if (beforeVar.equals("A"))

{

aftervar = "a";

}

else if(beforevar.equals("B"))
{

aftervar = "b";

Scrittura (4.4.10.5) Page 118 of 430

Administration Guide
Chapter 4: Workflow Configuration

}

else if(beforevar.equals("C"))
{

aftervar = "c";

}

This is in contrast to the more direct (but potentially slower) syntax:

if (beforevar.equals("A"))

{

aftervVar = "a";

}
if(beforevar.equals("B"))
{

afterVar = "b";

}
if(beforevar.equals("C"))
{

aftervVar = "c";

}

By using else statements as shown in the first example, the workflow engine can finish execution of
the script more quickly should it find a match for one of the earlier choices.

BeansShell Functions

The following is a sample declaration of a simple function called testFunc, which converts a string:

testFunc(value)

{

if (value.equals("123"))
{

return "al23";

}

return value;

}

Calling the function:

newVal = testFunc(someVal);

Scrittura (4.4.10.5) Page 119 0of 430

Administration Guide
Chapter 4: Workflow Configuration

There is currently no way in Scrittura to call a BeanShell function declared in one script from another
script.

Example: String Manipulation and Tests

The following BeanShell works to check the value of the last character in a string.
if(foo.endsWith("t"))

{

bar=true;

}

else

{

bar=false;
}
The string class supports the following:
« equals()
« equalsignoreCase()
« compareTo() -- returns a number indicating collation order
« compareTolgnoreCase()
« endsWith()
« indexOf() -- to find location of a substring within (-1 if not there)
« lastindexOf()
« length()
« startsWith()
« substring()
« regionMatches() -- compares specific parts of two strings
« toLowerCase()
« toUpperCase()
« trim() -- removes blanks from both ends

« charAt() -- gets one character at a specific position

Example: Setting a Date Variable

The following BeanShell example sets the variable FlowDate to the current date. FlowDate must be
previously defined as a date in a Product Definition.

FlowDate = new Date();

Scrittura (4.4.10.5) Page 120 of 430

Administration Guide
Chapter 4: Workflow Configuration

The following BeanShell sets the NextCallDate variable (defined as a date in a Product Definition)
to a date ten business days in the future. In this case, "business days" excludes Saturdays and
Sundays but does not take into account any holiday calendars. This example uses the class
CalculateDays located in the com.ipicorp.scrittura.util package.

NextCallDate = CalculateDays.addBusDays(new Date(), 10);

Example: Testing a Date Variable

Product Instance variables of Date type are initialized to January 1, 1900 when the Pl is created.
Therefore, to see if a date variable has been set in a Product Instance, you must check whether the
date is more recent than 1/1/1900.

The following example uses the value -2120000000000 (in milliseconds, which is actually Mon Oct
27 18:06:40 EST 1902, but close enough to 1/1/1900 for these purposes).

if (someDateVar.getTime() > -21200000000001)

// mind the lowercase letter "L" at the end of the condition.

{

// the variable was set in the product instance

}

else

{
// the variable is using the default 1/1/1900 and wasn't set

// in the incoming message ticket

}

Log Activity in BeanShell

The following BeanShell writes directly to the scrittura.log file as it is executed, using the log4j
class Category from the org.apache.log4j package.

Category.log = Category.getInstance("bsh");
Category.getInstance("bsh");

log.debug ("Hello there");

Scrittura (4.4.10.5) Page 121 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

Chapter 5: DocManager Configuration and
Administration

DocManager is a complete enterprise document management solution. It is a high-volume repository
for all types of written and electronic documentation.

DocManager can be used in its built-in configuration, using the database or filesystem for document
storage, or can be integrated with an external Document Management System.

This section contains the following topics:
« DocManager Overview, below
« DocManager Storage Configurations, on page 124
« DocManager User Interface, on page 124
« Entity Model, on page 126
« DocManager Configuration Files, on page 130
« Custom Validator Classes, on page 137
« Security, on page 138
o Core Operations, on page 140
« Search, on page 142
« In-Browser Text Editing, on page 143
« Linking to an External DMS, on page 143
o Custom Indexing Forms, on page 147
« Field Validation, on page 147
« Import Daemon, on page 149
o Audit Trail, on page 152
« DocManager Faxing and Email, on page 153

« DocManager API, on page 154

DocManager Overview

DocManager is Scrittura's built-in Document Management System. It handles all operations related
to document management.

DocManager can store three types of resources: Folders, Documents, and Links. A Folder resource
behaves like a folder on the filesystem, in that it exists to store other resources (Documents, Links, or
Folders). A Document resource is a meta-document that encompasses document metadata and the
different versions of the document. Each version corresponds to an actual file and is handled in

Scrittura (4.4.10.5) Page 122 of 430

Administration Guide

Chapter 5: DocManager Configuration and Administration

DocManager along with its metadata. A Link resource behaves much like a document resource but in
place of versions it contains a URL. It is not permitted for two resources to share the same name,

type, and location.

Each Folder resource has an associated Entity Type (see the ‘Entity Model’ section below) which
defines the types of metadata required or available for that Folder resource and its direct children
(such as, Documents and Links stored directly within it).

All “Top Types” (entity types with no parent entity type) may either be located under the Library Root,
a folder with Resource Id 0, or may take the form of rootless folders, in which case they have no
parent. Folders under the library root are displayed in the DocManager tree (link), provided the user
has sufficient permissions to see them, and are directly navigable within the user interface. Rootless
folders are not visible within the DocManager tree (link) and can only be viewed in the user interface

by searching for them.

All DocManager resources contain the following metadata.

Metadata

Id
ResourceType
EntityType
Parentld

NumVersions

CreatedBy

CreatedOn
ModifiedOn
Visible

LogicalPath

DMSResourcelLocator

Index0-9

Description

A unique identifier for the resource (database table primary key).
An indication of whether the resource is a folder, document, or link.
The entity type to which the resource adheres.

The id of the resource’s parent (-1 for root folders).

The number of versions associated with the resource (0 for folders, 1
for links, 1 or more for documents).

The user who created the resource.

The user who created the resource.

The date that the resource was last modified.
Indication of whether the resource is marked as visible.

A path representing the Resource’s position in the DocManager
hierarchy, formed of the resource’s id and those of its ancestors.

The identifier for the associated resource in the external DMS, when
using an external DMS with versioning enabled.

Ten searchable custom metadata fields; Index0 is reserved for storing a
document’s title. For how to add more index columns, see Add Index
Columns, on page 391.

DocManager versions contain the following additional metadata.

Metadata

Version

Scrittura (4.4.10.5)

Description

The version id (a unique identifier per resource).

Page 123 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

DocExtension The extension of the document.

CreatedOn The date that the version was created.

CreatedBy The user who created the version.

ModifiedOn The date that the version was last modified.

ModifiedBy The user who last modified the version.

FileSize T The size of the stored document (after compression, if compression is
used).

DmsVersionLocator ~ When using an external DMS, this represents the identifier for the
associated resource/version in the external DMS.

DocManager can either be used programmatically through its API or interactively through its user
interface.

DocManager Storage Configurations

DocManager can store all documents (including configuration files) in the database, and this is the
recommended configuration. However, storing documents in a database is not a requirement.
DocManager can also store documents on a file system, or in an external Document Management
System. In these cases, the document metadata is still stored in the DocManager database but the
file content is stored externally. For more information, see Linking to an External DMS, on page 143.

There are several reasons to choose to store the documents on a database including lower cost,
faster retrieval times, easier backups and easier disaster recovery.

Any kind of document can be stored in DocManager. There are no proprietary document types.

Globalization of the document store is easy to achieve with an installation on a centralized web
server. The web-based client is available anywhere on a network, and can even be exposed through
a firewall, given proper authentication via SSL.

In its database or filesystem implementation, DocManager integrates with the full-text search
capabilities of SQL, Sybase, and Oracle and can easily be integrated with existing applications
through the DocManager API.

The documents can be stored in compressed form.

DocManager User Interface

The DocManager user interface consists of a menu navigation bar, and two content panes: the
DocManager Explorer pane on the left and a resource properties pane on the right.

Page Navigation

The navigation bar just above the resource properties pane controls page navigation for
DocManager. The page navigation includes an option to select the page you want to jump to, the

Scrittura (4.4.10.5) Page 124 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

number of items per page, and a search field.

The values in the dropdown list for number of items per page are setin the docmgr-config.xml file.
If a folder resource contains more items that the value selected, use the page number dropdown to
view additional pages.

Type a keyword into the Search field to conduct a quick search for resources in the DocManager
database. For more information about DocManager searches, see Search, on page 142.

The default and possible values available in the Items Per Page dropdown are configured under the
docmgr-tree-properties nodein docmgr- config.xml.

DocManager Explorer Pane

The DocManager Explorer pane (DocManager Explorer) is a familiar explorer- type tree that mimics
the hierarchical resource structure. A hierarchical path is displayed just above the pane and specifies
the path of the selected resource. When you initially access DocManager, the Library is selected in
the DocManager Explorer by default.

You can expand and collapse each resource by clicking on the resource name. Expansion and
contraction of the resource is indicated by a plus (+) or minus (-) icon to the left of the resource folder.
The icon is hidden if a resource does not have children.

When aresource is selected in the DocManager Explorer, the contents or properties are displayed in
the resource properties pane. Hover over a resource in the DocManager Explorer to display a
context-sensitive menu with links to the basic actions that can be taken on the selected resource (see
Core Operations, on page 140).

All configurations related to the DocManager Explorer are located under the docmgr-tree-
properties element of docmgr-config.xml.

Virtual Folders

The specified number of items per page also determines the boundaries for virtual folder creation in
the DocManager Explorer pane. If a selected folder contains more subfolders than the number of
items per page, then the tree view is replaced by "virtual" folders, each representing a page of
results. This is to avoid the hierarchical view from becoming unmanageable when there are large
numbers of subfolders. Clicking on each virtual folder will expand (or contract) that folder in the
DocManager Explorer and display the appropriate page of results in the Resource Properties pane.

Each virtual folder name is displayed as the name of the folder followed by a suffix in square
brackets. Naming conventions are configured in docmgr- config.xml.

Resource Properties Pane

The resource properties pane displays the contents or properties for the resource selected in the
DocManager Explorer. The default view for a folder is its contents. The default view for a document or
link is the list of metadata information. A list of links is located at the top of the resource properties
pane. These links let you perform various actions on the selected resource, or view aspects of the
selected resource.

In addition to the core operations, the following links may be available:

Scrittura (4.4.10.5) Page 125 0f 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

« Show Hidden. Makes hidden files visible.
« Hide Hidden. Removes hidden files from the display.
« View versions. Displays a list of a document’s versions.

. Edit text. Enables in-browser editing; only available when this functionality is enabled and the
selected resource’s extension matches one of the specified extensions.

« Email Document. Lets the user email the selected document.
Limits: Available only when the emailing functionality is enabled.
« Fax Document. Lets the user fax the selected document.

Limits: Available only when the faxing functionality is enabled.

For more information regarding core operations, see Core Operations, on page 140.

Drag and Drop

You can drag files from the desktop directly into DocManager. This is done by dragging the desired
document onto a folder icon in the properties pane of DocManager. This immediately triggers the
process for adding a document.

NOTE: This functionality is available in Internet Explorer 10, Mozilla Firefox, and Google Chrome.
Itis not available in Internet Explorer 9 and earlier.

Entity Model

In DocManager, the Entity Model is used to provide structure to the document repository. An Entity is
used to define a specific level of the library hierarchy. It is given a unique name, and includes the
definition of the Indexes and Fields of the resources of that type. The Entity Model can be as strict or
as loose as the implementation requires.

The Entity Model is defined in the entity-types.xml configuration file.

Indexes and Fields

Indexes and Fields are used as a means of describing and defining the resources stored in
DocManager (Folders, Documents, and Links).

There are a fixed number of searchable indexes allowed in DocManager (10 by default), as well as
an unlimited number of non-searchable fields that can be used to store additional data that describe
resources.

The firstindex (index 0) is always used to store the title of a resource, be it a Folder, Document, or
Link.

Indexes and fields are configured in entity-types.xml.

Scrittura (4.4.10.5) Page 126 of 430

Administration Guide

Chapter 5: DocManager Configuration and Administration

Entity Type Configuration

The Entity Model is configured in the entity-types.xml file. This section describes all the settings
contained within this file.

An entity type is given a name and includes its indexes, fields, any child entity types, and can include
an explicit Entity ACL (see Security Model Configuration, on page 139). Each entity type is defined

by an <entity-type> element.

Example entity

type

<entity-type name="Counterparty"

title-index="1"

inherit-parent="false">

<index idx="@"

doc-title-index="9"

label="Title" index-type="folder" required="true" type="String"/>

<index idx="1"

label="Counterparty" index-type="folder" required="true" type="String"/>

<index idx="8"

label="Doc Date" index-type="document" required="false" type="Date"/>

<index idx="9"

label="DocType" index-type="document” required="true" type="String"/>

<field idx="@"

label="Address" field-type="folder" required="false" type="String"/>

</entity-type>

<entity-type> element

The <entity-type> element includes the following attributes.

Attribute

name

title-index

doc-title-
index

Scrittura (4.4.10.5)

Required/
Optional
Required

Required

Optional

Description

Defines the unique name of this
entity type.

Defines the number of the index
used as the folder title of all folders
of this type.

Defines the number of the index
used as the document title for all
documents of this type.

Possible Values

String

Positive integer

Positive integer

Page 127 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

inherit-
parent

doc-form

folder-form

file-
storage-
identifier

storage-

location

validator-
class

Required

Optional

Optional

Optional

Optional

Optional

<index> element

Specifies whether folder resources
inherit the indexes and fields of

their parents.

Defines a custom JSP index form

that overwrites the built-in

document index form. For more

information on custom JSP
indexes, see Custom Indexing
Forms, on page 147.

Defines a custom JSP index form
that overwrites the built-in folder
index form. For more information

on custom JSP indexes, see
Custom Indexing Forms, on
page 147.

If running DocManager using an
External DMS, this attribute allows
specification of how documents will
be stored. For more information,
see Linking to an External DMS, on

page 143.

If running DocManager using an
External DMS, specifies whether
resources of the entity type should
be stored in the database or the
external DMS. By default (if this
attribute is omitted) resources are
stored in the external DMS if visible

and under the library root, and

otherwise stored in the database.

Defines a custom class to be used

for validating Resources of this

entity-type during creation/editing.

For more details, see Custom

Validator Classes, on page 137

The <index> element includes the following attributes.

Attribute

idx

Scrittura (4.4.10.5)

Required/
Optional

Required

Description

True

False (default)

String, such as
sampleDocFormJsp.jsp

String, such as
sampleFolderFormJsp.jsp

Integer

database - all resources of
this entity type are always
stored in the database
external - all resources of this
entity type are always stored
in the external DMS, when
possible.

Possible Values

Defines the unique number of this index. 0-9

Page 128 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

label Required Defines the string to be displayed in the user string
interface for this index.
index- Required Specifies the type of index. folder - indexes
type apply to folder and
documents (and
hyperlinks)
document -indexes
apply only to
documents (and
hyperlinks)
required Required Specifies whether a value is required for this True
index. If an index is required, a resource will
not be saved unless a value is supplied. False
type Required Defines the name of the validation type for string
this index. For more information on
validation, see Field Validation, on page 147.
<field> element
The <field> element includes the following attributes.
Attribute Required/ Description Possible Values
Optional
idx Required Defines the unique number of this field. positive integers
label Required Defines the string to be displayed in the user string
interface for this index.
field- Required Specifies the type of field. folder - This field
type applies to folder and
documents (and
hyperlinks)
document - This field
only applies to
documents (and
hyperlinks)
required Required Specifies whether a value is required for this = True
field. If a field is required, a resource will not
be saved unless a valid value is supplied. False
type Required Defines the name of the validation type for string

this field. For more information on validation,
see Field Validation, on page 147

Scrittura (4.4.10.5) Page 129 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

DocManager Configuration Files

In addition to the entity model configuration, DocManager stores its configurations in the following
configuration files.

o docmgr-config.xml defines the core DocManager configuration.
« mime.types defines the list of mime types handled by DocManager.

« mime.icons defines the list of corresponding icons for the different mime types.

docmgr-config.xml

The docmgr-config.xml file is the main configuration file for DocManager. A full example of docmgr-
config.xml can be found in the appendix.

The root node of docmgr-config.xml file is <docmgr-config>, and has the following child nodes.
o <field-type>
e <import-dir>
e <configured-roles>
e <docmgr-tree-properties>
o <fax>
e <email>
e <document-compression>

e <full-text-search>

<docmgr-config> node

The <docmgr-config> node is the root node of the docmgr-config.xmlfile. It contains a number of
attributes and child nodes. The <docmgr-config> node has the following attributes.

Attribute Required/ Description Possible Values
Optional

allow-version- Optional Specifies whether itis possible to update True

updates existing versions of a document. This has

particular significance for the import False (default)

daemon where it enables the population
of versions out of order

database Required Defines the database type used to oracle
perform full-text searches.
sybase
mssql

Scrittura (4.4.10.5) Page 130 of 430

Administration Guide

Chapter 5: DocManager Configuration and Administration

date-format

disable-
security

docmgr-type

edit-text-
extensions

max-file-
upload- size

number-of-
indices

Scrittura (4.4.10.5)

Required

Required

Optional

Optional

Optional

Optional

If the DateValidator is configured to
handle the validation of the index value of
Date type, defines the format used to
validate the value first, before trying to

also validate with the other formats of. The

class can be used in the validation
configuration of the index values. After
passing the validation, the value will be
reformatted to this specified format.

Specifies whether to disable security.

Specifies whether document content is
stored in the database or in a configured
external Data Management System. For
more information, see Linking to an
External DMS, on page 143.

Defines the extensions for which in-
browser editing is available. For more
information see,In-Browser Text Editing,
on page 143.

Defines the maximum file size, in
megabytes, permitted for a file to be
stored in DocManager.

Specifies the desired number of index
fields when more than 10 searchable
fields are required. See Add Index
Columns, on page 391.

MM/dd/yy
MM-dd-yy
dd.MM.yy
MMM dd, yy
yyyyMMdd
yyyy-MM-dd
yy MM dd
dd-MMM-yy
dd/MMM/yy
MMM/dd/yy
dd MMM yy
dd MMMM yy
MMMM dd, yy
MMM dd yy
MMMM dd yy
MM dd yy
yyyy-MM-dd

True

False

database (default;
documents are
stored in the
database) external
(documents are
stored external to
DocManager)

A comma separated
list of file extensions
Default list: txt,
bsh, bat, ini

Positive integer
Default: 100MB

Positive integer
Default: 10

Page 131 of 430

Administration Guide

Chapter 5: DocManager Configuration and Administration

security-
factory

stub-barcode-

format

superuser

use-entity
types

Required

Optional

Required

Required

<field-type> node

Defines the security factory class to use.
The default security model is
com.ipicorp.docmgr.security
.PerResourceAclFactory.

Defines the barcode format for the
barcode stub when generating fax cover
sheets.

Defines the user name of the system
account on the application server. Allows
security checks to be bypassed for the
user specified.

Specifies whether to validate resources
against the entity model during
creation/edition.

String representing
the fully qualified
class name

code39 (default)
codel28 - improved

recognition rates
over code39

String

True

False

The <field-type> node defines permitted index/field types and associates each with a custom
validator class (see Custom Validator Classes, on page 137).

Each <field-type> node mustinclude the following attributes.

Attribute

type-name

validation-
class

Required/
Optional

Required

Required

<import-dir> node

Description

Defines the string used to identify the
validation class. This becomes the valid
values inthe entity- types.xml type
attribute for indexes and fields.

Defines the java class that defines this
validation type. For example,
com.ipcorp.scrittura.blogic
.validation.BlLogicValidator

Possible
Values

String, such as
"Zipcode"

String
representing the
fully qualified
class name

The <import-dir> node defines the import directories that are used by the Import Daemon (see

Import Daemon, on page 149).

The <import-dir> node has the following attributes.

Attribute

Scrittura (4.4.10.5)

Required/
Optional

Description Possible Values

Page 132 0f 430

Administration Guide

Chapter 5: DocManager Configuration and Administration

dir

use-xml-
metafiles

sleep-seconds

workflow-
name

workflow-
activity

<configured-roles> node

Required

Required

Required

Optional

Optional

Defines the directory to be String representing the fully
monitored for files to be qualified path of the directory

imported into DocManager. being monitored

Specifies whether the true
directory contains control

) . false
files or disparate resources

Defines the time, in seconds, Positive integer
between each read of the
folder

Defines the name of the String DocMgr (default)

Import Daemon workflow.

Specifies the Import Daemon Image_with_no_ XML (default,
activity. use when use- xml-metafiles
is false) Doc_with_XML

The <configured-roles> node defines the groups configured for DocManager. This node is the basis
of the DocManager permissions system, as individual permissions are assigned by role. Each role
must be added to a <role> child node.

<docmgr-tree-properties> node

The <docmgr-tree-properties> node is optional and is used to configure the display properties of
the DocManager tree.

The <docmgr-tree-properties> node has the following child nodes.

Child Node

default-items-
per-page

virtual-folder-
naming-
scheme

Required/
Optional

Optional

Optional

Description

Defines the number of resources to display on a
web page, and how many subfolders it takes
before a folder is split into virtual folders within the
DocManager tree

Defines the appearance of the virtual tree nodes
through its child nodes.

A <virtual-folder-naming-scheme> node has the following child nodes.

Child Node

format

Scrittura (4.4.10.5)

Required/
Optional

Required

Description Possible Values

Possible
Values

positive
integer 100
(default)

Specifies how the virtual head-tail (the suffix is formed of the

Page 133 0f 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

suffix is formed. first and last letters of the boundary
resources within it).

head (the suffix is formed of the first
letters of the boundary resources
within it).

index (the suffix is formed based on
the number of the boundary
resources, counting through in
alphabetical order) .

head-length Optional Defines the number of Positive integer
characters to use when
format is head-tail or
head.

tail-length Optional Defines the number of Positive integer
characters to use when
formatis head-tail.

<fax> node

The <fax> node is optional and used to configure the Faxing-From- DocManager functionality.

The <fax> node has the following child nodes.

Child Node Required/ Description Possible Values
Optional

fax-enabled Required Specifies whether DocManager faxing true

is enabled.
false

fax-class Required Defines a custom faxing class to be String representing
used by DocManager for the the fully qualified
FaxDocument action. class name

<email> node

The <email> node is optional and is used to configure the emailing capability of DocManager.

The <email> node has the following child nodes.

Child Node Required/ Description Possible Values
Optional
email-enabled Required Specifies whether DocManager true
Emailing is enabled.
false
email-class Required Defines a custom email class to be used String representing

Scrittura (4.4.10.5) Page 134 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

by DocManager for the EmailDocument the fully qualified
action. class name

<document-compression> node

The <document-compression> node is optional and is used to configure DocManager to compress
documents as the content is saved to the database.

Document compression is performed using the standard zipOutputStream Java class, which uses
the ZLIB compression library.

The <document-compression> node has the following attribute.

Child Node Required/ Description Possible Values
Optional

enabled Required Specifies whether compression is enabled true
false

default-level Required Defines the default level of compression Positive integer
between 0 and 9,
inclusive -1
(default; no

compression)

compression- Optional Specifies the level of compression for

on- extension resources with a specific file extension. Can
have one or more compression- on-
extension nodes with required child nodes,
extensions, and compression-level.

A <compression-on-extension> node has the following child nodes.

Attribute Required/ Description Possible Values
Optional
extensions Required Defines a list of extensions to which Comma delimited list
this specific compression is applied. of valid file extensions
compression- Required Defines the level of compression for Positive integer
level the extensions defined by extensions. between0and9,
inclusive

<full-text-search> node
The <full-text-search> node is optional and is used to configure the full text search functionality.

The <full-text-search> node has the following attribute.

Attribute Required/ Description Possible

Scrittura (4.4.10.5) Page 135 0f430

Administration Guide
Chapter 5: DocManager Configuration and Administration

Optional

enabled Required Specifies whether full text searching is
enabled

Values

true

false

<full-text-search> has a unique mandatory child node, <full-text- parsers>.<full-text-
parsers> defines the parsers for reading document text for different document types, each parser
being defined by a <full- text-parser> child node of <full-text-parsers>. There can be one or
more <full-text-parser> nodes to define the different document types and each must include the
case-sensitive attribute and the <document- extension> and <document-parser> child nodes.

The <full-text-parsers> node has the following attribute.

Attribute Required/ Description
Optional
case-sensitive Required Specifies whether full-text searches are case
sensitive.

The <full-text-parser> node has the following child nodes.

Child Node Required/ Description
Optional
document- Required Defines the file extensions of documents to be
extension associated with the defined document-parser
class.
document- Required Defines the full name of a class used to parse
parser the text content of the document types defined

by document-extension, such as
com.ipicorp.docmgr.fulltext
.TextParser

mime.types

Possible
Values

true

false

Possible
Values

Comma
separated list of
file extensions

String
representing the
fully qualified
class name

Mime types are used by DocManager to give the browser an idea about what type of document is
being requested from the server. The user's system can then try to open the document in the
appropriate viewer for that document, depending on how those file types are associated on the user's

system.

The DocManager API uses the mime. types file to associate file extensions with mime types.

Additional mime-type/extension lists can be added to this file if necessary.
Example of the mime.types file extract

application/octet-stream bin dms lha 1zh exe class
application/jsp jsp

application/oda oda

application/pdf pdf

Scrittura (4.4.10.5)

Page 136 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

application/postscript ai eps ps

application/powerpoint ppt

mime.icons

The mime. icons configuration file allows customized image icons to be associated with documents
based on the document's extensions. These icons are displayed in place of the defaulticon in the
DocManager user interface.

The configuration file is a plain text file with each line in the format[extension]=[path to image
file].

Example
doc=/docmgr/jsp/images/doc.gif

x1ls=/docmgr/jsp/images/x1ls.gif

Custom Validator Classes

When files are added or updated in DocManager, there is some default validation which is run to
ensure that all the metadata marked as required for the appropriate entity type is present and correct
(see Entity Type Configuration, on page 127). If these criteria are not satisfied, an error is thrown and
the operation fails. Validation on file data and metadata can be augmented in two separate ways,
through the use of custom validation classes.

Entity Type Custom Validation

For each entity type it is possible to define a custom validator class. This configuration is performed in
the entity-types.xml file as the validator- class attribute of <entity-type> nodes.

This class allows additional restrictions to be enforced when attempting to create or update a
resource of the corresponding entity type.

The defined class must implement the com.ipicorp.docmgr.validation.ValidatorInterface
interface. This interface contains two methods, one for resource-level validation, and one for version-
level validation.

Scrittura contains a class for BLogic:
com.ipicorp.scrittura.blogic.validation.BLogicVvalidator. Ifthis class is applied to an entity
type, an error is thrown when a user attempts to upload an invalid BLogic rules file. For more
information, see BLogic Business Engine, on page 203.

Index and Field Type Custom Validation

In the entity model, each index and field must specify a type; these types must be defined using a
<field-type> node in docmgr-config.xml. Each of these types must specify a validator class.

The validator class must implement the com. ipicorp.docmgr.validation.Fieldvalidation
interface. These classes define the validation to be performed on the values of the indexes and

Scrittura (4.4.10.5) Page 137 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

fields associated with the corresponding types. Scrittura includes some validation classes for simple
types such as String, Integer, and Date.

Security

The security model in DocManager is a configurable component. A new security model can be added
to the DocManager API and then specified in the docmgr-config.xml configuration file.

The default security model in DocManager allows the flexibility for all resources in the system to be
secured individually (Per-Resource), to be secured at the Entity level, or a combination of the two.

Access Control Lists

The Access Control List (ACL) is the basic element of DocManager security. An ACL is a list of the
rights that can be granted in DocManager, and the groups that have been granted each right.

For every action a user tries to perform in DocManager, the DocManager API checks the ACL of the
resource being accessed. The user is allowed to perform the action if the user belongs to a group that
has been granted the necessary rights as defined on the ACL.

The default security model in DocManager combines Per-Resource ACLs with Entity Level ACLs.
Per-Resource ACLs are ACLs defined for individual items stored in DocManager. Entity Level ACLs
are defined for specific entity types and apply to any item of that entity type.

DocManager Rights

Rights are enforced within the DocManager API, which checks to see if the current user has been
granted the appropriate rights when trying to perform any functions involving resources.

The following rights can be granted in DocManager.

DocManager Description

Right

Read The most basic right in DocManager. A user must be given Read access in order
to access any part of the DocManager library. A user with read access is allowed
to view folders and documents, and use links. Read access is automatically
granted if any other access type is granted.

Write Lets a user edit index and field information for a resource, and set the URL of a
link.

WriteDoc Lets a user add new versions of documents (edit documents), add or replace the
full text of a document, and migrate a version of a document from the
DocManager database to an external DMS.

Create Lets a user create new resources (folders, documents, links) in DocManager.

Delete Lets a user permanently remove resources from DocManager.

Security If a user is granted the security right on a resource, that user will see a "rights"

Scrittura (4.4.10.5) Page 138 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

menu option which lets the user set a Per-Resource ACL on that resource.
Therefore, only users granted the security right are able to set a Per-Resource
ACL. Security access automatically grants all other access privileges.

Groups and Users
Groups in DocManager are defined in the following areas.
« In docmgr-config.xml (see docmgr-config.xml, on page 130)

« Inthe deployment descriptors (xml configuration files) for both the DocManager API, and the
DocManager Web App (the user interface).

For DocManager deployed on WebLogic, groups are defined in the following files.
o For the DocManager API: ejb-jar.xml, weblogic-ejb-jar.xml
o Forthe DocManager Web App: web.xml, weblogic.xml
« Inthe application server
The following groups are defined in DocManager by default.
« readonly
« editors
« publishers

« admins

Security Model Configuration

The security model in DocManager is a configurable component and is configured in the main
DocManager xml configuration file, docmgr- config.xml.The relevant settings are security-
factory, disable- security, and configured-roles. For more information about these settings,
see docmgr-config.xml, on page 130.

If using one of the default security models in Scrittura, permissions are primarily set by defining ACL
on entity types (see Workings of the Default Security Model, below).

Workings of the Default Security Model

The default security model uses a combination of Per-Resource ACLs and Entity level ACLs. Entity
level ACLs are defined in the Entity Type configuration file, entity-types.xml.

A default Entity ACL must be defined at the root level. Additional ACLs may then be defined on any
Entity Type. For a complete example of the configuration file, see Sample: entity-types.xml, on
page 420.

<dms-entity-model name="TestModel">
<entity-acl>
<read-list>

<group>admins</group>

Scrittura (4.4.10.5) Page 139 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

<group>publishers</group>
<group>editors</group>
<group>readonly</group>
</read-1list>

<write-list>
<group>admins</group>
<group>publishers</group>

</write-list>

</entity-acl>
</dms-entity-model>

Any user granted the security right can add per-Resource ACLs. Per-Resource ACLs are stored in
the database. They are set on a given resource via the DocManager user interface. The "Reset
Default Rights" button lets the user reset the current resource's ACL to the original default Entity ACL
that applies to that resource.

Per-Resource ACLs, in effect, trump Entity ACLs. When the DocManager API checks to see if a user
has the rights to perform a given function on a resource, it first checks to see if there is a Per-
Resource ACL set forthat resource. If none is found, it checks for an Entity ACL. If neither are found,
the DocManager API checks the parents of that resource (above itin the tree) until it finds an explicit
ACL, using the first Per-Resource ACL or Entity ACL it finds.

Examples
As a reference, see Sample: entity-types.xml, on page 420.

« Ifaresource of entity type "Deal" has no explicit Per-Resource ACL set, then the explicit "Deal"
Entity ACL applies.

« Ifaresource of entity type "Product" has no explicit Per-Resource ACL set, and its parent folder
has no explicit Per-Resource ACL set, then the "Counterparty" Entity ACL applies, because
there is no explicit Entity ACL on entity type "Product.”

Core Operations

The following is a list of the core DocManager operations, including a brief description of each. These
operations can be executed using the DocManager user interface or the DocManager API.

« Create Document. Documents of different types (such as, fax, inbound, DTCC) can be created
and saved at any location within DocManager. Create a document by clicking the “New” link in
the user interface—not available for entity types which do not specify a doc-title-index. This
operation requires create permissions on the parent folder.

Scrittura (4.4.10.5) Page 140 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

« Create Folder. Create a folder within DocManager. Create a folder by clicking the “New” link in
the user interface—only available for folders whose entity types have child entity types. This
operation requires create permissions on the parent folder.

« Create Link. Create a link within DocManager that points to another document. Create a link by
clicking the “New” link in the user interface— not available for entity types which do not specify a
doc-title-index. This operation requires create permissions on the parent folder.

« Delete Resource. Delete any resource, be it Folder, Document, or Link. Delete a resource by
clicking the "Delete" link in the user interface. Note that in the case of folders, their contents
should be deleted before attempting to delete them in the user interface. This operation
requires delete permissions.

« Get Document Metadata. Retrieves the indexes, fields, and other metadata of a given
document. Get document metadata by clicking the "Properties” link in the user interface or, in
the case of a document or link, by clicking the resource icon. This operation requires read
permissions.

« Download Document. Retrieves document content. Download a document by clicking the
resource name in the user interface. This operation requires read permissions.

« Create New Document Version. An arbitrary document can be uploaded as a new version of
an existing document. Create a new document version by clicking the the “New Version” link in
the user interface. This operation requires write-doc permissions.

« Delete Document Version. Delete an existing version of document. When viewing a
document's version in the user interface, delete a document version by clicking the delete
symbol associated with the desired version. If an intermediate version is selected, then higher
versions are decremented accordingly. This operation requires delete permissions.

« Edit Metadata. Edit a resource’s metadata. Inherited indexes/fields cannot be edited.
Changing the title-index for a folder or the doc-title- index for a document or link renames the
document. Edit a resource's metatdata by clicking the “Edit” link in the user interface. This
operation requires write permissions.

« Cut and Paste/Move. Deletes a document from one location and recreates it in another. If
moving across entity types, indexes/fields need to be specified accordingly. Cut and
paste/move a document by clicking the “Cut” and “Paste” links in the user interface. This
operation requires write permissions on the resource and create permissions on the destination
folder.

« Copy and Paste/Copy. Copies a document from one location to another. If copying across
entity types, indexes/fields need to be specified accordingly. Copy and paste/copy a document
by clicking the “Copy” and “Paste” links in the user interface. This operation requires read
permissions on the resource and create permissions on the destination folder.

« Change Rights. Overwrite the ACL of the selected resource (see Security, on page 138).
Change the rights of a document by clicking the “Rights” link in the user interface. This
operation requires security permissions.

Scrittura (4.4.10.5) Page 141 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

Search

DocManager provides three types of search functionality: Quick Search, Advanced Search, and Full
Text Search.

« Quick search. Perform quick searches using the simple search box in the navigation bar of the
user interface. A quick search searches DocManager for any resource whose title matches the
selected text.

« Advanced Search. There is a link to advanced search in the DocManager title bar (the link is
named “Search”). An advanced search provides additional search criteria. All searches are
conducted by entity type, and any of the index columns defined for the selected entity type can
be used to restrict the search.

« Full text search. Full text search lets allows the user search the content of uploaded
documents for a particular word or phrase.

All searches conducted from the user interface are limited to a maximum of 50 results, although there
is no hard limit when using the API. Clicking on any of the results in the user interface displays the
properties for that result in the right pane, and displays the appropriate hierarchical tree in the left
pane. This is the only instance in which rootless folders may be displayed.

TIP: The case-sensitivity of DocManager searches is the same as the database case-
sensitivity. The case-sensitivity setting for Scrittura trade searches does not apply to DocManager
searches.

Full-Text Search

DocManager integrates with the full-text search capabilities of SQL Server, Oracle, and Sybase. SQL
Server includes full-text search functionality as an option in the main install, and configuration is fairly
straightforward.

A "Full Text Search" menu option is available on the DocManager user interface.

SQL Server Configuration

When installing SQL Server, make sure that the full-text search option is included—it may not be
included in the default install.

Use the SQL Server Enterprise Manager to configure a full-text index on the FILETEXT columnin the
DOCMGR_RESOURCEFILETEXT table. To bring up the Full-Text Indexing Wizard, click Tools > Full-Text
Indexing, or right-click the DOCMGR_RESOURCEFILETEXT table and select Full-Text Index Table >
Define Full-Text Indexing on a table. Follow the steps in the wizard. Set up incremental population
of the index to run daily, every 15 Minutes. If these menu options are grayed out, full-text search was
not installed properly.

Make sure the Microsoft Search service and the SQL Server Agent service are installed and
configured to run automatically. The SQL Server Agent service must run to perform the scheduled
population of the full-text index set up in the Indexing Wizard.

Scrittura (4.4.10.5) Page 142 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

Oracle Configuration
Configuration of full-text search in Oracle is similar to the process for SQL Server.
« When installing Oracle, do a custom install and include InterMedia and Java support.
« Configure a full-text index on the FILETEXT column in the DOCMGR- RESOURCEFILETEXT table.

« Setup incremental population of the index.

Sybase Configuration

Sybase allows the indexing and searching of TEXT columns. The FILETEXT column in the DOCMGR_
RESOURCEFILETEXT table is a TEXT column, and is the column to index for full-text search capability.

In-Browser Text Editing

Itis possible to edit simple text files directly in the browser. This functionality is made available
according to extension. The extensions to which this applies can be configured in docmgr-
config.xml (see docmgr-config.xml, on page 130). If the allow-version-updates parameter is set
to true, then this updates the latest version. If not, it adds a new version.

Linking to an External DMS

By default, DocManager stores both resource content and metadata in Scrittura's database. Itis also
possible to configure DocManager to store the content in an external Document Management
System or filesystem. In this case, the metadata is still stored in DocManager’s database, but all
operations regarding the document content will be forwarded on to the External DMS.

External DMS Configuration

To use an external DMS for document storage, first the docmgr-type attribute must be set to external
in docmgr-config.xml (see docmgr-config.xml, on page 130)

A specific connector to this external DMS must also be developed and integrated to Scrittura.

This external connector must implement the following interfaces, all located in the
com.ipicorp.docmgr.external package:

« IClientDMSResourceConnector, for resource handling in the external DMS

o IClientDMSResourceFileConnector, for version handling in the external DMS

The connector has its own configuration file, docmgr-external- config.xml, which is a standard
Spring file that holds all properties related to the integration with external DMS. It must contain the
relevant beans in order to instantiate the concrete classes implementing the interfaces.

Itis also possible to perform performance monitoring on the external DMS connector using a Spring
aspect.

Scrittura (4.4.10.5) Page 143 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

By default, only visible documents which are descended from the Library Root are stored in the
external DMS. This behavior can be overridden using the storage-location parameterin entity-
types.xml (see Entity Type Configuration, on page 127). Folders and links are never stored in the
external DMS in any form.

Filesystem DocManager

The filesystem configuration of DocManager, where documents are stored in the filesystem, is a
specific case of linking DocManager to an external DMS.

DocManager is distributed with a filesystem implementation of this external DMS integration, where
the filesystem is used as the DocManagerstorage layer.

Filesystem DocManager Configuration

The beans defined in the docmgr-external-config.xml file for DocManager filesystem are as
follows.

Bean Description

externalDMSConnector Main bean, which instantiates
com.ipicorp.docmgr.external.impl.FileSystemImpl

performanceMonitor Optional performance monitoring bean, which instantiates

com.ipicorp.tools.aop.PerformanceMonitor

The externalDMSConnector bean has the following properties; all defined using standard property
Spring nodes.

Attribute Required/ Description Possible Values
Optional
rootDir Required DocManager root String representing the fully qualified

storage directory on path or the directory
the filesystem.

versionPrefix Required Prefix used for Character, suchas V
naming document
versions.
storeLinks Boolean flag set to True
true in order to store
. False
links on the
filesystem.
namingScheme Required Specifies how index@ (default) - the name of the
DocManager resource is used (such as, Library

constructs the path Root\Templates\aTemp late.docx) id

for a resource which - the resource id is used (such as,

it passes down to 0\100\101) entity - the entity is read
from an index determined by the file-

Scrittura (4.4.10.5) Page 144 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

the external DMS (if = storage-index attribute in the
there is one). For corresponding entity type in entity-
more information, types.xml ,

see Custom File

Path.

forbidden- Required Defines the String; space delimited list
characters characters to be
replaced.

Characters may
need to be XML-
escaped.

replace- Required Defines the String; space delimited list
forbidden- characters that
characters replace the

characters defined

by forbidden-

characters.

The number of
characters defined
must be equal to the
number of
characters defined
by forbidden-
characters.

The namingScheme attribute makes it possible to bypass certain OS limitations when storing files on
a file system as opposed to RDBMS. The file path for the document resource can be constructed by
either using the display names of folders, the internal resource ID of folders, or a combination of the
two, including the option to skip entire levels.

Filepath using Folder Names

When setting the attribute docmgr-filesystem-mapping with a value of indexO0, the file path created
will use the title index fields from the entitity-type.xml.The created path on the file system will
look like the following.

\images\Docmgr\Entity\Counterparty_A\Product\Trade_ID\doc_V1.EXT

Filepath using Resource ID's

When setting the attribute namingScheme with a value of id, the file path created will use the internal
resource ID's (from DOCMGR_RESOURCE table) of the index fields from entity-type.xml. The created
path on the file system will look like the following.

\images\Docmgr\200\209\210\211\212_V1.EXT

Scrittura (4.4.10.5) Page 145 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

Filepath using Folder Names and Resource IDs Combined

When setting the attribute namingScheme with to value of entity, an optional entity model element
attribute, file-storage-identifier, can be used to cause the path element for the given entity to
use an arbitrary DocManager index for the pathname (not just index 0).

The following are valid values for file-storage-identifier.
« -2. Specifies to not include this resource in the path
« -1. Specifies to use the resource's numeric ResourcelD as the path element

« Non-negative integer. Specifies to use the named resource index variable's value as the path
element. Characters in that value which cannot be represented in a filename are changedto " "
(underscore) by default. This behavior can be configured in docmgr-config.xml.

If no file-storage-identifier attribute is specified, the default is 0 (use the index0 value).

For example, if the entity model is:

Entity file-storage-identifier
Counterparty Id 0
Counterparty Long Name 0
Trade Ref 0
Document 0

Then the pathname used by DocManager would be similar to:
images\docmgr\BANKFOO\Bank of Foo\TRADE123\Confirmation_v1l.doc

The file-storage-identifier attribute can be used to eliminate the redundant "Long Name", and
to use a numeric resource ID for the document. The following is an example of a possible file-
storage-identifier setup forthe relevant entity-types.

Entity file-storage-identifier
Counterparty Id 0
Counterparty Long Name 0
Trade Ref 0
Document -1

The resultant paths will then be similar to:

images\docmgr\BANKFOO\TRADE123\9936363_v1.doc

Scrittura (4.4.10.5) Page 146 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

Custom Indexing Forms

The forms used to edit indexing information in DocManager can be customized at the entity level.
Each entity type can be linked to a custom index form for folders and a separate custom form for
documents and hyperlinks. If no custom forms are specified, the default indexing form is used.

To add a custom form to DocManager
1. Create a custom JSP page.

2. Place the custom JSP page in the docmgr-custom- web/customJSPs/jsp/include directory
of your Scrittura/DocManager custom files.

3. Add the name of the custom JSP page to its entity type in the entity- types.xml configuration
file.

If the JSP file is not placed in the /jsp/include directory, you must also include the full path.
Example

An entity type in an entity-types.xml configuration file with custom indexing JSP pages.
<entity-type name="Product”

title-index="2" doc-title-index="9"

inherit-parent="true"

doc-form="documentform.jsp" folder-form="folderform.jsp">

<index idx="@"

label="Title" index-type="folder" required="true" type="String"/>
<index idx="2"

label="Product Type" index-type="folder"

required="true" type="String"/>

Field Validation

Field Validation is a configurable component of DocManager. The default implementation includes
validation classes for different field types: Integer, String, Date, Year, Quarter, SSN, and
Zipcode. Index and field values are assigned data types in the entity-types.xml configuration file.
The DocManager API then validates those index and field values against the associated validation
class each time they are saved.

Additional validation classes can be added to the DocManager API to perform custom field validation
by completing the following.

Scrittura (4.4.10.5) Page 147 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

1. Develop a new field validation class and add it to the API.

2. Listthe new validation class as a <field type>inthe docmgr- config.xml file.

Validation Classes
DocManager includes classes to perform validation on the following data types:
« String. Accepts any string of characters.

« Integer. Checks that the value defined is a signed decimal integer. The first character can be a
minus sign, but all the others must be decimal digits.

« Date. Accepts the value if it conforms to one of the following formats, and then reformats it to
the date-format specified in docmgr-config.xml.

MM/dd/yy MM-dd-yy dd.MM.yy
MMM dd, yy yy yyyyMMdd yy MM dd
dd-MMM-yy dd/MMM/yy MMM/dd/yy

dd MMM yy dd dd MMMMM yy MMMMM dd, yy

« Year. Checks that the value entered is a non-negative integer. If the number entered is between
zero and 50, it becomes a 21st century year. If the number is between 51 and 99, it becomes a
20th century year.

« Quarter. Accepts one of the following four values, ignoring case: Q1, Q2, Q3, Q4

« SSN. Accepts 9 (999999999) or 11(999-99-9999) character Social Security Numbers (SSN),
and reformats them to 11 character SSNs.

« Zipcode. Accepts 5 digit or 9 digit (zip + 4) zip codes. Zip + 4 values can be either 999999999
or 99999-9999 formats. The 999999999 format is reformatted to 99999-9999.

Field Validation Configuration

Develop a new field validation class that implements the
com.ipicorp.docmgr.validation.FieldValidation interface and add it to the
com.ipicorp.docmgr.validation package.

The new field validation class then needs to be added as a new <field- type> node in the docmgr-
config.xml file.

The following node is for the String validation class:
<field-type type-name="String"
validation-class="com.ipicorp.docmgr
.validation.StringValidator"/>

The field type is assigned a unique name in the type-name attribute. This type-name is then the name
that is used in the entity-types.xml file to designate an index or field value as being of that type:

<index idx="@"

Scrittura (4.4.10.5) Page 148 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

label="Title"
index-type="folder"
required="true"

type="String"/>

Import Daemon

The DocManager Import Daemon is used to monitor directories for files to be published into
DocManager.

The Import Daemon can be configured to monitor directories using the following methods.
1. Tolook for individual documents in a directory.

These are documents that have been scanned or faxed and have no metadata associated with
them. The Import Daemon publishes these documents into a hidden folder in DocManager,
which can then be indexed and published to the correct place in DocManager using the 'Index’
functionality of the DocManager web interface.

2. Tolook for XML meta-data files.

When there exists a number of documents with known indexing data (such as when a customer
needs to perform a migration of documents off an old system into DocManager) one of these
.xml metadata files can be produced for each document and placed in the directory to be
monitored. The Import Daemon uses these XML files to try to publish the document to the
correct place in DocManager. The original document on the filesystem is deleted after
publishing.

Note the following about the DocManager Import Daemon:
« The directories to be monitored are configured in the docmgr- config. xml file.
« It can be configured to monitor multiple directories.

« ltuses a simple workflow that can be changed or expanded as the need arises.

Import Daemon Configuration

The DocManager Import Daemon can be configured as needed to monitor directories for files to be
published into DocManager.

To configure the Import Daemon

1. For each directory to be monitored, add an import-dir element to the docmgr-config.xml (see
docmgr-config.xml, on page 130).Ifno import-dir entries are included, the Import
Daemon will start up, see that it has nothing to monitor, and stop running. The following
example has two import directories configured. The first looks for XML meta-files, the second
looks for documents:

<docmgr-config use-entity-types="true" security-factory=

Scrittura (4.4.10.5) Page 149 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

"com.ipicorp.docmgr.security.BaseAclFactory" libname="testlib"
disable-security="false" superuser="admin" database="sqlserver">
<import-dir dir="C:\import\monitor_queue_1" use-xml-metafiles="true"
sleep-seconds="10" />

<import-dir dir="C:\import\monitor_queue_2" use-xml-metafiles="false"
sleep-seconds="10" />

</docmgr-config>

2. Ensure that the following entity type is in the entity-types.xml configuration file. If it is not
present, add it:

<entity-type name="Batches"

title-index="fixed" doc-title-index="9" inherit-parent="false">

<index idx="@"

label="Title" index-type="folder" required="true" type="String"/>
<index idx="9"

label="DocTitle" index-type="document" required="true" type="String"/>

</entity-type>

3. Ensure that the workflow folder contains a workflow called DocMgr.xml (or the workflow-name
that is configured for the import directory) and that it is referenced in the workflow.xml as well.

4. Run SetConfig to activate the Import Daemon.

Import XML Metadata Files

The Import Daemon takes the XML metadata files and attempts to publish the associated document
to the correct folder in DocManager.

This file can be laid out as a hierarchy of folders (mapping the entity-type model) plus the document
resource, or the file can just include a single document resource entry if all the index data is included
that is required to find or create that document's parent path. Versions can be specified by naming
one of the indexes or fields 'Doc Version’ and specifying a number.

Example: Use a hierarchy to map the entity-type model

<resource-op

new-file="/opt/scritturad/files/sampleFiles/TestDocument.pdf" op="create">
<folder-resource entity-type="Counterparty" visible="true">

<index idx="1" label="Counterparty">Bank</index>

<field idx="0" label="Address">100 Broadway</field>

<field idx="1" label="Phone">555-5555</field>

<field idx="2" label="Primary Contact">Bill</field>

Scrittura (4.4.10.5) Page 150 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

<folder-resource entity-type="Product" visible="true">
<index idx="3" label="Product Type">Option</index>
<folder-resource entity-type="Deal" visible="true">
<index idx="4" label="Ref Id">300</index>
<index idx="5" label="Counterparty Ref">57</index>
<document-resource entity-type="Deal"
visible="true">
<index idx="8" label="Doc Date"> 08/08/2014
</index>
<index idx="9" label="Doc Type"> Batch Imported Document
</index>
</document-resource>
</folder-resource>
</folder-resource>
</folder-resource>
</resource-op>
where
« new-file is the full path to the document to migrate
« opisthe operation to perform ("create" is currently the only operation supported)
Be sure to include all the required indexes and fields for each resource in the hierarchy.

In each case, include the index or field number (using the idx attribute), the label, and the value. Also
ensure the values are valid types or the import will not succeed.

Use of the DocMgr.vsd Visio File

The default workflow is called DocMgr and the following illustration represents its . vsd file

.—xML—b:_’ ImageWithXmiControlFile Eitmne
N =

Doc with XML

.—NoXML—bf|magewnhwoxm|Contro|Fi|e|§—Donez—b ¢

Image with no XML

When the import directories have been configured in docmgr-config.xml, the workflow activity
triggered by the file being dropped into the workflow process depends on the value of the attribute
use-xml-metafiles.

Scrittura (4.4.10.5) Page 151 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

If use-xml-metafiles is set to true, the entry point in the workflow will be “Doc with XML".In this
case, this is an xml control file that is dropped and it is processed by the ImageWithXmlControlFile
class tool.

If use-xml-metafiles is setto false, the entry point in the workflow will be "Image with no XML".In
this case, the document itself is dropped in the import directory and it is processed by the
ImageWithNoXmlControlFile class tool.

Audit Trail

DocManager does not have a GUI showing the audit trails like there is in the Scrittura application
(history view). However, the following DocManager functions are audited and stored in the audit
tables.

« folder creation
« document creation
« hyperlink creation
« New version creation
» resource deletion
« file version update
« hyperlink URL update
« update of a resource's metadata (index/field data)
The audit table columns contain the following information for DocManager audit entries.
o ACTIVITY: Create, update, or remove.
o ACTIONTYPE: Currently set to "user"” for all DocManager entries.
« ACTION: This is a message describing the action taken.
o REFTYPE: Set to RESID for all DocManager entries.
« RESID: The DocManager Resource ID.

o REFSEQ: This is not currently used in DocManager auditing. This is used in Scrittura to group a
series of related actions (all related actions are given the same REFSEQ number).

Example 1 - Create a child folder:

"Created Child Folder: [folder title] in [resource id of parent folder] Entity=
[entity type of the folder created]"

"Created Child Folder: Swap in 4801 Entity=Product”
Example 2 - Update metadata for a resource:

"Updated data"

Example 3 - Update a file version:

"Updated Datafile Version: [version #] bytes= [file size]"

"Updated Datafile Version: 1 bytes=142800"

Scrittura (4.4.10.5) Page 152 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

DocManager Faxing and Email

DocManager provides the framework to fax documents.

« Two built-in DocManager faxing JSPs and two email JSPs are provided and can be customized
for your specific faxing and email needs. These JSPs provide a GUI for fax input (such as fax
number, email, and so on) and a post-fax status message.

« Interface methods that all custom DocManager faxing and email implementations must
implement.

GUI Method for Faxing and Emailing

The faxInput.jsp and faxResults.jsp files, both located under jsp/include, provide the user
interface for DocManager faxing. The faxInput.jsp outputs a GUI, letting the user define the
document version, recipient's fax number, and his/her email. The faxInput.jsp can be customized if
there is additional required faxing information. Similarly, emailInputMainSection.jsp and
emailResultMainSection. jsp, also located under jsp/include, are provided for emailing.

Enter Fax Information

Cocument I0: 303
Select Document Yersion: iCurrentVersiunmj

Recipient's Fax Number: [1-800-TEST

Your Email: [email @banka.com

Send Fax I Clearl Cancel l

NOTE: ¥ou will be receiving the fax status via email,

Document Information

Title: Confirmation
Counterparty: Zed
Entity: Bank Two, NA
Product Type: Swap
Ref Id: TEST1
Counterparty Ref: unknown
Doc Date: 07/10/2003
DocType: Confirmation

After sending the fax, the faxResults.jsp displays a status message on whether the fax was sent to
the Fax Server:

This status message is NOT the status of the fax. It is a status message describing whether the
document was successfully sent to the Fax Server to be faxed to the recipient.

Scrittura (4.4.10.5) Page 153 0f 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

Faxing and Emailing Configuration

All DocManager faxing implementations must implement the faxDocument method in the
com.ipicorp.docmgr.fax.DocManagerFaxer interface.

package com.ipicorp.docmgr.fax;

import javax.servlet.http.HttpServletRequest; public interface DocManagerFaxer
{

public void faxDocument(HttpServletRequest request)

throws Exception;

}

There is a similar interface for emailing:

com.ipicorp.docmgr.fax.DocManagerEmail.

DocManager faxing and emailing are configured in docmgr-config.xml by adding the <fax> and
<email> nodes. For more information on these nodes, see <fax> node, on page 134 and <email>
node, on page 134.

<fax>

<fax-enabled>true</fax-enabled>
<fax-class>com.ipicorp.docmgr.banka.SampleDocmgrFaxer</fax- class>
</fax>

<email>

<email-enabled>true</email-enabled>

<email-class>

com.ipicorp.docmgr.banka.SampleDocmgrEmailer

</email-class>

</email>

When faxing and emailing are enabled, Fax Document and Email Document links display in the user
interface resource menu, provided that the user has the appropriate permissions.

DocManager API

This section includes information about DocManager of code usage. A basic description of the
interfaces is provided as well as examples of the processes for creating resources and adding
versions. For other operations, see the Javadoc provided with the Scrittura release.

For detailed information about the DocManager wrapper API, see Appendix D: DocManager
Wrapper API, on page 424.

Scrittura (4.4.10.5) Page 154 of 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

DocManager Interface Configuration Location

All of the DocManager interface classes are located in the com.ipicorp.docmgr.docmgrinterface
package. The ResourceData, FileData, and various DocManager exception classes are located in
com.ipicorp.docmg.util. These packages are all located within the ipidocmgr. jar located in the
\1lib folder of the Scrittura distribution.

How to Call the Resource Interfaces
DocManager resources operations are performed using methods in the following interfaces.
« Generic functionality is available through the
DocmgrResourceInterface.
« Resource-type-specific functionality is available using the resource-specific interfaces:
o DocmgrFolderInterface
o DocmgrDocumentInterface

o DocmgrLinkInterface

Each of these interfaces extends the DocmgrResourcelnterface. Implementations of the interfaces
are accessed using the DocmgrinterfaceFactory.

Example

DocmgrInterfaceFactory docmgrInterfaceFactory

= new DocmgrInterfaceFactory();
DocmgrDocumentInterface docmgrDocumentInterface

= docmgrInterfaceFactory.getLocalDocumentInterface();

API Example: Document Creation and Version Addition

The following is a DocManager API code example for document creation and version addition.
final DocmgrInterfaceFactory docmgrInterfaceFactory

= new DocmgrInterfaceFactory();

final DocmgrDocumentInterface docmgrDocumentInterface

= docmgrInterfaceFactory.getLocalDocumentInterface();

final FileData fileData = new FileData();

fileData.setData(fileContent); fileData.setExtension(extension); fileData.setIndices
(indices); fileData.setFields(fields); fileData.setFullTextSearchEnabled(true);

final ResourceData data
= documentInterface.get(parentlId, fileName);

int id = (data == null)

Scrittura (4.4.10.5) Page 155 0f 430

Administration Guide
Chapter 5: DocManager Configuration and Administration

? documentInterface.create(parentId, fileName, fileData)

: documentInterface.addVersion(data.getId(), fileData).getId();

APl Example: Folder Creation
The following is a DocManager API code example for folder creation.

final ResourceData data = new ResourceData(); data.setIndices(indices);
data.setFields(fields);

docmgrFolderInterface

.create(parentId, folderName, entityTypeName, data);

Scrittura (4.4.10.5) Page 156 of 430

Administration Guide
Chapter 6: User Interface Configuration

Chapter 6: User Interface Configuration

This section provides details about the internals of the Scrittura user interface and the tools available
to configure and customize it.

This section contains the following topics:
« Scrittura MVC Model, below
« General User Interface Configuration, on page 177
« Bulk Screen Configuration, on page 187

« Trade Detail Screen Configuration, on page 196

Scrittura MVC Model

All requests made by Scrittura JSP pages use the Model View Controller (MVC), which mediates the
JSP views and the data in the database.

As a result, any custom JSP pages that require access to the Product Instance variables must use
this controller.

Custom JSP Pages

One Scrittura JSP page can contain a link to another JSP page that can also display the same
Product Instance (PI) variables.

Such links must be built using the controller with the event (e) with a value of "PI". The JSP code
should appear in a single line.

Exmple: Link a JSP Page to another JSP Page

<a target="_new" href="controller?e=pi&v=Variables
&p=<scrittura:value name="CommonReferenceID"/>" > Product Variables

This code creates a hyperlink titled "Product Variables" in the JSP page. It creates a new window
(target="_new") defined by the view configured as Variables (parameter "v in the URL). The
CommonReferenceID value is passed (using the scrittura:value JSP tag) to identify the particular
Product Instance variables to be viewed (the "p" parameter in the URL).

The view defined as "Variables" must be defined as a view in the scrittura-config.xml page. For
example:

<view name="Variables"

type="custom”

view= script=

frameset="/Al1ProductInstanceVars.jsp"/>

Scrittura (4.4.10.5) Page 157 of 430

Administration Guide
Chapter 6: User Interface Configuration

The linked JSP page as defined above can make use of the <scrittura:edit
name="SaveAndClose"/> tag to create a Save button if the linked page includes <scrittura:edit>
widgets.

If the hyperlink to the new page references the Product Instance using the "i" parameter in the URL
instead of the "p" parameter, the tag above creates a Save and Forward button.

Validate View Data

To perform server-side validation of views, you can define validation classes using the validator-
class attribute in the <view> elementin the scrittura-config.xml file. Any validation class should
implement the interface com.ipicorp.scrittura.web.events.SaveEventvalidator as follows:

public interface SaveEventValidator

{

public Map validateEvent(HttpServletRequest request,
Map piVariables)

throws ValidationException;

}

NOTE: Server side validation of views is possible by assigning a validation class to a particular
view.

Add Custom Events
In keeping with the MVC model, you can add custom events to the general Scrittura controller.
To add custom events

1. Create a custom event by extending the com.ipicorp.mvc.EventHandlerBase class.

2. Editthe mvc-extend.cfg file. If there are no custom events, the mvc- extend.cfg file may be
empty, but it still must exist.

3. Add each custom event in the following format:
yourEventName, yourEventClass
Example:
myEventName, com.ipicorp.scrittura.web.events.MyEvent
4. Callthe event from JSPs with forms or links such as:
Run My Event
NOTE: Once the system has been rebuilt and restarted, the Scrittura configuration must be

reloaded using the usual SetConfig process (see Scrittura Administration and Run-Time, on
page 369).

Scrittura (4.4.10.5) Page 158 of 430

Administration Guide
Chapter 6: User Interface Configuration

Configure Application Appearance

This section details the basic ways to configure the appearance of the Scrittura application (such as,
queues). Additional configuration levels are also available and discussed elsewhere in this guide
(such as, bulk screens in Queue Screen Configurations, on page 188).

Customize Queue Columns

The scrittura-config.xml file controls the appearance and links available to users when they open
an activity worklist, including the columns displayed.

For example, a worklist (queue element) might appear in this file as:

<queue name="First Signature" activity="Scrittura.Signature_A">
<column display="Counterparty" variable="Party[B]"/>

<column display="Product Type" variable="ProductDefDisplay"/>
<column variable="TradeDate"/>

<column variable="Trader"/>

<column variable="TradeAmended"/>

<view name="Sign"

type="view" view="/signature_a.jsp"/>

<view name="Tracking" type="custom" view="/tracking.jsp" script="trackingRouter.bsh"
frameset="/trackingFrame.jsp"/>

<role name="signers_a"/>

</queue>

To customize columns
1. Inthe scrittura-config.xml file, add, or re-order <column> elements.
2. Specify (potentially) separate display strings and variable names.

3. After changes to the scrittura-config.xml file, reload the file from the SetConfig screen.

Alternatively, it is possible to define column sets in scrittura-config.xml and use those column
sets within the queue elements. This lets you easily reuse the same set of columns for different
queues as needed.

Display the Latest Annotation in the Queue Screen

When specifying the column information in the queue definition in scrittura-config, if a queue has
a name prefixed by "annotation" it displays the latest annotations from the annotation thread with this
name (annotation_info will display the latest entries in the info thread).

Annotation display can be customized as follows:

Scrittura (4.4.10.5) Page 159 of 430

Administration Guide
Chapter 6: User Interface Configuration

« Use the following convention: _annotation_x_ followed by the thread name, where "x" is the
number of annotations to display (for example, _annotation_5_info) to display. The default
number of annotations is 10.

« Add nohdr to the prefix if Scrittura should not display the user name and date of the annotation
(Lannotation_5_nohdr_info).

Define Worklist Hyperlinks to JSP Views
In the following worklist (queue element) example, the queue definition defines two hyperlinks.
<queue name="First Signature" activity="Scrittura.Signature_A">
<column display="Counterparty" variable="Party[B]"/>
<column display="Product Type" variable="ProductDefDisplay"/>
<column variable="TradeDate"/> <column variable="Trader"/>
<column variable="TradeAmended"/>
<view name="Sign"
type="view" view="/signature_a.jsp"/>
<view name="Tracking" type="custom" view="/tracking.jsp" script="trackingRouter.bsh"
frameset="/trackingFrame.jsp"/>
<role name="signers_a"/>
</queue>
« One "view" type view, "Sign", whose view is defined by signature_a.jsp.

« A'custom" type view,"Tracking", whose view is defined by tracking.jsp, and is using
trackingFrame.jsp as its main frame. The script is run when the user clicks Save or Save &
Forward buttons on the page. This script can be used to update dependent values (such as if
you only want to show the fax number for a fax, or if you change legtype[A] from fixed to float to
enable a whole new set of inputs). It can also do anything you can do in a BeanShell script.

Other view types supported include Edit and Bulk. A History link is also included by default.

The <role> defines those user roles with permission to view documents in the queue. Conditions
may be added to the <role> element to narrow the set of workflow items available to a user.

NOTE: After making changes to the scrittura-config.xml file, reload the file from the SetConfig
screen.

JSP View Requirements
All JSP files must include the following rows at the beginning of the page:
<%@ page language="java" import="java.lang.*" %>

<%@ taglib uri="scrittura3.tld" prefix="scrittura" %>

Scrittura (4.4.10.5) Page 160 of 430

Administration Guide
Chapter 6: User Interface Configuration

When configuring JSP files, you can only define a form once. This means that if your view defined in
scrittura-config.xml, "view="/jsp/review.jsp" has the following form elements, they should
not be present in any other JSP files included by your view JSP:

<scrittura:edit widget="hidden" name="ProductInstanceVersion" />
<scrittura:edit widget="hidden" name="i" />

<scrittura:edit widget="hidden" name="e" />

<scrittura:edit widget="hidden" name="u" />

Use Style Sheets to Customize Application

Scrittura uses a number of style sheets to control the appearance of various aspects of the
application.

The following style sheets are included in an initial deployment.
« Main.css
« mainPage.css
e menu.css
« gueue.css
« SetConfig.css
« sortableTableStyle.css

In addition, JSP files, Product Definition views, and document templates may be customized or
created to invoke entirely new style sheets.

When linked in a JSP file or template, they would be referenced with a path similar to that shown
here:

<link type="text/css" href="/scrittura/stylesheets/docmgr.css">

Change Framesets to Arrange JSP Views

Scrittura comes with standard framed window for pages of type view, which offers a default layout. A
view of type View shows the document on the right, trade details on the left, and annotations on the
bottom. A view of type Edit shows these elements in a different layout.

The following framesets are provided with the Scrittura core distribution.

Frameset Description

ljsp/viewframe.jsp Frameset that provides view, doc, and annotate frames, respectively for
trade details, document, and annotations.

ljsp/viewFrameset.jsp Similarly to the viewframe. jsp frameset, this frameset provides view,
doc, and annotate frames. In addition it also provides a docedit frame in
order to display document edition option on top of the document frame.
The content of the docedit frame is defined by the custom DocControls
view element defined in scrittura-config.xml for that queue.

Scrittura (4.4.10.5) Page 161 of 430

Administration Guide
Chapter 6: User Interface Configuration

To customize the display for elements in a queue, the queue itself must be defined asa "Custom"
type in the scrittura-config.xml file.

In the following example, the "Exceptions" queue defines a link titled "0Open" which leads to a
frameset defined by the file customFrame. jsp. This definition also executes the trackingRouter
BeanShell script each time a user opens a document in the queue.

<queue name="Exceptions" activity="Scrittura.Exceptions">
<column display="Counterparty" variable="Party[B]"/>

<column display="Product Type" variable="ProductDefDisplay"/>
<column variable="TradeDate"/>

<column variable="Trader"/>

<column variable="TradeAmended"/>

<view name="Open"

type="custom" view="/custom.jsp" script="trackingRouter.bsh"
frameset="/customFrame.jsp"/>

</queue>

This particular view could also be defined, using conditions, to apply only to a particular user role.

Set Preferences for Date and Currency Formats

User preferences can be set using the userprefs.jsp JSP page. It allows setting the preferred date
format as well as decimal and thousand separators for currency amounts.

The "Date Input Format" defines the format a user must use when typing a value for a 'date’ variable.
The "Date Output Format" defines the way these dates are presented on screen in queue lists and
other JSP views.

The following are examples of valid formats and corresponding sample entries.

Format Example
MM/dd/yyyy 06/15/2013
d-MMMM-yy 15-June-13
dd/MMMM/yyyy 15/June/2013
MMMM d, yyyy June 15, 2013

Configure User Preferences

The preference behavior is determined by the class:
com.ipicorp.scrittura.util.IpiUserPreferenceManager

This class must be named in the <scrittura-config> element of scrittura-config.xml:

user‘—pr‘eference—manager‘

Scrittura (4.4.10.5) Page 162 of 430

Administration Guide
Chapter 6: User Interface Configuration

="com.ipicorp.scrittura.util.IpiUserPreferenceManager"

The User Preferences screen is rendered by the following hyperlink, defined in the built-in JSP file
menu. jsp.

/scrittura/controller?e=userprefs

Global, User, and Document Format Preferences

Global format settings are determined directly in the <scrittura-config>element of scrittura-
config.xml:

separator="," decimal="."
date-format="yyyy-MM-dd"
date-parse-format="yyyy-MM-dd"

These settings determine the default formats for document generation and views for each user who
has not declared their own set of preferences.

Documents generated from HTML or JSP templates will follow these global settings unless they are
specifically overridden with changes to the following variables on the Product Instance (by Beanshell
or other means):

e _pi DateFormat
e _pi_Separator
e pi Decimal

For example, a Beanshell script called in the workflow could change formats for a particular class of
client:

if (clientLocale.equals("EUR"))

{
_pi_DateFormat = "dd-MMM-yyyy";

}

Admin User Format Preferences

Admin users should not customize their own display preferences as these preferences will trickle
down to all other users.

JSP Tag Library Reference

This section describes the contents of the Scrittura JSP tag library.

Using the JSP Tag Library

The Scrittura tag library contains several custom tags. These tags are used extensively in the views.

To use the library, add the following to your JSP:

Scrittura (4.4.10.5) Page 163 of 430

Administration Guide
Chapter 6: User Interface Configuration

<%@ taglib uri="scrittura3.tld" prefix="scrittura" %>
All the tags support an optional "class" parameter that sets the CSS class of the generated elements.
NOTE: Itis also possible to add custom tag libraries. For this purpose, copy the tag library .t1d

and potentially .jar files in the Scrittura source directory under /custom-
web/customTaglLibs.

Edit Tag

The Edit tag generates an edit control for a product variable.
<scrittura:edit name="variable"

[widget=""]

[rows="#"]

[cols="#"]

[class=""] [excludes=" , , "]

[required="true|false"]/>

"Widget" corresponds to the list of widgets in the Product Definition. If no widget is specified, then the
widget defined in the Product Definition is used. If no widget is defined in the Product Definition, then
a text-box is used.

When enclosed in a <scrittura:foreach> tag, array indexes are specified using "[]", for example
"Party[]". If enclosed within two <scrittura:foreach> tags, array indexes are specified using "[
1[1", forexample. "PartyContact[][]1".

The <scrittura:edit> tagincludes an excludes optional attribute. It goes last in the list, after the
cols optional attribute. The value is a comma delimited list of values to be removed from a drop-down
or radio button list.

These values would not refer to the ordinal numbers of possible choices, such as "excludes=4,5,6".
These values are the actual strings that would otherwise appear in the drop-down, such as "Trader"
or "Finished".

The excludes attribute is also exposed in the Product Definition. <variableEditSpec> has the
optional attribute excludes-1ist. This listis copied directly into the JSP and is only relevant if the
variable is displayed using a drop-down or radio list.

The required attribute (true or false) determines whether or not the user must enter a value in order to
successfully forward a workitem out of a manual activity. Blank values are rejected.

Scrittura supports a drop-down list of available images. For example, the following JSP code will list
the titles of all of the Image documents in all of the Image folders in DocManager.

<scrittura:edit name="myImage" widget="dropDownList"/>

Scrittura adds enhancements to the SaveAndClose submit buttons (Save & Fwd, Save, Save &
Close, and Close buttons).

Scrittura (4.4.10.5) Page 164 of 430

Administration Guide
Chapter 6: User Interface Configuration

« To call a JavaScript function on a submit button, use the following attributes:
o savefwdjscript
o savejscript
o saveclosejscript
o closejscript
The following example calls a JavaScript function when the Save &Fwd button is pressed:
<scrittura:edit name='SaveAndClose’
savefwdjscript="myJavaScriptFunction()" cols='4" >
Save Buttons
</scrittura:edit>

« To show a different display value on a submit button (for example, Save & Forward instead of
the Save & Fwd default), use the following attributes:

o savefwdvalue

o savevalue

o saveclosevalue
o closevalue

Other areas of Scrittura are expecting the default display values (Save & Fwd, Save, Save &
Close, Close) when the form is submitted. To work around this, use JavaScript to set the value
of the SaveAndClose variable to one of the default values before the form submits

The following example displays a Save & Forward button, instead of the Save & Fwd default:
<scrittura:edit name='SaveAndClose’
savefwdvalue="Save & Forward" cols='4"' >
Save Buttons
</scrittura:edit>

« Todisable a button, use the following attributes:
o savefwddisable
o savedisable
o saveclosedisable
o closedisable
The following example disables the Save button:
<scrittura:edit name='SaveAndClose'
savedisable="true" cols='4"' >

Save Buttons

Scrittura (4.4.10.5) Page 165 of 430

Administration Guide
Chapter 6: User Interface Configuration

</scrittura:edit>
« Torename the SaveAndClose input variables, use the following attribute:
o saveandclosename
The following example renames the default SaveAndClose input to submitButtons:
<scrittura:edit name='SaveAndClose'
saveandclosename="submitButtons" cols="'4" >
Save Buttons

</scrittura:edit>

Value Tag

The Value tag outputs the formatted text of variable (or, in the case of Image variables, the
image itself).

<scrittura:value [class="style"]

[changeclass="style"] [escapespecialchars="true | false"] name="variable" />
where,

o class is the style name for unmodified variables

o changeclass is the style name for modified variables.

o escapespecialchars determines whether the tag will escape special characters like <, >, ",
or & for the outputted text. This parameter is false by default.

When enclosed in a <scrittura:foreach> tag, array indexes are specified using "[1", for
example "Party[]".Ifenclosed within two <scrittura:foreach> tags, array indexes are
specified using "[][1", for example. "PartyContact[][]".

Scrittura creates generated output such that the value is displayed using the
<td.valueCell> class from the style sheet.

Scrittura adds support for image variables. For example, to display the image documentin
25 by 25 pixel area, the value tags would be formatted as:

<scrittura:value name="myImage" valuetype="Image" imageheight="25"
imagewidth="25" />

To compress and display the document to half of its natural size, for example, the value tags
would be formatted as:

<scrittura:value name='
imagewidth="50%" />

myImage " valuetype="Image" imageheight="50%"

Label Tag
The Label tag outputs the formatted text label of variable.

<scrittura:label name="variable" [class=""] />

Scrittura (4.4.10.5) Page 166 of 430

Administration Guide
Chapter 6: User Interface Configuration

where,
« name is the display name of a variable defined in a Product Definition.

« class is the style name for the label display.

When enclosed in a <scrittura:foreach> tag, array indexes are specified using "[]", for example
"Party[]". If enclosed within two

<scrittura:foreach> tags, array indexes are specified using"[][1", for example. "PartyContact[]
[]".

DocManager Document Tag

This tag creates a table with links to each of the documents in the DocManager folder for the Product
Instance on the current page.

<scrittura:dmsdocs style="dms"
[indices=""]
[fields=""]
[changedefaultdoc=""]
[defaultdocroles=""1/>
where,
« style mustbe dms. dms is currently the only supported value

« indices defines the value for each of the listed index fields to be added to the display. Multiple
index fields must be separated by a space.

« fields adds to the display, for each document, the value for each of the listed field indexes.
Multiple field indexes must be separated by a space.

« changedefaultdoc, optional, specifies whether to display a radio button in front of each
document resource. The default is false, meaning that the radio button does not display. The
selected document is the default document resource for the current Product Instance. By
clicking manually on another radio button, one can change the default document. Further
document generation steps in the workflow might change the default document again and
overwrite the manual selection.

« defaultdocroles, optional, defines the user role that has access to the radio buttons in front of
document resource and can manually change the default document. Supported values are " or
avalid role.

These indexes and index fields are configured in the entity-types.xml file.
For example, if entity-types.xml includes the following configuration:
<entity-type name="Counterparty"

title-index="1" doc-title-index="9"

inherit-parent="false">

<index idx="0" label="Title"

index-type="folder" required="true" type="String"/>

Scrittura (4.4.10.5) Page 167 of 430

Administration Guide
Chapter 6: User Interface Configuration

<index idx="1" label="Counterparty"
index-type="folder" required="true" type="String"/>
<index idx="8" label="Doc Date"
index-type="document" required="false" type="Date"/>
<index idx="9" label="DocType"

index-type="document"” required="true" type="String"/>
<field idx="0" label="Address"

field-type="folder" required="false" type="String"/>
<field idx="1" label="Phone"

field-type="folder" required="false" type="String"/>
<field idx="2" label="Primary Contact"

field-type="folder" required="false" type="String"/>

</entity-type>

then the following dmsdocs JSP tag creates, in the display, a hyperlink containing the title and
version number of each document for the Product Instance, along with each document date, a phone
number, and a primary contact name.

<scrittura:dmsdocs style="dms" indices="8" fields="1 2"/>

Conditional Tag
The conditional tag is used to evaluate conditions pertaining to variable(s).

<scrittura:if condition="BSH Conditional Expression">

</scrittura:if>
The body is included if the BSH expression evaluates to true.

If enclosed with a <scrittuta:foreach> tag (or tags), array indexes in the BSH condition should be
expressed using the built-in variables "i1" and "i2". For example "Party[i1]".

An example using "if" and "else":

<scrittura:if condition='Variablel.equals (\"Applicable\")'>
<TR>

<TD>

Variable Text: <scrittura:value name="Variablel"/>

</TD>

</TR>

Scrittura (4.4.10.5) Page 168 of 430

Administration Guide
Chapter 6: User Interface Configuration

</scrittura:if>

<scrittura:else>

<TR>

<TD> Some other text </TD>

</TR>

</scrittura:else>

An example using "if" and NOT equals (which requires an exclamation mark):
<scrittura:if condition='!Variablel.equals (\"Applicable\")'>
<TR>

<TD>

Variable 1 is not applicable </TD>

</TR>

</scrittura:if>

The condition parser used for the scrittura:if tag is the same as the one used to parse conditional
transitions in the workflow. For more information, see Condition Parser, on page 109.

Search List Tag

Search List tag outputs a <select> form object with name="parameter name" and the value is the
list of valid search variables from the Scrittura configuration.

<scrittura:searchvars name="parameter name" [class=""] />

Iteration Tag
This tag iterates over the enclosed body once for each element of the named variable array.
<scrittura:foreach name="> ... </scrittura:foreach>
where,

« name is the name of the array variable to iterate over.
For a 2D array, enclose a second <scrittura:foreach> tag and specify the name as "name[]".
For example:

e <scrittura:foreach name="array">

e <scrittura:foreach name="array[]">

Open Link in Window Tag

You can create a hyperlink that opens a new window "target" to the page "href" using the window
open options "options".

<scrittura:a target=

Scrittura (4.4.10.5) Page 169 of 430

Administration Guide
Chapter 6: User Interface Configuration

href="" options= [class=""]>
Label

</scrittura:a>

Barcode Tag
Applies to HTML, JSP, and WordML templates. DOCX templates handle barcodes differently.
The barcode tag outputs a barcode in a Scrittura generated document (such as Confirmation).
<scrittura:barcode value="" [code=""] [size=""]/>
where,

« value isthe string to be encrypted in the barcode.

« code must be "128", "39", or "DataMatrix". "128" and "39" generate a 1D barcode. "DataMatrix"
is used for 2D barcode generation. The default value is 128.

« sizeisthe size of the barcode, in pixels.
The following is a sample of a 1D barcode:
<scrittura:barcode value="stringToEncrypt" code="128"/>
The following is a sample of a 2D barcode:
<scrittura:barcode value="stringToEncrypt"

code="DataMatrix" size="100"/>

Preview Tag
Applies to HTML, JSP, and WordML templates. Not supported for DOCX templates.

The preview tag displays a hyperlink in JSP that will allow you to preview the document template
"name" for the current Product Instance.

<scrittura:preview [class=""] [name=""] />

NOTE: The template name has to exist in the Product Definition for that Pl in order to work.

Example

The tag <scrittura:preview name="Confirmation"> opens a new browser window and shows the
generated document "Confirmation" based on the current data and embedded business logic.

Redline Tag

Redline tag outputs a hyperlink that allows random redlining of all versions of an existing document
resource for the current Product Instance. The document and its version have to be generated by
Scrittura's document generation engine in order to be eligible for redlining.

<scrittura:redline name= includeFormvars="" [mode=""]> />

where,

Scrittura (4.4.10.5) Page 170 of 430

Administration Guide
Chapter 6: User Interface Configuration

« name is the title of the document (for example, "Confirmation"), being used for redlining. This

exact title has to be defined in the corresponding Product Definition as well.

includeFormvars specifies whether the redlining functionality will include any edited, but not yet
saved variables in the current version of the document. This attribute should only be set to
"true", when redlining is used in a Data Enhancement screen.

mode (optional), when being set, it's diffing the whole document against each other. If that
attribute is not being set, redlining is only evaluating differences in variable values as opposed
to the whole document.

Prerequisites

The redline tag requires additional parameters to be configured in the JSP, from where it is being
used. The following is a sample for such a JSP:

1.

Include the following at the top of the JSP:
<%@ page language="java" import="java.lang.*" %>
<%@ taglib uri="scrittura3.tld" prefix="scrittura" %>

Add the following parameters:

<input type="hidden" name="d" value="">

<input type="hidden" name="dt" value="">

<input type="hidden" name="includeFormVars" value="">

<input type="hidden" name="s" value=

>
after

<form method="post" action="controller">
<scrittura:edit widget="hidden"
name="ProductInstanceVersion"/>
<scrittura:edit widget="hidden" name="i"/>
<scrittura:edit widget="hidden" name="e"/>

<scrittura:edit widget="hidden" name="u"/>

3. Declare the redline tag in the JSP with its corresponding attributes and values.

Current Queue Tag

The currentqueue tag creates a hyperlink to the document in its current manual queue. If the
document is currently in more than one queue, the link points to the most recent queue.

<scrittura:currentqueue [class=""]/>

History Tag

The historylink tag outputs a hyperlink to the current Product Instance's history view.

<scrittura:historylink [class=""]/>

Scrittura (4.4.10.5) Page 171 of 430

Administration Guide
Chapter 6: User Interface Configuration

Loop Tag

The loop tag uses BeanShell to evaluate a condition on the Product Instance attached to the request
as "pi". If the condition evaluates to true, the body is included. Otherwise the body is discarded.

<scrittura:piloop/>
Example:

This code extract shows how to create a table with variable values of multiple Pls in a single
document (that is, Multi Chaser).

<center>

<table border="1" width="80%" cellspacing="0">
<tr>

<td>0Our Ref #</td>
<td>Your Ref #</td>
<td>Product Type</td>
<td>Trade Date</td>
<td>Notional Amount</td>
</tr>

<%

String partyB;

partyB = (String) pi.getDisplayValue("Party[B]", false); log.debug("Party[B]=" +
partyB);

ProductInstanceLocalHome piHome = IpiScritturaFactoryUtil.getFactory().
getProductInstancelLocalHome();

List pis = new ArrayList();

for(int i = @; i < crids.length; i++)

{

pis.add(piHome.findByCommonRefId(crids[i]));

}
log.debug("Results have:

+ pis.size()); String piList = "";
%>

<scrittura:piloop>

<tr>

<td><scrittura:value name="CommonReferenceID"/> </td>

<td><scrittura:value name="CounterpartyRefNo"/> </td>

Scrittura (4.4.10.5) Page 172 of 430

Administration Guide
Chapter 6: User Interface Configuration

<td><scrittura:value name="ProductDefDisplay"/> </td>
<td><scrittura:value name="TradeDate"/> </td>
<td><scrittura:value name="Currency[A]"/>

<scrittura:value name="CurrencyAmount[A]"/> </td>
</tr>

</scrittura:piloop>

</table>

</center>

File Upload Tag

File Upload tag creates a link to allow users to upload a file to add to the folder or to replace a
document for a trade. This tag can be used on any view. After the file is uploaded, the user is returned
to the same view.

<scrittura:fileupload title="Manual Confirm"

setdef=

logic=
role=""
checkVers=""/>
where,

o titleis the title of the document (such as, "Confirmation"), when being stored in DocManager.
If the document resource already exists, it is either being replaced or versioned. If the document
does not exist, a new resource is created. A new version of the document is created if the trade
version does not match the document version stamp in DocManager.

« setdef specifies whether the document will be set as the "Default" document for the trade. If set
to "true", the document will be set as the "Default" document for the trade.

« logic is the name of a BeanShell script to run after the document has been successfully
uploaded.

« role defines the role that has access to this function. Supported vales are " or a valid Scrittura
role. If a role is defined, only that role has access. If the user is not in the role, the link is not
shown. If the role is " the upload link is available to all users of the view.

« checkVers specifies whether the document will enable versioning of the uploaded documents.
Set to "false" to enable versioning of the uploaded document.

Example:

<scrittura:fileupload title="Upload Memo"
setdef="false"

logic="setUpload.bsh"

role="signers_a"

Scrittura (4.4.10.5) Page 173 of 430

Administration Guide
Chapter 6: User Interface Configuration

checkVers="false"/>

NOTE: This tag is associated with the built-in fileupload.jsp. This JSP can be further customized
to have a drop-down list of predefined document titles instead of a free text field.

Preload Variable Tag

The preload variable tag explicitly forces a reload from the database for each variable in the Product
Instance.

<scrittura:preload />
This tag explicitly forces a reload from the database for each variable in the Product Instance.

The preload tag should be used in rare cases where a Product Instance variable is changed by the
JSP and the new value needs to be displayed. Since the JSP holds the old value of the variable, the
preload tag allows loading the new value of the variable.

NOTE: While the name of the tag is "preload", the action is actually a 'reload' of the JSP page.

CAUTION: This technique reloads all of the variables from the database so it is a potentially
expensive action and should be avoided.

Counter Tag

The counter tag maintains sets of counters throughout a document. Using this tag, you can impose
an "outline" structure without explicitly knowing which value is "next".

<scrittura:counter type="123|abc|ABC|iii|III" [reset="true"]/>
Five counters can be maintained through a document:
« 123=1,2,3 ...

« abc=a,b,c,...z,aa,bb,cc,...zz,aaa....

« ABC=AB,C,...
o i =1, i, dil, v, ...
o HI=LILNLIV, ..

Use the reset="true" specification to reset a given counter. The following is sample JSP code:
Section: <scrittura:counter type="123"/> Subsection: <scrittura:counter type="abc"/>
<scrittura:counter type="abc" reset="true"/>

Section: <scrittura:counter type="123"/> Subsection: <scrittura:counter type="abc"/>
The above sample produces the following output:

Section: 1

Subsection: a

Section: 2

Scrittura (4.4.10.5) Page 174 of 430

Administration Guide
Chapter 6: User Interface Configuration

Subsection: a

This tag works in iterations (foreach tags) and over included JSP pages.

Readwrite Tag

The readwrite tag works like the scrittura:if tag, keying off the user's permission inside the queue
displaying the JSP page.

Example:

<scrittura:readwrite access="write">

This is seen by users with write access to this queue
</scrittura:readwrite>

<scrittura:readwrite access="read">

This is seen by users with read-only access to this queue

</scrittura:readwrite>

Signature Tag

The signature tag specifies whether to display a link to access the Signature applet and sign Inbound
TIFF documents.

<scrittura:signature newwindow="true | false"

source=

previewSource=
dest=llll image=llll
previewImage="" />

The signature tag has the following parameters.

Parameter Required/ Description
Optional
newwindow Optional The signature tag launches the applet in the same frame by
default. Set this parameter to true to display the appletin a new
window.
source Optional DocManager title of the source document to sign.

If unspecified, the default Pl document will be loaded by the
applet.

previewSource Optional DocManager title of the document loaded by the applet, which
defaults to the source document if unspecified.

dest Optional DocManager title of the resulting document once signed. If

Scrittura (4.4.10.5) Page 175 0f 430

Administration Guide
Chapter 6: User Interface Configuration

unspecified, this parameter takes the same value as the source
document.

image Optional Signature image used to sign the document. If unspecified, this
parameter defaults to the image associated with the signatory
defined by the user name suffixed by “-inbound”, such as
“signerA-inbound”.

previewlmage Optional Image used to preview the signature while signing the
confirmation. If unspecified, Scrittura will attempt to take the
image associated with the signatory preview-inbound.

Queue Search Tag

The queue search tag lets you to display standard and advanced queue searches in the built-in
bulk.jsp and queue.jsp files.

<scrittura:queuesearch queuename="queue name" searchtype="qstandard | gadvanced"/>

Document Format Tag

The document format tag provides TIFF formatting functionality such as rotation and splits. A
"Document Formatting" link appears on the JSP where this tag is applied. The link will not be visible if
the document is not of type TIF or TIFF.

<scrittura:documentformat [ticketqueue="scrittura_tickets | scrittura_tickets2 |
scrittura_tickets3 | scrittura_tickets4 | scrittura_tickets5"]/>

where,

« ticketqueue (optional) defines the name of the ticket queue. By default all split TIFF
documents are received from the scrittura_tickets JMS queue. If required, other ticket queues
may be used by specifying this parameter.

For this tag to work, the "q" parameter must be passed as an argument. This parameter can be set in
the frameset of that queue, as shown in the following sample:

Assuming the queue definition in scrittura-config.xml contains the following view,
<view name="View"

type="custom"

view="/Inbound/Incoming_Documents.jsp"

script=""

frameset="/Inbound/indexframe.jsp"/>

The indexframe.jsp JSP should then contain the following:
<frameset name="docview" cols="50%,*">

<frame

name="view" src="controller?e=view&q=<%=request.getParameter("q")%>

&i=<%=request.getParameter("i")%>

Scrittura (4.4.10.5) Page 176 of 430

Administration Guide
Chapter 6: User Interface Configuration

&v=<%=request.getParameter("v")%>
&crid=<%=request.getParameter("crid")%>" />
<frame name="doc"

src="<%= request.getAttribute("docurl™)%>" />

</frameset>

General User Interface Configuration

In addition to the edition of JSPs using the Scrittura tag library or the ability to extend the MVC mode,
Scrittura also provides flexible configurable options for the user interface, including but not limited to
the following.

« Workflow views and queue views
« Configuration of custom panels used in bulk screens and trade detail screens
« Search result pages (“queue style search”)
« Bulk screens
« Trade detail screens
Configuration of these options is completed by modifying the following configuration files.
e general-ui-config.xml
e scrittura-queue-view-config.xml
e scrittura-config.xml
e economic-panels-config.xml

NOTE: If these files are not modified, existing user interface configuration capabilities remain in
place.

The general-ui-config.xml configuration file defines how the workflows will be visually structured
on the different screens (groups and list of queues, etc.) and specifies the different objects and
components that can be used in the different screens, such as custom panels for bulk screens and
trade detail screens.

The general-ui-config.xml file has the following structure:
<queue-action-config>

<workflows>

<workflow ...>

<section ...>

<queue ...>

</section ...>

</workflow ...>

Scrittura (4.4.10.5) Page 177 of 430

Administration Guide
Chapter 6: User Interface Configuration

</workflows>

<search-queue>

</search-queue>

<quick-search-queue>

</quick-search-queue>

<bulk-panels>

<panel ... />

</bulk-panels>
<trade-panels>

<panel ... />
</trade-panels>
<audit-filters>

<filter ... />

</audit-filters>

</que-action-config>

Workflow View and Queue Lists

The purpose of the <workflows> section is to visually structure the different workflows into lists of
queues and group them under different sections to organize the display. The configuration is

rendered by a JSP screen, queues. jsp.

For each queue in a workflow, the next steps that a user can manually send a trade to can be defined.
A Pl variable can be specified to capture the selection for use by workflow transitions.

The <workflows> node can take any number of <workflow> child nodes. A <workflow> node has

the following attributes.

Attribute

name

Scrittura (4.4.10.5)

Description

Workflow name, such as Outbound.

Page 178 of 430

Administration Guide
Chapter 6: User Interface Configuration

label Optional Workflow title to display.

tooltip Optional Quick description that displays when you hover over the
option in the user interface.

nextStepVariable Required Name of the variable to be populated with the next step for
routing purposes.

Example
<workflow name="Outbound" label="Outbound Queue List"
tooltip="Workflow tracks documents within Scrittura" nextStepVariable="queueRoute" >

The <workflow> node can have as many <section> child nodes as required. A <section> node has
the following attributes.

Attribute Required/ Description

Optional
name Required Queue name, which must match the name attribute of the
corresponding <queue> element defined in scrittura-config.xml.
label Optional Section title to display.
tooltip Optional Quick description that displays when you hover over the option in the

user interface.

Queues belonging to a section are defined as <queue> nodes and are children of the <section>
node. A <queue> node has the following attributes.

Attribute Required/ Description
Optional
name Required Workflow name, such as Outbound.
tooltip Optional Quick description that displays when you hover over the option in

the user interface.

The following can be defined for each queue.

« Action buttons are available in trade detail screens, such as Save, Save & Forward, Close,
and so on. Entering an annotation can be enforced for each of the defined buttons. This
functionality works in conjunction with a specific action panel.

« Next steps provide the definition of the list of next steps that a user can send a trade to upon
Save & Forward. Upon action, the Pl variable defined as the nextStepVariable attribute of the
workflow tag is populated with the selection when a trade that can be used by the workflow
transitions is moved.

« Custom sections can be defined in case further custom configuration is required for the
various custom panels.

Scrittura (4.4.10.5) Page 179 of 430

Administration Guide
Chapter 6: User Interface Configuration

Action buttons are defined as <action-button> tags under the <action- buttons> element. The
<action-buttons> node has the following attributes.

Attribute Required/ Description

Optional
annThread Optional Annotation thread to display in the trade detail screen with the
possibility to enforce annotation input in that thread when leaving
the Trade Detail screen.
annLabel Optional Option label that displays in the user interface. The name of the

thread can be quoted using {annThread}.

<action-button> tags have an empty body and the following attributes.

Attribute Required/ Description
Optional
id Required Action identifier.
display Required Button label.
endorceAnn Optional Boolean flag that forces users to enter an annotation when this

button is actioned. Default: false

inRoles Optional Comma delimited list of roles for which this button will display. If
unspecified, the button will display for all users except the ones
defined by the excludeRoles attribute.

excludeRoles Optional Comma delimited list of roles for which this button will not display.
If unspecified, the button will display for all roles defined by the
inRoles attribute.

Next steps are defined as <next-step> tags under the <next-steps> element. <next-step> tags
have an empty body and the following attributes.

Attribute Required/ Description

Optional
value Required Value that is assigned to the next step variable.
display Optional Label that displays in the user interface for this action.
singleTradeHandler Optional Custom process handler run for each trade when this

option is selected.

inRoles Optional Comma delimited list of roles for which this step will
display.
excludeRoles Optional Comma delimited list of roles for which this step will not
display.
Example

Scrittura (4.4.10.5) Page 180 of 430

Administration Guide
Chapter 6: User Interface Configuration

<workflows>
<workflow name="Outbound"

label="0Outbound Queue List" tooltip: "Outbound Workflow Queue"
nextStepVariable="queueRoute">

<section name="ConfirmValication" label="Confirm Validation" tooltip="Confirm
validation.">

<queue name="Pending Review" tooltip="First review queue.">
<action-buttons annThread="Comments">

<action-button id="Save"

display="Save" inRoles="admins" excludeRoles="" />
<action-button id="SaveAndForward"

display="Save & Fwd" inRoles="admins" excludeRoles="" />
</action-buttons>

<next-steps>

<next-step value="validlstLevel™

display="Validation 1st Level" inRoles="admins" excludeRoles="'" />
<next-step value="vregen"

display="Re-generate"

</next-steps>

</queue>

</section>

<workflow>

</workflows>

Custom sections are defined as <custom-section> tags under the <queue> tag. A <custom-
section> tag has the following unique attribute.

Attribute Required/ Optional Description

id Required Custom section identifier.

Custom sections may contain a list of parameters that can be used for custom purposes. Each
parameter is defined as a <param> tag, child of the <custom- section> tag, <param> tags have
empty bodies and the following attributes.

Attribute Required/ Description
Optional

Scrittura (4.4.10.5) Page 181 0of 430

Administration Guide
Chapter 6: User Interface Configuration

name Required Name of the parameter.

value Optional Value associated with the parameter.

display Optional Label that displays in the user interface for this
action.

singleTradeHandler Optional Custom process handler run for each trade

when this option is selected.

inRoles Optional Comma delimited list of roles for which this
action will display. If unspecified, the action will
display for all users except the ones defined by
the excludeRoles attribute.

excludeRoles Optional Comma delimited list of roles for which this
action will not display. If unspecified, the action
will display for all roles defined by the inRoles
attribute.

NOTE: Custom sections are a configuration framework in place for custom use in case custom
panels require configurable parameters. No logic is actually coded in the core platform, but must
be handled by the client code.

Example
<custom-section id="subpanel">

<param name="varl"

value-"varl" display="varl" processHandler="" inRoles='"' excludeRoles="" />
<param name="var2"
value-"var2" display="var2" processHandler="" inRoles='"' excludeRoles="" />

</custom-section>

Bulk and Trade Panels

Itis possible to define and configure the panels to be used in bulk screens and trade detail screens.
Panels for bulk screens are defined as <panel> tags under <bulk-panels>, whereas panels for trade
detail screens are defined as <panel> tags under <trade-panels>.

A <panel> tag has the following attributes.

Attribute Required/ Description
Optional
name Required Name of the panel, referenced in the views defined for

queues in scrittura- config.xml.

Scrittura (4.4.10.5) Page 182 of 430

Administration Guide
Chapter 6: User Interface Configuration

page Required JSP that implements this panel.

bulkTradeHandler Optional Only available for bulk panels. This attribute associates a
handler to the panel.

Example
<panel name="Ink"

page="/jsp/structures/panels/linkComponentPanel. jsp"
bulkTradeHandler="com.iwov.gcm.scrittura.web.queue.processhandlers.StructLink" />

Panels can be referenced in scrittura-config.xml for bulk screen and trade detail screen views. The
base JSPs are bulkBase.jsp and tradeDetails.jsp is provided with the distribution The panels
parameter of these pages is a comma delimited list of panel names (as defined in general-ui-
config.xml) that defines which panels will display in the user interface.

<view name="Bulk Review"

type="bulk"
view="/jsp/bulkBase.jsp?panels=next"/>

<view name="Review"

type="custom"
view="/jsp/tradeDetails.jsp?panels=act,eco"/>

The following examples of pre-wired bulk panels are available (all are located under
/jsp/structures/panels).

JSP Description

editStructurePanel.jsp Edit a structure.
addComponentPanel.jsp Add a component to a structure.
linkComponentPanel.jsp Link components as a structure.
unlinkComponentPanel.jsp Unlink components from a structure.

The following examples of pre-wired trade detail screen panels are available (all are located under
/jsp/panels).

JSP Description

structurePanel.jsp Structure information.

actionPanel.jsp Action panel that displays action buttons.
economicPanel.jsp Economic panels.

docEditPanel.jsp Document editing panel.
docManager.jsp DocManager documents.

Scrittura (4.4.10.5) Page 183 0f 430

Administration Guide
Chapter 6: User Interface Configuration

miscPanel.jsp Access to history and product dump.

Panel JSPs and Process Handlers

From a JSP perspective, panels are fragments of JSPs. Bulk panels are nested within a single
general form (located in /jsp/queue/queue. jsp) and cannot directly contain forms, whereas trade
detail panels are independent and may contain their own forms.

Process Handlers are similar to event handlers. They are Java classes that handle any logic required
upon submitting a form from a trade detail panel or bulk panel.

There are two types of process handlers that serve two distinct purposes:

« Bulk Trade Processing is performed from the bulk screen when the same action applies to a
list of trades selected by the user. The action logic is performed by the process handler from
which the action originates. This type of Process Handler is called a Bulk Trade Handler and is
specified by the bulkTradeHandler parameter of the bulk panel itself.

Bulk Trade Handlers extend the class BaseBulkTradeHandler located in
com.iwov.gcm.scrittura.web.queue.processhandlers.

The process handler logic is called by the bulk event queue_action that first performs the
validation (handler’s validateBulk() method) prior to running the processing itself (handler’s
executeBulkProcessing() method).

In case the validation is unsuccessful, no processing stops is performed. The
executeBulkProcessing() method may return STOP_PROCESSING or CONTINUE_PROCESSING, both
being integer values defined in BaseBulkTradeHandler. In the first case, the processing will
stop after executing the handler; in the second case the processing will continue with
forwarding trades to their next destination. Note that the relevant routes should be in place in
the workflow. The executeBulkProcessing() method always executes within the event
transaction, hence the whole transaction will be rolled back if the processing fails for any of the
trades.

Alternatively, you may want to isolate the processing for each trade to be performed within its
own transaction. As a result, any failure during the trade processing will just impact the trade
currently processed rather than the whole series. Such processing specific to a single trade is
performed by the executeTradeSpecificProcessing() method.

Depending on what action the bulk panel is supposed to perform, you should either override
executeTradeSpecificProcessing() orexecuteBulkProcessing(), butnotboth onthe
same handler.

« Single Trade Processing applies when a trade is forwarded to its next destination, when
clicking “Save & Forward” from the trade detail screen or, as part of a bulk move, from the
queue screen. Prior to the actual move, some logic can be applied that is performed by the
process handler associated to the selected next step. This type of Process Handlers is called a
Single Trade Handler and is specified by the singleTradeHandler parameter to the next-step
tags.

Single Trade Handlers extend the class BaseSingleTradeHandler located in
com.iwov.gcm.scrittura.web.queue.processhandlers. The handlerlogicisin the
executeSingleTradeProcessing() method.

Scrittura (4.4.10.5) Page 184 of 430

Administration Guide
Chapter 6: User Interface Configuration

Search Results Pages

The queue-style search is the usual Scrittura search feature but whose results are displayed using
the bulk screens, hence enriching the search with all bulk screen capabilities.

The queue-style search is a result page can be considered as a queue, which does not belong to any
workflow, and can therefore be configured similarly to workflow queues.

As part of the configuration, the same sort of configuration as for workflow queues can be added to
general-ui-config.xml. The Quick Search is configured under the <quick-search-queue> tag and
the Advanced Search is configured under the <search-queue> tag—both are configurable in the
same manner as the <queue> tag.

For information regarding full configuration of the Queue Style Search feature, see Search and
Reporting, on page 220.

Audit Tracking Screens

Custom filters can be defined to aggregate audit annotations and display them in an organized
manner.

A list of available filters is defined in general-ui-config.xml.

Pre-Wired Filters

All available filters are located in the package com.ipicorp.scrittura.web.tracking.filters.
The following filters are provided with Scrittura.

Filter Class Description

FilterAmendedFields Displays the audit for amended values.
FilterDocumentGeneration Displays the audit for document generation.
FilterQueueArrival Displays queue arrival events.
FilterSignatures Displays the signature-related audit.
FilterTradeEvents Displays trade events.
FilterUserWorkflowMovements Displays user workflow actions.

Extension Mechanism

Custom filters can be created and added to the list of available filters. A custom filter should extent
the abstract class AbstractFilter, located in the package
com.ipicorp.scrittura.web.tracking.filters.

The following methods must be implemented.
public abstract void setFilterCriteria();

public abstract TrackingEntry parseEntry(AuditData ad);

Scrittura (4.4.10.5) Page 185 0f 430

Administration Guide
Chapter 6: User Interface Configuration

The setFilterCriteria() method lets you define filter criteria on the following AuditData fields
when parsing audit records.

« actionType

« action

¢ uUsername

« activity
Methods are available in AbstractFilter to set up the required criteria.
public void setFilterActionTypes(String [] values, String [] ops, boolean orClause);
public void setFilterActions(String [] values, String [] ops, boolean orClause);
public void setFilterUsernames(String [] values, String [] ops, boolean orClause);
public void setFilterActivities(String [] values, String [] ops, boolean orClause);

The corresponding SQL query is generated behind the scenes using the method information. For
these methods, the following parameters are used.

Parameter Description
values Array of values for the corresponding criteria.

ops List of corresponding operators, (such as IN, NOT IN, etc.) to build the SQL
clauses. If null is passed instead, the operators will default to "=", or LIKE.

orClause When set to true, coordinates the clauses with an OR.

The parseEntry() method takes an AuditData object as an input and must return a new
TrackingEntry object. This lets you unify and reword the existing audit records.

The following TrackingEntry constructors are available.
public TrackingEntry(Date date, String type, String user, String action);

public TrackingEntry(Date date, String type, String user, String varname, String
oldvalue, String newValue);

The following parameters are used.

Parameter Description

date Audit record date.

type Audit record type.

user User who triggered the audit.

action Audit action.

varname oldValue, newValue Variable name along with its old and new values.

Scrittura (4.4.10.5) Page 186 of 430

Administration Guide
Chapter 6: User Interface Configuration

Bulk Screen Configuration

The Bulk Screen framework is a user interface framework that lets users act on trades in bulk,
performing business tasks involving multiple trades in single interactions. The business tasks that
can benefit from this framework include supervisor signing, allocating, and dispatching multiple
trades in one action.

Bulk Screen Functionality

The configuration of menus, queues, and columns displayed in Queue Views are an integral part of
the Scrittura core platform. This configuration is established in the scrittura-config.xml file.
The Bulk Screen framework introduces an enhanced level of flexibility to the Scrittura user interface
by enabling complete control of the following aspects of queue screen appearance.

« Style. Select custom styles and preferences
« Filtering. Control dynamic column filtering
« Display. Access extensible formatting capabilities for column fields

« Data Mapping. Control type of data displayed

The configuration of the Bulk Screen framework is performed in a separate configuration file, the
scrittura-queue-view-config.xml file, instead of the scrittura-config.xml file. The system
combines the configuration set in both files to create the resulting queue screens.

Custom Action Panels

Custom action panels can be defined based on implementation requirements. A typical custom
action panel can specify further attributes of an action button in order to apply the attribute and/or
perform the action on the list of selected trades.

When you perform a custom action on items in bulk, a progress screen displays, informing you of the
success or failure of the action on each trade. If an error occurs during the attempted action, that
information displays on- screen.

Any number of custom action panels can be defined and included in one or more Bulk Screens. The
development and integration of custom action panels are detailed in the sections within User
Interface Configuration, on page 157.

Navigation Bar

The navigation bar identifies the following:
« Number of items displayed per page.
« Current page, with the ability to switch directly to a different page.
« Number of trades displayed per page.

« Current filter applied to the page, with the ability to switch filters.

Scrittura (4.4.10.5) Page 187 of 430

Administration Guide
Chapter 6: User Interface Configuration

« Create a new filter.
« Update afilter.
« Delete afilter.

« Export the filter as a Microsoft Excel file.

Settings are applied to an individual queue only. Different settings can be applied to different queues.

Trade List

The trade list occupies the main portion of the screen. A check box displays on each line, letting the
user select the trade and apply bulk actions defined in the custom action panels.

The queue view header, located at the top of the trade list, contains the title of the queue as well as
the headers of the columns that display in the trade list.

The drop-down box included with a column header identifies a filter for that column. Drop-down filters
similar to those in Microsoft Excel can be configured on each individual column for rapid filtering and
selection of the desired trade set. These filter settings must be configured for each individual queue.
The check box on the left allows the user to select all trades displayed on the page. Settings defined
by a user apply only to that user.

Using the icons in the queue view header, you can refresh the screen and select which columns to
display in the queue. When the Columns Visibility icon is clicked, a pop-up dialog displays letting you
select the columns to display in the trade list.

Queue Screen Configurations

The queue screens are compiled based on the configuration set in the following files located in the
/config Scrittura directory

e scrittura-config.xml

e scrittura-queue-view-config.xml

Scrittura combines the configurations set in both files to create the resulting queue screens. The
base settings specified in the scrittura-config.xml file are enhanced with those specified in the
scrittura-queue-view- config.xml file.

Configure scrittura-config.xml

The scrittura-config.xml file controls the configuration of queues, columns, and views that
appear in the screen.

Queue Columns

The systemrelies on the scrittura-config.xml file to display the different menus and queues that
comprise each menu. The following example shows a sample configuration showing only parts of
menu, queue, and columns definition.

Example

<menu name="Credit”>

Scrittura (4.4.10.5) Page 188 of 430

Administration Guide
Chapter 6: User Interface Configuration

<queue name="Rejected” activity="standardOutbound.Queue”>
<column display="Cpty Name” variable="counterparty” />
</queue>

</menu>

Queue View

The Bulk View used for a queue and the list of custom action panels to activate are specified under
the <queue> element.

Example
<queue name="Validation" activity="standardOutbound.Validation">

<column ...>

<view name="Bulk Review" type="bulk"
view="/jsp/bulkBase.jsp?panels=next,tds"/>
</queue>

The base page is bulkBase. jsp, located in the /jsp directory of the Scrittura Web container. The
panels parameter in the view URI uses a comma delimited list as a value. The items in that list are
aliases given to the different panels to be displayed for that screen.

The list of available custom action panels is defined in bulkBase.jsp as a mapping of aliases with
the corresponding panel JSP. Custom action panels can be added to this list if required.
Corresponding pages should be developed as fragments of JSPs. They will be included in the main
bulk screen page by the framework.

Configure scrittura-queue-view-config.xml

The scrittura-queue-view-config.xml file controls the appearance of the queue screens,
including the following aspects:

« Custom styles and preferences.
« Sources for the data displayed in screen (variable sources).
« Column definitions - built-in renderer for text and custom renderers.

« Queue definitions.

General Settings

General settings are attributes placed within the root element of the file, <scrittura-queue-view-
config>.

The <scrittura-queue-view-config> element has the following attributes.

Scrittura (4.4.10.5) Page 189 of 430

Administration Guide
Chapter 6: User Interface Configuration

Attribute Required/ Description

Optional
custom- Optional Context-relative URL of a custom JSP fragment to include in the bulks
header screen page header. This is usually used to change the styles used

for the screen layout.

custom- Optional Context-relative URL of a custom JSP fragment to include in the
search- search result page header. This is usually used to change the styles
header used for the screen layout.
items-per- Optional Comma delimited list of numbers to be used as options in the "items
page-list per page" drop-down list.

Example

The content of /include/bulkHeader. jsp is used as the header for the bulk screens. The items-per-
page-list attribute lets uses choose between displaying 20, 50, or 100 items per page.

<scrittura-queue-view-config custom-header="/include/bulkHeader.jsp" items-per-page-
list="20,50,100">

</scrittura-queue-view-config>

Variable Sources Definition

The variable source allows the definitions of local variables from built-in sources. The built-in sources
include FA tables and other Scrittura tables.

Example

Sample configuration for adding a variable source to retrieve information from the Annotations table.
<var-source name="Annotations"

parent-source="pi table="scrittura_annotation">
<simple-column-mapper>

<mapping var="id" column="annid" type="integer"/>

<mapping var="piid" column="piid" type="integer"/>

<mapping var="user" column="username" type="string"/>
<mapping var="tmst" column="timestamp" type="timestamp"/>
<mapping var="thread" column="thread" type="string"/>
<mapping var="text" column="text" type="clob"/>
</simple-column-mapper>

<join-condition>Annotations.piid = pi.piid</join-condition>

</var-source>

Scrittura (4.4.10.5) Page 190 of 430

Administration Guide
Chapter 6: User Interface Configuration

Columns Definition

The columns definitions, <column-def>, define the columns that display in the user interface. The
values in this configuration section override any values configured in the scrittura-config.xml file
for matching IDs.

The <column-def> element has the following attributes.

Attribute Required/ Description

Optional
id Required The column ID used to refer to the column definition from queue
definitions.
default-titte Optional Default column title. This can be overridden in the column element
that uses the definition. If not specified, the column ID is used as the
title.
align Optional Cell content alignment; default is left.

A Variable Renderer must be specified for each <column-def> element, as a child node of the latter.
Built-in variable renderers are specified using the <var-renderer> tag, whereas custom renderers
are specified using the <custom-renderer> tag.

Example

<column-def id="agreementType" default-title="Agreement Type">
<var-renderer var="fa:agreementType" quick-filters="true"/>
</column-def>

The following attributes apply when using the built-in variable renderer, which displays only text in the
user interface.

Attribute Required/ Description

Optional
var Required Full variable name of the variable source name and the variable
name, separated with a colon.
format Optional Format of the string (applies only to date and number variables).
max-length Optional Maximum number of characters of the cell content.
no-content- Optional Text to render in the cell if the variable value is empty.
text
no-content- Optional CSS style class name to use for cells with no content.
style
link-url Optional If specified, the cell content becomes a link pointing to the specified

Scrittura (4.4.10.5) Page 191 of 430

Administration Guide
Chapter 6: User Interface Configuration

queue- URL. The URL may contain references to variables. These two
style- attributes are respectively used for bulk screens and search result
search- page.

link-url

link-style- Optional CSS style call name for rendering the link.

class

link-target Optional Link target frame.

tool-tip Optional Cell tooltip text.

sortable Optional Specifies whether the column supports sorting.

quick-filter Optional Specifies whether the column has a quick-filter drop-down list.
make- Optional Specifies whether the displayed cell content should escape HTML
content- characters.

HTML-safe

In certain situations, a custom renderer is required to display all of the screen elements instead of
only the text.

The custom renderer feature is required to implement the following Java interfaces.
« CellRenderer

« CellRendererFactor

A custom renderer is defined by the <custom-renderer> tag, whose unique attribute, factory-class,
takes the renderer fully qualified Java class name as a value.

Example

<column-def id="views" default-title="Views" align="center">
<custom-renderer
factory-class="com.iwov.gcm.scrittura.web.queue
.render.ViewlLinksCellRendererFactor">

<property name="varType">

<value>allVars</value>

</property>

</custom-renderer>

</column-def>
Queues Definition

All queues to display in the bulk screens require an entry in the queue definitions section using the
<queue> element. A <queue> element has the following attributes.

Scrittura (4.4.10.5) Page 192 of 430

Administration Guide
Chapter 6: User Interface Configuration

Attribute Required/ Description

Optional

id Required Defines the queue ID, formatted as menuName.queueDisplayName.
The menu name and the queue display name are defined in the
scrittura-config.xml file.

default- Optional ID of the column used to sort the queue table by default. If not

sort-by specified, the queue is not sorted.

default- Optional Sort direction for the column specified by the default-sort-by attribute.

sort-order Values of this attribute are asc for ascending and desc for descending
order.

item-view- Optional URL of the default item view accessed by double-clicking the row

url containing the item.

Example

<queue id="Credit.Credit Enrichment" default-sort-by="arrivalTime" item-view-url="">
<column id="ticketId"/>

<column id="wfStatus"/>

<column id="counterpartyName"/>

<column id="requestDate"/>

<column id="agreementType"/>

<column id="arrivalTime"/>

<column id="views"/>

</queue>

Similarly, a single optional entry should be defined for the Scrittura quick search and advanced
search, in order to benefit from the queue-style search result page. This is detailed in Queue-Style
Search, on page 224.

Each column to be configured for a certain queue is defined as a <column> element, child node of
the corresponding <queue> element. The <queue> element has the following attributes.

Attribute Required/ Description

Optional
id Required The column definition ID.
title Optional Column title displayed in the queue table header. If not specified, the
default title from the column definition is used.
default- Optional The default view of the column within the table. Values for this
display attribute are visible, hidden, and always- visible. If set to always-

visible, the column cannot be hidden.

Scrittura (4.4.10.5) Page 193 of 430

Administration Guide
Chapter 6: User Interface Configuration

Columns displayed in the bulk screens can be specified in both the scrittura-config.xml file and
the scrittura-queue-view- config.xml files. There is a subtle difference between these two
possible configurations.

To fully benefit from the bulk screen functionalities (such as quick filters), columns should be defined
inthe scrittura-queue-view-config.xml file. Columns defined only in the scrittura-config.xml file
cannot access the bulk screen features and will display by default on the right-hand portion of the
row.

In the following illustration, the Trade ID column was defined in both the scrittura-config.xml and
scrittura-queue-view-config.xml files and Notational Amt was defined in only the scrittura-
config.xml file. The column filter is only available for the Trade ID column, and Notational Amt that
displays by default on the right-side of the row.

I" £] Review Queue

Trade ID MNotional Amt

— [

Custom Cell Data Rendering Per Column

Custom renderer classes can be configured for each individual column, providing the ability to
display color-coded or abbreviated text mapped out of actual underlying data, or to have tool tips or
links leading to data. Such customizations are configured in the scrittura-queue-view-config.xml file
and do not require any hard-coding or programming changes.

Example

The configuration of a column displaying the Boolean value of an FA variable
eConfirmSubmissionFailure. The CheckMarkCellRendererFactory value displays a red check
mark image when the value of the variable is true. If the variable is displayed on the Bulk Screen of a
queue other than the eConfirm Submission Failure, clicking the check mark image results in the
action view of the trade in the eConfirm Submission Failure queue.

<column-def id="eConfirmSubmissionFailure" align="center">
<custom-renderer factory-class=
"com.iwov.gcm.scrittura.web.queue
.impl.CheckMarkCellRendererFactory">

<property name="variableFullName">
<value>fa:eConfirmSubmissionFailure</value>
</property>

<property name="checkedLinkUrl">

<value>
/scrittura/controller?e=pi&v=Review&...
</value>

</property>

Scrittura (4.4.10.5) Page 194 of 430

Administration Guide
Chapter 6: User Interface Configuration

<property name="checkedToolTip">

<value>

Open in the eConfirm Submission Failure Queue
</value>

</property>

</custom-renderer>

</column-def>

Data Displayed

The fields to be displayed in the different columns of the bulk screens are defined in the scrittura-
queue-view-config.xml file along with the actual trade data to which they map and any options
attached to them (such as, optional or required).

The range of data that can be displayed in these Bulk Screens is not limited to Product Instance
fields, as it is for the classic Scrittura Queue Views. Using the Bulk Screen framework, you can
display the following data.

« Product Instance data
« Activity Item data
« FA Table data

« Custom fields derived from other data

Data displayed on the Bulk Screens can be accessed from the FA tables, but also from other tables
as well, such as:

« WF_WORKITEM

« WF_ACTIVITYITEM

o SCRITTURA_PRODINST
Example

Configuration for a custom variable source to retrieve the latest annotation from a thread named
Reviewer Comments.

<var-source

name="lastReviewerComment" parent-source="pi"

table="(SELECT piid, MAX(annid) annid, COUNT(annid) FROM scrittura_annotation
WHERE thread = 'Reviewer Comments' GROUP BY piid HAVING COUNT(annid) > 1)"
outer-join="true">

<simple-column-mapper/>

<join-condition> lastReviewerComment.piid = pi.piid

</join-condition>

Scrittura (4.4.10.5) Page 195 0f 430

Administration Guide
Chapter 6: User Interface Configuration

</var-source>

Trade Detail Screen Configuration

Trade detail screens are displayed when a trade is opened, such as from a queue screen, as a result
of the view event. The trade detail screen is a frameset, generally where the current document is
displayed on the right side of the page with the actual trade details on the left side.

Distinct framesets and trade detail screens can be used for the different queues. This is configured in
scrittura-config.xml, by the <view> tag, for each queue (defined by <queue> tags).

The configuration of the <view> tagis discussed in <menu> Node, on page 43.

The panels parameter of tradeDetails.jsp is the coma delimited list of the names of the panels to be
displayed in the left pane. The names refer to the name attribute of the panels defined in the <trade-
panels> section of general-ui-config.xml.

Example
In scrittura-config.xml
<view name="Review"

type="custom" view="/jsp/tradeDetails.jsp?panels=act,str"
frameset="/jsp/viewFrameset.jsp"/>

In general-ui-config.xml

<trade-panels>

<panel name="str" page="/jsp/panels/structurePanel.jsp" />
<panel name="act" page="/jsp/panels/actionPanel.jsp" />
</trade-panels>

Two panels will display in the left pane of the trade detail screen, first the action panel as per
actionPanel. jsp, then the structure panel as per structure panel.jsp.

The list of panels provided with the core Scrittura distribution is listed in Bulk and Trade Panels, on
page 182. One particular panel, the Economic Panel, whose purpose is to display economic details
of a trade, is explained in more detail in Economic Panels, below.

Economic Panels

The Economic Panel Framework provides fully configurable panels displaying economic data
relevant to the current trade that can be inserted into the Trade Detail screens. Any number of panels
can be defined, and criteria can be set to determine whether the panels should be displayed. The
economic fields to be displayed can be configured for each panel.

The Economic Panel Framework is based on a configuration file, economic- panels-config.xml,
located under the config repository in the Scrittura live folder.

The following is the structure of the configuration file.

<EconomicDetails>

Scrittura (4.4.10.5) Page 196 of 430

Administration Guide
Chapter 6: User Interface Configuration

<pane .. >

<var ../>

</pane>

</ EconomicDetails>

Each <pane> element defines an economic panel to be displayed. There can be multiple <pane>
elements inside the <EconomicDetails> element.

Economic fields to be displayed for each panel are defined using <var> tags under the <pane>
element.

Panel Configuration for Economic Panel

A <pane> element has the following attributes.

Attribute Required/ Description

Optional
name Required Panel display name
display- Optional Defines the Boolean condition that determines whether the panel is
condition displayed. The condition is defined inside ${...}.

Example

Display a panel whose title is Counterparty Details, and the panel is displayed only if the variable
productGroup has a value of CDS.

<pane name="CounterpartyDetails"
display-condition="¢${productGropup=="'CDS"}>

</pane>

Field Configuration for Economic Panels

Inside a <pane> element, the <var> tag defines a field to be displayed in the panel. A <var> tag has
the following attributes.

Attribute Required/ Description

Optional
name Required Expression or variable to be displayed inside ${...}.
display- Optional Defines the Boolean condition that determines whether the
condition panel is displayed.

The condition is defined inside ${...}.

Scrittura (4.4.10.5) Page 197 of 430

Administration Guide
Chapter 6: User Interface Configuration

label Optional Defines the label to display for the field.

start-index Optional Start index to display arrayed variables.

end-index Optional End index to display arrayed variables.
Example

Display the value of the variable tradeOriginallD, preceded by the label

Trade Original ID. It is only displayed if the variable is null or empty.

<var name="${tradeOriginalID}"
display-condition="${tradeOriginalID!=""}" label="Trade Original ID"/>

The name attribute can be a field value, such as ${tradeOriginallID}, or s simple expression. For
more information on expressions, see Expressions, below.

Arrayed Variables

A Scrittura Product Instance can contain arrayed variables which can be displayed concisely in the
economic panel framework.

To use arrayed variables, the generic wildcard “*” can be used. For an array called myArray, the
name quoted in the economic panel framework will be myArray[*]. This applies to the name, the
condition, and the label.

You must define the start and end indexes. The framework will perform the substitution with the
actual index value while looping over the array of variables.

Although variable names must have brackets surrounding the asterisk character ([*]), brackets
are not required in the label.
NOTE: The following restrictions apply:

« Only one-dimensional arrays with numerical indexes are supported.

« Any asterisk character used in the label is replaced by the index value.

o Any "[*]" string in the name or condition is replaced by the index value surrounded by
brackets.

Example
<var name=${rate[*]}"
display-condition="¢{rate[*]!=""'}" label="Rate #*"

start-index="1" end-index="4"/>

Expressions

Expressions can be used with the following attributes:

Scrittura (4.4.10.5) Page 198 of 430

Administration Guide
Chapter 6: User Interface Configuration

« condition (both var and pane elements)
« name (var attribute)

Expressions consist of expression operands, operators, and parentheses. Expressions must be
nested within ${...} to be evaluated by the expression evaluation engine.

The following are valid expressions:

(varl * (funcl(var2, 2) + 25) < 100.5)
&& (var3 == "SOME TEXT")

varl = arrayl[indexVar] + " CREATED: "
+ format_date(now(), "yyyy-MM-dd")

Expression operands can be literals, Scrittura variables, or function calls. Each operand has a
particular type.

When the expression evaluation engine evaluates an operator with two operands, it brings both
operands to a common type. The result of such sub- expression evaluation will also have a type,
which will depend on the types of the participating operands.

Some operators require the operands to be of a certain type; for example, you cannot multiply a
string unless the string can be parsed to a number.

The following literals are supported.

Literal Type Examples

integer 1
536000
float 0.25
.5678
123.0
string "some text"
'some text'
Boolean true false

The following operators are supported, listed from the highest priority to the lowest.

Operator Description

* Multiply and divide.
/ Operands must be numbers or must be able to be converted to numbers.

The result is a number.

Scrittura (4.4.10.5) Page 199 of 430

Administration Guide

Chapter 6: User Int

erface Configuration

Add and subtract numbers.

The add operator can also be used with strings for string concatenation.

Comparison operators.

The result is Boolean.

Logical "and".

Operands must be Boolean. The result is Boolean.
Logical "or".

Operands must be Boolean.

The result is Boolean.

Variable assignment; this special operator tells the variable provider to set a variable
value.

The value to the left of the variable must be a variable name.

The result is a new variable value.

NOTE: Unary operators, such as unary "minus" sign, and logical "not", are not supported.

The expression evaluation engine also provides some basic built-in functions, which include the

following:
Function Description
nvl(value, defaultValue) If the specified value is null, an empty string, or a string consisting

string(value)

only of white-space characters, the function returns the provided
default value. Otherwise, the value itself is returned.

Converts the specified value to a string.

integer(value) Tries to convert the specified value to an integer. If the value is a

string, it will try to parse it. If it is a date, it will get the number of
milliseconds since epoch. An empty string or a null value is
converted to 0. The result is of Java type Long.

substring(string, start, end) = Gets a substring of the specified string.

substring(string, start)

upper(string)

Scrittura (4.4.10.5)

Transforms a string into uppercase.

Page 200 of 430

Administration Guide
Chapter 6: User Interface Configuration

lower(string) Transforms a string into lowercase.

now() Gets the current day’s date. The result is of type Date.

date(string, format) Built-in functions that parse a date and return a result of type
- java.util.Date:

date(millis)

The two-argument function parses a string applying the
corresponding date format.

The one-argument function creates a date from the specified
number of milliseconds since epoch.

format(value,format) Formats the specified value using the provided pattern and returns
the formatted string representation. The value argument can be a
date, in which case SimpleDateFormat is used, or a number, in
which case DecimalFormat is used

abs(number) Returns the absolute value of a number. The type of the result
depends on the type of the argument.

if (condition,value1,value2) If the condition is true, returns value1; otherwise, returns value2.

not(condition) Negates the condition.

User Interface and API

A generic JSP panel, economicPanels.jsp, located in the Scrittura distribution under /jsp/panels, can
be included in the trade detail screen.

Alternatively, you can develop a custom user interface that accesses the Economic Panel
framework. Key classes are located in the package com. iwov.gcm.web.beans and include the
following:

e ViewTradeHelper

e EconomicDetailParam

ViewTradeHelper

ViewTradeHelper is a helper class that provides methods to prepare the Economic Panel Framework
for a specific Product Instance. The main methods are:

public Map prepareViewLeftTabsInfo(ProductInstancelLocal pi,
String[] includePanes, String[] excludePanes)

throws AuditRollbackException;

public Map prepareViewlLeftTabsInfo(ProductInstancelLocal pi)
throws AuditRollbackException;

The required Product Instance is passed as the first parameter. Using the first method, you can
specify which panels to include.

Scrittura (4.4.10.5) Page 201 of 430

Administration Guide
Chapter 6: User Interface Configuration

When called, these methods prepare the map of all panels and attributes according to the rules
defined in the economic-panel-config.xml file.

They return a map of ArrayList objects with the following conditions:
« The map key is the panel name.

« The map values are ArrayList objects, representing the content of the economic panels.
Each ArrayList is alist of EconomicDetailParam objects that represent the different fields to
display.

EconomicDetailParam

EconomicDetailParam objects contain the information related to a specific field to display, including
the following:

« Parameter name (meaning a variable)
« Parameter label
« Current value

« Previous value

The available methods are as follows:

Method Description

public String getParamName() Gets the parameter name.
public String getParamLabel() Gets the parameter label.
public String getDisplayString() Gets the current value.

public String getPreviousDisplayString() Gets the previous value.

Scrittura (4.4.10.5) Page 202 of 430

Administration Guide
Chapter 7: BLogic Business Engine

Chapter 7: BLogic Business Engine

This section details the use of BLogic, Scrittura’s Business Logic Engine, which allows the
configuration of business rules in the system.

This section contains the following topics:
« BLogic Business Engine Overview, below
« BLogic Integration with Scrittura, on the next page
« Blogic General Configuration, on page 205
« Microsoft Excel Front-End, on page 208
« Rule Validation, on page 218

BLogic Business Engine Overview

Scrittura's Business Logic Engine, or BLogic, is used to execute a business logic definition. A
business logic definition is an ordered list of logic rules executed by the engine from top to bottom.
Rules are ordered by priority over position when priority is specified.

In Scrittura, logic rules are typically executed against trades. Trade variables (such as, Product
Instance or Message Ticket variables) are used as an input to evaluate a condition, which will either
trigger actions or derive new variables necessary for the trade to continue its processing in the
workflow.

Example

If a trade has counterparty “A” then it must be sent down the Scrittura workflow “B” and an email
should be sent to employee “C” notifying them that the trade has been assigned to them. It could also
set the variable “tradeManager” to “employee C”, and assign address and contact information for
counterparty “A” to other variables.

Given that rules files can contain as many rules as needed, there can be more than one BLogic
workflow process and each process can run multiple rules files this allows for a phenomenal amount
of business logic to be applied quickly and easily to a trade.

BLogic User Interface

BLogic rule files are saved as Excel spreadsheet (XLS format). Therefore, Microsoft Excel is used as
a front-end user interface for BLogic, establishing a user-friendly environment for entering the logic
rules. Rules can be organized in multiple Excel workbooks or spreadsheets.

Storage

Rules sheets are stored in DocManager in order to fully control their reload into the live system.

Scrittura (4.4.10.5) Page 203 of 430

Administration Guide
Chapter 7: BLogic Business Engine

BLogic Integration with Scrittura

Using the BLogic Engine module from within a Scrittura workflow classtool is the most common
integration of BLogic with Scrittura.

The following classtool is provided with the distribution.

Classtool BLogicClassTool

Package com.ipicorp.scrittura.blogic

.classtools.BLogicClassTool

Attibutes rules. The relative path of the rules file to be applied. The path is relative to the root
BLogic directory. Alternatively this can be used to specify the Product Instance (PI)
variable from which to read the location of the rules. The XML extension is not
required for the file name.

Example of the BLogic Classtool in a Scrittura Workflow

The following illustration is a snapshot of the BLogic classtool within the Scrittura workflow. In this
example, the class name is set to:
com.ipicorp.scrittura.blogic.classtools.BLogicClassTool.

The path to the rules file (located under the root BLogic directory) is specified as an Extended
Attribute.

- -
I:\Parse Messagej
All Products.
—
Ir/' % S
\ Blogic Rules E
Shape Data - Sheet.106 x
Type Class = |7

Class com.ipicorp.scrittura.blogic.classtools.BLogicClassTool
Extended Attributes rules=/messages/initialRulesipreProcess!postProcess, /messages/commonRules

Queue 3

Description

report-enabled false

extra-report-variables ¥,

Example Specification of Multiple Workbooks in the Workflow System

The BLogic Workflow System allows the specification of multiple workbooks separated by a comma.
For example:

/messages/initialRules, /messages/finalRules

Scrittura (4.4.10.5) Page 204 of 430

Administration Guide
Chapter 7: BLogic Business Engine

Itis also possible to specify specific/multiple sheets within a workbook by appending the name of the
workbook with an exclamation mark, followed by the sheet name. For example:

/messages/finalRules!finalSheet
/messages/finalRules!startSheet!finalSheet
Multiple sheets from the same workbook (as specified in

/messages/finalRules!startSheet!finalSheet) load from both sheets, but the rules are run in order
of priority.

To load sheets sequentially combine both commands. For example:
/messages/finalRules!startSheet, /messages/finalRules!finalSheet

For an example of the specification of multiple sheets and workbooks and the Rules path, see
Extended Attributes in the illustration in Example of the BLogic Classtool in a Scrittura Workflow, on
the previous page.

The ruleset may also be specified using a Pl variable, as shown in the following illustration. This is
done by setting the Pl variable containing the ruleset path using curled braces. For example, rules=
{blogic} refers to the PI variable “blogic” that would contain the ruleset path such as

/messages/finalRules!final. Example of Setting the PI Variable:

Example of Setting the Pl Variable:

Stprt

Intro

ParsaMessaga

jFo

,
All pducts 1 Shape Data
RS
Blogic Rule E= o Type: Class.
.
Class: com.ipicorp.scrittura. blogic, dasstools. BLogicClassTool
toCreateProduct | Extended Attributes: |rules={blogic}
Queue: 3
Create Product | Description:
toDelete || report-enabled: false

extra-report-variables:
Delete Message

Prompt

Dane

é Define...] [0K

BLogic General Configuration

The topics in this section describe the general configuration for BLogic.

Scrittura (4.4.10.5) Page 205 of 430

Administration Guide
Chapter 7: BLogic Business Engine

BLogic Factory Initialization

To enable BLogic you must first set the appropriate options in startup- config.xml. The following
is a sample configuration in startup- config.xml;the options are described following the sample.

<module name="blogic" enabled="true">

<folder>

<relative-path>/blogic</relative-path>

<docmgr-location>

Library Root/BLogic Rules

</docmgr-location>

<entity-type-path>BLogic Rules</entity-type-path>

<folder>

<relative-path>/messages</relative-path>

<docmgr-location>messages</docmgr-location>

<entity-type-path>BLogic Level 1</entity-type-path>

</folder>

</folder>

</module>

The following options should be set before running Scrittura.
« The attribute enabled of the module element must be set to true for BLogic to run.

« relative-path is the path on disk relative to the Scrittura root folder (either absolute-path or
relative-path must be provided).

« docmgr-location is the full destination path to the folder in DocManger.

« entity-type-path must specify the entity type of the folder and all its parents at the desired
DocManager destination; this parameter is required.

« folderis arecursive element with all the same sub-nodes as its parent. relative-path, docmgr-
location, and entity-type-path are all relative to the parent folder.

NOTE: For details about additional options available using startup-config.xml, see SetConfig
Process Configuration, on page 373.

When you reload the Scrittura configuration through the SetConfig process, it prompts Scrittura to
load the files contained inside the folder specified in startup-config.xml into DocManager.

When the BLogic system is first run, the specified rules and environment files are loaded from
DocManager and parsed. The resulting ruleset is loaded into a cache that is refreshed whenever a
new version of the rules file is loaded into DocManager.

Scrittura (4.4.10.5) Page 206 of 430

Administration Guide
Chapter 7: BLogic Business Engine

Rules and environments may be loaded into DocManager through the standard DocManager user
interface. They must be loaded into the folder created during the SetConfig process at the same path
specified in the workflow.

NOTE: When rules are loaded during a SetConfig, the files currently in DocManager with the
same name/path are overwritten. Therefore, it is recommended that you only load the folder
structure into the live folder and that the files be added manually from the user interface as
required—after the folder structure has been created in DocManager during a SetConfig.

BLogic Environment

BLogic rules are organized in a folder hierarchy that allows the functional separation and ordering of
different workbooks. This folder hierarchy would be typically created under the Scrittura live folder
before being loaded in DocManager, as per the properties defined in startup-config.xml.

BLogic also requires its environment to be defined in specific files, environment.xml, located in the
BLogic folder hierarchy. There can be one environment definition file at each level of the folder
hierarchy, those being inherited from the parent levels. Placing an environment definition file under
the BLogic directory in Scrittura live folder causes all other BLogic rule definitions in that directory to
inherit the environment definition file.

TIP: Each environment object may be declared only once in the environment hierarchy.

The environment is used to specify the items BLogic uses to evaluate and execute rules. For
example, in Scrittura there is an ltem Accessor class which is used to access the informationin a
trade. This needs to be specified in the environment file along with its name.

Example of environment.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE blogic-env SYSTEM
"file:///c:/opt/scrittura/dtd/blogic-env.dtd">
<blogic-env>

<object-type name="generic map"
accessor-class="com.ipicorp.scrittura.blogic
.impl.SimpleMapItemAccessor"/>

<condition-type name="is in queue"
factory-class="com.ipicorp.scrittura.blogic
.impl.SimpleComponentFactory">

<property name="objectClass">

<value type="class"> com.ipicorp.scrittura.blogic
.conditions.IsInQueueCondition

</value>

</property>

Scrittura (4.4.10.5) Page 207 of 430

Administration Guide
Chapter 7: BLogic Business Engine

</condition-type>

<action-type

name="trigger workflow activity"
factory-class="com.ipicorp.scrittura.blogic
.impl.SimpleComponentFactory">

<property name="objectClass">

<value type="class"> com.ipicorp.scrittura.blogic
.actions.TriggerWorkflowActivityAction

</value>

</property>

</action-type>

</blogic-env>

The environment must specify all of the custom conditions, actions, and Item Accessors.

The <object-type> tag is used for declaring Item Accessors, an ltem Accessor defining which object
will be accessed by BLogic and how. The name attribute is what BLogic uses to retrieve the ltem
Accessor; the class attribute is simply the fully specified class name and reference which will be used
to create instances of the ltem Accessor.

The <condition-type> and <action-type> tags are used to declare custom conditions and actions.
The name attribute is what BLogic uses to retrieve the condition or action; the factory class is the fully
specified class name of the condition or action factory; the property child only accepts objectClass as
a value and is for specifying the fully specified class name of the custom condition or action class.

Microsoft Excel Front-End

The following items present a global overview of the Microsoft Excel spreadsheet format and basic
syntax, and rules to follow when entering BLogic rules.

« Spreadsheets must be created using Microsoft Office Excel Professional 2003 or later.
« Documents must be saved with the extension .xls.

« Each spreadsheet must have at least one sheet containing rules.

« Each sheet should have a meaningful name.

« Only information related to business rules should be included in the spreadsheet.

« Any information in the spreadsheet is parsed; the parsing will therefore fail if information not
relevant to the business rules is present.

« Eachrow in the spreadsheet is a separate business rule.
« Columns should indicate the variable name and the values of the variable for that rule.

« Awhole blank row, column, or sheet are ignored and are not parsed.

Scrittura (4.4.10.5) Page 208 of 430

Administration Guide
Chapter 7: BLogic Business Engine

« The first row must contain column headings, and all columns with information must have a

column heading.

The cells of the workbook must all be formatted as text.

Example Excel Business Rule Spreadsheet

The following is an example of an Excel Business Rule spreadsheet.

The first row indicates column headings. For columns that have variable names, it is important to
note that the variable names are case-sensitive. If the variable name is in the wrong case, the rule

does not execute correctly.

@i FEEEET finalRulesxis [Compatibility Mode] - Microsoft Excel [E=ERX)

= Home Tnsert Page Layout Formulas Data Review View @ - = x
&* = A= pe— (|| = fj ﬁ —7 Ge=nsert - EVW
= Calibri 11. [t ||[=[] |Siwmepren General . .g ,L‘H e o= ﬁ

e o |[B 2w BB A = £ | Efersea centr || (B rion] (G| Concttioral romet con | |l serta e

Clipboard Font i) Alignment £} Number & Styles Cells Editing
M24 - @ £ | v
A B C D E F G H

i8 [priority] ProductDeflD ccyl CUSTOM_CONDITION ACTION=city CUSTOM_ACTION [comment]

20 FXO EUR |is in queue(crid=1234,queue=[queue]) [Paris restart workflow(crid=1234,workflow=messageProcessing) [Rule’®

3 '1 CDs usb New York RULE.STOP Rule 2

4 'O FXO usb Madrid RULE.STOP Rule 3

5

6

7 =

8

9

10

11

12

13

14

15

16

4 4 » ¥ | Sheetl final ¥, [m

Ready IEEE

Rule Spreadsheet Columns
The following types of column headings are included in the rule spreadsheet.
Priority Column, on the next page

Variable Condition Columns, on page 211

Custom condition columns display CUSTOM_CONDITION in the header. A custom condition

column represents the custom conditions specified in the environment.xml file., on page 211

Variable Action Columns, on page 212
Custom Action Columns, on page 212

Comment Column, on page 214

Example

The Rules in this example run in the following order; Rule1, Rule2, Rule3, Rule5, and then Rule4.
The following pseudo code explains what each rule (in order top to bottom) is doing.

Scrittura (4.4.10.5)

Page 209 of 430

Administration Guide
Chapter 7: BLogic Business Engine

1 CUSTOM_CONDITION ALCTION=city CUSTOM_ACTION

] EUR izinQueue(CRID=1 queue =BLogic) |Pariz restart

workflow (crid=C. TRDS00, workflow=

2 standardOutbound)

1 usp izinQueue(CRID=42 queue MNew ork
3 =Generate)
4 9 Ush Madrid
5 |2 izinQueue(CRID=1 queue =End} ATLANTA
6 |1 EUR
1. IFccy = “EUR” AND isInQueue(CRID=1,queue=BLogic)

THEN setcity = “Paris” AND restart workflow(crid=C: TRD500,
workflow=standardOutbound)

ELSE stop processing rules.
2. IF ccy = “UsD” AND isInQueue(CRID=42,queue=Generate) THEN stop processing rules.

ELSE setcity = “New York” AND restart workflow(crid=C:TRDOO7,
workflow=generateMessage).

3. IFccy = “UusD” THEN setcity = “Madrid” AND stop processing rules.
4. IF isInQueue(CRID=1,queue=End)

THEN set city = “Atlanta” AND stop processing rules.
5. IF ccy = “EUR” THEN stop processing rules.

NOTE: Refer to this example when reviewing the sections about the individual spreadsheet
columns.

Priority Column

The priority column, with a header of [priority], orders the rules as specified, meaning that a rule
of priority O is run before a rule of priority 1. Rules of the same priority are run in the order they are
defined, from top to bottom, and in sheet order. The format for priority is [priority].

The priority is carried over between sheets in the same workbook unless the sheet is specified
separately within the workflow configuration. Following are two contrasting examples:

Example 1

The rules in the two sheets are combined, sorted, and evaluated according to their priority.
/messages/initialRules!sheetl!sheet2

Example 2

The rules in sheet1 are sorted first and evaluated, and then those in sheet2 are sorted and evaluated.

/messages/initialRules!sheetl, /messages/initialRules!sheet2

Scrittura (4.4.10.5) Page 210 of 430

Administration Guide
Chapter 7: BLogic Business Engine

Variable Condition Columns

The variable condition column is set with the variable name in the header. This column sets a
condition that compares any value entered with the one in the item being processed (this cell can use
the operators explained in the operators table). In the example in Rule Spreadsheet Columns, on
page 209, the variable condition column is titled ccy, which will compare the value in the cells to the
value of the ccyl variable in the trade.

Itis possible to use EL in these cells. To do so, surround the expression in curled braces, “{¢ and
“}’. For example, to access a variable from the trade EL can be used, {partyCountry} would retrieve
the value of the variable partyCountry from the trade.

Variable conditions are not evaluated for empty cells. There is a special EMPTY operand here which
will only evaluate to true of the value is empty ().

NOTE: Column conditions are always linked by the AND operator.

Custom Condition Columns

Custom condition columns display CUSTOM_CONDITION in the header. A custom condition column
represents the custom conditions specified in the environment.xml file.

For example, the "is in queue" condition refers to the custom condition defined in environment.xml
under the <condition-type> node whose attribute is is in queue.

Custom conditions can be created as long as they implement the Condition interface
(com.ipicorp.scrittura.blogic.Condition).

The parameters for the Custom Condition are entered with the syntax
(paraml-name=paraml-value,param2-name=param2-value)

where paraml-name is the name of the parameter to be set and param1- value is the value that it
should be set to (and similarly for the other parameters). The different parameters are comma
separated.

To use Pl variables as the parameters, the name of the variable needs to be entered between curled
brackets: {variable}.

Example: IsinQueueCondition
IsInQueueCondition is a custom action that checks to see if the specified Pl is in a specific queue.

IsInQueueCondition has the following parameters.

Parameter Required/ Description

Optional
CRID Required The target Pl CRID; can contain EL expressions.
queue Required The queue name pattern comprised of the workflow name (workflow

process id) and activity name (activity id) separated with a dot. The
activity name part can be "*", in which case any queue in the

Scrittura (4.4.10.5) Page 211 of 430

Administration Guide
Chapter 7: BLogic Business Engine

workflow is matched.

inverse Optional If set to true, the condition should check if the Pl is not in the
specified queue.

Default is false.

Variable Action Columns
The format of the Action column heading is:
ACTION={Variable Name} OTHERWISE_ACTION={Variable Name}

These columns are used to set the variable specified by {Variable Name} to the value defined in the
cell for that rule, and this variable must exist in the item being processed by BLogic. ACTION columns
are executed if the rule condition is true, whereas OTHERWISE_ACTION columns are executed when
the conditions evaluate to false

Any number of Action columns can be defined for each row, provided that they appear after the
Variable Name column headings and update different variables.

Custom Action Columns

The format of the Custom Action column heading is:

CUSTOM_ACTION

OTHERWISE_CUSTOM_ACTION

Custom action columns represent the custom actions specified in the environment.xml file.

For example, the "restart workflow" custom action refers to the custom action defined in
environment.xml under the <action-type> node whose name attribute is restart workflow. Custom
actions can be created as long as they implement the Action interface
(com.ipicorp.scrittura.blogic.Action).

CUSTOM_ACTION columns are executed when the rule condition is evaluated to true whereas
OTHERWISE_CUSTOM_ACTION columns are executed when the rule condition is evaluated to false.

A native custom action is RULE . STOP. When defined and executed, this action prevents additional
rules from being evaluated.

The parameters for CUSTOM_ACTION are entered with the syntax
(paraml-name=paraml-value,param2-name=param2-value)

where paraml-name is the name of the parameter to be set and param1- value is the value thatit
should be set to (and similarly for the other parameters). The different parameters are comma
separated.

To use Pl variables as the parameters, the name of the variable needs to be entered between curled
brackets.

Example: ApplyDataMappingAction

ApplyDataMappingAction is a custom action that finds a data mapping record given the key values
and assigns the data mapping record values to the specified variables on the primary data object.

Scrittura (4.4.10.5) Page 212 of 430

Administration Guide
Chapter 7: BLogic Business Engine

ApplyDataMappingAction has the following parameters.

Parameter Required Description

/Optional
dataMappkingkeys Required Name of the data mapping.

valueVars Required Pipe-separated list if data mapping record lookup keys. Each
element in the list consists of the key field name, "equals"
sign (=), and the matching key value, which can contain EL
expressions.

defaults Optional Pipe-separated list of values to assign to the primary data
object variables in case no data mapping record satisfying
the specified keys is found. Each element in the list consists
of the variable name, "equals" sign (=), and the default value.
Both variable names and the default values can contain EL
expressions.

Example: RestartWorkflowAction
RestartWorkflowAction is a custom action that moves a Pl back to the beginning of the workflow.

RestartWorkflowAction has the following parameters.

Parameter Required/ Description
Optional
crid Required The target PI CRID; can contain EL
expressions.
workflow Required The target workflow name (workflow
process id).
startActivity Optional Name of the activity (activity id) where to

start the PI. Default is Start.

ifNotInWorkflow Required Action behavior if no activity item is found
for the Pl in the workflow. Can be
"ignore" to do nothing, "create" to create
a new activity item, or "fail" to exit with an
error, which is the default.

Example: TriggerWorkflowAction

TriggerWorkflowAction is a custom action that triggers the workflow to act on an activity item, sending
it out of the current queue.

TriggerWorkflowAction has the following parameters.

Parameter Required/ Optional Description

Scrittura (4.4.10.5) Page 213 0f 430

Administration Guide
Chapter 7: BLogic Business Engine

crid

workflow

Required The target Pl CRID; can contain EL expressions.

Required The target workflow name (workflow process id).

Comment Column

The comment column, with a header of [comment], allows users to add comments or descriptions to
each row under the column. This type of column is optional and its content is ignored by the rules

engine.

Rule Condition Format

This section details the syntax that must be followed for condition cells. It explains the operators you

can use as well as the format to follow when using them in rules.

The following is the general format of a cell for variable condition.

OPERATOR [VALUE]

where

o OPERATOR

is an operator.

« VALUE is the value to compare the variable with.

Valid Operators

The following operators can be used when defining a rule.

XLS
Operator

[value]
value

not[value]

<[value]

<=[value]

>[value]

>=[value]

[value,
value,
value]

not[value,

Scrittura (4.4.10.5)

Description

Equals the operand value. Brackets are
optional

Not equal to the operand value

The variable is less than the operand value

The variable is less than or equal to the
operand value

The variable is greater than the operand value

The variable is greater than or equal to the
operand value

The variable is equal to one of those specified
in the list of variables

The variable is not equal to one of those

Example

[42],42

not[USD]

<[1000000]
<=[512]

>[1000001]
>=[513]

[USD,EUR,GBP]

not[AUD,KZT]

Usable on

Digits and
characters

Digits and
characters

Digits

Digits

Digits

Digits

Digits and
characters

Digits and

Page 214 of 430

Administration Guide
Chapter 7: BLogic Business Engine

value, specified in the list of values characters
value]

matches The variable matches the regular expression [Md*\Ww+\s?] Digits and
[value] specified in the square brackets operand characters

variable

not- The variable does not match the regular not[M\w*\d*] Digits and
matches expression specified in the square brackets characters
[value] operand variable

Equals Operator

If the variable equals a certain value, enter that value in the cell.

In the following example, the ProductDeflD and ccy1 columns are Condition columns. The
condition defined by the first row following the header is:

ProductDefID is FXO and ccy1 is EUR.
The city variable is set to Paris if ProductDefID is FXO and ccy1 is EUR.

yil B C
i ProductDefiD ceyl ACTION=city
2 FXO EUR Paris

Not Equals Operator

If a variable does not equal a certain value, enter that value within a set of square brackets preceded
by the keyword not.

In the following example, ProductDefID not equal to FXO is shown using the value not [FXO0]. This
operator can be used for digits and characters.

A B C
iR ProductDeflD eyl ACTION=city
2 notfFX0] EUR Paris

Less Than Operator

This operator can be used only for digits.

If a variable is less than a certain value, enter the value within a set of square brackets preceded by
the less than symbol (<).

In the following example, notional2 is less than 10.00.

A B C
1 LEGGE ACTION=city
2 <10.00] EUR Paris

Scrittura (4.4.10.5) Page 215 0f 430

Administration Guide
Chapter 7: BLogic Business Engine

Less Than or Equal To Operator

This operator can be used only for digits.

If a variable is less than or equal to a certain value, enter the value within a set of square brackets
preceded by the less-than-or-equal-to symbol (<=).

In the following example, notional2 is less than or equal to 10.00.

il B C
B notional? ooyl ACTION=city
2 ==[10.00] EUR Paris

Greater Than Operator

This operator can be used only for digits.

If a variable is greater than a certain value, enter the value within a set of square brackets preceded
by the greater than symbol (>).

In the following example, notional2 is greater than 10.00.

A B C
I8 notional2 ACTION=city
2 =[10.00] EUR Paris

Greater Than or Equal To Operator

This operator can be used only for digits.

If a variable is greater than or equal to a certain value, enter the value within a set of square brackets
preceded by the greater-than-or-equal-to symbol (>=).

In the following example, notional2 is greater than or equal to 10.00.

A B C
B notional2 ooyl ACTION=city
2 »=[10.00] EUR Paris

One of Operator

This operator can be used for digits and characters.

If a variable can be one of a list of values, enter the values within a set of square brackets with each
value separated by a comma (,). Any spaces at the beginning or end of a value are removed
automatically. No comma is required after the final value in the list.

For an empty value in the list, use the keyword EMPTY. For example, the list EMPTY, FX0,CDS means
that the variable can be an empty cell, FX0, or CDS. In the following example, the variable can be FX0
or CDS.

A
iR ProductDeflD eyl ACTION=city
2 [FX0,CcDs]

Scrittura (4.4.10.5) Page 216 of 430

Administration Guide
Chapter 7: BLogic Business Engine

NOTE: You can also use the format FX0, ,CDS, which allows the variable to be FXO, an empty
cell, or CDS but using this syntax, the empty cell cannot be listed first.

Not One of Operator

This operator can be used for digits and characters.

If a variable cannot be one of a list of values, enter the values within a set of square brackets with
each value separated by a comma (,). The opening square bracket is preceded by the word not. Any
spaces at the beginning or end of a value are removed automatically. No comma is required after the
final value in the list.

For an empty value in the list, use the keyword EMPTY. For example, EMPTY,FXO,CDS means that
the variable cannot be an empty cell, FXO, or CDS. In the following example, the variable cannot be
FXO or CDS.

A B C
| ProductDeflD ceyl ACTION=city
2 not[FXO0,CDS] |EUR Paris

NOTE: You can also use the format FXO, ,CDS which means that the variable cannot be FXO, an
empty cell, or CDS but using this syntax, the empty cell cannot be listed first.

Matches Operator

This operator can be used for digits and characters.

If a variable matches the regular expression value, enter the value within a set of square brackets
preceded by the word matches. In the following example, ProductDefID matches the string FX0 or
CDS.

il ProductDefiD ACTION=city
2 matches[FX0,CDS]

Not Matches Operator

This operator can be used for digits and characters.

If a variable does not match the regular expression value, enter the value within a set of square
brackets preceded by the phrase not-matches. In the following example, ProductDefID does not
match the string FX0 or CDS.

A B C
|l ProductDefiD ALCTION=city
2 not-matches[FX0,CDS] EUR Pariz

Cell Values

Cell values are standard strings, not nested within quotes, when a fixed value is used (such as 12.00,
EQD, and so on).

Scrittura (4.4.10.5) Page 217 of 430

Administration Guide
Chapter 7: BLogic Business Engine

Pl variables can be specified by nesting their name within curled braces, such as {pivariable}.

When a cell is blank or contains only white spaces, the corresponding variable is ignored when
evaluating the condition. Use the keyword EMPTY to test a variable against an empty value. The
keyword EMPTY can be used for equals, not-equals, one-of, and not-one-of operators.

Example of a Rules Spreadsheet

The following shows the use of two rules in a Rules Spreadsheet.

A B C D E F
OTHERWISE_ACTION= OTHERWISE_CUSTOM
|8 productGroup ccyl ACTION=city notionall CUSTOM_ACTION _ACTION
2 FXD Paris 12.00 RULES.STOP restartworkflow
3 EMPTY usD New York 1,066.95 restartworkflow RULE.STOP

The first business rule is interpreted as follows:

IF (productGroup equals "FX0")

THEN set city to "Paris" AND stop rule engine

ELSE set notionall to "12.00" AND run action "restart workflow"
Note that the ccyl column for FXO is empty, so it is ignored.
The second rule is interpreted as follows:

IF (productGroup equals "") AND (ccyl equals "USD")

THEN set city to "New York"™ AND run action "restart workflow" ELSE set notionall to
"1,066.95" AND stop rule engine

Note that the productGroup column is used in the rule and is checked against an empty value.

For operators that allow only digits (less than, less than or equal to, greater than, or greater than or
equal to), no spaces are allowed in the specified values. Only digits 0-9 and decimal separators, full
stop (.) and comma (,) are allowed.

No characters or digits should be used after the closing square bracket (]). If any information is
included outside the brackets, a validation error is thrown when Scrittura is loaded, and the rule
spreadsheet will be rejected.

Rule Validation

When arule file (.xIs) is manually uploaded into a BLogic folder in DocManager, checks are run to
ensure that the rules conform to specifications.

The checks include:
« Verifying that priorities are Integers.

« Ensuring that variables entered into the condition and action columns match their variable type,
as defined in the Product Definition files.

« Validating custom conditions and actions, by verifying that they are defined in an
environment.xml file, and ensuring that the specified classes are accessible.

Scrittura (4.4.10.5) Page 218 of 430

Administration Guide
Chapter 7: BLogic Business Engine

« Making sure that any parameters provided with custom conditions and actions conform to the
required syntax.

This is an automatic process and in the case of an error, a descriptive message is printed to the
screen. The process is otherwise invisible.

The BLogic validator class provided is:
com.ipicorp.scrittura.blogic.BLogicValidator

For instructions on how to set up validation, see Custom Validator Classes, on page 137

Scrittura (4.4.10.5) Page 219 of 430

Administration Guide
Chapter 8: Search and Reporting

Chapter 8: Search and Reporting

This section provides details on Scrittura’s search and reporting capabilities, how to configure and
customize them.

This section contains the following topics:
« Scrittura Search Capabilities, below
« Jasper Reports and Style Reports, on page 232
« BIRT Reports, on page 233

Scrittura Search Capabilities

Scrittura allows users to define and save their own searches (such as "show me all trades where the
Counterparty name begins with 'X™). These search definitions can be shared with other users or
saved as 'personal’ searches. There are different types of searches offering different features.

« Advanced Search. Provides selection across all trades by search on multiple variables and
allows selection of variables to view.

« Quick Search. Works in a similar way to the Saved Search, but only allows selection on one
variable at a time.

« Queue Filter. Provides search on only a single queue.

Results for Advanced and Quick searches can be displayed using the Scrittura classic search result
view. Alternatively, and the recommended way, search results can be displayed using the Queue
Style Search view, whose user interface is similar to that provided for viewing the contents of a
queue, and provides the same enhanced capabilities to the search results.

Configure the Advanced and Quick Search

This section explains how to configure the Scrittura searches, make them available to users, or
export them as reports.

Variables Available for Searches

The variables used as search criteria are defined in the scrittura- config.xml file as child <column>
nodes of <search-columns>.

<search-columns>

<column variable="CommonReferenceID" display="Trade Reference" quicksearch="true"/>
<column variable="Party[B]" display="Counterparty" quicksearch="true"/>

<column variable="CounterpartyRefNo" display="Counterparty Ref" quicksearch="true"/>

<column variable="TradeDate" display="Trade Date" quicksearch="true"/>

Scrittura (4.4.10.5) Page 220 of 430

Administration Guide
Chapter 8: Search and Reporting

<column variable="TradeType" display="Product Type" quicksearch="true"/>

<column variable="PartyFaxNo[B]" display="Counterparty Fax Number"
quicksearch="true"/>

</search-columns>

These variables appear in the order listed in the scrittura-config.xml file. These variables also appear
in this order in the "Variable Name" and "Variable to Display" lists in the application Trade Search
window.

The display attribute is used as column headers in the search result page.
NOTE: The built in variable CommonReferencelD is required to be listed as a search column.

Scrittura supports a <role> attribute for each <column> so that a variable can be configured only to
appear for certain users. This could be useful in cases where one set of users might be confused by
seeing variables only relevant for another set of users. Also supported is the <quicksearch> attribute
(true or false). This attribute determines whether or not a variable appears in the Quick Search drop
down list at the bottom of the application window.

NOTE: After making any changes to this list, the new scrittura-config.xml file must be reloaded
using the Set Config screen.

Links to Views from Search Results

In their classic form, the Quick Search and Advanced Search result pages provide links to trade detail
screens using any global views that have been defined in scrittura-config.xml with <show-on-search>
set to true.

Using the Queue-Style Search, links to trade detail screens are defined in scrittura-queue-view-
config.xml.

Saved Searches and Permissions

Scrittura has the ability for users to save and share their own searches. Saved search categories are
pre-defined in scrittura-config.xml along with the associated permissions.

Export Searches

In their classic form, Quick Search and Advanced Search result pages can be exported to PDF,
HTML, or CSV. For example the result of a search can be exported as a CSV file and then be used in
Microsoft Excel for further formatting and sorting. To export the result of a search, select the
appropriate Result Type and then click the Search button. The queue-style search offers export to
the XLS format.

Scrittura can use the following reporting tools to perform the export:

« Style Report. The use of Style Report requires a license key.

Scrittura (4.4.10.5) Page 221 of 430

Administration Guide
Chapter 8: Search and Reporting

« Jasper Reports. This is an open source Java software that integrates smoothly with Scrittura.
Users define a Jasper Reports template, which is an XML file, using iReports. iReports is a
Visual Designer that can be used to edit a Jasper Reports template.

To select which exporting tool to use, replace the following line in the scrittura-config.xml file:
<search-columns>

with the following for Style Report:

<search-columns exporting-tool="StyleReport">

or with the following for Jasper Reports:

<search-columns exporting-tool="JasperReport">

Using the Scrittura Search Functionality

Any variable declared in a Product Definition may be used in a search. For information about the
configuration of the search variables, see Variables Available for Searches, on page 220.

Searches can be performed from the Advanced Search screen where users can define complex
search criteria involving multiple variables or the Quick Search at the bottom of the screen, where
users search against one variable at a time.

Define a Search

Search screens contain core elements for searching: Variable Name, Operator, Value, Variable to
Display, and Sort. The 'Quick Search' frame does not include a 'Sort' option, since it is searching
against a single variable.

« Variable Name. Select from a list of all variables configured for searching.

« Operator. Select the operator to be used to compare the selected Variable Name against the
defined Value. Operator options include, but are not limited to, equals, less than, greater than,
and LIKE.

« Value. Define the user-specified value to be compared to the selected Variable Name.

« Variable to Display. Select from a list of variables to be displayed in the resulting table,
displaying a value for each "found" Product Instance.

« Sort. Select how the Variable to Display is to be used to sort the search output.

Comparisons and Data Types

For the purposes of searching, Text and Date variables are treated differently. Numerical data
is essentially treated as text (unless it has been specified to be a date).

The following information describes how each operator works with each kind of variable.

Comparison Usage with Text variables Usage with Date Variables
Operator

Scrittura (4.4.10.5) Page 222 of 430

Administration Guide

Chapter 8: Search and Reporting

<> (not equal
to)

LIKE

Finds trades for which the
variable and the value
specified are exactly the
same.

Finds trades for which the
variable is "alphabetically
less" than the value. (such as
"a"is less than "b").

Finds trades for which the
variable is "alphabetically
greater" than the value (such
as "b" is greater than "a").

Finds trades for which the
variable is not exactly the
same as the value specified.

The same as < except that it
also matches for equality.

The same as > except that it
also matches for equality.

Used to find values that are
contained within variables.
For example, "MyVar LIKE
abc" would find any trades
where the value of MyVar
(perhaps "abcdef") includes
the text abc within it.

Finds trades for which the variable date is
the same as the value specified.

Finds trades for which the variable date is
before the value specified.

Finds trades for which the variable date is
after the value specified.

Finds trades for which the variable date is
different than the value specified.

Finds trades for which the variable date is
before or the same as the value specified.

Finds trades for which the variable date is
after or the same as the value specified.

Used to find values that are contained
within the date when the date format is
specified numerically as yyyymmdd. This
operator expects values to be entered in
pairs (yy,yy,mm,dd), so for the date
19981104, LIKE would match 9811 but
would not match 811.

Dates should be entered as specified in the global or user preferences; that is, typically in the
form 1 Feb 2013 (or however your system is configured); when using the LIKE comparison
operator, the date should be specified in the format yyyymmdd (that is, 20130201).

In most cases it is easier and more intuitive to define specific ranges of dates, such as a
combination of the conditions "TradeDate > 31 May 2013" and "TradeDate < 1 Jul 2013".

Case Sensitivity

Itis possible to force Scrittura Quick Search and Advanced Search to be case- insensitive. For
this purpose, set the use-upper-searches attribute of the

<scrittura-config>tagin scrittura-config.xml, as explained in Scrittura-config.xml File,

on page 31.

Otherwise, case sensitivity in search comparisons depends on the configuration of the
database server. For example, a SQL database can be specifically configured as "case
sensitive" or "case insensitive."

Scrittura (4.4.10.5)

Page 223 of 430

Administration Guide
Chapter 8: Search and Reporting

In a case insensitive database, a query to return all instances where "Entity < b" would return
instances where Entity begins with "A" or "a".

Wildcards

When using the LIKE operator, the "' and '%' characters may be used as wildcards. They can
be used in the Value field to represent any number of unknown characters. For example,
searching for a*e will match "ae", "ade", and "abcde" ... but not "abcd".

When using LIKE for a search, wildcard characters are implicitly added to the beginning and
end of whatever is entered in the Value field. For example, if you search for instances where a
variable is "LIKE bcd", a value with the value "abcde" would match.

Built-in Date Variables

Scrittura includes the built-in dates today, yesterday and tomorrow. In addition, these dates can
be 'added to' and 'subtracted from' to specify any date relative to today, yesterday or tomorrow
(thatis, "today + 14" would be used to indicate two weeks from today.)

For example, to find a variable that matches three days ago, one could enter the Value "today -
3", "yesterday - 2" or "tomorrow - 4".

No holiday or weekend calendars apply to these added and subtracted values.

Queue-Style Search

Scrittura's queue-style search reuses the bulk screen user interface for search result screens,
bringing this rich user interface experience to the results of trade searches. It provides the following
capabilities.

Resizing of columns

Dragging and dropping of columns

Showing and hiding of columns

Filtering the results by particular values of a column

Performing bulk actions on search results

Queue-Style Search Features

In addition to the features already present in queue bulk screens, queue-style search incorporates
several features which are useful for working with search results.

Archive and History. In classic search results, the ability to archive any trade, or view a screen
detailing its history, is available through a link posted next to each trade. With queue-style
search, these same links are made available for every trade in the search results as well.

User Friendly Queue Names. In bulk queue screens, every trade belongs to the same queue.
In queue-style search, each trade in the set of results can belong to a separate queue, so each
trade’s queue is displayed using the display name of each queue for user-friendly identification;
this can be achieved by configuring the queue-style search queues.

Scrittura (4.4.10.5) Page 224 of 430

Administration Guide
Chapter 8: Search and Reporting

« Archived Trades and Trades-In-Progress. Bulk queue screens display only trades that
belong to a manual queue, but queue-style search results can contain both archived trades,
and trades which are being processed by automatic processes. These trades are identified in
the “Queue” column as “Archived (browse)” or “In progress...” respectively.

The archived trades and trades-in-progress can be color-coded using CSS styles. For more
information on using CSS style, see Configure the Styles of Trades, on page 229.

Activate the Queue-Style Search Functionality

Queue-style search and queue-style quick search are both activated by defining child elements of
the <scrittura-config> element within scrittura-config.xml.

Example configuration

<scrittura-config>

<search-queue name="Queue Style Search”
queue-style-only=false”>

<view name="Bulk Review” type="bulk”
view="/jsp/bulkBase.jsp?panels=next,edstr,link”/>
</search-queue>

<quick-search-queue name="Queue Style Quick Search"
queue-style-only="false"
include-deleted-trades="true">

<column-set name="StandardColumns"/>

<view name="Bulk Review" type="bulk"
view="/jsp/bulkBase.jsp?panels=next,edstr,lnk"/>
</quick-search-queue>

</scrittura-config>

Queue-style search is activated by defining the <search-queue> or <quick- search-queue> elements
are not specified, the corresponding search results will default to the classic search result view,
respectively for advanced search and quick search.

Queue-style search is an optional feature. If the <search-queue> element is not specified, the classic
search functionality is available in the advanced search screen, and if the <quick-search-queue>
element is not specified, the classic quick search functionality is available on the quick search
toolbar.

The <search-queue> and <quick-search-queue> elements have the following attribute.

Scrittura (4.4.10.5) Page 225 of 430

Administration Guide
Chapter 8: Search and Reporting

Attribute Required/ Description

Optional

name Required Defines the name of the queues. Can be used to differentiate from
other queues already defined in the system.
If not present, the default of "Queue Style Search" and "Queue Style
Quick Search" are used for the search queue and quick-style search
queues, respectively.

include- Required Required by default, the value is true. The search result will have

deleted- deleted trades included.

trades

For more information about the <column-set> element, see Define the Column Set forQueue-Style
Search, on page 224; for more information about the <view> element, see Define the View for
Queue-Style Search, on page 224.

Define the Column Set for Queue-Style Search

Using Advanced Search, you can select from a list of columns to display in the result set when they
specify the parameters for the search. The set of columns from which they can choose is defined in
the same manner as those available for the classic Advanced Search (defined in the <search-
columns> elementin scrittura-config.xml).

Using Quick Search, you define a set of columns that display every time a queue-style Quick
Search is performed. This set is defined by the <column- set> child element (or the <column> child
elements) of the <quick- search-queue> element as shown in the Example Activate the Queue-
Style Search Functionality, on the previous page.

Define the View for Queue-Style Search

As with bulk screen queues, the view is defined for the Advanced Search and the Quick Search using
a <view> child element of the <search-queue> and <quick-search-queue> elements, as shown in
the Example in Activate the Queue-Style Search Functionality, on the previous page.

For more information about configuring the <view> element for bulk screen queues, seeBulk Screen
Configuration, on page 187.

Define the Item View URL for Queue-Style Search

The URL to which the user is directed upon clicking on a trade can be customized under the <search-
queue> and <quick-search-queue> elements in scrittura-queue-view-config.xml.

Example view URL configuration for queue-style search and queue- style quick searches

<scrittura-queue-view-config>

<search-queue

default-sort-by="arrivalTime" queue-style-search-item-view-url=

Scrittura (4.4.10.5) Page 226 of 430

Administration Guide
Chapter 8: Search and Reporting

"/scrittura/controller?e=pi
&v=Review

&g={nonvar:derivedQ}

&i={gm:workflowProcessId}.{qm:activityId}

.{gm:arrivalTransitionId}.{gm:workitemId}

&currentPage={request:currentPage}">

<column id="arrivalTime"/>
</search-queue>

quick-search-queue

default-sort-by="arrivalTime" queue-style-search-item-view-url=

"/scrittura/controller?e=pi
&v=Review

&g={nonvar:derivedQ}

&i={gm:workflowProcessId}.{qgm:activityId}

.{gm:arrivalTransitionId}.{gm:workitemId}

&currentPage={request:currentPage}">

<column id="arrivalTime"/>
<column id="visibleQueue"/>

</quick-search-queue>

</scrittura-queue-view-config>

The <search-queue> and <quick-search-queue> elements have the following attributes that define

the click-through URL.

Attribute Required/
Optional

default-sort-by Optional

default-sort-order ~ Optional

queue-style- Optional

search-item-view-
url

Scrittura (4.4.10.5)

Description

Defines the name of the column by which the results of the
search is sorted.

Defines the default ordering, asc for ascendant ordering and
desc for descendant.

Default: asc

Defines the URL to which the user is redirected when a trade is
clicked in the queue-style search results.

For more information about the format of placeholders for this
URL, see Bulk Screen Configuration, on page 187.

Page 227 of 430

Administration Guide
Chapter 8: Search and Reporting

Define a Custom Header for Queue-Style Search Pages

As with the custom-header attribute of <scrittura-queue-view- config> for bulk screen, a
separate custom header can be specified for the queue-style search screens. This custom header is
specified by the custom- search-header attribute of the <scrittura-queue-view-config> element
within scrittura-queue-view-config.xml.

Configure User-Friendly Queue Names

Queue-style search include a custom renderer which can be used to translate the name of the queue
in which a trade resides from the internal name used in the Scrittura database, to a user-friendly
display name as used throughout the user interface.

This is similar to the custom renderers for columns in the bulk screens, which can be used to render
the display of given columns in a manner particularly suited to the information in that column. For
more information, see Columns Definition, on page 191.

To use this custom renderer for queue-style search, define a <column-def> for the
CurrentManualQueue variable as follows:

« The custom renderer will be applied to the <column-def> which you use to display the current
manual queue of a trade. In the following example, it is identified by the id attribute of
CurrentManualQueue.

« The <custom-renderer> element for this <column-def> specifies a factory-class attribute of
com.iwov.gcm.scrittura.web.queue.impl.QueueNameCellRende rerFactory, which creates
the custom renderer.

« The following properties of this custom renderer must be defined:

o SetprocessVariableFullName to fa:CurrentManualProcess, to store the name of the
variable which holds the current process of the trade in the fast action tables.

o SetqueuevariableFullName to fa:CurrentManualQueue to store the current manual queue
of the trade in the fast action tables.

o SetquickFilterSupported to true, with a type attribute of boolean to indicate that it should
be interpreted as a Boolean value.

o Set tradeInProgressTextto the text that you would like to display to indicate that a trade is
in progress.

o Set tradeArchivedText to the text that you would like to display to indicate that a trade is
archived.

Example <column-def> configuration for user-friendly queue names
<column-def id="CurrentManualQueue" default-title="Queue">
<custom-renderer
factory-class="com.iwov.gcm.scrittura.web.queue
.impl.QueueNameCellRendererFactory">

<property name="processVariableFullName">

Scrittura (4.4.10.5) Page 228 of 430

Administration Guide
Chapter 8: Search and Reporting

<value>fa:CurrentManualProcess</value>
</property>

<property name="queueVariableFullName">
<value>fa:CurrentManualQueue</value>
</property>

<property name="quickFilterSupported">
<value type="boolean">true</value>
</property>

<property name="tradeInProgressText">
<value>In progress...</value>
</property>

<property name="tradeArchivedText">
<value>Archived (browse)</value>
</property>

</custom-renderer>

</column-def>

Configure the Styles of Trades

Separate styles can be defined to assist in visually distinguishing the data in the results list. For
example, you can apply an alternating background color to the rows to help distinguish rows from
adjacent rows. Or, you can define styles for the display of trades to distinguish those which reside in
manual queues, those which are in progress, and those which are archived.

To help visually distinguish a row from adjacent rows, two different background colors are used for
the alternating rows of the table. When defining styles for trades in these rows, there are two different
styles for each type of trade: one is identified with a name ending with the number 0, and the other is
defined with a name ending with the number 1. You can define one style in these sets of two to have
a different background color than the other to preserve the effect of distinguishing alternating rows by
background color.

The pair of styles for default trades is defined in mainPage.css. If you want to customize these styles,
the base version of mainPage.css is located under the stylesheets repository of scrittura-web.war
within the Scrittura distribution.

To insert a customized version into your client code, place your custom mainPage.css under custom-
web\customISPs\stylesheets\ within your client code.

The following style pairs can be configured for manual queues.

Style Purpose
Pairs

Scrittura (4.4.10.5) Page 229 of 430

Administration Guide
Chapter 8: Search and Reporting

tr.table0 The default style for trades in a manual queue.

tr.table1 The default style for trades in a manual queue; this style can be used to distinguish
alternating rows between tr.table@ and tr.tablel.

tr.table0 Style used when displaying links in rows for trades in a manual queue.
a:link

tr.table1 Style used when displaying links in rows for trades in a manual queue; this style can
a:link be used to distinguish alternating rows between tr.table® a:link andtr.tablel
a:link.

tr.table0 Style used when displaying visited links in rows for trades in a manual queue.
a:visited

tr.table1 Style used when displaying visited links in rows for trades in a manual queue; this
a:visited style can be used to distinguish alternating rows between tr.table@ a:visitedand
tr.tablel a:visited.

tr.table0 Style used when displaying the active link in rows for trades in a manual queue.
a:active

tr.table Style used when displaying the active link in rows for trades in a manual queue; this
a:active style can be used to distinguish alternating rows between tr.table@ a:active and
tr.tablel a:active.

tr.tableO Style used when links over which the user hovers the mouse cursor are displayed for
a:hover trades in a manual queue.

tr.table Style used when links over which the user hovers the mouse cursor are displayed for
a:hover trades in a manual queue; this style can be used to distinguish alternating rows
between tr.table® a:hover andtr.tablel a:hover.

The styles for archived trades, and trades not in manual queues, are defined in queue.css. If you
want to customize these styles, the base version of queue.css is located under the stylesheets
repository of scrittura- web.war within the Scrittura distribution.

To insert a customized version into your client code, place your custom queue. css under custom-
web\customJSPs\stylesheets\ within your client code.

The following style pairs can be configured for archived trades.
Style Pairs Purpose
tr.inactivetableO Default style for trades not in a manual queue.

tr.inactivetable Default style for trades not in a manual queue; this style can be used to
distinguish alternating rows between tr.inactivetableo and
tr.inactivetablel.

tr.inactivetableO Style used when displaying links in rows for trades not in a manual queue.
a:link

Scrittura (4.4.10.5) Page 230 of 430

Administration Guide
Chapter 8: Search and Reporting

tr.inactivetable
a:link

Style used when displaying links in rows for trades not in a manual queue; this
style can be used to distinguish alternating rows between tr.inactivetable®

tr.inactivetableO
a:visited

tr.inactivetable
a:visited
tr.inactivetableO
a:active

tr.inactivetable
a:active

tr.inactivetable0
a:hover

tr.inactivetable
a:hover

a:linkand tr.inactivetablel a:1link.

Style used when displaying visited links in rows for trades not in a manual
queue.

Style used when displaying visited links in rows for trades not in a manual
queue; this style can be used to distinguish alternating rows between
tr.inactivetable® a:visited and tr.inactivetablel a:visited.

Style used when displaying the active link in rows for trades not in a manual
queue.

Style used when displaying the active link in rows for trades not in a manual
queue; this style can be used to distinguish alternating rows between
tr.inactivetable® a:active and tr.inactivetablel a:active.

Style used when links over which the user hovers the mouse cursor are
displayed for trades not in a manual queue.

Style used when links over which the user hovers the mouse cursor are
displayed for trades in a manual queue; this style can be used to distinguish
alternating rows between tr.inactivetable® a:hover and
tr.inactivetablel a:hover.

The following style pairs can be configured for trades not in manual queues.

Style Pairs
tr.archivedtable0

tr.archivedtable1

tr.archivedtable0
a:link

tr.archivedtable1
a:link
tr.archivedtable0O
a:visited
tr.archivedtable1

a:visited

tr.archivedtable0
a:active

Scrittura (4.4.10.5)

Purpose
Default style for trades not in a manual queue.

Default style for trades not in a manual queue; this style can be used to
distinguish alternating rows between tr.inactivetable® and
tr.inactivetablel.

Style used when displaying links in rows for trades not in a manual queue.

Style used when displaying links in rows for trades not in a manual queue;
this style can be used to distinguish alternating rows between
tr.inactivetable® a:1link and tr.inactivetablel a:link.

Style used when displaying visited links in rows for trades not in a manual
queue.

Style used when displaying visited links in rows for trades not in a manual
queue; this style can be used to distinguish alternating rows between
tr.inactivetable® a:visited and tr.inactivetablel a:visited.

Style used when displaying the active link in rows for trades not in a manual
queue.

Page 231 0of 430

Administration Guide
Chapter 8: Search and Reporting

tr.archivedtable1 Style used when displaying the active link in rows for trades not in a manual
a:active queue; this style can be used to distinguish alternating rows between
tr.inactivetable@ a:active and tr.inactivetablel a:active.

tr.archivedtableO Style used when links over which the user hovers the mouse cursor are
a:hover displayed for trades not in a manual queue.

tr.archivedtable1 Style used when links over which the user hovers the mouse cursor are

a:hover displayed for trades in a manual queue; this style can be used to distinguish
alternating rows between tr.inactivetable® a:hover and
tr.inactivetablel a:hover.

Queue Filters

Scrittura bulk screens offer the capability to apply filters to the results returned on screen. This also
applies to the queue-style searches.

Global filters can be created, deleted, or amended from the bulk screens prior to being applied. Itis
also possible to add extra filtering at column level, provided this capability has been enabled for the
column.

For more information about the configuration and capabilities of the bulk screens, see Bulk Screen
Configuration, on page 187.

Jasper Reports and Style Reports

Scrittura end-users may define, save, and share their own trade search criteria for relatively simple
queries (such as, show all the trades where A=B and Y=X). Most daily reporting can be accomplished
with these simpler queries; the data can then be exported to Excel for further statistical grouping or
analysis.

Scrittura has integrated a powerful open source java reporting tool Jasper Reports. Using its APIs
you can develop custom reports, such as showing a pie chart representing the percentage of not yet
issued trades by trade date.

Alternatively, it is possible to use the libraries of the commercial software Style Report Pro for
development.

Custom report classes can be added to the client code of the Scrittura application. The custom report
classes must be added to the <reports> element of scrittura-config.xml.

Scrittura has built in scheduler functionality. You can schedule to run any saved searches and any
custom java reports individually or simultaneously. Custom java reports however have to implement
the com.ipicorp.scrittura.util.StandaloneReport interface.

Example: Audit Activity Report using Style Reports

Audit information is stored in dedicated audit tables optimized for search or reports. This ensures
better access to audited data.

The report class accesses audit information from the audit tables. In designing such a class, you
must:

Scrittura (4.4.10.5) Page 232 of 430

Administration Guide
Chapter 8: Search and Reporting

1. Setup the format of the report page.
2. Getthe datainto a 2-D array that the Style Report engine can understand.

When designing a Style Report class:

« Create two classes; one implements abstract clas
com.ipicorp.scrittura.web.reports.AbstractScritturaReport and the other extends
AbstractTablelens.

e AbstractScritturaReport expects one method, runReport(String rType, boolean
isHtml) . This method sets up the title, fonts, headers, footers, and so on to format the report

page.

« This class does is call a lens class that actually gets and formats the data to be displayed in the
report.

The lens class needs to create a 2-dimensional array 'table’ and tell the Style Report engine
how to parse each row and column in the table. Create the 2-D array in the constructor of the
lens and tell it how to get to each cell of the 2-D table in the getObject () method. To do this,
perform the JDBC query. For each row returned, parse the columns into a List and add the List
to the 'row' List. This will create the 2-D table.

« Style Reports use the getRowCount () and getColCount() methods to determine how many
rows and columns are in the table. Be sure to add any label or total columns in addition to the
main table data.

« Style Reports call getObject(row, col) for each row and column, so it has to be told how to get
a String for each (row,col) value in the 2-D array (in addition to column labels or totals).

BIRT Reports

Scrittura can also integrate with Apache BIRT for reporting purposes. Once reports are configured
using the Scrittura BIRT module, they can be accessed by Scrittura and can be exported into DOC,
XLS, PDF, or HTML format.

Prerequisites for Integrating BIRT

To integrate Scrittura with the BIRT connector module, you must download the following
components.

e BIRT runtime libraries (download from www.eclipse.org)
e jtds-1.2.5.jar file (download from jtds.sourceforge.net)

Scrittura has been tested against BIRT 2.6.1, which is the version of BIRT described in this
document.

Complete the following prerequisites for integrating with BIRT.
1. Application Server Startup, on the next page

2. Prepare Directories for BIRT Integration, on the next page

Scrittura (4.4.10.5) Page 233 0f 430

Administration Guide
Chapter 8: Search and Reporting

Application Server Startup

To integrate Scrittura with the BIRT connector module, you must add BIRT libraries to the Scrittura
classpath.

The CLASSPATH section must contain the following entries.
e coreapi.jar
e engineapi.jar
e modelapi.jar
e scriptapi.jar
e com.ibm.icu_4.2.1.v20100412.jar
e org.apache.commons.codec_1.3.0.v20100518-1140.jar
e odadesignapi.jar

The js.jar file is also required. For the WebLogic application server, add the js. jar file as the first
entry under the PRE_CLASSPATH section in the setDomainEnv. cmd file. For the JBoss application
server, add it to the JBoss module XML file.

Prepare Directories for BIRT Integration
You must prepare directories for BIRT integration.

1. Copy the BIRT runtime libraries to the \1ib\ReportEngine location in the Scrittura home
directory. These libraries are provided with the BIRT release and are located under the
\ReportEngine directory.

2. Copythe jtds-1.2.5.jar fileintothe plugins\org.eclipse.birt.report.data.oda.jdbc_
2.6.1.v201 00909\drivers directory under the \1ib\ReportEngine location.

3. Create the BIRT temporary directories as specified in the configuration. These directories will
be used to generate HTML reports. For full details, see Configuration of BIRT Integration,
below.

Configuration of BIRT Integration

The integration of BIRT reports into Scrittura is configured in the birt- report-config.xml
configuration file, located in the \config directory of the Scrittura home repository.

The birt-report-config.xml configuration file must contain database connection information and
a list of reports. The reports must be placed under \reports in the Scrittura home directory.

This file is composed of the following sections.
e Database configuration (<database-config>)
e Directories (<directories>)
e Report list (<report-list>)

Example BIRT integration configuration

Scrittura (4.4.10.5) Page 234 of 430

Administration Guide
Chapter 8: Search and Reporting

<birt-report-config>

<database-config>

<data-source> org.eclipse.birt.report.data.oda.jdbc
</data-source>

<driver-class> net.sourceforge.jtds.jdbc.Driver
</driver-class>
<url>jdbc:jtds:sqlserver://localhost:1433</url>
<user>scrittura</user>
<password>c2NyaXROdXJh</password>
</database-config>

<directories>
<report-dir>birt/birt-reports</report-dir>
<runtime-dir>birt/ReportEngine</runtime-dir>
<temp-dir>birt/temp</temp-dir>
<config-dir>birt/config</config-dir>
</directories>

<report-list>

<report name="report">

<title>Test Report</title>

<description>This is a test report</description>
<birt-design>test.rptdesign</birt-design>
</report>

</report-list>

</birt-report-config>

The <database-config> node is mandatory, has no attributes, and has the following child nodes. All
child nodes have no attributes, their value being specified in their body.

Child Required/ Description

Node Optional

data- Required Data Source type, such as:

source org.eclipse.birt.report.data.oda.jdbc

driver-class Required Driver class, such as net.sourceforge.jtds.jdbc.Driver
url Required Database URL, such as

Scrittura (4.4.10.5) Page 235 0f 430

Administration Guide
Chapter 8: Search and Reporting

jdbc:jtds:sqlserver://localhost:1433
user Required Login name for the database connection.

password Required Password for the database connection. The password can be AES-
encrypted or remain unencrypted in the configuration file.

NOTE: If you want to deploy the same report to different clients, remove <data-source> tag from
the report.

The <directories> node is optional, has no attributes, and has the following child nodes.

Child Required/ Description

Node Optional

runtime- Optional BIRT runtime directory, located under the Scrittura home directory.

dir Default: birt

report-dir ~ Optional Directory under the BIRT runtime directory where rptdesign reports are
copied.

Default: reports

temp-dir Optional Temporary BIRT directory, located under the BIRT runtime directory.

Default: temp-birt

config-dir Optional BIRT internal configuration folder. This folder will be located inside the
BIRT runtime library folder if unspecified.

The <report-1ist> node is mandatory has the following attribute.

Attribute Required/ Description
Optional
log-level Required BIRT Engine log level.

Possible values: SEVERE, WARNING, INFO, CONFIG, FINE,
FINER, FINEST,and OFF

The <report-1ist> node supports one or more <report> child nodes, each defining a report.

A <report> node has a single attribute, name, that must be unique. If it is not unique, only the last
instance will be kept. The <report> node has the following child nodes. All child nodes have no
attributes, their values being defined by their body.

Child Node Required/ Description
Optional

title Required Title describing the report, to be displayed in the user interface.

Scrittura (4.4.10.5) Page 236 of 430

Administration Guide
Chapter 8: Search and Reporting

description Required Short description of the report, to be displayed in the user interface.

birt-design Required BIRT report design file (with .rptdesign extension). The
corresponding file must exist and must be located in the BIRT report
directory defined by the report-dir attribute of the <report-list> node.

BIRT Password Encryption
The password defined in the BIRT configuration file can be AES-encrypted if required.

All password encryptions in Scrittura are done in the startup-config.xml configuration file. For
more information, see Password Encryption, on page 379.

Scrittura User Interface Configuration for BIRT Integration

The Reports menu item displays a list of reports with titles, descriptions, and format options, including
HTML, PDF, Word (DOC), and Excel (XLS).

The corresponding JSP, /jsp/viewReports.jsp, is launched by Scrittura controller upon reception of a
URL with the following parameters.

Parameter Value
event birt

action list or empty value

Selecting one of the available format options generates the report in the corresponding format. This
is done using an HTTP call with the following parameters to Scrittura controller.

Parameter Value

event birt

action run

format html, pdf, doc, or xIs

report Name of the rptdesign report file name to process.

BIRT Report Design

Eclipse BIRT Designer is the recommended tool to create and configure reports in a user friendly
manner. BIRT report design files use the . rptdesign extension.

The data model (including column name, display, data source, and so on) as well as the style and
layout are defined in the . rptdesign files.

For details on designing BIRT reports, see the BIRT documentation.

Scrittura (4.4.10.5) Page 237 of 430

Administration Guide
Chapter 9: Static Data Framework

Chapter 9: Static Data Framework

The Static Data Framework provided by Scrittura allows the definition and configuration of a data
model along with the corresponding user interface in order to store and manage counterparty static
data directly in Scrittura.

This section contains the following topics:
« Static Data Framework Overview, below
« Define the Data Model, below
« Data Mapping Configuration, on the next page
« Create the Database Tables, on page 250
« Configure the User Interface, on page 250
« Interaction with the Framework, on page 260
« Main Classes, on page 260

« Essential Operations, on page 262

Static Data Framework Overview

The configuration and setup of the Static Data Framework requires the following steps:
1. Define the data model to implement.

2. Configure the framework to map this data onto in-memory objects that can be accessed from
within the framework and define user permissions.

3. Create the database tables.

4. Configure the user interface to allow access by end-users from within the Scrittura application.

Define the Data Model

The Static Data Framework supports common relational data models. Any number of tables can be
defined and linked together using one-to-many or many-to-many relationships. Uniqueness
constraints can be added and fields can be made required or not.

Toillustrate the Static Data Framework in use, a simplified data model is used throughout this
chapter. In this model, a list of counterparty contacts is created and classified by products in order to
hold the following data:

« General counterparty details including name, short code, address, and so on.

« Each counterparty trades certain types of products such as FX Options, Equities, and so on.

Scrittura (4.4.10.5) Page 238 of 430

Administration Guide
Chapter 9: Static Data Framework

« For a specific counterparty, a list of contacts is associated with each product traded by the
counterparty. Contact details include first name, last name, email address, and phone number.

In the following table, the header of each column is the name of the table, with its fields listed below,
primary keys appear in bold, foreign keys in italic, and required fields are followed by a star.

SD_BASEVIEW SD_COUNTERPARTY SD_CONTACT SD_PRODUCT

IDVIEW IDCPTY IDCONTACT IDPRODUCT

IDCPTY * LONGNAME * FIRSTNAME* CODE*

IDCONTACT SHORTCODE * LONGNAME* NAME *

IDPRODUCT ADDRESS EMAIL DESCRIPTION
COUNTRY PHONE

In this example, the primary keys of the four tables are IDVIEW, IDCPTY, IDCONTACT, and
IDPRODUCT. All other fields of the SD_BASEVIEW table are foreign keys to the other three tables.

After you configure the framework, the Static Data Framework will generate DDLs (Data Definition
Language) in order to create the tables.

Data Mapping Configuration

The data mapping configuration file, datamapping-config.xml, is located in the /config directory of the
Scrittura live folder and is structured as follows:

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE data-mappings PUBLIC "-//Scrittura//DTD Data Mappings XML V2.0//EN"
"@scrittura.home@/dtd/datamapping-config.dtd">

<data-mappings>

<value-type-definition .. >

</value-type-definition>

<data-mapping .. >

</data-mapping>

<data-mapping .. >
</data-mapping>

</data-mappings>

Scrittura (4.4.10.5) Page 239 of 430

Administration Guide
Chapter 9: Static Data Framework

The different data mappings are configured under the <data-mappings> root node, each child <data-
mapping> node corresponding to a table in the data model. Using the data model example in Define
the Data Model, on page 238, four data mappings are defined:

« BaseView
« Counterparty
o Product

« Contact

Any number of <value-type-definition> or <data-mapping> tags are permitted, but at least one
<data-mapping> tag is required. Custom value types can also be defined in the <value-type-
definition> tag.

Root Node

<data-mappings> is the root node of datamapping-config.xml and defines the various data
mappings.

Additional columns will be added to the database tables in order to store additional record properties
(such as the user who created the record, date it was created, and so on). Using <data-mappings>,
that data can be mapped to existing fields of the data model if required.

The <data-mappings> node has the following attributes.

Attribute Required/ Description

Optional
default-id- Optional Default name for data mapping table column that contains the record
column id used as primary key. This field defaults to REC_ID and the
corresponding column must be of type LONG.
priority- Optional Name for the data mapping table column that contains the record
column priority. Defaults to REC_PRIORITY.
created-by- Optional Name of the data mapping table column that contains login name of
column the user who created the record.
Defaults to REC_CREATED_BY.
created- Optional Name of the data mappings table column that contains the timestamp
on-column for when the record was created.
Defaults to REC_CREATED_ON.
modified- Optional Name of the data mapping table column that contains the login name
by-column of the user who last modified the record. Defaults to REC_LAST_
MODIFIED_BY.
modified- Optional Name of the data mapping table column that contains the timestamp
on-column for when the record was last modified. Defaults to REC_LAST_

MODIFIED_ON.

Scrittura (4.4.10.5) Page 240 of 430

Administration Guide
Chapter 9: Static Data Framework

The <data-mappings> node accepts <value-type-definition> and <data-mapping> nodes as
child nodes.

Custom Value Types

Custom value types are specified under the <value-type-definition> node. Custom value types
can be of two types:

« Simple value type
<value-type-definition>
<simple-value-type>

<valid-values>

</valid-values>
</simple-value-type>
</value-type-definition>
« Data mapping value type
<value-type-definition>

<data-mapping-value-type>

</ data-mapping-value-type>
</value-type-definition>

A Simple Value Type provides the ability to define a set of authorized values whereas the Data
Mapping Type refers to one of the configured data mapping. The Data Mapping Value Type is
used to define foreign keys.

For <simple-value-type>, the list of possible values are specified by adding <valid-values>
tags where the value to be matched is set in the value attribute. For example:

<value-type-definition name="ProductFamilyType">
<simple-value-type type="String" max-size="20">
<valid-values>

<valid-value value="Commodities"/>

<valid-value value="Credits"/>

<valid-value value="Equities"/>

<valid-value value="FX Options"/>

<valid-value value="Rates"/>

</valid-values>

Scrittura (4.4.10.5) Page 241 of 430

Administration Guide
Chapter 9: Static Data Framework

</simple-value-type>

</value-type-definition>

Data-Mapping Attributes

The <data-mapping> node includes the following attributes.

Attribute Required/ Description

Optional
name Required Internal name used to identify this data mapping. Names must be
unique throughout the configuration.
display- Optional Data mapping name to be displayed in the user interface. If not
name specified, the internal name is used.
description Optional Data mapping description to be displayed in the user interface.
table Required The database table used to store the mapping records.

Example
<data-mapping name="Counterparty" display-name="Counterparty"
description="List of counterparties" table="SD_COUNTERPARTY"

use-cache="false">

Data Mapping Child Nodes

The <data-mapping> node defines the different tables of the data model that will be created. One tag
corresponds to one table. The tag is configured by a series of attributes and the following child nodes.

« <access>

o <key-field>

« <value-field>

« <unique-group>

« <required-group>

User Permissions

Three roles should be defined in the application server in order to handle different levels of
permissions in the Static Data Framework:

« DMoperators
« DMmanagers

« DMadmins

Scrittura (4.4.10.5) Page 242 of 430

Administration Guide
Chapter 9: Static Data Framework

Specific user permissions are defined within the <access> node. Permissions are set against the
different roles using <read> and <write> tags, for read and write permissions respectively. These
tags take a single attribute, permission, which contains the name of the role.

Example

caccess>

<read permission="DMadmins" />
<write permission="DMadmins" />
<read permission="DMmanagers" />
<write permission="DMmanagers" />
<read permission="DMoperators" />
</access>

NOTE: Write permissions do not automatically grant read permissions; read permissions must be
specified explicitly.

Key and Value Fields

Key and Value Fields are entries within the data mapping that map onto a field of the corresponding
database table as specified in the <data-mapping> attributes. Key fields can be used in a database
lookup request, value fields cannot.

Key Fields

At least one <key-field> is required within each data mapping. The following is a typical structure for
a key field.

<key-field .. >
<value-type>
<simple-value-type .. >

<valid-values>

</valid-values>
</simple-value-type>
</value-type>
</key-field>

<key-field> has the following attributes.

Attribute Required/ Description
Optional

Scrittura (4.4.10.5) Page 243 of 430

Administration Guide
Chapter 9: Static Data Framework

name Required Field name for the framework API.

display-name Optional Field name for the GUI. If not specified, the APl name is used.
description Optional Field description.

column Optional Database table column that contains the key value.

optional Optional Boolean value. By default, all fields are mandatory, and a value

must be specified for them whenever a Data Mapping record is
created. Setting this attribute to true removes this restriction on
the field.

matchRecordld Optional Boolean value. In order to refer to a foreign field in a table linked
by a foreign key, the value must be set to true.

The field type can be specified within a <simple-value-type> node, as a child node of <value-
type>, itself within the <key-field> node. The <simple-value-type> tag can specify a list of
authorized values similar to the <value-type-definition> tag.

The <simple-value-type> tag and has the following attributes.

Attribute Required/ Description

Optional
type Required One of the following types must be specified: String, Boolean,
Integer, Long, Decimal, Date, or DateTime.
max-size Optional For string types, this field indicates the maximum length of the value
string; for decimals, the maximum length of the integer and the
precision, separated by a comma.
min-size Optional For string types, this field indicates the minimum length of the value

string.

Example
<key-field name="Name"

display-name="Counterparty Name" description="Counterparty Name"
column="COUNTERPARTY_NAME" >

<value-type>
<simple-value-type type="String" max-size="20"/>
</value-type>

</key-field>

Value Fields

Value Fields can be added to a data mapping, but cannot be used as search criteria in a lookup
request.

Scrittura (4.4.10.5) Page 244 of 430

Administration Guide
Chapter 9: Static Data Framework

The <key-value> node has the following attributes.

Attribute Required/ Description

Optional

name Required Field name for the framework API.

display- Optional Field name for the GUI. If not specified, the APl name is used.

name

description Optional Field description.

column Required Database table column that contains the field value.

optional Optional Boolean value. By default, all fields are mandatory, and a value
must be specified for them whenever a Data Mapping record is
created. Setting this attribute to true removes this restriction on the
field.

value- Optional Name of foreign key or "check" constraint used to limit field's valid

constraint values. If not specified and the framework needs a constraint
because of the field type, default name generated by the framework
is used. The default name is formed by appending"_FKn" or"_CKn"
for "foreign key" or "check" to the table name.

Example

<value-field name="Description"

display-name=" Description"” description=" Product Description

column="DESCRIPTION">

<value-type>

<simple-value-type type="String" />
</value-type>

</value-field>

Unique Groups

The <unique-groups> tag allows combining keys into unique groups (sets a unique value constraint).
Multiple key fields can be included in the same group, in which case a unique constraint is created for
the combination of the participating key values.

<unique-group> has the following attributes.

Attribute Required/ Description

Optional
name Required Group name
display- Optional Name for display purposes; if not specified the API name is used to

Scrittura (4.4.10.5) Page 245 of 430

Administration Guide
Chapter 9: Static Data Framework

name present the group to users.

constraint Optional Name of the corresponding database unique constraint. If omitted,
table name appended with _UQn is used, n being an integer

<unique-group> is further defined by the required <field-ref> tag and its required field attribute. The
field attribute must contain the name of a field to be included in the constraint.

Example

<unique-group name="IdCounterparty_PrimaryKey"
constraint="IdCounterparty_PrimaryKey">
<field-ref field="IdCounterparty" />

</unique-group>

Required Groups

The <required-group> tag specifies that one field is mandatory within a group of non-mandatory
fields. This is achieved by grouping fields within a Required Group. As many Required Groups as
needed can be defined for a Data Mapping.

<required-group> has the following attributes.

Attribute Required/ Description

Optional
name Required Group name
display- Optional Name for display purposes; if not specified the API name is used to
name present the group to users.
constraint Optional Name of the corresponding database unique constraint. If omitted,

table name appended with _RG is used.

<required-group> is further defined by the required <field-ref> tag and its required field attribute. The
field attribute must contain the name of a field to be included in the constraint.

Example

In this example, either CounterpartyCountry or CounterpartyCity must be specified. Attempting to
insert a record with neither field specified will fail.

The Required Groups constraint is implied in addition to other constraints. If CounterpartyCountry is
also defined as mandatory, it must be populated whether CounterpartyCity is populated or not.

<required-group name="location_RG” constraint="location_RG”>
<field-ref field="CounterpartyCountry” />
<field-ref field="CounterpartyCity®“ />

</required-group>

Scrittura (4.4.10.5) Page 246 of 430

Administration Guide
Chapter 9: Static Data Framework

Table Relationships

This section describes how to setup table relationships within the Static Data Framework. To
establish a relationship between tables, a field of the parent table is used as a Foreign Key that refers
to the Primary Key of the child table.

For example, a table might contain three foreign keys referring to three other tables.

Framework Configuration

A Foreign Key is specified using a <key-field> tag within a data mapping. This Key Field is defined
as a <data-mapping-value-type> instead of a

<simple-value-type>:
<key-field .. >

<value-type>
<data-mapping-value-type />
</value-type>

</key-field>

When used as a foreign key, <key-field> has the following attributes.

Attribute Required/ Description

Optional

data- Required Name of the referenced data mapping.

mapping-

name

value-field Required Name of a key field in the referenced data mapping that will be used
as the source of valid values.

display- Optional Select list column SQL expression used to create a display version of

value-field- the value. Referenced data mapping field names surrounded by curly

expr braces can be used.

value-filter- Optional SQL where clause condition that allows the selection of a subset of

expr values from the referenced data mapping table that are valid for this
field. The expression can use field names in curly braces.

Example

<key-field name="IdCounterparty"

display-name="Counterparty ID" description="Counterparty ID" column="IDCPTY" >
<value-type>

<data-mapping-value-type

data-mapping-name="Counterparty" value-field="IdCounterparty"

Scrittura (4.4.10.5) Page 247 of 430

Administration Guide
Chapter 9: Static Data Framework

display-value-field-expr="{Name} ({ShortCode})" />
</value-type>
</key-field>

A <key-field> can point to any key field in another <data-mapping> tag, except the Record ID. The
same functionality as linking to a Record ID can be achieved by specifying a long variable with the
matchRecordId attribute set to true as the foreign key. All fields specified as a foreign key in a
different data mapping must be defined in a unique group that contains only that single field.

Example of a complex structure

<data-mappings>

<!-- SD_BASEVIEW mapping -->

<data-mapping name="BaseView"
table="SD_BASEVIEW" >

caccess>

<read permission="DMadmins" />

<write permission="DMadmins" />

</access>

<key-field name="IdCounterparty"

column="IDCPTY" >

<value-type>

<data-mapping-value-type
data-mapping-name="Counterparty" value-field="IdCounterparty" />
</value-type>

</key-field>

<key-field name="IdProduct" column="IDPRODUCT" >
<value-type>

<data-mapping-value-type
data-mapping-name="Product" value-field="IdProduct" />
</value-type>

</key-field>

</data-mapping>

<!-- SD_COUNTERPARTY mapping -->
<data-mapping name="Counterparty"
table="SD_COUNTERPARTY" >

<access>

Scrittura (4.4.10.5) Page 248 of 430

Administration Guide
Chapter 9: Static Data Framework

<read permission="DMadmins" />
<write permission="DMadmins" />
</access>

<key-field name="IdCounterparty"
column="IDCPTY" matchRecordId="true">
<value-type>

<simple-value-type type="Long" />
</value-type>

</key-field>

<unique-group name="IdCounterparty_PrimaryKey"
<field-ref field="IdCounterparty" />

</unique-group>

</data-mapping>

<l-- SD_PRODUCT mapping -->
<data-mapping name="Product"
table="SD_PRODUCT" >

caccess>

<read permission="DMadmins" />
<write permission="DMadmins" />
</access>

<key-field name="IdProduct "
column="IDPRODUCT" matchRecordId="true">
<value-type>

<simple-value-type type="Long" />
</value-type>

</key-field>

<unique-group name="IdProduct_PrimaryKey"
<field-ref field="IdProduct" />

</unique-group>

Scrittura (4.4.10.5) Page 249 of 430

Administration Guide
Chapter 9: Static Data Framework

</data-mapping>

</data-mappings>

Create the Database Tables

After you define the data model and configure the data mapping, the next step is to create the
database tables.

The DDL (Data Definition Language) creation script is automatically generated by Scrittura after the
data model has been configured in datamapping- config.xml. This configuration is reloaded in the
system using the "SetConfig" process.

This action is available from within the Scrittura administration pages of the user-interface, under the
“Database Operation” tab. Once generated, the DDL script can then be copied and pasted by the
administrator into a database administration client and run from there in order to create the tables.

For full details on the "SetConfig" process and administration pages, see Scrittura Administration and
Run-Time, on page 3609.

Configure the User Interface

After the data model is configured and created in Scrittura, the user interface can also be configured
to allow manual administration of static data from within Scrittura (such as selection, creation,
update, and deletion of records).

User interface configuration is done in a single configuration file, datamapping-ui-config.xml,
which is located in the /config folder of the Scrittura installation directory.

The following is the basic structure of datamapping-ui-config.xml.
<?xml version="1.0" encoding="UTF-8"?>
<data-mappings-ui-config home-page-ref="..">

<main-menu>
</main-menu>
<pages>
<page>

</page>

</pages>

</data-mappings-ui-config>

Scrittura (4.4.10.5) Page 250 of 430

Administration Guide
Chapter 9: Static Data Framework

Static Data Framework User Interface Layout

The Static Data Framework user interface screens are divided into the following sections:

« Main Menu. Lists the different data mappings implemented in the Static Data Framework. The
content of a data mapping is displayed in the Content section of the user interface when
selected from this menu.

Displaying the menu is optional, in case you wish to integrate those options directly in the main
Scrittura menu.

« Content. Displays the actual data. It can be of type Table in order to display a list of records (for
example, when a data mapping is selected from the menu) or of type Record in order to display
a specific record.

Both types of content (Table and Record) come with a configurable set of actions (such as
create, update, delete, and so on). Each action is configurable such as the next screen to be
displayed when the action is triggered.

« Search. Allows searching for specific records in the data mappings.

Searches are contextual to the page currently displayed, which allows refining the record
selection when creating a composite record.

Searches are exact searches, meaning that the results returned will exactly match the criteria.
“Like” searches are possible by using the “%” character within the criteria.

NOTE: The case-sensitivity of the Static Data Framework search is the same as the
database case-sensitivity. The case- insensitivity setting for Scrittura trade searches does
not apply here.

General Static Data Framework User Interface Configuration

The Static Data Framework user interface is completely configurable. This configuration is done in a
single configuration file, datamapping-ui- config.xml, which is located in the /config folder of the
Scrittura installation directory.

The following is the basic structure of datamapping-ui-config.xml.
<?xml version="1.0" encoding="UTF-8"?>

<data-mappings-ui-config home-page-ref="..">

<main-menu>
</main-menu>
<pages>

<page>

</page>

Scrittura (4.4.10.5) Page 251 of 430

Administration Guide
Chapter 9: Static Data Framework

</pages>
</data-mappings-ui-config>

The <data-mappings-ui-config> node is the root node of the datamapping-ui-config.xml
configuration file and allows you to define general parameters of the user interface.

The <data-mappings-ui-config> node has the following attributes.

Attribute Required/ Description

Optional
home- Required Specifies which of the page references defined in the <main- menu>
page-ref tag will be displayed as the Static Data Framework home page.
date- Optional Specifies the date format to be used throughout the Static Data
format Framework. Defaults to yyyy-MM-dd if unspecified.
datetime- Optional Specifies the date/time format to be used throughout the Static Data
format Framework. Defaults to yyyy-MM-dd HH:mm:ss if unspecified.
show- Optional Specifies whether the menu showing the different data mappings
menu should be displayed in the Ul. Default is true.

The date-format and datetime-format attributes are specified by date and time patterns following
the standard Java syntax. Refer to the SimpleDateFormat class Javadoc API on the Oracle portal for
details.

Examples of common patterns assuming a 24-hour basis
Pattern Example
dd/MM/yy 10/01/14
dd MMMM yyyy 10 January 2014
HH:mm:ss 17:06:32

The <main-menu> node contains a list of page references which will be displayed as links in the main
title bar. Each of these links is specified by an empty child <menu-item> tag that has the following

attributes.
Attribute Required/ Description
Optional
page-ref Required Name of the page being referenced.
visible-name Required Name displayed to the user in the title bar.
description Optional Short description that displays when the mouse hovers over

the link.

Scrittura (4.4.10.5) Page 252 of 430

Administration Guide
Chapter 9: Static Data Framework

Example

<data-mappings-ui-config home-page-ref="GeneralView">

<main-menu>

<menu-item page-ref="GeneralView"

visible-name="General View" description="Contact database view" />
<menu-item page-ref="CounterpartyList" visible-name="Counterparties"
description="Counterparty details" />

<menu-item page-ref="ProductList"

visible-name="Product" description="Product list" />

</main-menu>

</data-mappings-ui-config>

The <pages> node takes no attributes and has <page> child nodes. Each page accessible from the
user interface is configured within its own <page>. Typically, one page of type Table and one of type
Record would be defined for each data mapping, respectively to display the data mapping content
and a single record.

Each page displayed on the screen of the user interface is configured within its own <page> tag, a
child of <pages>. The following is the general structure of a <page> tag.

<page name="GeneralView" type="table"
data-mapping-ref="BaseView" records-per-page="10"
show-bulk-column="true">
<welcome-message>..</welcome-message>

<data>

</data>

<child-records>

</child-records>

<action-list>

</action-1list>

<search-criteria>

</search-criteria>

</page>

Scrittura (4.4.10.5) Page 253 0f 430

Administration Guide
Chapter 9: Static Data Framework

The following topics provide further details about the attributes of a <page> node as well as its child
nodes:

« <page> Attributes, below

« <welcome-message> Node, below
« <data> Node, on the next page

« <child-records> Node, on page 256
« <action-list> Node, on page 256

« <search-criteria> Node, on page 257

<page> Attributes

Each page accessible from the user interface is configured within its own <page>. Typically, one page
of type Table and one of type Record would be defined for each data mapping, respectively to display
the data mapping content and a single record.

A <page> node has the following attributes.

Attribute Required/ Description

Optional

name Required Name of the page.

type Required There are two possible types of page: table and record. If table is
specified, then the page will display and/or enable manipulation of an
entire data mapping. If record is specified then only a single data
mapping record will be involved.

data- Required Name of the data mapping being used in the page.

mapping-

ref

records- Optional Number of entries listed per page. The default is 20.

per-page

show-bulk- Optional Boolean value that specifies whether to display the column of check

column boxes in the left column. Default is true.

Example

<page name="GeneralView" type="table"
data-mapping-ref="BaseView" records-per-page="10"

show-bulk-column="true">

<welcome-message> Node

Each page displays a welcome message under the title bar. This is specified as a simple string within
the <welcome-message> tag.

<welcome-message>Contact Database general view</welcome-message>

Scrittura (4.4.10.5) Page 254 of 430

Administration Guide
Chapter 9: Static Data Framework

<data> Node

The <data> node specifies the sources of data for the information to be displayed on the page and

has the following structure.
<data>

<data-ref .. />

</data>

Each column to be displayed in the screen for this data mapping is defined within its own <data-ref>

node.

A <data-ref> node is empty and has the following attributes.

Attribute Required/ Description
Optional

field-ref Required Refers to a specific field within the selected datamapping.

o To refer to a field within the specified data mapping only the

name of the field itself is needed.

o Torefer to a foreign field in a table linked by a foreign key,
the name of the linked variable (which must be of type Long
with the attribute matchRecordId="true") must be
specified in square brackets, followed by the name of the
foreign data mapping, followed by a full stop, followed by

the desired foreign field.

widget Optional Specifies whether the item defined by field-ref is read-only, or is
viewable by dropdown, checkbox, radio, or text. Default is text.

Example 1: Refer to fields within the same data mapping
<data>

<data-ref field-ref="ProductCode" widget="readonly" />
<data-ref field-ref="ProductName" widget="text" />
<data-ref field-ref="ProductFamily" widget="dropdown" />
</data>

Example 2: Refer to foreign fields of other data mappings
<data>

<data-ref

field-ref ="[CounterpartyID]Counterparty.ShortCode" />
<data-ref

field-ref ="[CounterpartyID]Counterparty.CounterpartyName" />

Scrittura (4.4.10.5)

Page 255 of 430

Administration Guide
Chapter 9: Static Data Framework

<data-ref field-ref

"[ProductID]Product.ProductCode" />

<data-ref field-ref = "[ProductID]Product.ProductName" />

</data>

<child-records> Node

If the data mapping being used as a data source for the current page contains foreign links to other
data mappings, then it is necessary to specify these in the <child-records> tag in order for these data
mappings to specify which screens should be called for the create and update actions.

The <child-records> node is an empty node has the following structure.
<child-records>

<child-record-mapping .. />

</child-records>

Each foreign link is defined within its own <child-record-mapping> child node and has the following

attributes.
Attribute Required/ Description
Optional
data-mapping- Required Name of the foreign data mapping.
ref
page-ref Required Page with which this data mapping should be
associated.
Example

<child-records>

<child-record-mapping data-mapping-ref="Product"
page-ref="ProductList" />

<child-record-mapping data-mapping-ref="Counterparty"
page-ref="CounterpartyList" />

</child-records>

<action-list> Node
The <action-list> node contains the list of actions available for a page and has the following structure.
<action-list>

<action .. />

Scrittura (4.4.10.5) Page 256 of 430

Administration Guide
Chapter 9: Static Data Framework

</action-1list>

<action> child nodes define the actions available for a page and have the following attributes.

Attribute Required/Option Description

al
name Required Name of the action. Possible values are create, update,
delete, submit, cancel, and search.
page-ref Required Page to display after initiating the action.
do-confirm Optional Specifies whether to ask for a confirmation before the action is
completed. Default is false.
visible- Optional Name displayed for the action in the user interface.

name

The name attribute has the following possible values.

create. Adds a new data mapping record. Initiating this action will bring up the page specified in
page-ref. Represented as a button at the bottom of the screen.

update. Updates a data mapping record. This only works if a single record is selected using a
check box. Initiating this action will also bring up a page specified in page-ref. Represented as a
button at the bottom of the screen

delete. Deletes whatever data mapping records are selected using the check boxes.
Represented as a button at the bottom of the screen.

submit. Carries out a current action. Represented as a button at the bottom of the screen
cancel. Cancels a current action. Represented as a button at the bottom of the screen.

search. Enables search criteria defined by <search-criteria>. Represented as a search bar
that displays beneath the welcome message.

<search-criteria> Node

The <search-criteria> node specifies the fields to be used as search criteria. The search criteria
displays in the drop-down menu within the search bar. The search action should be defined for that
page in order to make use of those search criteria.

The <search-criteria> node has the following structure.

<search-criteria>

<data-ref .. />

</search-criteria>

The <data-ref> child node has the following attribute.

Attribute Required/ Optional Description

field-ref Required Defines the name of the field to use as search criterion.

Scrittura (4.4.10.5) Page 257 of 430

Administration Guide
Chapter 9: Static Data Framework

Example
<search-criteria>
<data-ref field-ref="CounterpartyShortCode" />

</search-criteria>

Sample Table and Record Page Configurations

The following are sample configurations for Table and Record pages.
Sample: Table Page

<page name="GeneralView" type="table"
data-mapping-ref="BaseView" records-per-page="10"
show-bulk-column="true">

<welcome-message>

Contact Database general view

</welcome-message>

<data>

<data-ref field-ref

"[CounterpartyID]Counterparty.CounterpartyShortCode" />

<data-ref field-ref

"[CounterpartyID]Counterparty.CounterpartyName" />

<data-ref field-ref = "[ProductID]Product.ProductCode" />

<data-ref field-ref

"[ProductID]Product.ProductName" />
</data>

<action-1list>

<action name="create"
page-ref="EditGeneralView" do-confirm="true"
visible-name="New" />

<action name="update"
page-ref="EditGeneralView" />

<action name="delete"

page-ref="GeneralView" do-confirm="true"/>
<action name="search"

page-ref="GeneralView" />

</action-list>

<search-criteria>

<data-ref field-ref = "[CounterpartyID]Counterparty.CounterpartyShortCode" />

Scrittura (4.4.10.5) Page 258 of 430

Administration Guide
Chapter 9: Static Data Framework

<data-ref field-ref

"[CounterpartyID]Counterparty.CounterpartyName" />

<data-ref field-ref = "[ProductID]Product.ProductCode" />

<data-ref field-ref

"[ProductID]Product.ProductName" />
</search-criteria>

</page>

Sample: Record Page

<page name="EditGeneralView" type="record"
data-mapping-ref="BaseView">

<welcome-message>Contact Database Details</welcome-message>
<data>

<data-ref field-ref = "[CounterpartyID]Counterparty.CounterpartyShortCode"
widget="readonly" />

<data-ref field-ref = "[CounterpartyID]Counterparty.CounterpartyName"
widget="text" />

<data-ref field-ref="[ProductID]Product.ProductCode" />
<data-ref field-ref="[ProductID]Product.ProductName" />
</data>

<child-records>

<child-record-mapping data-mapping-ref="Product"
page-ref="ProductList" />

<child-record-mapping data-mapping-ref="Counterparty"
page-ref="CounterpartylList" />

</child-records>

<action-1list>

<action name="submit"

page-ref="GeneralView" do-confirm="false" />

<action name="cancel"

page-ref="EditGeneralView" />

<action name="search"

page-ref="GeneralView" />

</action-list>

<search-criteria>

<data-ref field-ref="CounterpartyShortCode" />

Scrittura (4.4.10.5) Page 259 of 430

Administration Guide
Chapter 9: Static Data Framework

</search-criteria>

</page>

Interaction with the Framework

Programmabile interaction with the Static Data Framework depends on the main classes of the
Framework. Using these classes, you can perform essential operations like CRUD operations
(Create, Read, Update, Delete).

Main Classes, below and Essential Operations, on page 262 provide details on the main classes
involved in the programmable interaction process and outline the steps to programmatically perform
the main operations on the Static Data Framework.

For more details on the available API, see the Javadoc documentation.

Main Classes

This section lists some of the main classes used by the Static Data Framework, all located in the
com.ipicorp.scrittura.datamapping package. For full details on the properties and methods
available for those classes, refer to the Javadoc documentation.

DataMappingsManager

DataMappingsManagerService is the main class of the Static Data Framework. The
DataMappingsManagerService class functions as a session bean used to perform the essential
operations on the framework.

An instance of DataMappingsManagerService can be created using the helper class
DataMappingHelper.

DataMappingsManagerService dataMappingsManager
=DataMappingHelper.getDataMappingManager();
DataMappingHelper

DataMappingHelper is a helper class used to create an instance of the
DataMappingsManagerService session bean.

It allows retrieving an instance of the DataMappingsManagerService session bean using the method
getDataMappingManager():

public static DataMappingsManagerService getDataMappingManager();
DataMapping

The DataMapping class is used to represent a data mapping, as defined by the data-mapping tags in
the configuration file.

DataMappingRecord

The DataMappingRecord class is a collection of key/value pairs that represent a record in a Static
Data Framework table.

In addition to user-defined fields, DataMappingRecord contains the following built-in fields.

Scrittura (4.4.10.5) Page 260 of 430

Administration Guide

Chapter 9: Static Data Framework

Field

recordid

keys

values
createdby
createdon
lastModifiedBy

lastModifiedOn

Type
Long

LinkedHashMap
LinkedHashMap
String

Date

String

Date

Description

Record identifier, also the record primary key in the
database.

This field objects.

This field

Name of the user who created the record.

Date on which the record was created.

Name of the user who modified the record most recently.

Date on which the record was last modified.

The keys object is a map of the fields specified in the configuration file for the data mapping. This
map can be retrieved using the operation getKeys ().

The keys object must contain a KeyFieldValue object for every <key- field> tag specifiedin the
configuration file. If it does not, any database operation attempted with this object will fail.

There is no setKeys(LinkedHashMap keys) method. Instead, when a new DataMappingRecord
object is created, the keys must be added using addKey (KeyFieldvValue key).No check againstthe
configuration file is performed at this point.

To modify a key in an existing DataMappingRecord, use getKeys() .get(<fieldname>), then modify
the KeyFieldValue object.

KeyFieldValue

The KeyFieldvalue object represents a single key field mapping in the configuration file.

DataMappinglLookupRequest

The DataMappinglLookupRequest class is used to facilitate searches against the database. Search
criteria are specified against the different key fields as per the data mapping configuration file.

Exact and Like searches can be achieved using the following methods.

« Exact Search. To perform exact searches on the database, use the method addKeyToMatch
(String keyFieldName, Object keyValue). This method allows you to search by any data
type. Any number of search parameters can be added. If no keys are added, the lookup will
return all records that match the request on the specified data mapping. In a large database,
this can create a very large list. If necessary, the search can be configured to return only a
section at a time using the method setPage(int pageNumber, int recordsPerPage).

« Like Search. KeyPatterns can be added using the method addKeyPatternToMatch(String
keyFieldName, String keyValuePattern). This method allows you to search for fields using
SQL syntax such as wildcard characters ‘%’ or “?’. It can only be used for key fields that have a
value type of String.

Scrittura (4.4.10.5)

Page 261 of 430

Administration Guide
Chapter 9: Static Data Framework

Essential Operations

Using the main classes on the Static Data Framework, you can perform Create, Read, Update,
Delete (CRUD) operations on the Static Data Framework.

These operations can be achieved using the DataMappingManager class, whose methods are listed
in this section.

Retrieve a Data Mapping

This operation allows the retrieval of a data mapping object by its name as specified in the data-
mapping nodes of the configuration file.

Method Signature DataMapping getDataMapping(String dataMappingName);

Parameter dataMappingName

String containing the name of the required data mapping.

Returns The DataMapping object representing the data mapping table.

Example

DataMapping counterPartyTable

= dataMappingsManager.getDataMapping(“Counterparty”);

The following statement returns the string “List of counterparties”.
counterPartyTable.getDescription();

The following statement returns the list of roles with write permission on the counterparty table.

counterPartyTable.getWritePermissions();

Record Lookup

This operation queries the database using a lookup request object. This operation always returns a
list, even if only one result is possible.

Method List lookup (String dataMappingName, DataMappinglLookupRequest request)
Signature
Parameter dataMappingName

String containing the name of the database table.
request

The lookup query.

Returns The list of Data Mapping records (of DataMappingRecord type) that matches the
request.

Scrittura (4.4.10.5) Page 262 of 430

Administration Guide
Chapter 9: Static Data Framework

Example

DataMappinglLookupRequest request = new DataMappingLookupRequest();
request.addKeyPatternToMatch(“CounterpartyShortCode”, “%a%”);

The following statement returns all the records in the counterparty table which have the letter A
somewhere in the CounterPartyShortCode field. Note that SQL wildcards like ‘%’ and “?’ can be
used here.

List<DataMappingRecord> results = dataMappingsManager lookup(“Counterparty”, request);
The following statement returns the string containing the shortcode of the first counterparty record.

DataMappingRecord first = results.get(9); first.getKeys().get(“
CounterpartyShortCode”)

Count Records

This operation counts the number of records in the database that match a particular lookup request.

Method int count (String dataMappingName, DataMappinglLookupRequest
Signature request)
Parameter dataMappingName

String containing the name of the database table.
request

The lookup query.

Returns The number of records that match the request.

Example

DataMappinglLookupRequest request = new DataMappingLookupRequest();
request.addKeyPatternToMatch(“CounterpartyShortCode”, “%a%”);

The following statement returns the number of records in the counterparty table which have the letter
"a" somewhere in the CounterpartyShortCode field. Note that SQL wildcards like ‘%’ and “?’ can be
used here.

dataMappingsManager.count(“Counterparty”, request);

Select a Specific Record

This operation retrieves a specific record from the database. For this operation, you must provide the
ID of the record. Because the record ID is unique, this method always returns a single object.

Method DataMappingRecord getRecord (String dataMapingName, Long
Signature recordId)
Parameter dataMappingName

Scrittura (4.4.10.5) Page 263 of 430

Administration Guide
Chapter 9: Static Data Framework

String containing the name of the database table.
recordId

The record to retrieve.

Returns The record with the specified ID.

Example
DataMappingRecord record = dataMappingsManager.getRecord (“Counterparty”, 1);
The following statement returns the string containing the shortcode of this counterparty.

record.getKeys().get(“ CounterpartyShortCode”)

Insert a Record

This operation inserts a new record into the database. The DataMappingRecord object contains all
the record information to add with the exception of the ID, which is set when the database is updated.

If you have only a list of values, you must create a new DataMappingRecord and add the values to it,
then use this object to insert the record. All key fields with the property optional set to false in the
configuration file should have a matching value in the new record’s key list.

Any constraints listed in the containing data-mapping must be respected. If constraints are violated,
the insert operation will fail and an exception will be thrown.

Method void addRecord (String dataMappingName, DataMappingRecord record)
Signature
Parameter dataMappingName

String containing the name of the database table.
record

The record to add.

Returns This method does not return anything, but an exception will be thrown if the insert
operation fails.

Example

DataMappingRecord record = new DataMappingRecord(); record.addKey(new KeyFieldValue
(“ShortCode”, “a shortcode”)); record.addKey(new KeyFieldValue(“Name”,“example
counterparty”)); record.addValue(“IsReadOnly”, false); dataMappingsManager.addRecord
(“Counterparty”, record);

The ID of the record is set when the record is successfully added to the database.
Update Record Key Fields

This operation is used to update the fields of a record already existing in the database. It does not use
a DataMappingRecord object but requires a list of key and value fields to update. To update a

Scrittura (4.4.10.5) Page 264 of 430

Administration Guide
Chapter 9: Static Data Framework

DataMappingRecord object, you must extract the information from it, then perform this operation
using the ID from the record object. Only key fields that have changes are required.

All constraints specified on the configuration file must be respected.
Method void updateRecordFields (String dataMappingsName,
Signature Long recordId,

List<KeyFieldValue> keyFields,

Map<String, Object> valueFields

Parameter dataMappingName
String containing the name of the database table.
recordId
The ID of the record to update.
keyFields
The fields to be modified.
valueFields

The values to be modified.

Returns This method does not return anything, but an exception will be thrown if the
update operation fails.

Example
List values = newlLinkedList(); values.add(new KeyFieldValue(“ShortCode”,
“a different shortcode”; dataMappingsManager.updateRecordFields(“Counterparty”, 1,

values, null);

Delete Record

This operation removes a specific record from the database. You must provide the ID of the record to
delete.

The lookup request method can be used to find the record ID.

Method void deleteRecord (String dataMappingName,

Signature
Long recordId)

Parameter dataMappingName
String containing the name of the database table.
recordId

The ID of the record to update.

Scrittura (4.4.10.5) Page 265 of 430

Administration Guide
Chapter 9: Static Data Framework

Returns This method does not return anything, but an exception will be thrown if the
update operation fails.

Example

dataMappingsManager.deleteRecord(“Counterparty”, 1);

Scrittura (4.4.10.5) Page 266 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

Chapter 10: Scrittura Utility Modules

This section describes the main utility modules available in Scrittura, the job scheduler and archiving
solution.

This section contains the following topics:
o Job Scheduler, below

« Archiving, on page 274

Job Scheduler

The Job Scheduler in Scrittura allows tasks to be scheduled and run automatically. Some tasks are
packaged with Scrittura. Custom jobs can also be configured. Jobs can be set to run synchronously
or asynchronously.

Job Scheduler Configuration

The Scrittura scheduler uses the UNIX'CRON' syntax to schedule the execution of tasks (also called
cronjobs). These tasks could include the execution of reports, a bulk 'push’ forward in the workflow,
or any other logic coded within Java classes.

The scheduler is configured through the scheduler.xml file and has the following structure.
<scheduler>

<users>

<user .../>

</users>

<jobs>

<job ... >

<schedule .../>

<param .../>
</job>
</jobs>

</scheduler>

The root node of scheduler.xml is <scheduler>, which takes no attributes and accepts child nodes
discussed in the following topics:

Scrittura (4.4.10.5) Page 267 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

« <users> Node, below

« <jobs>Node, on the next page
Example scheduler.xml file that executes
com.ipicorp.scrittura.scheduler.jobs.SendReport job
<scheduler>
<users>
<user username="admin" password="admin" />
</users>
<jobs>
<job name="sendReport" class="com.ipicorp.scrittura.scheduler
.jobs.SendReport"
runAs="admin">
<!-- every hour, during business hours -->
<schedule min="0"
hour="9-18" day="*" month="*" weekday="1-5" />
<param key="reportClass" value="com.ipicorp.scrittura
.util.schedule.TestingReport"/>
<param key="format" value="CSV"/>
<param key="emailFrom" value="fromEmail@company.com"/>
<param key="emailTo" value="toEmail@company.com"/>
<param key="emailCc" value="ccEmail@company.com"/>
<param key="emailBcc" value="bccEmail@companyp.com"/>
<param key="emailSubject" value="Scrittura Report"/>
<param key="emailBody" value="Example Report"/>
</job>
</jobs>

</scheduler>

NOTE: The <param> elements are specific to the scheduled class.

<users> Node

Users that are used to run the cronjobs are defined under the <users> node, each of them being
specified as a <user> child node of <users>.

Scrittura (4.4.10.5) Page 268 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

A <user> node is empty and takes mandatory attributes, username and password, which define the
user’s credential. Such users must also be defined in the security realm of the application server.

Passwords can be encrypted using the startup-config.xml configuration file. For more information,
see SetConfig Process Configuration, on page 373.

<jobs> Node

Cronjobs are defined under the <jobs> node, each of them being specified as a <job> child node of
<jobs>.

The <jobs> node has the following attribute.

Attribute Required/ Description
Optional

run-async Optional Specifies whether the cronjobs should run synchronously or
asynchronously. By default, cronjobs run synchronously.

A <job> child node has the following attributes.

Attribute Required/ Description

Optional
name Required Defines a unique name for this job.
disabled Optional Boolean value that lets you disable the automatic schedule of a
cronjob in order to only run it manually.
Default: false
class Required Specifies the fully qualified name of the Java class run by the cronjob.
runAs Required Defines the user used to run the cronjob. The value must be one of

the users defined under the <users> node.

A <job> child node has the following child nodes.

Child Required/ Description
Node Optional
schedule Required Specifies when to run this job using the 'CRON' syntax, using its

mandatory day, hour, min, month, and weekday attributes.

param Optional Specifies a parameter that is used by the cronjob, using its key and
value parameters. A job element can have more than one param child
node.

Create a Scheduled Task

Custom cronjobs can be added to the client application as Java concrete classes that subclass the
com.ipicorp.scrittura.util.CronJob abstract class and override its performTask() method.

Scrittura (4.4.10.5) Page 269 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

Once the cronjob Javaimplementation is complete, add the job to the scheduler.xml and specify
schedule time and credentials under which it should run.

The class com. ipicorp.scrittura.scheduler.LoadCronThread must also be added to the list of
startup classes in scrittura-config.xml.

Cronjobs Running in Synchronous Mode

By default, all jobs run synchronously in a single thread through the Job Scheduler.

The scheduler checks for jobs at one minute intervals. If a set of jobs takes more than one minute to
run, the scheduler checks when the thread becomes available.

This may become an issue if, for example, job A runs every five minutes and job B takes 20 minutes
to run. While job B is running, job A should have run four times but cannot because job B is using the
thread. When job B completes, job A will be immediately queued to run, but it will run only once— not
four times.

Cronjobs Running in Asynchronous Mode

Setting the run-async=true option for the Jobs tag changes the behavior of cronjobs to use a JMS-
based implementation. With this setting implemented, Scrittura sends a message to a JMS queue
each time a job is scheduled to run, and the job runs when the message is received. This allows you
to run multiple jobs in parallel.

Considerations for running cronjobs in asynchronous mode:

« One drawback of the asynchronous method is that if a job takes a long time to execute and is
scheduled too often, it may start backing up in the JMS queue and may make cronjobs run late.
This should not be an issue in general, but could happen with broken jobs.

« Asynchronous jobs are not guaranteed to run when they are scheduled.

For example, this could occur of a very large number of cronjobs are running and some of them
take an excessively long time to execute, or they are not user friendly in that they require a large
update across the database. In this case, it is a good idea to ensure that the relevant jobs are
only run at convenient time (if current time = working time, abort).

« When using asynchronous mode, a new JMS queue has to be defined. The JMS queue JNDI
name should be set to:

cron_jobs (Store enabled, redelivery limit == 1)

By default, there are three listeners on this queue. This can be changed in the deployment
descriptor.

Built in Scheduled Tasks

Scrittura's scheduler functionality includes the following built-in tasks that can be scheduled.
» SendSaveSearch
« SendReport
o ClearActivity

Scrittura (4.4.10.5) Page 270 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

« WriteStatisticLog
o WorkflowStatus
« AbstractArchiveCronJob

« QueueArchiveCronJob

Email Search Results: SendSavedSearch

The com.ipicorp.scrittura.scheduler.jobs.SendSavedSearch class runs a public or user-
specific saved search and sends it through email as a PDF or a CSV (comma-separated values) file.

The class expects the following variables to be set in the scheduler.xml file.

Variable Required/ Description
Optional
searchType Required Type of search, user or public.
searchName Required Name of the search.
searchCategory Required Category of the search, as specified in

scrittura-config.xml. Valid only when searchType is

public.
searchFormat Required Format of the search results, PDF or
CSv.
emailFrom Required The From: header of the email.
emailTo Required The To: header of the email. Comma-separated values
emailCc Optional The Cc: header of the email. Comma-separated values
emailBcc Optional The Bcc: header of the email. Comma-separated
values
emailSubject Required The Subject: header of the email.
emailBody Required The body of the email.

The results of the search include the workitems that the report would display if it had been run
through the GUI, therefore only include those workitems the user is permitted to see.

Email Report Results: SendReport

The com.ipicorp.scrittura.scheduler.jobs.SendReport class sends report results through
email as a PDF or a CSV file. This class supports only reports that implement the
com.ipicorp.scrittura.util.StandaloneReport interface.

The class expects the following variables to be set in the scheduler.xml file.

Scrittura (4.4.10.5) Page 271 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

Variable Required/
Optional

reportClass Required

format Required
emailFrom Required
emailTo Required
emailCc Optional
emailBcc Optional

emailBody Required

Description

The name of the report class to run. This class must implement
the interface

com.ipicorp.scrittura.util

.StandaloneReport.

Format of the report, PDF or CSV.

The FROM: header of the email.

The TO: header of the email. Comma-separated values
The CC: header of the email. Comma-separated values
The BCC: header of the email. Comma-separated values

The body of the email.

Push Forward Workitems: ClearActivity

The com.ipicorp.scrittura.scheduler.jobs.ClearActvity class checks each item in a given
activity to see if it has been there for more than a specified amount of time. If an item has been there
for more than the specified time, it is automatically forwarded. This class optionally sets a variable to
true to mark that the item was moved. This variable could then be used in a workflow definition to
route the workitem to the next appropriate activity.

The class expects the following variables to be set in the scheduler. xml file.

Variable Required/
Optional
activity Required

maxldleMinutes Required

variableToSet Optional

Example

Description

Specifies the workflow process and activity to monitor.
Separate the process and activity by a period. For example,
Scrittura.Review.

Specifies how long an item must be waiting before it can be
marked for forwarding.

Specifies a Pl variable that will be set to true before the item is
forwarded. This PI variable must be defines in commonvars (or
all appropriate Product Definition files).

The ClearActvity classis setto run once a day at 5pm. Items in activity X are scheduled to be
forwarded using ClearActivity after sitting in an activity for 2 hours. If an item arrives in activity X at
4pm, the item is not forwarded out at 5pm since it is only an hour old. Instead, it is forwarded the next
time ClearActivity runs, which in this case is 5pm the next day.

Scrittura (4.4.10.5)

Page 272 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

A business application could be in an environment where multiple versions of a trade are amended
many times during a day, each creating a new internal document version in Scrittura. ClearActivity
could be scheduled to run against a "waiting for release" manual activity to prevent a document from
being dispatched to a customer unless it has remained unamended for a specified number of
minutes.

The variable maxIdleMinutes compares the present time to the time at which the workitem arrived in
the queue. A "save" without forwarding of the workitem does not reset this count.

Workflow Statistics Logging

The com.ipicorp.scrittura.scheduler.jobs.WriteStatisticLog class enables Workflow statistics
to be logged. See Workflow Reporting Module, on page 101.

The class expects the following variable to be set in the scheduler.xml file.

Variable Required/ Optional Description

value Required The absolute path to the directory where the logs are stored.

For example, /opt/scrittura/logs

Example

<job name="emailWorkflowStatus" class="com.ipicorp.scrittura.scheduler
.jobs.WorkflowStatus"

runAs="admin">

<schedule min="0"

hour="*"

day="*" month="*" weekday="*" />

<param key="path"

value="@scrittura.home@/logs"/>

</job>

Workflow Status Monitor

The com.ipicorp.scrittura.scheduler.jobs.WorkflowStatus class enables workflow activities to
be monitored directly from the "Workflow Status" screen. See Scrittura Administration and Run-Time,
on page 369.

The class expects no specific variables to be set in the scheduler.xml file.
Example

<job name="emailWorkflowStatus"
class="com.ipicorp.scrittura.scheduler.jobs.WorkflowStatus"

runAs="admin">

<schedule min="0"

Scrittura (4.4.10.5) Page 273 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

hour="*" day="*"
month="*"
weekday="*" />

</job>

Archiving Cronjobs

Scrittura provides an abstract Archiving cronjob,
com.ipicorp.scrittura.scheduler.jobs.AbstractArchiveCronJob. This class can be extended
to provide customized automated archiving.

A simple implementation, com.ipicorp.scrittura.scheduler.jobs.QueueArchiveCronJob, is also
provided. For details, see Automated Archiving, on page 279.

Archiving

The Archiving module allows moving trades and documents offline once they are no longer actively
used. The implementation supports the resurrection of trades and documents if they need to be
accessed or changed. ltis also possible to browse the Archive without resurrecting the data to the
database.

Archived data is stored as a ZIP file containing the documents and two XML files containing a
snapshot of the database data for the trade. This ZIP file can be stored offline on tape or DVD, on a
near-line database or file system, or on the Scrittura database. Scrittura natively includes a
filesystem solution.

If stored offline, browsing the Archive data requires that a request for this Archive be sent to the
technical staff so that the data can be made available to Scrittura. On a near-line and online
database, the system is able to resurrect trades on demand.

Search variables can be defined for archived trades to allow searches on the Archive.

Archiving Configuration

The options described in this section must be configured in scrittura- config.xml, located under
the Scrittura configuration folder.

Base Archiving Parameters

All archiving configurations are located under the <archive> node in the scrittura-config.xml
configuration file.

The <archive> node has the following attributes.

Attribute Description Possible Values
enabled When set to true, automatic archiving true
is enabled.

false (default)

Scrittura (4.4.10.5) Page 274 of 430

Administration Guide

Chapter 10: Scrittura Utility Modules

storageClassTool

storageAttributes

Classname of the handler for archive
loading and unloading.

The filesystem archiving
implementation is natively provided
by Scrittura,
com.ipicorp.scrittura.archiving
.FileSystem.

Custom storage classtools can be
developed by implementing the
com.ipicorp.scrittura.archiving
.StorageClassTo ol interface.

A semi-colon separated list of
attributes for the chosen
storageClassTool.

The following are the parameters for
the filesystem implementation:

o inboundPath. Path to the
directory that contains the
archives for browsing and
resurrecting.

o outboundPath. Path to the
directory that contains the
generated archives (from
where they should be
moved to tape).

documentSelectorC Classname of the handler for

lassTool

backfillerClassTool

docmgr-filesystem-
mapping

Scrittura (4.4.10.5)

document selection.

Class name of the back-filler

Defines the naming convention to use
for storage on the filesystem. For

String

String

inboundPath default:
${scrittura.home}/archivesIn
outboundPath default:

${scrittura.home}/archivesOut

String
Default:

com.ipicorp.scrittura.archivi
ng.TradeFolder

(one folder per trade)

Create your own by implementing:
com.ipicorp.scrittura.a
rchiving.DocumentSelect
orClassTool

String
Default: empty (no back filler)

Create your own by implementing:
com.ipicorp.scrittura.a
rchiving.BackfillerClas sTool

String

Page 275 of 430

Administration Guide

Chapter 10: Scrittura Utility Modules

version-prefix

delete-zip-files

roles

useExternalArchivin
g

filesystem, see docmgr-external-
config.xml.

Defines the naming convention for
differentiating document versions to
use for storage on the filesystem.

For filesystem, see docmgr-
external-config.xml.

When set to true, the archive ZIP file
is deleted when the trade is restored
in the live system.

Roles that define permissions for
manual archiving

Boolean attribute used when
DocManager is integrated with an
external DMS. If set to true, archiving
of documents is delegated to the
external DMS.

String

true

false (default)

String

none, all, or a comma- separated

list of roles

true

false (default)

forbidden-chars Strings listing the forbidden String
replacement-chars characters and their replacement to
generate file paths.
missingArchiveColu When performing a search, specifies String
mnPlace holder the display of a search result column
for archived trades when that column
is defined in the FA Tables but not in
the Archiving table.
The <archive> node has the following child nodes.
Child Description
Element
archive- Defines a variable that can be searched on for archived trades. Multiple archive-var
var elements can be defined; each must contain a single name attribute that lists the

internal variable name of the variable that will be searchable.

For details, see Archive Search Setting, on the next page.

archive- Allows the customization of the activities used by the archiving workflow.

activities

For details, see Customizing the Archiving Workflow Activities, on page 280.

Scrittura (4.4.10.5)

Page 276 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

Archive Search Setting

You can define a list of variables that will be available for searches on archived variables. The names
must correspond to the internal names of the variables.

If you change the list of variables, you must run the setConfig process and regenerate the archive
tables, and then migrate the current table to the new definition.

Default Archiving Implementation

The default implementation for archiving is trade binding, meaning that it collects all the documents
contained in the trade's folder.

For implementations of Scrittura that do not have a unique folder per trade, or have more complicated
settings, this can be overridden by providing another document selector. To achieve this, just change
the setting in the configuration and implement the
com.ipicorp.scrittura.archiving.DocumentSelectorClassTool interface.

Archive Processes Summary

The following summaries describe the Archive processes that can be performed.
Select trades to be archived (manual/automatic)

Trades are moved to an archive workflow by a classtool, a cronjob, or manually.

« Trades are serialized into a zip file each. The zip contains XML versions of the trades and the
trades' documents.

« The zip is stored on the file system (or near-line).
« Trades are deleted from the database.

« Some (customizable) variables from the trade are kept in the system to allow
searches/reconciliations.

Perform Archived trades search

The Trade Search screen offers the option of searching trades that have been archived by a few
selection criteria, such as CRID, PIID, or custom fields.

Perform Trade lookup

Trade documents and data can be viewed when the trade archive is available on the file system
without having to resurrect them.

Trades can be moved from tape to the file system after being archived.
Perform Trade resurrection

Trades can be automatically or manually moved back into the system from their archived state if their
ZIP archive is available on the file system.

Scrittura (4.4.10.5) Page 277 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

Archiving Workflow

This section describes the steps required to use the archive module. These steps can be manual or
automated.

The archiving process is based on a separate archiving workflow, archiving.vsd, which performs
the necessary steps to archive a trade.

The following illustration depicts the archiving workflow.

Start

toCreataArchive

Createfrchive E_

tofArchiveGeneraled

@ toEnd2 ProcessResurmect %

End

The archiving process consists of two stages. The first stage generates the archive for the trade
(CreateArchive). The second stage marks the trade as archived and removes it from the Scrittura
database (SetArchiveState).

CreateArchive generates the trade archive output as a compressed (ZIP) file. The native Scrittura
implementation is to store the ZIP archives on the filesystem in the output folder specified by the
configuration. The generated file can be kept in this location if it is the storage medium or moved to
another location (other disk, tape, DVD). This step can be automated or manual.

Custom implementations can be designed to store the ZIP files elsewhere, such as on the same
database (the benefit being to remove the number of items in the indexed tables for performance), or
to remove the ZIP to a near- line database with cheaper storage and backup (trades can be archived
once a month and the database can be backed up as needed).

The ProcessResurrect activity restores trades to their previous location, where possible. If the trade
cannot be restored to the previous location, it is added to the Resurrected queue. For details, see
Resurrecting a Trade, on the next page.

Manual Archiving

The Scrittura user interface lets you archive a trade in different manners. In all cases, those trades
are moved to the "Start" activity of the archiving workflow.

Scrittura (4.4.10.5) Page 278 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

« From the Workflow status screen.
Trades should be moved to the "Start" step of the "Archiving" workflow.
« Using the trade search.

When a search is performed, an Archive link is available in the search results page. This link
uses the Scrittura "arch" event, implemented by the ManualArchiveEvent class. This can be
accessed using a uri, such as http://localhost:7001/scrittura?e=arch&i=[crid]. The
usage of this event is limited to users with the roles defined in the archive configurations.

Search result screens display both archived and live trades. When you click an archived trade, an off-
line summary of the trade is displayed (as long as the ZIP archive is accessible to Scrittura). This
screen offers the possibility to view the trade documents, annotations, history, and product dump.
The trade is not restored in the live system when you click it; therefore no other action is possible.

Automated Archiving

Cronjobs can be used to automatically move trades to the archive workflow without administrator
intervention.

An abstract Cronjob, com.ipicorp.scrittura.scheduler.jobs.AbstractArchiveCronJob, is
supplied with Scrittura and archives trades with CommonReferencelDs that are supplied by the custom
implementation of the abstract getCRIDListToArchive() method.

An implementation of this is also provided in the form of the
com.ipicorp.scrittura.scheduler.jobs.QueueArchiveCronJob class which archives any trades
remain within a specified queue for a defined length of time. This cronjob has the following
parameters:

« workflow defines the workflow to monitor.
« queue defines the activity to monitor within the workflow.

« daysInQueue defines the time after which a trade in that queue should be archived.

Resurrecting a Trade

A trade can be resurrected at the request of a user or if an amendment is entered into the system.

In order to automatically resurrect a trade when an amendment comes in, the following classtool
should be added to the MessageProcessing workflow as soon as the CommonReferencelD of the
incoming trade is identified:

com.ipicorp.scrittura.archiving.CheckArchiveClassTool

Trade resurrection can also be accomplished manually from within the trade search. An Unarchive
link is available on the search results page, and uses the Scrittura "unarch" event, implemented by
the ManualArchiveEvent class . Thi can be accessed using a uri such as
http://localhost:7001/scrittura?e=unarch&i=[crid].

By default, trades are restored to their original location. If for any reason this is not possible (such as,
the original location no longer exists), the trades are moved to the Archiving.Resurrected activity.
Audit records and DocManager files retain their original dates.

Scrittura (4.4.10.5) Page 279 of 430

Administration Guide
Chapter 10: Scrittura Utility Modules

Customizing the Archiving Workflow Activities
By default,
« The archive activity is setto Archiving.Start.
« The unarchive activity is setto Archiving.ProcessResurrect.

« The fallback unarchive activity is Archiving.Resurrected.

These can be altered by editing the archive-activity, unarchive- activity, and fallback-
unarchive-activity sub-elements of the archive-activities element within the archiving section
of scrittura-config.xml.

Each of these elements has aworkflow-id and an activity-id attribute in order to define the
workflow entry points. Samples of scrittura- config.xml file are provided with the Scrittura
distribution.

Evolving Systems

Because Scrittura configurations evolve, it might be necessary to backfill variables to a trade before
resurrecting it. The archive contains a timestamp of the archiving time and a Backfiller tool can be
configured to pre-process the archive before resurrecting the trade.

Archiving Caveats
Note the following:

« DOCMGR_RESOURCEACCESS is not archived because it is tied to the current configuration of
DocManager and its size is minimal.

« Some audit information is not bound to a trade (all the message tickets info), and therefore
cannot be archived.

They can be removed using the reconciliation features from within the workflow status screen.

Scrittura (4.4.10.5) Page 280 of 430

Administration Guide
Chapter 11: Message Processing Workflow

Chapter 11: Message Processing Workflow

The topics in this section describe important steps and components involved in the Message
Processing workflow, their configuration, and interfaces.

This section contains the following topics:
o Generic XML Parser, below
« Data Derivation, on page 289

« Message Sequencer, on page 290

Generic XML Parser

The Generic XML Parser is used to parse any XML schema and map the schema against Message
Ticket variables in a fully configurable manner.

A parser instance is completely reusable and has internal configuration caches to improve its
performance. An instance can be created once and used multiple times as needed. Parser instances
are thread-safe.

Parser instances are based on XPath-like expressions placed in CSV configuration files, located
under the /xmlParserConfig directory in the Scrittura live folder. Any number of instances can be
created and used by the system.

This section details the steps to configure and use the Generic XML parser.

Parser Instance Configuration

The Generic XML Parser configuration file must be in standard CSV format with each row defining a
rule for XML elements matching certain conditions. The columns for each row should match the
following information.

Column Description

1 Matching element as an XPath-like expression
2 Name of the Message Ticket variable to be set
others Chain of additional processing instructions that are applied to the value determined by

the parser before it is set into the variable

Rows can be commented out in two ways:
« Leaving the first cell of the row empty

« Placing a hash mark (#) at the beginning of the row

Scrittura (4.4.10.5) Page 281 of 430

Administration Guide
Chapter 11: Message Processing Workflow

In addition to the element instructions rows, options can be defined anywhere in the configuration file.
Option rows let you adjust certain parser parameters. Options rows are specified with the following
attributes.

« The text options must appear in the row’s first cell.

« From the row’s second cell on, the actual options are specified, one option per cell. An option is
specified using the option name followed by an equal sign (=) and the option’s value.

Available options include the following.

« base. Prefix added to each XPath-like expression in the element instructions rows that follow
the option row. This option can appear anywhere in the configuration file and can appear
multiple times to set prefixes for blocks of matching rules.

Configuration File Location

Parser configuration files are located under the /xm1ParserConfig directory in the Scrittura live
folder.

Different parser configuration files can be created for different types of messages. For a given
message type, the name of the parser configuration file to apply is the message root note with the
extension.csv. If no parser configuration files can be found, the default configuration file,
defaultConfig.csv, can be defined and used instead.

Matching Expressions

The Generic XML parser uses XPath-like syntax to match XML elements and attributes to message
variables. The following are examples of valid expressions supported by the parser.

Column Description

[/trade/trade-date Uses the content of the trade-date element as the variable
value.

/trade/counterparty/@name Uses the value of the name attribute of the counterparty
element.

[ltrade/cptys/cpty[1]/shortName Uses the content of the shortName sub-element of the cpty
element, which is the first child of the cpty's element

/trade/cptys/cpty{position()<=3} Matches the shortName sub-elements of the first three cpty

JshortName children of the cpty's element.

/trade/cptys/cpty[@type] Matches cpty elements that have type attributes.

[/trade/cptys/cpty[@type="DIRECT’] Matches cpty elements whose type attribute is DIRECT.

/trade/cptys/cpty/shortNamel.] Matches shortName elements that have non-empty
content.

/trade/cptys/cpty/shortName Matches shortName elements whose content is SAIL.

[.="SAIL]

Scrittura (4.4.10.5) Page 282 of 430

Administration Guide

Chapter 11: Message Processing Workflow

/trade/instrument

[starts-with(., ‘Physical’)]

/trade/instrument

[not(contains(@type, ‘Gold’))]

Uses the content of the instrument element if it starts with
Physical.

Uses the content of the instrument element if it does not
contain the substring Gold.

/trade/payments//payment/@date Uses the date attribute of any payment element, whichis a

descendent of the payments element, whether it is direct or
not.

CAUTION: Be sure to include the double-slash.

/trade/contacts/contact[2] Matches the second contact sub-element of the contacts

[@type="FAX]

element if the type attribute of the contact sub-element is
FAX.

Processing Instructions

Generally, arule is used to extract a value from an XML element or an attribute and save itto a
message variable. However, the extracted value can be pre-processed using processing instructions
before it is used for the variable.

The processing instructions are chained together, with each instruction processing the value
returned by the previous instruction. Any processor in the chain can decide that the variable should
not be set using this rule and can return a null value. In this case, no other processors in the chain will
run and the whole rule is skipped.

The following standard processors are supported.

Processor
upper()

lower()
append(string)
prepend(string)

string()

substring(begin,
end) substring
(begin)

static(string)

Scrittura (4.4.10.5)

Description

Makes the value upper-case.

Makes the value lower-case.

Appends the value with the specified string.
Prepends the value with the specified string.

Converts the value to a string.

This is useful in a processing instructions chain when a previous processor
returns a non- string value, but a string must be saved as the variable value.

Takes the substring of the value.

Assigns the specified string to the variable regardless of the value extracted
by the parser.

This is useful in situations when a variable must be set if a certain element or

Page 283 of 430

Administration Guide
Chapter 11: Message Processing Workflow

position()

count()

attribute is present.

The string can have embedded “{...}" constructs with EL expressions,

allowing dynamically calculated values.

Uses the element’s position among its siblings (starting from 1) as the value.

Counts the number of matching elements and use the current count as the

value.

Note the difference between position() and count(), as shown in the following example for the

matching pattern “/a/b/c[@n="a’]".

<a>

<c n="a”/>
<c n="a”/>

<c n="a”/>
<c n="b”/>
<c n="a”/>

<!--
<!--

<!--

position()

position()

position()
position()

position()

count() =1 -->
count() = 2 -->
count() = 3 -->

count() n/a -->

count() = 4 -->

The position() processor gives the number of the element among its immediate siblings and does
not take into account the matching element predicate. In certain situations, position() and count
() areinterchangeable.

Processing Instructions Order

Instructions are processed from top to bottom. Multiple rows can match the same element. In this
case, processing instructions generally are executed in the order in which they appear in the
configuration file.

Example

If the element contact with the attribute type = EMAIL is encountered by the parser, and the parser

uses the following configuration,

/trade/contacts/contact/fullName,fullName,I1,I2

/trade/contacts/contact[@type="EMAIL’]/fullName,emailName, 13,14
the parser will execute instructions in the following order:
1. Instruction I1

2. Instruction 12

Scrittura (4.4.10.5)

Page 284 of 430

Administration Guide
Chapter 11: Message Processing Workflow

. Set fullName variable

3
4. |Instruction I3
5. Instruction 14
6. Setthe emailName variable

However, the parser groups rules with exactly the same matching expressions together and appends
all instructions to one list. For example, if the configuration is,

/trade/contacts/contact[@type="EMAIL’]/fullName,emailName, 13,14
/trade/contacts/contact/fullName,fullName,I1,I2
/trade/contacts/contact[@type=’EMAIL’]/fullName, emailMarker,I5,
the parser will execute instructions in the following order:

1. Instruction I3
Instruction 14
Set emailName variable
Instruction 15
Set emailMarker variable

Instruction 11

N o gk w DN

Instruction 12

8. Set fullName variable

The third rule is executed before the second because it uses exactly the same matching expression
as the first rule and is therefore grouped with the first rule.

Use of EL Expressions in Processing Instructions

The variable names, as well as the argument of the static() processing instructions, can contain EL
expressions in curly braces. In addition to EL expressions, the following functions are available.

Function Description
content() The element content before it is processed by any processing instructions.
attribute(name) The element attribute with the specified name.

gname() The element name.

The following functions can be used only in the static() value processor, but not in variable names.

Processor Description

current() The current value passed to the processor.

Scrittura (4.4.10.5) Page 285 of 430

Administration Guide
Chapter 11: Message Processing Workflow

skip() Special function which, if invoked, causes the whole rule to be skipped and the
variable not to be set. Usually, this function is used with the standard EL if()
function. This allows skipping the rule based on certain EL conditions.

Array Handling

Using expressions allows you to create complex and flexible parser logic. The following example
uses this logic to create an array. After the message is completely processed, the contactsSize
variable will contain the size of the contacts arrays.

/trade/contacts/contact,contactsSize, count()
/trade/contacts/contact/fullName, contactFullName[{contactsSize}]
/trade/contacts/contact/email, contactEmail[{contactsSize}], lower()

Alternatively, one and two dimensional arrays can be handled easily by the XML parser when
capturing all values of a multi-instantiated node is required.

For this purpose, assign the Pl array variable (with square brackets) to the node.
Example

The incoming XML contains the following:

<FILE>

<ITEM>

<rates>

<rate>1.11</rate>

<rate>2.22</rate>

<rate>3.33</rate>

<rate>4.44</rate>

</rates>

</ITEM>

</FILE>

In order to parse and retrieve all the values of the <rate> nodes in a rate][]
Pl array variable, the CSV parser would contain the following line:
/FILE/ITEM/rates/rate,rate[],,

Itis possible to introduce temporary variables that can be used in expressions, but do not appear in
the parsed variables map. The name of the variable in the second column must be prefixed with a
hash to make it a local variable:

/trade/contacts/contact,#contactsSize,count()
/trade/contacts/contact/fullName, contactFullName[{contactsSize}]

/trade/contacts/contact/email, contactEmail[{contactsSize}], lower()

Scrittura (4.4.10.5) Page 286 of 430

Administration Guide
Chapter 11: Message Processing Workflow

The end result will not contain the contactsSize variable.

NOTE: Arrays are populated by the XML Parser using numeric indexes starting from 1.

Integration with Scrittura

The Generic XML parser can be integrated with the Scrittura application using the same process
used to integrate any parser—by adding this parser as a message-type node in scrittura-
config.xml. For full details, see Scrittura Configuration, on page 27.

Standalone Trade Message Parsing
The fully qualified name of the Scrittura parser class is
com.ipicorp.scrittura.messages.GenericXMLParser.

This class should be added to the general Scrittura configuration in the scrittura-config.xml file
located under the config repository in the Scrittura live folder. A new <message-type> tag will be
added under the root tag <scrittura-config>, adding this class to the list of available parsers.

<scrittura-config ...>

<message-type name=’XMLMessage”

class="com.ipicorp.scrittura.messages.GenericXMLParser” />

</scrittura-config>

Structured Product Message Parsing

Structured Products may reach Scrittura in different ways; the following are the most common:
« Components are sent individually in separate XML messages

« All components are sent together as a single XML message

The first method falls under the common parser use case, while the second method requires the
incoming XML message to be split in order to generate one MessageTicket per component.

Structured Products use their own configuration file, structured-product- config.xml, located in
the config directory of the Scrittura live folder.

In this configuration, the names of nodes representing independent components can be defined
under the <parser-component-xpath> element. The incoming message is then split into as many
messages as the number of nodes that are re-injected at the start of the MessageProcessing
workflow, whereas the initial message should be discarded.

A temporary MessageTicket is created for the initial aggregated XML message as well. This
MessageTicket contains a single property, scrIsMessageSplit, which is set to true. Based on the
value of this property, the MessageTicket can be routed to the end of the MessageProcessing
workflow to be destroyed or stored.

Scrittura (4.4.10.5) Page 287 of 430

Administration Guide
Chapter 11: Message Processing Workflow

Itis advised that you do not create a Product Instance (PI) in the main workflow for the initial

aggregated XML message.

The following illustration shows an example of the MessageProcessing workflow that handles

aggregated messages.

E‘

Start

Single Component
Message
1

Multiple Cé}mpor‘-ent o
Message

Trash

Shape Data - Transition.189
Condition scrlsMessageSplit="true’

Description

The fully qualified name of the Scrittura parser class for Structured Products is
com.ipicorp.scrittura.messages.GenericXMLStructureParser.

If Structured Products are implemented in the Scrittura application, this parser should be used
instead of the generic parser for standalone trades detailed in Standalone Trade Message Parsing,

on the previous page.

Do not include both GenericXMLParser and GenericXMLStructureParser. The parser used for
Structured Products can also handle standalone trades.

The GenericXMLStructureParser class should be added to the general Scrittura configuration in the
scrittura-config.xml file, located under the config repository in Scrittura live folder. A new
<message-type> tag is added under the root tag, <scrittura-config>, adding this class to the list of

available parsers.

<scrittura-config ...>

<message-type name="XMLStructuredMessage”

»

class=

.GenericXMLStructureParser” />

</scrittura-config>

Example

com.ipicorp.scrittura.messages

The following is an excerpt from the structured-product-config.xml

configuration file.

<structured-product-config>

<key-value>
<parser-component-xpath>
/FILE/ITEM
</parser-component-xpath>

<key-values>

Scrittura (4.4.10.5)

Page 288 of 430

Administration Guide
Chapter 11: Message Processing Workflow

<structured-product-config>
Assume that the following incoming message is received:
<FILE>

<ITEM>
<messageID>IDOO1</messageID>
<tradeDate>2013-05-31</tradeDate>
</ITEM>

<ITEM>
<messageID>IDOO2</messageID>
<tradeDate>2014-12-03</tradeDate>
</ITEM>

</FILE>

With such a configuration, the incoming message is divided into the following XML messages,
subsequently reinserted into the workflow to be parsed individually:

Message 1

<ITEM>
<messageID>IDOO1</messageIlD>
<tradeDate>2013-05-31</tradeDate>
</ITEM>

Message 2

<ITEM>
<messageID>IDOO2</messageID>
<tradeDate>2014-12-03</tradeDate>

</ITEM>

Data Derivation

Data derivation is an important step in the Message Processing workflow. It ensures that data and all
variables required by product creation or subsequent steps is populated as expected in the message
ticket, regardless as to how the information is provided by upstream systems.

Scrittura can map a set of input data to another set of values by executing a set of translations on the
product variables. It can also create new variables based on the input provided by the incoming
message.

For example, an input may deliver currency values as "USD" or "BRL", which would need to be
mapped to "United States Dollar" or "Brazilian Real" in a final confirmation or before handing off to
another system.

Scrittura (4.4.10.5) Page 289 of 430

Administration Guide
Chapter 11: Message Processing Workflow

Scrittura provides multiple ways to derive and map variables.

Using BLogic for Data Derivation

Scrittura business engine, BLogic, is the preferred and recommended way to perform data
derivation. Rules are defined within Microsoft Excel spreadsheets and evaluated against the Pl at
runtime.

BLogic use is not limited to the Message Processing workflow and can be used in any other workflow
if required. For more information, see BLogic Business Engine, on page 203.

Using BeanShell Scripts for Data Derivation

A workflow can include a BSH activity (DataDerivation) that calls a script (for example,
DataDerivation.bsh).

Within that script, additional scripts may be invoked which reflect a series of translations.

To invoke additional BeanShell scripts from inside a script, use the

pi.runBSHLogic command:

pi.runBSHLogic("PartyBSearching.bsh");
pi.runBSHLogic("TranslateCurrencyCodes.bsh"); pi.runBSHLogic("TwoLetterCodes.bsh");
The following is an example of setting Product Instance variables in a BeanShell script:

if(foo.equals("bar")) { Currency = "United States Dollar"; }

Using Classtools for Data Derivation

Classtools can also be used for data derivations and should be preferred to Bean Shell scripts
performance-wise. In this case, the data derivation logic is coded in a Java class, passed as
parameter to the classtool.

Unlike BLogic or BeanShell scripts, any change to the classtool logic requires rebuilding and
redeploying the application.

Message Sequencer

The Message Sequencer Module lets the user to define Sequenced Sections within the workflow.

A Sequenced Section is a section of the workflow in which messages belonging to the same
business entity are guaranteed to be processed in order of their arrival. It also ensures that only one
work item related to a specific business entity is processed in the Sequenced Section at the same
time.

A work item belongs to a business entity based on specific criteria as defined by the implementation.
Multiple work items related to one business entity are processed by the workflow in a certain
sequence in order to maintain the related entity’s data consistency.

Note the following:

Scrittura (4.4.10.5) Page 290 of 430

Administration Guide
Chapter 11: Message Processing Workflow

« Abusiness entity can be a trade or a structured trade.
o Atrade is all work items with the same reference.

o A structured trade is all work items linked by the same reference.

« Trade amendment messages for the same trade must be processed in the Message
Processing workflow in their order of arrival, so that an older amendment does not override a
more recent one.

For details, refer to the corresponding Javadoc for package and individual class level documentation.

Data Model Setup

The following tables are required for the Message Sequencer module.

« itemseq_state. Maintains state information of the last processed message for a sequenced
item. New incoming messages for the same sequenced item are allowed through if no
sequenced messages exist for that item, or if all prior messages have been completely
processed. If a message is currently being processed in the Sequenced Section, new incoming
messages are routed to a queue activity in the workflow.

o itemseq_queue. Maintains sequence information on queued items in the workflow. When a
message exits the Sequenced Section, this table determines which message is processed
next.

The creation scripts are provided with the Scrittura distribution for the supported database types:
Oracle, Sybase, and SQL server. The creation scripts are located under the sql directory of the
Scrittura distribution.

Workflow Setup for Message Sequencer
A Sequenced Section can be set up in the workflow using two classtools:
« SequenceBeginClassTool

« SequenceEndClassTool

Each of these classtools uses the following properties.

Package Extended Attributes

com.ipicorp.scrittura.sequencer This classtool uses two mandatory attributes:
o sequencedSectionId - the sequence
identifier

o queueActivityId - the manual queue for
held items

Items must enter the Sequenced Section through the SequenceBeginClassTool and must exit the
section through the SequenceEndClassTool. A manual queue, such as Message_Sequence_Queue,
must be set up with a transition leading to it from the Sequence Begin section, with routing based on
the Boolean property scrHoldSequencedMessage set to true.

Scrittura (4.4.10.5) Page 291 of 430

Administration Guide
Chapter 11: Message Processing Workflow

If an item is deemed out of sequence, a workflow transition using the Boolean property
scroutOfSequence can be used to prevent the item from entering the Sequenced Section. The item
is then routed out of the regular workflow.

Multiple or nested Sequenced Sections can be set up in a workflow. The particular section is
identified by the extended attribute sequencedSectionId, which must be set to the same value for a
matched pair of sequence begin and sequence end steps. This sequencedSectionId name must
match the section name in the sequencer.properties file. See Message Sequence Configuration,
below.

The sequence end class must also be provided with the additional extended attribute
queueActivityId, which identifies the manual queue which will store the queued items for that
Sequenced Section.

Example

The following figure provides an example of a Message Processing workflow that sequences the
handling of incoming messages. The Message Processing workflow determines whether the
incoming message is a new or amended trade, applies different processing rules, and creates a new
Pl or amends an existing one.

—ouiSequanco]

==

[]
To Product
| 1

e Shape Data - Chss.23 3

Type Chass
DC'-:'OH‘-‘-’A!SMJ. < Clas comapicerp.saritturs sequencer.S equencefngdlassTocl

Extended Allribules | $aquen ceddadionlds Meiiagafrodesiing queueiitivityld=Meiiage_Sequence Queus

Dt Qutue el

,* repert-enabled faize

(@) :

- enta-fepont-vatiables

Sl

Message Sequence Configuration

The Message Sequencer configuration is performed in the sequencer.properties file, located
under the config directory of the Scrittura live folder.

The following properties can be specified.
Property Description

section.{seq Class name of the item type detector for the Sequenced
name}.itemTypeDetector.class Section name. The section name, specified by {seq name} in

Scrittura (4.4.10.5) Page 292 of 430

Administration Guide
Chapter 11: Message Processing Workflow

the property name, is the same as the extended attribute
sequencedSectionId specified for sequence begin and
sequence end classtools.

item.{item type}.type Name of the item type returned by the item type detector,
whose value should also be {item type}. All other properties
that start with item.{item type} are associated with this item

type.
item.{item type}.handler.class Class name of the handler for the item type.
item.{item Determines behavior of the sequencer when it queues items
type}.singleElementQueue because another item is already being processed in the

Sequenced Section.

Generally, when an item leaves the Sequenced Section, the
sequencer picks another item with the lowest sequence
number from the queue and sends it to the Sequenced
Section. If this property is present and is set to true, the
sequencer picks the item with the greatest sequence number.
The sequencer then marks all other queued items as
outOfSequence and sends them away from the queue.

This property is useful for improving system performance by
filtering out unnecessary items if items with greater sequence
numbers override the effects of items with lower sequence
numbers.

item.{item type}.sequenceldField Field from the incoming message that holds the Sequence ID.
Typically for standalone trades, this is the CommonReferencelID.

item.{item Field from the incoming message that holds the Sequence
type}.sequenceNumField Number.
Example

The following excerpt is an example from the sequencer.properties configuration file:
section.MessageProcessing.itemTypeDetector.class
=com.ipicorp.scrittura.sequencer.MessageItemTypeDetector item.trade.type =trade
item.trade.handler.class

=com.ipicorp.scrittura.sequencer.TradeMessageTypeHandler
item.trade.singleElementQueue =true

item.trade.sequenceIdField =idTrade item.trade.sequenceNumField =sequenceNum

In this example, the name of the Sequenced Section is MessageProcessing. Upon receiving a
message, when the Item Type Detector class (in this example, MessageItemTypeDetector) returns
the value trade, the handler class TradeMessageTypeHandler provides the actual Sequence ID.

Scrittura (4.4.10.5) Page 293 of 430

Administration Guide
Chapter 11: Message Processing Workflow

Interface Implementation

This section explains how to implement the interfaces for Type Detector classes and ltem Type
Handler classes.

Type Detector Classes and ltem Type Handler Classes require different interfaces.

Type Detector Classes

Type detector classes must implement the following interface. This is the interface for the object that
looks at a work item and detects the item type so that an appropriate item type handler can be
selected.

com.ipicorp.scrittura.sequencer.ItemTypeDetector

The following parameters apply to Item Type Detector.

Class MessageProcessingTypeDetector
Package com.ipicorp.scrittura.sequencer.impl

Description Concrete type detector class that returns a type of SimpleTrade

Item Type Handler Classes

Item type handler classes must implement the following interface. This is the interface for specific
item type sequencing handlers. Handlers are responsible for determining the sequence ID, sequence
number, and other properties.

com.ipicorp.scrittura.sequencer.ItemTypeHandler

The following parameters apply to Item Type Handler.

Class SimpleTradeHandler
Package com.ipicorp.scrittura.sequencer.impl

Description Concrete item type handler class that returns the value of CommonReferenceIDin
the Message Ticket as Sequence ID.

To be valid, CommonReferenceID must be populated prior to reaching the
Sequenced Section.

Common Use Case

The most common use case is standard in the distribution: handling single trades as a business
entity.

In this use case, amendments and events for a specific trade are processed by the system exactly in
their incoming order. Subsequent events wait in the Message Sequence Queue as long as the
current event processing within the Sequenced Section is not complete.

Scrittura (4.4.10.5) Page 294 of 430

Administration Guide
Chapter 11: Message Processing Workflow

User Interface for Message Sequencer

Two JSP screens are provided for display purposes to view the content of the Message Sequence
Queue. These screens can be integrated into the Scrittura user interface if required. No actions are
available from the JSP screens.

Message Sequence Queue

JSP Name sequencerQueueView. jsp

Description This JSP displays the sequences for the Sequenced Sections. A link to the
Sequence ltems List is provided for each sequence.

Sequence Item List

JSP Name sequenceltemsView.jsp

Description This JSP displays the different sequences for the selected sequence.

Scrittura (4.4.10.5) Page 295 of 430

Administration Guide
Chapter 12: Outbound Workflows

Chapter 12: Outbound Workflows

The topics in this section describe important steps and components involved in outbound trade
processing workflows, their configuration, and interfaces.

This section contains the following topics:
« Document Generation Overview, below
« Bulk and Document Signatures, on page 298
« Electronic Messaging, on page 303
« Hand Off to a Fax Server, on page 303
« General Email Dispatch Capabilities, on page 304

Document Generation Overview

Document generation is core feature of the Scrittura platform, which includes draft document
generation (for example, as a Word document), subsequently converted to its final form in PDF
format before being sent out to the counterparty.

Document generation is based on templates, which are evaluated during this process against the
data of the trade for which the document is generated. Usual features provided by templates include,
but are not limited to, trade data insertion, evaluation of conditional logic, inclusion of subtemplates,
and barcode insertion.

Scrittura supports different types of templates for document generation purposes.

« HTML templates. HTML allows templates to be designed as HTML pages, enhanced by a set
of instructions provided by Scrittura.

« JSP templates. JSP allows templates to be designed as JSP pages using the Scrittura core
tag library.

« Microsoft WordML templates. WordML templates combine the usual Microsoft Word
interface and its enhanced capabilities with Scrittura custom tags.

NOTE: Although WordML capabilities are supported by the Scrittura platform, WordML has
been removed from Microsoft Word since its late 2007 version, making this module only
usable with Microsoft Word 2003 and early versions of 2007.

« Microsoft DOCX templates. DOCX templates are the recommended solution. They combine
the user-friendly Microsoft Word interface introduced by Word 2007, powerful Microsoft Word
document edition capabilities with the extensive set of instructions provided by Scrittura.

While all of these document generation modules are supported by Scrittura, the use of DOCX
templates is the recommended document generation solution. The Document Generation Suite
provides the full suite of tools and servers to handle DOCX templates.

Scrittura (4.4.10.5) Page 296 of 430

Administration Guide
Chapter 12: Outbound Workflows

The remainder of this section summarizes how DOCX document generation is integrated into the
Scrittura workflow. Full details, including how to design templates, setting up and deploying the
necessary servers, can be found in the Document Generation Suite documentation.

NOTE: For document generation based on HTML, JSP or WordML templates, see the previous
versions of the documentation.

Draft Document Generation

Draft document generation consists of creating a Word DOCX version of the document that will be
subsequently reviewed before the final PDF version is generated (or directly converted into the final
PDF would the trade be STP).

The following classtool is provided for easy integration into the workflow.

Name Word2007GenDoc

Class com.ipicorp.scrittura.docgen.word@7.Word2007GenDoc

Extended o templateName. Name of the template to be used by DocGen without
Attributes the DOCX extension.

o documentTitle. Documenttitle as it will appear in the DocManager.

o makeDefault. Boolean indicator that, when set to true, the generated
document is the default document.

o performLargeDocumentOptimisation: Boolean indicator that, when
set to true, activates an optimization for large documents (see Lengthy
Document Generation Tasks, on the next page).

Output DOCX confirmation, saved against the current Product Instance.

Alternatively, Pl variables can be used rather than extended attributes; those are defined in docgen-
config.xml. Extended attributes take precedence over those Pl variables when specified.

PDF Document Generation

Documents generated in PDF format can be simpler and safer for distribution to counterparts.

The following classtool is provided for integration into the Scrittura workflow in order to convert the
draft DOCX document into PDF.

Name GenPdfDocClassTool

Class com.ipicorp.scrittura.docgen.word@7.GenPdfDocClassTool

Extended o sourceTitle. Name of the .DOCX document that is stored against the
Attributes Product Instance. This value must match the documentTitle attribute

of the Word2007GenDoc classtool.

o targetTitle. Name of the PDF document as it is stored in the

Scrittura (4.4.10.5) Page 297 of 430

Administration Guide
Chapter 12: Outbound Workflows

Product Instance.

o makeDefault. Boolean indicator that, when set to true, the resulting
document is the default document.

o refresh. Boolean indicator that, when set to true, the draft document
is refreshed with the latest variable values prior to generating the PDF
document.

o acceptRevisions. Boolean indicator (defaults to false). When set to
true, all changes are accepted in the document prior to PDF
generation.

o saveValidatedDOCX. Boolean indicator (defaults to false) that works
in conjunction with the acceptRevisions flag. When set to true, the
resulting DOCX, with all changes validated, is also saved against the
PI.

o performLargeDocumentOptimisation: Boolean indicator that, when
set to true, activates an optimization for large documents (seeLengthy
Document Generation Tasks, below)

Output PDF confirmation, saved against the current Product Instance. if acceptRevisions
is set to true, the DOCX document with accepted revisions is also returned.

Alternatively, Pl variables can be used rather than extended attributes; those are defined in docgen-
config.xml. Extended attributes take precedence over those Pl variables when specified.

Lengthy Document Generation Tasks

DOCX document generation is generally an immediate task showing good performance in an
appropriately scaled system.

In the specific cases where large documents are generated, the process may require a far longer
time than usual to complete. Although this would not be a problem in a standard workflow, some
database deadlocks would be frequently observed when parallel document generation steps are
performed simultaneously against the same Product Instance.

To circumvent this limitation, the performLargeDocumentOptimisation extended attribute can be
specified in the Word2007GenDoc and GenPdfDocClassTool classtools. By setting its value to true,
the lengthy document generations or PDF conversions are isolated in their own transaction, allowing
multiple similar tasks to take place at the same time.

Bulk and Document Signatures

This section describes the signature process in Scrittura and only applies to signing documents

generated with Document Generation Suite. The signature process for documents generated by
Scrittura legacy solutions (HTML, JSP, WordML) is supported and remains unchanged (see the

previous Scrittura Administration guides).

Scrittura (4.4.10.5) Page 298 of 430

Administration Guide
Chapter 12: Outbound Workflows

You can add a signature to a document either automatically in the workflow (using a set signature
graphic), manually for single documents, or manually in bulk, based on a particular user's approval
(using an individual user's graphic).

Bulk and Document Signature Configuration

This section details how to configure the signing process in Scrittura.

signatures.xml

The first information to specify in signatures.xml is the entity type used by DocManager to store
signatures. This is specified by the entity-type attribute of the main node, signatures.

<signatures entity-type="Signatures”>

Each user with signatory rights needs an entry in signatures.xml. For example:
<signatures entity-type="Signatures”>

<signatory id="jack"

image="jack.gif" name="3Jack Hilltumbler" title="Senior Manager"/>
<signatory id="jill"

image="jill.gif" name="Jill Hilltumbler" title="Director"/>
</signatures>

These users should all share a particular role. For example, the users "jack" and "jill" in the example
defined above could be members of a role called "Signers," defined in the application server.

DocManager Signature Storage

A folder named Signatures of entity type Signatures should be created in DocManager, and all
signatures should be stored in that folder. It is possible to use the SetConfig process to load the
actual signatures into the folder.

For example, the graphics mentioned in signatures.xml (such as,jack.gif, jill.gif) should be saved in
the Signatures folder.

Product Definition Setup

The signature PI variables must be defined in the trades’ Product Definition (typically shared in
commonvars.xml), as arrays whose dimension is the number of requested signatures.

One or more signatures can be defined, as there may be requirements for more than a single
signature. In the example below, two signatures are defined.

<VariableDefinition valueType="String"
audit-type="signature" subscriptllListlLimit="2">
<internalName>SignatureDocx</internalName>

<visibleName>Signature</visibleName>

Scrittura (4.4.10.5) Page 299 of 430

Administration Guide
Chapter 12: Outbound Workflows

<defaultvalue/>
</VariableDefinition>
<VariableDefinition valueType="String"
audit-type="signature" subscriptllListLimit="2">
<internalName>SignatureImageDocx</internalName>
<visibleName>Signature Image</visibleName>
<defaultValue/>
</VariableDefinition>
<VariableDefinition valueType="String"
audit-type="signature" subscriptlListlLimit="2">
<internalName>SignatureNameDocx</internalName>
<visibleName>Signature Name</visibleName>
<defaultvalue/>
</VariableDefinition>
<VariableDefinition valueType="String"
audit-type="signature" subscriptllListLimit="2">
<internalName>SignatureTitleDocx</internalName>
<visibleName>Signature Title</visibleName>
<defaultValue/>
</VariableDefinition>

NOTE: Arrays of signature variables to use with the DGS require numeric indexes. A “Docx” suffix

has been added to the variable names in order to avoid confusion with the legacy set of variables,
would those be used elsewhere.

Next, the different levels of signatures must be configured in the different Product Definitions to
specify whether a signature is either "user" based or "group" based. For example:

<signature level="1" type="user" role="Signers"/>
<signature level="2" type="group" role="Signers"/>

The type defined "group” vs. "user") also has an impact on the "id" attribute and its values in the
signatures.xml file. If "user" is defined, userlDs (such as, "jack") in the signature.xml attribute is
populated as opposed to the value "group”, where an actual group (such as, Signers) is populated in
that field.

Manual Signature

In the scrittura-config.xml file, you can define different views for a queue. “Bulk Review” displays the
list of trades belonging to a queue and allows bulk actions. “Review” displays view economic details

Scrittura (4.4.10.5) Page 300 of 430

Administration Guide
Chapter 12: Outbound Workflows

and documents for a single trade. A manual signature can be applied to a single trade through the
“Review” view or a series of trades through the “Bulk Review” view.

This is accomplished through a Next Action panel (nextAction.jsp or nextActionWithAnn.jsp) in
the signature queues (bulk and review views). The list of next steps for this panel in the signature
queue, defined in general-ui-config. xml, should contain the signature step specified by adding
SignatureProcess as Process Handler for that step.

Example

<next-step value="signer_1 "display="Sign & Fwd"
singleTradeHandler="com.iwov....SingatureProcess”/>

The following are the characteristics of the SignatureProcess handler.

Class SignatureProcess
Package com.iwov.gcm.scrittura.web.queue.processhandlers

Description Applies the signature variables to the selected PI. The signature level is
determined from the value attribute, which must end by X or [X]where Xis a
number equal to the signature level (such as, 1, 2).

NOTE: A user-based signature for the same user can only be applied once to a document.
Once applied (option selected and trade forwarded), the signature process is handled by the Scrittura
controller and signature variables are set accordingly in the Pls.

The trade is then forwarded to its next workflow destination. Consequently, the workflow should have
a transition from this signature queue to its next destination based on the queue route variable
holding the value that triggered the signature process (“signer_1_"in the example).

Automatic Signature

A workflow may be configured to automatically add signature images before dispatch, without human
review.

The following classtool is provided to automatically add signatures.
Classtool ApplyDocxSignature
Package com.ipicorp.scrittura.signature
Attributes List of “signer_X” attributes where X is a number (such as, 1, 2, and so on) whose

values are signatory IDs.

This classtool applies signature variables to the Pl as specified in the attribute list. It is possible to use
the content of another Pl variable to specify the value of the signer_X attributes, in which case, the
name of that Pl variable should be within brackets {...}.

Example: Use the content of Pl variable mySignature1 for the first signature.

signer_1={mySignature1}

Scrittura (4.4.10.5) Page 301 of 430

Administration Guide
Chapter 12: Outbound Workflows

Remove Signatures

You can set up your workflow to unset signature variables in cases where the document is being
amended and will require re-approval.

The following classtool is provided to remove signatures.
Classtool RemoveDocxSignature
Package com.ipicorp.scrittura.signature

Attributes none

RemoveDocxSignature resets the different signature variables in the Pl to empty values.

Apply Signatures to the Document

Once the signatures have been set in the Product Instance variables (automatically or manually), the
signatures must be applied to the final document prior to the document being sent out to the
counterparty. Rather than signing the draft document and generating the PDF from that signed draft,
itis recommended that you only apply the signature to the PDF version of the document in order to
generate the final (signed) document.

For this purpose, the workflow should include a step to refresh the PDF with the signatures, or create
the PDF if none has been generated. This is done using the PDF Conversion classtool,
GenPdfDocClassTool, with the extended attribute refresh set to true.

TIP: If change tracking is enabled on the DOCX document, revisions should be accepted in order

to generate a clean final PDF. This is done by setting the acceptRevisions attribute to true in the
PDF Conversion classtool.

Automatic Signature Workflow Example
The following is an example of an automatic signature workflow.
Start

FromStart
- Generate Word))
| RemoveSignature E—toeemocx— Document E—BSTP—LMDWSQMIL"&E

toRefresh

i

P I
i Dispatch

Refresh DOCXPDFE toDispatch Dot
b d

Scrittura (4.4.10.5) Page 302 of 430

Administration Guide
Chapter 12: Outbound Workflows

The first step removes the signature, in case some were applied previously (for example, if the trade
is amended). The draft DOCX is then generated (“Generate Word Document"), signatures are
applied to the Pl variables (“Apply Signature”), and the PDF is created (“Refresh DOCX PDF”). The
document is now signed and ready to be sent.

Electronic Messaging

In addition to paper confirmation, electronic messaging is also supported by Scrittura for the following
systems:

« DTCC DerivSERV
« ICE eConfirm
« SWIFT

For more information about Scrittura's electronic capabilities, see Electronic Messaging, on
page 344.

Hand Off to a Fax Server

The CopyDocUtil utility class (located in the com.ipicorp.scrittura.util package) allows hand off of
documents to a fax server.

Most popular fax servers can pull recipient information from either the first few lines of a file to be
faxed or from a supplemental control file that points to the document to be faxed.

In case of an ASCII-formatted document (such as HTML), variable values (such as faxNumber,
counterparty, and so forth) can be added at the top of the HTML document itself. The following
sample code can be used in a beanshell script:

//When using a VAR defined without Arrays in product definition

String faxNumber = (String)(pi.getValue("faxNumber"));

//When using a VAR defined with Arrays in product definition

//String faxNumber = (String)(pi.getValue("faxNumber[A]")[0]);
// prepend pi data on top of html document

documentTitle = "Confirmation";

destinationFile = "c:\\opt\\scrittura3\\faxout\\fax_"

+ pi.getCommonRefId() + ".html"; prependControlString = "<TOFAXNUM:" + faxNumber +

>"; CopyDocUtil.performExtract(pi,
documentTitle, destinationFile, prependControlString);

Any graphic images in a generated HTML document are not stored directly in the document itself, but
are referenced through a URL (such as 'http://hostname:port/images/logo.gif'). These
references must be resolvable by the fax server in order for the images to be properly transmitted.

In the case of a PDF document, any included images are available directly in the document.
However, document content itself cannot be directly added as shown above. A control file must be

Scrittura (4.4.10.5) Page 303 of 430

Administration Guide
Chapter 12: Outbound Workflows

generated and dropped along with the PDF document. This control file can be configured to include
fax server relevant data, available from the PI (such as faxNumber, counterparty, and so forth).

In the following sample BeanShell, note the use of 'controlFile’ and 'controlText' to define the control
file content and destination:

//When using a non-array variable

String faxNumber = (String)(pi.getValue("faxNumber"));

//When using an array variable

String faxNumber = (String)(pi.getValue("faxNumber[A]")[©0]);

// define data of control file for pdf document documentTitle = "Confirmation";
destinationFile = "c:\\opt\\scrittura3\\faxout\\fax_ "

+ pi.getCommonRefId() + ".pdf"; controlFile = "c:\\opt\\scrittura3\\faxout\\fax_"

+ pi.getCommonRefId() + ".ctrl"; controlText = "<TOFAXNUM:" + faxNumber + ">";
CopyDocUtil.copyDocAndGenerateControlFile(pi,

documentTitle, destinationFile, controlText, controlFile);

General Email Dispatch Capabilities

The preferred medium used to dispatch confirmations to counterparties from within Scrittura is
generally fax, although it is required in some instances to send confirmations by e-mail.

Email messages are composed using the following fields and attributes.

Attribute Description

TO List of direct recipients of the email.

CcC List of recipients copied on the email.
BCC List of recipients blind copied on the email.
FROM Email address of the message originator.
SUBJECT Subject of the email.

BODY Content of the email.

ATTACHMENTS List of files attached to the email.

Each of these fields is configurable in the Scrittura Email Dispatch module. Scrittura also provides
simple template capabilities to generate the subject and body of those emails.

Email Dispatch Configuration

From within the workflow, enhanced email dispatch capabilities are available using the
DispatchEmail classtool.

Scrittura (4.4.10.5) Page 304 of 430

Administration Guide
Chapter 12: Outbound Workflows

The DispatchEmail classtool does not have extended attributes but uses the values for different
fields (such as TO or CC) from the Pl variables. These variables are specified in the email dispatch
configuration file, email- dispatch-config.xml, which is located under the /config directory. This file is
used to configure email dispatch features and allows the user to define different Pl variables and
email templates. Email templates are placed under /emailTemplates in the Scrittura home directory.

The email-dispatch-config.xml file is comprised of the following nodes.

« <variables>. Defines the different Pl variables to use for the different attributes (such as TO,
CC, and so forth).

« <templates>. Defines the templates used to generate email the body and subject.
Example
<?xml version="1.0" encoding="UTF-8"?>
<email-dispatch-config>
<variables>
<to-recipient-list>scrEmailTolList</to-recipient-1list>
<cc-recipient-list>scrEmailCclList</cc-recipient-1list>
<bcc-recipient-list>scrEmailBcclList</bcc-recipient-1list>
<from-recipient>scrEmailFromRecipient</from-recipient>
<attachment-list>scrEmailAttachmentList</attachment-1list>
<attachment-visible-name-list> scrEmailAttachmentNameList
</attachment-visible-name-1list>
<email-template-ref>scrEmailTemplate</email-template-ref>
</variables>
<templates>
<template name="MainTemplate”>
<subject template="dispatch-header.txt" />
<body template="dispatch.txt” />
</template>
<template name="Chaser”>
<subject template="dispatch-header.txt" />
<body template="chaser.txt” />
</template>
</templates>

</email-dispatch-config>

Scrittura (4.4.10.5) Page 305 of 430

Administration Guide
Chapter 12: Outbound Workflows

Product Instance Variables Configuration

Product Instance variables for email dispatch (DispatchEmail classtool) are defined under the

<variables> tag.

<variables> has the following variables.

Variable

to-recipient-
list

cc-recipient-
list

bcc-recipient-
list

from-recipient

attachment-
list

attachment-
visible-name-
list

email-
template-ref

Description

Name of the variable that contains the list of TO recipients.

Name of the variable that contains the list of CC recipients.

Name of the variable that contains the list of BCC recipients.

Name of the variable that contains the FROM field of the email.

Name of the variable that contains the list of attachments. Attachments are
specified by their DocManager path.

Name of the variable that contains the list of names under which the attachments
will appear in the final email. If unspecified, attachment names will be taken from
the list defined by the attachment-list variable.

Name of the variable that contains the name of the email template to use, as
specified in the <templates> node.

All list entries must be separated using commas, as in the following example:

john.smith@bank.com,peter.john@bank.com,andrew.thomas@bank.com

Example

Values for the different email attributes and fields are taken from the following Pl variables:

e TOlist: scrEmailTolist

e CClist: scrEmailCclList

« BCClist: scrEmailBcclList

« FROM field: scrEmailFromRecipient

o Attachment list: scrEmailAttachmentList

« Attachment visible name list: scrEmailAttachmentNameList

« Email template: scrEmailTemplate

<variables>

<to-recipient-list>scrEmailToList</to-recipient-1list>

<cc-recipient-list>scrEmailCclList</cc-recipient-1list>

Scrittura (4.4.10.5)

Page 306 of 430

Administration Guide
Chapter 12: Outbound Workflows

<bcc-recipient-list>scrEmailBcclList</bcc-recipient-1list>
<from-recipient>scrEmailFromRecipient</from-recipient>
<attachment-list>scrEmailAttachmentList</attachment-1list>
<email-template-ref>scrEmailTemplate</email-template-ref>

</variables>

Email Templates Configuration
Templates used to generate the header and body of emails are specified as

<template> tags under the <templates> node. A <template> node has the following attribute.

Attribute Required/ Description
Optional

name Required Name of the template, to which the variable defined under
<email-template-ref>inthe <variables> section refers.

A <template> node has the following child nodes.

Child Required/ Description
Node Optional

subject Required This tag is empty and has one mandatory template attribute that
specifies the subject email template to use. The path is relative to
the /emailTemplates directory.

body Required This tag is empty and has one mandatory template attribute that
specifies the body email template to use. The path is relative to the
/emailTemplates directory.

Example

<templates>

<template name="MainTemplate”>

<subject template=dispatch-header.txt” />
<body template="dispatch.txt” />
</template>

</templates>

Design Email Body Templates

Email body templates can be defined freely and are located under the /emailTemplates
directory. These templates can be text or HTML files and can contain Pl variables.

The following is the syntax to include a Pl variable.

Scrittura (4.4.10.5) Page 307 of 430

Administration Guide
Chapter 12: Outbound Workflows

{field}
where field is a Pl variable.

Email subjects, as defined in the email dispatch configuration file email- dispatch-config.xml,
follow the same syntax.

Example template extract:

Dear Sir/Madam

I am writing to you with regard to transaction ref. {tradeID}.
produces the following output for a trade whose trade ID is 12345:
Dear Sir/Madam

I am writing to you with regard to transaction ref. 12345.

Integrate Email Dispatch with Scrittura

A classtool is provided in order to use email dispatch capabilities within Scrittura workflow.

Class name DispatchEmail
Package com.ipicorp.scrittura.util.email

Extended Attributes none

This classtool does not have any extended attributes. Before a trade reaches this classtool, Pl
variables specified in the email dispatch configuration must be populated.

Scrittura (4.4.10.5) Page 308 of 430

Administration Guide
Chapter 13: Inbound Workflow

Chapter 13: Inbound Workflow

This section describes important steps and components involved in the inbound trade processing
workflow, their configuration, and interfaces.

This section contains the following topics:
« Image Processing Server, below
« OCR Using Teleform and IDOL Image Server, on page 332

« Signature of Inbound Documents, on page 343

Image Processing Server

The Scrittura Inbound Image Processing Server (IPS) is a separate server that provides image
processing and image transfer facilities to the main Scrittura system.

The system is designed by default to poll folders that contain images that have been created by some
outside service or manual action. Upon receiving an image, the system processes it using any
configured plug-ins that are available for that file format.

The results of this processing are used to create a description of the image containing any decoded
information. This may be decoded barcodes, text recognized through Optical Character Recognition,
or any other information discovered by the plug-in.

Inbound TIFF or PDF images may be split into multiple images if split barcodes are detected within
the image. These are used as manual separators for the purpose of scanning batches of paper
copies of documents for introduction into the workflow.

e

Remate II
Image
Source

Once images have been processed, the image and the image descriptor file are transferred to a
special drop box within Scrittura's domain and a dummy trade is sent to Scrittura. Scrittura is then
able to act on these items as per the inbound workflow.

Image
Processing

F 3

Create trade
documents

Image Process Server Configuration

The IPS configuration is configured using the following files, located under the /config directory of
the IPS installation folder:

« config.xml

« logdj.cfg

Scrittura (4.4.10.5) Page 309 of 430

Administration Guide
Chapter 13: Inbound Workflow

« wrapper.conf

config.xml

The image processing server can be customized using the config.xml configuration file. . Its root
node is <config>, under which the configuration is divided into the following distinct parts.

« image-processing, to configure image processing main properties
« log, to configure logs and alerts

« inbound, to configure inbound document processing

« outbound, to configure outbound document handling

« plugins, to configure plugins to be used by the IPS

Image Processing Configuration

The first step in configuring the Image Processing Server is to configure the image processing sub
system, where all of the general properties will be set.

Example

<image-processing processing-folder=

image-page-buffer="" processing-threads=

document-conversion-format="PDF" perform-document-conversion="true" outbound-
errored-docs="true">

<splitting classname="">

<param name="" value=""/>

</splitting>
<cover-page-detection>

<param name="" value=""/>

</cover-page-detection>

</image-processing>

The main node of the image processing sub system is image-processing. image-processing has two
child nodes: splitting specifies document page splitting, and cover-page-detection specifies the
detection of the cover page.

The <image processing> node has the following attributes.

Attribute Required/ Description
Optional

Scrittura (4.4.10.5) Page 310 of 430

Administration Guide
Chapter 13: Inbound Workflow

processing- Required Defines the folder used for temporarily storing images retrieved

folder from inbound folders.

image-page- Required Defines the number of pages of images per document to buffer in

buffer memory. If sufficient memory is available, it is recommended that
this value be set to a value equal to the expected unsplit document
length.

document- Required Defines the format of the document that should be sent on to

conversion- Scrittura.

format

Currently only PDF is supported.

TIP: To convert from TIFF to PDF before processing, set the
following attributes of the image-processing node in config.xml:

o document-conversion-format="PDF"

o perform-document-conversion="true"

These modifications convert all documents to PDF

perform- Required Specifies whether documents should be converted to the format
document- specified by document- conversion-format.

conversion

processing- Required Specifies the number of threads for the Image Processing Server.
threads

outbound- Optional Specifies whether documents that fail to be processed (for
errored-doc whatever reason) should be sent to Scrittura. If the system is

configured to do so, alerts are still dispatched for documents that
fail to be processed successfully.

The <splitting> child node has a single attribute, classname, which specifies the custom class
implementing the splitting algorithm to use. Required parameters for classname are defined as
param child nodes.

The following are the splitting algorithms provided by the IPS.

« Standard Split. The Standard Split algorithm splits a document only if system barcodes
matching the mandatory BarcodeMatchPattern parameter are detected on every page and
unique distinct barcodes are present in consecutive chains.

A standard split detection class is introduced to allow splitting of document where barcodes are
detected on every page.

This algorithm is implemented using the following classname attribute and param node:

classname com.scrittura.imaging.StandardSplitDetection

param node BarcodeMatchPattern, specified as a regular expression

Scrittura (4.4.10.5) Page 311 0f 430

Administration Guide
Chapter 13: Inbound Workflow

« Split based on Regular Expression. This algorithm detects splits in a document based on the
regular expression specified by the mandatory regex attribute. If a split is detected on the final
page of the document, the final page will be lost.

This algorithm is implemented using the following classname attribute and param node:

classname com.scrittura.imaging .SimpleRegExSplitDetection

param node regex, specified as a regular expression

The <cover-page-detection> child node has a single attribute, classname, which specifies the
custom class implementing the appropriate cover page detection interface. Required classname
parameters are specified as param child nodes.

The following standard implementation is natively provided by the IPS. This implementation detects
the cover page and removes it if a barcode that matches the mandatory regex parameter is found on
the first page of the document.

classname com.scrittura.imaging .SimpleRegExCoverPageDetection

param node regex, specified as a regular expression

TIP: To use multithreaded capability, alter config.xml and use the processing-threads attribute of
the image-processing node to specify the number of execution threads.

Alerts and Logs Configuration

Scrittura uses log4j for logging messages to a given destination. This may be the console, a text file,
the Windows Event Log, or any other destination.

Alert messages are configured by defining the attributes of the <mail> child- node of the <log> node.
Example

<log>

<mail enabled= smtp-server= subject-prefix="" from="">
<contact recipient="" level=""/>

<contact recipient="" level=""/>

</mail>

</log>

The <mail> node has the following attributes.

Attribute Required/Optional Description
enabled Required Set to true to enable email reporting.

smtp- Required Specifies the SMTP server to use for sending mail.

Scrittura (4.4.10.5) Page 312 0f 430

Administration Guide
Chapter 13: Inbound Workflow

server

subject- Required The prefix added to the subject line of any mail sent by the
prefix Scrittura system.

from Required Specifies the sender to be displayed for these internal

messages.

The <mail> node is defined by one or more <contact> child nodes, one for each recipient to receive
the email notification. <contact> has the following attributes.

Attribute Required/Optional Description

recipient Required Defines the email address of a single recipient for the alert
message.
level Required Specifies the level of logging to send to the defined recipient.

The level corresponds to the log4j log level.

Possible values: ERROR or FATAL

Inbound Document Configuration

The inbound section specifies how incoming documents (such as those coming from the fax server)
are handled by the IPS.

The <inbound> tag accepts one or more <poller> and <blocker> nodes, respectively to poll or wait
for resources to be available.

<poller> and <blocker> each have a single attribute, classname, which defines a class that is
called by the system periodically to poll some resource. Parameters to pass to this class are specified
as <param> child nodes.

Example

<inbound>

<poller classname="">*

<param name="" value=""/>

</poller>

<blocker classname="">*

<param name="" value=""/>

</blocker>

</inbound>

The following examples are native implementations provided with Scrittura.

Scrittura (4.4.10.5) Page 313 0f 430

Administration Guide
Chapter 13: Inbound Workflow

Example filesystem-based inbound source

The IPS comes with an implementation of simple drop box based communications. The class reads
images from a local or remote file location (this can be a UNC address), polling that location for new
files periodically. Example configuration:

<inbound>

<poller

classname="com.scrittura.imaging.DropBoxInboundSource">

<param name="path"

value="/opt/image-processing/test/outboundl"/>

<param name="poll-interval" value="3000"/>

<param name="sleep-interval" value="10000"/>

<param name="description" value="Local outbound folder"/>

</poller>

</inbound>

This example defines the following properties specific to the image processing sub system.
« path. Defines the folder to monitor.
« poll-interval. Defines the interval in ms to wait between polls of the folder.

« sleep-interval. Defines the interval, in milliseconds, to sleep in the case of repeated errors
communicating with the source.

« description. Defines a description to give to the folder that will be used in error e-mails.

Example JMS inbound source

The IPS comes with an implementation of JMS Queue Consumer. The class reads images from a
JMS Queue, blocking until an image is available.

<inbound>

<blocker classname="com.scrittura.imaging.JmsInboundSource">
<param name="java.naming.factory.initial" value=""/>

<param name="java.naming.provider.url" value=""/>

<param name="java.naming.security.principal” value=""/> <
<param name="java.naming.security.credentials" value=""/>
<param name="JImsConnectionFactory" value=""/>

<param name="JmsQueue" value=""/>

</blocker>

</inbound>

This example defines the following properties specific to the image processing sub system.

Scrittura (4.4.10.5) Page 314 of 430

Administration Guide
Chapter 13: Inbound Workflow

- java.naming.factory.initial. Defines the initial context factory, such as
weblogic.jndi.WLInitialContextFactory.

« java.naming.provider.url. Defines the URL to use to communicate with the JMS server, such
as iiop://imageservice.scrittura.com:7101.

« java.naming.security.principal. Defines the identity of the principal for authenticating the
caller to the service. The format of the principal depends on the authentication scheme. If this
property is unspecified, the behavior is determined by the service provider.

« java.naming.security.credentials. Defines the credentials of the principal for authenticating
the caller to the service. The value of the property depends on the authentication scheme. For
example, it could be a password with a hash (#), clear-text password, key, certificate, and so
on. If this property is unspecified, the behavior is determined by the service provider.

« JmsConnectionFactory. Defines the JNDI name of the remote Connection Factory.

« JmsQueue. Defines the JNDI name of the remote JMS Queue.

Outbound Document Configuration

The outbound section specifies how output documents will be transferred from the IPS to Scrittura.

<outbound> defines the configuration of dropboxes to tie into Scrittura. The classname attribute of
the <outbound> node defines the class that will be called by the system to communicate with
Scrittura, whereas the <param> child nodes specify the parameters required for this class.

Example

<outbound classname="">

<param name="" value=""/>*

</outbound>

The following examples are native implementations provided with Scrittura.
Example dropbox based outbound sink

The IPS comes with an implementation of simple drop box based communications. The class
delivers three files to Scrittura per image (unless that image is split) using dropboxes. The file formats
of these classes are defined later in this chapter.

<outbound classname="com.scrittura.imaging.DropBoxOutboundSink">
<param name="trade-drop-box-path" value="/opt/scrittura/dropbox"/>
<param name="trade-drop-box-prefix" value="from_image_processing_"/>
<param name="trade-drop-box-suffix" value=".IN"/>

<param name="image-drop-box-path"
value="/opt/image-processing/test/image-drop-box"/>

<param name="image-drop-box-prefix" value="from_image_processing_"/>

<param name="image-drop-box-suffix" value="" />

Scrittura (4.4.10.5) Page 315 0f 430

Administration Guide
Chapter 13: Inbound Workflow

</outbound>
This example defines the following properties specific to the image processing sub system.
« trade-drop-box-path. Defines the drop box used for trade tag files within Scrittura.

. trade-drop-box-prefix. Defines the string to be added as a prefix to any filename placed in the
trade dropbox.

« trade-drop-box-suffix. Defines the string to be added as a suffix to any filename placed in the
trade dropbox.

« image-drop-box-path. Defines the dropbox used for accompanying files within Scrittura.

- image-drop-box-prefix. Defines the string to be added as a prefix to any filename placed in the
image dropbox.

« image-drop-box-suffix. Defines the string to be added as a suffix to any filename placed in the
image dropbox.

Plugins Configuration

The <plugins> node defines the use of plug-ins to perform barcode detection. Zones can be defined
to speed up processing of images when performing complex scanning operations, such as 2D
barcodes.

<plugins>

<ocr classname="">

<param name="" value=""/>*

<zone top="" left="" bottom="" right=""/>*

</ocr>
</plugins>

<plugins> is defined by the <ocr> tag. The classname attribute of <ocr> defines the class name of
the plugin, such as TaskbarPlugin. The <param> child nodes define a plugin-specific name/value pair
(see the plugin documentation for details). The <zone> child node attributes (top, left, bottom, right),
define a rectangular, in pixels, within the image that is to be scanned using the plugin. The variables
$WIDTH and $HEIGHT can be used in conjunction with basic arithmetic.

Example <zone> child node configurations
« Scan the top 20% of any image:
<zone top="0" left="0" bottom="0.2*$HEIGHT" right="0.2*$WIDTH"/>
« Scan the bottom 20% of any image:
<zone top="0.8*$HEIGHT" left="0" bottom="$HEIGHT" right="$WIDTH"/>

« Scan the entire image:

<zone top="0" left="0" bottom="$HEIGHT" right="$WIDTH"/>

Scrittura (4.4.10.5) Page 316 of 430

Administration Guide
Chapter 13: Inbound Workflow

The IPS offers barcode detection capabilities, which are available by using a the Tasman Barcode
plugin. For more information, see Tasman Barcode Detection Plug-in, below.

Itis also possible to include other custom plug-ins; for more information see Image Processing Plug-
ins, on page 324.

log4j.cfg

The system uses log4j for logging messages to a given destination. This may be the console, a text
file, the Windows Event Log, or any other destination.

wrapper.conf

The Image Processing Service can use the wrapper from Tanuki Software in order to run as a service
(or daemon) across multiple platforms.

The service is configured in the wrapper.conf file which is documented to explain the functionality that
can be obtained.

Tasman Barcode Detection Plug-in

The Tasman barcode detection library provides a pure Java implementation for detecting most
barcodes types including Code 128 and DataMatrix (see DataMatrix, on page 322). In order to use
this plug-in an entry must be created in the config.xml file similar to the following example:

<plugins>

<ocr classname="TasbarPlugin">

<param name="codel28" value="true"/>

<zone top="0" left="0" bottom="$HEIGHT" right="$WIDTH"/>
</ocr>

</plugins>

Additional logic allows for scanning only the first page of a doc or until the first barcode is
encountered. These are set as configuration parameters to the Tasman barcode plug-in using
scanFirstPageOnly and scanUntilFirstBarcode respectively.

This plug-in can render the PDF prior to scanning or extracts any images from the PDF through
extractPdfImages. For more information, see config.xml, on page 310

Barcode Zones

Zones define the areas of an image to search for barcodes. Defining zones can speed up processing,
particularly when looking for complex symbologies such as DataMatrix bar codes.

It may be the case that the only location a barcode will be present is in the top right corner of the
document, in which case a zone could be defined to process only this section:

<zone top="0" left="0.6*$WIDTH" bottom="0.2*$HEIGHT" right="$WIDTH"/>

In the case where the document is upside down, it is possible to define a mirroring zone covering the
bottom left corner of the document:

Scrittura (4.4.10.5) Page 317 of 430

Administration Guide
Chapter 13: Inbound Workflow

<zone top="0.8*$HEIGHT" left="0" bottom="$HEIGHT" right="0.4*$WIDTH" />

Tasman Barcode Configuration
Barcode parameters can be set in the configuration file using the syntax:
<param name="variable" value="value"/>

The following are the available barcode parameters. All are optional, except for the readxx
parameters (readEast, readWest, and so on), where at least one is required to be specified.

Parameter Possible Description
Values
code128 true Set to true to read Code 128 symbology barcodes.
false
(default)
code39 true Set to true to read Code 39 symbology barcodes.
false Code 39 barcodes are similar to Code 32 barcodes with a
(default) different encodation. If both code39 and code32 are set

to true, it is possible that one barcode will be returned for
each specification.

codeDataMatrix true Set to true to read Data Matrix (ECC 2000) symbology
barcodes.
false
(default)
readEast true Set to true to read the image with an Easterly scan

(default) (horizontally, left to right).

false Not relevant to searches for two-dimensional symbols,
such as Data Matrix.

readWest true Set to true to read the image with a Westerly scan
(default) (horizontally, right to left). Set to true by default because
images occasionally arrive upside down.

false
Not relevant to searches for two-dimensional symbols,
such as Data Matrix.
readNorth true Set to true to read the image with a Northerly scan
false (vertically, bottom to top).
(default) Not relevant to searches for two-dimensional symbols,
such as Data Matrix.
readSouth true Set to true to read the image with an Southerly scan
false (vertically, top to bottom).
(default) Not relevant to searches for two-dimensional symbols,

such as Data Matrix.

Scrittura (4.4.10.5) Page 318 of 430

Administration Guide
Chapter 13: Inbound Workflow

scanlinterval positive Defines the scan interval. A value of 1 means scan every
integer pixel row or column of the image; 2 means scan every
second row or column, and so on.
5 (default)

Increasing the value may give a faster reading of the
image, but increases the probability of not detecting
narrow or poorly formed barcodes.

Decreasing the value of this field can have the opposite
effect: slower reading of the image but better barcode
detection.

Faster reading with increasing values is not automatic. If
the reader detects a structure in the image that is possibly
a barcode, then the scan interval is temporarily
decreased the scan interval in order to analyze the
image.

The value of this field is not usually relevant to searches
for 2D symbols (such as Data Matrix), although for 'close-
up' symbols the probability of successful reading is
increased if scaninterval is not less than half the symbol's
module (minimal square or 'blob') size.

code32 true Set to true to read Code 32 symbology barcodes.

false Code 32 is also known as Base 32, Pharma 32/39, and
(default) Italian Pharmacode. It is not the same as Pharmacode-
Laetus.

Code 32 barcodes are similar to Code 39 barcodes with a
different encodation. If both code32 and code39 are set
to true, two barcodes may be returned (for the single
original barcode), one for each specification.

code93 true Set to true to read Code 93 symbology barcodes.
false
(default)

codeCodabar true Set to true to read Codabar symbology barcodes.
false
(default)

codeEAN13 true Set to true to read EAN 13 symbology barcodes.

false EAN 13 barcodes are identical to UPC A barcodes with

(default) the same encoding except for an additional leading zero
on EAN13 barcodes. If both codeEAN13 and codeUPCa
are set to true, two barcodes may be returned (for the
single original barcode), one for each symbology.

codeEANS8 true Set to true to read EAN 8 symbology barcodes.

Scrittura (4.4.10.5) Page 319 0f 430

Administration Guide
Chapter 13: Inbound Workflow

false
(default)
codePatch true Set to true to read Patch Codes.
false The supported patch code types are shown in the figure
(default) below, where the read direction is from left to right.
Symmetric patterns (2 and 4) also read correctly in the
opposite direction, but other patterns read incorrectly (1
reads as 6, 3 as T, and vice versa).
Patch 1 Patch 2 Patch 3
Patch 4 Patch 6 Patch T
A side effect of the relatively simple structure of patch
codes is that they are liable to be reported when they do
not actually exist in the image. An application that reads
for patch codes should check that reported patch codes
are of the anticipated type, orientation, size, and position
within the image.
codel20f5 true Set to true to read Interleaved 2 of 5 symbology
barcodes.
false
(default)
codePDF417 true Set to true to read PDF 417 symbology barcodes.
false
(default)
codeTelepen true Set to true to read Telepen symbology barcodes.
false
(default)
code11 true Set to true to read Code 11 symbology barcodes. Code
11 is also known as USD-8.
false
(default)
codeUPCa true Set to true to read UPC A symbology barcodes.
false UPC A barcodes are identical to EAN 13 barcodes with
(default) the same encoding except for an additional leading zero

on EAN13 barcodes. If both codeEAN13 and codeUPCa
are set to true, two barcodes may be returned (for the

Scrittura (4.4.10.5) Page 320 of 430

Administration Guide
Chapter 13: Inbound Workflow

codeUPCe

plus2

plus5

separatorBarsToRead

separatorDelta

separatorFlank

separatorintensity

code39NoGuard

Scrittura (4.4.10.5)

true

false
(default)

true

false
(default)

true

false
(default)

positive
integer

1 (default)

positive
integer

10 (default)

positive
integer

0 (default)

1 through
255

128
(default)

true

false
(default)

single original barcode), one for each symbology.

Set to true to read UPC E symbology barcodes.

UPC E encodings are a compressed form of UPC A. The
Barcode.getString() method returns the full
uncompressed UPC A encoding for this symbology.

Set to true to read 2-digit supplementals associated with
EAN and UPC symbology barcodes.

Set to true to read 5-digit supplementals associated with
EAN and UPC symbology barcodes.

Defines the number of bars to attempt to read. Setting this
value to the actual number of bars in the image can
significantly improve performance when the image has
more than two colors, or when searching for two-
dimensional (such as, Data Matrix) symbols. The value of
this field is not significant when searching two color
images for one-dimensional or stacked symbols.

Specifies the pixel intensity step when scanning the
image at values between separatorintensity -
separatorFlank and separatorintensity + separatorFlank.

NOTE Only used when the image has more than two
colors.

Specifies the range of pixel intensity values above and
below separatorintensity with which to scan the image.

NOTE Only used when the image has more than two
colors.

Defines the intensity below which pixels are treated as
black. The pixel intensity is calculated as the average of
the red, green, and blue components.

Set to true to read Code 39 barcodes that are not
delimited with the "*" guard character. Such barcodes do
not meet the Code 30 specifiation and their use is not
recommended. With this option set to true, the package
can take a significantly longer time to read an image,
'proper’ Code 39 barcodes may not be identified, the
probability of reporting non-extant barcodes is
significantly increased, and a checksum is not performed,
even if specified.

Page 321 0of 430

Administration Guide
Chapter 13: Inbound Workflow

code39NoGuardFFNX true Only significant if code39NoGuard is set to true. In this
case set code39NoGuardFFNX to true to specify that the

ZZS;uIt) first and final characters in the barcodes do not include $ /
+ or %. This can reduce image read time and also reduce
the number of non-extant barcodes reported.
smallQuietZone true Set to true to allow quiet zones of half the normal width.
false Quiet zones are the blank areas at the start and end of
(default) symbols. Their size depends on the barcode symbology,
but is typically at least the width of a set of bars that
encode a single character.
tinyQuietZone true Set to true to allow quiet zones of one third the normal
width.
false
(default) If both smallQuietZone and tinyQuietZone are set to true,
then quiet zones can be as small as one quarter of the
normal width.

DataMatrix

DataMatrix is the two-dimensional barcode specification adopted by Scrittura for use in generated
documents. The following illustration is an example of a DataMatrix barcode.

DataMatrix barcodes are preferable over other specifications for several reasons:

« They are very reliable. Even in the presence of faulty data they can be decoded successfully.
This is very useful when faxing as image quality is poor.

« They can encode large amounts of data (up to 2000 characters, although this would not be
practical for our purposes).

« There is no royalty payable for using the format.

« Scrittura supports generation of DataMatrix as standard.

NOTE: The detection algorithms being very complex, scanning documents with 2D
barcodes may take up to 4 times longer than documents with 1D barcodes.

For these reasons it is advisable to be careful with the initial placement of 2D barcodes. If
Scrittura just has to examine the top left corner of the document for the image then this will
aid detection speed greatly.

Customization

The image processing system provides a framework on which large amounts of customization can be
built; splitting and cover page detection algorithms, the communications protocols used, and the

Scrittura (4.4.10.5) Page 322 of 430

Administration Guide
Chapter 13: Inbound Workflow

classes that perform the actual image processing for barcode detection.

Custom Document Splitting

Documents may be split to separate one document from another that may have been concatenated
during fax transmission or during a batch scan. The image processing module provides basic
document splitting based around regular expressions, for configuration options of this splitting class
see Image Processing Configuration, on page 310. In most instances, a more complex splitting
implementation is required, an interface is provided for classes to extend for this purpose.

The Map splitConfig provides the developer with the name value pairs of parameters that are
specified in the configuration file, enabling runtime parameters to be passed into the class.

Custom Cover Page Detection

Many documents may contain a fax cover page or a batch scanning cover page that can contains no
useful information. A cover page detection class is provided for the removal of cover pages. This
operation is performed after any document splitting has occurred on each split document. A simple
regular expression basic cover page detection class is provided. This may not be sufficient and so
the CoverPageDetection interface of the com.scrittura.imaging package is provided in order to
implement custom classes.

This interface contains a single method, which returns true if the document has a cover page:
boolean hasCoverPage(Document doc, Map params);

The Map params attribute provides the developer with the name value pairs of parameters that are
specified in the configuration file, enabling runtime parameters to be passed into the class.

Custom Inbound Communications

Two basic classes, InboundDocumentSource and PolledInboundDocumentSource, are provided to
be extended to form the inbound communications module. It is also possible for multiple different
inbound classes to be created and used simultaneously within the system.

Non Polling Based Communications

The class InboundDocumentSource provides a super class which should be extended in order to
implement custom communications. The init method should perform initialization tasks. Custom
parameters as defined in the configuration file are passed as name/value pairs in the params Map,
the processingFolder is provided if it is required to store images to the local disk.

Finally the callback InboundDocumentHandler is provided to allow the class to inform the main
system of received documents using the receiveFile(File file)or receiveDocument(Document
doc) methods. The run() method should be implemented to perform the actions of interfacing with
the document source.

Polling Based Communications

The class PolledinboundDocumentSource uses the same initialization method as
InboundDocumentSource, taken from a common inbound interface. However rather than leaving the
sole responsibility of interacting with the document source in the hands of the custom class, the run

Scrittura (4.4.10.5) Page 323 of 430

Administration Guide
Chapter 13: Inbound Workflow

() method is called periodically by the InboundDocumentSource. Documents are introduced to the
system in the same manner as InboundDocumentSource.

Custom Outbound Communications

A single abstract class is provided in order to be extended to provide custom outbound
communications. Three methods are provided that are called from the main system:

public abstract void init(Map params) throws InitialisationException;
public abstract void documentInbound(Document doc) throws CommunicationsException;
public abstract void documentOutbound(Document doc) throws CommunicationsException;

The init method is called upon system initialization; any parameters from the configuration file are
passed as name/value pairs in the Map params.

The class is informed both when a document is introduced into the system (documentInbound(...))
and when it is finished being processed and all aspects can be sent on to Scrittura
(documentOutbound(...)).

Image Processing Plug-ins

In order to interface with third party libraries for the purposes of adding barcode detection, plug-ins
can be added to the system.

The image processing plug-in can use a zoom factor to increase the rendering resolution of PDFs to
improve barcode functionality through the following startup options:

-Dips.zoom.factor=200.0f (200%)
or

-Dips.zoom.factor.first.page=200.0f (to zoom the first page)

TIFF Images and Browsers

For a user to see a TIFF image directly in the Scrittura application requires a browser plug-in, like
Alternatiff. Scrittura does not include any browser plug- ins for TIFF images.

Some TIFF plug-ins may have different memory or browser requirements; be sure to read
documentation on the plug-ins themselves to make sure they are compatible with your own network
and configuration requirements.

Inbound Workflow
The following sample workflow serves to segregate:
« inbound images not containing recognizable barcodes

« inbound images containing recognizable barcodes which do not correspond to any previously
filed document

« inbound images containing recognizable barcodes which do correspond to a previously filed
document

Scrittura (4.4.10.5) Page 324 of 430

Administration Guide
Chapter 13: Inbound Workflow

The table that follows explains the function of each of the pictured class activities and the conditions

on each of the "non-otherwise" transitions.

Process: Inbound

Expiring Pessimistic Locking
Idle Timeout: 5(s)
Lock Expiration: 300(s)
Audit Class:

SetDocm grl I%

To OCR

To SetDocm grD o

Start

To BarcodeMapping2

FPretdatchin E
BarcodeMappiI

To Autobdatehing

Autohﬂatchin

To Manual Indexing

To PublishStub

: —
PubllshStu

To MewrM ail

To PublishCaonfin FublishConfin

Manual Indexing

Back Te Manual Indexing To Exit

To PublishConfirm2
Forbeletion

]
Cheding E—
d
3
GalbageFax%} T oExit2:

Workflo Class or Application Notes
w Executed
Activity

SetDocM com.scrittura.inboun Extended attribute:

grDoc d.SaveInboundDocumen setStandardTiff=true

Scrittura (4.4.10.5)

e

Page 325 of 430

Administration Guide
Chapter 13: Inbound Workflow

t Performs housekeeping; associates the document (initially
placed in the temporary ImportFolder) with its own Inbound
Product Instance and moves it to its corresponding folder in
DocManager.

If the setStandardTiff extended attribute is true, the class
will encode the TIFF as single strip and Group 4 (the
standard requirements for a Scrittura TIFF).

OCR Manual Activity A manual activity not exposed to end users for interaction.
The OCR daemon looks for waiting workitems in this
activity, performs the OCR function and barcode
recognition, and pushes the workitem along in the
workflow.

Inbound com.scrittura.inboun Extended attribute: degrees=180
TiffRotat d.InboundTiffRotater

or Activity that will rotate TIFFs. Degree of rotation depends

on the value of the degrees extended attribute.

BarCode com.scrittura.inboun Looks atany recognized barcodes to see ifthey areina

Mapping d.BarcodeMapping2 recognized format. Currently, this class recognizes two:

2 one for confirms - "DC/IRS®1/Confirmation" (DC/
[CommonReferenceID]/Confi rmation), and one for
DocManager 'stub' documents "ID+1234" (ID+
[DocManager Resource ID]). The "DC" code ("Derivative
Confirmation") is, for the moment, hard-coded into this
routine and should be included in outbound barcodes.

Transition to PublishStub only if (BarcodeLength == 2) &&
(Barcode®.equals("ID"))—in other words, if there are
two strings in the barcode and the first is the string "ID".

Documents without barcodes or other recognized barcodes
go to the PreMatching activity.

PreMatc com.scrittura.inboun Adds the full-text of the TIFF to the workitem. Looks for
hing d.Matching items from the Matching Dictionary in the full-text of the
TIFF, and adds those name/value pairs to the workitem.

The Matching Dictionary is a flat file, matching.dict, located
under the Scrittura \config folder.

AutoMat com.scrittura.inbound.M = Attempts to auto-match this document to a trade already in

ching atching?2 the workflow, if a CRID is found in a recognized barcode
format, or if a CRID was found in the full text of the
document.

Transition to PublishConfirm if
MatchStatus.equals("Barcode")

or

Scrittura (4.4.10.5) Page 326 of 430

Administration Guide
Chapter 13: Inbound Workflow

PublishC com.scrittura.inboun

onfirm d.PublishConfirm2

PublishS com.scrittura.inboun
tub d.PublishStub

Manualln Manual Activity
dexing

NewMail = Manual Activity

Checking com.scrittura.inboun
d.SetPropBag

Scrittura (4.4.10.5)

MatchStatus

.equals("FullText")

Extended attributes:

o default = true When set to true, the published
inbound document will become the default
document for the trade.

o documentTitle=Signed If this attribute is set,
the published inbound document will have the
name set in the "documentTitle" extended
attribute.

o createNewVersion=true \When set to true, the
published inbound document will be versioned.

o deletelnboundPl=true When set to true, the
inbound PI will be deleted after the class is done
publishing.

o deletelnboundDocs=true When set to true, the
inbound documents will be deleted after the class
is done publishing.

Attempts to publish the document to the trade folder to
which it corresponds. Publishes the TIFF itself, the full-text
of the TIFF as a .txt file, a file containing the name/value
pairs of trade info, and a file containing an XML
representation of those name/value pairs.

Publishes the document to DocManager based on the
DocManager Resource ID passed in by the barcode.

Transition to GarbageFax only if
RealDoctype

.equals("For Deletion"). This RealDoctype
variable would be set by a user in the ISP view
for this

manual activity.

A queue which serves as a collection point for all inbound
documents so that the end user can see all inbound
documents that have come into the system. These
documents have either been processed automatically
(barcode or CRID found in full-text) or have been manually
processed.

The Matching manual activity provides a widget to give the
user a spot to input a Common Reference ID. This
Checking class makes sure that this value is valid and, if so,

Page 327 of 430

Administration Guide
Chapter 13: Inbound Workflow

sets MatchStatus to Manual.

Transition to PublishConfirmonly if MatchStatus.equals

("Manual").
Garbage Workflow Application: Deletes the document from DocManager. Subsequently the
Fax Remove workitem is removed from the workflow.

Inbound Product Definition

Note that a Scrittura workflow configured as above requires a Product Definition to create an Inbound
Pl and attach the document coming from the fax server. This Inbound Product Definition contains
specifications for the workflow variables referenced in this section.

Sample Implementations

This section presents examples of the Cover Page class, Document Splitting class, and DropBox
Outbound Communications file.

Sample Cover Page Class

The following is a sample cover page detection class that illustrates the use of the interface.
package com.scrittura.imaging; import java.util.*;

public class SimpleRegExCoverPageDetection

implements CoverPageDetection

{

/*

If a barcode that matches the paramater "regex" is found on the first page of the
document then true is returned, else false is returned.

*/
public boolean hasCoverPage(Document doc, Map params)

{

if (doc.numberOfPages() < 1) return false; String regex = (String) params.get
("regex"); boolean match = false;

Page firstPage = doc.getPage(9);
if (firstPage == null) return false;

Iterator barcodeIter = firstPage.getBarcodes().iterator(); while
(barcodeIter.hasNext())

{
if (((String) barcodeIter.next()).matches(regex))

{

Scrittura (4.4.10.5) Page 328 of 430

Administration Guide
Chapter 13: Inbound Workflow

match = true;

}
}
return match;
}
}

Sample Document Splitting Class

The following is a sample document splitting class implementing the interface.
package com.scrittura.imaging; import java.util.*;

public class SimpleRegExSplitDetection implements SplitDetection
{

/%

Returns an array of integers (indexed from zero) representing the pages to be split
around, i.e. for a 10 page document that it is decided that the document should be
split as pages 1-5, 5-

10 then the array returned would be [0,4,5,9]. The split is inclusive of * both
entries, i.e. 0-4 will return 5 pages.

Parameters:
doc - the document to be split.

splitConfig - a Map of name/value pairs from the configuration. Returns an even list
of integers

*/

public List detectSplits(Document doc, Map splitConfig)

throws SplittingException

{

String regex = (String) splitConfig.get("regex"); if (regex == null)
{

throw new SplittingException("No regex found.");

}

LinkedList list = new LinkedList();

// looking for pairs of split barcodes

for (int current = @; current < doc.numberOfPages();)

{

Scrittura (4.4.10.5) Page 329 of 430

Administration Guide
Chapter 13: Inbound Workflow

boolean found = false;

// add current to list as first of a pair list.addLast(new Integer(current));
int next = current + 1;

for (; next < doc.numberOfPages(); next++)

{

//check through all barcodes on that page

LinkedList barcodes = doc.getPage(next).getBarcodes(); for (int i = 0; i <
barcodes.size() && !found; i++)

{

if (((String) barcodes.get(i)).matches(regex))

{

found = true;

}

}

if (found) break;

}

// if found or on last page then add entry if (found)
{

list.addLast(new Integer(next - 1)); current = next;
}

else

{

list.addLast(new Integer(doc.numberOfPages() - 1)); current = next;
}

}

// special case where whole document is selected if (list.size() == 2 &&

((Integer) list.getFirst()).intValue() == 0 && ((Integer) list.getLast()).intValue()
== doc.numberOfPages() - 1)

{

list.clear();

}

return list;

}

Scrittura (4.4.10.5) Page 330 of 430

Administration Guide
Chapter 13: Inbound Workflow

Drop Box Communications File Formats
Flat XML Tag File

Once an image has been successfully processed by the system a dummy tag file is created
containing the filenames of the image and image descriptor files together with a unique common
reference ID composed from the String Inboundimage and a timestamp.

Example

<?xml version="1.0" encoding="UTF-8"?>

<product-instance>

<variable name="ProductDefID"> Inbound </variable>

<variable name="TradeType"> Inbound </variable>

<variable name="ImageFilename"> image-file-name.tif
</variable>

<variable name="ImageTextFilename"> image-file-name.tif.xml
</variable>

<variable name="CommonReferenceID"> InboundImagel©83180395680
</variable>

</product-instance>

This file is transferred to the Scrittura trade drop box as defined in the configuration file.
XML Image Descriptor File

Once an image has been successfully processed by the system, an image descriptor file is created
and sent along with the image and a trade tag file to a Scrittura drop box. This file contains an entry
for each page detected in the image and any barcodes and text found. The following example shows
an image that has been processed using a barcode detection library. A barcode was found on each
page of the three pages of the TIFF image.

Example

<?xml version="1.0" encoding="UTF-8"?>
<document>

<page>
<barcode>LN-LN-SW-14471-50-36-1</barcode>
</page>

<page>
<barcode>LN-LN-SW-14471-50-36-1</barcode>

</page>

Scrittura (4.4.10.5) Page 331 0f 430

Administration Guide
Chapter 13: Inbound Workflow

<page>
<barcode>LN-LN-SW-14471-50-36-1</barcode>
</page>

</document>

This file together with the original unaltered image is transferred to the image drop box as configured
in the configuration file.

OCR Using Teleform and IDOL Image Server
Inbound trade confirmation within Scrittura now benefits from an enhanced level of automation by
integrating with two other products:

« Teleform. Teleform is an Optical Character Recognition (OCR) application which is used to
extract data from inbound trades to be matched with outbound trades.

« IDOL Image Server. IDOL Image Server is used to provide a confidence rating for signatures
on inbound documents matching their signatures.

The Scrittura server then uses the economic data to match the inbound trade to a previously sent
outbound trade and compares the confidence percentage of each signature to a minimum threshold
to determine whether signatures on the inbound trade can be automatically approved or require
routing for manual approval.

NOTE: Teleform and IDOL Image Server are not bundled with the Scrittura platform. Check your
license agreement for full information.

Scrittura OCR Solution

When an inbound trade is received, key economic fields can be extracted from the document along
with its full text content. In addition, signatures can be extracted and matched against a base of
approved signatures.

A confidence level is generated for each signature appearing in the inbound trade. Scrittura tests this
confidence level against a configurable minimum confidence level threshold and simulates it in
Scrittura queues and trade detail screens.

In addition, Scrittura native barcode recognition capabilities allow you to match inbound
confirmations based on barcode detection.

Each of these features can be used separately or in combination as required.

The following illustration provides a general view of the different modules and how they interact.

Scrittura (4.4.10.5) Page 332 0f 430

Administration Guide
Chapter 13: Inbound Workflow

Fax / Hmzail
Servec

The modules communicate using file system repositories, or drop boxes.

Inbound documents are delivered from a fax machine to a drop box to be retrieved by the Teleform
server. Teleform extracts signatures from the documents into TIFF files and uses OCR to extract
economic data.

The economic data and signatures extracted by Teleform are subsequently processed by a Perl
script. The Perl script formats the economic data for use by the Scrittura server, invokes IDOL Image
Server to match the signatures against a set of approved signatures, and records the confidence
percentage of the match in the document bound for the Scrittura server.

The Scrittura server then uses the economic data to match the inbound trade to a previously sent
outbound trade and compares the confidence percentage of each signature to a minimum threshold
to determine whether signatures on the inbound trade can be automatically approved or require
routing for manual approval.

The following illustration details the different drop boxes involved in the interprocess communication.

Teleform

i mp

Teleform

ata oubpw

Scrittura (4.4.10.5) Page 333 0f 430

Administration Guide
Chapter 13: Inbound Workflow

Configure the OCR Components

Before beginning the configuration, you must install the Image Server and Teleform applications.

For details on the installation process, refer to IDOL Image Server and Teleform documentation. This
section provides details on the configuration process for the following components.

« DiSH. DiSH is a component common to most products. It runs as a standalone service and
manages licenses for the different components. Installing the DiSH is required to enable IDOL
Image Server and Teleform services.

Refer to general documentation for details on the installation and configuration process.

« IDOL Image Server. Signature recognition criteria is defined and configured in IDOL Image
Server.

« Teleform. The Teleform OCR process is based on templates configured to detect key
economic fields in inbound documents. Teleform output is an XML file that aggregates all
information extracted from the document and signature information provided by IDOL Image
Server.

Configure IDOL Image Server

The IDOL Image Server configuration process gives IDOL Image Server access to known signatures
against which it will match signatures found in inbound documents.

To configure IDOL Image Server

1. Inthe imageserver.cfg file, locate the Signature Template setting under the Detect Logo
heading.

2. Set the Signature Template setting to a folder that has the capacity to hold all the approved
signatures.

3. Copy the signature images into the specified folder.
4. Restart IDOL Image Server.

5. Using a web browser on the IDOL Image Server box, query
http://localhost:18000/action=getstatus to confirm thatthe number of signatures that
you extracted into the folder appears in the <logotemplates> element of the displayed XML.

Configure Teleform

The Teleform configuration is performed using the Teleform Designer.

To fully configure Telefom, complete the following procedures.
1. Add templates to the Teleform Designer.

2. Designate the signatures for IDOL Image Server to match against those found on inbound
documents.

3. Identify templates for incoming forms.

Scrittura (4.4.10.5) Page 334 of 430

Administration Guide
Chapter 13: Inbound Workflow

4.
5.
6.

Configure the polling job.
Configure the drop box.
Configure the OCR engine settings.

Add Templates

Teleform uses templates to detect the structure of incoming documents and fields of interest.

To set up the templates to be used by Teleform during the recognition process

1.
2.

Open the Teleform Designer.

From the File menu, select Templates.
The Templates dialog displays.

Right-click the right pane and select Import.
The Import dialog displays.

Click Browse.

The Browse for Folder dialog displays.

Navigate to the folder in which your templates are stored and click OK.

Select the templates in the right pane and click Import.
From the File menu, select Template Sets.

The Template Sets dialog displays.

Right-click the right pane and select Add templates.
The Select Templates dialog displays.

Select the templates that you imported and click OK.

The selected templates are added to Teleform.

Designate Signatures for Matching

This process designates the signatures for the IDOL Image Server to match against those found on
inbound documents.

To designate the signatures for matching

1.
2.

Open the Teleform Designer.

From the File menu, select Templates.

The Templates directory displays.

Select one of the templates that you imported and click Open.

The template opens.

Scrittura (4.4.10.5)

Page 335 0f 430

Administration Guide
Chapter 13: Inbound Workflow

From the Form menu, click Auto Export Setup.

Select the appropriate line and click Modify.

From the Format list, select XML and then click Save as.

Select Export each record to a unique file in this directory and click Browse.
Select a folder for the XML OCR output and click OK.

Click Done.

© ® N o g

You return to the Auto Export Setup dialog.
10. Click OK twice to complete the process, then save your work.
11. Repeat steps 2 through 9 for each remaining template.

The signatures uses for matching are designated.

Identify Templates for Incoming Forms

This process enables Teleform to recognize that an incoming form is associated with a particular
template. That template is used to identify individual fields within the incoming form. Teleform
recognizes keywords within the form which match it to the template. This configuration is stored in an
IDJ file.

To enable Teleform to recognize an incoming form
1. Open the Teleform Designer.

2. From the Utilities menu, click Identification Drop-In Setup. The ID Drop-In Setup dialog
displays.

3. Select Full Page Keyword ID and click Import.
The Open dialog displays.
4. Selectthe IDJ file used to package the Full Page Keyword Identification rules and click OK.

5. The appropriate templates are identified for incoming forms.

Configure the Polling Job

For inbound TIFF or PDF documents, Teleform uses a drop box as the repository from which those
documents are accessed for processing. Teleform scans the inbound drop box on a polling basis to
retrieve incoming documents that have reached it.

To configure the polling job
1. Open the Teleform Designer.

2. From the Utilities menu, select Job Configuration and click New. The Job Properties dialog
displays.

Scrittura (4.4.10.5) Page 336 of 430

Administration Guide
Chapter 13: Inbound Workflow

3. Type a name for your job and from the Error Handling list box, select Automatically accept
batch.

From the Form ID/Capture tab, select Forms Only from the Expected types list.
From the Identification list, select Use recognition set.
Select the Custom drop-in ID configuration check box.

Click OK.

N o o &

The polling job is configured.

Configure the Inbound Drop Box

For inbound TIFF or PDF documents, Teleform uses a drop box as the repository from which those
documents are accessed for processing.

To configure the inbound drop box for Teleform
1. Open the Teleform Designer.
2. From the Utilities menu, select Connect Agent Setup and click Automated Batch Creation.
The Automated Batch Creation dialog displays.
Clear the Disable the creation of batches check box.
In the Source Directory text box, select a directory where the confirmation will be dropped.
In the Pattern text box, select *.*.
In the Minimum number of image files per batch field, select 1.
In the Default batch job name drop-down menu, select the name of the polling job you created.

Click OK.

© N o g b w

The inbound drop box is configured.

Configure OCR Engine Settings
The final step in configuring Teleform is to set the character recognition properties.

Teleform is configured to prevent documents from being flagged for review by setting its Confidence
Threshold value to 0 for character recognition. As the fields within inbound trades are matched by
Scrittura, mismatches are reviewed in the Scrittura workflow rather than using Teleform to flag
documents for review.

The Batch Commit setting is configured to commit the recognized fields automatically, allowing
Scrittura to report any mismatches between outbound and inbound trades rather than waiting for a
manual commitment by an operator.

Configuring the Optimized for accuracy setting configures Teleform to provide a more accurate
recognition of characters rather than one that performs faster.

Scrittura (4.4.10.5) Page 337 of 430

Administration Guide
Chapter 13: Inbound Workflow

To configure the OCR engine settings

1.
2.
3.

Set Up Communication between IDOL Image Server and Scrittura

Open the Teleform Designer.

From the Utilities menu, click Configuration.
Click the Reader tab.

Click the Recognition tab.

From the Character recognition list, select Confidence threshold.

From the Character recognition list, select 0.

From the Reader tab, click the Local tab.

From the Task list, select Batch commit.

Select the Enable check box.

From the Reader tab, click the OCR Performance tab.
Select the Optimized for accuracy option.

Click OK.

The OCR engine settings are configured.

A Perl script, SignatureID.pl, is provided to format the economic data recognized by Teleform as an
inbound message for the Scrittura server. This script also invokes the IDOL Image Server to provide
a match confidence percentage for each signature in the inbound document against a repository of
signatures from approved signers.

To run the script, you must install a Perl interpreter.

Custom parameters are included in the Perl script to match the custom environment. These
parameters are defined under the ## config settings commentline of the SignatureID.pl
script.

Parameter Description

$teleformHotFolder

$imageServerURI URI of the IDOL Image Server.

$dirToOutput

$dirToOutputimages

directed.

Directory in which the inbound images are received.

Directory to which output containing signature confidence percentages is

Directory to which output containing images of signatures and the original

document from which the signatures are extracted is directed.

$dirSigLib Directory in which the extracted signatures from inbound images reside.
@inputfiles Pattern for recognizing input file names.
$imgExt Extension used for files containing signature images.

Scrittura (4.4.10.5)

Page 338 of 430

Administration Guide
Chapter 13: Inbound Workflow

When run, the script sends the formatted Teleform output to the Scrittura drop box specified by the
$dirToOutput parameter.

Scrittura receives the corresponding inbound document from the path information specified in the

message.

Signature Matching Configuration in Scrittura

The Signature Matching service is configured with the inbound-config.xm1 file, located in the
Scrittura live configuration folder.

inbound-config.xml uses the structure described in this section.

Signature Matching

The <signature-matching> element contains the settings for the configuration of signature
matching and has the following required attributes.

Attribute

signatures-
required

match-
confidence-
required

partial-
match-queue

value-match-
queue

no-match-
queue

Description

Defines the number of signatures required for matching

Specifies the confidence percentage required for each signature

Defines the name of the queue to which inbound messages are routed when not
all of the values of variables in the inbound and outbound documents match

Defines the name of the queue to which inbound messages are routed when the
values of variables in the inbound and outbound documents match, but the
minimum confidence percentage is not met for all signatures and/or the minimum
number of signatures was not met

Defines the name of the queue to which inbound messages are routed in case no
match is found

Variable Mapping

This tag is used to specify the mapping between Teleform variables and internal Scrittura variables to
capture Teleform output within Scrittura.

Variable mapping is configured under the <signature-data-variables> element. This element
contains a collection of <signature-data- variable> elements and has no attributes. Any number
of <signature- data-variable> tags can exist within the <signature-data-variables> element.

<signature-data-variable> has the following required attributes:

Attribute

Scrittura (4.4.10.5)

Description

Page 339 0of 430

Administration Guide
Chapter 13: Inbound Workflow

ocr-name Name of the variable within the Teleform output

variable Internal name of the variable within Scrittura

Example

Three Teleform variables are mapped against Scrittura variables.

Teleform Variable Scrittura Variable
signature_1_confidence scrMatchPercentageSigl
signature_2 confidence scrMatchPercentageSig2

Buyer counterpartyName

The corresponding XML configuration is as follows.
<signature-data-variables>

<signature-data-variable ocr-name="signature_1_confidence"
variable="scrMatchPercentageSigl"/>
<signature-data-variable ocr-name="signature_2_confidence"
variable="scrMatchPercentageSig2"/>
<signature-data-variable ocr-name="Buyer"

variable="counterpartyName"/>

<signature-data-variables>

Variable Matching

Variable matching is used to specify the name of an internal Scrittura variable that must match
between the inbound and outbound documents for the inbound document to be approved
automatically.

Variable matching is configured using the <match-variables> element. This element contains a
collection of <match-variable> elements and has no attributes. Any number of <match-variable>
tags can exist within the <match-variables> element.

<match-variable> has the following required attribute.
Attribute Description

variable Internal name of a variable that must match between the inbound and outbound
documents for the inbound document to be approved automatically.

Runtime Inbound Process

This section details the steps to launch and run the inbound process with signature recognition. The
runtime process requires the following components to be running:

Scrittura (4.4.10.5) Page 340 of 430

Administration Guide
Chapter 13: Inbound Workflow

o Teleform
« IDOL Image Server

o Scrittura

Set Up a Test Configuration

In certain environments, it can be required that you run or re-run parts of the process instead of the
whole automated chain. This section details how the different modules operate separately.

Teleform Test Configuration

In the following test configuration, Teleform is not connected to a fax server. Users manually drop
inbound documents in the Teleform drop box.

1. Start Teleform Reader, Teleform Scan Station, and Teleform Verifier.

2. Drop the inbound files (in PDF or TIFF format) into the Teleform drop box as configured in
Configure the Polling Job, on page 336.

3. Inthe Teleform Designer, click Utilities and select Batch Management Dialog. The Batch
Management Dialog box displays.

Click Refresh to check the job progress.
« If Batch Commit displays in the Status column, the job is complete.
« Ifthejob is stuck at a different state, right-click the job and select Commit.

4. Check the output folder defined in Designate Signatures for Matching for the output.

IDOL Image Server Test Configuration

In the following test configuration, the IDOL Image Server signature matching is initiated and
receives the matching signature and confidence level.

1. Place the Teleform output in the folder specified by @inputfiles in SignatureID.pl.
2. RunSignatureID.pl.

The output is placed in the folder specified by $dirToOutput in SignaturelID.pl.

Scrittura Test Configuration

Scrittura consumes the output of the Teleform and IDOL Image Server processes and distributes the
output into the workflow.

To manually simulate the output consumption and distribution to the workflow

1. Place copies of the IDOL Image Server output, the TIFF files containing the signatures, and the
original inbound images in the drop box configured for Scrittura.

These documents are stored in DocManager.

Scrittura (4.4.10.5) Page 341 0of 430

Administration Guide
Chapter 13: Inbound Workflow

2. Place another copy of the output from IDOL Image Server in the message drop box configured
for Scrittura.

This is the inbound message that Scrittura processes.

General Deployment in a Production Environment

The following illustration summarizes the general deployment of the Scrittura OCR process.

/’———___-‘\-
N <

Telzform
drop box \ -
Scrittura
/ DropBox
\“—_——/ 'y

The following topics provide steps to set up the environment once the different processes have been
installed and configured.

« Start Teleform Components
« Start IDOL Image Server
« Start Scrittura

Start Teleform Components

Start the Teleform Reader, Teleform Scan Station, and Teleform Verifier. Incoming PDF and TIFF
files come from fax or email servers.

Integration with external fax or email servers is outside the scope of this document. This document
assumes that the relevant process is configured to place incoming files into the inbound Teleform
drop box and the Scrittura inbound image drop box.

Teleform Reader can run as a Windows service when using the Enterprise edition.

Start Image Server

Once you have started the Teleform processes, you must start the IDOL Image Server.

Scrittura (4.4.10.5) Page 342 of 430

Administration Guide
Chapter 13: Inbound Workflow

To start the IDOL Image Server
1. From the desktop, open the Administrative Tools menu, select the Services facility.
Start the DiSH license verification service.
2. Run imageserver.exe to start the IDOL Image Server service.
3. From Windows Administrative Tools, open the Task Scheduler.
Select Create Task and configure the Perl interpreter to run SignatureID.pl once per minute.
The path variables in SignatureID.pl should match the rest of the configuration:
o $teleformHotFolder should match the Teleform input drop box.

« @inputfiles should be configured to look for files output by Teleform in the directory specified
in Designate Signatures for Matching, on page 335.

o $dirToOutputImages should be set to the Scrittura inbound image folder.

o $dirToOutput should be set to Scrittura the inbound folder.

Start Scrittura

Start Scrittura using the typical process.

Upon receiving a new inbound confirmation, the Perl scrip SignatureID.pl sends the
corresponding documents and XML metadata to Scrittura to be processed by the inbound workflow.

Signature of Inbound Documents

TIFF or image PDF inbound documents can be signed using Scrittura's Signature Applet.
The Signature Applet is a separate JAR file that must be deployed in the application.

A link to the Signature Applet should be added to the queue view to let the user load the applet. This
is done using the scrittura:signature tag of the Scrittura tag library. For full details on this setup,
see Signature Tag, on page 175.

Signatures used by the Signature Applet should be integrated into the application EAR, under
/custom-web/customJSPs/images/sign.

Multiple signatures while a confirmation is being signed by a user are prevented. That behavior can
be overridden by setting the startup option scrittura.allowMultipleSigns to true, as follows:

-Dscrittura.allowMultipleSigns=true

In order to improve performance of the signature applet and quality of the display, the TIFF document
can be displayed on a gray scale by setting the startup option scrittura.pdfpreview.quality to
grayscale, as follows:

-Dscrittura.pdfpreview.quality=grayscale

Scrittura (4.4.10.5) Page 343 of 430

Administration Guide
Chapter 14: Electronic Messaging

Chapter 14: Electronic Messaging

This section details the electronic messaging capabilities of Scrittura that allow integrating Scrittura
with third-party platforms usch as, DTCC, ICE or SWIFT

This section contains the following topics:
« Electronic Messaging Overview, below
« DTCC Messaging, below
« ICE Messaging, on page 347
« SWIFT Messaging, on page 348
« Variable Mapping Configuration, on page 350

Electronic Messaging Overview

The electronic messaging system in Scrittura provides the ability to send reliable, verifiable, and
standardized messages between parties. The three systems currently supported by Scrittura are
DTCC, ICE, and SWIFT.

These systems are loaded and run from within the workflow and can be configured to automatically
send and handle incoming messages.

The following section explains the Scrittura side configuration for each messaging system. For more
information regarding setting up the messaging systems, refer to relevant documentation (such as
Trade Confirm, EnConnect, and so forth).

NOTE: Electronic messaging capabilities are not bundled with the Scrittura platform. Check your
license agreement for full information.

DTCC Messaging

The Scrittura Messaging Module is designed to provide a means of generating structured FpML
messages conforming to a given messaging specification, such as DTCC Credit Default Swaps, and
process updates sent by DTCC DerivSERV.

The data for each message is taken from the name/value map of the Product Instance, and then
transformed as required to conform to the messaging requirements.

The DTCC Messaging Module converts a Scrittura trade into a DTCC message, which is
subsequently sent to the DTCC DerivSERYV platform. Updates sent by DTCC DeriSERV are then
processed by the Messaging Module in order to update the trade in Scrittura. This section explains
the process involved in adding the Messaging module to Scrittura and should be read in conjunction
with the DTCC specification documents available on the DTCC website.

Scrittura (4.4.10.5) Page 344 of 430

Administration Guide
Chapter 14: Electronic Messaging

NOTE: DTCC can also be configured to run through EnConnect. For more information regarding
EnConnect setup, see the EnConnect documentation.

Install DTCC Messaging

Given that messaging specifications frequently change, the Messaging module is designed to run as
an optional component of Scrittura and therefore is not deployed as part of the main Scrittura
installation. As a result, the messaging module can be updated without having to redeploy Scrittura.

To install DTCC Messaging
1. Expand scrittura3.ear file.

Add the messaging.jar file to the /lib folder of the expanded scrittura3.ear enterprise
archive file.

Re-zip the expanded folder back into scrittura3.ear.

2. Create a TransformVariableConfig.xml file based on the details provided in Inbound Message
Configuration for DTCC Messaging, on the next page.

Copy the file to the Scrittura configuration folder.
A sample version of TransformvariableConfig.xml file is provided with the distribution.
3. Perform the Outbound Configuration.

4. Update TransformvariableConfig.xml to reflect the mappings and appropriate
transformations required to provide the selected message formats with the correct data. See
TransformVariableConfig.xml, below.

5. Add the required steps to your workflow.
6. Perform the Inbound Configuration.

7. Add the required steps to your message processing workflow as described in Inbound Message
Configuration for DTCC Messaging, on the next page.

Message Generation Configuration for DTCC Messaging

This section describes the message generation configuration files to configure DTCC messaging.

TransformVariableConfig.xml

The mapping between internal Scrittura variable names and the external Messaging variable names
used must be defined in the configuration.

This is done using the TransformvariableConfig.xml file, located under the Scrittura configuration
folder. For full details, see Variable Mapping Configuration, on page 350.

Custom Variable Transformation Classes

The DateTransformation class is the only transformation class that is provided as standard. If any
other transformations are required then custom transform classes can be created by implementing

Scrittura (4.4.10.5) Page 345 of 430

Administration Guide
Chapter 14: Electronic Messaging

the com.ipicorp.scrittura.messaging.TransformvariableFormat interface.

Message Generation Workflow

For outbound messages, two classtools need to be added to your workflow at the point where
outbound messages are to be generated. One further classtool may need to be added to customize
the data used in variable transformation, such as to swap buyer and seller fields depending on some

flag, and so forth.

ToGenerateh eszage

—1
GenerateMessage -

Before an Activityltem enters the TransformVariable class, the data required for the message type
that is to be generated must be present in the Productinstance. For details about those variables, see
the documentation for the particular message type.

—F romClientSpecificiyorkfo

ToHddingGweue——m

Once the message is generated by GenerateMessage the message is stored in DocManager in the
folder for that particular Productinstance. The filename assigned to the message is dependent on the
message type used. If a message of that type and action already exists for the Productinstance then
a new version of that message will be stored.

Inbound Message Configuration for DTCC Messaging

Responses received from the messaging service will arrive as standard through the scrittura-
tickets JMS queue, whether having been picked up from a drop box or by some other means.

Inbound Message Workflow

The following illustration is a simple example of DTCC message processing workflow and does not
represent a real workflow implementation. In this example; three additional class tools are added to
the standard message processing workflow to detect messages, perform custom message parsing,
and handle messages depending of their contents. All these class tools are present in the
com.scrittura.messaging package.

The first class tool, CheckFileType, determines whether or not a message ticket contains a response
from a recognized messaging provider.

ParseInboundMessage parses the message and extracts the data necessary to route the message
using MessageSwitchboard.

Scrittura (4.4.10.5) Page 346 of 430

Administration Guide
Chapter 14: Electronic Messaging

ToCheckFileType

:

CheckFileTypa— ew Wersian -+

[

To Product

[Create Product

ParselnboundMessag E=

TaHandler

-
4

Created

MeszageSwitchboard

ToEnd ‘;@

End

MessageSwitchboard uses the factory specified as a parameter to WebLogic (the
MessageHandlerFactory) to retrieve the appropriate MessageHandler.

Inbound Message Handlers

Once an inbound message has been received from the message service provider and identified as
such, the MessageSwitchboard class tool provides the link into client-specific code for customized
handling of such messages. To do this a factory class must be implemented along with several
message handlers.

ICE Messaging

The ICE messaging system is implemented by using EnConnect and Trade Confirm (see the Trade
Confirm documentation for more information). ICE has no configuration on the Scrittura side so the
only configuration needed is for the EnConnect server.

The ICE messaging system will send a trade request to the ICE platform with the appropriate
information from the Scrittura trade and will receive back a confirmation response from ICE. To
retrieve messages from ICE it is necessary to set up a repeating action in EnConnect to poll their
servers.

EnConnect must be added to the workflow using the GenerateMessage classtool (for more
information, review the workflow documentation). This classtool will transform the Pl being
processed into canonical XML and send it to the specified EnConnect server. EnConnect will send
back a response in a similar canonical XML format populated with the relevant information from ICE.

The server is configured using the following extended attributes.

Scrittura (4.4.10.5) Page 347 of 430

Administration Guide
Chapter 14: Electronic Messaging

Attribute Type Description

onProcessingExceptionMoveToErrorState Boolean Move to the error state when there is a
problem with the message generation.

storeErrorsinVariable Boolean Store the error state/message in the
error variable.

errorsVariableName String Name of the variable to store error
messages in.

messageFormat String The type of message (such as dtcc or
ice).

connectionFactoryName String The name of the connection factory.

jndilnitialContextFactoryName String The name of the initial jndi context
factory.

serverUrl String The URL url for the EnConnect server.

topicName String The name of the topic.

queueName String The name of the EnConnect queue.

Transacted Boolean Whether EnConnect is using

transactions or not.

SWIFT Messaging

Scrittura contains built-in classes for both SWIFT message generation and SWIFT message parsing.

The message generation is performed using a Scrittura class tool which can be added as anitemina
Scrittura workflow. This classtool calls TradeConfirm, a separate server, which performs the actual
message generation. TradeConfirm supports a subset of the SWIFT message range.

The SWIFT message parser implements the Scrittura interface for parsers which are configured in
scrittura-config.xml. If configured, every trade dropped into Scrittura will be tested to see
whether it conforms to the SWIFT message format, and if so it will be parsed and a map of variables
generated from its contents.

Both message parsing and generation make use of an external server, Trade Confirm, which
performs the actual message processing (generation and parsing). The setup of this server is
detailed in its own technical note. The remainder of this section details the configuration to perform
on Scrittura side in order to integrate SWIFT messaging to Scrittura.

General Configuration for SWIFT Messaging

SWIFT messaging is configured using the following files.
e spring-config-http.xml

e TransformVariableConfig.xml

Scrittura (4.4.10.5) Page 348 of 430

Administration Guide
Chapter 14: Electronic Messaging

e scrittura-config.xml

spring-config-http.xml

The spring-config-http.xml configuration file controls the communication with Trade Confirm
using spring remoting. This file is located under the Scrittura configuration folder.

This Spring file should contain a bean, tradeConfirmService, with the lazy-init attribute setto
true. It should also have the serviceUrl and serviceInterface properties defined.

Example

<bean id="tradeConfirmService" class="org.springframework.remoting.httpinvoker
.HttpInvokerProxyFactoryBean"

lazy-init="true">

<property name="serviceUrl"

value="http://[host]:[port]/generation.service"/>

<property name="serviceInterface"

value="com.autonomy.tradeconfirm.services

.TradeConfirmationService"/>

</bean>

Set the host and port in the serviceurl property of the tradeConfirmService bean to point to the
Trade Confirm server.

NOTE: This Spring file uses XSD validation rather than DTD validation.

TransformVariableConfig.xml

The mapping between internal Scrittura variable names and the external Messaging variable names
used must be defined in the configuration.

This is done using the TransformvariableConfig.xml file, located under the Scrittura configuration
folder. For full details, see Variable Mapping Configuration, on the next page.

Inbound Message Configuration for SWIFT Messaging

A new parser has to be added to scrittura-config.xml in order to parse incoming SWIFT messages
into usable variables in Scrittura. Add the following entry to the list of parsers in scrittura-
config.xml:

<message-type name="SWIFT"
class="com.ipicorp.scrittura.tradeconfirm.parsers
.SWIFTParser" />

This parser will send all incoming messages that match the SWIFT message schema to the Trade
Confirm server. Trade Confirm will be responsible for the actual transformation of the SWIFT

Scrittura (4.4.10.5) Page 349 of 430

Administration Guide
Chapter 14: Electronic Messaging

message into a map of Scrittura variables. The result will be sent back to the parser which will use it
to populate the Message Ticket of the item in the Message Processing workflow.

Message Generation Configuration for SWIFT Messaging
Add the following class tool wherever appropriate in the workflow configurations:
com.ipicorp.scrittura.tradeconfirm.classtools.SWIFTMessageGenerator.

This class tool requires a single extended attribute to be set, documentTitle. This attribute determines
the name of the file to be attached to the appropriate Product Instance following successful SWIFT
generation.

Note that the class tool can only be attached to a workflow where the Product Instance has already
been created.

Variable Mapping Configuration

Variable mapping is necessary for DTCC and SWIFT messaging in order to map Scrittura PI
variables to the external variables used by either messaging.jar (for DTCC) or Trade Confirm (for
SWIFT). A similar mapping is required for ICE but takes place within EnConnect, hence is outside the
scope of this document.

Variable mapping is done using the TransformvariableConfig.xml file located under the Scrittura
configuration folder. The message-transform module must be enabled in startup-config.xml.

The TransformvariableConfig.xml file consists of a series of TradeType tags each of which has a
type attribute. The type attribute must correspond to a valid Trade Confirmation Type (DTCC, ICE, or
SWIFT).

Each TradeType tag consists of a large number of Variable tags. Each Variable tag represents a
mapping between a Trade Confirm variable and a Scrittura variable. Each Variable tag may contain
the following attributes.

Attribute Required/ Description

Optional
internalVariableName Required Name of Scrittura variable.
externalVariableName Required Name of Trade Confirm variable.
dataType Required Variable type; only exists for use by transformClass
oldFormat Required Can be left blank; only exists for use by transformClass
newFormat Required Can be left blank; only exists for use by transformClass
transformClass Required Allows variable value manipulation; can be left blank.
transformationType Optional Determines whether this mapping should be performed

for message generation only, message parsing only, or
all usages of the configurations.

generation, parsing, or all (default)

Scrittura (4.4.10.5) Page 350 of 430

Administration Guide
Chapter 14: Electronic Messaging

Each transformation class should be referenced by its full package name and must be an
implementation of the TransformvariableFormat interface accessible within the Scrittura classpath.
This interface is located in the trade-confirmation-client.jar locatedinthe /1lib folder. It
contains a single method, transformvariable. This method has two inputs, an object holding all the
information read from the Variable tag’s attributes and the input value to be transformed, and returns
the transformed value as a String.

Note that this mechanism can be used to add additional values by referencing input variables.
However, in such cases the transformationType of the variable should be specified so that it only
applies to what it is intended to (generation or parsing).

The following example is a straight forward mapping with no transformation.

<Variable internalVariableName="dtcc_product_type" externalVariableName="dtcc_
productType" dataType=""

oldFormat= newFormat= transformClass=""/>

The following example defines the mapping to the dtcc_terminationTradeData variable from the
maturity_date variable. Also note that the expected format of maturity_dateis dd mmm yyyy and
that the variable is stored as a String.

All dates used in DTCC messages must be specified in the format "yyyy-MMM- dd" so the
DateTransformation class is used to convert between the two formats.

<Variable internalVariableName="maturity_date" externalVariableName="dtcc_
terminationTradeDate" dataType="String"

oldFormat="dd mmm yyyy" newFormat="yyyy-MM-dd" transformClass="DateTransformation"/>

For a list of variables required for the message type to be utilized see the DTCC documents for that
specific message type available from the DTCC website.

Scrittura (4.4.10.5) Page 351 0f 430

Administration Guide
Chapter 15: Structured Products

Chapter 15: Structured Products

This section details the handling of Structured Products in Scrittura and how to implement such
products.

This section contains the following topics:
« Structured Products Overview, below
« Confirmation Groups, below
« Structure Handling in Scrittura, on the next page
« Structured Product Configuration and Setup, on page 354
o Linking and Grouping, on page 363

o Document Generation for Structures, on page 367

Structured Products Overview

A Structured Product (or Structure) is a derivative instrument made up of a collection of trades
(Components) linked together for economic reasons.

Example

A Dual Currency Deposit (DCD) is a short-term fixed coupon investment redeemed in a foreign
currency. As such it consists of a Deposit and one or more FX Options, which cover the foreign
exchange rate risk.

Structures can have any number of components. The following are typical confirmation scenarios.
« Components are confirmed individually (1 confirmation issued per component).

« Components are aggregated into different groups within the Structure, each group being
confirmed separately (1 confirmation issued for each group).

« The Structure is confirmed as a whole (1 confirmation issued for the whole Structure).

Scrittura allows full management of Structures and to the ability to STP Structures or groups of
components with no manual intervention.

Confirmation Groups

Groups of components can be defined within a Structure for confirmation purposes. Groups (also
called Confirmation Groups) are an essential concept for the confirmation of Structures. They define
how confirmations will be generated and handled within the Structure. Groups can only be defined
within the same Structure and cannot span different Structures.

Confirmation groups can be created automatically, by applying rules, or manually. Components can
be removed from a group (ungroup action) as required.

Example:

Scrittura (4.4.10.5) Page 352 0of 430

Administration Guide
Chapter 15: Structured Products

Structure S1 has 6 components (Components 1 to 6) and two groups (G1 and G2) have been defined
within the Structure.

« Group G1 encompasses Components 1, 2, and 3.
« Group G2 encompasses Components 4 and 5.

« Component 6 does not belong to any group within the structure.

Structure 51

In this example, three confirmations are generated.
« One confirmation for Group G1.
« One confirmation for Group G2.

« Oneindividual confirmation for Component 6.

Structure Handling in Scrittura

There are a number of different scenarios in which Structures may be employed in Scrittura.

« Fully qualified Structures may be created by the upstream systems, in which case components
are pre-populated with a known Structure Reference.

« Trades are marked as components belonging to a Structure, although the Structure itself is not
defined (no Structure Reference available). These components are called Orphan
Components.

« The Structure is not created upstream and trades are not marked as components but a set of
standalone trades needs to be defined as a Structure in Scrittura.

When trades are not linked within a defined structure, it is possible to link them together in Scrittura
as a Structure (link operation). Conversely, trades belonging to a Structure can be removed from
their original Structure and injected into the workflow as standalone trades (unlink operation).

Components typically reach Scrittura as a series of separate XML messages— one per
component—or within one large XML message that encompasses all components. Once received by
Scrittura, a Scrittura Product Instance (Pl) is created for each component that gets stored in a
Component Store queue.

Subsequently, during the confirmation group creation process, a stub is created for each group that
will drive the confirmation process throughout the workflow, while the actual components within the
group remain in the Component Store.

Scrittura (4.4.10.5) Page 353 of 430

Administration Guide
Chapter 15: Structured Products

Structured Product Configuration and Setup

This section describes how to configure structured products in Scrittura.

Structured Product Configuration

The main configuration file for Structured Products is structured-product- config.xml andis
located in the Scrittura configuration folder.

The configuration file contains several sections, represented by the following nodes:
« key-values Node, below
« stub-creation-variables Node, on the next page

« status-event-mapping Node, on page 356
key-values Node

The key-values node of the Structured Products configuration file contains the key configuration
fields, defined by the following child nodes.

Child Node Required/ Description

Optional
struct- Optional Product definition short name for structured products.
proddef- Default: STRUCT
shortname
event- Optional Set Component to process events at component level or to
processing- Structure to process events at Structure level.
mode Default: Component
outbound- Optional Workflow containing the Component Store and Holding Queue.
workflow Default: standardOutbound
component- Optional Name of the queue used as the Component Store. Default:
store ComponentStore
holding- Optional Name of the Holding Queue used for event processing.
queue Default: HoldingQueue
struct-ref- Required Pl variable containing the Structure Reference ID.
variable
parser- Optional XPath of the root component nodes used to identify separate
component- components when the input message sent to Scrittura takes the
xpath form of a single XML file.

Scrittura (4.4.10.5) Page 354 of 430

Administration Guide
Chapter 15: Structured Products

Example:

<key-values>
<struct-proddef-shortname>STRUCT</struct-proddef-shortname>
<event-processing-mode>Component</event-processing-mode>
<outbound-workflow>standardOutbound</outbound-workflow>
<component-store>Component Store</component-store>
<holding-queue>HoldingQueue</holding-queue>
<struct-ref-variable>tradelLinkID</struct-ref-variable>
<parser-component-xpath>/FILE/ITEM</parser-component-xpath>

</key-values>

stub-creation-variables Node

The stub-creation-variables node of the Structured Product configuration file defines the
mapping between stub variables and component variables in order to populate the stub upon
creation. The stub-creation- variables node takes one attribute, custom-data-handler, which is
optional and, where provided, must contain the explicit name of a Java class to be used for extending
the default mapping procedure.

The child nodes of stub-creation-variables are <mapping> elements which must have an empty
body. <mapping> has the following attributes.

Attribute Required/ Description
Optional
stub-variable Required Name of the variable in the stub.
component- Required Name of the component variable where the value to populate
variable the stub is taken.
component-id Required Identifier of the component it applies to.
Example:

<stub-creation-variables
custom-data-handler="com.ipicorp.scrittura.CustombDataSample">

<mapping stub-variable="tradelLinkID" component-variable="tradelLinkID" component-
id=II1II />

<mapping stub-variable="counterpartyName" component-variable="counterpartyName"
component-id="1" />

<mapping stub-variable="tradeDate" component-variable="tradeDate" component-id="1"

/>

</stub-creation-variables>

Scrittura (4.4.10.5) Page 355 of 430

Administration Guide
Chapter 15: Structured Products

status-event-mapping Node
The <status-event-mapping> node defines the status and event mapping table.

The <status-event-mapping> node has the following attributes.

Attribute Required/ Description

Optional
event-type- Required Defines the name of the variable holding the trade event
variable type.
trade-status- Required Defines the name of the variable holding the trade
variable status.

The <status-event-mapping> node must contain <mapping> elements that have an empty body.
<mapping> has the following attributes.

Attribute Required/ Optional Description

mapping-type Required The event type. Possible values are

Held, New, Cancel, Amend.

event-type Required Value of the event type variable for this event.
status Required Value of the status variable to be set for this event.
Example:

<status-event-mapping

event-type-variable="eventType" trade-status-variable="tradeStatus">
<mapping mapping-type="Held"

eventType="" status="Held" />

<mapping mapping-type="New"

eventType="" status="Live" />

</status-event-mapping>

Product Definitions

Structured Products use a set of pre-defined or configurable variables, which must be declared in the
corresponding Product Definitions for both stubs and components.

Some variables are specific to components, others to stubs, and some common to both stubs and
components. Hence three Product Definitions are provided with the distribution.

e struct-component-vars.xml. Sub-Product Definition that contains variables required for
components, which must be included into all Product Definitions of products that can potentially

Scrittura (4.4.10.5) Page 356 of 430

Administration Guide
Chapter 15: Structured Products

be structure components (such as, EQD, FXO).

o proddef-structure.xml. Product Definition that contains variables required for structure

stubs.

NOTE: The short name in proddef-structure.xml should correspond to the one defined in

structured-product- config.xml.

o struct-common-vars.xml. Sub-Product Definition that contains variables required for both
components and stubs. This sub-Product Definition must be included into all Product
Definitions of products that can potentially be structure components and also in the stub

Product Definition.

Those Product Definitions should be placed under the \products directory in the Scrittura live folder.
As for any Product Definition, the Structure Product Definitions will be added to scrittura-
config.xml and will contain all necessary variables required by the business. The stub variables
defined in structured-product-config.xml should be declared in the structure stub Product Definition,

proddef-structure.xml.

The Product Definition for structure stubs is proddef-structure.xml, whereas components retain their
original Product Definition (such as, FXO, EQD) as if they were standalone trades, except that those
must include struct-common-vars.xml and struct-component-vars.xml.

Stub Variables

The following variables are mandatory for the structure stub and are used internally by Scrittura.

Variable Name Type

scrGroupAmendTimestamp String

scrComponentAmendTimestamp String []

scrComponentEventType String []
scrNumberOfComponents Integer
scrMasterComponentID String
scrComponentID String []

Component Variables

Description

Timestamp of an event triggered on a
confirmation group.

Array of individual timestamps for each
component.

Array containing the current event type of
components.

Number of components belonging to the group.
CommonReferenceID of the Master Component.

Array containing component CommonReferenceID
values, orders as per the component ordering.

The following variables are mandatory for each component and are used internally by Scrittura.

Variable Name Type Description

Scrittura (4.4.10.5)

Page 357 of 430

Administration Guide
Chapter 15: Structured Products

scrComponentOrder Integer Integer that holds the order of a component within the
confirmation group.

scrIsMasterComponent Boolean Set to true if this is the Master Component; set to false if
it this is not the Master Component.

scrAmendComponentNow Boolean Internal flag to trigger event processing on a component.
Do not alter.

Structured Products Common Variables

The following common variables are mandatory for each component and stub and are used internally
by Scrittura.

Variable Name Type Description

scrIsStub Boolean Set to true if the Pl is a structure stub; set to false otherwise.
scrIsComponent Boolean Setto true fortrades that are components of a structure.
scrIsGrouped Boolean Set to true if the Pl belongs to a confirmation group.

scrGroupID String Unique reference that identifies a confirmation group.

Message Parsing

Structures can reach Scrittura in many ways, depending on how they are specified in the upstream
system.

The following are examples of ways Structures reach Scrittura.

« Fully qualified structures (known type, defined list of components, and known Structure
Reference) are sent to Scrittura as a single message.

« Fully qualified structures are sent to Scrittura as multiple independent messages.

« Orphan components belonging to an unknown Structure are sent to Scrittura as multiple
independent messages, and linked together in Scrittura.

A generic XML Parser for Structures is provided in Scrittura. Define the required CSV file for the
parser and add the generic parser class to scrittura-config.xml using the following as an example:

<message-type name="StructXmL"
class="com.ipicorp.scrittura.messages
.GenericXMLStructureParser" />

Aggregated messages where all components are sent in a single XML message are cut down into
individual messages and subsequently re-injected into the workflow. The initial aggregated message
must then be discarded, as depicted in the following illustration.

Scrittura (4.4.10.5) Page 358 of 430

Administration Guide
Chapter 15: Structured Products

/’- -.\ T
. N . TN
Parse Message Multiple Component ! "
\ 4 Message > | |
. A \, ;
- - A

Start

Single Component Trash

Message

\{

Data Derivation

To Product Creation

v

For details on how to set up the parser for incoming Structured Product messages, see Structured
Product Message Parsing, on page 287.

Workflow Setup and Event Handling

This section provides an illustration as to how structured products can be integrated into the Scrittura
Message Processing and main outbound workflow, It provides an overview as to how business
events can be handled for structured products.

Event Processing Mode

Just as for standalone trades, Structures can receive events and market operations from upstream
systems which act upon Structures. Events can be handled in Scrittura at component or structure
level, configured in the event- processing-mode field in structured-product-config.xml.

Component Level

If the event processing mode is set at component level, an event is triggered in Scrittura upon
reception of an event for any component.

The component is amended in the Component Store where it sits. If this event belongs to a
confirmation group, the stub is amended as well and the event is processed from the start of the
workflow like any other event.

Event type and status for the stub are determined by the status and event mapping configuration
defined in structured-product-config.xml.

« Ifthe event types of all components are New, the stub event type will be New.
« Ifthe event types of all components are Cancel, the stub event type will be Cancel.

« Inall other scenarios, the stub event type will be Amend.

Structure Level

When the event processing mode is set at Structure level rather than component, the event is
triggered in Scrittura once all components have been amended.

The remainder of the process is identical to the Component Level mode.

Scrittura (4.4.10.5) Page 359 of 430

Administration Guide
Chapter 15: Structured Products

Message Processing Workflow and Event Handling

The following illustration depicts an example of a Message Processing workflow that handles

Structured Products.

| Multiple Companent B
| Message .

Trash

Message Parsing

Event Handling

Component can be Amended

Create New Version

A
o ==
Start
Single Component
Message
l
Data Derivation
To Product Creation
Component Creation
XOR
~ : Component
MNew Component S already exists |
-
p ' \ |.
- > ¢
-
p
L
.'/-
Created
Delete M < Versi

@ -

Message Parsing

Message Parsing is the first process in the workflow and is discussed in detail in Message Parsing,

on page 358.

Data Derivation

Data Derivation is a common message processing workflow step that consists of deriving variables
from the existing set of variables, by way of a series of rules. BLogic can be used in this capacity.

Component Creation

Component Creation creates components in Scrittura whenever the component does not already

exist.

Event Handling

The Event Handling portion of the workflow is responsible for handling business events related to a

trade.

The following illustration is a subset of the Message Processing Workflow, highlighting event

handling.

Scrittura (4.4.10.5)

Page 360 of 430

Administration Guide
Chapter 15: Structured Products

XOR

Compaonent already exisis

~ PrepareGroupAmend

_d

r . Component_ = -
: GroupAmendSyncUp | On Hold Sleeper

Component can be Amended

Prepare Group Amend

If the incoming Message Ticket relates to a component that is part of a group, the Prepare Group
Amend classtool alerts the stub that an event has been triggered and prepares the stub for
processing. Prepare Group Amend moves the stub from its position in the workflow to the Holding
Queue, if not already there, changes its status to Held, and sets required internal variables.

Classtool PrepareGroupAmend
Package com.ipicorp.scrittura.structures.messageprocessing
Attributes None

This classtool performs no action if the Message Ticket relates to a standalone trade or a component
that is not part of a confirmation group.

Group Amend Sync-Up

When the incoming Message Ticket relates to a component that is part of a group, the Group Amend
Sync-Up classtool ensures that the Group Pl has successfully reached the Holding Queue before
releasing the Message Ticket on to the Version Creation step. In the meantime, the Message Ticket
is held in the Sleeper activity, a simple Scrittura timer.

Classtool GroupAmendSyncUp
Package com.ipicorp.scrittura.structures.messageprocessing

Attributes None

Scrittura (4.4.10.5) Page 361 of 430

Administration Guide
Chapter 15: Structured Products

Outbound Workflow and Event Handling

The following illustration depicts an example of the part of an outbound workflow specific to
Structured Products.

Start

Component Event Processing

Is Componsnt:

Stub Event Processing Component Store
Inject Stub

Link
To Main Workflow
HoldingQueue Trade

‘ QOutbound Workflow Doc

Unlink
Component

Generation

Component Store

The Component Store is a manual queue where components are stored after entering the main
workflow. A transition must lead to this queue whose condition is based on the variable
scrIsComponent with a value of true (scrIsComponent=true).

Link Trade and Unlink Component Transitions

Link Trade and Unlink Component transitions exist if linking and unlinking operations are allowed.
When provided, these operations cause trades to be moved in and out of the Component Store.

The following illustration is a subset of the outbound Workflow, highlighting event handling.

Component Event Processing

!

XOR 4
= Component—ye!
Stub Event Processing — Component Store

‘ Unlink
Comnponent .

Inject Stub

HoldingQueue

Holding Queue

Scrittura (4.4.10.5) Page 362 of 430

Administration Guide
Chapter 15: Structured Products

Stubs are held in the manual Holding Queue while an event relating to them is being processed.
Event processing for Structures may encompass multiple individual events at component-level.

Component Event Processing

If event processing is at component level, the processing of the event by the Component Event
Processing classtool triggers the release of the stub from the Holding Queue. Ifit is at structure level,
release of the stub occurs when the last component event has been processed.

Classtool GroupAmendHandler
Package com.ipicorp.scrittura.structures.outbound

Attributes None

Stub Event Processing

Once released from the Holding Queue, the stub is processed by the Stub Event Processing
classtool, which finalizes and terminates the event processing. The amended stub is at the beginning
of the workflow, available for processing whenever the next event is received.

Classtool GroupAmendProcessing
Package com.ipicorp.scrittura.structures.outbound

Attributes None

Linking and Grouping

Linking and grouping, along with their counterpart operations, unlinking and ungrouping, are
essential capabilities for the handling of Structures in Scrittura.

Trade Linking

Trade linking consists of linking trades together under the same structure. Trades are linked to a
Structure by assigning them a Structure Reference. The Structure Reference is held by a Pl variable,
which can be configured in structured-product-config.xml. For a component, the Boolean
variable scrlsComponent must also be set to true.

A trade is considered as part of a Structure if its Structure Reference is not null or empty, and
standalone if its Structure Reference is empty or null. The variable scrIsComponent must always be
kept in sync with Structure Reference being populated or be empty.

The reverse operation, Trade Unlinking, involves removing the Structure Reference value from the
trade and setting the value of scrIsComponent to false.

Component Grouping

Component Grouping consists of grouping together a number of components belonging to the same
structure for confirmation purposes. A single confirmation is issued for the whole group and that
confirmation may quote data from the different components of the group.

Scrittura (4.4.10.5) Page 363 of 430

Administration Guide
Chapter 15: Structured Products

When grouping components, a Master Component is designated and components are ordered within
the group. A stub is then created for the group and injected into the workflow. The stub is a standard
PI that links the components together and drives the confirmation process in the workflow.

Components can be removed from a group, and additional components can be added to a group.

Component Ordering

An order must be assigned to a Component, to be referred to in the Product Views for document
generation purposes.

Master Component

The Master Component (or Main Component) of the group is specified during this operation as being
the first component of the ordered group. The Master Component can be used for different purposes,
such as a default display for the group or to define the Group ID. All sibling components have the
variable MasterComponentID populated with the CommonReferenceID of the Master Component. The
Master Component itself has the Boolean variable IsMasterComponent set to true.

Stub Creation

When created, other internal and user variables are populated in the stub. Internal variables are the
variables necessary for Scrittura to handle Structures and are included in struct-vars.xml. For
more information about stub variables, see Stub Variables, on page 357.

User variables are configurable variables (such as those common to all components, like
counterparty information) and can be configured in structured-product-config.xml.

User Interface

Trade linking and component grouping can be handled by the upstream system and automated in
Scrittura as part of a custom implementation. Scrittura provides the corresponding manual events
and JSP screens in its core user interface.

Structure and Group management operations are provided as panels that can be integrated directly
into Scrittura bulk screens. Configuration takes place in general-ui-config.xml, as <panel> nodes
under the <bulk-panels> section. For each relevant case, page and bulkTradeHandler attributes of
the panel node are provided.

Component Store

The Component Store screen is based on the bulk screen. All available components are displayed in
this screen and results can be filtered out using column filters or general filters. A padlock (and
tooltip) displays instead of a check box for trades already part of a confirmations group, as depicted in
the following illustration.

Scrittura (4.4.10.5) Page 364 of 430

Administration Guide

Chapter 15: Structured Products

Items 1 to 68 of 68 Page 1 - of 1

Items per page 150 =

Filters:

No Filter » &l & &

Scrittura (4.4.10.5)

" 9 Component Store Queue

o Structure ID Trade ID Counterparty Product Group Event Type Trade Date Is Grouped
o~

~I |STRUCTO01 C:FX001 United Peroleum FXO NEW 31/05/2014 true
% |STRUCTO01 C:FX002 UCCF UK FXO NEW 31/05/2014 true
[[] |sTRucTOO03 C:FX004 UCCF UK FXO NEW 31/05/2014 false
[[] |STRUCTOO3 C:FX005 UCCF UK FXO NEW 31/05/2014 false
[] |STRUCTOO3 C:FX006 UCCF UK FXO NEW 31/05/2014 false
] |STRUCTOO03 C:FX007 Bank Of London FXO0 NEW 31/05/2014 false
3 |soo1 C:5001-001 United Peroleum FXO NEW 31/05/2005 true
S |so01 C:5001-002 UCCF UK FXO NEW 31/05/2005 true
C:5001-003 United Peroleum FXO MEW 31/05/2005 true
.
S oo C:5001-004 United Peroleum FXO0 NEW 31/05/2005 true

5001 C:5001-005 United Peroleum FXO NEW 31/05/2005 true
S |s009 C:5009-003 Bank Of London FXO NEW 31/05/2005 true
[|soog C:S009-004 United Peroleum FXO0 NEW 31/05/2005 false

The base JSP for this Component Store page is /jsp/bulkBase.jsp. The required panel names are
passed as parameters. For more information, see Bulk Screen Configuration, on page 187.

Trade Linking

Trade linking is the only operation that is not available from the Component Store queue, butis
accessible from standard queues. It is available from standard queues because trades involved in
this process are standalone trades at this stage and are not components.

page linkComponentPanel.js;

processHandler com.iwov.gcm.scrittura.web.queue.bulkactions.StructLink

Trade Unlinking

Unlinking trades consists in removing a trade from a structure so that it becomes a standalone trade,
and gets re-injected into the workflow as such. This operation is available from the Component Store
screen.

page unlinkComponentPanel.jsp

processHandler com.iwov.gcm.scrittura.web.queue.bulkactions.StructUnlink
Component Grouping

The user must specify a set of components and click the Group button in the Component Store Bulk
Action panel. Optionally, a Group ID can be specified.

If the group does not exist or no group ID is provided, a new group is created. Otherwise the selected
components are added to the existing group.

Page 365 of 430

Administration Guide
Chapter 15: Structured Products

Structure Group Creation

Structure Group Summary :

Property Value
Trade Link ID S012
Group ID Not Assigned
Main Component ID Not Assigned
Number of Components 3 new
Confirmation Group Type FXGROUP =

Component List :

Reference Order Set As Comment Remove
C:5012-001 1 - FX01 ~ Main Component
C:5012-002 2 - FX02 ~
C:5012-003 3~ FX03 -

Process

Component Editing

As with the group creation operation, the group edition panel leads to the group management
console where component ordering can be re-arranged and basic group properties (such as
confirmation group type) set. Components can also be removed from the group.

page editStructurePanel.jsp

processHandler com.iwov.gcm.scrittura.web.queue.bulkactions.StructGroupEdit

The following illustration depicts the editing of a Structure group.

Scrittura (4.4.10.5) Page 366 of 430

Administration Guide
Chapter 15: Structured Products

Structure Group Edition

Structure Group Summary :

Property Value
Trade Link ID 5001
Group ID C:5001-003.GRP
Main Component ID C:5001-003
Group Status AMEND
Number of Components 5
Component 1 C:5001-003
Component 2 C:5001-001
Component 3 C:5001-002
Component 4 C:5001-004
Component 5 C:5001-005
Confirmation Group Type FXGROUP ~
DCD
|FX0
Component List :
CDs
Reference Order Set As Comment Remove
C:5001-003 1~ FX01 - Main Component
C:5001-001 2~ Fx02 -
C:5001-002 3 - Fx03 x
C:5001-004 4 - Notused in Template ~
C:5001-005 5~ Notused in Template ~

Document Generation for Structures

With the Document Generation Suite, it is possible to design templates for Structures as easily as for
standalone trades. The ability to STP Structures is a direct consequence.

This section assumes that you are already familiar with the Document Generation Suite. Refer to the
Document Generation Suite documentation for complete information.

Product View Design

Structures are confirmed per group. Once Confirmation Groups are identified, the Product Views
corresponding to those groups can be designed using the Product View Builder. A Product View is
the actual data dictionary, fully designed and maintained by template authors. It contains all the
economic data involved in template design along with the corresponding display and format
information. In the case of Structures, the Product View aggregates data from the different legs,
providing a single economic view for template design.

T e |

Stub

: Templating

Component 1) Product =
View Document
Generation

[component |

Component N

I

Scrittura (4.4.10.5) Page 367 of 430

Administration Guide
Chapter 15: Structured Products

Product Views used for structure groups must be flagged as such using the Product View Builder;
select the option “Set As Structured” on the Product View root node for this purpose.

In this mode, the top level of the Product View can contain only groups—no variables or repeating
groups. Each of the direct child nodes of the root represents a component of the structure or the stub
itself.

File Edit View About
B

T S STRUCT-PV-100720xri Properies

GEEEES . (5 Genera

[STRUCT-PV-100720,0mi =] E i
TR0 AddGroup e ey

= |
=6 qud;d elonca)l ot E Add Repeating Group Type Group
i Structured True
- Cey 1 . Set as Structured
- Coy 2 |
& Cey Pair Move Up Ctrl+Up
& Counterpaty Name Move Down Ctrl+Down
- # Courterparty Short Code
& Maturity Date = duct Group
-4 Notional 1 : duct Type
- Notional 2 3 ion Style
& Option Style i

-4 Option Type
-4 Our Party Name
& Our Party Short Name
-4 Product Group
--# Product Type -

Text
Visible label for this entry

Maturity Date =

3 l Commit Changes I [Reset]

Nodes representing components in the Product View receive an identifier from 1 to the number of
components, and the stub receives the identifier 0. The stub is optional in the Product View.

The order of components defined in the Product View corresponds to the order of the components
within their group.

Template Design and Document Generation

Template design and document generation for Structures are exactly the same as for standalone
trades.

Once the Product View is complete, it can be used to design templates in exactly the same manner
as for standalone trades, since the product View hides the complexity of component aggregation.

Similarly, the Document Generation process uses the usual set of classtools and does not require
further configuration.

Scrittura (4.4.10.5) Page 368 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Chapter 16: Scrittura Administration and
Run-Time

This section describes the administration features offered by Scrittura, within its user interface or
using its external administration tools. It also explains essential run-time operation in order to
administrate, tune and monitor the platform.

This section contains the following topics:
« Scrittura Administration Console, below
« SetConfig Process, on page 373
« Fast Access Tables, on page 382
« Trade Simulation, on page 383
« |IT Administration Tasks, on page 388
« Workflow Notifications, on page 400

« Performance Tuning, on page 402

Scrittura Administration Console

The Scrittura administration console lets you perform all Scrittura administrative tasks in an intuitive
manner while providing monitoring capabilities.

The Scrittura administration screens include the following tabs.
« General
« Database Operations
« Advanced
« Monitoring
« Check Configuration

« Service Pack

Each tab is divided into expandable sub-panels that segregate the administrative features into
functional groups.

Access the Scrittura Administration Console

The Scrittura administration console is accessible from the second-level Administration menu of the
application, or from the following URL:

http://{servername}:{port}/scrittura/controller?e=configload

Scrittura (4.4.10.5) Page 369 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

You must belong to the admins group and be logged in to the application in order to access the
administration console.

General Tab

The General tab includes all of the common tasks which may need to be run while administrating
Scrittura. These include starting and stopping both Scrittura and the workflow, reloading the three
main module's configurations and reloading all of the configurations at once, individually orin a
custom group.

Features are grouped into the following expandable panels.

Start/Stop Scrittura and Workflow

Reload Files

Start/Stop Scrittura and the Workflow Panel

Using the action buttons in the Start/Stop Scrittura and the Workflow panel on the General tab of
the administration console, you can start or pause Scrittura and Workflow or reload the configuration.

Click the Pause/Resume Scrittura button to pause or resume the Scrittura system. When
paused, items within Scrittura are limited and many may be inaccessible.

Click the Pause/Resume Workflow button to pause or resume the Workflow. When paused, the
workflow does not process any trades. This means that trades do not move through the
workflow and that any new trades are not processed until the Workflow is resumed.

Click the Reload Configuration button to completely reload of all of the Scrittura,
DocManager, and workflow configuration files (this process is also referred to as the SetConfig
process). This can be customized to a degree by altering the startup configuration in startup-
config.xml as detailed in SetConfig Process, on page 373.

Click the Reload Scrittura button to only reload all of the Scrittura configuration files and
folders into DocManager and into memory so that they are available to the application. This
includes the startup- config.xml file which contains the configuration of optional modules.

Click the Reload DocManager button to only reload all of the DocManager configuration files
and folders into DocManager and into memory so that they are available to the application.

Click the Reload Workflow button to only reload all of the Workflow files.

Reload Files Panel

The Reload Files panel on the General tab of the administration console lets you control the
reloading of individual configuration files and folders into DocManager and into memory. When these
files are reloaded the associated configuration class is reloaded and activated.

Select any combination of files and folders listed and click Reload.

TIP: If you want to reload all files and all folders, use the Reload Configuration action button in the
Start/Stop Scrittura and the Workflow panel on the General tab.

Scrittura (4.4.10.5) Page 370 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Database Operations Tab

The Database Operations tab includes the controls for database operations. You can also configure
some of the Scrittura settings that can be altered at runtime.

This tab provides the DDLs (Data Definition Language) for generating the Fast Access tables (FA
Tables), Archive tables, and Static Data Framework tables.

If the DDL is not displayed, click Show SQL. Right-click in the DDL content pane and select Copy to
capture the DDL. You can then paste the copied DDL into your SQL client and run it.

Advanced Tab

The Advanced tab contains advanced Scrittura settings and equations.

The Scrittura settings let you adjust the trade throttles and JSP auto-reload time without having to run
the SetConfig process or altering the configuration files.

Features are grouped into the following expandable panels.

« cronjobs. Provides the details of the cronjobs currently configured on the system and includes
the status and schedule of each. The cronjobs can be tasked to run immediately, enabled, or
disabled. Cronjobs are only visible if at least one cronjob has been defined.

« Trade Throttles. Adjust the trade throttles for queues.
« JSP Auto-Reload. Set the time interval, in seconds, for when the JSP auto-reload runs.

« Equations. Create, preview, and save equations that have been entered in the LaTeX format.

NOTE: Unless the relevant changes are also made to the configuration files, all settings
performed from this screen are reverted when a SetConfig process runs.

Monitoring Tab

The Monitoring tab includes all of the performance and workflow monitoring tools. These tools are
to help the administrator find bottlenecks in the workflow and help diagnose issues.

Features are grouped into the following expandable panels.
« Sessions. Provides details about the current active sessions.

« Workflow Reconciliation. Includes workflow error reconciliation features that can be used to
requeue trades when issues are detected in the workflow. The following reconciliation features
are included.

o Find Stalled Items. Find items that have been stalled for at least the defined amount of
time (in seconds). The value entered should be relevant to the current workflow activity. In
some cases of high activity, trades processing may take longer with trades not being stalled
but just waiting for other activities to finish. A value of at least 1 hour (3,600 seconds) is
generally recommended.

Scrittura (4.4.10.5) Page 371 0f 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

You can then requeue or delete the stalled item, or change the item state. Itis
recommended to first try to requeue the item. If the item does not recover after requeuing,
change the state of the item to ERROR and treat the item as a normal ERROR item. Delete
stalled items only as a last resort.

o Find Invisible Iltems. Find trades that do not have a work item associated to them, and
therefore do not appear in the workflow.

o Find Multiple Work Items. Find trades that have multiple work items associated to them.
o Find Orphan Work Items. Find work items that do not belong to any trade.

o Find Orphan Activity Items. Find activity items that do not belong to any trade.

o Find Orphan Audit Records. Find audit records that do not belong to any trade.

o Search Trades. Find trades that have reached Scrittura within the defined timeframe.

o Lookup Trades. Find a specific trade by defining its internal Scrittura identifier,
CommonReferencelD.

o Lookup Trade by Workitem ID. This feature allows searching for trades by specifying
their Workitem ID.

« Performance Monitoring. allows the administrator to run some tests to determine the
performance of the system based on several metrics that are chosen when it is run.

Check Config Tab

The Check Config tab provides configuration validation. The included tables provide notification of
configuration issues and should be consulted if any such issues arise.

There is a table for each of the main Scrittura components, and an "All" table that provides general
configuration information. Each table can be sorted by clicking the desired column header.

Each item listed in the tables is associated with one of the following severities.
« INFO. Successful result.
« WARNING. Potential, but not fatal, problem that can negatively impact performance.

« ERROR. Issues that prevent Scrittura from running properly.

To use the Check Config feature for custom configuration classes, use the checkConfiglLog ()
method of the com.ipicorp.tools.config.util.ConfigUtils class in the loadConfig() method of
the custom configuration class:

void checkConfiglog (CHECK_CONFIG_MODULE module,
String test, CHECK_CONFIG_LEVEL level,
String result)

The loadconfig() method has the following parameters.

Attribute Description

Scrittura (4.4.10.5) Page 372 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

module Name of the module or table in which the check will display.

test Name of the test being performed (displays in the first column).
level Defines the severity of the issue (INFO, WARNING, ERROR)
result Defines the output text of the result (displays in the result column).

Service Pack Tab

The Service Pack tab provides information on the current service pack level.

Service Packs being cumulative (as of the current release), this tab provides the list of fixes and
enhancements delivered for each service pack (identifier and description).

It also contains an Export button which triggers the export of this information as well as important
build and runtime information (such as, environment variables and key Scrittura configuration points)
into a Microsoft Excel file.

This file should be provided to Micro Focus Support whenever an issue is encountered and raised
with Micro Focus Support.

SetConfig Process

The Scrittura SetConfig process allows configuration files to be reloaded into the database from
disk, updating all internal processes to use the latest versions. Scrittura will load all configurations
from the database during startup.

The SetConfig process also provides the capability to include custom configuration files in the
process, or to disable some of the Scrittura core modules not required.

If any required configuration is missing or incorrect, the Administration Console will display a
message on an error screen detailing the reason, and provide a button for reloading the
configuration.

SetConfig Process Configuration

The SetConfig process is configured in the startup-config.xml configuration file, located in the
Scrittura configuration folder. It handles generic application configurations that affect application
startup. It also allows the configuration of the SetConfig process.

This configuration file is atypical in that, in addition to being reloaded upon SetConfig, it is always
reloaded from disk on startup.

The following configuration sections are included in startup-config.xml, each defined within a
node located under the root node, <startup- properties>.

« <admin-credentials> Node, on the next page
« <password-encryption> Node, on the next page
« <cluster-config> Node, on page 375

« <startup-options> Node, on page 375

Scrittura (4.4.10.5) Page 373 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

« <modules> Node, on page 376

« <custom-modules> Node, on page 377

<admin-credentials> Node

The <admin-credentials> node specifies the Scrittura runtime user credentials. This node has two
child nodes, <username> and <password>, that define the credentials of the runtime user. As with all
other Scrittura passwords, the password can be encrypted.

<password-encryption> Node
Encryption of all passwords in Scrittura configuration files is handled by the

<password-encryption> node. For more details about password encryption, see Password
Encryption, on page 379.

The <password-encryption> node has the following attribute.
Attribute Required/ Description
Optional

enabled Required Specifies whether passwords for all core Scrittura configuration files
are encrypted. Set to true to encrypt all configuration file passwords.

Set to false to not encrypt any configuration file passwords.

NOTE: docmgr-external-config.xml is a custom file and is
therefor not included in the list of core configuration files.

Itis also possible to specify custom files to undergo password encryption. This is done by adding
<file-to-encrypt> child nodes. Each <file-to- encrypt> node mustinclude the following
attributes.

Attribute Required/ Description

Optional
name or Required Use one or the other to locate the file to encrypt. The absolute-path
absolute- attribute contains the absolute path of the file, while the name
ath attribute contains the name of the file only. If the name attribute is
P used, the file is assumed to be within the Scrittura configuration
folder.
type Required Defines the file type, either XML or properties files

The <file-to-encrypt> node must contain at least one <key> child node. This <key> consists of a
pattern by which to locate the password to be encrypted. The syntax of this pattern is determined by
the value of the type attribute.

« Ifthe type attribute value is XML, the key should take the form of an XPath expression to locate
the node or attribute value to be encrypted. If the XML file in question contains a default

Scrittura (4.4.10.5) Page 374 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

namespace, a custom prefix needs to be defined using the default-namespace node, and used
within the XPath expression for any references to nodes within that namespace.

« Ifthe type attribute is properties, the <key> should be a key of the file.
Example
<password-encryption enabled="true">
<file-to-encrypt name="docmgr-external-config.xml"
type="xml">
<default-namespace>s<default-namespace/>
<key>//s:bean/s:property[@name="'pwdl']/@value</key>
<key>//s:bean/s:property[@name="'pwd2']/@value</key>
</file-to-encrypt>

</password-encryption>

<cluster-config> Node

The <cluster-config> node specifies whether the Scrittura application runs in a cluster. To deploy
Scrittura in a cluster, set its is-clustered attribute to true.

NOTE: The is-clustered attribute used to be available as the top level is-clustered attribute in
scrittura3-config.xml in versions of Scrittura up to 4.3.1 SP1.

<startup-options> Node

The <startup-options> node specifies the state of the Scrittura workflow engines upon startup
(halted or running), as well as the allocation mode for the different counters.

The <startup-options> node includes the following child nodes.

Child Node Required/ Description
Optional
workflow-halted-on- startup Required Specifies whether the workflow should be

running when Scrittura is started.

scrittura-halted-on- startup Required Specifies whether message consumption
should be running on start-up.

counters Required Specifies the settings for the different
Scrittura counters. Its attributes define how
the query should be retried when failing upon
reserving a counter range: retries is the
number of retries and retry-wait is the time
to wait between two attempts. Its child nodes
are counter nodes corresponding to the

Scrittura (4.4.10.5) Page 375 0f 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

different Scrittura counter. A counter node
takes name and block-size as attributes,
respectively for the counter name and the
range of ID to reserve at once.

For more information about counters, see
Scrittura Counters, on page 379.

<modules> Node

The <modules> node lists the core Scrittura modules. Each module can be enabled or disabled at
startup. If a module is enabled, it is expected that all required configuration files be supplied and all
necessary dependencies satisfied.

The <module> node has the following attributes.

Attribute Required/ Description

Optional
name Required Defines the unique name that identifies the module.
enabled Required Specifies whether the module should be enabled at startup.

Modules are disabled by default.

The following are valid module names.

Module Description
birt BIRT reporting
blogic Scrittura business engine, BLogic

datamapping Static Data Framework

docgen DOCX template based on document generation using the Document Generation
Suite (DGS).

economic- Economic panel framework for trade detail screens.

panels

email-dispatch Email dispatch capabilities.

message- Electronic messaging module (DTCC, ICE, or SWIFT)
transform
queues User interface configuration capabilities (bulk screens, queue-style search,

panel-based trade screens, and so on)
sequencer Scrittura sequencer
simulate-trade Trade simulation.

structured- Structured Product handling
products

Scrittura (4.4.10.5) Page 376 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Some modules, such as BLogic, may contain further configuration if they involve loading files or
folders whose storage parameters are configurable. The syntax of the optional file and folder
parameters is the same as that for the<custom-modules> Node, below.

<custom-modules> Node

Implementation-specific modules can also be defined that may involve the storage of files and folders
within DocManager. These modules are defined as <custom-module> child nodes of the <custom-
modules> node. Declaring the custom modules in startup-config.xml allows them to be included into
the SetConfig process, where they are reloaded from disk whenever this process is run.

A <custom-module> node has the same mandatory name and enabled attributes as a <module>
node, and has the following child nodes.

Child Required/ Description
Node Optional

file or Required One file child node can be specified and is used to specify the location of
folder its configuration file.

One folder child node can be specified in case a folder is associated with
the module that needs to be loaded into DocManager.

config- Optional The class attribute of this node defines the Java class to handle the

class loading of the module configuration. The class must extend the
com.ipicorp.tools.config.Config abstract class, which provides a
number of methods for retrieving the file/folder content. For more
information, see the Javadoc documentation of the class.

The <file> node has the following child nodes.

Child Node Required/ Description
Optional
absolute-path Required Use one or the other to locate the file on disk. The relative-

or path is relative to the Scrittura live folder.

relative-path

docmgr-location Optional Full destination path to the file in DocManager; this child
node is optional and defaults to /Configuration/[file name
on disk without extension].

All files to be stored under the library root must start with

Library Root/ and all rootless paths should start with /.

entity-type-path Optional Defines the entity type of all parent folders at the desired
DocManager destination; this child node is optional and
defaults to Configuration.

The < folder> node has the following child nodes.

Scrittura (4.4.10.5) Page 377 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Child Node Required/ Description
Optional
absolute-path Required Use one or the other to locate the folder on disk. The

or relative-path is relative to the Scrittura live folder.

relative-path

docmgr-location Required Full destination path to the folder in DocManager; this child
node is required and defaults to /Configuration/[file
name on disk without extension].

All folders to be stored under the library root must start with
Library Root/ and all rootless paths should start with /.

entity-type-path Required Defines the entity type of all parent folders at the desired
DocManager destination; this child node is required.

filter Optional Filters the name of the files to be included into the custom
module, in case a folder is associated.

The following options are available:

Regex: the body of the filter node may contain a case-
insensitive regular expression.

Java class: the class attribute of the filter node may
contain a Java class that handles the filter logic.

folder Optional This is a recursive element with all the same child nodes as
its parent. Nodes relative-path, docmgr- location, and
entity-type-path are all paths relative to the parent
folder.

Example 1: Custom module using a configuration file
<custom-modules>

<custom-module enabled="true" name="aCustomModule">
<file>
<relative-path>/someConfigFile.xml</relative-path>
</file>

<config-class class="some.package.SomeConfigClass"/>
</custom-module>

</custom-modules>

Example 2: Custom module using a folder
<custom-modules>

<custom-module enabled="true" name="aCustomModule">

<folder>

Scrittura (4.4.10.5) Page 378 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

<relative-path>/aModule</relative-path>
<docmgr-location> Library Root/aModule
</docmgr-location>
<entity-type-path>ankEntity</entity-type-path>
<folder>
<relative-path>/aSubModule</relative-path>
<docmgr-location>subModule</docmgr-location>
<entity-type-path>aSubEntity</entity-type-path>
</folder>

</folder>

</custom-module

</module>

To add a custom module, declare it under the <custom-modules> node. The module should also be
assigned a custom class if loading the configuration in memory upon SetConfig is required. This
class that should extend the Config class located in the com.ipicorp.tools.config package.

Custom modules can be added to the CheckConfig feature, which allows checking whether loading
the configuration with the SetConfig process was successful. To learn more about how this can be
achieved, see Check Config Tab, on page 372.

Password Encryption

All passwords can be AES-encrypted in Scrittura. Encryption is performed using the startup-
config.xml configuration file.

If encryption is enabled, as described in <password-encryption> Node, on page 374, all passwords
specified under the password-encryption node of the startup-config.xml file will be encrypted.

To encrypt the password, you must specify the encryption key as a 16 character string in a separate
file, encryption-key.ky, which is located in the Scrittura configuration folder.

Passwords should be specified in clear text before launching the application for the first time. If
password encryption is enabled, Scrittura will automatically encrypt the password using the
encryption key specified in encryption- key.ky when Scrittura is started and the configuration
reloaded.

NOTE: Upon encryption, configuration files will be amended to contain the encrypted passwords.

If required, passwords can remain unencrypted by disabling the encryption in startup-config.xml.

Scrittura Counters

Scrittura maintains counters for various reasons, including creating the primary key of its various
EJBs or for internal use. Counters are stored in the database table IPITOOLS_COUNTER. Scrittura
core counters are as follows.

Scrittura (4.4.10.5) Page 379 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Counter Description

AUDIT_ANNOTATION Audit tables primary key counters.
AUDIT_CUSTOM

AUDIT_DOCMGR

AUDIT_VARCHANGE

AUDIT_WORKFLOW

ipitools_audit

annotations SCRITTURA_ANNOTATION table primary key counter
messageTicket SCRITTURA_MSGTKTS table primary key counter
prodinst SCRITTURA_PRODINST table primary key counter
resources DOCMGR_RESOURCE table primary key counter
resourceFileText DOCMGR_RESOURCEFILETEXT table primary key counter
variableName SCRITTURA_VARNAME table primary key counter

versionctrl_resource VERSIONCTRL_RESOURCE table primary key counter

WF_RAW_STATISTICS WF_RAW_STATISTICS table primary key counter

By default, a query is made to the database every time a counter value is required. In order to
improve performance, it is recommended to reserve counters by range, particularly under high load.
This can be configured in startup-config.xml, as described in <startup-options> Node, on

page 375. The value of the range should be tuned accordingly to the volume expected by the system.

Any number of counters can also be created for custom use in the application. A helper class,
CounterTool, located in the com.ipicorp.tools.remote package is available to access the counters.
Counters can be created beforehand in the IPITOOLS_COUNTER database table; however the first
access to CounterTool will create the counter if the latter does not exist.

Server Hostname, Port, and Protocol

Scrittura makes internal HTTP/S calls to itself to run the signature applet or to check its JNDI setup,
among other reasons.

For those calls, the server hostname is set to localhost and the protocol is set to HTTP by default.
This however can be a limitation for some Scrittura implementations where, for example, the HTTP
port is not activated or localhost cannot be used.

Itis possible to specify different values for the server hostname, port, and protocol used by the
application. The recommended way to proceed is to specify those using the following startup options
in the server command line.

Startup Option Description

Scrittura (4.4.10.5) Page 380 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

scrittura.hostname Server hostname
scrittura.port Server HTTP port
scrittura.sslport Server HTTPS port

scrittura.enforcessl Boolean value that is set to true in order to use SSL.

If scrittura.hostname, scrittura.port, and scrittura.sslport are not specified as startup
options, the values for server hostname, HTTP and HTTPS ports will default to the settings made in
scrittura-config.xml (respectively host-name, local-port, and ss1l-port attributes of the root node,
<scrittura-config>).

NOTE: The application port (HTTP and/or HTTPS) must always be specified either as a startup
option or in scrittura- config.xml.

Startup Options and Custom Properties

Startup options can be defined for Scrittura and added to the startup command using the -D prefix,
concatenated to the option name (no space character).

For example, using the scrittura.hostname startup option, and to specify the Scrittura hostname as
being scrittura.bankl.com, add the following to the Scrittura startup command:

-Dscrittura.hostname=scrittura.banka.com

Startup options are system properties and can be retrieved using the System class of the J2SE
java.lang package.

Scrittura also allows the definition of custom properties, not to overload the startup command.
Custom properties are defined in the properties file custom. properties, directly located under the
live repository. Custom properties are name/value pairs and can be retrieved using the
CustomProperties class ofthe com.ipicorp.scrittura.util package.

For example, add the following line in custom.properties in order to specify the property
maxNumber0fDays with a value of 1e:

maxNumberOfDays=10

NOTE: Any change to startup or custom properties requires a server restart. Those cannot be
reloaded using the SetConfig process.

Run the SetConfig Process

The SetConfig process can be run from the Start/Stop Scrittura and the Workflow panel on the
General tab of the administration console by clicking the Reload Configuration button.

When you log in as the administrative user for the first time, a single screen displays that lets you
reload the configuration. If logged on with a non- administrative user, a warning page displays
notifying you that the configuration needs to be reloaded by the administrator and no further action is
allowed.

A similar message displays if the configuration loaded in Scrittura is incorrect or has errors.

Scrittura (4.4.10.5) Page 381 0of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

After running the SetConfig process, the FA Tables need to be created (upon initial administrative log
in) or recreated and repopulated if any change has been made to queue columns, search columns, or
product definitions. This can be performed from the Database Operations tab of the Administration
Console. For more information about FA tables, see Fast Access Tables, below

Fast Access Tables

The topics in this section provide an overview of Fast Access tables (FA tables) and provide
guidance on tuning.

Fast Access Tables Overview

Pl data being stored in a BLOB, the purpose of the FA Tables is to allow a much a more efficient
access to frequently accessed Pl variables without the need of deserializing the BLOB. Data is also
indexed in FA Tables for ease of access and reporting.

Product variables are split into the following categories:
« those that must be accessed efficiently

« those that do not need to be accessed efficiently

Variables used in role conditions, searches, queue displays, and inbound matching dictionaries are
stored in a way that minimizes both database and application processing. These variables are
referred to as search variables going forward. Other variables need not necessarily be efficiently
accessed.

All Pl variables are stored as a serialized Hashmap, itself stored in a BLOB column of the SCRITTURA_
VARS table.

All search variables can also be stored in one or more FA Tables. For maximum efficiency, all
variables should fit into a single table since queries for search variables would not need to join other
tables.

By storing all variables in a BLOB, initialization of the Pl object by the workflow is efficient—a single
database request and deserialization. By storing search variables in FA tables, all searches are fast
since all variables are in a single table (or small number of tables), requiring few joins.

FA tables span multiple columns. The primary key is the Product Instance PIID while each
subsequent column holds a variable value. The column ID is derived from the variable name.

Configure the Fast Access Tables

A top-level attribute, record-size, controls how the FA tables are defined and is configured in
scrittura-config.xml. record-size defines how many bytes can fit into a row of an FA table.
Scrittura defaults to a size that matches the stock configuration for the chosen database (1908 bytes
for Sybase, 8060 bytes for SQL Server, 65535 bytes for Oracle). If a non- standard database setup
exists (such as larger page sizes), this attribute can be used to inform Scrittura to take advantage of
the extra row size.

Scrittura uses the declared maximum size (in the VariableValidation element) of each search
variable to define the column width of that variable in the FA table. For optimal performance, it is
important to minimize the number and size of the FA tables, so take care in defining reasonable

Scrittura (4.4.10.5) Page 382 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

maximum sizes for each String or One0Of variable. Variables of type Date, Integer,
CurrencyAmount, Double, and Boolean are treated differently by the system. Column widths for
these types track the native database types. If no maximum length is specified for the variable, a
default size of 50 characters is used. This default can be controlled by the top-level fa-default-length
attribute in scrittura-config.xml.

The size for the variable names is also configurable using the top level attribute fa-table-
column-sizeinthe scrittura-config.xml file, the default value being 30 characters.

Scrittura automatically adds all variables used in roles, menus, search- columns, and some internal
variables. All other variables are stored in the BLOB but are not available for searching. If your
system needs to have more variables accessible through the FA tables, you must specify these
variables in scrittura-config.xml. To add a variable in the FA table, add an entry in the <search-
column> element as follows:

<column variable="aVariable" hidden="true"/>

FA variables must also be defined in their corresponding Product Definition. Their definition must
include their FA Table details using the FATableName and FAColumnName tags of the
<VariableDefinition> node, respectively to specify the name of the FA Table they will be added to
and the name of the column they will appear as. For more information about Product Definitions, see
Product Definitions, on page 55.

Trade Simulation

The Trade Simulation module is a development feature natively provided by the Scrittura core
platform. It is fully configurable to handle multiple types of products and can be used to perform load
tests if required.

The Trade Simulation module allows for the creation of test trades in the system, through a dedicated
user interface. This feature can be used during the development phase in order to test the various
Scrittura functionalities.

Trade Simulation is based on pre-defined sample messages whose fields can be overridden
manually from within the trade simulation user interface. Any number of sample messages can be
used; either XML files or tagfile format.

Multiple trades can be created at the same time, and creation timing tuned as needed if load tests
have to be carried out.

In case a copy of the generated tests messages is required, for example to derive market operation
messages from the original messages, they can be created offline on the filesystem as XML or tagdfile
files.

The following topics detail how to configure and use the Trade Simulation module.
« Trade Simulation Prerequisites, below
« Trade Simulation Configuration, on the next page

« Trade Simulation User Interface, on page 387

Trade Simulation Prerequisites

In order to have access to the Trade Simulation, users must belong to the developers group.

Scrittura (4.4.10.5) Page 383 0of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

NOTE: Trade Simulation is intended for the development phase only. Therefore, the developers
group should never be created on production systems.

Trade Simulation Configuration

Trade Simulation is configured in trade-simulation-config.xml, located in the Scrittura configuration
folder. Its purpose is to configure the trade simulation screen, the types of trades to simulate, and
which fields can be customized from within the user interface.

Its root node, <trade-simulation>, has the following child nodes.

Child Node Required/ Description

Optional
simulation-properties Optional General properties for trade simulation.
simulation-files Required Available trade simulations, each defined by a

simulation-file child node.

General Trade Simulation Properties

General simulation properties are defined by the <simulation- properties> node, which has the
following child nodes.

Child Node Required/ Description
Optional
number-of-trades Optional Number of trades to simulate in a single simulation.
Default: 1
feed-frequency Optional Scrittura feeding frequency, which defines the delay in
seconds between two messages, when multiple trades are
generated.

Default: 1 second

offline-folder Optional Absolute path of the folder where offline files are generated.

Default: empty

counter-char Optional Character used as a counter and therefore replaced by its
numeric value when a trade message is generated. This
character can be used in any field.

Possible values are limited to: % #

~ A

Default: %

NOTE: With the exception of counter-char, all of these child nodes hold the default values that
display on the trade simulation screen. The values can be amended when accessing that screen.

Scrittura (4.4.10.5) Page 384 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Simulation Files

There can be any number of <simulation-file> child nodes under <simulation-files>, each of
them being based on one pre-defined sample message and corresponding to one of the possible
trade simulation available in this module.

A <simulation-file> node has the following attributes.

Attribute Required/ Description

Optional

name Required Name of the base message file used for this trade simulation. Files
are located under the tagfiles directory, as defined in scrittura-
config.xml.

type Required The type of sample file used for this simulation. Possible values:
XML (XML-based files) or TAGFILE (text tagdfiles)

is-default Optional Specifies whether this simulation displays as the default choice in
the trade simulation user interface.

description Optional Short description of the trade simulation.

The child nodes of <simulation-file> define the fields to override in the base trade file from the
trade simulation user interface. The <simulation- file> node has the following child nodes.

Child Node Required/ Description
Optional
trade-id Required Defines the field to use as a trade reference. It

should typically contain a counter character in its
default value (such as, ID%) to ensure it is
incremented every time a trade is generated.

confirmation-group-type Optional Defines the field that contains the confirmation
group type used for DOCX document generation
with DGS.

template-override Optional If required, defines the field to override the

templates to use for the trade when using DGS.

field Optional Defines a field to override in the base message file.
Multiple field nodes can be defined and any field
can be overridden.

Each of the <simulation-file> child nodes—trade-id, confirmation- group-type, template-
override, field—have the following attributes.

Attribute Required/ Description
Optional

Scrittura (4.4.10.5) Page 385 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

label

ref

default

values

Example

Required

Required

Optional

Optional

Label for the field that displays in the trade simulation user interface.

Field to be overridden in the base message. For a tadfile, it is the
variable name to override. For an XML message, it is the relative
XPath expression for the tag to override.

Only the first matching node will be affected.

Default value that displays in the trade simulation user interface,
which may contain the counter character defined in the general
properties.

Comma-delimited list of possible values for this field. This is an
optional attribute and only valid for the field node.

An XML base message (FX0.xml, specified in the name attribute of the simulation-file node),
where two fields can be overridden in the original XML file (Counterparty and Entity Short Code) in
addition to Trade ID, Confirmation Group Type and Template Name fields.

<simulation-file name="FX0.xml"

type="XML"

is-default="true" description="FX0 simulation">

<trade-id label="Trade ID"

ref="tradeID" default="TRD%"/>

<confirmation-group-type label="Confirmation Group Type"

ref="confirmationGroupType" default="FX0"/>

<template-override ref="templateName"

default="MainFX0"/>

<field label="Counterparty Short Code" ref="counterparty/shortCode" default="BNKA"/>

<field label="Entity Short Code" ref="entity/shortCode" default="BNKB"/>

</simulation-file>

The corresponding XML section in FX0.xm1 would be:

<FXTrade>

<header>

<tradeID>IDOO1</tradeID>

<confirmationGroupType>FX0</confirmationGroupType>

<templateName />

</header>

Scrittura (4.4.10.5)

Page 386 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

<contact>
<counterparty>

<shortCode>UNPTR</shortCode>

</counterparty>
<entity>

<shortCode>ABCD</shortCode>

</party>
</FXTrade>
NOTE: In this example, both tag names for counterparty and entity codes are the same

(shortCode). They are differentiated in the configuration by specifying their parent node as well
(counterparty or entity).

Trade Simulation User Interface

The Trade Simulation user interface is included in the Scrittura core platform. The corresponding
MVC event called for this purpose is ‘sim’:

http://server:port/scrittura/controller?e=sim
The user interface is comprised of the following sections:

« Trade Selection. Provides options for mandatory information to be included in the simulation,
including the base trade file.

o Custom Fields. Provides options for overriding fields for the simulation.

« Trade Input. Provides options for how trades will be created and placed in the system.

When trade information and input have been specified, click Create Trades. The trades are then
created in the system or offline as specified by the Trade Input section. A confirmation screen will
display listing the trades that have just been created.

Trade Selection

The Trade Selection section lets you select which base trade simulation file to use. The additional
options available are based on the base file selected.

You must assign a Trade Reference to be used to set the CommonReferencelD of the trade in the
system once processed.

For trades using the Document Generation Suite (DGS), Confirmation Group Type (and template
name when the latter needs to be overridden) can be specified. The Confirmation Group Type option
is automatically populated with the list of groups defined in the application.

Scrittura (4.4.10.5) Page 387 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Custom Fields

The Custom Fields section displays the fields that can be overridden in the simulation. If already set,
all fields are pre-populated with the default values set in the configuration. Otherwise, a standard text
box is displayed for you to enter (or amend) the value.

Trade Input

The Trade Input section defines how trades are created and placed in the system. You can specify
the number of trades you wish to generate and the frequency as a delay in seconds that elapses
between two trade generations.

Select the Create files offline check box if you wish to create the corresponding trade simulation files
instead of placing trades directly in the system. Those trade files will be created in the specified
location.

IT Administration Tasks

This section describes the admin tools available and their use in managing the Scrittura platform.
Additional tasks that administrators perform are also explained.

Admin Utility

The Admin Utility allows Scrittura administrators to perform tasks without having to log on to the
application itself. Tasks are executed from the command line.

Using the Admin Utility

The Admin Utility main class, com.ipicorp.cmd.scrittura.AdminTool, is included in command-line. jar.

Scripts to run the Admin Utility are provided with the distribution and are located under the cmdline
folder of the distribution:

« admin.bat for Windows systems

« admin.sh for Unix systems

Using the scripts without argument, the Admin Utility is launched in interactive mode and you can
type a series of commands. The Admin Utility can also be launched to perform a specific task by
using the scripts with the corresponding command argument.

The following commands are available.

Command Description
pauseScrittura Stop message processing
resumeScrittura Start message processing

Scrittura (4.4.10.5) Page 388 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

stopWorkflow Stop the workflow engine
startWorkflow Start the workflow engine
populateFATables [numberOfThreads] Populate the FA tables

launchCronJob [jobName] Manually starts a cron job
backFillVariables [numberOfThreads] [timeout] Back-fill the database with new variable
[xmliFile] values

setConfig Launch the Set Config process
encryptPassword [password] Outputs encrypted password

help Prints list of commands

quit Closes command tool

Connectivity and runtime properties are in the remote.properties file located under the
cmdline/config directory. The connectivity and runtime properties are as follows.

Property Description
scrittura.protocol Protocol to connect to Scrittura (http:// or https://)
scrittura.host Scrittura server hostname and port number

scrittura.port

scrittura.username Scrittura user credentials
scrittura.password

database.url Database URL. For example,

jdbc:oracle:thin:@localhost:1521:XE

database.driver Database fully qualified driver class. For example,
oracle.jdbc.driver.OracleDriver

database.user Database user credentials
database.password

NOTE: Passwords in the remote.properties file can be encrypted upon Scrittura
startup/setConfig by adding them to the list of passwords to encrypt in startup-config.xml.

Backfill Variables

The variable backfill capability (backFillvariables option of the Admin Ultility) allows adding
variables to existing trades in the database. The command takes the name of an XML file as an
argument. The file contains descriptions of the variables to be backfilled:

<backfill>

Scrittura (4.4.10.5) Page 389 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

<variable product="IRS" name="IRS-var3">a-3-value</variable>
<variable product="*" name="A-Common-Var">a-value</variable>
</backfill>

A value of "*" for the product attribute means that all Pls are processed, regardless of its product type.
Any other value restricts the processing to only Pls whose ProductDefID variable matches that
value.

If the Pl already has a value for the variable in question, nothing is added. If the variable does not
exist, it is added with the value specified in the control file.

The numberOfThreads option can be used to cause the backfilling to occur on multiple threads.

DocManager Runtime Operations

The following runtime operations can be performed to make alterations to an existing DocManager
database:

« Add groups to DocManager
« Change or add indexes after DocManager has been deployed in a production environment

« Addindex columns

Add Groups to DocManager

Additional groups can be added to DocManager as needed.

To add groups to DocManager
1. Editdocmgr-config.xml, which contains a list of all groups in DocManager.
2. Add the group to the application server security realm.
3. Stop the application server.
4

Run roleGen.bat, which adds the new role list to the necessary deployment descriptors for the
DocManager APl and DocManager Web Application.

5. Start the application server.

Change or Add Indexes Once in Production

After DocManager has been deployed in a production environment, it is possible to alter the Entity
Model in order to add or change indexes.

Depending on the change, documents already in the database may need to be updated to reflect the
change.

« Adding an optional index. No database update required. The index will simply be empty for
documents already in the database.

« Adding a required index. A database update will need to be made to set a proper value for the
index on older documents.

Scrittura (4.4.10.5) Page 390 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

« Removing an index. No database update required. The index values for documents already in
the database remain in the database.

« Changing the index type. The old values will be preserved, but edits or changes to existing
documents will require that the index be corrected to the new type.

« Changing the index label. The old values will be preserved. You can run a SQL query to clear
the old values.

« Moving (swapping) indexes. You will need to run a SQL query to update the database.

Add Index Columns

If more than the default number (10) of index columns are desired, then the following process must
be adhered to.

1. Setnumber-of-indicesindocmgr-config.xml to a number bigger than 10.
2. DoasSetConfig to ensure that the changes are loaded by the system.

3. Runthe UpdateSchema event.

DocManager Migration Tool

The DocManager migration tool consists of a command line program that lets you perform document
compression. This allows documents which have already been added to the database to be
compressed, in batches, according to their extension.

Using the DocManager Migration Tool

Like the Scrittura Admin Ultility, the DocManager Migration Tool sends remote requests to Scrittura
enterprise beans and as such requires connectivity details to be configured in the properties file,
remote.properties, located under the cmdline/config directory. Properties to configure are
identical to the ones required by the Scrittura Admin Utility.

The DocManager Migration Tool main class, com.ipicorp.cmd.docmgr.MigrationTool, is included
in command- line.jar.

Scripts to run the DocManager Migration Tool are provided with the distribution and are located
under the cmdline folder of the distribution:

o docmgrMigrationTool.bat for Windows systems

o docmgrMigrationTool.sh for Unix systems

Using the scripts without argument, the DocManager Migration Tool is launched in interactive mode
and you can type a series of commands. The DocManager Migration Tool can also be launched to
perform a specific task by using the scripts with the corresponding command argument.

Compress DocManager Documents

The DocManager Migration Tool supports the compression command/argument, which allows the
compression of documents in DocManager. compression has the following syntax.

compression [extension] [compressionLevel] [numDocs] [numberOfThreads] [timeout]

Scrittura (4.4.10.5) Page 391 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

where,

« extension defines the type of document on which to run the command. Define only one
extension and do not prefix the extension with a dot (.), such as "doc". Use the wildcard
character ™" to apply compression to all documents regardless of their extension.

« compressionLevel is an integer that specifies the degree of compression. Following the
standard syntax for java zip compression, the possible values are:

o -1 for no compression
o 0-9 for various degrees of compression (9 being the highest level of compression)

« numDocs is an integer that defines the number of documents to be compressed in this batch
operation.

« numberOfThreads is an integer that defines the number of threads that will execute this
document compression.

« timeout is an integer that defines the amount of time, in seconds, to allow for execution of this
compression action.

Roles and Users in Scrittura

This section describes the use and set up of roles and users in Scrittura.

Roles Overview

Roles are defined inside J2EE applications to control a principal's access to the various
methods/resources of the application. A principal is a user or group defined inside the application
server.

Since these roles can have varying names dependent upon an environment, they are mapped at
build time.

Afile called 'roles' is placed in subdirectory top/config/ of the build directory. This is used during the
build process to give all the roles relevant permissions in the applications (Scrittura, DocManager,
Workflow) through the WEB/ EJB descriptors.

There are two types of declaration of roles inside the Scrittura roles file:
« Eachroleis listed on its own in the roles file, such as SomeRole.

Each role must be declared as a security role in aweb.xml of scrittura-web.war toenable
that role to be referenced by Scrittura.

For example, if you have global roles defined with conditions set in the scrittura-config.xml file,
these roles also need to be in the roles file to allow Scrittura to reference these roles when
checking queue filters/access.

« Eachrole is mapped, such as
SomeRole = ThisPrincipal, OrThisPrincipal.

This maps roles to specific principals. For example, the role ScritturaUsers may be mapped
to the principal ALl1ScritturaUsers, meaning that the role inside Scrittura

Scrittura (4.4.10.5) Page 392 of 430

Administration Guide

Chapter 16: Scrittura Administration and Run-Time

Standard and Custom Roles

The following are standard roles for Scrittura:

(Scritturausers) links to the principal (such as a group) Al1ScritturaUsers in the

application server.

Scrittura allows anyone in the role ScritturaUsers to log into Scrittura. Therefore, at the J2EE
container level, the check to see if a person is in the role ScritturaUsers actually means to
check if the personis in Al1ScritturaUsers, or is the principal AllScritturaUsers.

For example, in the roles file you might have:

ScritturaUsers = AllScritturaUsers admins = mradmin

where

o AllScritturaUsers is a group defined in the application server with everyone allowed to

log into Scrittura.

This is mapped because it may not be possible to create a group called ScritturaUsers (if
they are using LDAP) so the users and groups are retrieved from a directory rather than

setup directly in the application server.

o mradmin is a user who can perform actions which the admins role is configured to do inside

Scrittura, since the client might not want to have a user called 'admin’.

During the build process of Scrittura, the roles listed in the roles file are added into the XML files

as the EAR file is built.

admins
readonly
editors
publishers
reviewers
ScritturaUsers
signers_a
signers_b
developers
DMadmins
DMmanagers

DMoperators

NOTE: The role ScritturaUsers does not contain a space character between "Scrittura" and

"Users" and also contains a capital "S" and "U".

To add additional roles

Scrittura (4.4.10.5)

Page 393 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

1. Edit the roles file. Each line represents the name of a single role. For example:
admins
signers_a
signers_b
ScritturaUsers
editors
readonly
publishers
Administrators
TestUsers
Legal

NOTE: When editing the roles file, do not add a line break at the end of the file as this may
stop the application server from restarting.

Save the roles file without an extension. Based on the editor in use, a default file type (such as
txt or doc) might be automatically added to the file name. Be sure to eliminate this extension if
necessary.

2. Define the group directly in the application server console (or other appropriate location for
other J2EE containers).

This may require administrator access to the container.
3. Stop the J2EE container
4. Redeploy the Scrittura application (with the deploy command).
5. Restart the J2EE container.

Integrate with Other Authentication Systems

In some environments, the J2EE container may be configured to reference a custom authentication
domain or other internal system (usually called a realm). In such implementations, principals are
defined by this separate authentication system and correspond to internal departments generally
irrelevant to permissions in Scrittura. These definitions must be mapped to Scrittura roles.

Roles used in permissions may be mapped to multiple externally defined principals. In this case,
Scrittura might define a role as:

irs-specialist
which maps to externally defined principal groups such as:
Debt-Doc-Floor-3, Debt-Doc-Floor-4

In these cases, the roles file needs to explicitly map each Scrittura role to the externally defined
principal, using the following syntax:

role[=principal[,principal ...]]

Scrittura (4.4.10.5) Page 394 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

and then the roles file might appear as: (excerpt)
admins=Administrators
irs-specialist=Debt-Doc-Floor-3,Debt-Doc-Floor-4 .

If an external authentication system defines principal names identical to Scrittura roles, there is no
need to add mappings to the roles file in this manner.

Add Users

User definitions and their group memberships are defined directly in the J2EE container using the
application server administration console.

User Permissions

In Scrittura, user permissions are handled by an XML file, scrittura- config.xml. This file controls
the appearance and links available to users when they open an activity worklist. It also can specify
conditions where various roles are allowed to open the worklist.

For example, a queue defined as:

<queue name="First Review" activity="Scrittura.First Review">
<column display="Counterparty" variable="Party[B]"/>

<column display="Product Type" variable="ProductDefDisplay"/>
<column variable="TradeDate"/>

<column variable="Trader"/>

<column variable="TradeAmended"/>

<view name="Review" type="view" view="/review.jsp"/>

<role name="signers_a" access="write">

<condition>

TradeType='NDF' or TradeType='SWP' or TradeType='FRA'
</condition>

</role>

</queue>

sets a <condition> such that users with a signers_a role can only read and write First Review
worklist items where TradeType is NDF, SWP, or FRA.

These conditions must conform to standard Transact-SQL AND/OR syntax, using single quotes to
begin and end string values.

Example
<condition>
(TradeType="NDF' or TradeType='SWP') and Currency="USD'

</condition>

Scrittura (4.4.10.5) Page 395 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

If the condition needs to use less-than (<) or greater-than (>) symbols, the entire condition must be
enclosed with CDATA tags:

<condition>
<! [CDATA[Currency="USD' and Notional>5000000.00]]>
</condition>
If the condition is not bounded by the symbols:
<I[CDATA[.evuvvnnn.. 1]
then the comparison '<' and ">' symbols will be confused for begin and end XML tags.
Each role with permissions to use a worklist must be specifically listed as a
<role> in the <queue> definition in scrittura-config.xml.
IMPORTANT: Variables used in role conditions should be defined in commonvars.xml file and

must be given a default value in the Product Definition XML file. If this is not done, any product
instances where the value is NULL may fail to show up in queues.

Support for Intersection of Roles in the Queue and Global Role Definition

When defining the access level and condition for a role in the queue definitions in scrittura-
config.xml, itis possible to provide a list of roles for the role name (such as

name="uk ;manager;CDS"). Only users in those groups will get access. This makes the maintenance
of the role definition much easier.

Read and Write Permissions

Access to queues can be controlled in the <role> definitions in scrittura- config.xml with the
access attribute, whose possible values read or write.

For example:
<role name="roleName" access="read">

If a user is a member of more than one role, they are granted write access in an additive manner
(meaning that if they are in any role with write access, they have write access). This read|write
functionality is applied after select and on top of any user worklist SQL.

A user with read-only access does not lock the Product Instance or workitem. The user's form will
also have only a Close button. Security is checked again on Save. The edit controls are shown, but
no changes can be saved.

Permissions on Annotations

Different product types can be configured to display a default set of annotation threads. Each of these
threads may be restricted for reading and writing based on role membership. This can be configured
with the <annotations> elementin a Product Definition file or globally in scrittura-config.xml.

Scrittura (4.4.10.5) Page 396 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Determine the List of Visible Work Items

In a given queue, displayed workitems are selected as:

the UNION of all role-based conditions on the queue INTERSECT
the UNION of all global role conditions INTERSECT

any custom pseudo-sql conditions requested on the URL used to link to the activity
list (an optional configuration feature whereby links to activity lists defined in
JSP pages can impose additional query-like conditions).

From this worklist, based on the user's roles, the items that the user has write access to are
determined. This is based on the maximum rights granted by the union of role-based conditions on
the queue.

Example: Everyone Can See Their Own Workitems

A typical configuration setting would be to allow each user to read and write "their own" workitems in
queues, while members of the "admins" group can read and write all the workitems.

In the following example, the product variable "docSpecialist" has been configured to store the name
of a user. It can be assigned using beanshell scripts or BLogic rules as a document passes through
the workflow, or manually assigned by another user in an earlier queue.

<queue name="First Review" activity="Scrittura.First Review">
<column display="Counterparty" variable="Party[B]"/>

<column display="Product Type" variable="ProductDefDisplay"/>
<column variable="TradeDate"/>

<column variable="Trader"/>

<view name="Review" type="view" view="/review.jsp"/>

<role name="admins" access="write" />

<role name="" access="write">
<condition><![CDATA[docspecialist="USERID']]></condition>
</role>
</queue>
In this scenario, two roles are established:

« Anyone in the "admins" role can read and write the document.

« Anyone whose USERID matches the "docspecialist” variable can also read and write the
document.

Mutually Exclusive Queues

The built-in variables UserId, LastEditUser, and LastForwardUser can be used toimpose
mutually exclusive functionality whereby the same user cannot edit a document and push it forward
an approval queue.

Scrittura (4.4.10.5) Page 397 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

This is accomplished by adding to the role definition for an activity in the workflow definition:

<role name= access="write">
<condition>

<! [CDATA[LastForwardUser <> 'UserId']]>
</condition>

</role>

or

<role name= access="write">
<condition>

<! [CDATA[LastEditUser <> 'UserId']]»>
</condition>

</role>

Locks

Scrittura employs optimistic locking, which means that when user A opens a document, other users
attempting to open the document are notified that the original user has the trade open. The other
users can still make changes, but user A is prevented from making any further changes.

This lock can be set to expire after a certain period of time. Set the <lock- expiration-secs> value
in scrittura-config.xml to set the number of seconds before expiration.

Scrittura Logs

Log files for Scrittura are normally located in the logs subdirectory of the Scrittura home directory.
Log configuration is performed in the log. cfg file, located in the Scrittura configuration folder.

Log files record all events and errors related to Scrittura. Any error performed by the server itself,
outside the context of the application, such as a compiling JSP files, will only go to the server log or
can be checked in the WebLogic server console.

Attributes (such as maximum size, file rotation) for the log can also be set in log.cfg. For more
details regarding the log, see the ApachelLog4j documentation.

The application server also maintains its own logs inside its installation directories. The behavior of
those log files can generally be configured (such as nightly rolling or truncation of logs). For an
overview of the different capabilities, see the application server documentation.

Using standard log4j conventions, it is possible to configure multiple logs to record events of various
severities. Severity levels of interest can be set using a category filter. You can also set a maximum
size for this file as well as a maximum number of older log files to keep on file.

A common configuration is to send all messages to a single file (in the example, configured at
/opt/scrittura/logs/scrittura.log) and to additionally copy messages of a given severity level out to the
console window from which the J2EE container was started.

Scrittura (4.4.10.5) Page 398 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Mail Log Errors to Administrator

The log file can become very large if verbosity is set to debug, and it might be hard to catch errors as
they appear. The following is a log4j configuration to set up an appender that will email the
administrator upon a predefined condition. It will send an email containing the logs generated just
before the error condition too. It can also be modified to send an email to the administrator upon a
specific failure (such as a cronjob failure).

<appender name="SMTP" class="org.apache.log4j.net.SMTPAppender">
<errorHandler class="com.scrittura.ErrorHandler"/>

<param name="Threshold" value="ERROR"/>

<param name="To" value="..."/>

<param name="From" value="..."/>

<param name="Subject" value=""/>

<param name="SMTPHost" value="..."/>

<param name="BufferSize" value="100"/>

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="[%d{ABSOLUTE},%c{1}] %m\r\n"/>
</layout>

</appender>

where ErrorHandler is in the form of:

class ErrorHandler extends TriggeringEventEvaluator

{

public boolean isTriggeringEvent(LoggingEvent event)
{

if (event.level.isGreaterOrEqual(Level.WARNING))

{

return true;

}

else if (event.level.isGreaterOrEqual(Level.INFO))

{

return event.getMessage().contains("some condition");
}

return false;

}

Scrittura (4.4.10.5) Page 399 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Display Transaction Information in the Logs

A customized Log4J PatternLayout adds the application server transaction and username
information to the log. Use this class instead of org.apache. log4j.

Use PatternLayout in your log.cfg to get this additional transaction and user information in the log.
Extra info is added in square brackets before any other log information specified by the
PatternLayout pattern:

log4j.appender.R.layout=com.ipicorp.tools.log4j.TransactionPatternLayout

Add a Logging Category to Beanshell

The following BeanShell adds the contents of a message ticket to the log under a newly created
category called TagOutput. The first line in the following example would appear in a single line of
BeanShell.

Category log = Category.getInstance("TagOutput.bsh"); log.debug("Tags : + tags);

Workflow Notifications

The Scrittura workflow supports various types of notification in order to let users or administrators
know of important events in the workflow. That can be sending an email to users to let them know that
an important step has been completed for a trade (such as, its confirmation has been dispatched) or
warn the IT administrators of issues in the workflow (such as, trades in error state or stalled).

Email Notification

Scrittura supports workflow-based email notifications, where a user receives an email as a document
passes through a BeanShell or classtool activity.

Workflow Error Notification

Administrators or IT support can receive notifications of workflow errors in Scrittura by configuring the
BatchEmailErrorState class in scheduler.xml.

Example

Scan Scrittura for workflow errors every hour on the 30 and 59 minute marks for all business days
<job class="com.ipicorp.scrittura.scheduler.jobs

.BatchEmailErrorState”

name="EmailErrors" runAs="admin">

<schedule day="*"

hour="*" min="30,59"

month="*" weekday="1-5"/>

Scrittura (4.4.10.5) Page 400 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

<param key="emailFrom" value="scrittura@banka.com"/>
<param key="emailTo" value="support@banka.com"/>
<param key="emailCc" value=""/>

<param key="emailBcc" value=""/>

<param key="emailSubject"

value="Scrittura Workflow Error Report"/>

</job>

Stalled Item Email Notifications

Administrators or IT support can receive notifications when items get stalled in the Scrittura workflow
by configuring the StalledltemsNotifier class in scheduler.xml.

The StalledItemsNotifier configuration also takes an additional stalledSeconds attribute, which
represents the least number of seconds an item has to be stalled in order for it to be considered a
stalled item. Scrittura recommends at least one hour (3600 seconds) for this attribute.

However, this setting depends on the average load on the Scrittura workflow.
Example

Scan Scrittura for stalled items every hour on the 30 minute mark for all business days.
<job class="com.ipicorp.scrittura.scheduler.jobs
.StalledItemsNotifier"

name="FindStalledItems" runAs="admin">

<schedule day="*"

hour="*" min="30" month="*" weekday="1-5"/>

<param key="stalledSeconds" value="3600"/>

<param key="emailFrom" value="scrittura@banka.com"/>

<param key="emailTo" value="support@banka.com"/>

<param key="emailCc" value=""/>

<param key="emailBcc" value=""/>

<param key="emailSubject"

value="Scrittura Stalled Items Report"/>

</job>

Example Stalled Items notification email:

The following item(s) have been stalled in the Scrittura workflow for over 3600 seconds in the
following locations:

Workflow.Activity | Arrival Transition ID | Workitem ID | State | EnqueueTime

1) STALLER Class | applyAutoSigs | 603 | ready | 2014-03-10 13:38:12.0

Scrittura (4.4.10.5) Page 401 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Performance Tuning
This section defines performance tuning guidelines for Scrittura. The intention is to provide the
following benefits:

« Rapid throughput

« Rapid response time

« High scalability

« Elimination of performance related errors

The section highlights possible performance issues together with recommendations to resolve those
issues. It also explains possible scalability approaches for Scrittura.

Possible Performance Issues

When configuring Scrittura, performance issues may be encountered. This section discusses some
issues that may affect performance; possible solutions are discussed in Performance
Recommendations, on the next page.

Low Throughput

The throughput refers to the amount of work completed in a fixed time period. It can vary in different
installations and depends on the configuration of a number of key elements, such as Java Virtual
machine, Database, application server, and Operating System.

Application Slowdown Mostly During Peak Load

The system can slow down and result in an increased response time for searches, document
retrievals, or general browsing of Scrittura application. These symptoms are most prominent during
peak load hours in a typical business day.

Application Crash

The application server hangs or runs out of memory, leaving behind a hotspot error log file (such as,
hs_err_pid1884.1og) in the application installation directory of the application server.

Database Blocking

Database blocking can occur when one rogue transaction holds on to a lock on a table while other
transactions wait for the release of the lock. This can happen when a search or a report is run from
Scrittura that could result in huge ResultSet or table joins. These symptoms have been noticed
primarily on FA tables and the DOCMGR_RESOURCEACCESS table.

CacheFullException

A CacheFullException isthrown by the application server when the entity bean cache is full. This
can occur if the configured cache limits are too low or a recent increase in load on Scrittura requires
further tuning of the cache size.

Application-level caching is used by default whenever an entity bean does not specify its own cache
in the application server descriptor.

Scrittura (4.4.10.5) Page 402 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Do not try to configure the cache size/bean. It is very difficult to predict the maximum number of entity
beans that will be loaded in a given transaction since you would not know what the user is trying to
do. If the number of beans that are getting loaded into the memory exceeds the max-beans-in-
cache setting for a given transaction, the application server will throw a CacheFullException.
Configure an application level cache instead and specify a large value for max-beans-in-cache and
test your application under max load. Test with new limits and adjust accordingly. You must have
enough memory when you start the application server or you may receive an OutOfMemoryError.

OutOfMemoryError

An OutOfMemoryError is thrown by the JVM when it runs out of the memory required to allocate
space for creating new objects into the memory. These errors can also lead to hotspot errors (look for
a hotspot error log file). These errors can be found in the application server console output file as well
as in the Scrittura log file.

The most common reasons for seeing an OutOfMemory excpetion are as follows:
1. Insufficient memory settings.

2. Improperly configured JVM memory segments, namely "Young generation" "Tenured
generation" and "Permanent generation".

3. Improper choice of Garbage collection algorithm, where the pace of garbage collection cannot
keep up with memory demands even though there is ample memory available to the JVM
process.

Performance Recommendations

For effective performance, this section provides recommendations for the application server, JVM,
Application tuning, and JMS tuning. Further information can be located in the vendor documentation
for these components.

Application Server Performance Recommendations

The following performance recommendations are related to the application server.

Tune Number of Execute Threads

Care should be taken to configure the number of Execute threads. A very high number can decrease
the performance and a very low number can do the same. Remember that an excessive number of
execute threads can lead to the unnecessary consumption of resources like memory and CPU cycles
and context switching; this may adversely affect the throughput instead of increasing it.

The best way to tune this number is to monitor the throughput during maximum load and adjust the
value up until the throughput starts declining. The decline indicates that the context switching is
taking its toll. As a general guide, the default (25) is probably not enough, and there seems to be no
adverse impact on context switching up to 80 execute threads (remembering of course that in the
default configuration 33% are allocated as socket reader threads).

Additionally, optimization for user response can be accomplished by separating the application
server execute threads for user/http requests.

Scrittura (4.4.10.5) Page 403 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

Tune JDBC Connection Pool Maximum Capacity

If the JDBC connections used is always equal to maximum capacity, you should tune the number of
connections. Target is 70% to 80% utilization at normal load. Usually a request should not be seen
waiting for a connection. The InitialCapacity and MaxCapacity attributes of the
JDBCConnectionPool element allow you to set the initial and maximum number of physical database
connections that a connection pool can contain.

Itis advisable that the number of connections in the pool equal the number of concurrent client
sessions that require JDBC connections. The pool capacity is independent of the number of execute
threads in the server. There may be many more ongoing user sessions than there are execute
threads.

Number of Prepared Statements

The number of SQL Prepared Statements should be tuned in the application server console to a
value in line with the Scrittura application. A value of 200 can be a starting point, to be refined
according to the implementation.

Timeouts

To avoid unnecessary rollbacks, the JTA timeout should be tuned in the application server console to
a value in line with the Scrittura application. The JTA timeout must control the maximum duration of a
transaction, hence all other timeouts (such as, JDBC connection timeouts) should be set to a higher
value.

NOTE: The requeue-secs parameter in workflow.xml should also be set to a higher value.

A value of 180 seconds for the JTA timeout can be a starting point, to be refined according to the
implementation. A good value depends on the general time that transactions take to complete in the
application.

Set Cache Size for Entity Beans

If the EJB cache size is too small it may cause a CacheFullException inthe WebLogic Server. The
performance may get a boost just by optimizing the EJB cache limits. To monitor the various cache
parameters like "cache miss ratio" use the application server console.

If you are running many finders or home methods, or creating many beans, you may want to tune the
max-beans-in-free-pool element so that there are enough beans available for use in the pool. Use
the max-beans-in- cache element of the application server descriptor to specify the maximum
number of objects of this bean class that are allowed in memory.

Use WebLogic Server "Native 10" Performance Packs

Applies to WebLogic only

This could be considered if I/O operations like uploading a large document take long time to
complete. Performance packs use a platform-optimized, native socket multiplexer to improve server
performance.

Scrittura (4.4.10.5) Page 404 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

For example, the native socket reader multiplexer threads have their own execute queue and do not
borrow threads from the default execute queue, which frees up default execute threads to do
application work.

However, if you must use the pure-Java socket reader implementation for host machines, you can
still improve the performance of socket communication by configuring the proper number of socket
reader threads for each server instance and client machine.

Tuning Fast Access Tables

Itis possible to limit the size of the VCHAR variables in the FA tables by using the maxLength element,
thereby reducing the number of FA tables.

When possible, reducing the number of FA Tables also increases performance as smaller joins are
necessary for database queries. FA Tables should also be indexed accordingly.

JVM Performance Recommendations

The following performance recommendations are related to JVM.

Sun HotSpot Technology

Ensure that Java has its first option as -server or -client to enable Sun HotSpot technology. This
enables JIT compilation that should boost the performance noticeably.

Young Generation Size

Keep the Young generation size approximately 25% of total allocated memory size. The option -
XX:NewSize enables the configuration of Young generation. In the following example, the size 768
MB is approximately 25% of the total memory size.

Example of memory arguments:
-Xms2944M

-Xmx2944M

-XX:NewSize=768M
-XX:MaxNewSize=768M
-XX:MaxPermSize=256m
-XX:+ShowMessageBoxOnError
-XX:+PrintGCDetails
-XX:4+PrintGCTimeStamps
-XX:+PrintHeapAtGC
-Xloggc:gc.log
-XX:+UseConcMarkSweepGC

-XX:+UseParNewGC

Scrittura (4.4.10.5) Page 405 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

-XX:+CMSParallelRemarkEnabled
-XX:+UseDefaultStackSize

-Xss320K"

Permanent Size

Consider increasing the Permanent size (the memory area where Java classes are loaded) if Java
class loading/unloading is excessive. This can be diagnosed by enabling the -verbose: gc option
and monitoring the application server stdout log file, or using the -XX:+PrintGCDetails -
XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:gc.log options to enable more details and
routing all the information to gc.log file. Usually 128MB should be sufficient; anything above 256MB is
not going to make much difference.

Example of memory arguments:
-Xms2944M

-Xmx2944M

-XX:NewSize=768M
-XX:MaxNewSize=768M
-XX:MaxPermSize=256m
-XX:+ShowMessageBoxOnError
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintHeapAtGC
-Xloggc:gc.log
-XX:+UseConcMarkSweepGC
-XX:+UseParNewGC
-XX:+CMSParallelRemarkEnabled
-XX:+UseDefaultStackSize

-Xss320K"

Garbage Collection

Consider using Parallel Garbage Collection algorithms in combination with concurrent GC for
different memory segments. This would help keep the Garbage Collection in pace with memory
allocation requirements without significant JVM halts and delays.

-XX:+UseConcMarkSweepGC
-XX:+UseParNewGC

-XX:+CMSParallelRemarkEnabled

Scrittura (4.4.10.5) Page 406 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

JMS Performance Recommendations

The following performance recommendations are related to JMS.

JMS Server/Connection Factory

You may need to consider the application server JMS server/connection factory tuning. If you turn off
the Scrittura message throttling (0 seconds), the JMS runs at full speed and can often cause the
application server to run out of memory as the messages get backed up. Instead of artificially
throttling using the Scrittura configuration, it is better to configure the Connection Factory to handle
the throttling based on various parameters such as number of messages and size.

JMS Redelivery Settings

Re-queuing of messages due to Transaction rollbacks can sometimes cause issues. If messages are
being re-queued due to permanent errors, system slowdowns can occur. Redelivery settings should
be carefully thought over or reassessed to minimize this situation.

Sometimes an implementation will have a class tool which is very resource intensive. You can set
these class tools to run on a single threaded priority so that only one process can run at a time.
Another thing to consider in these cases is the redelivery limit, smaller is better. Application
programmers should also consider if retrying a transaction is the correct thing to do. For example if a
file does not exist (and never will) it is not worth rerunning the transaction.

Scalability
Scrittura can be scaled up using one or more of the following options.
« Deployment architecture

« Environment tuning

Deployment Architecture
Scrittura requires external or third-party servers to run outside the application, for example:
« Database server

« PDF Conversion server

Itis recommended to run the Scrittura application and those two servers on separate boxes in order
to guarantee their full access to the box resources (such as CPU) and maximize performances.

Similarly when Scrittura runs in a cluster, although multiple nodes can be deployed on the same box,
it may be worth deploying them on different boxes if performance issues arise.

General Environment Tuning

Consider the following general environment tuning options if you experience performance issues.

Scrittura (4.4.10.5) Page 407 of 430

Administration Guide
Chapter 16: Scrittura Administration and Run-Time

« Thread Pools. A low thread pool count can lead to clients waiting for responses; a high count
can lead to unnecessary resource utilization, high CPU utilization, and expensive context
switching. The target is for CPU utilization remains less than 70% of its full capacity at all times.

. Database Connection Pools. Targetis 70% to 80% utilization at normal load. Usually a
request should not be seen waiting for a connection.

« Database Cache Size. Make sure the prepared statement cache in the database is sufficiently
large to cache all plans.

« Garbage Collection. If the garbage collector cannot free enough memory to hold the new
object, it throws an OutOfMemoryError. Using a different GC collection scheme for Tenured
and Young Generation (preferably parallel for Young and concurrent for Tenured Generations)
should boost the performance.

« Memory Segment Size. Ensure that the Perm, Tenured, Young Generation sizes are set as
per the Recommendations.

. Database Optimization. The database size should be monitored and performance optimized
by the removal of expired PI data. Scrittura Archiving or other tools may be used for this
purpose. Performance may be improved through additional indexing.

Scrittura (4.4.10.5) Page 408 of 430

Administration Guide
Appendix A: Scrittura Data Model

Appendix A: Scrittura Data Model

This section contains the following topics:
» Data Model Overview, below
« Data Model: Administration Category, on page 411
« Data Model: Audit Category, on page 411
« Data Model: Business Model Category, on page 411
« Data Model: DocManager Category, on page 412
« Data Model: Sequencer Category, on page 413
« Data Model: Static Data Category, on page 413
« Data Model: Workflow Category, on page 413

Data Model Overview

Data are persisted in the Scrittura database for its different components and can be divided into the
following categories.

/S Workflow DocManager /! Audit A

BT |,

The following are the different data model categories.

Category Description

Business Layer The Business Layer is the core of the data model and contains all data related
to trades and their representations in the system.

DocManager The DocManager data model encompasses all data related to document
storage (resources, versions, etc).

Scrittura (4.4.10.5) Page 409 of 430

Administration Guide
Appendix A: Scrittura Data Model

Workflow The workflow tables contain all objects related to trade handling within the
Scrittura workflow (activity items, workitems, etc).

Audit Audit includes all audit records, which are used across the application by its key
components (workflow, DocManager, etc).

Administration Administration tables
Sequencer Additional tables necessary for the sequencer

Static Data Additional tables to store all static data within Scrittura. All static data tables can
be fully configured and are specific to each implementation.

The category illustrations in this section depict the tables belonging to those categories, and
highlights the relationships between them.

All illustrations use the following legend and conventions:

« Red. This field belongs to the primary key.

« Blue. This field belongs to a foreign key.

« Purple. This field belongs to both the primary key and a foreign key.

« [X. This field cannot be null.

« . Thisfield is indexed.

« Types displayed are generic (VARCHAR for strings, NUMBER for doubles, etc).

« The foreign key along with the multiplicity is directly displayed on the relationship.
Example

In excerpts from the two tables DOCMGR_RESOURCE and DOCMGR_RESOURCEACCESS, the illustrations are
interpreted as follows.

/ DOCMGR RESOURCE \ ﬁocMGR_RE SOURCEACCE SA

ID INTEGER [X] 1 1D 11 1D NUMBER [X]
RESOURCETYPE INTEGER y QCL BLOB

o DOCMGR_RESOURCE primary key is ID.

o DOCMGR_RESOURCE 1ID field cannot be null.

o DOCMGR_RESOURCE RESOURCETYPE field is indexed.

o DOCMGR_RESOURCEACCESS primary key is ID.

« AForeign Key is defined for DOCMGR_RESOURCEACCESS: 1ID.
o DOCMGR_RESOURCEACCESS 1ID field cannot be null.

« There is a one-to-many relationship between DOCMGR_RESOURCEACCESS and DOCMGR_RESOURCE.

Scrittura (4.4.10.5) Page 410 of 430

Administration Guide
Appendix A: Scrittura Data Model

NOTE: Although relationships and foreign keys are indicated on this diagram these are not
database managed and are included for illustrative purposes only.

Data Model: Administration Category

Diagrams in this section detail the data model for the Administration category.

/

IPITOOLS COUNTER

N

-

IPITOOLS_HOLIDAYS

N [

IPITOOLS_USERPREFS

i

NAME VARCHAR [X CALENDAR_YEAR VARCHAR [x] PRINCIPAL VARCHAR
QUNTER INTEGER HOLIDAY NAME VARCHAR [= SETTINGNAME VARCHAR
/ HOLIDAY DATE DATE = SETTING BLOB
HOLIDAY LOCATION VARCHAR [X
/ IPITOOLS_CONFIGFILE \ DATE_CREATED DATE =
DATE_ UPDATED DATE
FILENAME VARCHAR [X DEFAULT_LOCATION VARCHAR
QLECONTENT CLOB /
L]
Data Model: Audit Category
Diagrams in this section detail the data model for the Audit category.
AUIT_VARCIAIGE ., MIDTT_CUSTOM ™y T amn_aworarzon
AIDETID INTEGER m AUDIT ID INTEGER w AIDITID IHTEGERL m
KERIVALDATE VARCHNE MERIVALDATE VARCHAR RERIVALDATE VARCHAR
USE FHAHE VARCHAR FEERNE VARCHAR EERHAHE VARCHAR
FILTER VARCHAR AT TON VARCHAR FCTIOH VARCHAR
VAR TABLEW RHE VRRCHAR ACTTONTYRE VARCHAR FEFTIFE VARCHAR (‘m\.‘
CLOVALUE VARCHNE MTIVITY VARCHAR PIND INTECER - w af =
HEWVALIE VARCWAR PEFTIPE VARCHAR \mrm INTEGER k £l .I PIIG INTECER |
FEFTWFE VARCHAR BEFSEQ NEEER, S I‘)
FEFSEQ IR ER PIIN INTEGER » P -
PN INTEGER * | hrmrm INTEGER i 0
| TR I INTEGER ™ . ?,‘35'
i . P
S & TP TTOHSE_ NIDTT A
RUDTT WOErLON N !/f:lll'l = = —— Ii:l-\! llhl.‘nl T NTECER @ | f Hﬂ_m b
M ET I INTEGER @ ARFIVALIATE VARCHAR :ﬁ::‘:ﬂx :ﬁﬁ LH_H:"_I S T IHTEGER |
AERIVALIATE VARCHAR DSERNAHE VARCHAR 1 VARZS '1, rs |
USE RRAHE VARCHNR NCTTON VARCHAR ACTION ARLI AR e, __.'
ACTINITY VARCHAR AT IDITYPE VARCHAR ACT TGHT TP VARG AR - -
STATE VARCHAR *® FCTINITY VARCHAR :::::";—Ir' :’:E:x
FEFTYWE VARCHAR BEFTITE VARCHAR REFSEQ R
REFSEQ WERHBEER: L M | ' HEHEE]
PEID INTEGER = PLID INTEGER * 'Q“J TITEEEN *’
LTHEID INTEGER J \Imxm INTECER 7 - -
- o "y

Data Model: Business Model Category

Diagrams in this section detail the data model for the Business Model category.

Scrittura (4.4.10.5)

Page 411 of 430

Administration Guide

Appendix A: Scrittura Data Model

SCRITTURA_ PRODINST

/£ SCRITTURA_VARS A

F4 SCRITTURA MSGTKTS N

PIID INTEGER [lPIID; PIID INTEGER [E MSGID INTEGER @
ROWDATA BLOB CRID VARCHAR * MSGTXT cLoB
VERSION INTEGER * VMAP BLOB
PRODTYPE VARCHAR
/ SCRITTURA_ANNOTATION N OMSFOLOER INTEEER
DMSDOC INTEGER
ANNID inTEeER [SCRITTURA ARCHIVE 0
PIID INTEGER . UPDSEQ INTEGER f = = \
USERNAME VARCHAR 1ID—) UPDUSER VARCHAR ' orpp ' leIID INTEGER [%
TIMESTAMP DATE LOCKTIME DATE PRODTYPE VARCHAR
THREAD VARCHAR Q‘:"USER VARCHAR / CRID VARCHAR
TEXT cLoB 1] 1
l COUNTERPARTYNAME VARCHAR
> DRAFTERUSER VARCHAR
o3 E T2y .

SCRITTURA_ FA DEFAULT

SCRITTURA_FA_{CUSTOM]

SCRITTURA_FA IDX

PIID INTEGER [* PIID INTEGER [% PIID INTEGER [
PRODTYPE VARCHAR FACOLUMNNAME VARCHAR
CRID VARCHAR DRAFTERUSER VARCHAR INDEX1 INTEGER
DMSDOC INTEGER TRADER VARCHAR INDEX2 INTEGER
VERSION INTEGER . VALUE DATE DATE
LOCKUSER VARCHAR VALUE_INTEGER INTEGER

g - | VALUE_VARCHAR VARCHAR
COUNTERPARTYNAME VARCHAR | FA and Archive tables are dynamically generated. | | VALUE_NUMBER NUMBER
EVENTTYPE VARCHAR | Columns in grey are for illusiration purposes only |

Data Model: DocManager Category

Diagrams in this section detail the data model for the DocManager category.

/)

VERSIONCTRL_RESOURCE

N

/ DOCMGR_RESOURCEFILETEXT
VCTRLRES ID INTEGER
RESID INTEGER o INTEGER
DAV_COMMENT VARCHAR VERSIOK INTEGER
DAV_SUMMARY VARCHAR / SCRITTURA_PRODINST N SERIAL INTEGER
DAY_CREATOR_NAME VARCHAR FILETEXT CLoB
DAY_CHECKED_IN VARCHAR BPIID INTEGER
DAV_AUTO_VERSION VARCHAR DMSDOC INTEGER "
DAY_CHECKED_OUT VABRCHAR DMSFOLDER INTEGER / DOCMGR_RESOURCEFILEPART \
DAV_PREDECESSOR INTEGER .-
DAV_SUCCES50R INTEGER D INTEGER *
DAY_VERSION NAME VARCHAR * VERSION INTEGER *
CHECKOUT_DATE DATE BRRT INTEGER &
CHECKIN_DATE DATE DATAFILE BLOB =
CHECKOUT_BY VARCHAR 8
L J * A
/ DOCMGR_RESOURCEFIELDS \ i
S* .
& D INTEGER 8
w FIELDS BLOB 8w
1’ DMSDOC .L1 B
/ DOCMGR_RESOURCE \ 1 ’
— DMSFOLDER H
L 1 1
D INTEGER
RESOURCETYPE INTEGER P DOCMGR_RESOURCEFILE \
ENTITYTYPE VARCHAR * 1D
PARENTID INTEGER * |1 *| o INTECER
NUMVERSIONS INTEGER VERSTON INTECER
CREATEDBY VARCHAR / DOCMGR_RESOURCERCCES S \ DOCEXTENSION VARCHAR
CREATEDON DATE D CREATEDON DATE
MODIFIEDON DATE 1 1| ID HUMBER CREATEDBY VARCHAR
LOCKEDBY VARCHAR ACL BLOB MOD IF IEDON DATE
LOCKEDON DATE MODIF IEDBY VARCHAR
VISIBLE IHTECER *_| COMPRESSIONLEVEL INTEGER
LOG ICALE ATH VARCHAR FILESIZE INTECER
CMSRESOURCELOCATOR VARCHAR PARENTID FSLOCATION VARCHAR
PUBLISHEDVERSION INTEGER DMSRESOURCELOCATOR VARCHAR
THDEXD VARCHAR * st::ns:on:.ocmon VARCHAR
QDEx[l—S] VARCHAR /] j
Scrittura (4.4.10.5) Page 412 of 430

Administration Guide
Appendix A: Scrittura Data Model

Data Model: Sequencer Category

Diagrams in this section detail the data model for the Sequence category.

/ itemseq_queue N

/ itemseq_state N

section id VARCHARZ [X] record id NUMEBER [E5]
item type VARCHARZ2 [X] . . section id VARCHAR? [X]
- 1 section id x| . —
seq id VARCHARZ [X] item tvpe item type VARCHARZ [X]
created on Date [E5] ceq f§ seq_id VARCHAR? [X]
processing NUMBER X = item seq num NUMBER [
last_item seq num NUMBER = queued_on Date X1
tst_item_proces sed_on Date @ @:kitem_id NUMBER X1

L B X

\

Data Model: Static Data Category

Static Data tables are dynamic tables whose content is fully configurable based on your needs. Once
the system is deployed, the DDL (Data Definition Language) is automatically generated allowing the
creation of the Static Data tables in the Scrittura database.

Data Model: Workflow Category

Diagrams in this section detail the data model for the Workflow category.

K WE_QMEMBERS \ / WE_ACTIVITYITEM \ / WE_ACTIVITYSTATE \
WFPID VARCHAR [E WFPID VARCHAR [E * WEPID VARCHAR [E %
ACTIVITYID VARCHAR [& ACTIVITYID VARCHAR [@ * ACTIVITYID VARCHAR [E *
PIID INTEGER [& * WORKITEMID INTEGER [E * STATE VARCHAR [E
WORKITEMID VARCHAR [E ARRTRANID VARCHAR [E CURRENTCOUNT INTEGER
ARRTRANID VARCHAR [& STATE VARCHAR TOTALCOUNT INTEGER
ENQUEUETIME DATE ENQUEUETIME DATE DAILYCOUNT INTEGER
LOCKTIME DATE HOURLYCOUNT INTEGER
| * LOCKUSER VARCHAR LASTDAILYCOUNT INTEGER
o @THOURLYCOUNT INTEGER /
o D*
! =
SCRITTURA_PRODINST E / WF_ACTIVITYUSERAUDIT \
PIID INTEGER 0.1 % WEPID VARCHAR [*
= ACTIVITYID VARCHAR [*
’5’@44 L1 WFUSER VARCHAR [E
Or@o / WF_WORKITEM STATE VARCHAR [
1 TOTALCOUNT INTEGER
o WORKITEMID VARCHAR [E DAILYCOUNT INTEGER
0.1 PROPERTIES BLOB HOURLYCOUNT INTEGER
MSGID IRTEGER REMOTEID-. REMOTETYPE VARCHAR * LASTDAILYCOUNT INTEGER
REMOTEID INTEGER *

Scrittura (4.4.10.5)

QSTHOURLYCOUHT INTEGER

N

Page 413 of 430

Administration Guide
Appendix B :Sample Trade Detail and Bulk Screen Panels

Appendix B :Sample Trade Detail and Bulk
Screen Panels

This section provides details and examples on how to write custom panels and process handlers for
trade detail screens and bulk screens.

This section contains the following topics:
o Bulk Panel Sample, below
« Bulk Trade Handler Sample, on the next page
« Trade Detail Panel Sample, on page 417
« Single Trade Handler Sample, on page 418

Bulk Panel Sample

A bulk panel is technically a fragment of JSP that will be included into a table, itself included into a
form. Hence it just contains the table rows you wish to display in screen.

Example

<%

String pkey = (String)request.getAttribute("pkey");
%>

<tr>

<td colspan="2" height="10" />

</tr>

<tr>

<td>Unlink components from Structure:</td>

<td>

<input type="hidden"

name="SaveAndClose" value="Save & Fwd" />

<input type="button"

value="Unlink" onclick="validateSubmit(this.form, '<%=pkey%>"',

'Save & Fwd');"

</td>

Scrittura (4.4.10.5) Page 414 of 430

Administration Guide
Appendix B :Sample Trade Detail and Bulk Screen Panels

</tr>

class="btn" onmouseover="this.className="'btn
btnhov' "onmouseout="this.className="btn'" />

<tr>
<td colspan="2" height="10" />
</tr>

To submit the form (and trigger the execution of the panel’s process handler), add a control of type
button that calls the javascript validateSubmit() with the following parameters:

o Current form
« Request’s pKey attribute
« Action (e.g. ‘Save & Fwd’, ‘Save & Close’)

Bulk Trade Handler Sample

Bulk Trade Handlers extend the class BaseBulkTradeHandler located in the package
com.iwov.gcm.scrittura.web.queue.

BaseBulkTradeHandler’s APl is as follows. Methods validateBulk(), executeBulkProcessing(),
and executeTradeSpecificProcessing() can be overridden.

public static final int STOP_PROCESSING = O ;

public static final int CONTINUE_PROCESSING = 1 ;

/**

* Process handler validation to validate the bulk selection
* against the intended action.

* No validation is performed by default; override this method
* to implement custom validation.

* Note this method should not amend trade data.

*

* @param itemIds Array of ActivityItemID to process

* @param sc Servlet ccontext

* @param request HTTP request

* @param response HTTP response

* @return true if validation is successful, false otherwise

Scrittura (4.4.10.5) Page 415 of 430

Administration Guide

Appendix B :Sample Trade Detail and Bulk Screen Panels

*/

public boolean validateBulk(String[] itemIds,

ServletContext sc, HttpServletRequest request, HttpServletResponse response)

{

return true;

}

/**

* Execute specific or additional bulk processing for a
* certain event

*

* @param itemIds Array of ActivityItemID to process

* @param sc Servlet ccontext

* @param request HTTP request

* @param response HTTP response

* @return STOP_PROCESSING or CONTINUE_PROCESSING

* depending whether the global event processing must stop
* or continue after this

*/

public int executeBulkProcessing(String[] itemIds,

ServletContext sc, HttpServletRequest request, HttpServletResponse response)

throws Exception

{

return CONTINUE_PROCESSING;

YAk

}

* Execute trade-specific processing for a certain event
*

* @param itemId Trade ActivityItemID to process

* @param sc Servlet ccontext

Scrittura (4.4.10.5)

Page 416 of 430

Administration Guide
Appendix B :Sample Trade Detail and Bulk Screen Panels

* @param request HTTP request
* @param response HTTP response
*
*/

public void executeTradeSpecificProcessing
(String itemId, ServletContext sc, HttpServletRequest request)
throws Exception

{

return;

}

Trade Detail Panel Sample

A trade detail panel is technically a fragment of JSP that will be included into the global trade detail
JSP. Unlike bulk panels, trade detail panels contain their own layout and form (if required).

Example

<%@ taglib uri="scrittura3.tld" prefix="scrittura"%>
<table width="100%" border=0 cellpadding=0 cellspacing=0>
<table width="100%" cellpadding="0" cellspacing="0">

<!-- Panel header -->

<tr class="tabletopo">

<td height="20px" class="topBorder">

<img src="images/maximise.gif" id="maximiseButtondPanel" style="border-width: Opx;
vertical-align: middle; display: none" />

<img src="images/minimise.gif" id="minimiseButtondPanel" style="border-width: Opx;
vertical-align: middle; display: inline" />

 Panel Header

</td>

</tr>

Scrittura (4.4.10.5) Page 417 of 430

Administration Guide
Appendix B :Sample Trade Detail and Bulk Screen Panels

<!-- Panel content -->

<tr id="dPanel" name="dPanel" class="label-text">
<td>Panel content</td>

</tr>

</table>

</table>

Single Trade Handler Sample
Single Trade Handlers extend the class BaseSingleTradeHandler located in the package
com.iwov.gcm.scrittura.web.queue.

BaseSingleTradeHandler’s APIlis as follows, and the executeSingleTradeProcessing() method
can be overridden.

/¥
* Execute specific or additional processing for a certain
* event applying to a single trade

*

* @param ins The Product Instance

* @param map PI variable map

* @param queueRoute Queue route variable value

* @param request HTTP request

*/

public void executeSingleTradeProcessing
(ProductInstanceLocal ins, HashMap map,

String queueRoute, HttpServletRequest request)
throws Exception

{

return ;

}

Scrittura (4.4.10.5) Page 418 of 430

Administration Guide
Appendix C: Configuration Files

Appendix C: Configuration Files

This section contains the following topics:

« Sample: docmgr-config.xml, below

o Sample: entity-types.xml, on the next page

Sample: docmgr-config.xml

<docmgr-config use-entity-types="true"

security-factory="com.ipicorp.docmgr.

.PerResourceAclFactory”

disable-security="false" superuser="system" database="mssql">

<field-type type-name="String"
validation-class="com.ipicorp.docmgr.
.Stringvalidator" />

<field-type type-name="Integer"
validation-class="com.ipicorp.docmgr.
.Integervalidator" />

<field-type type-name="SSN"
validation-class="com.ipicorp.docmgr.
.SSNValidator" />

<field-type type-name="Zipcode"
validation-class="com.ipicorp.docmgr.
.ZipcodeValidator" />

<field-type type-name="Year"
validation-class="com.ipicorp.docmgr.
.YearValidator" />

<field-type type-name="Quarter"
validation-class="com.ipicorp.docmgr.
.Quartervalidator" />

<field-type type-name="Date"

validation-class="com.ipicorp.docmgr.

Scrittura (4.4.10.5)

security

validation

validation

validation

validation

validation

validation

validation

Page 419 of 430

Administration Guide
Appendix C: Configuration Files

.Datevalidator" />
<import-dir dir="C:\import\monitor_queue_1" use-xml-metafiles="true"
sleep-seconds="10" />

<import-dir dir="C:\import\monitor_queue_2" use-xml-metafiles="false" sleep-
seconds="10" />

<configured-roles>
<role>readonly</role>
<role>editors</role>
<role>publishers</role>
<role>admins</role>
</configured-roles>

<fax>
<fax-enabled>true</fax-enabled>
<fax-class> com.ipicorp.docmgr.banka.BankADocmgrFaxer
</fax-class>

</fax>

</docmgr-config>

Sample: entity-types.xml

<dms-entity-model name="TestModel">
<entity-acl>

<read-list>
<group>admins</group>
<group>publishers</group>
<group>editors</group>
<group>readonly</group>
</read-1list>

<write-list>
<group>admins</group>
<group>publishers</group>
</write-1list>
<write-doc-list>

<group>admins</group>

Scrittura (4.4.10.5) Page 420 of 430

Administration Guide
Appendix C: Configuration Files

<group>publishers</group>

<group>editors</group>

</write-doc-list>

<create-list>

<group>admins</group>

<group>publishers</group>

</create-list>

<del-list>

<group>admins</group>

<group>publishers</group>

</del-list>

<security-list>

<group>admins</group>

</security-list>

</entity-acl>

<entity-type name="Counterparty"

title-index="1" doc-title-index="9"
inherit-parent="false">

<index idx="@" label="Title" index-type="folder"
required="true" type="String"/>

<index idx="1" label="Counterparty" index-type="folder"
required="true" type="String"/>

<index idx="8" label="Doc Date" index-type="document"
required="false" type="Date"/>

<index idx="9" label="DocType" index-type="document"
required="true" type="String"/>

<field idx="0" label="Address" field-type="folder"
required="false" type="String"/>

<field idx="1" label="Phone" field-type="folder"
required="false" type="String"/>

<field idx="2" label="Contact" field-type="folder"
required="false" type="String"/>

<entity-acl>

Scrittura (4.4.10.5) Page 421 of 430

Administration Guide
Appendix C: Configuration Files

<read-list>

<group>admins</group>
<group>publishers</group>
<group>editors</group>
<group>readonly</group>

</read-1list>

<write-list>

<group>admins</group>

</write-1list>

<write-doc-list>

<group>admins</group>

</write-doc-list>

<create-list>

<group>admins</group>

</create-list>

<del-list>

<group>publishers</group>

</del-list>

<security-list>

<group>admins</group>

</security-list>

</entity-acl>

<entity-type name="Product" title-index="2"
doc-title-index="9" inherit-parent="true">
<index idx="0" label="Title" index-type="folder"

required="true" type="String"/>

<entity-type name="Deal"

title-index="3" doc-title-index="9"
inherit-parent="true">

<index idx="@" label="Title" index-type="folder"

required="true" type="String" />

Scrittura (4.4.10.5) Page 422 of 430

Administration Guide
Appendix C: Configuration Files

</entity-type>
</entity-acl>
</entity-type>

</dms-entity-model>

Scrittura (4.4.10.5) Page 423 of 430

Administration Guide
Appendix D: DocManager Wrapper AP

Appendix D: DocManager Wrapper API

This section exposes the benefits of the DocManager wrapper API as opposed to the DocManager
EJB API.

This section contains the following topics:
o DocManager Wrapper APl Overview, below
« Using the Wrapper API, on the next page
« Code Samples Using the Wrapper API, on the next page

« DocManager Constants, on page 429

DocManager Wrapper APl Overview

In addition to the direct use of the DocManager EJB API (such as, through the use of Resource EJB),
an easier to use wrapper API has been introduced in order to simplify interactions with DocManager.

Other benefits inherent in the new approach include standardized error handling, standardized
validation checks, and no direct client EJB contact.

NOTE: Usage of this wrapper APl is strongly recommended since the DocManager EJB API has
been deprecated for client use. Its use is also mandatory when linking DocManager to an external
document management system.

Making Calls Simpler

Direct calls to DocManager EJBs sometimes require a large amount of code. The wrapper API
encapsulates all calls to DocManager EJBs in an easy-to-use API so that client interactions with
DocManager consist of as few steps as possible for each task.

Error Handling

The wrapper DocManager API wraps all EJB exceptions and throws DocManager specific
exceptions. These exceptions provide a status code, a user-friendly message, and also contain the
root cause of an error.

Permissions exceptions can be handled independently.

Validation

A number of the methods in the wrapper interface perform additional validation checks, such as
verifying that a resource does not already exist, or that the operation attempted has not been
disabled. In each case an appropriate error is thrown.

Scrittura (4.4.10.5) Page 424 of 430

Administration Guide
Appendix D: DocManager Wrapper AP

Interactions with the External DMS

All necessary interactions with DocManager and the external DMS are internally handled by the
wrapper APl when Scrittura is integrated to an external DMS or uses DocManager in its file system
configuration. No extra method call either to DocManager or the external DMS is therefore
necessary.

Using the Wrapper API

This section details how to use the wrapper DocManager API.

Interface Location

All classes related to the wrapper API interface are located in the
com.ipicorp.docmgr.docmgrinterface package.

ResourceData, FileData, and DocManager exception classes are located in
com.ipicorp.docmg.util.

Calling the Wrapper API

DocmgrResourcelInterface is the parent interface of the wrapper API. Resource-type-specific
functionalities (for folders, documents, and links) are accessible through the following interfaces,
which extend DocmgrResourceInterface:

e DocmgrFolderInterface
e DocmgrDocumentInterface
e DocmgrLinkInterface
Implementations of those interfaces are accessed using the DocmgrInterfaceFactory class.
Example
DocmgrInterfaceFactory docmgrInterfaceFactory
= new DocmgrInterfaceFactory();
DocmgrDocumentInterface docmgrDocumentInterface

= docmgrInterfaceFactory.getLocalDocumentInterface();

Code Samples Using the Wrapper API

This section contains code samples illustrating common use cases. A basic description of the
interfaces is provided as well as examples of the processes for creating resources and adding
versions. For other operations, please refer to the Javadoc provided with the Scrittura release.

NOTE: Unless specified otherwise, code extracts quoted here do not contain exception and
transaction handling.

Scrittura (4.4.10.5) Page 425 of 430

Administration Guide
Appendix D: DocManager Wrapper AP

Document Creation and Version Creation

The following examples provide code extracts for document and version creation, using both the EJB
APl and the wrapper API. As demonstrated by those examples, document and version creation have
been drastically simplified with the wrapper DocManager API.

Example using the deprecated EJB API
ResourceLocalHome home

= IpiDocmgrFactoryUtil.getFactory()
.getResourceLocalHome();

Collection col

= resourcelLocalHome.findByParentIdResourceTypeAndIndex®
(folderId, ResourceTypes.RT_DOCUMENT, title);

if (col.size() == 0)

{

document = resourcelLocalHome.createDocument(folderld,
title);

ResourceData data = document.getData(); data = setIndices(data, etype, title); data
= setFields(etype, data);

else

document.setData(data);

document = (ResourcelLocal) col.iterator().next(); document.addNewVersion();
}
document.lockCurrentVersion();

FileData fdata = new FileData(); fdata.data = fileContent; fdata.extension =
extension;

document.putFile(fdata, modifiedBy);
ResourceHelperSession rh = IpiDocmgrFactoryUtil.getFactory()
.getResourceHelperSessionHome().create();

if (rh.isFullTextSearchEnabled())

Scrittura (4.4.10.5) Page 426 of 430

Administration Guide
Appendix D: DocManager Wrapper AP

{
document.checkAndPutFullText(fileContent);

}

ExportUtilities expUtil = ExportUtilities.getInstance(); Integer DocResId =
document.getId();

if (expUtil.isUsed())

{

if (lexpUtil.isMigratedToFileSystem(document))

{
String fsPath = expUtil.getFileSystemPath(document);

else

expUtil.migrateAllVersionsToFileSystem(document); log.info("Res. + DocResId +

migrated to "

+ fsPath);
log.warn("Res. " + DocResId
+ " is already migrated");

document.unlockCurrentVersion();

Example using the wrapper DocManager API
DocmgrInterfaceFactory docmgrInterfaceFactory

= new DocmgrInterfaceFactory();
DocmgrDocumentInterface docmgrDocumentInterface

= docmgrInterfaceFactory.getLocalDocumentInterface();

FileData fileData = new FileData(); fileData.setData(fileContent);
fileData.setExtension(extension);

// NOTE: the next call is optional and only for custom metadata; fileData.setIndices
(indices);

Scrittura (4.4.10.5) Page 427 of 430

Administration Guide
Appendix D: DocManager Wrapper AP

fileData.setFields(fields); fileData.setFullTextSearchEnabled(true);

ResourceData data = documentInterface.get(parentId, fileName); int id = (data ==
null)

? documentInterface.create(parentId, fileName, fileData)
: documentInterface.addVersion(data.getId(),

fileData).getId();

Folder Creation

The following examples provide code extracts for folder creation using both the deprecated EJB API
and the wrapper API.

Example 1 using the deprecated EJB API

ResourceLocalHome home

= IpiDocmgrFactoryUtil.getFactory()
.getResourceLocalHome();

EntityType et

= IpiDocmgrFactoryUtil.getFactory().getSystemConfigHome()
.create().getEntityType(entityTypeName);

parent = home.createRootFolder(entityTypeName, folder); ResourceData rdata =
parent.getData(); rdata.index[Integer.parseIlnt(et.titleIndex)] = folder;
parent.setData(rdata);

Example 1 using the wrapper DocManager API
docmgrFolderInterface.create (DocmgrConstants.NO_PARENT_ID,
folderName, entityTypeName, null);

Example 2 using the deprecated EJB API

folder = resHome.createChildFolder(etype, parent.getId(),
title);

ResourceData data = folder.getData(); data = setIndices(..);
data = setFields(..); folder.setData(data);

Example 2 using the wrapper DocManager API

final ResourceData data = new ResourceData(); data.setIndices(indices);
data.setFields(fields);

docmgrFolderInterface.create(parentId, folderName,

entityTypeName, data);

Scrittura (4.4.10.5) Page 428 of 430

Administration Guide
Appendix D: DocManager Wrapper AP

Setting Indexes and Fields Using the DocmgrConfiginterface

The EntityType classin com.ipicorp.docmgr.util should not be used directly with the wrapper
interface. The DocmgrConfiginterface provides a number of methods to retrieve the appropriate
information. Since DocManager handles the title index internally on document creation, this should
rarely be used.

Example using the deprecated EJB API

EntityType et

= IpiDocmgrFactoryUtil.getFactory()
.getSystemConfigHome().create()
.getEntityType(entityTypeName);

if (et.getTitleIndex().equalsIgnoreCase("fixed"))

{

resourceData.index[@] = parentName;

}

else

{

resourceData.index[et.getTitleIndex()] = parentName;

}

resourceData.index[@] = parentName;
resourceData.index[et.getTitleIndex()] = parentName;
Example using the wrapper DocManager API

int folderTitleIndex = docmgrConfigInterface

.getFolderTitleIndex(entityTypeName); resourceData.index[folderTitleIndex] =
parentName;

DocManager Constants

The wrapper API also contains a new interface, DocmgrConstants, which holds some hard-coded
string information relevant to the client. These include the root folder name and id, the index where
the document name is stored, and the error codes returned in DocManager errors.

Scrittura (4.4.10.5) Page 429 of 430

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Micro Focus Scrittura 4.4.10.5 Administration Guide
Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to autonomytpfeedback@microfocus.com.

We appreciate your feedback!

Scrittura (4.4.10.5) Page 430 of 430

mailto:autonomytpfeedback@microfocus.com?subject=Feedback on Administration Guide (Micro Focus Scrittura 4.4.10.5)

	Chapter 1: Getting Started
	Scrittura Overview
	General Architecture
	Key Modules and Features
	General Features
	Message Processing
	Outbound
	Inbound

	Integration and Deployment
	External Scrittura Components
	Servers
	Deployment Diagrams

	Implementation Guidance

	Chapter 2: Scrittura Configuration
	Scrittura Configuration Overview
	Scrittura Configuration Files
	Configuration Folders
	Mandatory and Optional Configurations
	Configuration File Validation
	Reloading the Configuration

	Scrittura-config.xml File
	<scrittura-config> Node
	<wordml-processor> Node
	<product-def> Node
	<dms-field-ref> Node
	<global-role> Node
	<message-type> Node
	<image-processing> Node
	<menu> Node
	<view> Node
	<audit-types> Node
	<audit-user-actions> Node
	<column-set> Node
	<search-columns> Node
	<indexVariable> Node
	<reports> Node
	<annotations> Node
	<report-docs> Node
	<startup-classes> Node
	<saved-searches> Node
	<archive> Node
	<search-queue> and <quick-search-queue> Nodes

	Chapter 3: Product Definitions
	Product Definitions Overview
	Product Definition XML File
	Sub-Product Definition Inclusion
	Workflow Introduction Step
	DocManager Hierarchy
	Annotations
	Document Types
	Signatures
	Variable Definition
	Views

	Binary Large OBjects
	Built-in Variables
	USERID, LastEditUser, and LastForwardUser
	[TITLE OF DOC]Count
	CurrentManualProcess and CurrentManualQueue
	CommonReferenceID
	ProductDefID and ProductDefDisplay

	Common Variables
	Detect Variable Changes
	Array Handling
	Specifying Arrays in Product Definitions
	Specifying No Default Values
	Referencing Array Variables

	Set up Categories of Variables with audit-type

	Chapter 4: Workflow Configuration
	Workflow Manager
	Workflow Manager Terminology
	Workflow Transitions Between Activities
	Workflow Modeler
	Workflow Packages
	Workflow Engine Specifications

	Extended Attributes and Settings
	Process Settings
	Common Activity Settings

	Activities and Transitions
	Start Activity
	End Activity
	Classtool Activity
	BeanShell Activity
	Subworkflow Activity
	Route Activity
	Sleep activity
	XOR Split and Join
	AND Split and Join
	Application Activities
	Workflow Transitions

	Example Using the Workflow Modeler
	Get Started with a Visio Workflow Definition
	Create a Start Point and End Point
	Add Activities
	Add and Identify Transitions
	Define Conditions
	Define Classes and Extended Attributes
	Define an XOR Split
	Link to a Sub-Workflow
	Define Process Settings
	Generate the XML

	Configure a New Workflow in Scrittura
	Amend workflow.xml for the New Workflow
	Control Audit Behavior
	Amend scrittura-config.xml for the New Workflow
	Workflow User Interface

	Scrittura Workflow Architecture
	Workflow Organization in Scrittura
	Workflow Engine Processing

	Workflow Reporting Module
	Module Distribution Contents
	report-config.xml
	Run the Report

	Condition Parser
	Custom Parser
	Valid Operators
	Quote Delimiters
	Examples
	Handling of NULLs
	Handling of Undefined Variables
	Supported String Operations
	Use of Escaping Quote Marks
	Comparison of Different Datatypes

	BeanShell Scripting Syntax
	BeanShell Scripts for Message Ticket Variables
	BeanShell Access to the Hash Map Table
	BeanShell Scripts for Product Instance Variables
	Link from One BeanShell Script to Another
	Use 'Else' to Map a Set of Variables in BeanShell
	BeansShell Functions
	Example: String Manipulation and Tests
	Example: Setting a Date Variable
	Example: Testing a Date Variable
	Log Activity in BeanShell

	Chapter 5: DocManager Configuration and Administration
	DocManager Overview
	DocManager Storage Configurations
	DocManager User Interface
	Page Navigation
	DocManager Explorer Pane
	Virtual Folders
	Resource Properties Pane
	Drag and Drop

	Entity Model
	Indexes and Fields
	Entity Type Configuration

	DocManager Configuration Files
	docmgr-config.xml
	mime.types
	mime.icons

	Custom Validator Classes
	Entity Type Custom Validation
	Index and Field Type Custom Validation

	Security
	Access Control Lists
	DocManager Rights
	Groups and Users
	Security Model Configuration
	Workings of the Default Security Model

	Core Operations
	Search
	Full-Text Search

	In-Browser Text Editing
	Linking to an External DMS
	External DMS Configuration
	Filesystem DocManager

	Custom Indexing Forms
	Field Validation
	Field Validation Configuration

	Import Daemon
	Import Daemon Configuration
	Import XML Metadata Files
	Use of the DocMgr.vsd Visio File

	Audit Trail
	DocManager Faxing and Email
	GUI Method for Faxing and Emailing
	Faxing and Emailing Configuration

	DocManager API
	DocManager Interface Configuration Location
	How to Call the Resource Interfaces
	API Example: Document Creation and Version Addition
	API Example: Folder Creation

	Chapter 6: User Interface Configuration
	Scrittura MVC Model
	Custom JSP Pages
	Validate View Data
	Add Custom Events
	Configure Application Appearance
	JSP Tag Library Reference

	General User Interface Configuration
	Workflow View and Queue Lists
	Bulk and Trade Panels
	Panel JSPs and Process Handlers
	Search Results Pages
	Audit Tracking Screens

	Bulk Screen Configuration
	Bulk Screen Functionality
	Custom Action Panels
	Navigation Bar
	Trade List
	Queue Screen Configurations

	Trade Detail Screen Configuration
	Economic Panels

	Chapter 7: BLogic Business Engine
	BLogic Business Engine Overview
	BLogic User Interface
	Storage

	BLogic Integration with Scrittura
	Example of the BLogic Classtool in a Scrittura Workflow
	Example Specification of Multiple Workbooks in the Workflow System

	BLogic General Configuration
	BLogic Factory Initialization
	BLogic Environment

	Microsoft Excel Front-End
	Example Excel Business Rule Spreadsheet
	Rule Spreadsheet Columns
	Variable Condition Columns
	Greater Than Operator

	Rule Validation

	Chapter 8: Search and Reporting
	Scrittura Search Capabilities
	Configure the Advanced and Quick Search
	Using the Scrittura Search Functionality
	Queue-Style Search
	Queue Filters

	Jasper Reports and Style Reports
	BIRT Reports
	Prerequisites for Integrating BIRT
	Configuration of BIRT Integration
	Scrittura User Interface Configuration for BIRT Integration
	BIRT Report Design

	Chapter 9: Static Data Framework
	Static Data Framework Overview
	Define the Data Model
	Data Mapping Configuration
	Root Node
	Custom Value Types
	Data-Mapping Attributes
	Data Mapping Child Nodes
	User Permissions
	Table Relationships

	Create the Database Tables
	Configure the User Interface
	Static Data Framework User Interface Layout
	General Static Data Framework User Interface Configuration
	<page> Attributes
	<welcome-message> Node
	<data> Node
	<child-records> Node
	<action-list> Node
	<search-criteria> Node
	Sample Table and Record Page Configurations

	Interaction with the Framework
	Main Classes
	Essential Operations

	Chapter 10: Scrittura Utility Modules
	Job Scheduler
	Job Scheduler Configuration
	Create a Scheduled Task
	Cronjobs Running in Synchronous Mode
	Cronjobs Running in Asynchronous Mode
	Built in Scheduled Tasks

	Archiving
	Archiving Configuration
	Base Archiving Parameters
	Archive Processes Summary
	Archiving Workflow
	Evolving Systems
	Archiving Caveats

	Chapter 11: Message Processing Workflow
	Generic XML Parser
	Parser Instance Configuration
	Integration with Scrittura

	Data Derivation
	Using BLogic for Data Derivation
	Using BeanShell Scripts for Data Derivation

	Message Sequencer
	Data Model Setup
	Workflow Setup for Message Sequencer
	Message Sequence Configuration
	Interface Implementation

	Chapter 12: Outbound Workflows
	Document Generation Overview
	Draft Document Generation
	PDF Document Generation
	Lengthy Document Generation Tasks

	Bulk and Document Signatures
	Bulk and Document Signature Configuration
	Manual Signature
	Automatic Signature
	Remove Signatures
	Apply Signatures to the Document
	Automatic Signature Workflow Example

	Electronic Messaging
	Hand Off to a Fax Server
	General Email Dispatch Capabilities
	Email Dispatch Configuration
	Design Email Body Templates
	Integrate Email Dispatch with Scrittura

	Chapter 13: Inbound Workflow
	Image Processing Server
	Image Process Server Configuration
	Tasman Barcode Detection Plug-in
	DataMatrix
	Customization
	TIFF Images and Browsers
	Inbound Workflow
	Sample Implementations

	OCR Using Teleform and IDOL Image Server
	Scrittura OCR Solution
	Configure the OCR Components
	Set Up Communication between IDOL Image Server and Scrittura
	Signature Matching Configuration in Scrittura
	Runtime Inbound Process

	Signature of Inbound Documents

	Chapter 14: Electronic Messaging
	Electronic Messaging Overview
	DTCC Messaging
	Install DTCC Messaging
	Message Generation Configuration for DTCC Messaging
	Inbound Message Configuration for DTCC Messaging

	ICE Messaging
	SWIFT Messaging
	General Configuration for SWIFT Messaging
	Message Generation Configuration for SWIFT Messaging

	Variable Mapping Configuration

	Chapter 15: Structured Products
	Structured Products Overview
	Confirmation Groups
	Structure Handling in Scrittura
	Structured Product Configuration and Setup
	Structured Product Configuration
	Product Definitions
	Message Parsing
	Workflow Setup and Event Handling

	Linking and Grouping
	Trade Linking
	Component Grouping
	User Interface

	Document Generation for Structures
	Product View Design
	Template Design and Document Generation

	Chapter 16: Scrittura Administration and Run-Time
	Scrittura Administration Console
	Access the Scrittura Administration Console
	General Tab
	Database Operations Tab
	Monitoring Tab
	Check Config Tab
	Service Pack Tab

	SetConfig Process
	SetConfig Process Configuration
	Password Encryption
	Scrittura Counters
	Server Hostname, Port, and Protocol
	Startup Options and Custom Properties
	Run the SetConfig Process

	Fast Access Tables
	Fast Access Tables Overview
	Configure the Fast Access Tables

	Trade Simulation
	Trade Simulation Prerequisites
	Trade Simulation Configuration
	Trade Simulation User Interface

	IT Administration Tasks
	Admin Utility
	DocManager Runtime Operations
	DocManager Migration Tool
	Roles and Users in Scrittura
	Scrittura Logs

	Workflow Notifications
	Email Notification
	Workflow Error Notification
	Stalled Item Email Notifications

	Performance Tuning
	Possible Performance Issues
	Performance Recommendations
	Scalability

	Appendix A: Scrittura Data Model
	Data Model Overview
	Data Model: Administration Category
	Data Model: Audit Category
	Data Model: Business Model Category
	Data Model: DocManager Category
	Data Model: Sequencer Category
	Data Model: Static Data Category
	Data Model: Workflow Category

	Appendix B :Sample Trade Detail and Bulk Screen Panels
	Bulk Panel Sample
	Bulk Trade Handler Sample
	Trade Detail Panel Sample
	Single Trade Handler Sample

	Appendix C: Configuration Files
	Sample: docmgr-config.xml
	Sample: entity-types.xml

	Appendix D: DocManager Wrapper API
	DocManager Wrapper API Overview
	Making Calls Simpler
	Error Handling
	Validation
	Interactions with the External DMS

	Using the Wrapper API
	Interface Location
	Calling the Wrapper API

	Code Samples Using the Wrapper API
	Document Creation and Version Creation
	Folder Creation
	Setting Indexes and Fields Using the DocmgrConfigInterface

	DocManager Constants

	Send documentation feedback

