
StarTeam 16.3

ActiveMQ MPX Administrator's
Guide

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2018. All rights reserved.

MICRO FOCUS, the Micro Focus logo and StarTeam are trademarks or registered trademarks
of Micro Focus IP Development Limited or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2018-03-27

ii

Contents

Preface .. 5
Documentation .. 5
Contacting Support ... 6

Overview ... 7
Framework and Architecture ... 8
MPX Components ... 10
Component Descriptions ...13
ActiveMQ MPX Security ..14

Data Encryption ..14
User Authentication and Access Rights ... 14

Installation ... 15
Component Configuration ... 15
Dependencies - Startup Order for MPX Components ...17

Configuring MPX to use ActiveMQ MPX .. 18
Requirements When Using StarTeamMPX and ActiveMQ MPX Together ...19
Requirements When Using ActiveMQ MPX Only .. 20
Managing Message Brokers .. 21

Planning for Message Brokers .. 21
Understanding Clouds ...21

Message Broker Communication ... 22
Message Routing in Message Broker Clouds .. 22
Routing in Unconnected Message Broker Clouds ..23

Volume Considerations ... 24
Using Message Brokers with a Firewall .. 25
Configuring a Message Broker ..25

Configuring a Message Broker Cloud .. 26
Changing the Endpoint of a Message Broker ...26
Configuring Two Message Brokers in a Fail-Over Configuration 27
Enabling Tracing for Message Brokers ...28

Controlling Connections .. 28
Managing the Transmitters ..29

Configuration-specific Transmitter XML Files ..29
Enabling Transmitters for Server Configurations .. 29

Enabling MPX on Multiple StarTeam Server Configurations ...30
Understanding Connection Profiles ...31
Understanding the Event Transmitter ..31

Event Transmitter Startup ...31
Event Transmitter XML File Format .. 32

Using Profiles with Multiple Connections .. 35
Understanding the File Transmitter ... 36

File Transmitter Startup .. 37
File Transmitter XML File Format ... 37

Managing MPX Cache Agents ...38
Planning for the MPX Cache Agents ...38
MPX Cache Agent Operations .. 39
Configuring a Root MPX Cache Agent ..40
Configuring a Remote MPX Cache Agent ...41
Cache Agent XML Parameters ..42

Parameters Used by Any MPX Cache Agent ... 42
Parameters Used by Remote MPX Cache Agent ...46

Contents | 3

Parameters Used by Root MPX Cache Agent ..48
Reviewing Status and Log Information ..49
Using MPX Cache Agent with the Clients ... 49
Object Caching ..50

How Object Caching Works ..50
Components Needed for Object Caching ...52
Configuring Object Caching ... 52

Configuring Clients .. 58
Using ActiveMQ MPX from a Client .. 58
Displaying MPX Status ..58
Choosing a Non-default Connection Profile .. 59
Logging MPX Information in the Client Log ...59
Using MPX Cache Agent from the StarTeam Cross-Platform Client and IDEs60

Enabling MPX Cache Agent Use ... 60
Checking out Files with the MPX Cache Agent ..61

Using MPX Cache Agent with Bulk Checkout Utility ... 62
Running MPX Components ... 63

Running Message Broker on Microsoft Windows ..63
Starting a Message Broker ...63
Stopping a Message Broker ... 63

Running the ActiveMQ MPX Message Broker on Linux ..64
Running MPX Cache Agents .. 64

Running MPX Cache Agent On Microsoft Windows .. 64
Running MPX Cache Agent on Linux ...66

Server Log Entries ... 67
Start-Up Messages ... 67
Reconnect Messages ..67

Troubleshooting ActiveMQ MPX ... 69
Diagnosing a Message Broker .. 69

4 | Contents

Preface
This manual contains information for StarTeam administrators who manage MPX-enabled server
configurations. It explains the basic operation and architecture of a ActiveMQ MPX system, and provides
instructions for installing and configuring the ActiveMQ MPX components. For information about performing
other administrative tasks on a StarTeam Server configuration, see the StarTeam Server Help. For
information about installing ActiveMQ MPX components and system requirements, refer to the StarTeam
Installation Guide.

Documentation
The documentation is your guide to using the product suite. StarTeam documentation is provided in several
formats: online help, HTML, and Adobe PDF. Documentation is available from the Help menu within the
product.

If you are using a Microsoft Windows system, you can locate documentation for the products by clicking
Start > Programs > StarTeam > <Product> > Documentation. The Documentation menu lists all of the
available documentation for the selected product.

You can also download documentation directly from: http://supportline.microfocus.com/productdoc.aspx.

HTML Documentation

Readme files can be found directly under the root installation directory (or on the root of the installation
CD). For documentation available in other languages (Japanese, French, or German), the language-
specific versions of the release notes are indicated with an appropriate _countrycode in the filename.
For example, readme_ja.html contains release note information for the Japanese language. PDF
manuals are located in the Documentation subfolder on the product CDs.

Adobe PDF Manuals

The following documentation is provided in Adobe PDF format. All manuals distributed in Adobe Acrobat
(.PDF) format require Adobe Acrobat Reader to display them. The installation program for Adobe Acrobat
Reader is available from the Adobe web site at: www.adobe.com.

Release Notes Contains system requirements and supported platforms for the
products.

StarTeam Installation Guide The StarTeam Installation Guide contains detailed instructions for
installing and configuring the core StarTeam products.

StarTeam Server Help This manual is identical to the online help version.

StarTeam Cross-Platform Client
Help

This manual is identical to the online help version.

StarTeam Command Line Tools
Help

Explains how to use the command-line tools and provides a
reference for the various commands.

StarTeam File Compare/Merge
Help

This manual is identical to the online help version of the StarTeam
File Compare/Merge help.

StarTeam Workflow Extensions
User’s Guide

Explains how to design and manage StarTeam Extensions such as
alternate property editors (APEs). It also covers the StarTeam
Workflow Designer and StarTeam Notification Agent.

Preface | 5

http://supportline.microfocus.com/productdoc.aspx

StarTeamMPX Administrator’s
Guide

Explains the basic operation and architecture of the system, and
presents instructions on installing and configuring the components.

ActiveMQ MPX Administrator's
Guide

Explains the basic operation and architecture of the system, and
presents instructions on installing and configuring the components.

Note: Depending upon which products you purchased and installed, not all of the application manuals
will be on your system.

Contacting Support
Micro Focus is committed to providing world-class services in the areas of consulting and technical
support. Qualified technical support engineers are prepared to handle your support needs on a case-by-
case basis or in an ongoing partnership. Micro Focus provides worldwide support, delivering timely, reliable
service to ensure every customer's business success.

For more information about support services, visit the Micro Focus SupportLine web site at http://
supportline.microfocus.com where registered users can find product upgrades as well as previous versions
of a product. Additionally, users can find the Knowledge Base, Product Documentation, Community
Forums, and support resources.

When contacting support, be prepared to provide complete information about your environment, the
product version, and a detailed description of the problem, including steps to reproduce the problem.

For support on third-party tools or documentation, contact the vendor of the tool.

6 | Preface

http://supportline.microfocus.com
http://supportline.microfocus.com

Overview
ActiveMQ MPX is a framework for publish/subscribe messaging. It contains both common and application-
specific components that together provide advanced messaging capabilities.

StarTeam Enterprise licenses support the following MPX components:

• MPX Message Broker
• MPX Event Transmitter

StarTeam Enterprise Advantage licenses support all of the MPX components:

• MPX Message Broker
• MPX Event Transmitter
• MPX File Transmitter
• MPX Cache Agent

ActiveMQ MPX improves the performance of the clients and extends the scalability of server
configurations. When the term client is used in this guide, it refers to any client that can take advantage of
one or more ActiveMQ MPX features.

Changes to the server configuration’s repository are broadcast in an encrypted format to StarTeam clients
and MPX Cache Agents through a publish/subscribe channel. The MPX Event Transmitter broadcasts
encrypted messages about changes to objects, such as change requests, and the MPX File Transmitter
broadcasts archive files.

Caching modules automatically capture events that a client subscribes to. This reduces the client’s need to
send refresh requests to the server and improves client response times for the user.

You can install and configure MPX Cache Agents to cache files and/or objects in a network-near location to
speed up check-out operations. They reduce the distance that the data travels at the time of the client
check-out operation. While MPX Cache Agents are MPX clients that rely on messages and files
transmitted by the File Transmitter, they also serve other MPX clients as they check out files.

The ActiveMQ MPX technology offers a number of key benefits, including:

Bandwidth
multiplication

Every request by a client that is fulfilled from a cache is a request that the server does
not have to fulfill. As a result, a single server configuration can support more clients.

In certain environments, requests for item refresh may constitute up to 50% of client-
to-server traffic. Refresh requests increase with project size and when the “All
Descendants” option is used.

For the person who builds software products, check-out operations are a very high
percentage of the client-to-server traffic. Using the Bulk CheckOut (bco)
command-line utility with a MPX Cache Agent can speed up the time it takes to create
a build.

Performance
acceleration

Because the event caching modules reside on the same computer as the client and
the MPX Cache Agents are on computers that are network-near the supported clients,
requests filled from the caches are faster than those requiring a round-trip to the
server.

Burst control As the number of clients increases, the likelihood of burst periods increases, during
which time a server configuration can become deluged and less responsive. The
caching modules even-out the demand on a server configuration.

The following lists the MPX features of which specific clients can take advantage.

Overview | 7

• StarTeam Cross-Platform Client - Event and file/object caching.
• Bulk CheckOut (bco) command-line utility - File caching.
• IDEs based on StarTeam Cross-Platform Client and .NET components (such as the Eclipse integration

and the Visual Studio .NET integration) - Event and file/object caching.

Framework and Architecture
The key components within the ActiveMQ MPX framework are messaging engine components, publisher
components, and subscriber components. Some components both subscribe and publish.

Messaging engine
component

The MPX Message Broker is the primary messaging engine, providing “unicast”
messaging.

Publisher
components

The publisher components send messages to messaging engines, which forward
those messages to the appropriate subscriber components. For example, the MPX
Event Transmitter and MPX File Transmitter are publishing components.

Subscriber
components

The subscriber components receive only those messages to which they have
subscribed. Subscriber components receive messages through TCP/IP from the
MPX Message Broker. StarTeam clients can receive and cache event messages.

The following presents an overview of the ActiveMQ MPX system architecture for event messaging.
Depending upon the individual needs of a particular site or facility, there may be several MPX-enabled
server configurations and MPX Message Brokers serving many clients.

The following present an overview of the ActiveMQ MPX system architecture for file transmission. In the
first, a single MPX Cache Agent is operating on its own server, servicing check-out requests for two MPX
Cache Agent-aware clients. Depending upon the individual needs of a particular site or facility, there may
be several MPX-enabled server configurations, MPX Message Brokers, Root MPX Cache Agents, and
Remote MPX Cache Agents serving many clients.

8 | Overview

You can organize MPX Cache Agents hierarchically or “tiered” to support distributed teams and improve
performance over slow or unreliable network connections. It also allows MPX Cache Agents to forward
request “misses” and to “catch-up” with content that was missed during network or process outages. An
example of tieredMPX Cache Agents is depicted in the next figure

The tiered caching capability requires the operation of a specially-configured MPX Cache Agent known as
the Root MPX Cache Agent. The Root MPX Cache Agent operates directly on a server configuration’s
vault. It can execute on the same computer as the server process or on another computer, as long as it has
direct access to the vault. The Root MPX Cache Agent also requires access to the journal file
(CacheJournal.dat) maintained by the MPX File Transmitter. The journal file provides the information
needed by the Root MPX Cache Agent to access individual file revisions.

In the next figure, one Remote MPX Cache Agent is operating on its own computer and is being used by
two clients. While all file revision transmissions are broadcast by the MPX File Transmitter, the fact that the
Remote MPX Cache Agent is “tiered” to the Root MPX Cache Agent allows cache misses and catch-up
requests to be forwarded to the Root MPX Cache Agent from the Remote MPX Cache Agent.

Overview | 9

MPX Cache Agent can operate on the same computer as a client. This is especially useful for check-out
intensive clients such as build applications, because the presence of a local MPX Cache Agent provides
maximum performance for major check-out operations, especially those done with the Bulk Checkout
(bco) command-line utility. See the StarTeam Cross-Platform Client online help for more information
about this utility which improves check-out speeds both with and without MPX Cache Agent’s help.

MPX Components
Like all client/server architectures, as the number of clients grows, the server could potentially become a
bottleneck. In fact, the scalability of many client/server systems is entirely limited by this bottleneck. Other
client/server systems address scalability by deploying multiple instances and replicating information
between them to attain synchronization.

ActiveMQ MPX is a unique solution to client/server scalability. ActiveMQ MPX is a publish/subscribe
messaging framework that pushes update events that contain metadata and data to clients. It is optional
because it is not required for basic StarTeam functionality. However, when ActiveMQ MPX is activated, it
improves StarTeam Server scalability and improves StarTeam client responsiveness.

Message Broker

Basic ActiveMQ MPX requires the addition of a single extra component, known as the MPX Message
Broker. The MPX Message Broker’s role is illustrated below.

10 | Overview

The MPX Message Broker is a messaging process that uses an event API to receive updates from the
StarTeam Server process. The MPX Message Broker broadcasts encrypted messages containing updated
artifacts. StarTeam clients subscribe to subjects and receive only messages relevant to them. By receiving
updates as soon as they occur, StarTeam clients do not need to poll for updates or refresh information they
have cached, significantly reducing the demand-per-client on the StarTeam Server. This improves server
scalability, but it also improves client responsiveness since updates are received within seconds after they
occur.

MPX Cache Agents

Messages broadcast by a MPX Message Broker benefit clients with active sessions. However, for files
MPX offers an optional MPX Cache Agent process that manages its own persistent cache. MPX Cache
Agents can be deployed at geographic locations, allowing clients to fetch file contents from the nearest
MPX Cache Agent, preventing the need to fetch this content across a longer (and potentially slower)
network connection. MPX MPX Cache Agents are illustrated below.

Overview | 11

In this example, a Root MPX Cache Agent is deployed network-near to the StarTeam Server process. A
Root MPX Cache Agent directly accesses the StarTeam vault, providing local clients with an alternate path
to the vault for checking-out files. This reduces demand on the StarTeam Server, enhancing its scalability.

This example also shows a Remote Message Broker and a Remote MPX Cache Agent deployed at a
remote site. Using broker-to-broker forwarding, each update event is forwarded once to the Remote
Message Broker, which then broadcasts it to local clients. Files are streamed to the Remote MPX Cache
Agent, which stores them in an encrypted private cache. StarTeam clients network-near to the Remote
MPX Cache Agent can check out files at any time, leveraging the local high-speed network instead of
pulling content across the WAN. This further reduces demand from the StarTeam Server while improving
remote client responsiveness.

Other Options for Distributed Organizations

ActiveMQ MPX provides a unique solution for distributed teams. It leverages the benefits of a centralized
server—lower total cost of ownership, better security, and simplified administration, while solving the
traditional performance and scalability issues of client/server architectures. ActiveMQ MPX offers many
advantages to distributed organizations:

• Any number of Message Brokers can be “chained” together (typically in a hub-and-spoke configuration)
to form a “messaging cloud” that scales to any size organization. Message Broker limits can be
configured to arbitrary values based on available resources such as file handles.

• Any number of MPX Cache Agents can be distributed globally. Clients can be configured to
automatically locate and use the network-nearest MPX Cache Agent, or they can choose a specific
MPX Cache Agent.

• MPX Cache Agents use push caching in which content is broadcast and stored by MPX Cache Agents
as soon as it is created. This makes caches more effective than traditional “pull through” caching, in
which every initial request results in a “cache miss”.

12 | Overview

• MPX Cache Agents use advanced synchronization techniques that improve their effectiveness such as
pre-charging, tiering, request forwarding, and automatic catch-up.

Component Descriptions
This section provides a short description for each ActiveMQ MPX component.

StarTeam Server

A StarTeam Server can support a number of StarTeam Server configurations, any or all of which can be
MPX-enabled. An MPX-enabled server configuration initiates both the MPX Event Transmitter and the MPX
File Transmitter. It notifies the MPX Event Transmitter each time a subscribed event occurs, and sends it
relevant details about the event.

MPX Event Transmitter

The MPX Event Transmitter broadcasts events of interest to clients. The MPX Event Transmitter formats
the event information it receives into XML messages, encrypts them, and publishes them to a Message
Broker. Messages are assigned topics so that they can be distributed to clients interested in the
accompanying content (server, item type, event type, and so on). The MPX Event Transmitter is installed
when you install StarTeam Server.

MPX File Transmitter

The MPX File Transmitter broadcasts file contents and object properties to one or more Remote MPX
Cache Agents by means of a Message Broker. Like the MPX Event Transmitter, the MPX File Transmitter is
installed when you install the StarTeam Server.

Message Broker

The Message Broker is a publish/subscribe messaging engine that broadcasts messages to subscriber
components on a topic basis. It is a stand-alone process that can run on a separate computer to offload
network processing overhead in high-volume environments. The Message Broker broadcasts messages to
each of its recipients using TCP/IP (unicast) messaging.

The Message Broker receives encrypted XML messages from the MPX Event Transmitter or encrypted
content messages from the MPX File Transmitter, and forwards them to the appropriate clients. Information
is sent from a Message Broker directly to clients that have connected to that Message Broker through a
unicast (TCP/IP) connection profile.

MPX Cache Agent

MPX Cache Agent adds persistent file/object caching. Each MPX-enabled server configuration can have
one Root MPX Cache Agent. One or more Remote MPX Cache Agents can be distributed throughout the
enterprise.

A Root MPX Cache Agent operates directly on the server configuration’s vault.

A Root MPX Cache Agent handles requests forwarded from Remote MPX Cache Agents for missing files
or objects and provides “catch-up” assistance for Remote Caches after network or process outages.

Cache Agent-aware StarTeam clients can fetch files or objects from any available MPX Cache Agent.

By using “network-near” MPX Cache Agents, clients can improve file check-out and object fetch
performance and reduce their demands on the StarTeam Server. This frees server resources for additional
tasks and users.

Overview | 13

StarTeam Clients - Event Transmission

When a client connects to an MPX-enabled server configuration, a connection profile determines which
Message Broker the client uses to receive event messages.

Clients benefit from event messages through an enhanced internal cache. This cache subscribes to
specific caching message topics, keeping its cached objects up-to-date with respect to the projects and
views that the client uses. As a result, several types of object fetching (most notably item refresh) no longer
require round-trips to the server. The cache is internal so message subscriptions are handled in the client.

The client cache has no persistence mechanism, and cache contents are not shared among multiple client
processes. However, while the client is running, the cache remains updated with changes made to the
client’s open views, thereby speeding-up its operation.

A client session provides the keys required for performing MPX functions and ensures that each access is
verified for applicable security context.

StarTeam Clients - File Transmission

A logged-on user can use the StarTeam Cross-Platform Client , an IDE based on StarTeam Cross-Platform
Client or .NET components, or the Bulk CheckOut (bco) command-line utility to retrieve files from a
MPX Cache Agent. The MPX Cache Agent’s file/object caching is independent of client processes because
the MPX Cache Agent operates as a separate process. Consequently, a client can fetch files that were
broadcast while it was not operational.

ActiveMQ MPX Security
The ActiveMQ MPX security features include:

• Data encryption.
• User authentication and access rights.

Each of these features is described in greater detail in the following sections.

Data Encryption
A client receives data from an MPX-enabled server configuration over one of two paths:

• Directly from the server
• Indirectly from transmitters and MPX Cache Agents through a MPX Message Broker

The encryption level for data sent directly from the server is specified on the Server Properties dialog box
for each individual server configuration. It is possible to have no encryption set for this data path. See the
StarTeam Cross-Platform Client online help for more information on setting encryption levels for a server
configuration.

All data sent by the transmitters orMPX Cache Agents is encrypted. Each MPX Event Transmitter has its
own encryption key. When the server configuration starts a MPX Event Transmitter, it creates a unique
encryption key for that instance of the MPX Event Transmitter. When a client opens a project, the server
configuration sends the client the MPX Event Transmitter encryption key directly. The client will have one
encryption key for each MPX-enabled server configuration it is accessing.

All files and objects sent by the MPX File Transmitter are encrypted. The content is stored in encrypted
format by MPX Cache Agents and decrypted only “at the last moment” within the client process.

User Authentication and Access Rights
As users log on to a server configuration, they are identified individually by their user names and as
members of the groups to which they belong. This information is stored as an access token for each user.

14 | Overview

Based on a user’s access rights, the server configuration determines which objects a user can see and
which operations that user can perform on those objects.

The caching module in the client enforces the same user access rights set. When a client receives a
message from a Message Broker, it verifies whether the user is authorized to view the data in the
message. If the user has the necessary access rights, the message is stored in the client cache.
Otherwise, that object will not be cached.

In a StarTeam client, you can control detailed access rights for a file: the ability to see the file, see history,
check-out, check-in, and so on. For example, you can give someone the "see item and its properties" right
but deny the "check-out" right.

However, with the MPX Cache Agent, granting someone the "see item and its properties" right implicitly
virtually grants them a "MPX Cache Agent check-out" right. This is because the client can get a file's MD5,
which is all that is needed to request a MPX Cache Agent check-out. For environments in which this
difference in security "interpretation" matters, you should not deploy MPX Cache Agent or deny the "see
item and its properties" right for users who should not check-out the corresponding files.

Installation
When installing MPX components, StarTeam Server must be installed first. After you have installed
StarTeam Server, you can install the other components in any order.

The following is a recommendation for installing MPX components:

1. Install StarTeam Server. The MPX Event Transmitter and MPX File Transmitter are installed
automatically with StarTeam Server.

2. Install the MPX Message Broker. You can run multiple instances of the MPX Message Broker.

3. Install the Root MPX Cache Agent. You need to install it only once per machine, even when that
machine has more than one server configuration. You run multiple instances to support multiple
StarTeam Server configurations. Each server configuration must have its own root cache agent
instance.

4. Install the Remote MPX Cache Agent. This is the same installer as the Root MPX Cache Agent. You
can run one or more copies on remote machines.

For complete details about installing MPX components, refer to the StarTeam Installation Guide.

Component Configuration
During installation, the installers pre-configure each component. However, it is recommended that you
review the appropriate configuration files outlined in this section prior to starting ActiveMQ MPX.

You can configure your MPX components incrementally and in any order. For example, you could install
StarTeam Server and the MPX Message Broker only, configure and start them and later add a Root MPX
Cache Agent, and Remote MPX Cache Agents.

The information in this section provides an overview of some of the configuration settings that you need to
be aware of when setting up your MPX components:

Review the
Root MPX
Cache Agent
archive path

If using a Root MPX Cache Agent on a different machine than the StarTeam Server, you
should update the "Root MPX Cache Agent archive path" for each hive to reflect the
path with which the Root MPX Cache Agent sees that hive. You should use UNC paths
on Windows because mapped drives usually do not work with services. You can edit this
property in the Hive Properties dialog box of the Server Administration tool (Tools >
Administration > Hive Manager).

Overview | 15

MPX
Transmitters

Each server configuration must have appropriately edited
MPXEventTransmitter.xml and MPXFileTransmitter.xml files in a folder
named <configuration repository path>/EventServices/. Normally these
files are copied automatically from the template files
(ActiveMQEventTransmitterTemplate.xml and
MPXFileTransmitterTemplate.xml), which are installed at
server_installation_path/Event services/.

You typically do not need to edit the MPXFileTransmitter.xml file. Its presence
in the <configuration repository path>/EventServices/ folder enables the
file transmitter.

You should review each MPXEventTransmitter.xml file to ensure that the
<server_names> property of each <Profile> points to the appropriate MPX
Message Broker. Other edits such as adding more profiles may also be appropriate.

Initially, you must edit these files manually using a text editor such as Notepad. You can
edit the MPXEventTransmitter.xml file using the Server Administration tool only
after the server configuration is running and the MPX components have successfully
started.

During your initial edits of MPXEventTransmitter.xml, take care to not introduce
syntax errors or else the file will not load properly during the server configuration’s start
up. You can open the file in a browser to quickly check its syntax.

MPX Message
Broker

Review the file ActiveMQMessageBroker.ini and edit it (using a text editor) as
needed. You should use the "conn_names" property to make the service listen on a
specific IP address and/or port. Use the "server_names" property to connect to other
Message Brokers (to form a "cloud").

Root MPX
Cache Agent

You must typically edit the configuration file. Use a text editor such as Notepad for
editing this file.

Properties The property <ServerConfigsFile> must point to the full path name of the
appropriate starteam-server-configs.xml file (using a UNC path if necessary),
and <ConfigName> must define the appropriate StarTeam configuration. Alternatively,
if the root MPX Cache Agent will not use object caching, the property
<RootRepositoryPath> must point to the repository path of the StarTeam Server
configuration that it will track.

You should set the <server_names> property to the MPX Message Broker that the
Root MPX Cache Agent will use. You may also need to adjust the <CachePath>
property. If running a Root MPX Cache Agent for multiple StarTeam Server
configurations, you must copy the configuration file with a unique file name for each
configuration and edit those files with unique <RootRepositoryPath>,
<RequestPort>, and <CachePath> values for each server configuration.

On Windows, you must also run CacheAgentService.exe with the "-register"
and "-name" parameters (and the correct server configuration file name) to establish a
unique Root MPX Cache Agent service for each configuration.

Remote MPX
Cache Agent

You must edit the configuration file for each Remote MPX Cache Agent, setting the
<server_names>, <CachePath>, and <MaxCacheSize> properties as appropriate.
You should also define a <ContentSource> section with the appropriate
<ServerGUID> value for each server configuration to be tracked.

Configure
Clients

Modify the StarTeam Cross-Platform Client to use ActiveMQ MPX using the Tools >
Properties. See Configuring Clients in this manual.

16 | Overview

Root and
Remote MPX
Cache Agents

If you want to enable object caching, edit the <ObjectTypes> section of the
corresponding configuration files.

Dependencies - Startup Order for MPX Components
The startup order of MPX components is important:

• The Message Broker is core to everything, so you should start it first. There is no particular order to
starting root and remote Message Brokers. In general, if the Message Broker used by an MPX
component is not running, the MPX component fails to start. For example, if a Root MPX Cache Agent
is installed as an auto-start service and uses a Message Broker on the same computer, the Root MPX
Cache Agent may start more quickly than the Message Broker. In this case, the Root MPX Cache Agent
fails. The fix is to make the Root MPX Cache Agent service depend on the Message Broker service.

• You should start the MPX-enabled StarTeam Server configuration next. You must start it at least once
before starting the Root MPX Cache Agent to create the CacheJournal.dat file. The first time you
start a StarTeam configuration after a MPX File Transmitter has been activated, it creates the
CacheJournal.dat file for that server configuration. If the Message Broker it uses is not running, the
server configuration starts in non-MPX mode. This means the server will work, but no MPX messages
will be broadcast, and "fixing" it requires restarting the server.

• You should start the Root MPX Cache Agent(s) next. If the Message Broker it uses is not running, or if
the CacheJournal.dat file does not exist for the server configuration it is tracking, the Root MPX
Cache Agent fails to start. Once the CacheJournal.dat file exists, the root MPX Cache Agent no
longer has a start-order dependency with the StarTeam Server configuration. It can start before or after
the StarTeam Server configuration has started.

• You can start the Remote MPX Cache Agent(s) at any time. It is independent of all other MPX
components except for the Message Broker to which it connects. If that Message Broker is not running,
the Remote MPX Cache Agent fails to start. However, if one of the Root MPX Cache Agent or the
StarTeam Server configuration it is tracking are not running, it detects them when they are started.

• The MPX-enabled StarTeam Server configuration must be running before the MPX Cache Agents or
clients can access it.

• The MPX Cache Agents must be running before the clients can retrieve files from them.

Overview | 17

Configuring MPX to use ActiveMQ MPX
This chapter explains how to modify your existing MPX Event Transmitter, MPX File Transmitter, and MPX
Cache Agent configurations to ActiveMQ MPX (using Apache ActiveMQ technology). By default , new
configurations for StarTeam Server and the MPX Cache Agent will be configured to use the ActiveMQ MPX
Message Broker. To switch an existing StarTeamMPX configuration to use ActiveMQ MPX Messaging, you
will need to update the following configuration files:

• MPXEventTransmitter.xml.
• MPXFileTransmitter.xml.
• The Root MPX Cache Agent configuration file used.
• The Remote MPX Cache Agent configuration files used.

1. Modify MPXEventTransmitter.xml:

a) Make sure the version of the file is 2.0. You should have this tag <StExternHandlerModule
version="2.0">.

b) Add/update the Name property in the <Handler> section. This indicates what type of messaging will
be used with this configuration. Type ActiveMQ MPX Transmitter, which designates the use of
ActiveMQ MPX-type messaging and brokers.

c) Update the server_names property in all profiles with correct addresses and ports for your MPX
Message Brokers.

2. Modify MPXFileTransmitter.xml:

a) Make sure the version of the file is 2.0. You should have this tag <StExternHandlerModule
version="2.0">.

b) Add/update the Name property in the <Handler> section. This indicates what type of messaging will
be used with this configuration. Type ActiveMQ MPX File Transmitter, which designates the
use of ActiveMQ MPX-type messaging and brokers.

3. Modify Root Cache Agent and Remote Cache Agent configuration files:

a) Make sure the version of the file is 2.0. You should have this tag <MPXCacheAgent
version="2.0">.

b) In the <MessageBroker> section, add/update the Name property to ActiveMQ MPX
Transmitter.

c) Update the server_names property in all profiles with correct addresses and ports for your MPX
Message Brokers.

18 | Configuring MPX to use ActiveMQ MPX

Requirements When Using StarTeamMPX
and ActiveMQ MPX Together

Adhere to the following guidelines for system configurations that use both StarTeamMPX with ActiveMQ
MPX:

• If a remote MPX Cache Agent is used, install ActiveMQ MPX Message Broker and StarTeamMPX
Message Broker on the remote MPX Cache Agent machine.

• MPX Cache Agents (root or remote): An MPX Cache Agent configuration can only connect to one type
of Message Broker at a time. As a result:

• You must setup separate root MPX Cache Agents for all configurations that use the ActiveMQ MPX
Message Broker, and for all configurations using StarTeamMPX Broker.

• You must setup separate remote MPX Cache Agents for all configurations that use an ActiveMQ
MPX Message Broker, and for all configurations using a StarTeamMPX Message Broker.

• You must upgrade to StarTeam Agile 15.0, StarTeam Web Client 15.0, and the latest Micro Focus
Connect. These applications will work with both the ActiveMQ MPX and the StarTeamMPX Message
Brokers.

• We recommended that you upgrade to StarTeam Cross-Platform Client 15.0 , which can connect with
MPX using any of the brokers.

Important: If using a version of the StarTeam Cross-Platform Client prior to 15.0, MPX will not
work on ActiveMQ MPX configurations.

Requirements When Using StarTeamMPX and ActiveMQ MPX Together | 19

Requirements When Using ActiveMQ MPX
Only

Adhere to the following guidelines for system configurations that use only ActiveMQ MPX:

• If a remote MPX Cache Agent is used, install the ActiveMQ MPX Message Broker on the remote MPX
Cache Agent machine.

• All MPX Cache Agents (root or remote) must be upgraded to version 15.0 and configured to use the
ActiveMQ MPX Message Broker.

• You must upgrade to StarTeam Agile 15.0, StarTeam Web Client 15.0, and the latest Micro Focus
Connect. These applications will work with both ActiveMQ MPX and StarTeamMPX Message Brokers.

• We recommended that users upgrade to StarTeam Cross-Platform Client 15.0 , which can connect with
MPX using any of the brokers.

Important: If you are using a version of the StarTeam Cross-Platform Client prior to 15.0, MPX will
not work in this scenario.

20 | Requirements When Using ActiveMQ MPX Only

Managing Message Brokers
The Message Broker is the messaging engine. All subscribers must use a profile for a Message Broker.

Depending on the needs of your environment, you may decide to install several Message Brokers on
multiple systems. The section named “Understanding Clouds” will help you decide.

This chapter also provides sections on configuring Message Brokers.

You can find installation instructions and system requirements in the StarTeam Installation Guide.

Planning for Message Brokers
Planning considerations for the Message Broker include:

• At least one Message Broker is required for ActiveMQ MPX operation.
• When the total number of subscribers is relatively low (less than 100 users) and the overall activity is

low to moderate (up to 1,000 updates per hour), a single Message Broker can be installed on the same
computer as the StarTeam Server.

• A single Message Broker can fulfill the messaging requirements for multiple configurations (deployed on
the same computer or on multiple computers) if the total update volume is low to moderate.

• To use the same Message Broker for multiple configurations, the connection profiles in each transmitter
XML file should point to the same Message Broker (see “Managing the Transmitters”).

• Subscribers should use a network-near Message Broker if possible. The StarTeam administrator must
create MPX profiles to fit the needs of each general location in a distributed group and set one of them
as the default profile. Some subscribers can override the default profile and should do that to select a
network-near Message Broker.

Understanding Clouds
When MPX-enabled server configurations are used by clients that reside in different geographic locations,
multiple Message Brokers may need to be deployed and configured to forward messages to one another.
Such a configuration is called a “Message Broker cloud”.

The cloud allows a subscriber to use ActiveMQ MPX features with server configurations that reside in
another geographic location.

When a Message Broker receives a forwarded message from another Message Broker, it:

• Delivers the messages to the subscribers that are connected directly to it.
• Forwards the messages to other Message Brokers that require the message.

The following shows an example of a Message Broker cloud. Some components in the ActiveMQ MPX
architecture are omitted for simplicity.

Managing Message Brokers | 21

Message Broker Communication
A Message Broker can establish communication with another Message Broker by:

• Initiating the communication with another Message Broker during its startup procedure.
• Being contacted by another Message Broker when that Message Broker starts.

Each Message Broker has its own ActiveMQMessageBroker.ini configuration file located in C:
\Program Files\Micro Focus\ActiveMQ Message Broker\conf. The
ActiveMQMessageBroker.ini file provides the basic configuration options required to start a broker or
setup a network of brokers. ActiveMQ MPX internally uses an xml configuration file activemq.xml which
can be edited to use the advanced features. For information on configuring activemq.xml, refer to http://
activemq.apache.org/xml-configuration.html.

When a Message Broker first starts, it reads the ActiveMQMessageBroker.ini file and attempts to
connect with each of the Message Brokers listed in server_names list. If any of these Message Brokers is
not running or cannot be reached when contact is attempted, communication is not established with that
Message Broker. However, each Message Broker will retry the connection periodically.

Message Routing in Message Broker Clouds
When a subscriber first connects to an MPX-enabled server configuration, it uses a connection profile to
determine which Message Broker to use. If the subscriber opens another view on the same server

22 | Managing Message Brokers

http://activemq.apache.org/xml-configuration.html
http://activemq.apache.org/xml-configuration.html

configuration, it reuses the same Message Broker connection. If the subscriber opens a view on a different
server configuration, it will again use the same Message Broker connection if the default or selected MPX
profile for that server specifies the same Message Broker. However, if the default or selected MPX profile
for the new server configuration specifies a different Message Broker, the subscriber will open a new
connection to it. This means that a subscriber could have multiple Message Broker connections. Each
message broadcast by an MPX-enabled server configuration is automatically forwarded to every Message
Broker that has a connected subscriber interested in that message.

For example, in the following figure, the client has two open projects that are located on two different MPX-
enabled server configurations. When a user opens Project 1 on StarTeam Server 1, the StarTeam Cross-
Platform Client chooses a connection profile for Message Broker 1.

When the user opens Project 2 on StarTeam Server 2, assume that the client has selected an MPX profile
that also specifies Message Broker 1. The client sends a subscribe message to Message Broker 1
registering its interest in messages regarding Project 2. Thereafter, StarTeam Server 2 sends all messages
pertaining to Project 2 to Message Broker 2, which forwards them to Message Broker 1, and finally to the
client. Even if the user closes Project 1 and, therefore, its connection to StarTeam Server 1, it continues to
receive messages through Message Broker 1 during the client session.

Routing in Unconnected Message Broker Clouds
In a properly configured Message Broker cloud, messages from all server configurations to which the
subscriber is connected are routed to the appropriate Message Broker for that subscriber. However, in
unconnected clouds, not all Message Brokers are aware of other Message Brokers and cannot forward
messages appropriately.

You might have unconnected clouds because:

• The clouds are not properly configured.
• The clouds are intentionally configured this way, perhaps for increased security.

Suppose a client accesses two StarTeam Server configurations. Suppose that each server configuration
uses a different Message Broker, and that these two Message Brokers are in unconnected clouds (see
figure below). In this case, if the client chooses an MPX profile that specifies Message Broker 1 when it
opens Project 1, the client receives messages for only the StarTeam Server configuration in the first cloud.
The client treats the StarTeam Server configuration in the second cloud as if it did not support ActiveMQ
MPX. The client performs all functions properly for such “disjoint” StarTeam Server configurations, but it
does not receive the performance and instant notification benefits provided by ActiveMQ MPX.

Managing Message Brokers | 23

Volume Considerations
In many situations, a single Message Broker is sufficient to handle the message processing of one or more
MPX-enabled server configurations, depending on the average update volume of your environment.

In environments with a low to moderate number of updates (up to a few thousand updates per hour), the
Message Broker can be installed on the same computer as the StarTeam Server. In this case, the
Message Broker can handle the message broadcasting for MPX-enabled server configurations on the
same computer, as well as for configurations operating on other computers located on the same local area
network.

In moderate to high volume update environments (several thousands of updates per hour or more), you
should consider operating the Message Broker on a separate computer from the StarTeam Server. This will
offload CPU and network demand from the computer hosting the StarTeam Server configuration, providing
an opportunity for additional distributed processing.

In some cases, you should consider installing multiple Message Brokers, each on their own computer, and
connecting them together into a cloud of Message Brokers. The common scenarios in which multiple
Message Brokers are advantageous are listed below.

Large number of
simultaneous
users

In the ActiveMQ MPX architecture, each subscriber using a unicast connection profile
creates a TCP/IP connection to a Message Broker. The MPX Event Transmitter and
MPX File Transmitter create additional TCP/IP connections. A single Message Broker
can support between 500 and 1,000 simultaneous connections, depending upon
message load. The Message Broker has a default limit of 2,000 simultaneous
connections and will refuse new connection requests beyond that number. You can
increase the maximum connection limit above 2,000, however, in high-volume
environments, the Message Broker may not be able to adequately service all
connections. In this case, you should consider installing multiple Message Brokers.

Fault-Tolerant /
Load Balancing
Operation

Multiple Message Brokers can be installed on separate computers and operate in
parallel as “peers”. The transmitters can subsequently be configured to randomly
choose one Message Broker but, if it is not available, to use a second Message
Broker (or a third, and so forth).

24 | Managing Message Brokers

Wide Area
Networks (WANs)

If the network topology on which your application community operates contains
multiple subnets or if the subnets are geographically distributed, you may want to
install a Message Broker to serve each “local” user community and connect the
Message Brokers into a cloud. This reduces message traffic over the greater
network, because messages are transferred between Message Brokers only once,
and then replicated locally to directly-attached subscribers.

External Users If you have users who need to access a StarTeam Server configuration over the
public Internet, you may wish to operate a Message Broker that is inside the “DMZ” or
completely outside of your corporate firewall. Such a Message Broker would then be
connected to other internal Message Brokers, providing external users with ActiveMQ
MPX functionality.

Using Message Brokers with a Firewall
In some cases, you may have users who need to access an MPX-enabled server configuration over the
public Internet without using a Virtual Private Network (VPN). A common technique for providing access to
ActiveMQ MPX is to install the StarTeam Server on a computer in the “DMZ” area of the corporate firewall
(while hosting persistent data such as the database on a separate system behind the firewall).

Typically, that computer has two IP addresses and host names: an internal address/host name used by
inside users, and an external address/host name used by outside users. In this scenario, a Message
Broker can be operated on the same computer as StarTeam Server and be accessed by both internal and
external users.

Alternatively, you could operate a Message Broker on a separate computer, also within the “DMZ”, and
therefore also accessible to both internal and external users. However, in some cases (such as when
corporate policy seeks to minimize the number of applications operating within the “DMZ”), you may wish to
operate one or more internal Message Brokers behind the firewall and perhaps one Message Broker
outside of the firewall. When the Message Brokers are formed into a cloud, both internal and external users
receive the appropriate messages for the server configurations to which they are connected.

To connect an external Message Broker into a Message Broker cloud, it is best to modify the
ActiveMQMessageBroker.ini file of one or more internal Message Brokers to point out to the external
Message Broker. That is, modify the internal Message Broker’s server_names parameter to include the
address of the external Message Broker. This technique is preferred because the firewall may not allow
outside-in connections, thereby preventing the cloud from being formed in the opposite direction.

From a security perspective, a Message Broker can operate safely within the “DMZ” or completely external
to a firewall for two reasons:

• The Message Broker is a communications server only and stores no persistent data that could become
the target of a security attack.

• The cache messages are encrypted with a key dynamically generated by each MPX Event Transmitter
session. Only clients who are successfully authenticated with a StarTeam Server through the logon
sequence receive the key required to decipher the cache messages. Consequently, packet snooping
and other eavesdropping techniques aimed at Message Broker traffic will not produce any meaningful
data.

Configuring a Message Broker
Each Message Broker has an INI file that contains startup parameters:
ActiveMQMessageBroker.ini.This file must be located under the <Message Broker
Installation folder>/Conf.

Managing Message Brokers | 25

Microsoft Windows platforms This folder is typically at C:\Program Files\Micro Focus
\ActiveMQ Message Broker\.

Linux platforms /opt/MessageBroker

Parameters that may need to be changed based on your needs are described in the next sections.

Configuring a Message Broker Cloud
If you plan to run more than one Message Broker, they probably should be configured into a cloud.

To create a Message Broker cloud:

1. If you have not already done so, install the Message Brokers. Refer to the StarTeam Installation Guide
for instructions.

2. For each Message Broker you want to include in the cloud, open the associated
ActiveMQMessageBroker.ini file in a text editor.

3. Add or edit the following line to list all the Message Brokers you want to include in the cloud:

server_names=tcp://servername:endpoint

where

• servername is the TCP/IP address or computer name where the remote Message Broker is
installed.

• endpoint is the port number on which the remote Message Broker is listening (5101 is the default
Message Broker port).

Separate multiple addresses by a comma (,). For example, the following line creates a cloud consisting
of three Message Brokers: the current Message Broker and the two Message Brokers listed below.

server_names=tcp://ProdServer1:61616,tcp://ProdServer2:61620

Tip: If a Message Broker operating outside of a firewall must participate with Message Brokers
behind a firewall, an inside Message Broker should be directed to establish contact with the
outside Message Broker, because the firewall may prohibit the establishment of the connection in
the reverse direction.

4. Save and close the file. The next time you start the Message Broker, it will establish connections with
the Message Brokers listed in the server_names parameter.

Changing the Endpoint of a Message Broker
The endpoint (port number) of a Message Broker is specified when you install it. If you later want to
configure a Message Broker to use a different endpoint, you must edit the
ActiveMQMessageBroker.ini file.

To change the endpoint number of a Message Broker:

1. Make the change to the ActiveMQMessageBroker.ini file for that Message Broker:

a) Open the ActiveMQMessageBroker.ini file in a text editor.
b) Add or edit the following line:

conn_names=tcp://servername:endpoint

where

servername Is the TCP/IP address or name of the computer where the Message Broker runs; you
can use the keyword 0.0.0.0 to designate the primary IP address of the local host
independent of its host name.

26 | Managing Message Brokers

endpoint Is the new endpoint you want the Message Broker to use. Default is 61616.

c) Save and close the file. Your changes will take effect the next time you start the Message Broker.

2. If this Message Broker is part of a Message Broker cloud, be sure to edit the
ActiveMQMessageBroker.ini files associated with the other Message Brokers in the cloud.

3. For each server configuration that has one or more profiles that use this Message Broker, create or edit
each profile using one of the following methods (this technique works only if the server has successfully
started in MPX mode):

Use the Server Administration
tool to edit the affected profiles:

1. From Server Administration, select the server configuration.
2. Click Tools > Administration > Configure Server.
3. From the Event Handlers tab, select ActiveMQ MPX

Transmitter as the event handler.
4. From the Profile list, select an affected profile.
5. Click Modify to open the Event Handlers Profile Properties

dialog box.
6. In the Profile Properties list, double-click server_names.
7. In the Event Handler Property dialog box, edit the

appropriate endpoints in the Property Value field.

Your changes take effect the next time you start the server
configuration.

Edit the associated
MPXEventTransmitter.xml file
directly

This technique should be used when the server is not currently
running or not running in MPX mode.

1. Open the MPXEventTransmitter.xml file in a text editor.
2. Edit the server_names parameter in each affected unicast

profile to reflect the new endpoint.
3. Save and close the file.

Your changes take effect the next time you start the server
configuration.

4. For each MPX Cache Agent that accesses this Message Broker, edit the MessageBroker group to
change the appropriate server_names parameter.

a) Open the MPX Cache Agent’s XML file in a text editor.
b) Find the server_names parameter for the correct Message Broker. For example, it might look like

the following: <server_names>tcp:12.34.56.78:5101</server_names>
c) Change the endpoint/port number portion of that line.

Configuring Two Message Brokers in a Fail-Over
Configuration
Normally, only one Message Broker receives initial messages from a server configuration's transmitters.
However, for load-balancing or in a fail-over configuration, you can use two Message Brokers as the "root"
Message Broker. The following procedure describes where to install and how to configure these two
Message Brokers. One can go on the server machine with the second on a network-near machine or both
Message Brokers can be on network-near machines. Both Message Brokers can even be on the same
machine if they used different port numbers.

The network-near machine (or machines) will not compete with StarTeam Server for memory and network
bandwidth. Since the Message Broker is not especially CPU or memory bound, the system requirements
for the second machine can be quite minimal. For example, a 1-CPU Pentium with ~512MB of memory is
sufficient; however, 2 CPUs (or a Pentium-HT) and 1GB of memory is ideal. Note that, the Message Broker
will crash if it runs out of memory.

Managing Message Brokers | 27

To deploy and configure two Message Brokers on separate server machines:

1. Install two Message Brokers on separate server machines but network-near to the StarTeam Server,
and set each to point to the other by adding the line:

server_names=tcp://other_server:61616

to the ActiveMQMessageBroker.ini file, where other_server is the IP address of the "other"
Message Broker server machine.

2. Open the StarTeam configuration's Event Transmitter configuration file (typically
MPXEventTransmitter.xml) in a text editor, and change the default client and server profiles to
randomly select between the two Message Brokers:

<server_names>_random, tcp:box1:5101, tcp:box2:5101</server_names>

where box1 and box2 are the IP addresses of the two Message Broker server machines.

This setting causes both the MPX Event Transmitter and all local clients to randomly select one of the
two Message Brokers. Furthermore, if one of them fails (for example, it faults, is turned off, or
disconnected from the network), everyone connected to that Message Broker will fail-over to the other
Message Broker. This also allows one box to be taken down for maintenance without bringing all of
ActiveMQ MPX down.

Remote users should continue to use the MPX profile that points them to the network-nearest Message
Broker.

Enabling Tracing for Message Brokers
If a Message Broker is failing for non-obvious reasons (for example, it isn't running or out of memory), you
can turn on tracing by adding the following lines to its <Message Broker install folder>/conf/
log4j.properties file:

log4j.rootLogger=DEBUG, console, logfile

By default, the log files are stored under <Message Broker install folder>/data/
activemq.log. This can be changed by editing conf/log4j.properties file with the following line:

log4j.appender.logfile.file=${activemq.base}/data/activemq.log

You can find additional information on logging at http://activemq.apache.org/how-do-i-change-the-
logging.html

Controlling Connections
The Max_Client_Conns option controls the total number of client connections that a Message Broker will
allow. If unspecified, the value is 2000. Because this is a per-Message Broker setting, it does not constrain
the overall cloud size. It goes in the file ActiveMQMessageBroker.ini.

By default, it is set to 2000:

Max_Client_Conns 2000

28 | Managing Message Brokers

http://activemq.apache.org/how-do-i-change-the-logging.html
http://activemq.apache.org/how-do-i-change-the-logging.html

Managing the Transmitters
When the transmitters are automatically installed with the StarTeam Server, the Event Transmitter and File
Transmitter files are placed in the StarTeam Server’s installation folder. This section explains how to
configure them.

Configuration-specific Transmitter XML Files
Each server configuration uses its own event and file transmitter XML files. This means that each
configuration has its own set of profiles that define connection alternatives for accessing the Message
Broker cloud in which the configuration operates.

During the ActiveMQ MPX installation, template files named
ActiveMQEventTransmitterTemplate.xml and MPXFileTransmitterTemplate.xml are
installed on the same computer as StarTeam Server. Their default locations depend on the operating
system type, but typically is: C:\Program Files\Micro Focus\StarTeam Server <version>
\EventServices\.

The EventServices folder is relative to the installation path of the StarTeam Server. The default
installation path is shown, but another path may be used.

Initially, the ActiveMQEventTransmitterTemplate.xml file contains one sample unicast profile. The
File TransmitterTemplate.xml file does not use profiles because this is already determined by the
Event Transmitters.

The configuration-specific XML files are named MPXEventTransmitter.xml and
MPXFileTransmitter.xml. They are usually created for you automatically based on the template files
in the <configuration repository path>/EventServices folder. These subfolders have the
same names as the server configurations.

Because the template XML files are used to create the configuration-specific XML files for new StarTeam
Server configurations, a newly-edited template file becomes the configuration-specific XML file for future
server configurations. The format of the template and configuration-specific XML files is the same.

You can edit any template file or configuration-specific XML file manually in a text editor. However, to edit
connection profiles in a configuration-specific MPXEventTransmitter.xml file, it is best to use the
Server Administration utility. See the StarTeam Cross-Platform Client Help for more details about
configuring Event Handlers. The section entitled “Changing the Endpoint of a Message Broker” also offers
some information about changing profile data in the MPXEventTransmitter.xml file.

Note: You only configure XML files for the File Transmitter if you are using the MPX Cache Agent.

Enabling Transmitters for Server Configurations
During the StarTeam Server installation, default template files
(ActiveMQEventTransmitterTemplate.xml and MPXFileTransmitterTemplate.xml) are
installed in the server_installation_path/Event Services folder. The StarTeam Server
installation also creates folders for the MPXEventTransmitter.xml and MPXFileTransmitter.xml
files of existing StarTeam Server configurations (if they do not already exist) and copies the template files
to that folder, renaming them to MPXEventTransmitter.xml and MPXFileTransmitter.xml. The
path to these files is <configuration_repository_path>/Event Services/ folder. However, you
must have an Enterprise Advantage server in order to use the MPX File Transmitter.

Managing the Transmitters | 29

When you create a new server configuration using the Server Administration tool, the new server
configuration is automatically MPX-enabled. The XML files are copied from the default location to the
<configuration_repository_path>/Event Services/ folder for the new server configuration.
When creating a new server configuration using the StarTeamServer.exe command-line interface, the
new server configuration is not automatically MPX-enabled. In this case, you must create the
<configuration_repository_path>/Event Services/ folder for the new server configuration,
copy the template files from <configuration_repository_path>/Event Services/ to the new
folder, rename the template files to MPXEventTransmitter.xml and MPXFileTransmitter.xml, and
edit them.

The MPX Event Transmitter enables basic MPX messaging. You can edit the default
ActiveMQEventTransmitterTemplate.xml to include appropriate settings for all future server
configurations. You can also edit each specific server configuration's file to include appropriate profiles,
Message Broker settings, and so on.

The MPX File Transmitter requires the MPX Event Transmitter and controls the transmission of files and
objects. You typically do not need to edit the MPX File Transmitter’s MPXFileTransmitter.xml file.
Having a copy of it in the <configuration_repository_path>/Event Services/ folder is enough
to enable the MPX File Transmitter and, in turn, the MPX Cache Agents.

Enabling MPX on Multiple StarTeam Server
Configurations

When the MPX Cache Agent is installed, you are asked for the location of the server configuration’s
repository. A server configuration’s repository is where its CacheJournal.dat file resides. This can be
determined after the StarTeam Server is installed, the Event and File Transmitters are enabled, and the
server is started. The File Transmitter will create the CacheJournal.dat file in the server configuration’s
repository folder.

To enable MPX on another server configuration, you will need to create a uniquely-named MPX Cache
Agent configuration file that points to the StarTeam configuration’s repository and uses a unique Request
Port. You then need to create a MPX Cache Agent specifically for this server configuration. Here are the
details:

1. Create a repository folder for your new server configuration called C:\My.

2. Create your new server configuration. Call it My, and make the repository C:\My.

3. Go to the MPX Cache Agent’s install directory and make a copy of RootCAConfig.xml. Call it
MyCAConfig.xml.

4. Open a DOS prompt and execute ‘netstat –an’. This will give you a list of ports already in use on
your machine.

5. Edit MyCAConfig.xml and change RootRepositoryPath to C:\My.

6. Change RequestPort to something other than 5201 or a port already in use. Save the changed file.

7. At the DOS prompt go to the MPX Cache Agent’s install folder and execute the following:

.\CacheAgentService –register Manual “full path to xml file” –name “name of
new service” –log “log name”-verbose

This will create a MPX Cache Agent service for the server configuration.

8. Start the MPX Cache Agent service.

Here is an example CacheAgentService invocation for the “My” server configuration:

30 | Managing the Transmitters

Understanding Connection Profiles
Event Transmitters use a connection profile to determine which Message Broker to use. File Transmitters
do not use profiles because they use the same profile as the matching Event Transmitters.

A connection profile defines connection and usage parameters for a single Message Broker Service.

One or more connection profiles are defined in the MPXEventTransmitter.xml file. You can define
multiple connection profiles when multiple Message Brokers have been deployed, or when multiple profiles
are desired with different connection parameters.

Within MPXEventTransmitter.xml, one connection profile is designated as the server default profile.
This profile is used by the event transmitter when it initializes.

One connection profile is also designated as the client default profile, causing that profile to be the default
profile used by StarTeam clients.

In environments that use a single Message Broker, only a single unicast connection profile is needed. That
profile is designated as both the server and client default, and the specified Message Broker is used by all.
This scenario is viable for small to moderate user communities having less than 100 users.

Understanding the Event Transmitter
The following sections detail the Event Transmitter and its XML file.

Event Transmitter Startup
When a StarTeam Server configuration starts, it determines if it is an MPX-enabled configuration by
locating a configuration-specific Event Transmitter XML file. The server attempts to load this file, identify the
server default profile, and load the Event Transmitter with that profile. All startup messages and errors for
the server configuration and the Event Transmitter are recorded in the configuration’s server log file.

On most systems, the server’s log file is located in the root folder of the server configuration’s repository.
See “Server Log Entries” for examples of typical startup messages.

If the configuration-specific XML file loads successfully, the Event Transmitter establishes a connection with
the Message Broker identified in the server default profile.

The Name property in the <Handler> section indicates what type of messaging will be used with this
configuration:

ActiveMQ MPX Transmitter Designates the use of ActiveMQ MPX-type messaging and brokers.

StarTeamMPX Transmitter Designates the use of legacy StarTeamMPX-type messaging and brokers
(with SmartSockets).

If the Event Transmitter fails to connect with a Message Broker, the StarTeam Server terminates the Event
Transmitter and starts the server configuration in non-MPX mode.

When a client opens a project on a server configuration, it determines whether or not the server
configuration is MPX-enabled. If the configuration is MPX-enabled, the server sends the client the
encryption key needed to decrypt messages from the Event Transmitter. It also sends the client the
connection profiles defined in the configuration-specific Event Transmitter XML file.

Some clients have settings that allow the server’s default connection profile to be overridden. It the user
can select a specific profile and has done so, the client uses the profile set by the user. Otherwise, the
client uses the profile marked as the client default profile.

Managing the Transmitters | 31

If the client is unable to connect to the designated Message Broker, it displays an error dialog and
proceeds to open the project in non-MPX mode.

Event Transmitter XML File Format
The general format of the Event Transmitter XML file is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
 <StExternHandlerModule version="2.0">
 <Handler>
 <Name>ActiveMQ MPX Transmitter</Name>
 <Description>...</Description>
 <Properties>
 <ClientDefault>...</Client default>
 <ServerDefault>...</Server default>
 </Properties>
 <Profiles>
 <Profile>
 ...profile #1 information...
 </Profile>
 <Profile>
 ...profile #2 information...
 </Profile>
 ...more profiles, if any...
 </Profiles>
 </Handler>
 </StExternHandlerModule>

Note that in this example, the ellipses (…) denote information where some details have been left out. Some
XML parameters in the Event Transmitter XML file are used to identify the Event Transmitter library to the
server configuration; the presence and order of these parameters should not be modified.

The following table lists the parameters that can be modified to tailor the connection profiles within the XML
file. The parameters are listed in the order in which they appear in the XML file.

Unless otherwise stated, all integer parameters have very large positive ranges. For example, all time
values have a range of 1 to 2,147,483,647. In most cases, you should consider the default value the
minimum setting. Use a practical upper limit based on common sense.

Table 1: Event Transmitter Parameters

Parameter Description

ServerDefault Defines the server default profile. Its value must match the name of a Profile within the
Profile Set group in this XML file. The server default profile is used by the Event
Transmitter and File Transmitter to establish a Message Broker connection. For
configuration-specific XML files, you can use the Server Administration tool to set a
profile as the server default.

ClientDefault Defines the client default profile. Its value must match the name of a Profile within the
XML file. The client default profile is used by clients as the default definition to
establish a Message Broker connection. For configuration-specific XML files, you can
use the Server Administration tool to set a profile as the client default.

Profile Can be repeated. It is both a group for parameters and a member of the Profiles
group.

Each profile has a name, a brief textual description, and a set of properties.

The initial profiles in the Event Transmitter XML file are specified during the
transmitter’s installation. In most cases, the default values are sufficient and do not
need to be changed. However, if you need to add, move, or remove Message Brokers,
or if you want to customize any connection profile settings, you can edit the XML file.

32 | Managing the Transmitters

Parameter Description

Name Defines the name of the profile. The name should provide a useful tip
as to the purpose of the profile (such as “West-coast on-site”). If the
profile is a server or client default profile, whose value should match
the value of the corresponding ServerDefault or
ClientDefault parameter.

Description Provides a short textual message describing the profile. It should
contain a value that helps users and administrators understand when
to use the parameter (such as “Message Broker profile for users
residing in the west coast office LAN”). Along with the profile name,
the profile description appears in both the client and Server
Administration connection profile dialogs.

Properties This is a group inside the Profile group. Its inner parameters
define the connection details of the profile.

The parameters within this group specify the connection details of the
profile. The most common options that can be used within the
Properties group and their usage are described below.

In special cases, some other options which are not described below
can also be used. However, these options should only be used under
the advice of our technical developer support services (http://
supportline.microfocus.com).

The parameters in the Properties group are listed in the next
table.

Table 2: Parameters for the Properties Group Inside the Profile Group

Parameter Description

server_names Designates the protocol, address, and port number of one or more Message Brokers.
The general syntax for this parameter is:

tcp:servername:endpoint

where

servername The TCP/IP address or computer name of the computer running a
Message Broker.

endpoint The port number on which the Message Broker accepts connections.
The default endpoint for a Message Broker connection is61616.

Examples:

For a Message Broker running on a computer with the TCP/IP address of 12.34.56.78
and port number 5320, the <server_names> value would be:

<server_names>tcp:12.34.56.78:5320</server_names>

Any process using the profile communicates with a single Message Broker. However,
you can list multiple Message Brokers (each separated by a comma) to provide
alternatives:

<server_names>tcp:HostA:61616,tcp:HostB:5101
</server_names>

The Event Transmitter and any clients using a connection profile with this
<server_names> value will first attempt to connect to the Message Broker on the
computer named HostA, using port 61616. If a connection to that Message Broker is
unsuccessful, the process will attempt to connect to the Message Broker on HostB
using port number 61616.

Managing the Transmitters | 33

http://supportline.microfocus.com/
http://supportline.microfocus.com/

Parameter Description

_random

The _random option is used with <server_names>. If multiple Message Brokers
are available, the Event Transmitter can be instructed to randomly choose from the
available Message Broker pool. This is done by adding the keyword _random,
followed by a comma, before the list of pooled Message Brokers.

For example:

_random, tcp:HostA:61616,tcp:HostB:61616,tcp:HostC:61616

The benefit of this option is not realized by the Event Transmitter, since it creates a
single TCP/IP connection to a single Message Broker. Rather, the benefit comes
when the MPX profile is used by many StarTeam clients.

Consequently, as StarTeam clients connect and execute the same
<server_names> value using the _random option, their Message Broker
connections will be distributed among the available Message Brokers, causing
automatic load balancing to take place. Note that when the _random option is used,
if a selected Message Broker is unavailable, another Message Broker is randomly
selected, until an available Message Broker is found.

project Specifies a publish/subscribe “universe” name. The default value is Starbase and
should not be changed.

enable_control_msgs The default is echo.

Specifies the types of control messages that the ActiveMQ MPX process (and
application clients) will honor. Only the echo control message should normally be
enabled, so this value defaults to echo and normally should not be modified.

server_keep_alive_t
imeout

integer; number of seconds. The default is 30.

Both the Event Transmitter and application clients send an occasional “keep alive”
message (analogous to a ping) to the Message Broker to ensure that it is still
responding. This parameter specifies the time (in seconds) during which the keep
alive response must be received. If the keep alive response is not received within the
specified amount of time, the Message Broker connection is severed, and a reconnect
sequence is initiated.

Minimum value is zero, which disables the feature.

server_read_timeout integer; number of seconds. The default is 30.

Specifies the time (in seconds) that the Event Transmitter or client using this profile
will wait for a response when performing a read operation. If no data is received from
the Message Broker within the specified amount of time, a timeout occurs, and a keep
alive operation is performed.

Minimum value is zero, which disables the feature.

Note: The client_read_timeout option in the STMessageBroker68.ini
file should be set higher than the server_read_timeout option in all profiles in
the MPXEventTransmitter.xml file. The client_read_timeout option by
default is 45 seconds. This causes the clients to drive keep-alive logic, freeing-up
processing from the Message Brokers.

server_write_timeou
t

integer; number of seconds. The default is 30.

Specifies the time (in seconds) that the Event Transmitter or client will wait on a write
operation. If a write request is not accepted by the Message Broker within the
specified amount of time, a write timeout occurs. Unlike read timeouts, which trigger a
keep alive sequence, write timeouts cause the Message Broker connection to be
immediately severed, followed by a reconnect sequence.

Minimum value is zero, which disables the feature.

34 | Managing the Transmitters

Parameter Description

server_start_max_tr
ies

Integer. The default is 1.

Specifies how many times the Event Transmitter or application client will traverse the
server_names list during a connect sequence, before giving up and deciding that
no messaging service is available.

Minimum value is zero, which disables the feature.

server_start_delay Integer; number of seconds. The default is 10.

Specifies how long (in seconds) to wait between traversals of the server_names
list. If an attempt to reconnect to a Message Broker fails, the Event Transmitter or
application client will wait for up to the specified number of seconds before attempting
the reconnect again.

Minimum value is zero, which disables the feature.

<Profile>
 <Name>Off-site</Name>
 <Description>The Message Broker profile for clients off-site.</Description>
 <Properties>
 <server_write_timeout>30</server_write_timeout>
 <server_names>tcp:123.45.6.78:61616</server_names>
 <socket_connect_timeout>10</socket_connect_timeout>
 <server_start_delay>10</server_start_delay>
 <enable_control_msgs>echo</enable_control_msgs>
 <server_max_reconnect_delay>10</server_max_reconnect_delay>
 <project>Starbase</project>
 <server_start_max_tries>1</server_start_max_tries>

 <server_keep_alive_timeout>30</server_keep_alive_timeout>
 </Properties>
</Profile>

If you manually edit an Event Transmitter configuration-specific XML file, the changes will take effect after
you save the updated file and restart the corresponding configuration. If you use the Server
Administration tool, changes go into effect immediately for all new client connections.

If you edit an Event Transmitter template XML file, you can only edit it manually. The updated file will be
used for new configurations that you create using the Server Administration tool.

Using Profiles with Multiple Connections
In the following figure, a sample StarTeam Server is shown with two MPX-enabled server configurations
(Config1 and Config2). Each configuration has its own MPXEventTransmitter.xml file. There are
two Message Brokers: one is the default for Config1 and the other is the default for Config2. Both XML
files could define a profile for each Message Broker, one as the client and server default, and the other as
an optional profile.

Managing the Transmitters | 35

When an Event Transmitter for a specific configuration is successfully initialized, one profile is designated
as the default client profile. StarTeam clients can open projects in MPX mode using that default profile or by
choosing an alternate connection profile:

• When a client first logs onto a server configuration, it queries the server to determine if it is operating in
MPX mode. If the server configuration is operating in MPX mode, it returns the list of connection profiles
defined in its Event Transmitter XML file.

• If the user has locally chosen a specific connection profile to use for the configuration, the details of the
chosen profile are loaded. Otherwise, the details of the client default profile are loaded.

• The client uses the chosen connection profile to connect to the corresponding Message Broker. If a
connection cannot be established, the client displays an error message, and continues accessing the
configuration as if it were not MPX-enabled.

• When a Message Broker connection is established and a new project is opened on a different, MPX-
enabled server configuration, the client opens a new connection to the Message Broker specified in the
default or selected profile for that server.

Note: The client can also define custom connection properties that are stored locally on the client
workstation. Client configuration options are described in “Configuring Clients.”

Understanding the File Transmitter
The File Transmitter obtains information about new and updated Native-II files and cacheable database
objects by scanning the vault cache when it first runs and from events it receives from the StarTeam
Server. It logs this information into the journal file, CacheJournal.dat. It periodically trims the
CacheJournal.dat file to keep the file’s size manageable.

Root MPX Cache Agent uses this information and broadcasts files directly from the Native-II Vault.

36 | Managing the Transmitters

File Transmitter Startup
The first time a server configuration uses the File Transmitter, the File Transmitter generates a new
CacheJournal.dat file. File content transmission begins as soon as new file revisions are checked into
the StarTeam Server. If any errors occur, they are reported in the server’s log file.

File Transmitter XML File Format
The general format of the File Transmitter XML file is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<StExternHandlerModule version="2.0">
 <Handler>
 <Name> ActiveMQ MPX File Transmitter</Name>
 <Description>File transmitter for the MPX Cache Agent. (This event
handler does not use profiles.)</Description>
 <Properties></Properties>
 <Profiles />
 </Handler>
</StExternHandlerModule>

Note that in this example, the ellipses (…) denote information where some details have been left out. All
File Transmitter-specific properties are optional. By default, the File Transmitter gets its mandatory
parameters from the server.

The following optional properties should rarely need to be overridden.

Parameter Description

JournalPath Specifies the location of the cache journal file, which is created and
maintained by the File Transmitter. The default is 'CacheJournal.dat' in the
configuration's 'repository path' folder.

MaxJournalAge Integer; number of days. The default is 180.

Specifies the maximum age in days of journal records within the cache journal
file.

The minimum value is 1.

JournalTrimInterval Integer; number of hours. The default is 24.

Specifies how often (in hours) the File Transmitter trims the cache journal file
of records that are older than the configured age.

The cache journal is trimmed of aged records when the server first starts and
every trim-interval hours. This parameter ensures that the
CacheJournal.dat file will be periodically trimmed if the server runs for a
long time without restarting.

Minimum value is zero, which disables the feature.

DataTransferRate Integer; file transmission rate in kbps (kilo bits per second). The default is 256.

This value should be set to a rate that the remote MPX Cache Agent location
can handle.

Tests indicate even though the communication link is at 512 kbps, it is shared
and therefore StarTeam would transfer at 128 kbps or lower rate.

The allowable range is 64 kbps - 4096 kbps.

Managing the Transmitters | 37

Managing MPX Cache Agents
MPX MPX Cache Agents provide persistent caching of StarTeam information in geographically distributed
locations. By retrieving information from a network-near MPX Cache Agent, client applications can achieve
better performance compared to fetching the same information from the StarTeam Server over a slower
network link. Using distributed MPX Cache Agents also reduces demand on the StarTeam Server,
increasing its scalability and responsiveness for other requests.

MPX MPX Cache Agents can cache file contents, thereby improving the performance of check-out
commands. MPX Cache Agents also support object caching, which allows StarTeam clients to fetch
properties for change requests, tasks, and other objects from a specially-configured MPX Cache Agent. As
with file content caching, using a network-near MPX Cache Agent can improve the speed of the
information fetch when compared to fetching the same information from a StarTeam Server over a slower
network connection. Object caching can yield substantial performance improvements in many cases.

With a tier of MPX Cache Agents, there is less overall network traffic because files or objects are usually
broadcast only once. They can add themselves dynamically to the “cloud”.

The Root MPX Cache Agent provides several important services:

• It supports the same fetch requests that all MPX Cache Agents provide. Because of this, it provides an
alternate “pathway” to the StarTeam Server configuration’s vault and relieves the server of file fetch
requests. In this capacity, the Root MPX Cache Agent can serve clients directly, although it shares vault
I/O access, and – if it is running on the same computer – network access with the StarTeam Server
process.

• The Root MPX Cache Agent also acts as an “upstream” MPX Cache Agent, providing “downstream”
Remote MPX Cache Agents with a place to forward cache misses. This increases the “hit rate” of
Remote MPX Cache Agents and improves their effectiveness.

• The Root MPX Cache Agent provides a “catch up” API, allowing Remote MPX Cache Agents to
proactively fetch files that they missed while they were not running. Because the Journal is time-
sequenced, a Remote MPX Cache Agent can request all content newer than the last known cache time
stamp and “trickle charge” with that content before clients request it. This feature reduces cache misses
and allows Remote MPX Cache Agents to be effective even over unreliable network connections.

Although a Root MPX Cache Agent can be assigned to only one server configuration, a Remote MPX
Cache Agent can be assigned to several.

A Remote MPX Cache Agent can be configured to:

• Refine its subscription to a server configuration such that it receives files and objects that are created or
modified only in specified projects.

• Forward request misses to either a Root MPX Cache Agent or another “upstream” MPX Cache Agent.
• Use a different upstream MPX Cache Agent for the file and object contents of each server configuration

it is tracking.
• Automatically find the Root MPX Cache Agent through MPX poll messages. This allows a Remote MPX

Cache Agent to be installed with a minimal configuration: all it needs is connection parameters to a
Message Broker, the GUIDs of the server configurations it will track, and the names of the projects it
wants to track within each server configuration. When first started, a Remote MPX Cache Agent
automatically finds the Root MPX Cache Agent for each server configuration it is tracking and will trickle
charge itself with the latest content that it is interested in. Even while it is trickle charging, a Remote
MPX Cache Agent can be used immediately, since cache misses will be forwarded on demand.

Planning for the MPX Cache Agents
Consider the following when you plan for MPX Cache Agents:

38 | Managing MPX Cache Agents

• On Microsoft Windows, a MPX Cache Agent can run as a service or as a console application. More
than one MPX Cache Agent can be run as a service on each computer if appropriate.

• A Root MPX Cache Agent can manage only one server configuration. It uses the server configuration’s
archives for file content. It accesses the configuration's database and manages its own local cache for
object contents.

• Each MPX Cache Agent must be connected to a Message Broker.
• The Root MPX Cache Agent requires access to the vault for the one server configuration that it

services. Consequently, it can be installed on the same computer as the StarTeam Server. Alternatively,
if it can be installed on a separate computer to prevent the Root MPX Cache Agent from competing for
CPU or network I/O with the corresponding server configuration. However, this requires it to access the
archive files and the CacheJournal.dat through a shared network drive, so use this option only when
a high-speed network file system is in place.

• Similarly, if a root MPX Cache Agent is enabled for object caching, it requires access to the server
configuration's database. If it operates on a different machine than the StarTeam Server, it will need
additional configuration to access the correct database.

• There is no limit to the number of MPX Cache Agents or Message Brokers that can be installed
throughout an enterprise nor any limit to the number of Message Brokers within a single messaging
“cloud”. Keep in mind that each MPX Cache Agent requires access to a Message Broker.

• Remote MPX Cache Agents should be installed in each geographic location that can benefit from
improved file check-out performance. One approach is to install a MPX Cache Agent in each network
environment in which local users can access it over a high-speed LAN. (Example: Install two Remote
MPX Cache Agents at headquarters, one each for the engineering and quality assurance teams, a third
Remote MPX Cache Agent at the Chicago office, and a fourth at the London office.)

• Installing a Remote MPX Cache Agent on a computer dedicated to a check-out intensive application
such as a build utility can be very beneficial. If that computer is sufficiently “network-near” to the
StarTeam Server’s computer, you could deploy a Root MPX Cache Agent on the build computer as long
as that computer has access to the server configuration's vault. This reduces check-out demands on the
StarTeam Server, but it doesn't reduce I/O to the vault.

• A Remote MPX Cache Agent can receive broadcasts and store files and objects from multiple server
configurations. It stores all new files and/or objects for the specified server configurations or for the
specified projects within the server configurations. However, each unique file and object is stored only
once, regardless of the number of times it is used in different folders, projects, or servers. A file’s
uniqueness is determined by its contents, not its name or location. An object's uniqueness is
determined by distinctive object properties.

• Cached files are stored individually within a folder tree, which has a configurable root folder. They are
stored in encrypted format and decrypted only “at the last moment” within the client process.

• The maximum total size of a MPX Cache Agent’s cache is configurable.
• The cache for a MPX Cache Agent does not have to be backed up and can be deleted, if necessary,

when the Remote MPX Cache Agent is not running.
• Clients can be configured to use a specific MPX Cache Agent by specifying that MPX Cache Agent’s

host name (or IP address) and port number. Alternatively, some clients can be configured to locate an
appropriate MPX Cache Agent automatically. If multiple MPX Cache Agents are available, the client
automatically chooses the “network-nearest” MPX Cache Agent. This feature keeps administrative
overhead to a minimum and allows the automatic detection of new MPX Cache Agents by clients.

• You can use a single Remote MPX Cache Agent without deploying a Root MPX Cache Agent. It will
receive files through MPX broadcasts. If the Message Broker is running most of the time, it will receive
most files and could be useful to a person whose job is building software applications. (Without a Root
MPX Cache Agent there is no file-catch-up or request forwarding.)

MPX Cache Agent Operations
The following sections provide information for understanding how MPX Cache Agent operates with the
Message Broker, other MPX Cache Agents, and the client.

Managing MPX Cache Agents | 39

• When a server configuration starts, so does the File Transmitter. The File Transmitter generates and
maintains a CacheJournal.dat file for that configuration.

• When a Root MPX Cache Agent starts up for the first time, it reads the CacheJournal.dat file from
beginning to end. This makes the MPX Cache Agent aware of the most recently added and modified
files and objects and, thereby, able to return them in fetch requests. The Root MPX Cache Agent then
scans the server configuration's hives for additional archive files and, if the Precharge and
ObjectTypes options are set, it also scans the configuration's database for additional objects not
described in the CacheJournal.dat file. The hive and database scans are done in the background
because they may take several minutes.

• When a Remote MPX Cache Agent starts, depending on its settings, it can update its cache with data
from its logical "parent" MPX Cache Agent, usually the Root MPX Cache Agent. It also adds data to its
cache as it receives file and object update messages from the Message Broker.

• When a client or another MPX Cache Agent requests a file or object that the Remote MPX Cache Agent
has, it returns the file or object. When asked for a file or object that it does not have but can get from a
parent, it adds the new file or object to its cache and then returns it to the requesting client or MPX
Cache Agent.

• If the Remote MPX Cache Agent cannot get a file or object from a parent, it sends a "miss" indicator
back. After receiving "miss" indicators, clients request those files or objects from StarTeam Server in a
non-MPX fetch.

• When the Remote MPX Cache Agent's total cache size exceeds the MaxCacheSize parameter, it
removes the oldest contents in the cache. It repeats this check until the total cache size is within limits.

• Remote MPX Cache Agents provide project filtering capabilities. Specifically, you can specify a list of
Project parameters in the ContentSource section of the Remote MPX Cache Agent configuration
file. This list can either be explicit project names or can include a "wildcard" character, such as "*" to
match partial strings.

Configuring a Root MPX Cache Agent
By default, the name of the Root MPX Cache Agent configuration file is RootCAConfig.xml. If you run
only one instance of MPX Cache Agent on a given computer, you should probably keep the default name.
Otherwise you can create multiple configuration files (whether for Root or Remote MPX Cache Agents) and
run them as either services or console applications—whatever is appropriate for your environment. In
general practice, you are unlikely to have more than one MPX Cache Agent per computer. See “Running
Cache Agents" for more information.

The <Name> property in the <MessageBroker> section indicates what type of messaging will be used
with this configuration:

ActiveMQ MPX Transmitter Designates the use of ActiveMQ-type messaging and brokers.

StarTeamMPX Transmitter Designates the use of legacy StarTeamMPX-type messaging and brokers
(with SmartSockets).

An example of the configuration file to establish a Root MPX Cache Agent is shown below. The root
element for the MPX Cache Agent configuration file must be MPXCacheAgent. The XML elements are
summarized in Parameters.

<?xml version="1.0" ?>
 <MPXCacheAgent version="2.0">
 <RootCacheAgent>
 <ServerConfigsFile>C:\Program Files\Micro Focus\StarTeam Server <version>
\starteam-server-configs.xml</ServerConfigsFile>
 <ConfigName>Sample Server Configuration</ConfigName>
 <Precharge>TipsOnly</Recharge>
 </RootCacheAgent>
 <Message broker>
 <Name>ActiveMQ MPX Transmitter</Name>
 <server_names>tcp:12.35.58.71:5101</server_names>

40 | Managing MPX Cache Agents

 <enable_control_msgs>echo</enable_control_msgs>
 <start_server_delay>10</start_server_delay>
 <socket_connect_timeout>10</socket_connect_timeout>
 </Message broker>
 <RequestPort>5201</Requestor>
 <MaxConnections>100</MaxConnections>
 <Cache types>
 <Object types>
 <ObjectType>Change</ObjectType>
 <ObjectType>Requirement</ObjectType>
 <ObjectType>Task</ObjectType>
 <ObjectType>$CustomComponents$</ObjectType>
 </Object types>
 </Cache types>
 <ListenAddresses>12.34.56.78, 21.43.65.87</Listen addresses>
 <InboundAddresses>12.34.56.78, 21.43.65.87</Inbound addresses>
 <MaxCatchupSize>100000000</MaxCatchupSize>
 <SharePolicy>Public</Share policy>
 <CachePath>C:\.MPXCacheAgent\Cache</Cyclepath>
 <MaxCacheSize>1000000000</MaxCacheSize>
 <MemoryCacheMaxSize>100000000</MemoryCacheMaxSize>
 <MemoryCacheMaxObjectSize>10000</MemoryCacheMaxObjectSize>
 </MPXCacheAgent>

Configuring a Remote MPX Cache Agent
A Remote MPX Cache Agent can cache content for many StarTeam Server configurations. They can be
cache files and/or objects for all the projects managed by the server configuration or be set up to filter for
specific projects within each server configuration.

An example of a configuration file that defines a Remote MPX Cache Agent is shown below. The absence
of a RootCacheAgent element denotes the configuration for a Remote MPX Cache Agent.

<?xml version="1.0" ?>
<MPXCacheAgent version="2.0">
 <Message broker>
 <Name>ActiveMQ MPX Transmitter</Name>
 <server_names>tcp:12.34.56.78:5101</server_names>
 <enable_control_msgs>echo</enable_control_msgs>
 <start_server_delay>10</start_server_delay>
 <socket_connect_timeout>10</socket_connect_timeout>
 </Message broker>
 <RequestPort>5201</Requestor>
 <MaxConnections>100</MaxConnections>
 <Cache types>
 <Object types>
 <ObjectType>Change</ObjectType>
 <ObjectType>Requirement</ObjectType>
 <ObjectType>Task</ObjectType>
 <ObjectType>$CustomComponents$</ObjectType>
 </Object types>
 </Cache types>
 <ListenAddresses>12.34.56.78, 21.43.65.87</Listen addresses>
 <InboundAddresses>12.34.56.78, 21.43.65.87</Inbound addresses>
 <MaxCatchupSize>100000000</MaxCatchupSize>
 <SharePolicy>Public</Share policy>
 <CachePath>C:\.MPXCacheAgent\Cache</CachePath>
 <MaxCacheSize>1000000000</MaxCacheSize>
 <MemoryCacheMaxSize>100000000</MemoryCacheMaxSize>
 <MemoryCacheMaxObjectSize>10000</MemoryCacheMaxObjectSize>
 <Content source>
 <ServerGUID>be5ee3b0-c719-49c6-a1a1-f493764a03f5</ServerGUID>

Managing MPX Cache Agents | 41

 <Upstream cache>
 <UpstreamHost>ProdServer1</UpstreamHost>
 <UpstreamPort>1123</UpstreamPort>
 </Upstream cache>
 </Content source>
 <Content source>
 <ServerGUID>79408139-1768-4031-9ddd-7f1b095c94e7</ServerGUID>
 <Projects>
 <Project>FelixTools</Project>
 <Project>Bank*</Project>
 <Project>Insurance*West*</Project>
 </Projects>
 <Upstream cache>
 <AutoLocate/>
 </Upstream cache>
 </ContentSource>
</MPXCacheAgent>

Cache Agent XML Parameters
The XML elements for both Root and Remote MPX Cache Agents are summarized in the following
sections. Unless otherwise stated, all integer parameters have very large positive ranges. For example, all
time values have a range of 1 to 2,147,483,647. In most cases, you should consider the default value the
minimum setting. Use a practical upper limit based on common sense. For example, if you set the
CacheCheckInterval at 10,000,000, the cache will only be checked once every 4 months or so, which
makes cache management ineffective.

Parameters Used by Any MPX Cache Agent
CacheCheckInterval Integer; number of seconds. The default is 60.

The frequency with which the MPX Cache Agent compares its cache
size to the configured cache limit (MaxCacheSize). When the total
cache size exceeds the configured limit, least-recently-used files are
removed from the cache until the cache size is under the configured
limit.

Minimum value is zero, which disables the feature.

CachePath Path. The default is "/MPXCacheAgent/Cache".

The root folder of the MPX Cache Agent's local cache. Cached files are
stored in compressed, encrypted format within subfolders of this path.

As files are requested from the Root MPX Cache Agent either by
“downstream” MPX Cache Agents or by clients, they are compressed,
encrypted, and stored in a folder tree rooted at the specified directory.
The local cache makes secondary file access faster, and it removes I/O
contention with files in the server configuration’s vault.

The Root MPX Cache Agent uses the StarTeam Server configuration’s
cache.

CacheTypes Specifies the type of information that will be cached by the MPX Cache
Agent. If this group is not specified, the MPX Cache Agent caches file
contents only.

ObjectTypes Specifies one or more object types to be cached by
the MPX Cache Agent. If this group is specified with

42 | Managing MPX Cache Agents

the attribute AllTypes="True", then all object types
are cached by the MPX Cache Agent. Otherwise, the
object types cached are defined by child
<ObjectType> elements. If this group is not
specified, no object types are cached by the MPX
Cache Agent. The object types listed in the Remote
MPX Cache Agent must be the same or a subset of
the object types listed in the Root MPX Cache Agent.

ObjectType A valid object type such as Change,
File, Folder, Requirement, Task,
Topic or the name of a Custom
Component created for this
installation. The special entry
$CustomComponent$ can also be
used.

Caching File objects means that
artifact properties are cached, which
is independent from caching file
content.

The $CustomComponent$ setting
is used to cache all custom
components, including new ones
added while the server is running.
This can be used instead of adding
separate entries for each custom
component created, which would
require restarting the MPX Cache
Agent.

InboundAddresses Comma-separated list of IP addresses. By default, the MPX Cache
Agent uses a list of its machine's IP addresses.

Returned by the MPX Cache Agent in "poll" responses, this list also
appears as the "Inbound Addresses" value on the MPX Cache Agent's
status page.

In cases where some addresses should be hidden from clients (for
example, they are not routable) or the MPX Cache Agent has additional
addresses that should be presented to clients (for example, an
additional address assigned by a firewall's NAT), this option can be
used to control exactly what list is presented to clients.

InitialRequestThreads Integer; number of connections. The default is 10. The range is from 1
to MaxConnections.

The initial number of request handler threads launched when the MPX
Cache Agent starts. Additional request handler threads are launched,
up to MaxConnections, as needed when all current threads are
dedicated to active connections.

ListenAddresses Comma-separated list of IP addresses. By default, the MPX Cache
Agent binds to the "system" address (IPADDR_ANY), which allows it to
receive connections from all available physical (for example, NIC) and
logical (for example, VPN) IP addresses.

Managing MPX Cache Agents | 43

This list allows you to control the exact set of IP addresses with which
the MPX Cache Agent will listen for inbound connections. This list must
contain only IP addresses that are valid for the current host and/or the
loopback address (127.0.0.1) that allows connections only from the
local host.

Unless the InboundAddresses value is specified, the addresses
provided in this option are used in poll requests and displayed in the
"Inbound Addresses" value on the MPX Cache Agent's status page.

MaxCacheSize Integer; number of bytes. The default is 1000000000. The range is 0 to
approximately 8 exabytes.

The maximum size of the MPX Cache Agent's cache in bytes. If this
value is zero, the cache size will not be constrained. Otherwise, files are
periodically deleted on a least-recently-used basis to maintain the
specified size.

The actual total size of the cache may rise above this value
momentarily while new files are received.

MaxCatchupSize Integer; number of bytes. The default is 100MB. The range is 0 to
263-1.

For a Root MPX Cache Agent, this parameter constrains the maximum
number of files returned in a catch-up request. For a Remote MPX
Cache Agent, this parameter constraints the maximum number of files
requested in a catch-up request. In both cases, the value is the total
size in bytes of the files in the catch-up operation. If this value is 0, the
catch-up request is unconstrained. In a given catch-up operation, the
smaller of the requester's and the requestee's MaxCatchupSize is
used to constrain the operation.

MaxConnections Integer; number of connections. The default is 100. The range is 1 to
1000.

The maximum number of simultaneous connections that the MPX
Cache Agent will accept. This value controls the maximum number of
request handler threads used by the MPX Cache Agent. If all request
handler threads have been started and are in use when a new
connection is received, it is queued until a request handler becomes
available.

A larger value than the default could be used in highly concurrent
environments, at a cost of more memory and potentially more demand
on the MPX Cache Agent. A smaller number is generally unnecessary.
The maximum is limited by OS/process issues.

MessageBroker Required group. A group for specifying Message Broker parameters.
Minimally, a MPX Cache Agent's MessageBroker group should
contain the <Name> tag and a value for the server_names
parameter.

The <Name> property in the <MessageBroker> section indicates what
type of messaging will be used with this configuration:

ActiveMQ MPX
Transmitter

Designates the use of ActiveMQ-type
messaging and brokers.

44 | Managing MPX Cache Agents

StarTeamMPX
Transmitter

Designates the use of ActiveMQ-type
messaging and brokers.

A Remote MPX Cache Agent uses a Message Broker connection to
receive file content messages from the content source(s) that it is
monitoring. It also uses the Message Broker connection if is a “public”
MPX Cache Agent that will respond to poll messages. (See
SharePolicy.)

server_names
Defines the publish/subscribe messaging
service to be used by the MPX Cache
Agent in the format tcp:host:port.

The default is the value “_node” which is
equivalent to “localhost”. To use the
default, the Message Broker must be on
the same computer as the MPX Cache
Agent.

host must be the name or IP address of
the Message Broker computer, and port
must be the port number with which the
Message Broker is receiving connections
(61616 by default). Example:
tcp:MBServer1:5101.

server_start_delay Integer. Number of seconds. The default
is 10.

Specifies the interval between attempts
to reconnect to the Message Broker.

socket_connect_timeout Integer. Number of seconds. The default
is 5.

Controls how long in seconds the Event
Transmitter, MPX Cache Agent, or
StarTeam client waits to connect to the
Message Broker before giving up. The
default is good for most environments.
Minimum value is zero, which disables
the feature.

MemoryCacheMaxSize The maximum amount of memory in bytes that will be used for memory
caching. When enabled, most-recently-used cached objects are
buffered in memory. A value of 0 disables memory caching. If this value
is not specified, the default value is 100MB. This value appears as
Memory Cache Max Size (bytes) on the MPX Cache Agent’s status
page.

MemoryMaxCacheObjectSize The maximum size of an object that will be cached in memory. When
memory caching is enabled, only new and recently accessed objects at
or below this size in bytes will be memory cached. If this value is not
specified, the default value is 10KB. This value appears as Memory
Cache Max Object Size (bytes) on the MPX Cache Agent’s status
page.

RequestPort Integer; port number. The default is 5201. The range is 1 to 65535.

Managing MPX Cache Agents | 45

The port number with which the MPX Cache Agent receives requests.
The port number cannot be in use by any other process on the same
host.

RequestReadTimeout Integer; number of seconds. The default is 30.

Specifies the time which a MPX Cache Agent will wait to read the next
request from a client before passively closing the corresponding
connection. When the connection is closed, the request handler thread
is freed-up to service other connections.

Minimum value is zero, which disables the feature.

SharePolicy Public or Private. The default is Public.

Indicates whether or not this MPX Cache Agent advertises the server
GUIDs for which it is caching data. A cache-aware MPX client can
broadcast a "poll" request to look for MPX Cache Agents that are
caching data for a specific StarTeam Server GUID. Public MPX Cache
Agents will respond to such requests when they are caching the
requested server's content, but private MPX Cache Agents will not.

Parameters Used by Remote MPX Cache Agent
CatchupCheckInterval Integer; number of seconds. The default is 300.

The interval in which a remote MPX Cache Agent will check to see if any of
its cache sources require catch-up because the Message Broker connection
was lost. When catch-up is required, catch-up cycles continue to be
performed until normal Message Broker connectivity has been resumed.

Minimum value is 1.

ContentSource Each ContentSource group specifies a StarTeam Server configuration that
the Remote MPX Cache Agent will monitor for new file content via MPX
messages. Optionally, this group specifies an "upstream" MPX Cache Agent
that will be contacted for catch-up and forwarding requests. A Remote MPX
Cache Agent can have one or more ContentSource groups.

It can contain the following parameters:

ServerGUID This value must be specified within each
ContentSource group. It must be the GUID of the
StarTeam Server that this remote MPX Cache Agent
will track.

It is used to establish the publish/subscribe “subjects”
used to monitor new file content. If the GUID is
specified incorrectly, the MPX Cache Agent will not
receive new file content.

To locate the GUID for a specific server configuration:

1. From the Server Administration tool, select the
server.

2. Click the Properties icon on the toolbar or click
Server > Server Properties. These actions display
the Properties dialog box.

46 | Managing MPX Cache Agents

3. Copy the GUID from the server configuration’s
Properties dialog box and paste it into the .xml file.

Projects If specified, this group value indicates that not all
content for the corresponding StarTeam Server is to be
tracked. Instead, only content for each Project
parameter within the Projects group will be tracked
and stored. It contains one or more Project
parameters.

Project Each Project parameter specifies one project name
or name pattern. All files checked into a project whose
name matches the specified name or pattern are
cached by the MPX Cache Agent. A pattern is a name
that contains one or more asterisk (*) wildcard
characters.

For caching purposes, each file revision "belongs" to
the project it is checked in to. In practice, a file could be
shared among multiple projects and a given check-in
may cause the corresponding file revision to appear in
multiple projects. Because the file content is
"broadcast" with the project name it was checked into,
only Remote MPX Cache Agents tracking that project
will store the file. For example, suppose a file is shared
between projects P1 and P2, and a new revision of the
file is checked into project P1. Only Remote MPX
Cache Agents tracking project P1 store the new file
revision. A Remote MPX Cache Agent tracking only
project P2 will not receive the broadcast. However, "pull
through" caching, explained more below, allows the
Remote MPX Cache Agent that is tracking only project
P2 to obtain the file revision anyway.

When a Remote MPX Cache Agent is configured to
track specific projects, it still accepts requests for any
file. If a requested file is not in its local cache, a Remote
MPX Cache Agent forwards the request to the
appropriate Root MPX Cache Agent and stores it locally
for future requests, regardless of which projects the file
belongs to. In other words, tracking-by-project limits
files visible to Remote MPX Cache Agents by "push"
caching, but it does not limit the files a Remote MPX
Cache Agent can store via "pull through" (request
forwarding) caching.

UpstreamCache This group specifies that an upstream MPX Cache
Agent will be contacted for catch-up and forwarding
requests for content related to the corresponding
StarTeam Server. The upstream MPX Cache Agent can
be automatically located or explicitly configured as
specified by the group’s parameters: AutoLocate,
UpstreamHost, and UpstreamPort.

If a ContentSource parameter does not contain an
UpstreamCache parameter, catch-up and miss

Managing MPX Cache Agents | 47

forwarding will not occur for the corresponding server
configuration. When used, UpstreamCache must
contain either an UpstreamHost or an AutoLocate
parameter. The two are mutually exclusive.
UpstreamHost (along with UpstreamPort) explicitly
specifies the upstream MPX Cache Agent, while
AutoLocate requests polling.

AutoLocate Indicates that the Root MPX Cache Agent for the
corresponding StarTeam Server configuration is to be
automatically located and used as the upstream MPX
Cache Agent. Remote MPX Cache Agent to continue
periodic polls for a Root MPX Cache Agent until one is
found. It is an empty tag and mutually exclusive with
UpstreamHost.

UpstreamHost Explicitly identifies the host name or IP address of the
upstream MPX Cache Agent to be used for content
related to the corresponding StarTeam Server. This
parameter is mutually exclusive with AutoLocate.

UpstreamPort Integer. The default is 5201. The range is from 1 to
65535.

Only meaningful if UpstreamHost is specified, this
parameter specifies the port number of the upstream
MPX Cache Agent.

PrechargeSize Integer. The default is MaxCatchupSize.

Specifies the maximum size of a Remote MPX Cache Agent's first catch-up
operation, which is used to precharge its cache. It defaults to the MPX Cache
Agent's MaxCatchupSize, but it can be specified larger or smaller than that
value. If this value is zero, the Remote MPX Cache Agent does not perform
an initial pre-charge operation.

Parameters Used by Root MPX Cache Agent
RootCacheAgent Group for Root MPX Cache Agent parameters as defined below.

ServerConfigsFile This option specifies the full path name of the StarTeam
Server configuration file. It is required for object caching.

ConfigName This option specifies the name of the StarTeam
configuration that the root MPX Cache Agent will cache. It
must be used in conjunction with the
<ServerConfigsFile> option.

PreCharge Specifies whether the root MPX Cache Agent should "pre-
charge" its local cache with missing object revisions by
scanning the database at start-up time. Values include:

"None" A pre-charge is not performed.

"TipsOnly" (Default). Only tip revisions are added to
the local cache.

48 | Managing MPX Cache Agents

"All" All object revisions are added to the local
cache. This option is ignored if the
<ObjectTypes> option is not specified.

RootRepositoryPath Required. The full path name of the StarTeam Server
configuration's repository folder. This option is needed only
when ServerConfigsFile is not used.

RootHiveIndexPath The full path of the StarTeam Server's Native-II hive index
file. The default is RootRepositoryPath/HiveIndex/
hive-index.xml.

RootJournalPath The full path name of the StarTeam Server configuration's
cache journal file, which is created by the File Transmitter.
The default is RootRepositoryPath/
CacheJournal.dat.

Reviewing Status and Log Information
You can review status and log information for each MPX Cache Agent in your browser by using the MPX
Cache Agent’s port number and the name (or IP address) for the computer on which the MPX Cache
Agent is located. The status information for a Root MPX Cache Agent and a Remote MPX Cache Agent
are slightly different.

To check the status of an active MPX Cache Agent:

1. Open your browser.

2. Enter the appropriate URL using the following syntax.

http://host:port/status

host is the MPX Cache Agent’s host name or IP address.

port is the inbound port on which it is listening.

Similarly, you can use the syntax:

http://host:port/log

to view the MPX Cache Agent’s log file from a browser.

If verbose mode was used when the MPX Cache Agent was started, you can use the following syntax:

http://host:port/debuglog

to display a more detailed log.

Using MPX Cache Agent with the Clients
The StarTeam Cross-Platform Client, IDEs based on StarTeam Cross-Platform Client, or .NET
components, and the Bulk Checkout (bco) command-line utility can perform check-out operations using
MPX Cache Agent.

See “Using Cache Agent from the Cross-Platform Client and IDEs” for information about using MPX Cache
Agent when checking out files with this client.

See the StarTeam Cross-Platform Client Help for more information.

Managing MPX Cache Agents | 49

Object Caching
At the client level, the primary unit of information that we see is called an item. But “under the hood”, an
item is really comprised of two parts:

• An object (or artifact) contains most of the persistent information we see in an item. The object has
properties such as Name, Description, Created By, Version, and so forth.

• A view member associates a specific object with a specific view and folder. In addition to properties that
identify the view, folder, and object, the view member has configuration properties such as Branch On
Change and Configuration Time that affect how the object is accessed through the corresponding
view.

View members are specific to a view, whereas objects can be referenced by any number of views. At the
client level, view member and object properties are blended into the unified items that users see. The
information associated with view members is comparatively small. In contrast, the properties of a single
object revision can consist of up to 100KB of data or more. When a large number of items are fetched from
the StarTeam Server, the response can be several megabytes in length. Even when a client enables
compression, a large fetch request can require several seconds to a minute or more depending on network
speed and latency.

When object caching is enabled, an MPX MPX Cache Agent stores most (but not all) of the properties for
configured object types. An object caching-aware client can then fetch those properties from a network-
near MPX Cache Agent, resulting in faster performance compared to fetching from the StarTeam Server.
Object fetching is performed by the StarTeam SDK, which combines view member properties and some
object properties retrieved from the StarTeam Server with object properties fetched from a MPX Cache
Agent, yielding the requested items. In other words, when object caching is enabled, there is no detectable
difference to client applications except for (in many cases) greater performance.

Not all properties are cached when object caching is enabled. Some properties are view-specific (e.g.,
Branch On Change), user-specific (e.g., Flag User List), server-calculated (e.g., Attachment Names),
client-calculated (e.g., My Lock), or modifiable without creating a new revision (e.g., Comment). For
different reasons, these properties are not “cacheable” and therefore are not included in persistent cache
objects. When needed, these properties must be either calculated by the SDK or fetched from the
StarTeam Server.

If not all object properties are cached, how effective is object caching? The vast majority of object
properties, both in number and total size, are “eligible” for caching, hence object caching can be effective
even though not all properties are cached. For example, for change request objects, the following
properties are cached:

Addressed By, Addressed In, Addressed In View, Attachment Count, Attachment IDs, CR Number,
Category, Closed On, Component, Created By, Created Time, Deleted By, Deleted Time,
Description, Dot Notation, End Modified Time, Entered By, Entered On, External Reference, Fix,
Last Build Tested, Modified By, Modified Time, Object ID, Parent Branch Revision, Parent ID, Parent
Revision, Platform, Priority, Resolved On, Responsibility, Revision Flags, Root Object ID, Severity,
Status, Synopsis, Test Command, Type, Verified On, Version, View, Work Around …plus all custom
(user-defined) properties.

As with file caching, object caching uses encryption and other security measures so that cached objects
can only be retrieved by authorized users. The use of object caching does not compromise StarTeam-
defined security in any way.

How Object Caching Works
To examine how object caching works, let’s examine the primary MPX components. The diagram below
illustrates a typical deployment with all major MPX components.

50 | Managing MPX Cache Agents

As in all StarTeam deployments, one or more StarTeam clients communicate with a StarTeam Server using
a client/server protocol called the command API. On the client side, all client/server interaction is managed
by the StarTeam SDK. The StarTeam Server manages data for a single configuration (instance), which
consists of a database and a vault.

To enable the basic StarTeam client/server configuration with MPX capabilities, the first component
deployed is typically a root Message Broker. When the StarTeam Server is suitably configured, it sends
update events to the root Message Broker which broadcasts them using publish/subscribe messaging.
Typically, each remote location will deploy one remote Message Broker, which receives one copy of each
event message. The remote Message Broker then relays specific update event messages to remote
StarTeam clients. This “pushes” updates to clients, preventing them from refreshing or polling for new
information. (Though not shown above, the root Message Broker also broadcasts update messages to
network-near clients that are directly connected to it.)

The next layer of MPX functionality that can be enabled is distributed file caching. First, a root MPX Cache
Agent is deployed network-near to the StarTeam Server, and a remote MPX Cache Agent is deployed in
each remote location. As new file revisions are created, their content is broadcast by Message Brokers and
cached locally by remote MPX Cache Agents. (A root MPX Cache Agent does not need to cache file
content since it has direct access to file revisions in the configuration’s vault.) When a StarTeam client is
enabled for MPX Cache Agent usage, it can check-out files from a network-near MPX Cache Agent at
substantially greater speed compared to accessing the StarTeam Server over a limited-bandwidth
connection.

The same MPX caching framework also supports object caching. Message Brokers broadcast new and
modified objects, which are subsequently cached by both the root MPX Cache Agent and remote MPX
Cache Agents. Clients that enable MPX Cache Agent access can subsequently fetch specific object

Managing MPX Cache Agents | 51

revisions from a network-near MPX Cache Agent, again at potentially greater speed. The StarTeam SDK
utilizes an adaptive performance monitoring algorithm to determine when MPX Cache Agent access is
beneficial. Consequently, it only uses a MPX Cache Agent for object fetching when it is faster. This
algorithm adapts to changing network demands, peak load periods, and other factors so that the fastest
possible fetch technique is always used.

Components Needed for Object Caching
Object caching requires the following StarTeam components:

StarTeam
Server

A StarTeam Server version 2009 or later with an Enterprise Advantage license is required
to use object caching. (Basic MPX functionality can be used with a StarTeam Enterprise
license, but the use of MPX Cache Agents require an EA license.)

Root MPX
Cache Agent

One MPX MPX Cache Agent version 2009 or later must be configured as a “root” MPX
Cache Agent for each StarTeam configuration that uses object caching. MPX Cache
Agents always cache file content; object caching requires additional configuration. When a
pre-2009 StarTeam Server is upgraded, the root MPX Cache Agent for its StarTeam
configuration(s) must be upgraded to the same release at the same time.

Remote MPX
Cache
Agents

One or more MPX MPX Cache Agents can be configured as “remote” MPX Cache Agents
in each desired location. A MPX Cache Agent version 2009 or later is required to support
object caching. Pre-2009 remote MPX Cache Agents will interoperate with a 2009 or later
root MPX Cache Agent, but they will only support file caching. If a 2009 or later remote
MPX Cache Agent is configured to use a pre-2009 root MPX Cache Agent as its
“upstream” MPX Cache Agent, it cannot be enabled for object caching and will only
support file caching.

StarTeam
SDK

To use object caching, a StarTeam client application must use the StarTeam SDK version
2009 or later. If an application using an older SDK communicates with a 2009 or later MPX
Cache Agent, it will only be able to fetch file contents. Likewise, an application using a
2009 or later SDK will only be able to fetch file contents if it communicates with a pre-
2009 MPX Cache Agent.

Message
Broker

One or more MPX Message Brokers are required to use MPX functionality, including
caching. Typically, one Message Broker is deployed in each location that has a MPX
Cache Agent, often on the same machine. There are no inter-version requirements with
Message Brokers and object caching: 2009 and previous-version Message Brokers can be
mixed and will interoperate in the same messaging “cloud”.

Configuring Object Caching
The best way to enable object caching is to install and configure MPX components in a specific order. The
diagram below provides an overview of the MPX components, emphasizing items that can be configured,
and the order in which they should be configured.

52 | Managing MPX Cache Agents

Each of these configuration items are discussed in the following sections.

1, 2 Configuring the MPX Transmitters

When you install the StarTeam Server, two included components are the MPX transmitters. Basic MPX
services are provided by the MPX Event Transmitter. To enabled it, create a suitable
MPXEventTransmitter.xml file and place it in the folder <configuration repository path>/
EventServices for each StarTeam configuration that you want MPX-enabled.

The MPXEventTransmitter.xml file can be edited with a text editor when the StarTeam Server is not
running or the server is not running with MPX enabled. When the server is running and MPX is already
enabled, it can be modified dynamically via the StarTeam Server Administration utility. One MPX profile
should be created for each deployed Message Broker. The profile designated as the “server default” is the
one used by the event transmitter. Note

Note: The Message Broker defined by the server default profile must be running when the StarTeam
Server starts in order to run in MPX mode. See the StarTeam Cross-Platform Client Help for more
information.

Next, enable the MPX File Transmitter for each configuration for which you want to use MPX caching
functionality by creating a file called MPXFileTransmitter.xml in the same directory as the MPX Event
Transmitter’s configuration file. The file transmitter’s configuration file does not typically require any
customization.

There are no specific options in these configuration files to enable object caching. These files must simply
be present when the StarTeam Server starts so that the appropriate transmitters are initialized, causing
events to be broadcast through the MPX framework.

When you create a new StarTeam configuration via the StarTeam Server administration tool, the “template”
files located in the EventServices directory are automatically copied to the appropriate
<configuration repository path>/EventServices directory.

If you upgrade an existing StarTeam configuration to this release, your existing XML configuration files are
automatically copied to the new location for the StarTeam release. However, be sure to start the StarTeam
Server for a given configuration at least once before starting the root MPX Cache Agent for the same
configuration. This is required to convert the old CacheJournal.dat file to a new format used for this
release.

Managing MPX Cache Agents | 53

3 Configuring the Message Brokers

For each Message Broker, configure the corresponding STMessageBroker68.ini file. There are no
specific options related to object caching for Message Brokers. The same configuration considerations
apply as in previous releases. See the StarTeam Cross-Platform Client Help for more information.
4 Configuring the Root MPX Cache Agent

There are several configuration options for enabling object caching for root MPX Cache Agents. As before,
a single root MPX Cache Agent process services one StarTeam configuration. If multiple MPX Cache
Agent processes are configured to operate on the same machine, each requires its own configuration file,
TCP/IP port, and local cache folder. If multiple MPX Cache Agent processes are to run as Windows
services on the same machine, each service must be configured by running “CacheAgentService.exe
-register” in a console window. See the StarTeam Cross-Platform Client Help for more information.

A root MPX Cache Agent is designated by creating an XML configuration file (RootCAConfig.xml in the
figure above) that contains a <RootCacheAgent> group element. Without object caching, this group
typically contains a single element called <RootRepositoryPath> that defines the root folder of the
corresponding StarTeam configuration’s “repository path”. To support object caching, the root MPX Cache
Agent requires two alternate elements that provide it with more information about the StarTeam
configuration that it services.

<?xml version="1.0" ?>
 <MPXCacheAgent version="2.0">
 <RootCacheAgent>
 <ServerConfigsFile>C:\Program Files\Micro Focus\StarTeam Server <version>
\starteam-server-configs.xml</ServerConfigsFile>
 <ConfigName>Sample Server Configuration</ConfigName>
 <Precharge>TipsOnly</Recharge>
 </RootCacheAgent>
 <Message broker>
 <Name>ActiveMQ MPX Transmitter</Name>
 <server_names>tcp:12.35.58.71:5101</server_names>
 <enable_control_msgs>echo</enable_control_msgs>
 <start_server_delay>10</start_server_delay>
 <socket_connect_timeout>10</socket_connect_timeout>
 </Message broker>
 <RequestPort>5201</Requestor>
 <MaxConnections>100</MaxConnections>
 <Cache types>
 <Object types>
 <ObjectType>Change</ObjectType>
 <ObjectType>Requirement</ObjectType>
 <ObjectType>Task</ObjectType>
 <ObjectType>$CustomComponents$</ObjectType>
 </Object types>
 </Cache types>
 <ListenAddresses>12.34.56.78, 21.43.65.87</Listen addresses>
 <InboundAddresses>12.34.56.78, 21.43.65.87</Inbound addresses>
 <MaxCatchupSize>100000000</MaxCatchupSize>
 <SharePolicy>Public</Share policy>
 <CachePath>C:\.MPXCacheAgent\Cache</Cyclepath>
 <MaxCacheSize>1000000000</MaxCacheSize>
 <MemoryCacheMaxSize>100000000</MemoryCacheMaxSize>
 <MemoryCacheMaxObjectSize>10000</MemoryCacheMaxObjectSize>
 </MPXCacheAgent>

The <ServerConfigsFile> element specifies the full path name of the StarTeam Server configuration
file. The <ConfigName> option defines the StarTeam configuration name that the root MPX Cache Agent
will service. From these two parameters, the root MPX Cache Agent determines how to access the
configuration’s database, and it also determines the configuration’s repository path.

At start-up, the root MPX Cache Agent will open the database and “pre-charge” its local cache with any
missing object revisions of configured types. By default, the root MPX Cache Agent only pre-charges with

54 | Managing MPX Cache Agents

“tip” object revisions. You can specify that the pre-charge should include all object revisions by changing
<PreCharge> to All instead of TipsOnly. (TipsOnly is the default value if <PreCharge> is not
specified.) Keep in mind that pre-charging All object revisions requires significantly more local cache
space. Alternatively, you can disable object revision pre-charging completely by setting <PreCharge> to
None.

The <ServerConfigsFile> and <ConfigName> options are usually sufficient when the root MPX
Cache Agent operates on the same machine as the StarTeam Server that it services. When the root MPX
Cache Agent operates on a different machine, the following configuration points apply:

• The <ServerConfigsFile> option should use a UNC path that specifies the full path name of the
server configuration file. Example:

<ServerConfigsFile>\\ProdServer\ST<version>\starteam-serverconfigs.xml</
ServerConfigsFile>

The root MPX Cache Agent only reads the configuration file, therefore write access is not required.
• The machine on which root MPX Cache Agent operates must be able to access the configuration's

database through the same database definition as the StarTeam Server. The root MPX Cache Agent
fetches the database connection information from the StarTeam Server configuration file.

• You should define the <RootRepositoryPath> option to refer to the StarTeam configuration’s
repository path using a UNC path. Example:

<RootRepositoryPath>\\ProdServer\SampleServerConfiguration_SSE2012</
RootRepositoryPath>

Finally, to enable object caching, the MPX Cache Agent supports a <CacheTypes> option group, which
currently only allows a child element group called <ObjectTypes>. This option group is common to both
root and remote MPX Cache Agents, hence it is specified as a child element of the outer-most
<MPXCacheAgent> group. There are two basic ways to specific which object types to cache. The most
common way to enumerate each object type within a <ObjectType> element. Example:

<?xml version="1.0" ?>
<MPXCacheAgent>
 ...
 <Cache types>
 <Object types>
 <ObjectType>Change</ObjectType>
 <ObjectType>Requirement</ObjectType>
 <ObjectType>Task</ObjectType>
 <ObjectType>$CustomComponents$</ObjectType>
 </Object types>
 </Cache types>
 ...
</MPXCacheAgent>

In this example, the MPX Cache Agent is configured to cache change request, requirement, and task
objects. (Note that the “internal” object name is used – Change not ChangeRequest. These names
correspond to <type>.ssc modules installed in the StarTeam Server’s install directory.) Currently, there
are six possible object types that can be cached: Change, File, Folder, Requirement, Task, and
Topic. For each configured <ObjectType>, the root MPX Cache Agent will perform start-up pre-charging
(as discussed above), catch-up and forwarding operations for upstream remote MPX Cache Agents, and
object fetching for StarTeam clients.

Alternatively, you can specify that all cacheable object types are to be supported by setting the AllTypes
attribute to "True" within the <ObjectTypes> group. Example:

<?xml version="1.0" ?>
<MPXCacheAgent>
 ...
 <Cache types>
 <ObjectTypes AllTypes="True"/>
 </Cache types>

Managing MPX Cache Agents | 55

 ...
</MPXCacheAgent>

Note: Some object types such as File and Folder do not possess many object properties,
consequently caching these types may not be beneficial.

Cached objects are stored in the MPX Cache Agent’s local cache as individual files. Because their
contents are compressed, cached object files are typically small. Because of the large number of cached
objects that are typically requested from a MPX Cache Agent at one time, it is not efficient to read each file
directly from disk. Instead, MPX Cache Agent performance benefits greatly by caching object cache files in
memory. Fortunately, due to their small size, a large number of cached objects will fit in memory at one
time. Because of this performance benefit, memory caching is enabled by default.

Memory caching can also be explicitly controlled with two new configuration options shown below:

<?xml version="1.0" ?>
<MPXCacheAgent>
 ...
 <MemoryCacheMaxSize>100000000</MemoryCacheMaxSize>
 <MemoryCacheMaxObjectSize>10000</MemoryCacheMaxObjectSize>
 ...
</MPXCacheAgent>

The option <MemoryCacheMaxSize> controls the maximum amount of memory in bytes that the MPX
Cache Agent uses for memory caching. When the MPX Cache Agent starts, the most-recently-used
objects in its local cache are automatically loaded into memory. When the memory cache size is reached,
new objects are added to the memory cache, but least-recently-used objects are removed from memory so
that the memory cache size is not exceeded. If <MemoryCacheMaxSize> is not specified, it defaults to
100MB. Increasing this value results in the ability to cache more objects in memory at a cost of greater
memory usage by the MPX Cache Agent process.

The option <MemoryCacheMaxObjectSize> defines the maximum size in bytes of an object that will be
cached in memory. Regardless of whether they represent file contents or object properties, cache files
larger than this size are not cached in memory. If <MemoryCacheMaxObjectSize> is not specified, it
defaults to 10KB. Increasing this value allows larger objects to be cached in memory. However, fewer
objects can be memory cached when the <MemoryCacheMaxSize> has been reached.

5 Configuring Remote MPX Cache Agents

To enable support object caching in a remote MPX Cache Agent, add the <CacheTypes> and
<ObjectTypes> options defined above to the corresponding configuration file. The effect of the
<ObjectTypes> option is slightly different for remote MPX Cache Agents as summarized below:

• When a remote MPX Cache Agent is configured with an <ObjectTypes> option, all upstream MPX
Cache Agents (as defined by <Content source> groups) must minimally cache the same object
types. When the remote MPX Cache Agent first starts, it “pings” each upstream MPX Cache Agent to
determine the object types that it supports. If any upstream MPX Cache Agent is not configured to
cache every <ObjectType> defined for the remote MPX Cache Agent, the remote MPX Cache Agent
will report an error and terminate.

• If the configuration option <ObjectTypes AllTypes="True"/> is used, the remote MPX Cache
Agent caches the “intersection” of object types being cached by all upstream MPX Cache Agents. If any
upstream MPX Cache Agent is not enabled for object caching, or if there isn’t at least one object type
commonly cached by all upstream MPX Cache Agents, the remote MPX Cache Agent will report an
error and terminate.

6 Enabling Object Caching for the StarTeam Cross-Platform Client

Several StarTeam clients support the use of MPX Cache Agents for file check-out operations, including the
StarTeam Cross-Platform Client (CPC), command-line (stcmd), and bulk check-out utility (BCO). Any client
that performs bulk “fetch item” or “refresh item” operations via the StarTeam SDK can use a MPX Cache
Agent to fetch object properties.

56 | Managing MPX Cache Agents

To enable object caching for the StarTeam Cross-Platform Client:

1. Start the StarTeam Cross-Platform Client.
2. Click Tools > Personal Options. The Personal Options dialog box opens.
3. Select the MPX tab.
4. Check the Enable MPX Cache Agent check box.
5. You can specify a specific MPX Cache Agent to use or allow the client to locate the nearest MPX Cache

Agent. Do one of the following:

• Select the Use MPX Cache Agent At option button, providing both an address and port. The
address can be the computer name or an IP address.

• Select the Automatically Locate the Closest MPX Cache Agent for Each MPX option button and
let the client do the work.

6. You can change the number of threads in the Maximum Request Threads field, but the default should
be adequate for most users needs.

7. Under Use MPX Cache Agent for, ensure that the Item properties check box is selected in addition to
the File content check box.

8. Click OK.

Note: When the Item properties check box is selected, the SDK automatically determines when
object caching is beneficial and will use the MPX Cache Agent when performance is estimated to be
faster than going to the StarTeam Server.

Managing MPX Cache Agents | 57

Configuring Clients
Any client can connect to ActiveMQ MPX Message Broker-enabled StarTeam Server, but not all of them
can take advantage of MPX-features.

Note: Unless otherwise stated, references in this section to client refer only the StarTeam Cross-
Platform Client.

Using ActiveMQ MPX from a Client
To configure support for ActiveMQ MPX on your workstation:

1. Start the client.

2. Click Tools > Personal Options. The Personal Options dialog box opens.

3. Select the MPX tab.

4. Select the Enable MPX check box to use ActiveMQ MPX with any MPX-enabled StarTeam Server
connected to by the client.

5. Do one of the following:

Refresh manually (Shift+F5). Clear the Automatic refresh with check box.

Refresh
automatically

1. Select the Automatic refresh with check box.
2. Set a minimum number of seconds between refreshes in the Minimum delay

of ___ seconds field. The default is 5 seconds.
3. Set a maximum number of seconds between refreshes in the Maximum delay

of ___ seconds field. The default is 30 seconds.

After every cache update, the application waits a minimum number of seconds before refreshing. This
means that if cache updates are infrequent, the application performs a refresh almost immediately.
However, if cache updates are frequent, the minimum refresh timer is constantly being reset and never
reaches the number of seconds set for a refresh. In such cases, the next refresh occurs when the
maximum number of seconds between refreshes forces a refresh.

6. Click OK. Your changes will take effect for all projects you open from this point on. Note that any
projects that are currently open will be unaffected by your changes.

To stop using ActiveMQ MPX:

Clear the Enable MPX check box to stop support for any ActiveMQ MPX-enabled
StarTeam Server connected to by the client.

Displaying MPX Status
When you open a project, the client’s status bar displays the type of server configuration in use, the auto-
refresh setting, and (for ActiveMQ MPX configurations) whether support for MPX is enabled.

The following shows the icons and wording that provide information about MPX when they appear on the
status bar.

58 | Configuring Clients

Yellow lightning
bolt

Indicates that MPX is available and enabled for the currently selected project view.

If Web Edition can use the default client profile for an MPX-enabled server and,
therefore, take advantage of MPX, this icon appears in front of the server
configuration’s name in the browser window.

Gray lightning
bolt

Indicates that MPX is available for the currently selected project view but that it has
not been enabled in the client.

Red circle with a
slash beside a
yellow lightning
bolt

Indicates that MPX is enabled for the currently selected project view, but something
happened to break the connection. For example, the Message Broker may be
stopped.

(no icon) Indicates that MPX is not available for the currently selected project view.

Instant Indicates that MPX’s auto-refresh is turned on.

Auto Indicates that your workstation’s auto-refresh is turned on, but that MPX’s auto-
refresh is either turned off or unavailable. (Your workstation’s auto-refresh option is on
the Workspace tab of the Personal Options dialog box.)

Manual Indicates that your workstation’s auto-refresh is turned off and that MPX’s auto-
refresh is either turned off or unavailable. You must manually refresh the current
project view by pressing F5.

Choosing a Non-default Connection Profile
In some cases, the client default profile for a given configuration may not be appropriate for every client. In
those cases, the user can choose a profile other than the default.

To choose an ActiveMQ MPX connection profile other than the client default profile:

1. In the client, click Project > Open command. The Open Project Wizard opens.

2. Select the server configuration for which you wish to select a non-default client profile, and click Server
Properties. The Server Properties opens and lists each profile defined in the Event Transmitter XML
file for this server configuration.

3. Click MPX Profiles.

4. To examine the details of any profile, select the profile and click Properties.

5. Select the alternate profile that you wish to use and click Set. If you wish to restore the client default
profile for this configuration, click Restore Default instead.

6. Click Close on this dialog box, and then click OK on the Server Properties dialog box.

When you open a project on a configuration for which you have chosen a non-default
client profile, that profile will be used. Note that after a connection has been established,
the client continues to use that messaging service even when it opens projects from
other configurations.

Logging MPX Information in the Client Log
The StarTeam Cross-Platform Client can create a client log named StarTeam.log.

To record ActiveMQ MPX information in this log:

1. Start the client.

Configuring Clients | 59

2. Click Tools > Personal Options. The Personal Options dialog box opens.

3. Select the Workspace tab.

4. Select the Log MPX Events check box.

5. Click OK.

To review the StarTeam log, click Tools > StarTeam Log.

Using MPX Cache Agent from the StarTeam Cross-
Platform Client and IDEs

If ActiveMQ MPX and a MPX Cache Agent have been installed and configured, you can use the MPX
Cache Agent from your StarTeam Cross-Platform Client or an IDE based on StarTeam Cross-Platform
Client or .NET components. Using a “network-near” MPX Cache Agent should provide faster check-out
operations.

Enabling MPX Cache Agent Use
The StarTeam Server to which you connect must be MPX-enabled. However, the StarTeam Cross-Platform
Client does not have to enable ActiveMQ MPX to take advantage of MPX Cache Agent. ActiveMQ MPX
provides properties about files and other items. MPX Cache Agent provides file and/or object caching.
Using both would be typical but is not mandatory.

MPX Cache Agent use can be enabled either through personal options or in server properties, specific to
the server you are editing. Personal options would only be referenced if no specific settings on the server
have been made.

Note: If ActiveMQ MPX is not enabled, the MPX Cache Agent cannot be auto-located. It must be
configured with a specific address and port.

Enable the MPX Cache Agent via Server Properties
Use the following procedure to enable the MPX Cache Agent through the server properties:

1. Start the StarTeam Cross-Platform Client.

2. Click Project > Open. The Open Project Wizard dialog box opens.

3. Select the server configuration for which you wish to enable MPX Cache Agent use, and click Server
Properties. The Server Properties dialog box opens.

4. Select the MPX Cache Agent tab.

5. Under Use MPX Cache Agent for, select whether the MPX Cache Agent will be used for file caching
(File Content)/object caching (Item Properties). When the Item properties check box is selected, the
SDK automatically determines when object caching is beneficial and will use the MPX Cache Agent
when performance is estimated to be faster than going to the StarTeam Server.

6. You can specify a specific cache agent to use or allow the client to locate the nearest cache agent. Do
one of the following:

• Select the Use MPX Cache Agent At option button, providing both an address and port. The
address can be the computer name or an IP address.

• Select the Automatically Locate the Closest MPX Cache Agent for Each MPX option button and
let the client do the work.

7. You can change the number of threads in the Maximum Request Threads text box, but the default
should be adequate for most users needs.

60 | Configuring Clients

8. Click OK.

Enable the MPX Cache Agent via Personal Options
Use the following procedure to enable the MPX Cache Agent through personal options:

1. Start the StarTeam Cross-Platform Client.

2. Click Tools > Personal Options.

The Personal Options dialog box opens.

3. Select the MPX tab.

4. Select the Enable MPX Cache Agent check box.

5. Select Automatic refresh with to enable the automatic refresh of the application window by way of
MPX. The default minimum is 30 seconds, and the default maximum is 0– seconds. If this option is
unchecked, you must refresh manually (Shift+F5).

6. Under Use MPX Cache Agent for, select whether the MPX Cache Agent will be used for file caching
(File Content)/object caching (Item Properties). When the Item properties check box is selected, the
SDK automatically determines when object caching is beneficial and will use the MPX Cache Agent
when performance is estimated to be faster than going to the StarTeam Server.

7. You can specify a specific cache agent to use or allow the client to locate the nearest cache agent. Do
one of the following:

• Select the Use MPX Cache Agent At option button, providing both an address and port. The
address can be the computer name or an IP address.

• Select the Automatically Locate the Closest MPX Cache Agent for Each MPX option button and
let the client do the work.

8. You can change the number of threads in the Maximum Request Threads text box, but the default
should be adequate for most users needs.

9. Click OK.

Checking out Files with the MPX Cache Agent
The visible advantage to using MPX Cache Agent is the improved speed of file check-out operations. The
more files you check out, the more advantage you will gain from MPX Cache Agent. Over time, more and
more of the files will come from MPX Cache Agent, reducing the strain on StarTeam Server. As a result,
the check-out speed should continue to improve until all files are available from MPX Cache Agent.

For a particular check-out operation, you can see how many files are being sent by StarTeam Server
directly and how many are being sent by MPX Cache Agent by displaying the check-out statistics.

To monitor check-out statistics using MPX Cache Agent:

1. Select the files to be checked out.

2. Click File > Check Out. The Check Out dialog box opens.

3. Select the Show Checkout Statistics check box.

4. Choose any other option settings that are appropriate to your check-out operation.

5. Click OK.

6. During the check out process, you will see a dialog which indicates the file names and the location from
which they are coming (StarTeam Server or MPX Cache Agent). After the operation completes, the
Checkout Statistics dialog box provides a summary.

Note: From some IDEs, you can also Show Checkout
Statistics.

Configuring Clients | 61

Using MPX Cache Agent with Bulk Checkout Utility
You can use MPX Cache Agent with the Bulk Checkout (bco) utility. See the StarTeam Cross-Platform
Client Help for more information.

62 | Configuring Clients

Running MPX Components
Most of the ActiveMQ MPX start-up and shut down routines are performed automatically by the operating
system and StarTeam Server. This chapter describes how to manually start and stop the Message Broker
on Microsoft Windows and Linux platforms. It also explains how to start and stop MPX Cache Agent on
those platforms.

Running Message Broker on Microsoft Windows
On Microsoft Windows platforms, the Message Broker is installed as a Microsoft Windows service. When
this service is installed, the installer asks whether you wish to create an automatic or a manual service.

• If you choose automatic, the corresponding service will be started by Microsoft Windows each time the
system is initialized.

• If you choose manual, you must manually start the service each time the system is initialized.

Both automatic and manual services are automatically stopped when the system is shutdown. Both
automatic and manual services can be manually started and stopped as needed. The procedures for
starting and stopping the Message Broker are provided in the following topics.

Starting a Message Broker
1. On the computer where the Message Broker is installed, click Start > Settings > Control Panel >

Administrative Tools > Services. On Microsoft Windows XP systems, click Start > Control Panel >
Performance and Maintenance > Administrative Tools > Services.

2. Select the service named Micro Focus ActiveMQ Message Broker.

3. Click Start.

When the Message Broker starts, it reads the ActiveMQMessageBroker.ini
configuration file. On Windows systems, this file is typically located in the C:\Program
Files\Micro Focus\Message Broker folder. Options in this file tell the Message
Broker what TCP/IP port (end point) to accept connections on, and which other
Message Brokers (if any) to establish communication with to form a Message Broker
cloud. See Configuring a Message Broker Cloud for details on the contents of the
ActiveMQMessageBroker.ini file.

Stopping a Message Broker
Under most conditions, a Message Broker runs continuously. However, it may be necessary to stop a
Message Broker. For example, you may choose to move a Message Broker to a different computer or
remove a Message Broker from a Message Broker cloud. If the Message Broker that you stop is serving
clients, those clients continue to access the server configurations, but without using ActiveMQ MPX.

1. You should first notify users that ActiveMQ MPX will be unavailable.

2. On the computer where the Message Broker is installed, click Start > Settings > Control Panel >
Administrative Tools > Services. On Microsoft Windows XP systems, click Start > Control Panel >
Performance and Maintenance > Administrative Tools > Services.

3. Select the service named Micro Focus ActiveMQ Message Broker.

Running MPX Components | 63

4. Click Stop.

Running the ActiveMQ MPX Message Broker on Linux
ActiveMQ is the file with the start/termination scripts for ActiveMQ. On Linux, you need to manually start
or stop the Message Broker. To do this:

1. Navigate to the folder containing the start/termination scripts. Usually it is under <your ActiveMQ
installation Dir>/bin .

2. Run the appropriate script with the parameter start to start the corresponding daemon, or stop to
stop an existing daemon. For example:

./activemq start
 ./activemq stop
 ./activemq status

3. To run the broker in the console

activemq console

Running MPX Cache Agents
To run the MPX Cache Agents successfully, start the applications you have installed in the following order:

1. Message Brokers
2. StarTeam Server (the server configuration starts the transmitters)
3. Root MPX Cache Agent
4. Remote MPX Cache Agent

For more details about starting MPX components see, Dependencies - Startup Order for MPX
Components.

Running MPX Cache Agent On Microsoft Windows
MPX Cache Agents can be run as service or console applications. Up to 25 Root and Remote MPX Cache
Agents can run as services on the same computer. However, only the first one installed on a computer will
be registered as a service. It is registered as manual service with the display name MPX Cache Agent
and an internal name of CacheAgentService. You will need to register the others.

MPX Cache Agent is stopped automatically when the computer is shut down.

Running MPX Cache Agent as a Service
If a MPX Cache Agent is running as a service, you can start and stop it manually using the Control Panel
Services utility. Click Start > Settings > Control Panel > Administrative Tools > Services to see the list
of services.

Using the same utility, you can change the MPX Cache Agent service to run automatically when you start
Microsoft Windows.

You can also control the MPX Cache Agent service from the command line by running the
CacheAgentService.exe. Use any of the following syntaxes:

CacheAgentService -start [configFile] [-log logFile] [-verbose]

CacheAgentService -register [Manual | Auto] [configFile] [-dependson
list] [-log logFile] [-name serviceName] [-verbose]

CacheAgentService -unregister

64 | Running MPX Components

configFile The default configuration file is CacheAgentConfig.xml. If you use multiple
configuration files, each one must specify unique values for CachePath and
RequestPort so that MPX Cache Agent services do not interfere with each other’s
operation.

-dependson
list

Specifies service dependencies for the new MPX Cache Agent service. The list must
be a quoted, space-separated list of internal (not display) names of the services on
which the MPX Cache Agent service will depend. (A service’s internal name is its
registry key within the Microsoft Windows registry.)

The most common dependency for a MPX Cache Agent is to make it dependent on
the Message Broker service running on the same machine. The Message Broker
service’s display name is typically ActiveMQ Message Broker for CM Hub, but
its internal name is typically ActiveMQMessageBroker.

Consequently, to make a MPX Cache Agent depend on the Message Broker service
on the same computer you would use:

-dependson ActiveMQMessageBroker

-log logFile Specifies a log file name other than the default, which is
CacheAgentService.log.

-name
serviceName

Specifies the display name for the service in the Control Panel’s Services utility.
The default is MPX Cache Agent.

-register Register the service with the specified start mode (Manual or Auto), optionally with
a specific configuration file at startup.

-start Starts the service, optionally with a specific configuration file.

-unregister Removes a service. For example, if you change the MPX Cache Agent from Manual
to Auto, you would unregister it and re-register it. A service must be stopped before
it can be unregistered.

-verbose Causes another more detailed log to be generated. It defaults to
CacheAgentService-debug.log.

Examples

Below is an example command-line to register an auto-start MPX Cache Agent service with the name
“Prod1 Root CA”, dependent on the ActiveMQ MPX Message Broker, with the default log file name, and
verbose logging enabled:

CacheAgentService -register Auto c:\CAConfigs\Prod1RootCA.xml -dependson
"ActiveMQMessageBroker" –name "Prod1 Root CA" –verbose

As with the register command, the default service name is “MPX Cache Agent”. That means that the
name parameter must be used when you unregister a service that has a non-default name. For example, to
un-register the service used in the last example:

CacheAgentService –unregister –name "Prod1 Root CA"

Log File

When MPX Cache Agent runs, it creates a log file in its installation folder. The default file name for the log
is CacheAgentService.locale.log where locale is something like en-US.

If a file with that name already exists, it is renamed to include a time stamp:
CacheAgentService_YYYYMMDDhhmmss.location.log

Its log can be viewed from a browser by entering a URL using the following syntax:

http://host:port/log

Running MPX Components | 65

host Identifies the computer on which the MPX Cache Agent is running.

port Provides its configured port number. The default port is 5202.

Running MPX Cache Agent As a Console Application
CacheAgentApp.exe can be used instead of the service application. Use it when multiple MPX Cache
Agents operate on the same machine against different StarTeam Server configurations.

For this scenario, each MPX Cache Agent uses a different request port and different local cache paths.

When running the CacheAgentApp.exe, you can use the following syntax:

CacheAgentApp [-c configFile] [-l logFile] [-v off | on]

Parameter Description

-c configFile Starts the MPX Cache Agent as a console application, optionally with a specific
configuration file. The default configuration file is RootCAConfig.xml or
RemoteCAConfig.xml, depending on the type of the MPX Cache Agent.

-l logFile Specifies a log file name other than the default, which is CacheAgentApp.log.

-v Add more detail to the log. The settings are off or on. Off is the default.

Log File

When MPX Cache Agent runs, it creates a log file in its installation folder. The default file name for the log
is CacheAgentService.locale.log where locale is something like en-US.

If a file with that name already exists, it is renamed to include a time stamp:
CacheAgentService_YYYYMMDDhhmmss.location.log

Its log can be viewed from a browser by entering a URL using the following syntax:

http://host:port/log

host Identifies the computer on which the MPX Cache Agent is running.

port Provides its configured port number. The default port is 5202.

Running MPX Cache Agent on Linux
To run a MPX Cache Agent on a Linux system, use the following start command:

cacheagentapp -c RootCacheAgentConfig.xml -d start

To stop a MPX Cache Agent on a Linux system, use the following stop command:

cacheagentapp -c RootCacheAgentConfig.xml -d stop

66 | Running MPX Components

Server Log Entries
Each time you start a server configuration, it creates a new server log file to record all activity. If a server
log file already exists, the existing file is renamed before the new file is created.

The server log file has been renamed to reflect your language environment. For example, a Server.en-
US.log file indicates the US English language. Note that even if your language is not US English, a
Server.en-US.log file will always be created for use by Micro Focus support.

This section shows sample ActiveMQ MPX-related messages that may appear in a server log file. These
messages are typically prefixed with ActiveMQ MPX.

Note: Each message written to the server log file includes a line number, and a date-time stamp. This
information has been omitted from the following sample for the purposes of clarity.

Start-Up Messages
When you start a server configuration, the system records all start-up messages in the server log file.
When you start an ActiveMQ MPX configuration, the server log file also records start-up information for the
Event Transmitter. The following sample shows the typical entries that are made in the server log file when
you start an ActiveMQ MPX-enabled server configuration. (The ActiveMQ MPX-specific messages appear
in boldface type.)

Found Event Transmitter configuration of type "ActiveMQ MPX Transmitter" with
ServerDefault settings:
 server_write_timeout=30
 server_names=tcp:localhost:61616
 socket_connect_timeout=10
 server_start_delay=10
 transport.commandTracingEnabled=true
 enable_control_msgs=echo
 server_max_reconnect_delay=10
 project=Starbase
 server_start_max_tries=1
 server_read_timeout=30
 server_keep_alive_timeout=30

Connecting to broker(s): tcp://localhost:61616,
EventTransmitter: Initialized PubSub Library
EventTransmitter: Created connection to StarTeam Message Broker
EventTransmitter: Created encryption cipher
MPX File Transmitter: Using hive index file: c:\repository\testActiveMQ
\HiveIndex\hive-index.xml
MPX File Transmitter: Using journal file: c:\repository\testActiveMQ
\CacheJournal.dat
MPX File Transmitter: Hive #10 mapped to folder: c:\repository\testActiveMQ
\DefaultHive\Archives\
MPX File Transmitter: Using data transfer rate of 256 kbps
MPX File Transmitter: Using packet transmission delay of 32 ms

Reconnect Messages
If an MPX-enabled server configuration loses the connection to its Message Broker, it records that event in
the server log file. A server configuration will always attempt to re-establish communication with the
Message Broker and it will wait for the Message Broker to come back online.. The number of retries made

Server Log Entries | 67

and the time between retries depends on the parameters set in the Event Transmitter XML file’s server
default profile.

The following sample shows the typical entries that are made in the server log file when an MPX
configuration loses and then reconnects to its Message Broker.

49 00000001 2015-06-30 16:07:05 ActiveMQ MPX: Lost connection to broker
50 00000001 2015-06-30 16:07:32 ActiveMQ MPX: Resumed connection to broker

68 | Server Log Entries

Troubleshooting ActiveMQ MPX
To determine whether your Microsoft Windows-based ActiveMQ MPX system is operating correctly, you
can perform the following steps.

1. Review the following configuration files to ensure that the server addresses and endpoints are correct:

MPXEventTransmitter.xml For the Event Transmitter installed for each StarTeam Server.

FileTransmitter.xml For the File Transmitter installed for each StarTeam Server.

activemq.xml For each Message Broker.

ActiveMQMessageBroker.ini For each Message Broker.

RootCAConfig.xml For each Root MPX Cache Agent.

RemoteCAConfig.xml For each Remote MPX Cache Agent.

2. If they are not already running, start the Message Brokers.

3. For each Message Broker you start, start a ActiveMQ MPX-enabled server configuration that
communicates with that Message Broker.

4. For each server configuration you start, review its server log file. If the Event Transmitter has any
problems connecting to the Message Broker, the error messages will be written to the server log file (for
example, Server.en-US.log), which is located in the root folder of the server configuration’s
repository.

5. Start a client and ensure that support for ActiveMQ MPX is enabled for your workstation.

6. Enable client ActiveMQ MPX options:

a) In your client, click Tools > Personal Options. The Personal Options dialog box opens.
b) Select appropriate options on the Workspace and MPX tabs. The StarTeam Cross-Platform Client

has MPX options on the Workspace tab. This option allows the StarTeam log file to include MPX
information. The log file can be viewed at any time by clicking Tools > StarTeam Log. It also has
settings for enabling and disabling MPX.

Only the StarTeam Cross-Platform Client and IDEs based on StarTeam Cross-Platform Client
and .NET components have options for MPX Cache Agent.

c) Click OK. Test these settings.

7. In your client, open a view from an ActiveMQ MPX-enabled server configuration. If MPX is enabled in
both the client and the server configuration, a yellow lightning bolt appears in the status bar.

8. Ensure that the machines running the different message brokers have their clocks synchronized. Failure
to do this could cause message expiration and clients may not receive messages.

Diagnosing a Message Broker
ActiveMQ MPX Message Brokers generate a log file named Activemq.log, located in data folder under
the Message Broker installation folder. For example, at C:\Program Files\Micro Focus
\ActiveMQ Message Broker\data.

Troubleshooting ActiveMQ MPX | 69

Index
A

access rights 14

C

cache agent
configuring a remote 41

choosing a non-default connection profile 59
component descriptions 13
configure clients 58
configuring components 15

D

data encryption 14
displaying MPX status 58
documentation 5

E

enabling MPX on multiple StarTeam Server configurations
30

event transmitter
about 31
startup 31
XML file format 32

F

file transmitter
about 36
startup 37
XML file format 37

framework and architecture 8

I

installation overview 15

L

logging MPX information in the client log 59

M

Message Broker
changing the endpoint 26
clouds 21
communication 22
configuring 25
configuring a cloud 26
configuring two in a fail-over configuration 27
controlling connections 28
diagnosing 69
managing 21

message routing in clouds 22
planning 21
routing unconnected clouds 23
running on Linux 64
running on Microsoft Windows 63
starting on Microsoft Windows 63
stopping on Microsoft Windows 63
tracing 28
using with a firewall 25
volume considerations 24

MPX
components 10

configuration
ActiveMQ MPX 18
ActiveMQ MPX and StarTeamMPX together

19
ActiveMQ MPX only 20

MPX Cache Agent
use with bulk checkout utility 62
check out files with 61
configuring a root 40
enable via personal options 61
enable via server properties 60
enabling 60
managing 38
operations 39
planning 38
remote XML parameters 46
reviewing status and log information 49
root or remote XML parameters 42
root XML parameters 48
running 64
running as a console application 66
running as a service 64
running on Linux 66
running on Microsoft Windows 64
using from StarTeam Cross-Platform Client 60
using with clients 49
XML parameters 42

O

object caching
about 50
configuration 52
how it works 50
required components 52

overview 7

P

preface 5
product support 6
profiles with multiple connections 35

R

running MPX components 63

70 | Index

S
security 14
server log entries

about 67
reconnect 67
start-up 67

startup order for MPX components 17
SupportLine 6

T
transmitters

connection profiles 31
enabling for server configurations 29
managing 29
XML files 29

troubleshooting 69

U

user authentication 14
using MPX from a client 58

Index | 71

	Contents
	Preface
	Documentation
	Contacting Support

	Overview
	Framework and Architecture
	MPX Components
	Component Descriptions
	ActiveMQ MPX Security
	Data Encryption
	User Authentication and Access Rights

	Installation
	Component Configuration
	Dependencies - Startup Order for MPX Components

	Configuring MPX to use ActiveMQ MPX
	Requirements When Using StarTeamMPX and ActiveMQ MPX Together
	Requirements When Using ActiveMQ MPX Only
	Managing Message Brokers
	Planning for Message Brokers
	Understanding Clouds
	Message Broker Communication
	Message Routing in Message Broker Clouds
	Routing in Unconnected Message Broker Clouds

	Volume Considerations
	Using Message Brokers with a Firewall
	Configuring a Message Broker
	Configuring a Message Broker Cloud
	Changing the Endpoint of a Message Broker
	Configuring Two Message Brokers in a Fail-Over Configuration
	Enabling Tracing for Message Brokers

	Controlling Connections

	Managing the Transmitters
	Configuration-specific Transmitter XML Files
	Enabling Transmitters for Server Configurations

	Enabling MPX on Multiple StarTeam Server Configurations
	Understanding Connection Profiles
	Understanding the Event Transmitter
	Event Transmitter Startup
	Event Transmitter XML File Format

	Using Profiles with Multiple Connections
	Understanding the File Transmitter
	File Transmitter Startup
	File Transmitter XML File Format

	Managing MPX Cache Agents
	Planning for the MPX Cache Agents
	MPX Cache Agent Operations
	Configuring a Root MPX Cache Agent
	Configuring a Remote MPX Cache Agent
	Cache Agent XML Parameters
	Parameters Used by Any MPX Cache Agent
	Parameters Used by Remote MPX Cache Agent
	Parameters Used by Root MPX Cache Agent

	Reviewing Status and Log Information
	Using MPX Cache Agent with the Clients
	Object Caching
	How Object Caching Works
	Components Needed for Object Caching
	Configuring Object Caching

	Configuring Clients
	Using ActiveMQ MPX from a Client
	Displaying MPX Status
	Choosing a Non-default Connection Profile
	Logging MPX Information in the Client Log
	Using MPX Cache Agent from the StarTeam Cross-Platform Client and IDEs
	Enabling MPX Cache Agent Use
	Enable the MPX Cache Agent via Server Properties
	Enable the MPX Cache Agent via Personal Options

	Checking out Files with the MPX Cache Agent

	Using MPX Cache Agent with Bulk Checkout Utility

	Running MPX Components
	Running Message Broker on Microsoft Windows
	Starting a Message Broker
	Stopping a Message Broker

	Running the ActiveMQ MPX Message Broker on Linux
	Running MPX Cache Agents
	Running MPX Cache Agent On Microsoft Windows
	Running MPX Cache Agent as a Service
	Running MPX Cache Agent As a Console Application

	Running MPX Cache Agent on Linux

	Server Log Entries
	Start-Up Messages
	Reconnect Messages

	Troubleshooting ActiveMQ MPX
	Diagnosing a Message Broker

