
Borland
VisiBroker® 7.0

GateKeeper Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of
applicable patents. The furnishing of this document does not give you any license to these patents.

Copyright 1992–2006 Borland Software Corporation. All rights reserved. All Borland brand and
product names are trademarks or registered trademarks of Borland Software Corporation in the
United States and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB70GateKeeper
March 2006
PDF

i

Contents

Chapter 1
Introduction to Borland VisiBroker 1
VisiBroker Overview 1

VisiBroker features 2
VisiBroker Documentation 2

Accessing VisiBroker online help topics
in the standalone Help Viewer 3

Accessing VisiBroker online help topics
from within the VisiBroker Console. 3

Documentation conventions 4
Platform conventions 4

Contacting Borland support 4
Online resources. 5
World Wide Web. 5
Borland newsgroups 5

Chapter 2
Introduction to GateKeeper 7
What is GateKeeper? 7
GateKeeper as a Gateway or Proxy 7
Additional capabilities of GateKeeper. 8

Primary Use of GateKeeper 8
Installing GateKeeper 8
Starting GateKeeper 9

Starting GateKeeper from the command line . . . 9
Command line options 9

Running GateKeeper as an NT service 10
Removing GateKeeper as an NT service . . . 10

Running GateKeeper as a servlet
in a Web Server 10

Managing GateKeeper 10

Chapter 3
Configuring GateKeeper and
internetworking devices 11

Where to deploy GateKeeper 11
Client and server on the same network 11
Client and server on adjacent networks 12
Multiple networks between client

and server . 15
Configuring a multi-homed host. 18

Enable IP-forwarding 18
Routing table. 19

Configuring the firewall 20
Using Network Address Translation (NAT) 21
Configuring GateKeeper 21

Listener ports 21
Administrative service 22
Enabling callbacks (VisiBroker 3.x style) 22
Enabling pass-through connections 22
Enabling the location service 23
Specifying the Smart Agent (osagent) 23
Specifying the Object Activation

Demon (OAD) 23
Configuring GateKeeper server engines 23

Security services 24
SSL Transport Identity and Trustpoint 24
Installing SSL Identity using

Wallet properties. 24
Installing SSL Identity on GateKeeper

using Certificate Login 24
Setting peerAuthenticationMode 25

Applet and Java Webstart 25
VisiBroker settings on a typical

applet client 26
VisiBroker Application Deployed

as a Java Webstart 26

Chapter 4
Configuring user programs 27
Using objects behind firewalls 27

Programming a single POA 27
Configuring the firewall policy for all POAs

associated with a server 28
Loading a firewall package at runtime 29

Configuring client properties 29
Specify always proxy on a client 29
Specify HTTP tunneling on a client. 30
Specify secure connections on a client. 30
Specify pass-through connections

on a client . 30
Enabling pass-through connections 31
Specifying the client bid order 31
Specifying a client callback listener port

(for VisiBroker 3.x style) 31
Configuring server properties 32

Specifying the listener port of the server 32
Random listener port 32
Specific listener port. 32
Port translation (NAT) 32
Disabling the IIOP port 32

Specifying communication paths
to the server. 33

Specify the component of
a proxy server 33

Specify the component of a TCP
firewall with NAT 34

Chapter 5
Advanced features 35
Chaining of GateKeepers 35

Static chaining of GateKeepers 35
Dynamic chaining of GateKeepers 36

Callbacks . 36
Callbacks without GateKeeper 36
Callbacks without GateKeeper using

bidirectional GIOP 37
Callback with GateKeeper's

bidirectional support 38
Bidirectional connection example 38
Security considerations 40

ii

Access control . 40
Custom-designed access control

in GateKeeper 40
Load balancing and fault tolerance 42

Load balancing 42
Custom-designed load balancing in

GateKeeper 43
Fault tolerance 44

Scalability and performance guidelines. 44
GateKeeper performance tuning 44

Bidding mechanism 45
Cache management 45
Message marshalling 45
Thread management 46
Connection management 46

Impact of asynchronized invocation of
GateKeeper 46

GateKeeper performance properties 47
Connection settings 47
Thread related settings 47
GateKeeper modes 47
Call types . 48

GateKeeper and SSL. 48
SSL connections to GateKeeper 48
SSL for forward and bidirectional calls 49

Enabling the Security Service in GateKeeper 49
Enabling access to the Naming Service

through GateKeeper 52

Chapter 6
Troubleshooting GateKeeper 55
Preparation for troubleshooting. 55

Getting debugging information 55
Starting GateKeeper in debugging mode 57
Environment settings 57
Tools for troubleshooting 58
Getting information about the

computer network 59
Essential checks 60

Check the Smart Agent 61
Check the property files 61
Check the routing table 61
Check pass-through connections 61
Check the Java policy 62
Check SSL . 62
Check the IOR files 62
Check firewall settings. 62

Common errors and FAQs 62
Proxy servers and GateKeeper. 63

Appendix A
GateKeeper properties 65
General properties 65
Exterior server engine 66

ex-hiop server connection manager (SCM) 67
ex-iiop server connection manager (SCM) 68
ex-hiops server connection manager (SCM) . . . 69
ex-ssl server connection manager (SCM). 71

Interior server engine 72
in-iiop server connection manager (SCM)72
in-ssl server connection manager (SCM) 73

Administration . .74
Access control. .75
VisiBroker 3.x style callback. 76
Performance and load balancing 77
Support for bidirectional communications79
Support for pass-through connections 79
Security services (SSL)80
Location services (Smart Agent) 81
Backward compatibility with VisiBroker

4.x and below .82
Server's properties for firewall specifications 82
Miscellaneous ORB properties 83

Appendix B
GateKeeper deployment scenarios 85
TCP firewall (without GateKeeper) 85
GateKeeper deployment 93
GateKeeper with server-side firewall 98

Firewall in front of GateKeeper. 98
Firewall in front and behind of GateKeeper . . . 101

GateKeeper with client-side firewall 105
GateKeeper load balancing and

fault-tolerance 106
GateKeeper chaining 109
Using VisiBroker in a multiple firewall/subnet

environment . 112
Firewall and Smart Agent scenario 113
Using the Smart Agent in a firewall scenario 114
Behavior during the Smart Agent failure

in a firewall scenario 115
Client behavior for using the Smart Agent 115
Using GateKeeper with other

CORBA services. 116
Configuring GateKeeper with an HTTP

proxy server . 116
Additional server engines in GateKeeper 117
Additional listeners or server connection

managers in GateKeeper 117
GateKeeper stress/load metrics. 117
Deploying GateKeeper as a servlet 118

Building the example 118
Running this example 119
web.xml . 120
Client.properties 122

Index 123

Chapter 1: Introduct ion to Bor land VisiBroker 1

C h a p t e r

Chapter1Introduction to Borland VisiBroker
For the CORBA developer, Borland provides VisiBroker for Java, VisiBroker for C++,
and VisiBroker for .NET to leverage the industry-leading VisiBroker Object Request
Broker (ORB). These three facets of VisiBroker are implementations of the CORBA 2.6
specification.

VisiBroker Overview
VisiBroker is for distributed deployments that require CORBA to communicate between
both Java and non-Java objects. It is available on a wide range of platforms (hardware,
operating systems, compilers and JDKs). VisiBroker solves all the problems normally
associated with distributed systems in a heterogeneous environment.

VisiBroker includes:
■ VisiBroker for Java, VisiBroker for C++, and VisiBroker for .NET, three

implementations of the industry-leading Object Request Broker.
■ VisiNaming Service, a complete implementation of the Interoperable Naming

Specification in version 1.3.
■ GateKeeper, a proxy server for managing connections to CORBA Servers behind

firewalls.
■ VisiBroker Console, a GUI tool for easily managing a CORBA environment.
■ Common Object Services such as VisiNotify (implementation of Notification Service

Specification), VisiTransact (implementation of Transaction Service Specification),
VisiTelcoLog (implementation of Telecom Logging Service Specification), VisiTime
(implementation of Time Service Specification), and VisiSecure.

2 VisiBroker GateKeeper Guide

VisiBroker Documentat ion

VisiBroker features

VisiBroker offers the following features:
■ “Out-of-the-box” security and web connectivity.
■ Seamless integration to the J2EE Platform, allowing CORBA clients direct access to

EJBs.
■ A robust Naming Service (VisiNaming), with caching, persistent storage, and

replication for high availability.
■ Automatic client failover to backup servers if primary server is unreachable.
■ Load distribution across a cluster of CORBA servers.
■ Full compliance with the OMG's CORBA 2.6 Specification.
■ Integration with the Borland JBuilder integrated development environment.
■ Enhanced integration with other Borland products including Borland AppServer.

VisiBroker Documentation
The VisiBroker documentation set includes the following:
■ Borland VisiBroker Installation Guide—describes how to install VisiBroker on your

network. It is written for system administrators who are familiar with Windows or
UNIX operating systems.

■ Borland Security Guide—describes Borland's framework for securing VisiBroker,
including VisiSecure for VisiBroker for Java and VisiBroker for C++.

■ Borland VisiBroker for Java Developer's Guide—describes how to develop
VisiBroker applications in Java. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the Object Activation Daemon (OAD), the Quality of Service (QoS), the
Interface Repository, and the Interface Repository, and Web Service Support.

■ Borland VisiBroker for C++ Developer's Guide—describes how to develop
VisiBroker applications in C++. It familiarizes you with configuration and
management of the Visibroker ORB and how to use the programming tools. Also
described is the IDL compiler, the Smart Agent, the Location, Naming and Event
Services, the OAD, the QoS, Pluggable Transport Interface, RT CORBA
Extensions, and Web Service Support.

■ Borland VisiBroker for .NET Developer's Guide—describes how to develop
VisiBroker applications in a .NET environment.

■ Borland VisiBroker for C++ API Reference—provides a description of the classes
and interfaces supplied with VisiBroker for C++.

■ Borland VisiBroker VisiTime Guide—describes Borland's implementation of the
OMG Time Service specification.

■ Borland VisiBroker VisiNotify Guide—describes Borland's implementation of the
OMG Notification Service specification and how to use the major features of the
notification messaging framework, in particular, the Quality of Service (QoS)
properties, Filtering, and Publish/Subscribe Adapter (PSA).

■ Borland VisiBroker VisiTransact Guide—describes Borland's implementation of the
OMG Object Transaction Service specification and the Borland Integrated
Transaction Service components.

Chapter 1: Introduct ion to Bor land VisiBroker 3

VisiBroker Documentat ion

■ Borland VisiBroker VisiTelcoLog Guide—describes Borland's implementation of the
OMG Telecom Log Service specification.

■ Borland VisiBroker GateKeeper Guide—describes how to use the VisiBroker
GateKeeper to enable VisiBroker clients to communicate with servers across
networks, while still conforming to the security restrictions imposed by web browsers
and firewalls.

The documentation is typically accessed through the Help Viewer installed with
VisiBroker. You can choose to view help from the standalone Help Viewer or from
within a VisiBroker Console. Both methods launch the Help Viewer in a separate
window and give you access to the main Help Viewer toolbar for navigation and
printing, as well as access to a navigation pane. The Help Viewer navigation pane
includes a table of contents for all VisiBroker books and reference documentation, a
thorough index, and a comprehensive search page.

Important Updates to the product documentation, as well as PDF versions, are available on the
web at http://www.borland.com/techpubs.

Accessing VisiBroker online help topics in the standalone Help
Viewer

To access the online help through the standalone Help Viewer on a machine where the
product is installed, use one of the following methods:

Windows ■ Choose Start|Programs|Borland Deployment Platform|Help Topics
■ or, open the Command Prompt and go to the product installation \bin directory,

then type the following command:

help

UNIX Open a command shell and go to the product installation /bin directory, then enter
the command:

help

Tip During installation on UNIX systems, the default is to not include an entry for bin in
your PATH. If you did not choose the custom install option and modify the default for
PATH entry, and you do not have an entry for current directory in your PATH, use ./
help to start the help viewer.

Accessing VisiBroker online help topics from within the
VisiBroker Console

To access the online help from within the VisiBroker Console, choose Help|Help
Topics.

The Help menu also contains shortcuts to specific documents within the online help.
When you select one of these shortcuts, the Help Topics viewer is launched and the
item selected from the Help menu is displayed.

4 VisiBroker GateKeeper Guide

Contact ing Bor land support

Documentation conventions

The documentation for VisiBroker uses the typefaces and symbols described below to
indicate special text:

Platform conventions

The VisiBroker documentation uses the following symbols to indicate platform-specific
information:

Contacting Borland support
Borland offers a variety of support options. These include free services on the Internet
where you can search our extensive information base and connect with other users of
Borland products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of Borland products to fee-based,
consultant-level support and detailed assistance.

For more information about Borland's support services or contacting Borland Technical
Support, please see our web site at: http://support.borland.com and select your
geographic region.

When contacting Borland's support, be prepared to provide the following information:
■ Name
■ Company and site ID
■ Telephone number
■ Your Access ID number (U.S.A. only)
■ Operating system and version
■ Borland product name and version
■ Any patches or service packs applied

Table 1.1 Documentation conventions

Convention Used for
italics Used for new terms and book titles.

computer Information that the user or application provides, sample command lines
and code.

bold computer In text, bold indicates information the user types in. In code samples, bold
highlights important statements.

[] Optional items.
... Previous argument that can be repeated.
| Two mutually exclusive choices.

Table 1.2 Platform conventions

Symbol Indicates
Windows All supported Windows platforms.
Win2003 Windows 2003 only
WinXP Windows XP only
Win2000 Windows 2000 only
UNIX UNIX platforms
Solaris Solaris only
Linux Linux only

Chapter 1: Introduct ion to Bor land VisiBroker 5

Contact ing Bor land support

■ Client language and version (if applicable)
■ Database and version (if applicable)
■ Detailed description and history of the problem
■ Any log files which indicate the problem
■ Details of any error messages or exceptions raised

Online resources

You can get information from any of these online sources:

World Wide Web http://www.borland.com

Online Support http://support.borland.com (access ID required)

Listserv To subscribe to electronic newsletters, use the online form at:

http://www.borland.com/products/newsletters

World Wide Web

Check http://www.borland.com/bes regularly. The VisiBroker Product Team posts white
papers, competitive analyses, answers to FAQs, sample applications, updated
software, updated documentation, and information about new and existing products.

You may want to check these URLs in particular:
■ http://www.borland.com/products/downloads/download_visibroker.html (updated

VisiBroker software and other files)
■ http://www.borland.com/techpubs (documentation updates and PDFs)
■ http://info.borland.com/devsupport/bdp/faq/ (VisiBroker FAQs)
■ http://community.borland.com (contains our web-based news magazine for

developers)

Borland newsgroups

You can participate in many threaded discussion groups devoted to the Borland
VisiBroker. Visit http://www.borland.com/newsgroups for information about joining user-
supported newsgroups for VisiBroker and other Borland products.

Note These newsgroups are maintained by users and are not official Borland sites.

6 VisiBroker GateKeeper Guide

Chapter 2: Introduct ion to GateKeeper 7

C h a p t e r

Chapter 2Introduction to GateKeeper
This section provides an overview of GateKeeper and describes different ways to start
GateKeeper.

What is GateKeeper?
GateKeeper is an OMG–CORBA compliant General Inter-ORB Protocol (GIOP) Proxy
Server developed by Borland Software Corporation which enables CORBA clients and
servers to communicate across networks while conforming to security restrictions
imposed by Internet browsers, firewalls, and Java sandbox security. In effect,
GateKeeper serves as a gateway or proxy for clients and servers when security
restrictions prevent clients from communicating with the servers directly.

GateKeeper is often used when you do not want to expose the server directly to clients
or when a client's access to the server is restricted. In the latter case, either the client is
an unsigned applet or there is an intervening firewall.

GateKeeper as a Gateway or Proxy
When a distributed system based on the VisiBroker ORB is deployed over the Internet
or Intranet, there are many security restrictions that can apply to the system, including:
■ server-side firewalls preventing clients from accessing certain server hosts.
■ client-side firewalls preventing outgoing connections.
■ client-side firewalls prohibiting protocols other than HTTP.

GateKeeper, along with the VisiBroker ORB, provides mechanisms to work with these
restrictions based on the OMG CORBA Firewall specification by acting as a gateway or
proxy between the client and the server. When certain restrictions prevent the client
from connecting directly to the server, the client can choose to connect to GateKeeper.
The client can send messages to GateKeeper which will forward the messages to the
server.

When certain restrictions prevent the server from connecting back to the client to do
callbacks, the server can choose to connect to GateKeeper. The server can send
callback messages to GateKeeper which will forward the messages to the client.

8 VisiBroker GateKeeper Guide

Addi t ional capabi l i t ies of GateKeeper

In short, GateKeeper provides the following features:
■ Proxy to overcome firewalls
■ Callback enabling
■ Location transparency
■ Java: HTTP tunneling

Additional capabilities of GateKeeper
In brief, the additional capabilities of GateKeeper are:
■ Java: Acts as a simple Web Server to load java classes. Java sandbox security

prevents unsigned Java applets from communicating with servers other than the
ones running on the host machine from which the applets were downloaded.
GateKeeper can be configured to overcome this problem.

■ Java: BootStrapping. GateKeeper can run as a servlet inside any Web Server that
supports servlets. This configuration enables IIOP over HTTP (HIOP) and is useful
for Java clients.

■ Load Balancing and Fault Tolerance. A master GateKeeper and one or more slave
GateKeepers can be clustered together and viewed as a single GateKeeper by the
clients. This configuration provides the flexibility to balance the load and allows
some degree of fault tolerance.

■ Customizable IP-based access control. GateKeeper can be configured to deny or
grant accessibility based on criteria such as operations, signed by, and so forth.

Note For more details on GateKeeper configurations, see Chapter 5, “Advanced features.”

Primary Use of GateKeeper

GateKeeper is primarily used as a proxy to overcome firewall and transport restrictions.
In addition, GateKeeper acts as a Web Server and also incorporates load balancing
and access control. GateKeeper, however, should never be used like a full-fledged
Web Server, a full-fledged load balancing system, nor a full-fledged access control
system. GateKeeper should instead complement its full-fledged counterparts.

Installing GateKeeper
GateKeeper is shipped as a component of VisiBroker. GateKeeper requires the
following components:
■ VisiBroker Smart Agent
■ VisiBroker ORB Libraries
■ VisiBroker GateKeeper properties file
■ VisiBroker Console

Note GateKeeper is a stand-alone process. It does not require any of the CORBA IDL
compilers.

Chapter 2: Int roduct ion to GateKeeper 9

Start ing GateKeeper

Starting GateKeeper
The choice of the directory in which to start GateKeeper is determined by how it is
being used.
■ As an IIOP proxy server for a firewall
■ As a Web Server to support HIOP
■ In combination with a separate Web Server to support HIOP for VisiBroker for Java

If you use GateKeeper as an IIOP proxy, consult your firewall administrator because
the firewall administrator typically is in charge of proxies.

If you use GateKeeper as a complementary Web Server, Borland recommends that
you start GateKeeper in the same directory as the Java applets' code base. You can
either start GateKeeper at the command line or as a Windows/NT service with the first
two features listed above.

If you use GateKeeper in combination with a separate Web Server, you can start
GateKeeper as a servlet in the Web Server.

Starting GateKeeper from the command line

Use the following command to start GateKeeper:

prompt> gatekeeper

Note Before you can start GateKeeper from the command line, you must first ensure that
your CLASSPATH setting includes servlet.jar in its path.
You can locate servlet.jar under the Tomcat installation included with VisiBroker, for
example:

<installdir>/lib/tomcat/common

where <installdir> represents the root directory location in which VisiBroker is
installed, such as: C:\visibroker on Windows.

On Windows, for example, specify CLASSPATH as an environment variable and include
servlet.jar in the search path.

When you start GateKeeper, you will see a start up message followed by a series of
messages indicating which services are being started. An example of this series of
messages follows.

Sun Feb 16 23:43:28 2003: Starting GateKeeper for VisiBroker ...
Sun Feb 16 23:43:31 2003: Request Forwarding Service is started.
Sun Feb 16 23:43:31 2003: Administrative Service is started.
Sun Feb 16 23:43:31 2003: IOR is stored in GateKeeper.ior.
Sun Feb 16 23:43:31 2003: GateKeeper for VisiBroker is started.

Command line options
When using the gatekeeper command, the following command line options are
allowed::

Table 2.1 GateKeeper command line options

Option Description

-props file_name Indicates the name of the GateKeeper's properties file. You can
include the entire path when you specify the file name. The
default location for this file is the directory where you installed
GateKeeper. The default name for this file is
GateKeeper.properties.

-J-D<Property-name>=<value> Specifies a property of GateKeeper at startup.

10 VisiBroker GateKeeper Guide

Managing GateKeeper

Running GateKeeper as an NT service

You can install GateKeeper as an NT service. Before you do so, make sure that you
can run GateKeeper from a DOS prompt on your target NT platform.

To install GateKeeper as an NT service, type the following command at a command
line, where servicename is the name of the GateKeeper you are installing.

gatekeeper -install "servicename"

If you use the -props option to specify a properties file, make sure you include the full
path name of the properties file you specify.

After you've installed GateKeeper as an NT service, you can start it using the standard
Services control panel.

Removing GateKeeper as an NT service
To remove a GateKeeper NT service, use the following syntax at a command prompt:

gatekeeper -remove "servicename"

Running GateKeeper as a servlet in a Web Server

GateKeeper can run as a servlet inside any Web server that supports servlets.
GateKeeper is started with a special HIOP listener whose purpose is to generate the
right HIOP component in the GateKeeper's IOR. The HIOP component should contain
the Web server's host, port and the path to the GateKeeper servlet. The client will send
HIOP requests to the GateKeeper as specified in the HIOP component. The benefit of
this feature is in deployment and packaging to allow tighter integration with other
components of the system such as a Web server and Borland Partitions.

Generally, there is no significant performance benefit in running GateKeeper as a
servlet under the Web Server because all tunnelled requests still go through
GateKeeper in the same way they do when GateKeeper is run as a stand-alone
process.

Note If you run GateKeeper as a servlet instead of from the command line, you will lose
some administrative capabilities as well as GateKeeper output capabilities.

Managing GateKeeper
The VisiBroker Console enables you to set GateKeeper's properties to meet the
requirements of your networked system. GateKeeper's properties are kept in a
properties file that GateKeeper references at startup.

-h, -help, -usage, -? Displays usage information.
-quiet Specifies for GateKeeper to not generate output.

Table 2.1 GateKeeper command line options (continued)

Option Description

Chapter 3: Conf igur ing GateKeeper and internetworking devices 11

C h a p t e r

Chapter 3Configuring GateKeeper and
internetworking devices

This section describes how to configure GateKeeper and internetworking devices to
allow communications between client objects and server objects across networks,
starting with a explanation of where GateKeeper can be deployed.

Where to deploy GateKeeper
This section describes some basic principles used to identify the correct location of
where to deploy GateKeeper.

Gather the following information:
■ client location
■ server location and the server's listener port
■ networks connecting the client and server
■ firewall, router, and gateway configurations in the connecting networks

Find a connecting path between the client and server; the path may cross multiple
networks. To enable the client to contact the server, there must be a connecting path.
Otherwise, the client cannot communicate with the server.

Client and server on the same network

When the client and server are located on the same network, the client can always
contact the server directly. GateKeeper, however, may still be required in some
circumstances; as in the two cases shown in the following examples. If GateKeeper is
required, deploy GateKeeper on any host in the same network.

12 VisiBroker GateKeeper Guide

Where to deploy GateKeeper

Case 1: Restricted client transport type
Transport types that a client can use to connect to a server can be restricted using the
client side properties. GateKeeper is required when:
■ a client always connects through a proxy (vbroker.orb.alwaysProxy)
■ a client always use HTTP-tunneling mode (vbroker.orb.alwaysTunnel)

See “Configuring client properties” on page 29 for details.

Case 2: Java sandbox security
Java sandbox security prevents unsigned Java applets from communicating with
server objects located on servers other than the ones running on the host from which
the applets were downloaded. In this case, GateKeeper is required as a gateway
between the client and server to overcome the restriction of Java sandbox security.

Client and server on adjacent networks

When the client and server networks are adjacent to each other, the two networks are
connected using an internetworking device such as a gateway or router. In some
cases, a firewall may exist in either network or both networks. To simplify the
description, we will consider the firewall as part of the internetworking device. The
internetworking device is responsible for forwarding and routing the messages
between the two networks. It can also block certain messages from crossing the
networks; this is the role of a firewall. The transport types that a client uses to connect
to a server can be restricted using the client's property.

GateKeeper is required when
■ a client always connects through a proxy
■ a client always uses HTTP-tunneling mode

See “Configuring client properties” on page 29 for details.

Case 1: Java sandbox security
Java sandbox security prevents unsigned Java applets from communicating with
server objects located on servers other than the ones running on the host from which
the applets were downloaded. In this case, GateKeeper is required as a gateway
between the client and server to overcome the restriction of Java sandbox security.

The following figure shows the client and server on adjacent networks.

Figure 3.1 Client and server on adjacent networks

Chapter 3: Conf igur ing GateKeeper and internetworking devices 13

Where to deploy GateKeeper

Case 1: Restricted client transport type
For a client's message to reach the server, the internetworking device must forward the
message from the client network to the server network. To find an appropriate location
to deploy GateKeeper, determine the type of messages that the internetworking device
can forward from the client network to the server network.

The following cases illustrate all the possible locations to deploy GateKeeper for
adjacent client and server networks.

Case 1: No GateKeeper required
GateKeeper is not required when the gateway can forward all client messages from the
client network to the server network.

The following diagram shows a client which sends a message of type A to the server,
which listens to type A messages. The gateway forwards the message (type A) to the
server network. The server then receives the message (type A). Common examples of
type A messages are IIOP and IIOP/SSL.

Case 2: GateKeeper in a server network
The following diagram shows a server that listens to messages of type S. The gateway
blocks messages of type S but can forward messages of type A from the client network
to the server network. If the client sends a message of type S to the server, it will be
blocked by the gateway. Instead, the client has to send messages of type A so that the
gateway can forward the message to the server network. GateKeepePr is required in
the server network to act as a proxy. The client communicates with GateKeeper using
type A message and GateKeeper in turn communicates with the server using type S
message. An example of type A and S is HTTP and IIOP, respectively. An example for
this scenario is HTTP Tunneling mode, where IIOP packets are not allowed, but HTTP
packets are allowed by the Gateway/Firewall.

14 VisiBroker GateKeeper Guide

Where to deploy GateKeeper

Case 3: GateKeeper in a client network
Server listens to messages of type A but client can only use transport type C to
communicate with the server. The gateway blocks messages of type C but forwards
messages of type A. A GateKeeper is needed in the client network. Client
communicates with GateKeeper using transport type C and GateKeeper
communicates with the server using transport type A. The gateway forwards the type A
message from the GateKeeper to the server network. An example of transport type C
and transport type A is HTTP and IIOP, respectively.

Case 4: GateKeeper in both networks
The gateway blocks both the messages (type C) sent by clients and the messages
(type S) that the server can listen to. The gateway can forward another type of
message (type A). Therefore, GateKeeper is required in both client and server
networks. The client communicates with GK1 using message type C . GK1
communicates with GK2 using message type A, which can be forwarded by the GK2
which in turn communicates with the server using message type S. An example of
message type C is HTTP, message type A is SSL and message type S is IIOP.

Case 5: GateKeeper in internetworking device (dual-homed)
Installing GateKeeper on a dual-homed host works similar to deploying GateKeeper on
the server network (case 2). The difference is that GateKeeper always listens to the
exterior network for client messages. If a client located in the interior network needs to
bind to a server using the same GateKeeper, the message must first be forwarded to
the exterior network before it can reach the GateKeeper listener. An example of type A
and type S messages are HTTP and IIOP, respectively.

Chapter 3: Conf igur ing GateKeeper and internetworking devices 15

Where to deploy GateKeeper

Multiple networks between client and server

In a more complex environment, multiple networks exist between the client and the
server networks. Each pair of adjacent networks is connected using an internetworking
device.

Figure 3.2 Multiple networks between client and server.

For illustration purposes, the client network will be numbered as N0. The network
adjacent to the client network will be numbered as N1, the next adjacent network as N2
and so on until the server network. The server network will be numbered as Nn in the
following discussions. Replace n with the actual number depending to the network
configuration. Also, the internetworking device between network Nn–1 and Nn is
numbered as GWn.

Clients can use different transport types to communicate with servers. Examples of
transport types are IIOP, IIOP/SSL, HTTP and HTTPS. For each valid transport type,
locate the furthest network that the client message can reach. The client located in
network N0 sends a message to network N0. GW1 may or may not forward the
message to network N1. The message can reach network N1 if GW1 can forward the
message from N0 to N1. Subsequently, GW2 may or may not forward the message to
network N2. Traverse the networks starting from the client network, then moving
towards the server network. Mark the last network that the message can reach as Nc.
In other words, GWc+1 cannot forward the message to the network Nc+1.

16 VisiBroker GateKeeper Guide

Where to deploy GateKeeper

A server has one or more listener ports. Each port listens to one type of messages from
clients. As an example, a server with an IIOP listener port and an SSL listener port will
use the IIOP port to listen to IIOP messages and the SSL port to listen to IIOP over
SSL messages. For each listener port, find the furthest network from the server to
which a client message can reach the server. Mark the furthest network as Ns. In other
words, a client located in network Ns is able to send a message to the server.

Note If callback for VisiBroker 3.x style is required, an additional condition is required for Nc
and Ns. The callback message from the server (from network Nn) must be able to reach
the network Ns. When GateKeeper is used, the client must be able to set up a callback
communication channel to network Nc.

Case 1: Server can receive messages from the client network, s=0
Assume the server listens to transport type L. Messages of transport type L from the
client network can reach the server network and subsequently the server.

If the client can send messages using transport type L, then GateKeeper is not
required because client messages of type L can be forwarded to the server network.
For example, the server listens to IIOP and the client can send IIOP messages. The
client's IIOP messages can be forwarded to the server without being blocked by any
firewalls, gateways or routers.

If the client cannot send messages using transport type L, deploy GateKeeper on a
network within N0 and Nc to proxy client messages of other transport types (M) to
transport type L. For example, the server listens to IIOP and the client can only
communicate using IIOP over HTTP.

Case 2: Client messages can reach the server network, c = n
Client messages of a particular transport type (M) can reach the server network.
GateKeeper is not required if the client transport type is one of the server listening
transport types. For example, the client sends IIOP messages and the server also
listens to IIOP.

Chapter 3: Conf igur ing GateKeeper and internetworking devices 17

Where to deploy GateKeeper

If the server does not listen to the client's message transport type, GateKeeper is
required in any network within Ns and Nn. GateKeeper acts as a proxy to relay client
messages of type M to one of the server listener types (L). For example, M (client
message transport type) is IIOP over HTTP and L (server listener type) is IIOP.

Case 3: Overlapping of reachable networks by client and to server, c >= s
When c >= s, the client transport type (M) and the server listener type (L) must be
different. Deploy GateKeeper in any network between Ns and Nc inclusively. In this
case, GateKeeper acts as a proxy to relay client messages of type M to the server
listener port of type L. As an example, the client's IIOP over HTTP messages can reach
the networks up to Nc. IIOP messages sent from any network between Ns and Nn can
reach the server. Deploying GateKeeper in between Ns and Nc will help bind the
client's IIOP over HTTP messages to the server's IIOP listener port.

Case 4: No overlapping of reachable networks by client and to server, c < s
Check if GateKeeper chaining is possible or not. See “Chaining of GateKeepers” on
page 35 for details of GateKeeper chaining. GateKeeper chaining is possible only
when there is another transport type (K) available for the two GateKeepers to
communicate successfully from Nc to Ns. Deploy one GateKeeper on network (Nc) and
another GateKeeper on network Ns. After which, chain them together. For example,
client sends IIOP over HTTP messages, the server listens to IIOP messages and both
GateKeeper instances can use SSL to communicate with each other. The client
connects to GateKeeper 1 using HTTP, GateKeeper 1 communicates with GateKeeper
2 using SSL, and GateKeeper 2 communicates with the server using IIOP.

18 VisiBroker GateKeeper Guide

Conf igur ing a mul t i -homed host

If chaining is not possible, there is no suitable network to deploy GateKeeper. The
internetworking devices connecting networks Nc and Ns must be reconfigured so that
the appropriate type of messages can be forwarded from Nc to Ns. After which, locate
the new Nc and Ns, and refer to the previous cases accordingly.

Configuring a multi-homed host
A multi-homed host or router connects two or more physical networks. It has multiple
network interfaces; also known as Network Interface Cards (NIC). Each NIC connects
to one network. The multi-homed host allows communication between the connected
networks. The following diagram shows a network configuration with two multi-homed
hosts (Gateway A and Gateway B).

Figure 3.3 Multi-home machine network configuration.

To enable a multi-homed host to route data packets from one network to another
correctly, IP-forwarding must be enabled and its routing table must be configured
correctly. Similarly, the routing tables on the hosts must be configured correctly.

Assuming a client located on Host 1 is trying to communicate with a server located on
Host 3, the client on Host 1 will first send the message to Host 3 on Network 2.
Gateway A will accept the message on NIC 2 and route it to Network 3 using NIC 3.
Gateway B will then accept the message on NIC 4 and route it to Network 4 using NIC
5. The message will then reach the server object on Host 3. This communication can
happen only if IP-forwarding is enabled and all the routing tables are configured
correctly.

Enable IP-forwarding

The multi-homed host must enable IP-forwarding to forward data packets from one
network to another. If IP-forwarding is disabled, the multi-homed host cannot forward or
route data packets from one network to another.

Chapter 3: Conf igur ing GateKeeper and internetworking devices 19

Conf igur ing a mult i -homed host

Routing table

One entry of the routing table is used for one destination host or network. Every entry
must contain: information about the:
■ destination host or network
■ gateway it should contact.
■ interface where the data packets should be sent out.

The following tables show examples of routing tables for the sample network
configuration.

A routing table in the multi-homed host stores the routing information about which NIC
to forward data packets to. The gateway information is used to contact the next
gateway in the route. (Refer to the routing table for Gateway A in the example
described above.) Using NIC 3, Gateway A has to contact Gateway B to route packets
to Network 4.

Hosts also have their own routing table. The gateway information is essential for the
host to contact the correct gateway which can route the packet correctly. (Refer to the
routing table for Host 2). Host 2 needs to contact Gateway A to reach Network 1 and
Network 2. But, Network 2 has to contact Gateway B in order to reach Network 4.

Use the following methods to verify if the routing table is configured correctly:
■ Print the routing table.
■ Ping the relevant host.
■ Perform a trace route to the relevant host.

Table 3.1 Routing table for Gateway A

Destination Gateway Interface

Network 1 Gateway A NIC 1
Network 2 Gateway A NIC 2
Network 3 Gateway A NIC 3
Network 4 Gateway B NIC 3

Table 3.2 Routing table for Host 1

Destination Gateway Interface

Network 1 Gateway A Host 1
Network 2 Host 1 Host 1
Network 3 Gateway A Host 1
Network 4 Gateway A Host 1

Table 3.3 Routing table for Host 2

Destination Gateway Interface

Network 1 Gateway A Host 2
Network 2 Gateway A Host 2
Network 3 Host 2 Host 2
Network 4 Gateway B Host 2

20 VisiBroker GateKeeper Guide

Conf igur ing the f i rewal l

Configuring the firewall
A firewall is a network device that performs filtering of data packets. A firewall inspects
every data packet it receives and then either forwards the packet or drops it depending
on the firewall's security policy.

Case 1: Restricted client transport type

The following figure shows an example of firewall packet filtering.

The firewall's security policy usually inspects the message type, message source, and
message destination to perform filtering. Firewalls are capable of applying packet-filter
rules based on the type of service (example: stream-oriented or datagram-packets)
and the underlying protocol type (example: IP, ICMP, TCP, UDP). Suppose that the
firewall identifies the communication path as a TCP packet stream, then the firewall
can apply the packet-filtering rule defined in the security policy to decide if the packet
should be allowed or dropped. The TCP packet streams can carry different kinds of
data or payloads (example: HTTP, IIOP, FTP, SSL, etc). In general, each stream is
assigned a unique port number, and it carries only one class or type of message. For
example, IIOP messages can be carried on TCP Port 683 packet stream. Similarly,
HTTP messages can be carried on TCP Port 80. The firewall may allow TCP Port 80,
but may not allow TCP Port 683 depending on the packet-filtering rules. Using special
techniques, a TCP packet stream can carry more than one type of messages.
GateKeeper uses a special technique, called HTTP Tunnelling, to embed IIOP
messages within HTTP messages to be carried over TCP packet streams.

When a firewall exists in the communication path between the client and server, the
firewall may either forward or drop the data packets sent from the client to the server.
For a successful communication between the client and server, the firewall must
forward the client's messages to the server. The server can be a user application,
GateKeeper, or other VisiBroker service providers such as the Smart Agent and the
Naming Service. Configure the firewall to forward client's messages sent to the server's
listener port.

Chapter 3: Conf igur ing GateKeeper and internetworking devices 21

Using Network Address Translat ion (NAT)

Using Network Address Translation (NAT)
A multi-home host, router, and firewall can also perform NAT in addition to their
specialized functions. NAT can translate the source host address, source port number,
destination host address, and destination port number found in every network packet.

On the client side, the firewall usually translates the source host address. This method
is commonly used to share a limited number of internet IP address.

On the server side, the firewall may translate the destination host address and/or the
destination port number. This hides the real destination host address from external
parties. It provides the flexibility to change the destination host address without
notifying all external parties that must access the server. This flexibility holds true for
the port number as well.

GateKeeper supports only static NAT, it does not support dynamic NAT. In static NAT,
the translation is based on a predefined mapping table in which every address and port
is always translated to a fixed value. In dynamic NAT, some rules can be set to
translate addresses and ports to a range of values where the exact translated address
of the network packet cannot be pre-determined because it can be any address within
a given range.

See Chapter 4, “Configuring user programs” for details on how to configure server
objects to use TCP firewall with NAT. Be sure that the NAT translation mappings are
added into the NAT device for successful communication between client and server
objects.

With NAT, the routing tables for all the gateways involved must be configured to
account for any fake network addresses in use. If not, the data packets having fake
destination addresses will not be routed correctly. In addition, firewalls must be
configured to forward messages to any fake destination host addresses and fake ports
used in NAT. If firewalls block the fake address or fake port, a packet will not reach its
destination.

Configuring GateKeeper
The following sections describe how to configure GateKeeper ports and services.
Listener ports are the most common parameters that must be configured. Different
firewalls usually do not open the same range of ports for communications. GateKeeper
has many services and some of them must be enabled before they can be used.

Listener ports

The following properties specify GateKeeper's exterior IIOP and HTTP listener port
numbers. These are the ports on which GateKeeper listens to client requests.

vbroker.se.exterior.scm.ex-iiop.listener.port=683
vbroker.se.exterior.scm.ex-hiop.listener.port=8088

If GateKeeper is deployed behind a firewall, external clients can only contact
GateKeeper if the firewall allows forwarding of IIOP or IIOP over HTTP messages
through ports 683 and 8088, respectively. If the firewall can only allow other port
numbers because of security restrictions, the GateKeeper listener ports must be
configured to use the authorized ports on the firewall.

22 VisiBroker GateKeeper Guide

Conf igur ing GateKeeper

Administrative service

GateKeeper's administrative service provides the ability for you to use the VisiBroker
Console to manage and configure GateKeeper. The administrative service allows
dynamic configurations of GateKeeper while GateKeeper is active. The following
properties specify the administrative service port numbers; 0 and 9091 are the default
values for IIOP port and HTTP port, respectively. The value 0 tells GateKeeper to pick
a port at random when it starts.

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=0
vbroker.se.iiop_tp.scm.hiop_ts.listener.port=9091

Enabling callbacks (VisiBroker 3.x style)

The callback feature (VisiBroker 3.x style) has been replaced with bidirectional support
in VisiBroker versions 4.x and later. For GateKeeper to support clients that still use
VisiBroker 3.x callbacks, the following properties settings are required:

vbroker.gatekeeper.callbackEnabled=true
vbroker.gatekeeper.backcompat.callback=true

After setting the above properties, GateKeeper activates its interior server engine to
receive callback messages from the server. The listener can be configured using the
in-iiop and in-ssl SCMs. In addition, a callback listener is activated for a client to
establish an additional communication channel for callback messages. See “VisiBroker
3.x style callback” on page 76 for details on specifying the listener port and additional
related information. Be sure the selected ports are reachable from the client and the
server by ensuring that these ports are not blocked by any firewalls.

Enabling pass-through connections

The following property enables pass-through connections in GateKeeper.

vbroker.gatekeeper.enablePassthru=true

If the client requests a pass-through connection, GateKeeper will not examine any
messages that pass between the server and client. When the above property is set to
false, GateKeeper binds the client to the server using normal (non-pass-through)
connections even when the client requests a pass-through connection. In this case,
GateKeeper examines the exchanged messages for routing and binding purposes.

The following properties are provided to help configure pass-through connections in
GateKeeper:

vbroker.gatekeeper.passthru.blockSize=16384
vbroker.gatekeeper.passthru.connectionTimeout=0
vbroker.gatekeeper.passthru.logLevel=0
vbroker.gatekeeper.passthru.streamTimeout=2000
vbroker.gatekeeper.passthru.inPortMin=1024
vbroker.gatekeeper.passthru.inPortMax=165535
vbroker.gatekeeper.passthru.outPortMin=0
vbroker.gatekeeper.passthru.outPortMax=65535

See “Support for pass-through connections” on page 79 for more information about the
above properties.

Caution The pass-through feature heavily taxes the resources of GateKeeper. If you choose to
use this feature, be sure to configure GateKeeper with sufficient memory and
increased sockets.

Chapter 3: Conf igur ing GateKeeper and internetworking devices 23

Conf igur ing GateKeeper

Enabling the location service

GateKeeper provides a location service for clients, such as applets, that are unable to
communicate directly with the Smart Agent (osagent) because of Java sandbox
security or existing firewalls. The location service lets the clients “bind” to the server
through GateKeeper.

vbroker.gatekeeper.locationService=true

Specifying the Smart Agent (osagent)

GateKeeper uses the Smart Agent to locate server objects. GateKeeper can
automatically locate the Smart Agent if one is located on the same network. When
there is no Smart Agent running on the same network where GateKeeper is running,
the location of the Smart Agent must be specified explicitly. You can also specify
additional Smart Agents running on other networks.

vbroker.agent.addr=<host>
vbroker.agent.addrfile=<filename>
vbroker.agent.port=<port>

The first property specifies the host IP address of the Smart Agent. The second
property specifies the file that defines a list of hosts running Smart Agents. The third
property specifies the OSAGENT_PORT. The default value for the first two properties is null,
which tells GateKeeper to contact the Smart Agent running on the same network.

See “Using the Smart Agent” in the VisiBroker for C++ Developer's Guide or the
VisiBroker for Java Developer's Guide for more details about Smart Agent settings and
other methods of setting Smart Agent parameters.

Specifying the Object Activation Demon (OAD)

The OAD service enables GateKeeper to automatically start servers to which it needs
to bind. In such cases, the server is registered with the OAD service, but is accessible
only through GateKeeper (when an Applet invokes a server, for example). To use the
OAD service, GateKeeper must load the OAD IOR. The following property tells
GateKeeper where to locate the OAD IOR.

vbroker.oad.iorFile=<OAD IOR>

See “Using the Object Activation Daemon” in the VisiBroker for C++ Developer's Guide
or the VisiBroker for Java Developer's Guide for more information about OAD.

Configuring GateKeeper server engines

GateKeeper contains a few default server engines. Each server engine contains at
least one server connection manager (SCM).
■ The exterior server engine enables GateKeeper to bind client objects to server

objects. It contains two default SCMs which are named ex-hiop and ex-iiop.
■ The interior server engine provides callback services and is only available when

callback is enabled. It contains two default SCMs which are named in-iiop and in-
ssl.

■ The iiop_tp server engine provides the administrative service. It contains two default
SCMs, which are named hiop_ts and iiop_tp.

See “Exterior server engine” on page 66 , “Interior server engine” on page 72 and
“Administration” on page 74 for the full list of properties for the above SCMs.

24 VisiBroker GateKeeper Guide

Conf igur ing GateKeeper

Security services

Install VisiSecure for Java to enable security services. Start GateKeeper with the
following properties to enable IIOP/SSL and IIOP over HTTPS:

vbroker.security.disable=false
vbroker.orb.dynamicLibs=com.borland.security.hiops.Init
vbroker.se.exterior.scms=ex-iiop,ex-hiop,ex-ssl,ex-hiops

■ The vbroker.security.disable=false property enables the required security
packages into the VisiBroker ORB of the GateKeeper.

■ The vbroker.orb.dynamicLibs=com.borland.security.hiops.Init property loads the
additional HIOPS package, which allows IIOP messages over HTTPS; it is loaded
separately.

■ The vbroker.se.exterior.scms=ex-iiop,ex-hiop,ex-ssl,ex-hiops property adds the
SCM ex-ssl and ex-hiops into the exterior server engine.

The unused SCM can be removed from the SCM list so that only required SCMs are
started. However, scm ex-iiop and in-iiop can not be removed from the list when they
initially exist.

To make sure all communication is encrypted, you can disable the nonsecure listener
ports such as IIOP and HTTP as follows:

vbroker.se.exterior.scm.ex-iiop.listener.type=Disabled-IIOP
vbroker.se.exterior.scm.ex-hiop.listener.type=Disabled-IIOP

The IIOP/SSL and HTTPS listeners can be configured using the SCM properties
prefixed with vbroker.se.exterior.scm.ex-hiops and vbroker.se.exterior.scm.ex-ssl.
For a comprehensive list of these SCM properties, refer to the Chapter 6, “GateKeeper
properties.”

SSL Transport Identity and Trustpoint
For SSL, transport identity is optional as SSL negotiation still can make use of a Diffie
Helman key agreement algorithm without someone's public key.

However, without transport identity clients configured with peerAuthenticationMode
require and require_and_trust will not connect. Additionally, as an SSL server, if
GateKeeper itself does not have a client transport identity, it may not require client
transport identities.

Installing SSL Identity using Wallet properties
The simplest way of installing certificates in GateKeeper is by using the following wallet
properties:

vbroker.security.wallet.type=Directory:<path_to_identities>
vbroker.security.wallet.identity=<username>
vbroker.security.wallet.password=<password>
vbroker.security.trustpointsRepository=Directory:<path_to_trustpoints>

Installing SSL Identity on GateKeeper using Certificate Login
Apart from using simple wallet and trustpoints property sets, SSL Identity can be
installed on the GateKeeper during startup by means of credential acquisitions (login).
In the acquisition, the user must answer questions about files and directories, where
the certificates, private key and trusted root certificates are stored. The password to
decrypt the private key will definitely be asked.

Chapter 3: Conf igur ing GateKeeper and internetworking devices 25

Conf igur ing GateKeeper

The files and directories asked in the login conversation vary based on the type of
certificate storage. The default storage is determined by JDK security settings in the
following file:

${JAVA_HOME}/jre/lib/security/java.security

Out of the JDK box, jks is set as java keystore (jks):

#
Default keystore type.
#
keystore.type=jks

For PKCS#12 storage, the above can be changed to string pkcs12. This storage format
is only a single file, which contains certificates, trusted certificates and a private key.
Please consult the JDK keytool manual.

For certificate login, the followings needs to be explicitly set on GateKeeper:

vbroker.security.login=true
vbroker.security.login.realms=<realm list>

In the realm list, among other realms, there needs to be Certificate#CLIENT and/or
Certificate#SERVER and/or Certificate#ALL.
■ Certificate#CLIENT is an SSL identity that is used for outgoing SSL connections,
■ Certificate#SERVER is for incoming SSL connections,
■ and Certificate#ALL can be used for both.

One extreme example is when in the <realm list> there appears all three realms. In this
case, three different sets of SSL identities will be acquired from the user during
GateKeeper startup.

When opening an outgoing SSL connection:

1 first Certificate#CLIENT will be used.

2 If none is set in Certificate#CLIENT, then Certificate#ALL will be used.

3 If there is also none set in Certificate#ALL, the outgoing SSL connection will have
no identity.

Note Similar priority also applies to incoming (server) SSL connection.

The identity that is set using a simple wallet property set will always go into
Certificate#ALL.

Setting peerAuthenticationMode
Use the peerAuthenticationMode policy as usual. Set the property as follows:

vbroker.security.peerAuthenticationMode=none

Applet and Java Webstart

The Java programming language is a powerful tool for the development of programs
that are deployed and run on the fly from one central location. This becomes a very
powerful feature when combined with CORBA, more specifically with VisiBroker for
Java.

Clients code can be downloaded on the fly and installed from a website as either a
Java applet or a Java webstart application utilizing Java Network Launching Protocol
(JNLP).

26 VisiBroker GateKeeper Guide

Conf igur ing GateKeeper

VisiBroker settings on a typical applet client
If the client is an applet, the following additional property settings are required:

<applet archive=vbjorb.jar,vbsec.jar,lm.jar,sanct4.jar,
 sanctuary.jar,code="ClientApplet.class" width="200"
 height="80">
 <param name="vbroker.security.disabled" value="false">
 <param name="vbroker.orb.dynamicLibs"
 value="com.borland.security.hiops.Init">
...
</applet>

Note 1 All VisiBroker jars do not need to be in the GateKeeper http root directory (the
current directory where you launch GateKeeper).

2 Licensing jars: lm.jar,sanct4.jar,sanctuary.jar are needed only when the applet
code creates persistent POAs.

3 When VisiSecure functionality is involved, vbsec.jar is needed in the applet's
archive list. The applet parameter that enables it is also needed. Optionally, when
HIOPS functionality is involved, it needs to be loaded separately using dynamicLibs
as above.

VisiBroker Application Deployed as a Java Webstart
A Java webstart application can run without a web browser because it has its own
launcher, which can be launched directly from a command shell on UNIX or by double-
clicking on Windows. This launcher is the default mime handler for application/x-java-
jnlp-file which is associated automatically when installing JDK/JRE on Windows and by
any other means on UNIX. Therefore, clicking a link on a web page that results in any
http response with that mime will launch the installed Java webstart launcher for
processing the content of that reply. The content is actually an XML containing
information about where to locate the required jars and other information pertaining to
running the application. For example, the required java security permissions.

For a typical VisiBroker application deployed as a java webstart, please see the
gatekeeper bank_jws example.

Chapter 4: Conf igur ing user programs 27

C h a p t e r

Chapter4Configuring user programs
This chapter shows how to configure the user programs (clients and servers) to use
firewalls and GateKeeper. The settings are configured through the client and server
properties. See Chapter 6, “GateKeeper properties” for information on how to set the
properties.

Using objects behind firewalls
You may need to configure both programming and runtime environments so that
objects can work behind firewalls. Configuring firewall policies for a specific Portable
Object Adapter (POA) must be done programmatically. Setting the same firewall
policies globally for all POAs, however, can be accomplished using a single property
setting and does not require source code modifications.

Programming a single POA

To allow a server to traverse a firewall when you want to configure firewall policies for a
specific POA, you must specify a firewall policy on the POA where the server is
activated. In particular, the following code must be added to the server. (The following
examples use the Bank example as a basis.)

To configure a single POA programmatically:

1 Create the firewall policy:

Java org.omg.CORBA.Any fw_policy_value = orb.create_any();
com.inprise.vbroker.firewall.FirewallPolicyValueHelper.insert(
 fw_policy_value, com.inprise.vbroker.firewall.EXPORT.value);
org.omg.CORBA.Policy firewall_policy = orb.create_policy(
 com.inprise.vbroker.firewall.FIREWALL_POLICY_TYPE.value, fw_policy_value);
org.omg.CORBA.Policy[] policies = {
 firewall_policy,
 rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};

28 VisiBroker GateKeeper Guide

Using objects behind f i rewal ls

C++ CORBA::PolicyList policies;
policies.length(2);
policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy
 (PortableServer::PERSISTENT);
CORBA::Any policy_value;
policy_value <<= Firewall::EXPORT;
CORBA::Policy_ptr fpolicy= orb->create_policy
 (Firewall::FIREWALL_POLICY_TYPE, policy_value);
policies[(CORBA::ULong)1] = fpolicy;

2 Apply the policy to the POA on which the server will be activated:

Java POA bankPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(),
 policies);

C++ PortableServer::POA_var bankPOA = rootPOA->create_POA("bank_agent_poa",
 poa_manager, policies);

Only the root POA takes the default policy, so it can be used to activate any server that
must be accessed behind a firewall. You must also create another POA to activate the
Account server. Since the Account server should not be bound by clients directly, you
should create the POA as a transient POA:

Java policies = new org.omg.CORBA.Policy[] {
 firewall_policy,
 rootPOA.create_lifespan_policy(LifespanPolicyValue.TRANSIENT)
};

POA accountPOA = rootPOA.create_POA(
 "account_agent_poa", rootPOA.the_POAManager(), policies);

C++ policies.length(2);
policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy
 (PortableServer::TRANSIENT);
policies[(CORBA::ULong)1] = fpolicy;
PortableServer::POA_var accountPOA = rootPOA->create_POA("account_agent_poa",
 poa_manager, policies);

Configuring the firewall policy for all POAs associated with
a server

The following property lets you set the firewall policy for all POAs associated with a
server:

-Dvbroker.orb.exportFirewallPath=true

If you specify the exportFirewallPath property, you do not need to add a firewall policy
when creating a POA and therefore, you do not have to modify the source code.

Chapter 4: Conf igur ing user programs 29

Conf igur ing c l ient propert ies

Loading a firewall package at runtime

The clients and servers working with GateKeeper must load the firewall package and
its properties at runtime when it first initializes the ORB which is when the following
method is invoked.

Java org.omg.CORBA.ORB.init(String[] args,java.util.Properties property);

C++ CORBA::ORB_ptr CORBA::ORB_init(int& argc, char *const *argv);

Java The following property causes the firewall package to be loaded into the VisiBroker for
Java ORB. This property is necessary for both the Java client and Java server in order
to use a firewall and GateKeeper.

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init

C++ Support for GateKeeper and firewall has been incorporated into the VisiBroker for C++
ORB and no additional libraries are needed to enable it.

Configuring client properties
The method in which a client communicates with a server can be restricted. In
particular, using policies and properties, you can specify whether:
■ Clients use a GateKeeper as a proxy for the real server

Java: ■ Clients communicate to servers in the HTTP-tunneled channel
■ Clients communicate to servers through IIOP/SSL

Java: ■ Clients communicate to servers through HTTPS-tunneled channel
■ Messages pass between client and server connections through a GateKeeper

entirely unexamined by the GateKeeper (called pass-through mode)
■ Clients choose the preferred transport from those available

The following sections show the various policies and their property settings for the
clients. You can also use different combinations of these policies to determine how you
want your client to communicate to the servers.

Specify always proxy on a client

The following property setting forces clients to use GateKeeper to proxy requests to
servers.

Client's Properties:

vbroker.orb.alwaysProxy=true

The above property is optional. If you do not set it, the client uses the server's IOR to
determine whether or not the object is hidden behind a server-side firewall and
traverses the firewall accordingly. It is sometimes better to not set the above property,
for example, when a client invokes both local objects inside the trusted network and
remote objects hidden behind the firewall. Not setting the property enables the client to
be more efficient by invoking the local objects directly without going through
GateKeeper.

Client's Properties:

vbroker.orb.gatekeeper.ior=<IOR>

Clients can also specify the GateKeeper IOR using the above property. This method is
helpful when a client is not able to locate GateKeeper through a Smart Agent.

30 VisiBroker GateKeeper Guide

Conf igur ing cl ient propert ies

Specify HTTP tunneling on a client

The following property setting directs clients to communicate to servers in the HTTP-
tunneled channel.

Client's Properties:

vbroker.orb.alwaysTunnel=true

The above setting causes the client applet or application to communicate to the
GateKeeper through IIOP over HTTP and GateKeeper relays the request to the actual
server object through IIOP. Replies from the server object to GateKeeper are
communicated through IIOP. GateKeeper then forwards those replies to the client
through IIOP over HTTP.

Java Applets should set vbroker.orb.alwaysTunnel if the client will be performing HTTP
tunneling. Applet clients must set the property vbroker.orb.gatekeeper.ior to get the
GateKeeper's IOR using URL naming or using a stringified IOR. In addition, the applet
clients must not set the vbroker.locator.ior property.

Note You cannot use callbacks with HTTP tunneling.

Caution HTTP tunneling may not work consistently with various types of proxy servers because
of differences that may exist in the implementation of HTTP proxy servers. Please refer
to the VisiBroker GateKeeper FAQ on Borland's web site for more information.

Specify secure connections on a client

Client's Properties:

vbroker.orb.alwaysSecure=true

Clients talk to servers through IIOP/SSL or IIOP over HTTPS.

Client's Properties:

vbroker.orb.alwaysSecure=true
vbroker.orb.alwaysTunnel=true

Clients only talk to servers using IIOP over HTTPS.

Specify pass-through connections on a client

In this type of connection, GateKeeper does not terminate connections or interpret
messages. This type of connection is useful when GateKeeper does not have SSL or
the associated certificates to establish trust with the client. In such cases, the client and
server negotiate their SSL connection without going through GateKeeper. Therefore,
GateKeeper does not interpret messages passed between the client and the server.

Client's Properties:

vbroker.orb.proxyPassthru=true

GateKeeper's Properties:

vbroker.gatekeeper.enablePassthru=true

■ The vbroker.orb.proxyPassthru property sets the value of the ORB-level
PROXY_MODE_POLICY property. If set to true, all objects using a proxy on the client will
request pass-through connections. You can also set the PROXY_MODE_POLICY on
specific objects so that only those particular objects request pass-through
connections.

■ The vbroker.gatekeeper.enablePassthru property instructs GateKeeper to accept
pass-through connections. This property is global to GateKeeper and affects
GateKeeper's behavior only.

Chapter 4: Conf igur ing user programs 31

Conf igur ing c l ient propert ies

The vbroker.orb.proxyPassthru property tells the client to attempt to acquire pass-
through connections from GateKeeper. GateKeeper, however, grants pass-through
connections only if the vbroker.gatekeeper.enablePassthru property is set to true. See
“Enabling pass-through connections” on page 22 for other GateKeeper's pass-through
properties.

Enabling pass-through connections

If the vbroker.gatekeeper.enablePassthru property is set to false, GateKeeper does not
allow pass-through connections to be established and clients can only obtain normal
(non-pass-through) connections to the server. GateKeeper then examines the
messages exchanged between the client and server for routing and binding purposes.
The connection will fail if GateKeeper cannot provide an SSL authentication for an SSL
message.

Specifying the client bid order

Client's Properties:

The client's bid order specifies the relative importance for the various transports used
to connect to the server. The transports that appear first will have higher precedence.
The following property setting instructs the client to try the transport with the higher
precedence first, whenever it is available, in the server's IOR. When a transport fails,
the client will try the next available transport.

vbroker.orb.bidOrder=inprocess:liop:ssl:iiop:proxy:hiop:locator

In the above example, if the IOR contains both LIOP and IIOP profiles, the client will
first try LIOP. Only if LIOP fails will it try IIOP.

Client's Properties:

vbroker.orb.bidCritical=inprocess

The critical bid has the highest precedence no matter where it is specified in the bid
order. If there are multiple critical bids, then their relative importance is determined by
the bid order.

Specifying a client callback listener port (for VisiBroker 3.x style)

The following properties specify the listener port of the client for servers to establish
VisiBroker 3.x style callback connection. The listener type is set to Callback-IIOP to
differentiate it from a normal IIOP listener.

Client's Properties:

vbroker.se.iiop_ts.scm.iiop_tp.listener.port=<port>
vbroker.se.iiop_ts.scm.iiop_tp.listener.type=Callback-IIOP

32 VisiBroker GateKeeper Guide

Conf igur ing server propert ies

Configuring server properties
Use server properties to construct the server's IOR that is used by clients to establish
communication paths to the server.

Specifying the listener port of the server

The following sections describe the property settings used to specify a server's listener
ports.

Random listener port
The following property has the default value of 0 (zero) which tells the system to pick a
random port number when the server starts.

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=0

Specific listener port
The following server property assigns the port on which the server will listen to IIOP
messages from clients.

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number>

Note All clients on the same network can establish communication with a server using the
port, as specified in the above example, directly. Messages sent by clients on different
networks must be forwarded by the gateway or router. If a server allows connections by
clients outside the subnet, the router or firewall should be configured to allow
messages for the specified port. Conversely, if the server only allows connections from
clients on the same subnet, the router or firewall should be configured to block
messages for the specified port to prevent unauthorized access by foreign client
objects.

Port translation (NAT)
If there is a port translation using Network Address Translation (NAT) from a fake port
(also called the proxy port) to the server's real IIOP listener port, use the following
property settings to publish the fake port in the server's IOR.

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<real_port>
vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=<fake_port>

The above settings tell the server to listen to the real port while clients send messages
to the fake port. The default value of the proxyPort property is 0 (zero), which means no
proxy port is used.

Note A better method of specifying NAT is to use the TCP firewall properties described in
following section.

Disabling the IIOP port
Setting the following property will disable the server's IIOP listener port which forces
the server to allow client requests on a specified port, such as a secured port like IIOP/
SSL. The server will not allow IIOP messages on the published IIOP port.

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Disabled-IIOP

Chapter 4: Conf igur ing user programs 33

Conf igur ing server propert ies

Specifying communication paths to the server

There may be multiple paths for a client's message to reach the server or different
paths for messages originating from different clients to reach the same server. All
these possible paths have to be configured in the server's properties so that the
generated IOR has the information needed for clients to send messages to the server.

The following diagram illustrates two paths of firewall configurations and shows the
communication paths to the server. Configuration X has a chain of two GateKeepers.
Configuration Y has a single TCP firewall.

Figure 4.1 Communication paths to the server

To configure the server for the configurations shown in diagram above, enter the
following information in the server's properties file:

1 Declare all firewall paths:

vbroker.se.iiop_tp.firewallPaths=x,y

2 Identify the components for each path:

vbroker.firewall-path.x=a,b
vbroker.firewall-path.y=c

The following sections describe how to specify the firewall components.

Specify the component of a proxy server
The following example shows an IIOP proxy across a firewall.

Server's Property:

vbroker.firewall-path.x=a,b
vbroker.firewall.a.type=PROXY
vbroker.firewall.a.ior=http://www.inprise.com/GK/GateKeeper.ior
vbroker.firewall.b.type=PROXY
vbroker.firewall.b.ior=IOR:<GateKeeper's stringified ior>

The first property defines the firewall components found in the path named x. The
second and fourth properties specify the types of the component named a and b,
respectively. Both component types are defined as PROXY, which identifies GateKeeper
as an IIOP proxy server to forward all IIOP requests. The third property defines the IOR
of GateKeeper a using URL naming. The fifth property defines the IOR of GateKeeper
b using a stringified IOR.

34 VisiBroker GateKeeper Guide

Conf igur ing server propert ies

Specify the component of a TCP firewall with NAT
Clients' messages may have to cross one or more TCP firewalls in order to reach the
server. The TCP firewall components have to be defined when NAT is performed in the
TCP firewall. If the TCP firewall does not perform NAT, the component can be ignored.

The following example shows how to use a router or firewall to forward an IIOP
message at the TCP level.

Server's Property:

vbroker.firewall-path.y=c
vbroker.firewall.c.type=TCP
vbroker.firewall.c.host=<fake_host>
vbroker.firewall.c.iiop_port=<IIOP fake port>
vbroker.firewall.c.ssl_port=<SSL fake port>
vbroker.firewall.c.hiop_port=<HTTP fake port>

The first property defines the firewall components found in the path named y. The
second property defines the type of component named c as TCP, which provides a
predefined port to forward all IIOP, SSL and IIOP over HTTP messages on a router or
other network device. The third property defines the fake host of the server. The
remaining last three properties define the fake port for the following message types:
IIOP, SSL and HTTP.

The TCP firewall specified as component “c” in the above example is expected to
perform host and port translation (NAT). The TCP firewall must be configured to
translate the fake host to the server's real host and translate all the fake ports to the
server's real listener ports.

Figure 4.2 TCP firewall with NAT

Chapter 5: Advanced features 35

C h a p t e r

Chapter5Advanced features
This section describes advanced features such as chaining GateKeepers, callbacks,
access control, load balancing, fault tolerance and SSL. It also describes the factors
that can improve the performance of GateKeeper.

Chaining of GateKeepers
GateKeepers can be chained together to provide paths through the firewalls. There are
two types of chaining
■ static chaining
■ dynamic chaining.

Static chaining of GateKeepers

In static chaining, the preceding GateKeeper is configured to forward messages to the
next GateKeeper. The communication path is fixed and is therefore static.

Figure 5.1 Static chaining of GateKeepers

36 VisiBroker GateKeeper Guide

Cal lbacks

In the figure above, two chained GateKeepers are required to communicate across a
firewall. The client applet sends messages to GateKeeper1 which will forward the
messages across the firewall to GateKeeper2. GateKeeper1 is able to forward the
message to GateKeeper2 because it has the Interoperable Object Reference (IOR) of
GateKeeper2. The IOR of GateKeeper2 specifies how to send messages from
GateKeeper1 to GateKeeper2 and thus crosses the firewall.

Dynamic chaining of GateKeepers

In static chaining, the communication paths are specified in the GateKeeper's IOR. In
dynamic chaining, the communication paths are specified in the server's IOR file. The
client, if given the server's IOR file, can use the information in the server's IOR to select
a path. The client tries the first path and the next if the first path fails, and so forth.

Figure 5.2 Dynamic chaining of GateKeepers

In the figure above, there are two paths from the client to the server. Both paths require
chaining of GateKeepers. The two paths are specified in the server's IOR that the client
reads, the first path is tried and on failure the second path is tried. The path is chosen
dynamically at runtime.

The way to specify the paths to the server is described in “Specifying communication
paths to the server” on page 33.

Callbacks
In most implementations, requests are initiated by the clients to which the servers reply
back. There are also implementations where information must arrive at a client that is
not in response to a request from the client which can be implemented by creation of
callback objects. Callback objects can be implemented in the three methods described
below.

Callbacks without GateKeeper

The implementation shown in the following figure is applicable to cases where the
client and server can communicate in both directions. In these cases, there are either
no intervening firewalls or the intervening firewalls do not hinder the communications
between the clients and servers.

Chapter 5: Advanced features 37

Callbacks

Figure 5.3 Using callbacks without GateKeeper

In the above example, the client creates an object, starts the listener, generates an IOR
and sends a request and IOR to the server. The server calls the client's listeners and
creates a callback connection. Subsequently, all messages to the callback objects will
be channel through the callback connection.

Callbacks without GateKeeper using bidirectional GIOP

With bidirectional IIOP, servers use the client-initiated connections to transmit
asynchronous information back to the clients. Servers need not initiate any
connections to the client.

Figure 5.4 Using callbacks with bidirectional GIOP support without GateKeeper

In the above figure, the client is able to establish a connection directly to the server, but
the server is unable to establish a separate callback connection because of an
intervening firewall. Therefore, the client and the server negotiate a bidirectional GIOP
connection and share the initial connection established by the client for IIOP traffic in
both directions.

The CORBA specification also adds a new policy to portably control this feature. For
more information about bidirectional communications exclusive of GateKeeper, see the
Borland AppServer Developer's Guide.

38 VisiBroker GateKeeper Guide

Cal lbacks

Callback with GateKeeper's bidirectional support

With bidirectional IIOP, servers use the client-initiated connections to transmit
asynchronous information back to the clients. Servers need not initiate any
connections to the client. The CORBA specification also adds a new policy to portably
control this feature. For information about bidirectional communications exclusive of
the GateKeeper, see the Borland AppServer Developer's Guide for more information.

Figure 5.5 Callback with GateKeeper's bidirectional support

In the figure above, GateKeeper sits between the client and server and therefore it acts
as a server for the client and as a client for the server. The Client/GateKeeper and the
GateKeeper/Server communication channels can be set to unidirectional or
bidirectional connections.

You can also selectively set the channels to unidirectional or bidirectional. If the client
defines vbroker.orb.enableBiDir=client and the server defines
vbroker.orb.enableBiDir=server, the following table describes the type of channels for
the different values of vbroker.orb.enableBiDir for GateKeeper.

Bidirectional connection example
An example that demonstrates GateKeeper's support for bidirectional connections is
located in the examples/vbroker/bank_bidir subdirectory under the GateKeeper for Java
installation.

The Bank BiDir example is similar to the Bank Callback example, except that in the
BiDir example, bidirectional connections are established between the client,
GateKeeper, and server. In other words, in the bidirectional implementation, the same
connection is used for both forward invocations as well as callbacks.

This example demonstrates how to:
■ Configure the client to enable bidirectional connections via the property file.
■ Program the client to create callback objects that can be passed as arguments to

invocations on server objects.

Table 5.1 Unidirectional or bidirectional communication

vbroker.orb.enableBiDir= Client GateKeeper GateKeeper Server

client unidirectional bidirectional
server bidirectional unidirectional
both bidirectional bidirectional
none unidirectional unidirectional

Chapter 5: Advanced features 39

Callbacks

■ Configure the server to set up firewall paths containing the server side inbound
firewall via property file. It also demonstrates how to configure the server so that it
can accept bidirectional connections.

■ Program the server to export the firewall path in server objects IOR.
■ Configure the GateKeeper so that it supports bidirectional connections.

The client
In this example, the client Client.java:

1 Creates a callback object on the POA named callback_poa. (This callback object will
be invoked by the server through the GateKeeper.)

2 Binds to the AccountManager object.

3 Sends the object reference of this callback object to the server by opening a bank
account by invoking open() and passing the callback object as an argument.

4 Queries the Account object reference obtained for the balance, again passing the
callback object (this time it is passed to the balance method).

The server
In the example, the server Server.java:

1 Creates a persistent POA named bank_poa and a transient POA named account_poa
with firewall policy value of EXPORT.

2 Creates an instance of the AccountManager servant.

3 Activates that servant on bank_poa.

4 Starts waiting for client requests.

5 Responds to the requests by invoking a method on the client-initiated callback
object through the GateKeeper.

Table 5.2 Files configured to support the bidirectional connection

File name Description
server.properties Property file used to configure the bank server. In this example, the

server is configured to accept listen points so that the connection
between the GateKeeper and the server will be bidirectional. To make
the connection unidirectional, either remove the property
vbroker.orb.enableBiDir or set the value of this property to none. The
other properties in this file are for loading the firewall package and then
setting the firewall path so that server-side objects can be bound and
called by the client.

client.properties Property file used to configure the bank client. In this example, the
client is configured to publish its listen points so that the connection
between the client and the GateKeeper will be bidirectional. To make
the connection unidirectional, either remove the vbroker.orb.enableBiDir
property or set its value to none. As with the server, the
vbroker.orb.dynamicLibs property is set to load in the necessary
firewall library so that the client request can traverse the GateKeepers.

GateKeeper.properties Property file used to configure the GateKeeper. In this example, the
GateKeeper is configured to both publish the listen points and accept
the listen points. Hence, both the client-GateKeeper and GateKeeper-
server connections will be bidirectional. These connections can be
converted into unidirectional by either removing the
vbroker.orb.enableBiDir property or by setting this property to the value
none.

40 VisiBroker GateKeeper Guide

Access control

Security considerations
Caution Use of bidirectional IIOP may raise significant security issues. In the absence of other

security mechanisms, a malicious client may claim that its connection is bidirectional
for use with any host and port it chooses. In particular, a client may specify the host
and port of security-sensitive objects not even resident on its host. In the absence of
other security mechanisms, a server that has accepted an incoming connection has no
way to discover the identity or verify the integrity of the client that initiated the
connection. Further, the server might gain access to other objects accessible through
the bidirectional connection. This is why the use of a separate, bidirectional SCM for
callback objects is recommended. If there are any doubts as to the integrity of the
client, it is recommended that bidirectional IIOP not be used.

Java For security reasons, a server running VisiBroker for Java will not use bidirectional
IIOP unless explicitly configured to do so. The property
vbroker.se.<sename>.scm.<scmname>.manager.importBiDir gives you control of
bidirectionality on a per-SCM basis. For example, you might choose to enable
bidirectional IIOP only on a server engine that uses SSL to authenticate the client, and
to not make other, regular IIOP connections available for bidirectional use. (See the
Properties section for more information about how to do this.) In addition, on the client-
side, you might want to enable bidirectional connections only to those servers that do
callbacks outside of the client firewall. To establish a high degree of security between
the client and server, you should use SSL with mutual authentication (set
vbroker.security.peerAuthenticationMode to REQUIRE_AND_TRUST on both the client and
server).

Access control
GateKeeper has a rules-based access controller built into it. This controller can deny or
grant accessibility based on:
■ operation
■ signed by
■ server's host/port
■ server's subnet
■ client's host/port
■ client's subnet

All rules are evaluated in the order in which you specify them. Action is taken based on
the first matched rule. If there is no matched rule, the default action you specify is
taken. See Chapter 6, “GateKeeper properties” for the syntax of the rules.

Custom-designed access control in GateKeeper

GateKeeper lets you plug-in custom designed Access Control mechanisms. The
Access Control Manager invokes all Access Controllers specified using GateKeeper
properties. The Access Control Manager uses the following interface for
implementation of an Access Controller:

package com.inprise.vbroker.gatekeeper.security;
public interface AccessController {
 public void init(org.omg.CORBA.ORB orb, String prefix);
}

Chapter 5: Advanced features 41

Access contro l

Access Controllers use the TcpConnectionInfo interface to get more information about
the Client:

 package com.inprise.vbroker.orb;
 public interface TcpConnectionInfo {
 public String getLocalHostName();
 public int getLocalPortNumber();
 public String getHostName();
 public int getPortNumber();
 public long getTotalBytesRead();
 public long getTotalBytesWrote();
 public String name();
 public java.io.InputStream getInputStream();
 public java.io.OutputStream getOutputStream();
 }

The Access Control Manager calls the init method to initialize the Access Controller.
GateKeeper supports the following types of Access Controller interfaces:
■ ObjectAccessController: The isObjectAccessible() method is invoked when the

client requests GateKeeper to set up a proxy channel (communication path) to the
server object. It should return true if the object is accessible:

package com.inprise.vbroker.gatekeeper.security;
import com.inprise.vbroker.orb.TcpConnectionInfo;
import com.inprise.vbroker.IOP.ServiceContext;
public interface ObjectAccessController extends AccessController {
 public boolean isObjectAccessible(
 TcpConnectionInfo clientInfo,
 org.omg.CORBA.Object server,
 ServiceContext[] contexts,
 byte[] principal);
}

■ OperationAccessController: The isOperationAccessible() method is invoked
when the client sends requests through the GateKeeper. It should return true if a
given operation is accessible:

package com.inprise.vbroker.gatekeeper.security;
import com.inprise.vbroker.orb.TcpConnectionInfo;
import com.inprise.vbroker.IOP.ServiceContext;
public interface OperationAccessController extends AccessController{
 public boolean isOperationAccessible(
 TcpConnectionInfo clientInfo,
 TcpConnectionInfo serverInfo,
 org.omg.CORBA.Object server,
 String operation,
 ServiceContext[] services);}

You can program an access controller (for example, myAC) and install it on GateKeeper
using following properties:

 vbroker.gatekeeper.security.accessControllers=myAC

vbroker.gatekeeper.security.acl.myAC.type=com.inprise.vbroker.gatekeeper.securi
ty.myACImpl
 vbroker.gatekeeper.security.acl.myAC.rules=
 vbroker.gatekeeper.security.acl.myAC.default=grant

42 VisiBroker GateKeeper Guide

Load balancing and fault to lerance

An Access Controller can be implemented as follows:

package com.inprise.vbroker.gatekeeper.security;
import java.util.*;
import java.io.*;
import com.inprise.vbroker.orb.TcpConnectionInfo;
import com.inprise.vbroker.orb.ORB;
import com.inprise.vbroker.IOP.ServiceContext;
public class myACImpl implements
ObjectAccessController, OperationAccessController {
 public void init(org.omg.CORBA.ORB orb, String prefix) {
 }
 public boolean isObjectAccessible(
TcpConnectionInfo clt, org.omg.CORBA.Object svr,
ServiceContext[] contexts, byte[] principal) {
 return true;
 }
 public boolean isOperationAccessible(
TcpConnectionInfo clt, TcpConnectionInfo svr,
org.omg.CORBA.Object server, String operation,
ServiceContext[] services) {
 return true;
 }
}

The access control methods or rules can be defined by the implementation.

Load balancing and fault tolerance
GateKeeper is most often used to provide a single point of access to the internal
network therefore it can become congested or become the single point of failure.
These problems can be resolved by clustering GateKeepers to provide a degree of
fault tolerance and scalability.

Load balancing

A master GateKeeper and one or more slave GateKeepers can be clustered together.
The master GateKeeper is responsible for balancing the load among the slave
GateKeepers. The server should export the master GateKeeper object reference only.

Chapter 5: Advanced features 43

Load balancing and faul t to lerance

Figure 5.6 Load balancing using GateKeeper

The figure above shows the property setting for GateKeeper1 and the server. The
master GateKeeper can balance the load between a slave GateKeepers on a per
object level. On the object level, each client will be redirected to one of the slave
GateKeepers based on the load balancing policy. In general, this will balance the load
more evenly but potentially use more resources and slower.

The default load balance policy is round-robin. This policy, however, can be
customized and is available as a standard package. Please contact Borland for more
information.

Additionally, GK2 and GK3 can also have their own slave GateKeepers. In this
configuration, a hierarchy of master and slaves can be stacked over one another.

Custom-designed load balancing in GateKeeper

The ORB default implementation of load distribution uses the round-robin algorithm
in which the client request is shared among a server and GateKeeper in a sequential
order. The following code example shows a distributor implementation:

package com.inprise.vbroker.gatekeeper.ext;
import java.util.Enumeration;
import org.omg.Firewall.GIOPProxy;
import com.inprise.vbroker.orb.*;
import com.inprise.vbroker.util.*;

public class MyDistributor implements Distributor {
 private Enumeration _enum;
 private UnGuardedVector _servers;
 public void init(ORB orb, UnGuardedVector v) {
 _servers = v;
 _enum = servers.elements();
 }
 public synchronized GIOPProxy next() {
 if (!_enum.hasMoreElements()) {
 _enum = _servers.elements();
 }
 return (GIOPProxy)_enum.nextElement();
 }
}

44 VisiBroker GateKeeper Guide

Scalabi l i ty and performance guidel ines

The Server Manager can collect current load related information of other GateKeeper
instances in a master/slave configuration. Based on the available real-time information
from the Server Managers, the master GateKeeper can reallocate client requests to
other GateKeepers. In another scenario, a federation of GateKeepers can exchange
load-statistics to distribute the load.

Fault tolerance

A master GateKeeper and one or more backup GateKeepers can be clustered together
to be viewed as a single GateKeeper by the client. There are several ways to cluster
the GateKeepers:
■ Cluster the GateKeepers as different firewall paths to the server.

This configuration is accomplished similarly to dynamic chaining of GateKeeper. It
requires no changes to the GateKeeper configuration; you only need to configure
the server to include all the backup GateKeepers as a firewall path on the server
listener. This approach, however, makes the server configuration more complex.

■ Fold all the backup GateKeeper's object references (profiles) into the master
GateKeeper's object reference. When the master GateKeeper fails, the client would
rebind to one of the other backup GateKeepers automatically. This approach can
make the GateKeeper's object reference very large. The load balancing feature of
GateKeeper follows this approach.

Scalability and performance guidelines
When assessing GateKeeper performance, it is useful to compare a GateKeeper
scenario (Client-GateKeeper-Server) to a direct scenario (Client-Server).

Note Here performance is represented as response time and scalability is represented as
throughput.

The GateKeeper scenario requires two connections and thus two invocations. As a
result:
■ Throughput is reduced: It may be reduced by as much as 50 percent when

compared to the direct scenario.
■ Response Time is slowed: Response time will take longer when compared to the

direct scenario. In some cases, it may take up to 200 percent longer.

GateKeeper performance tuning

GateKeeper does not introduce any new performance threshold or throughput
threshold which means that GateKeeper will have the same performance and
throughput profile as the VisiBroker ORB. Because GateKeeper is a CORBA
application, it inherits the basic features of the ORB. As such, all ORB specific
performance tuning parameters apply to GateKeeper as well. The following areas
described below, however, can affect the performance of GateKeeper:

Chapter 5: Advanced features 45

Scalabi l i ty and performance guidel ines

Bidding mechanism
The client-side ORB can be programmed to select specific bids based on the
constraints set by the user. The order of selection of bids can be specified to speed up
the process of connection establishment:
■ Constraint on Bid-Portfolio: The following properties are useful for setting

exclusive bids in the case of static chaining of GateKeeper:

 vbroker.orb.alwaysProxy
 vbroker.orb.alwaysTunnel
 vbroker.orb.alwaysSecured

For example, the vbroker.orb.alwaysProxy is useful when a specific GateKeeper is
statically chained to another GateKeeper. If one is very sure that only HTTP
Tunnelling will be used while chaining the GateKeepers, then set
vbroker.orb.alwaysTunnel property can be set to avoid unnecessary bids. When the
vbroker.orb.alwaysSecured property is set, then the GateKeeper will use secure
communication path only while chaining. Please note that these properties are set
on the outer GateKeeper.

■ Order of Bid-Selection: The order of the bid can affect the speed of the selection of
a specific bid. For example, if you are certain that most of the connections allowed
on a specific GateKeeper will be of a secure type, you can place the SSL as the first
entry in the string as follow:

vbroker.orb.bidOrder=inprocess:liop:ssl:iiop:proxy:hiop:locator

■ Specifying high-precedence Bid: You can set the following property to the highest
precedence bid. By default, it is set to inprocess in the ORB:

vbroker.orb.bids.critical=inprocess

Cache management
The following property sets the cache size of GateKeeper:

vbroker.gatekeeper.cache.size=100

Message marshalling
By setting the chunk size of the stream, you can increase the size of messages
exchanged between GateKeeper and the client/server application. The chunk size can
have significant impact on the performance of the applications, particularly using HTTP
Tunnelling:

vbroker.orb.streamChunkSize=4096

You can try using values such as: 4096, 8192, or 16384. The performance of the
applications may vary depending on the maximum size of the packets on your network.

46 VisiBroker GateKeeper Guide

Scalabi l i ty and performance guidel ines

Thread management
Depending on the response needs of GateKeeper, different techniques of thread
management can be applied, such as thread pooling, thread-per-session, and so forth.
By default, the request forwarding IIOP service uses ThreadPool, and the HIOP service
uses ThreadSession:

vbroker.se.exterior.scm.ex-iiop.dispatcher.type=ThreadPool
vbroker.se.exterior.scm.ex-iiop.dispatcher.threadMax=100
vbroker.se.exterior.scm.ex-iiop.dispatcher.threadMin=0
vbroker.se.exterior.scm.ex-iiop.dispatcher.threadMaxIdle=300

vbroker.se.interior.scm.in-iiop.dispatcher.type=ThreadPool
vbroker.se.interior.scm.in-iiop.dispatcher.threadMax=100
vbroker.se.interior.scm.in-iiop.dispatcher.threadMin=0
vbroker.se.interior.scm.in-iiop.dispatcher.threadMaxIdle=300

vbroker.se.exterior.scm.ex-hiop.dispatcher.type=ThreadSession

Connection management
The bidirectional GIOP has advantages of using the same communication path for
forward and backward communication. Therefore, Borland recommends that you use
the vbroker.orb.enableBiDir property setting in callback scenarios. The following
properties let you optimize connection resource usage (see Appendix A for more
details):

vbroker.se.exterior.scm.ex-iiop.manager.connectionMax
vbroker.se.exterior.scm.ex-iiop.manager.connectionMaxIdle

vbroker.se.interior.scm.in-iiop.manager.connectionMax
vbroker.se.interior.scm.in-iiop.manager.connectionMaxIdle

vbroker.ce.iiop.ccm.connectionMax should not be used in the context of GateKeeper,
because GateKeeper should be allowed to connect to as many servers as needed as it
is an intermediate service to potentially many clients. GateKeeper must not stop
already connected clients from proceeding with connections to servers just because
the number of outgoing connections it can open is limited. Instead, GateKeeper can
restrict the number of clients it is willing to service using the following property:

vbroker.se.exterior.scm.ex-iiop.manager.connectionMax

vbroker.ce.iiop.ccm.connectionMaxIdle, however, can be used to drop idle connections
to servers. This is particularly useful when the number of servers the GateKeeper
would potentially connect to is large, the number of connecting clients is small, and the
clients mainly target only a few servers.

Impact of asynchronized invocation of GateKeeper

Asynchronized invocation of GateKeeper does not have a very significant impact on
performance and scalability.

Chapter 5: Advanced features 47

GateKeeper performance propert ies

GateKeeper performance properties
There are many properties that affect GateKeeper's performance. Those properties
related to connection, thread type, mode of operation and call type are described here.

For more information, see “Performance and load balancing” on page 77 for additional
properties that can be adjusted for better performance.

Connection settings

Connection related properties of GateKeeper are:

vbroker.se.<xxx>.scm.<yyy>.manager.connectionMax
vbroker.se.<xxx>.scm.<yyy>.manager.connectionMaxIdle

where <xxx> and <yyy> represent “exterior, ex-hiop”, “exterior, ex-iiop”, “exterior, ex-
hiops”, “exterior, ex-ssl”, “interior, in-iiop” or “interior, in-ssl”.

The first property specifies the maximum number of active connections allowed.
Limiting connections conserves GateKeeper resources, but may decrease client
performance. The default is no limit.

The second property specifies how long an inactive connection is idle before it is
closed. The default is 0 which means that inactive connections are never closed.

Thread related settings

When the dispatcher type is “ThreadPool”, the following properties of GateKeeper can
be tuned:

vbroker.se.<xxx>.scm.<yyy>.dispatcher.threadMin
vbroker.se.<xxx>.scm.<yyy>.dispatcher.threadMax
vbroker.se.<xxx>.scm.<yyy>.dispatcher.threadMaxIdle

where <xxx> and <yyy> pair is “exterior, ex-iiop”, “exterior, ex-ssl”, “interior, in-iiop” or
“interior, in-ssl”.

The first property “threadMin” specifies how many threads are pre-created so that
requests can be quickly serviced. The default is 0.

The second property “threadMax” specifies the maximum number of threads that can
be created so that the system cannot be overloaded with too many threads. The default
is 100. Any request that cannot be serviced because of too few threads will wait for the
next available thread.

The third property “threadMaxIdle” specifies how long (in seconds) a thread is idle
before it is destroyed. The default is 300 seconds.

GateKeeper modes

GateKeeper can run in normal and pass-through mode. The pass-through mode has
lower performance because the content of the packets is not examined by GateKeeper
but still consume GateKeeper's resources. In fact, each pass-through connection
needs exclusive ports throughout the life-span of the connections. A client process can
request exclusive connection using policies programmatically.

GateKeeper in its normal mode of operation gives the better performance.

The mode is normal unless the pass-through is enabled by setting the property
vbroker.gatekeeper.enablePassthru=true.

48 VisiBroker GateKeeper Guide

GateKeeper and SSL

Call types

There are three types of calls:
■ normal forward calls
■ bidirectional callbacks
■ VisiBroker 3.x style callbacks

Bidirectional callbacks use a single connection for both forward calls and callbacks. It is
more efficient than the VisiBroker 3.x style callbacks.

Bidirectional callbacks are as efficient as the normal forward calls.

GateKeeper and SSL
Note SSL is a separate optional package; therefore for applets and server objects to run in

SSL mode, you must have a SSL component included in their ORB runtime.

GateKeeper with SSL provides the following security features:
■ relay IIOP/SSL connections between client and server
■ support HTTPS tunneling
■ enable IIOP/SSL callback (VisiBroker 3.x Style and bidirectional)
■ perform authentication on behalf of server
■ forward credentials

Additional properties for setting SSL can also be found in Chapter 6, “GateKeeper
properties.”

Figure 5.7 SSL connections to GateKeeper

SSL connections to GateKeeper

The server determines if the connection uses SSL or a regular IIOP connection. The
client running in SSL mode may request the connection to be SSL. The server running
in SSL mode, however, requires the client to connect to it in SSL mode.

If the client sets vbroker.orb.alwaysSecure=true in its property file, it will always connect
to the Server or GateKeeper in SSL mode and will not first try other types of
connections (which may fail if the Server or GateKeeper does not accept other types of
connection). This shortens the time for connections.

Similarly, setting the same property will help GateKeeper when it connects to the
Server.

Chapter 5: Advanced features 49

Enabl ing the Secur i ty Service in GateKeeper

SSL for forward and bidirectional calls

You can set the following GateKeeper properties to enable SSL for calls from the client
(applet) to the server object (via the GateKeeper):

vbroker.se.exterior.host = <host address>
vbroker.se.exterior.scms = ex-iiop, ex-hiops, ex-ssl
vbroker.se.exterior.scm.ex-ssl.listener.port = <port address>

The applet client opens an SSL connection to the GateKeeper. The client-GateKeeper
communication channel is in SSL mode. However, the mode of the GateKeeper-server
communication channel is determined by the server. If the server's scm is set to SSL
mode, the GateKeeper-server communication channel will be in SSL mode.

Bidirectional calls use the same forward communication paths. However, there is
additional property setting for bidirectional callbacks.

Enabling the Security Service in GateKeeper
While security is turned on by default, this feature applies to the licensing of the
Security Service only. There are, however, no license checks to turn on the Security
Service.

In Borland VisiBroker, the security is turned off by default as specified in the following
property:

 vbroker.security.disable=true

By setting the following property in VisiBroker, the application will prompt for username
and password for authentication:

 vbroker.security.login=true

You must create *.config files (examples shown below) to specify the authentication
and realm related parameters.

As a generic example of a security enabled GateKeeper, the IIOP, IIOP/SSL, HIOP,
and HIOPS listeners have been enabled in the following set of properties:

gatekeeper.config

 System
 com.borland.security.provider.authn.HostLoginModule required REALM=myrealm
PRIMARYIDENTITY=true;

 com.borland.security.provider.authn.ClientSideDataCollection required
REALM=testrealm;

 };
 myrealm
 com.borland.security.provider.authn.HostLoginModule required;

 };

 anotherrealm {
 com.borland.security.provider.authn.HostLoginModule required;
 };

50 VisiBroker GateKeeper Guide

Enabl ing the Secur i ty Service in GateKeeper

gatekeeper.properties

 vbroker.security.disable=false

 vbroker.security.peerAuthenticationMode=none

 vbroker.security.secureTransport=false

 vbroker.security.trustpointsRepository=Directory:./trustpoints

 vbroker.gatekeeper.referenceStore=./gkclnt.ior
 vbroker.orb.enableBiDir=both

 vbroker.orb.dynamicLibs=com.borland.security.hiops.Init

 vbroker.se.exterior.scms=ex-iiop,ex-hiop,ex-ssl,ex-hiops
 vbroker.se.exterior.host=143.186.142.21
 vbroker.se.exterior.scm.ex-iiop.listener.port=25000
 vbroker.se.exterior.scm.ex-hiop.listener.port=25001
 vbroker.se.iiop_tp.scm.hiop_ts.listener.port=25002
 vbroker.se.exterior.scm.ex-ssl.listener.port=25003
 vbroker.se.exterior.scm.ex-hiops.listener.port=25004

 vbroker.se.interior.scms=in-iiop,in-hiop,in-ssl
 vbroker.se.interior.host=143.186.139.226
 vbroker.se.interior.scm.in-iiop.listener.port=15001

 vbroker.se.interior.scm.in-hiop.listener.port=15002

 vbroker.se.interior.scm.in-ssl.listener.port=15003

 # Enable callback using this GateKeeper

 vbroker.gatekeeper.callbackEnabled=true

 # Enable VBJ3.x (old style) callback also
 vbroker.gatekeeper.backcompat.callback=true
 vbroker.gatekeeper.backcompat.callback.host=143.186.142.21
 vbroker.gatekeeper.backcompat.callback.listeners=iiop,ssl
 vbroker.gatekeeper.backcompat.callback.listener.iiop.port=16001
 vbroker.gatekeeper.backcompat.callback.listener.iiop.type=IIOPCallback
 vbroker.gatekeeper.backcompat.callback.listener.ssl.port=16002
 vbroker.gatekeeper.backcompat.callback.listener.ssl.proxyPort=0
 vbroker.gatekeeper.backcompat.callback.listener.ssl.type=SSLCallback

 # Optional: enable GateKeeper specific Access Control properties
 vbroker.gatekeeper.security.accessControllers=myAC
 vbroker.gatekeeper.security.acl.myAC.default=grant
 vbroker.gatekeeper.security.acl.myAC.rules=rule1
 vbroker.gatekeeper.security.acl.myAC.rule1=grant [operation="*"]

 # Optional: Identity of GateKeeper

 vbroker.security.wallet.identity=<username>
 vbroker.security.wallet.password=<password>
 vbroker.security.wallet.type=Directory:<path-to-identities>

Chapter 5: Advanced features 51

Enabl ing the Secur i ty Service in GateKeeper

The property settings in the following example tell the client to specifically request a
secure transport using GateKeeper. The client application collects the username and
password and sends this conformation to the server via GateKeeper.

client.config

 System {
 com.borland.security.provider.authn.ClientSideDataCollection required
REALM=myrealm;
 };

 Client {
 com.borland.security.provider.authn.ClientSideDataCollection required;
 };

client.properties

 vbroker.security.disable=false
 vbroker.security.login=true

vbroker.security.authentication.callbackHandler=com.borland.security.provider.a
uthn.HostCallbackHandler
 vbroker.security.authentication.config=client.config

 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.scms=iiop_tp,ssl
 vbroker.orb.alwaysProxy=true
 vbroker.orb.alwaysSecure=true

The property settings in the following example disables the IIOP listener and the server
is assumed to be a secure application that uses SSL transport only:

server.config

 System {
 com.borland.security.provider.authn.HostLoginModule required REALM=myrealm
PRIMARYIDEHostITY=true;
 com.borland.security.provider.authn.ClientSideDataCollection required
REALM=testrealm;
 };

 myrealm {
 com.borland.security.provider.authn.HostLoginModule required;
 };

 anotherrealm {
 com.borland.security.provider.authn.HostLoginModule required;
 };

52 VisiBroker GateKeeper Guide

Enabl ing access to the Naming Service through GateKeeper

server.properties

 vbroker.security.disable=false
 vbroker.security.login=true

vbroker.security.authentication.callbackHandler=com.borland.security.provider.a
uthn.HostCallbackHandler
 vbroker.security.authentication.config=server.config

 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.orb.exportFirewallPath=true

 vbroker.se.iiop_tp.host=143.186.142.21

 vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Disabled-IIOP
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=25000
 vbroker.se.iiop_tp.scm.ssl.listener.port=25005

 vbroker.se.iiop_tp.firewallPaths=intranet
 vbroker.firewall-path.intranet=first,second

 vbroker.firewall-path.internet=first
 vbroker.firewall.first.type=PROXY
 vbroker.firewall.first.ior=http://localhost:16085/gatekeeper.ior

 vbroker.firewall.second.type=TCP
 vbroker.firewall.second.host=192.75.11.14
 vbroker.firewall.second.iiop_port=32000
 vbroker.firewall.second.hiop_port=32001
 vbroker.firewall.second.ssl_port=32005

Enabling access to the Naming Service through GateKeeper
To start the Naming Service on a fixed IP address and port, you must set the following
properties. In the following example, the Naming Service is running on the IP host
address: 143.186.142.21 and listener port: 32101:

namingservice.properties

 vbroker.agent.addr=143.186.142.21
 vbroker.agent.port=25873
 vbroker.orb.logger.output=ns_debug.log

 vbroker.naming.logLevel=7
 vbroker.naming.iorFile=ns.ior

 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.host=143.186.142.21
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=32010

Chapter 5: Advanced features 53

Enabl ing access to the Naming Service through GateKeeper

gatekeeper.properties

 vbroker.agent.addr=143.186.142.21
 vbroker.agent.port=25873
 vbroker.agent.enableLocator=false

 vbroker.orb.initRef=NameService=corbaloc::143.186.142.21:32010/NameService
 vbroker.gatekeeper.referenceStore=gkclnt.ior
 vbroker.se.exterior.host=143.186.142.21
 vbroker.se.interior.host=143.186.139.226
 vbroker.se.exterior.scm.ex-iiop.listener.port=25000
 vbroker.se.exterior.scm.ex-hiop.listener.port=25001
 vbroker.se.iiop_tp.scm.hiop_ts.listener.port=25002

54 VisiBroker GateKeeper Guide

Chapter 6: Troubleshoot ing GateKeeper 55

C h a p t e r

Chapter6Troubleshooting GateKeeper
This section describes how to obtain debugging information from GateKeeper and its
clients and servers. It also highlights potential problems such as incorrect environment
and registry settings and describes some common tools useful for troubleshooting
GateKeeper.

Preparation for troubleshooting
The following sections describe the preparations that must be done or observed before
troubleshooting GateKeeper.

Getting debugging information

Comprehensive debugging information can be obtained by setting the properties of the
client, server and GateKeeper. The following table shows the relevant settings and
whether they are applicable to the client, server, or GateKeeper. The properties must
be set in their respective properties file.

Log levels have numeric levels along with corresponding text values and either can be
used to describe the situation. Levels 4 and higher are useful for debugging. The
following table describes the log level values.

Table 6.1 Log levels

Log level value Description
0 or EMER System is unusable. A panic condition.
1 or ALERT A condition that should be corrected immediately, such as a corrupted

system database.
2 or CRIT Critical conditions, such as hard device errors.
3 or ERR Error conditions.
4 or WARNING Warning conditions such as connection failures due to authentication

problems, such as incorrect password and authorization failures. This is the
default.

5 or NOTICE Conditions that are not critical, but may require special handling
configuration settings.

56 VisiBroker GateKeeper Guide

Preparat ion for t roubleshoot ing

The following table describes the property settings useful for debugging GateKeeper.

6 or INFO Informational such as all user accesses to specific methods requested to the
server.

7 or DEBUG Debug information meant to be understood only by the developer. These
messages are not internationalized

Table 6.1 Log levels (continued)

Log level value Description

Table 6.2 Debugging Properties

Property Description Set in Property File
vbroker.orb.logger.output=<filename> Log file

Specifies the name of the file
where the log is recorded.
If not specified, the default is
gkdebugfile.log.
Log information can also be
sent to stdout.

Server, client and
GateKeeper

vbroker.orb.bufferDebug=true ORB
Forces the internal buffer
manager to display the buffers
used by ORB.

Server, client and
GateKeeper

vbroker.orb.debug=true ORB
Displays debugging from the
ORB

Server, client and
GateKeeper

vbroker.orb.warn=<warning level> ORB
Specifies which warning of a
particular level to be displayed
by the ORB. The values can
be 0, 1 or 2. Level 2 will
display warnings of all levels.

Server, client and
GateKeeper

vbroker.orb.logLevel=<loglevel> ORB
The log level can take one of
the values described above.

Server, client and
GateKeeper

vbroker.orb.logger.appName=<Application Name> ORB
Specifies the application name
to be displayed in the log.

Server, client and
GateKeeper

vbroker.events.debug=true Event Service
Displays Event Service
diagnostic messages.

Event Service

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.trace.Init
vbroker.gatekeeper.trace.demo=true

GateKeeper
Displays trace information
from GateKeeper's built-in
trace facility.

GateKeeper

vbroker.agent.debug=true GateKeeper and Smart
Agent
Displays debugging
information of interactions
between GateKeeper and the
Smart Agent.

GateKeeper

vbroker.locationservice.debug=true Location Service
Displays debugging
information of the Location
Service.

Server, client and
GateKeeper

Chapter 6: Troubleshoot ing GateKeeper 57

Preparat ion for t roubleshoot ing

Starting GateKeeper in debugging mode

In addition to the properties described above, the gatekeeper and vbj command line
utilities can output additional environment and parameter setting information at start-
up. The -VBJdebug option produces this additional output. The following table shows
examples of the debugging commands:

Note The -VBJdebug option affects only the gatekeeper and vbj commands and has no
relationship to the diagnostic property settings described above. The diagnostic
properties will produce the same output regardless of whether or not the -VBJdebug
option is used.

Environment settings

GateKeeper reads in the environmental variables at startup. On Windows, GateKeeper
also reads settings in the registry. The precedence of the settings (UNIX and Windows)
is as follows:

1 command line

2 properties file

3 environment settings

4 system default (Windows only)

vbroker.URLNaming.debug=true URLNaming
Displays debugging
information of the URLNaming
service loaded in the ORB
runtime. This setting is often
used to detect if the correct
IOR is retrieved.

Server, client and
GateKeeper

vbroker.poa.logLevel=emerg POA
Displays debugging
information from the POA.
GateKeeper has exterior,
interior and iiop_tp POA.

Server and Server
Side of GateKeeper

vbroker.gatekeeper.passthru.logLevel=<emerg> Pass-through
Displays debugging
information of pass-through
mode in GateKeeper.

GateKeeper

vbroker.security.logLevel=<logLevel> Security Service
Displays logging information of
the security service such as
SSL on GateKeeper.

GateKeeper

Table 6.2 Debugging Properties (continued)

Property Description Set in Property File

Table 6.3 Starting in debugging mode

Component Command line options example
Server vbj -VBJdebug -DORBpropStorage=server.prop Server

GateKeeper gatekeeper -VBJdebug -J-Dvbroker.orb.debug=true -J-Dvbroker.orb.logLevel=7 -
props gk.prop

Client vbj -VBJdebug -DORBpropStorage=client.prop Client

58 VisiBroker GateKeeper Guide

Preparat ion for t roubleshoot ing

The following table lists the common environment variables used by GateKeeper.

Tools for troubleshooting

The following table describes some tools that are useful for troubleshooting
GateKeeper.

Table 6.4 GateKeeper common environment variables

Environment Variable Description
CLASSPATH CLASSPATH should include the directories of the Java Development Kit

and Java Servlet Development Kit. Specifically, CLASSPATH must
include servlet.jar. For example, in Windows NT, at the DOS prompt
enter:

set CLASSPATH=C:\visibroker\lib\tomcat\common\
servlet.jar;c:\bes\jdk\jdk1.4.1\lib

If the classpath includes multiple versions of the JDK,
compatibility issues may arise.

JAVA_HOME Specifies the home directory of Java. If the Java directory is not
defined in the CLASSPATH environment variable, the system will try
to locate Java libraries from this directory.
Note: On UNIX systems, this variable must be set. On Windows
systems, it may be preset in the registry.

JDK_HOME Specifies the home directory of JDK. If the JDK directory is not
defined in the CLASSPATH environment, the system will try to locate
JDK libraries from this directory.
Note: On UNIX systems, this variable must be set. On Windows
systems, it may be preset in the registry.

PATH The PATH environment is set automatically during VisiBroker
installation and should include the directory in which GateKeeper
exists. For example, on Windows, at the command prompt enter:

set PATH = c:\bes\vbroker\bin

VBROKERDIR Specifies the home directory of the GateKeeper distribution. Note that
VBROKERDIR points to the VisiBroker directory, but not the VisiBroker bin
directory. Ensure that the PATH environment variable includes
%VBROKERDIR%\bin.

BES_HOME Obsolete (replaced by VBROKERDIR)
OSAGENT_PORT Specifies the port used to contact the Smart Agent. Ensure the

appropriate Smart Agent listens to this port and GateKeeper is able to
reach this port (and the host).

BES_LIC_DIR Specifies the path of the directory location in which the license data
file exists.

Table 6.5 GateKeeper troubleshooting tools

Names Description
osfind
Windows and UNIX)

Included with the VisiBroker distribution. It is used to locate all objects
registered within a given Smart Agent domain and to display
information known to the agent. Normally, Smart Agents are restricted
to a subnet only.

printior
(Windows and UNIX)

Included with the VisiBroker distribution. It is used to print all the
information encoded in an IOR into a human readable format..

ping
(Windows and UNIX)

Part of TCP/IP networking tool set and usually included with the
operating system. It is used to test where a packet is bounced back
from a remote host to the current host and can be useful for firewall
configuration verification.

Chapter 6: Troubleshoot ing GateKeeper 59

Preparat ion for t roubleshoot ing

Getting information about the computer network

A good understanding of the computer network is needed to configure GateKeeper
properly. You should work closely with the network administrators to identify problems
that might arise from an improper configuration of GateKeeper and the firewall or the
network itself. Many times configuration problems arise due to an incorrect
configuration of the router or firewalls.

Firstly, you should try to understand the network diagram, firewall policies, routing
tables, packet filters, and the location and configuration of basic TCP/IP stack servers.
Most network administrators can provide you with logical network diagrams that show
the physical wiring and the components in their network. When making deployment
plans for GateKeeper , it recommended that you first start by analyzing and
understanding these diagrams..

Next, you need to understand the firewall policies in place. Understanding the firewall
policies and the physical network diagrams will help you determine whether messages
from the client application are allowed to pass through various hops of the networks to
reach the server and vice versa. This information in turn determines where the you
should deploy GateKeeper and it will save a considerable amount of time when
troubleshooting GateKeeper's configuration.

An external router routes packets to/from the Internet and perimeter networks.
Additionally, the external router can be programmed so that only a restricted set of
protocols can enter from the Internet to the perimeter network. This additional
information is only available in the firewall policy. If the routes are not configured
properly, the packets will be forwarded to the wrong destination or will be ignored.
Whenever there is any change in the routing table or firewall policies, the network
administrator should notify you.

A multi-homed firewall can filter and route packets from the perimeter network into the
internal network and the de-militarized zone. Additionally, it may also perform Network
Address Translation in which the real IP address of the internal network is replaced
with the fake IP address and vice versa.

tracert (Windows)
traceroute (UNIX)

Part of TCP/IP networking tool set and distributed with some operating
systems. It prints the route or path taken by a data packet to reach the
destination host. It can help you identify a problem with firewalls as it
shows where packets fail when being forwarded by routers.

route
(Windows and UNIX)

Part of TCP/IP networking tool set and distributed with some operating
systems. It prints the routing table and can be useful with firewall
configurations.

netstat
(Windows and UNIX)

Part of TCP/IP networking tool set and distributed with some operating
systems. It displays protocol statistics and current TCP/IP network
connections and can be useful to verify the state of connections and
port availability.

nslookup
(Windows and UNIX)

Part of TCP/IP networking tool set and distributed with some operating
systems. It queries Internet domain name servers for hostname
mapping.

vregedit (Windows) Provided by Borland to edit Windows registry entries related
specifically to Borland products.

regedit (Windows) Part of Microsoft Windows operating system distribution and lets you to
edit the Windows registry.

Table 6.5 GateKeeper troubleshooting tools (continued)

Names Description

60 VisiBroker GateKeeper Guide

Preparat ion for t roubleshoot ing

The following figure is an example of a network diagram that shows the physical wiring
layout of three subnets; the Perimeter Internet, Demilitarized zone, and internal
network.

Figure 6.1 Typical network diagram example

■ The External Router routes packets to/from the Internet and Perimeter Internet.
Additionally, the external router can be programmed such that only a small restricted
set of protocols enter from Internet to the Perimeter Internet. This additional
information is only available in the Firewall policy; that is the routing table.

■ The Multi-Homed Firewall filters packets and routes packets from the Perimeter
Internet into the two subnets; internal Network and Demilitarized Zone. Additionally,
it may also perform Network Address Translation in which the real IP address of the
internal network is replaced with the fake IP address and vice versa.

Note The example above illustrates one of many possible network configurations and,
therefore, it is very important to know where such information can be obtained before
deploying GateKeeper.

Chapter 6: Troubleshoot ing GateKeeper 61

Essent ia l checks

Essential checks
GateKeeper acts like a proxy and problems can arise in the client, GateKeeper, or the
server. The following sections describe some essential checks you can make when
GateKeeper fails to work properly. The checks described below are not meant to be
exhaustive and are not arranged in order of importance or performance sequence, but
are provided here to serve as a guideline for preliminary troubleshooting.

Check the Smart Agent

GateKeeper uses the Smart Agent to locate server objects and GateKeeper can
automatically locate the Smart Agent on the network. If the Smart Agent fails to detect
the server object or if GateKeeper is unable to locate the Smart Agent automatically,
you may use one of the following solutions to troubleshoot the Smart Agent:
■ Check the environment variable settings described above.
■ Start the Smart Agent in debugging mode:

osagent -v

■ Find all Smart Agents that are reachable from where GateKeeper is installed. You
may use the osfind command.

■ Check if the IP and port addresses are set correctly in the client, GateKeeper, and
the server.

Check the property files

Check the settings in the property files of the client, server and GateKeeper. The most
common problem is setting the port and host addresses incorrectly.

Check the routing table

A multi-homed host allows communication between the connected networks. In order
for the multi-homed host to route data packets from one network to another correctly,
you must configure the routing tables correctly in the hosts. If the routing table fails to
send data correctly, you may use the following methods to troubleshoot this program:
■ Use route print and traceroute to check for routing tables. Identify where the

communication breakdown and configure the routing tables correctly.
■ Use tools such as ping and tracert can to examine and verify the communication

paths.

62 VisiBroker GateKeeper Guide

Essent ia l checks

Check pass-through connections

You may use one of the following methods to check if the pass-through connection is
set correctly:
■ If you are using GateKeeper in the pass-through mode, you must set the following

properties in GateKeeper correctly:

vbroker.gatekeeper.passthru.inPortMin
vbroker.gatekeeper.passthru.inPortMax
vbroker.gatekeeper.passthru.outPortMin
vbroker.gatekeeper.passthru.outPortMax

The inPortMin and inPortMax properties specify the range of ports a client uses to
connect to GateKeeper. Therefore, you must ensure that the clients are able to
overcome firewalls to connect to these ports.

Similarly, the outPortMin and outPortMax properties specify the range of ports
GateKeeper uses to connect to the server-side network. Therefore, you must
ensure that GateKeeper is able to overcome the firewalls to connect to these ports
on the server.

■ Use tools such as ping, tracert, traceroute, and route to check if the destination is
reachable.

Check the Java policy

Java: If the client is an applet using the java plug-in, make sure the following properties
are added to the java.policy file. If these settings are not specified in the JRE's
java.policy file, a security exception may occur. Note that these properties are the
client's settings and “192.73.8.25:25001” is the IP and port address of GateKeeper's
host and HIOP port.

grant codeBase "http://192.73.8.25:25001/*" {
 permission java.lang.reflect.ReflectPermission"suppressAccessChecks";
 permission java.io.SerializablePermission "enableSubclassImplementation";
 permission java.lang.RuntimePermission "accessDeclaredMembers";
};

Check SSL

If you are using SSL, ensure the certificate is installed properly in the client (Web
browser), the server, and GateKeeper.

Check the IOR files

To check the content of an IOR file, use the following methods:
■ Set the vbroker.URLNaming.debug property in the client, GateKeeper, or the server to

trace which IOR files are retrieved.
■ Use the printior command to print the content of an IOR file.

Chapter 6: Troubleshoot ing GateKeeper 63

Common errors and FAQs

Check firewall settings

Firewall settings can be the most problematic settings.
■ See Chapter 3, “Configuring GateKeeper and internetworking devices,” “Configuring

the firewall” on page 20, and Chapter 4, “Configuring user programs.”
■ Work closely with the network administrator to understand the firewall restrictions.
■ Check the NAT (Network Address Translation) configuration.

Common errors and FAQs
1 A comprehensive list of Frequently Asked Questions, “VisiBroker GateKeeper

FAQs” is maintained on the Borland web site. You may want to read this list for more
information.

2 Common errors made while setting properties are spelling mistakes for property
names, such as “vroker” instead of “vbroker”. Also, on Windows, some word
processors automatically change the first character on a line into a capital letter.
Therefore, vbroker becomes Vbroker which is not valid.

3 Socket binding errors can occur when the IP and/or port addresses are invalid or are
already in use. The following table shows some typical errors:

Proxy servers and GateKeeper
GateKeeper can work in conjunction with HTTP proxy servers. These proxy servers
are used by the HIOP protocol for the HTTP Tunneling feature of GateKeeper.

In general, the latest firewall products have a built-in capability to handle HTTP traffic.
Certain firewalls have built-in HTTP proxy servers (such as Microsoft's ISA Server)
while other firewalls can forward HTTP messages to an HTTP proxy server that can
perform load balancing using proprietary mechanisms. In some cases, an HTTP proxy
server uses caching techniques to increase performance. GateKeeper requests that
HTTP proxy server caching is disabled for its messages.

When an HTTP proxy server is used in conjunction with GateKeeper, the HTTP proxy
server acts like a NAT device for GateKeeper because the HTTP proxy server forwards
packets. GateKeeper is hidden behind the HTTP proxy server and, as such, it is
important to configure the proxy host properties or TCP firewall properties to specify
the HIOP fake host/port.

Table 6.6 Typical socket binding errors

Error Message Error Type Solution
"Bind Exception: Cannot assign
requested address"

Wrong IP Address Correct the IP and/or port
address.

"Bind Exception: Address in use" IP port already in use Correct the IP and/or port
address.

"Invalid GIOP Proxy ior:
Communication Problem"

Wrong IP Address Correct the IP and/or port
address.

"Invalid GIOP Proxy ior: Connect
Exception"

Wrong Port Address Correct the IP addresses in the
IOR file (property file)

"Invalid GIOP Proxy ior: Invalid
Object Ref, File Not Found Exception"

Wrong IOR Name Correct the name of the
referenced IOR file.

64 VisiBroker GateKeeper Guide

Appendix A: GateKeeper propert ies 65

A p p e n d i x

Chapter 6GateKeeper properties
This appendix describes the properties that may be set on GateKeeper with the
exception of “Server's properties for firewall specifications” on page 82, which are
properties set on the server.

Note The following notations are used for the column “Default/Options” in the tables:
■ Options are in bold; gatekeeper.ior
■ <empty> is a blank space or an empty string.
■ Options enclosed in angle brackets (<>) are user supplied values, for example,

<port number> or <integer values>.

General properties
The following table lists the common properties used by GateKeeper.

Property Default/Options Description

vbroker.gatekeeper.name null – no name is defined
<a user defined name>

Specifies the name of a GateKeeper instance to
differentiate it from other GateKeepers instances.

vbroker.gatekeeper.referenceStore gatekeeper.ior – in the
current directory of
GateKeeper. <Relative
pathname> <Full
pathname>

Specifies the name of the GateKeeper IOR file. You
may define the full path name if this file is not stored in
the GateKeeper current directory.

vbroker.gatekeeper.locationService true – enabled
false – disabled

Enables or disables the location service using
GateKeeper. This service is provided for clients such
as applets that are not able to communicate with the
Smart Agent (OSAgent) to do the bind. If this property
is set to false, the client will get a NO_PERMISSION
exception during the binding operation through
GateKeeper.

vbroker.gatekeeper.cache.size 64 (default)
1 – cache is disabled
0 – cache size is unlimited

Defines the size of the GateKeeper cache.

66 VisiBroker GateKeeper Guide

Exter ior server engine

Exterior server engine
The following table lists the properties used by the exterior server engine on the client
side or Internet side of GateKeeper. Most of the important properties, however, are
defined in each Server Connection Manager (SCM) which are described in the
following sections.

vbroker.gatekeeper.cache.timeout 900 <an integer value> Specifies the time in seconds for keeping the
information in the cache. If the information is not used
by the end of the timeout interval, garbage information
is collected.

vbroker.gatekeeper.asynchronizedIO false (default) – enabled
true – disabled

Enables or disables the asynchronized IO feature in
GateKeeper. The asynchronized IO feature is only
useful in situations in which calling methods on the
servers takes a long time and there are a lot of new
incoming clients. In most situations, activating this
feature does not provide any advantages. This feature
exists mainly due to historical reasons and the use of it
is discouraged.

Property Default/Options Description

Property Default Description

vbroker.se.exterior.scms ex-iiop,ex-hiop – ex-iiop and
ex-hiop Server connection
managers in use. It can also be
a list of ex-iiop, ex-hiop, ex-ssl,
and ex-hiops separated by
commas.

Defines the server connection managers for the
exterior server engine.

vbroker.se.exterior.host null – the primary host is used;
that is the IP address of the
primary Network Interface Card
(NIC). <a host address>

The host address of the exterior host. The primary NIC
is the exterior NIC. You can set this property in the
<Basic Properties> panel of GateKeeper.

vbroker.se.exterior.proxyHost <empty> – No proxy host. <a
fake host address>

Network Address Translation (NAT) devices hide the
actual IP address and/or port number in the network
by changing the IP address and/or in the IP packet.
Set this value to the value defined by the NAT. When
you have callback enabled and GateKeeper sits
behind a NAT, the callback proxy host
(vbroker.gatekeeper.backcompat.callback.proxyHost)
should be set to equal this property. This is used when
GateKeeper sits behind a NAT. You can also set this
property on the Basic Properties panel of the
VisiBroker Console.

vbroker.se.exterior.type gatekeeper This setting says that the exterior server engine is in a
“proxying” role. It means packet/messages forwarding
function is enabled on this server engine. The user
should not change this setting.

Appendix A: GateKeeper propert ies 67

Exter ior server engine

ex-hiop server connection manager (SCM)

Java The ex-hiop server connection manager is responsible for servicing HTTP requests on
the exterior server engine. Both the listener and dispatcher properties are configured
using the property with the vbroker.scm.exterior.ex-hiop prefix.

The following vbroker.se.exterior.scm.ex-hiop properties specify the behavior of the
ex-hiop listener. The ex-hiop listener is an HIOP listener. The default port is 8088. The
threading policy is set to ThreadSession.

Note All the properties related to an SCM are defined with the following prefix:
vbroker.se.<server engine name>.scm.<server connection manager name>.

Some SCMs may define additional properties, but some properties, especially the
properties related to threads and connections, have the same property names for all
SCMs.

Property Default Description

vbroker.se.exterior.scm.ex-hiop.root .
<Full path of a file
directory>

Sets to the root directory as its
default. The default directory is
where GateKeeper starts.

vbroker.se.exterior.scm.ex-hiop.dispatcher.type ThreadSession Specifies the dispatcher type for a
ex-hiop scm request. The type
should always be set to “Thread
Session”.

vbroker.se.exterior.scm.ex-hiop.listener.port 8088
<a port number>

Sets the default listener port for
GateKeeper's client side (exterior)
HIOP listener. Client applications or
applets use this port primarily for
HTTP tunneling support. This port
may also be used on a limited basis
for standard HTTP requests such as
fetching the GateKeeper IOR file.

vbroker.se.exterior.scm.ex-hiop.listener.proxyPort <empty>
<a fake port
number>

The proxyPort property is often used
in conjunction with the server engine
proxyHost property to mask the target
port for this listener. If this property is
set, the GateKeeper IOR file will
contain the proxyPort value in the
endpoint information for this listener.
It is then the responsibility of the
external NAT device to map the
proxyPort to the listener's true port.
The default is <empty> indicating the
feature is disabled (the listener port
will not be masked).

vbroker.se.exterior.scm.ex-hiop.listener.type HIOP Specifies the listener type for the ex-
hiops SCM. HIOP indicates that this
listener supports the proprietary
HIOP protocol used for HTTP
tunneling as well as the HTTP
protocol. The listener type for pre-
configured server connection
managers such as ex-hiop should
not be changed.

vbroker.se.exterior.scm.ex-hiop.manager.connectionMax 0 – incoming
connections are
unlimited <an integer
value>

Defines the maximum number of
incoming connections allowed to the
GateKeeper exterior HIOP listener.

vbroker.se.exterior.scm.ex-hiop.manager.connectionMaxIdle 0
<an integer value>

Specifies the time in seconds that an
inactive connection is idle before it
can be closed.

vbroker.se.exterior.scm.ex-hiop.manager.type Socket It specifies the type of Server
Connection Manager.

68 VisiBroker GateKeeper Guide

Exter ior server engine

ex-iiop server connection manager (SCM)

The ex-iiop server connection manager is responsible for servicing IIOP requests on
the exterior sever engine. The listener and dispatcher properties can be configured
using properties with the vbroker.se.exterior.scm.ex-iiop prefix. The following
vbroker.se.exterior.scm.ex-iiop properties specify the behavior of the ex-iiop listener.
The ex-iiop listener is an IIOP listener.

vbroker.se.exterior.scm.ex-hiop.servletList orb The servlet class type to be used.
vbroker.se.exterior.scm.ex-hiop.servlet.orb.GET true – enabled

false – disabled
Enables or disables the servlet GET
operation. Note that the ORB is a
predefined property.

vbroker.se.exterior.scm.ex-hiop.servlet.orb.PUT true – enabled
false – disabled

Enables or disables the servlet PUT
operation. Note that the ORB is a
predefined property.

vbroker.se.exterior.scm.ex-hiop.servlet.orb.class com.inprise.vbroker.
HIOP.servlets.ORB.
Servlet

It specifies the java class to be
loaded for HIOP when GateKeeper
is used as a servlet. The customer
should not change this property to
other values.

vbroker.se.exterior.scm.ex-hiop.servlet.orb.load false – disabled
true – enabled

Enables or disables the servlet Load
operation. Note that the ORB is a
predefined property.

Property Default Description

Property Default Description
vbroker.se.exterior.scm.ex-iiop.dispatcher.threadMax 100

<an integer value>
Specifies the maximum number of
threads the server connection
manager can create.

vbroker.se.exterior.scm.ex-iiop.dispatcher.threadMaxIdle 300
<an integer value>

Specifies the time an idle thread is
idle before it is destroyed. The
default is 300.

vbroker.se.exterior.scm.ex-iiop.dispatcher.threadMin 0
<an integer value>

Specifies the minimum number of
threads the server connection
manager can create.

vbroker.se.exterior.scm.ex-iiop.dispatcher.type ThreadPool Specifies the dispatcher type for
the ex-iiop scm.

vbroker.se.exterior.scm.ex-iiop.listener.giopVersion 1.2 It sets the GIOP version to be
used by the GIOP messages. This
property can be used to overcome
interoperability problems with
older ORBs that cannot handle
unknown minor GIOP versions
correctly.

vbroker.se.exterior.scm.ex-iiop.listener.port 683
<a port number>

Sets as a default listener port for
GateKeeper's client-side IIOP
listener. Port 683 is the
recommended setting for a
deployed application since it is an
OMG standard for IIOP and is
registered with IANA.
UNIX: On a UNIX platform, the
default listener port number is in
the range of 0 to 1024 which is
reserved for privileged use. When
running as a non-privileged user,
the listener port can be set to a
value greater than 1024 if desired.

Appendix A: GateKeeper propert ies 69

Exter ior server engine

ex-hiops server connection manager (SCM)

Java The ex-hiops server connection manager is responsible for servicing HTTPS requests
on the exterior server engine. Both the listener and dispatcher properties are
configured using the property with the vbroker.scm.exterior.ex-hiops prefix.

The following vbroker.se.exterior.scm.ex-hiops properties specify the behavior of the
ex-hiops listener. The ex-hiops listener is an HIOPS listener. The default port is 8089.
The threading policy must always be ThreadSession.

vbroker.se.exterior.scm.ex-iiop.listener.proxyPort <empty> – The proxy
port feature is disabled.
This indicates the
feature is disabled (the
listener port will not be
masked).
<a fake port number>

Specifies the proxy port number
used with the proxy host name
property.

vbroker.se.exterior.scm.ex-iiop.listener.type IIOP Specifies the listener type for the
ex-iiop scm.

vbroker.se.exterior.scm.ex-iiop.manager.connectionMax 0 – incoming
connections are
unlimited <an integer
value>

Defines the maximum number of
incoming connections allowed to
the GateKeeper exterior IIOP
listener.

vbroker.se.exterior.scm.ex-iiop.manager.connectionMaxIdle 0
<an integer value>

Specifies the time in seconds in
which a inactive connection is idle
before it can be closed.

vbroker.se.exterior.scm.ex-iiop.manager.type Socket It specifies the type of Server
Connection Manager. Currently,
only “Socket” is available.

Property Default Description

Property Default Description

vbroker.se.exterior.scm.ex-hiops.root .
<Full path of a file
directory>

Sets to the root directory as its
default. The default directory is
where GateKeeper starts.

vbroker.se.exterior.scm.ex-hiops.dispatcher.type ThreadSession Specifies the dispatcher type for
ex-hiop scm request. The type
should always be set to
“ThreadSession”.

vbroker.se.exterior.scm.ex-hiops.listener.port 8089
<a port number>

Sets the default listener port for the
GateKeeper's client-side (exterior)
HIOPS listener. Client applications
or applets use this port primarily for
HTTPS tunneling support. This port
may also be used on a limited basis
for standard HTTPS requests such
as fetching the GateKeeper IOR
file.

vbroker.se.exterior.scm.ex-hiops.listener.proxyPort <empty>
<a fake port number>

The proxyPort property is often
used in conjunction with the server
engine proxyHost property to mask
the target port for this listener. If
this property is set, the GateKeeper
IOR file will contain the proxyPort
value in the end point information
for this listener. It is then the
responsibility of the external NAT
device to map the proxyPort to the
listener's true port. The default is
<empty> indicating the feature is
Disabled (the listener port will not
be masked).

70 VisiBroker GateKeeper Guide

Exter ior server engine

vbroker.se.exterior.scm.ex-hiops.listener.type HIOPS Specifies the listener type for the
ex-hiops SCM. HIOPS indicates
that this listener supports the
proprietary HIOPS protocol used
for HTTP tunneling as well as the
HTTPS protocol. The listener type
for pre configured server
connection managers such as ex-
hiops should not be changed.

vbroker.se.exterior.scm.ex-hiops.manager.connectionMax 0 – the cached
connections are
unlimited
<an integer value>

Defines the maximum number of
cached connections available to
the GateKeeper exterior HIOPS
listener.

vbroker.se.exterior.scm.ex-hiops.manager.connectionMaxIdle 0
<an integer value>

Specifies the time in seconds in
which a inactive connection is idle
before it can be closed.

vbroker.se.exterior.scm.ex-hiops.manager.type Socket It specifies the type of Server
Connection Manager.

vbroker.se.exterior.scm.ex-hiops.servletList orb The servlet class type to be used.
vbroker.se.exterior.scm.ex-hiops.servlet.orb.GET true – enabled

false – disabled
Enables or disables the servlet
GET operation. Note that the ORB
is a predefined property.

vbroker.se.exterior.scm.ex-hiops.servlet.orb.PUT true – enabled
false – disabled

Enables or disables the servlet
PUT operation. Note that the ORB
is a predefined property.

vbroker.se.exterior.scm.ex-hiops.servlet.orb.class com.inprise.vbroker.
HIOP.servlets.ORB.S
ervlet

It specifies the java class to be
loaded for HIOPS when
GateKeeper is used as a servlet.
The customer should not change
this property to other values.

vbroker.se.exterior.scm.ex-hiops.servlet.orb.load false – disabled
true – enabled

Enables or disables the servlet
Load operation. Note that the ORB
is a predefined property.

Property Default Description

Appendix A: GateKeeper propert ies 71

Exter ior server engine

ex-ssl server connection manager (SCM)

The ex-ssl server connection manager is responsible for servicing SSL requests on the
exterior sever engine. The listener and dispatcher properties can be configured using
properties with the vbroker.se-exterior.scm.ex-ssl prefix.

The following vbroker.se.exterior.scm.ex-ssl properties specify the behavior of the ex-
ssl listener. The ex-ssl listener is an ssl listener.

Property Default Description
vbroker.se.exterior.scm.ex-ssl.dispatcher.threadMax 100

<an integer value>
Specifies the maximum number of
threads the server connection
manager can create.

vbroker.se.exterior.scm.ex-ssl.dispatcher.threadMaxIdle 300
<an integer value>

Specifies the time an idle thread is
idle before it is destroyed. The
default is 300.

vbroker.se.exterior.scm.ex-ssl.dispatcher.threadMin 0
<an integer value>

Specifies the minimum number of
threads the server connection
manager can create.

vbroker.se.exterior.scm.ex-ssl.dispatcher.type ThreadPool Specifies the dispatcher type for
the ex-iiop scm.

vbroker.se.exterior.scm.ex-ssl.listener.port 684
<a port number>

Sets as a default listener port for
the GateKeeper's client-side SSL
listener. Port 684 is the
recommended setting for deployed
application since it is an OMG
standard for IIOP and is registered
with IANA.
UNIX: On a UNIX platform, the
default listener port number is in
the range 0 to 1024 which is
reserved for privileged use. When
running as a non-privileged user,
the listener port can be set to a
value greater than 1024 if desired.

vbroker.se.exterior.scm.ex-ssl.listener.proxyPort <empty> – The proxy
port feature is disabled.
This indicates the
features is disabled (the
listener port will not be
masked).
<a fake port number>

Specifies the proxy port number
used with the proxy host name
property.

vbroker.se.exterior.scm.ex-ssl.listener.type SSL Specifies the listener type for the
ex-ssl scm.

vbroker.se.exterior.scm.ex-ssl.manager.connectionMax 0 – cached connections
are unlimited.
<an integer value>

Defines the maximum number of
cached connections available to
the GateKeeper exterior SSL
listener.

vbroker.se.exterior.scm.ex-ssl.manager.connectionMaxIdle 0
<an integer value>

Specifies the time in seconds in
which an inactive connection is idle
before it can be closed.

vbroker.se.exterior.scm.ex-ssl.manager.type Socket Specifies the type of Server
Connection Manager. Currently,
only “Socket” is available.

72 VisiBroker GateKeeper Guide

Inter ior server engine

Interior server engine
The following table lists the properties used by the interior server engine on the server-
side or Intranet side of GateKeeper.

You may need to set some of the properties in the interior server engine in special
cases, such as when GateKeeper runs on a dual-homed machine or if there is a
Network Address Translation (NAT) between GateKeeper and the server.

in-iiop server connection manager (SCM)

The in-iiop server manager is responsible for servicing IIOP requests on the interior
server engine. The listener and dispatcher can be configured using properties with the
vbroker.se.interior.in-iiop prefix.

The following vbroker.se.interior.scm.in-iiop properties specify the behavior of the
in-iiop server connection manager.

Property Default Description

vbroker.se.interior.scms in-iiop in-hiop in-ssl in-hiops
<Combination of the above
separated by commas.>

This defines the server
connection managers for the
server engine. The default is
IIOP scm. However, you may
choose to use other types of
protocols, such as SSL by
specifying its respective
scms.

vbroker.se.interior.host Null – the primary host is used;
that is the IP address of the
primary Network Interface
Card (NIC).
<a host address>

The interior server engine
host address. You can also
set this property on the Basic
Properties panel of the
VisiBroker Console.

vbroker.se.interior.proxyHost <empty> – The proxy port
feature is disabled.
<a fake host address>

This property can be used if
you have a NAT running
between GateKeeper and
the server to hide the server
host's address. You can also
set this property on the Basic
Properties panel of the
VisiBroker Console.

Property Default Description
vbroker.se.interior.scm.in-iiop.dispatcher.threadMax 100

<an integer value>
Specifies the maximum number
of threads the server
connection manager can
create.

vbroker.se.interior.scm.in-iiop.dispatcher.threadMaxIdle 300
<an integer value>

Specifies the time an idle thread
is idle before it is destroyed.
The default is 300.

vbroker.se.interior.scm.in-iiop.dispatcher.threadMin 0
<an integer value>

Specifies the minimum number
of threads the server
connection manager can
create.

vbroker.se.interior.scm.in-iiop.dispatcher.type ThreadPool Specifies the dispatcher type for
the in-iiop scm. The type should
always be set to “ThreadPool”.

vbroker.se.interior.scm.in-iiop.listener.giopVersion 1.2 The protocol version number to
be used for GIOP messages.

vbroker.se.interior.scm.in-iiop.listener.port 0 – pick a random number
<a port number>

Specifies the port number used
with the host name property.

Appendix A: GateKeeper propert ies 73

Inter ior server engine

in-ssl server connection manager (SCM)

The in-ssl server manager is responsible for servicing SSL requests on the interior
server engine. The listener and dispatcher can be configured using properties with the
vbroker.se.interior.in-ssl prefix.

The vbroker.se.interior.scm.in-ssl properties listed below specify the behavior of the
in-ssl server connection manager.

vbroker.se.interior.scm.in-iiop.listener.proxyPort <empty> – The proxy port
feature is disabled.
<a fake port number>

Specifies the proxy port number
used with the proxy host name
property.

vbroker.se.interior.scm.in-iiop.listener.type IIOP Specifies the listener type for
the in-iiop scm.

vbroker.se.interior.scm.in-iiop.manager.connectionMax 0 – cached connections
are unlimited.
<an integer value>

Defines the maximum number
of cached connections available
to the GateKeeper IIOP listener.

vbroker.se.interior.scm.in-iiop.manager.connectionMaxIdle 0
<an integer value>

Specifies the time in seconds in
which an inactive connection is
idle before it can be closed.

vbroker.se.interior.scm.ex-iiop.manager.type Socket Specifies the type of Server
Connection Manager. Currently,
only Socket is available.

Property Default Description

Property Default Description
vbroker.se.interior.scm.in-ssl.dispatcher.threadMax 100

<an integer value>
Specifies the maximum number
of threads the server connection
manager can create.

vbroker.se.interior.scm.in-ssl.dispatcher.threadMaxIdle 300
<an integer value>

Specifies the time an idle thread
is idle before it is destroyed. The
default is 300.

vbroker.se.interior.scm.in-ssl.dispatcher.threadMin 0
<an integer value>

Specifies the minimum number
of threads the server connection
manager can create.

vbroker.se.interior.scm.in-ssl.dispatcher.type ThreadPool Specifies the dispatcher type for
the in-iiop scm. The type should
always be set to ThreadPool.

vbroker.se.interior.scm.in-ssl.listener.port 0 – pick a random number
<a port number>

Specifies the port number used
with the host name property.

vbroker.se.interior.scm.in-ssl.listener.proxyPort <empty> – The proxy port
feature is disabled.
<a fake port number>

Specifies the proxy port number
used with the proxy host name
property.

vbroker.se.interior.scm.in-ssl.listener.type SSL Specifies the listener type for the
in-ssl scm.

vbroker.se.interior.scm.in-ssl.manager.connectionMax 0 – incoming connections
are unlimited.
<an integer value>

Defines the maximum number of
incoming connections allowed to
the GateKeeper interior SSL
listener.

vbroker.se.interior.scm.in-ssl.manager.connectionMaxIdle 0
<an integer value>

Specifies the time in seconds in
which an inactive connection is
idle before it can be closed.

vbroker.se.interior.scm.ex-ssl.manager.type Socket Specifies the type of Server
Connection Manager. Currently,
only Socket is available.

74 VisiBroker GateKeeper Guide

Administrat ion

Administration
Java The following table lists the administration properties. Note that the default listener port

number is 9091.

Property Default/Options Description

vbroker.se.iiop_tp.host null – use host address
from the system.
<Host address>

Specifies the host address that can
be used by this server engine.

vbroker.se.iiop_tp.ProxyHost <empty> – use host
address from the system.
<Proxy host address>

Specifies the proxy host address that
can be used by this server engine.

vbroker.se.iiop_tp.scms iiop_tp, hiop_ts Specifies the list of Server
Connection Managers name(s).

vbroker.se.iiop_tp.scm.iiop_tp.listener-port <empty>
<a port number>

Specifies the IIOP administrative
listener port.

vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort <empty>
<a port number>

Specifies the proxy port for IIOP
administrative listener port.

vbroker.se.iiop_tp.scm.hiop_ts.listener.port 9091
<a port number>

Specifies the GateKeeper
administrative listener port.

vbroker.se.iiop_tp.scm.hiop_ts.listener.proxyPort <empty> – The proxy port
feature is disabled
<a fake port number>

Specifies the proxy port number for
HIOP administrative listener port.

vbroker.se.iiop_tp.type normal This is applicable to the
Administrative Server Engine.

vbroker.se.iiop_tp.scm.hiop_ts.servletList orb A virtual name given to the servlet
class. It is used for specifying other
properties like PUT, GET, LOAD and
etc.

vbroker.se.iiop_tp.scm.hiop_ts.servlet.orb.GET true – enabled
false – disabled

Enables or disables the servlet GET
operation.

vbroker.se.iiop_tp.scm.hiop_ts.servlet.orb.PUT true – enabled
false – disabled

Enables or disables the servlet PUT
operation.

vbroker.se.iiop_tp.scm.hiop_ts.servlet.orb.class com.inprise.vbroker.HIOP.
servlets.ORBServlet

The name of the servlet class.

vbroker.se.iiop_tp.scm.hiop_ts.servlet.orb.load true – enabled
false – disabled

Enables or disables the servlet Load
operation.

Appendix A: GateKeeper propert ies 75

Access contro l

Access control
The following table lists the properties used to set security control in GateKeeper.

Property Default Description

vbroker.gatekeeper.
security.
accessControllers

default Specifies the list of names of access controllers.

vbroker.gatekeeper.
security.acl.
<controllerName>.default

null – no default action
deny – refused entry
grant – permission
granted

Specifies the default action for the control list. <controllerName> is
specified above.

vbroker.gatekeeper.
security.acl.
<controllerName>.rules

null – no rules
specified. See
description.

Specifies the names for the set of rules. Example:

vbroker.gatekeeper.security.accessControllers=default
vbroker.gatekeeper.security.acl.default.rules=rule1,rule2,rule3

where rule1, rule2, rule3 are names defined by the user.
vbroker.gatekeeper.
security.acl.
<controllerName>.<xx>
where <xx> is the name
of the given rule.

null – no actions
specified. See
description for
additional options.

Defines the action for the specific properties for the given rule. The
definition is as follows:

<deny|grant>
 [operation="<operation name>"
 [signer by="<signer's company name>"]
 [server host="<hostname>"]
 [client host="<hostname>"]
 [server ip=aa.bb.cc.dd|<sub-mask>]
 [client ip=aa.bb.cc.dd|<sub-mask>]
 [object type="<object type>"]]

<deny|grant> defines the action related to the individual rule.
operation="<operation name>" defines the related operation name
based on the IDL.
signer by="<signer's company name>" defines the signer's company
name.
server host="<hostname>" specifies the server hostname.
client host="<hostname>" specifies the client hostname.
server ip="<aa.bb.cc.dd>" specifies the IP address of the machine
that the server resides on.
client ip="<aa.bb.cc.dd>" defines the IP address of the machine
that the client resides on.
object type="<object type>" defines the object type.

Examples:
vbroker.gatekeeper.security.accessControllers=default

vbroker.gatekeeper.security.acl.default.rules=rule1,rule2,rule3
 vbroker.gatekeeper.security.acl.default.rule1=grant
 [operation=\"*"\
 [server host=\"borland"\]]

vbroker.gatekeeper.security.acl.default.rule2=deny
 [operation=\"*"\
 [client ip=192.168.100.40|255.255.255.0]]

vbroker.gatekeeper.security.acl.default.rule3=deny
 [operation=\"*"\
 [server host=\"inprise"\]
 [client ip=192.168.100.88|255.255.255.0]]

Note: Variables in Bold are user-definable.
vbroker.gatekeeper.
security.acl.
<controllerName>.type

com.inprise.vbroker.
gatekeeper.security.
ACImpl

Specifies the implementation class to be loaded by GateKeeper for
Access Control.
Note: User should not change this value.

76 VisiBroker GateKeeper Guide

VisiBroker 3.x sty le cal lback

VisiBroker 3.x style callback
The following table lists the properties that can be set in VisiBroker 5.x to use the
VisiBroker 3.x style callback.

Property Default/Options Description
vbroker.gatekeeper.callbackEnabled false – disabled

true – enabled
Enables or disables the
callback mechanism through
GateKeeper. The default is
disabled.

vbroker.gatekeeper.backcompat.callback false – disabled
true – enabled

Enables or disables the
VisiBroker 3.x style callbacks.
If you wish to use the old style
callbacks, set both the above
and this property to true.

vbroker.gatekeeper.backcompat.callback.listeners iiop ssl Specifies a list of listeners.
vbroker.gatekeeper.backcompat.callback.listener.iiop.type IIOPCallback Specifies the type of IIOP

callback listeners.
vbroker.gatekeeper.backcompat.callback.host <empty> – the value

is set to the primary
host IP address and
that is the IP address
of the primary NIC.
<a host address>

Defines the host IP address to
bind for the callback listener.

vbroker.gatekeeper.backcompat.callback.proxyHost <empty> – no proxy
host is used.
<a fake host
address>

This property is often used in
conjunction with the server
engine proxyPort property to
mask the target port for this
listener. If this property is set,
the callback IOR will contain
the proxyHost value in the end
point information for this
listener. It is then the
responsibility of the Network
Address Translation (NAT)
device to map the proxyHost to
the listener's true port. The
default is <empty> indicating
that the feature is disabled (the
listener port will not be masked
in the callback IOR).

vbroker.gatekeeper.backcompat.callback.listener.ssl.type SSLCallback Specifies the type of SSL
listener.

vbroker.gatekeeper.backcompat.callback.listener.ssl.port 0 – a port picked at
random
<port number>

Defines the port on which the
callback listener uses to listen
for SSL.

vbroker.gatekeeper.backcompat.callback.listener.ssl.proxyPort <empty> – no proxy
port is used>
<fake port number>

Use this property when a NAT
sits between the client and
GateKeeper in which the NAT
hides the actual GateKeeper
host address.

Appendix A: GateKeeper propert ies 77

Performance and load balancing

Performance and load balancing
The following table lists the performance and load balancing properties to distribute
and monitor the load between client and server.

vbroker.gatekeeper.backcompat.callback.listener.iiop.port 0 – a port number is
picked at random.
<a port number>

Specifies the port in which the
callback listeners listen for the
IIOP.

vbroker.gatekeeper.backcompat.callback.listener.iiop.proxyPort <empty> – no proxy
port is used.
<a fake port number>

The proxyPort property is often
used in conjunction with the
server engine proxyHost
property to mask the target port
for this listener. If this property
is set, the callback IOR will
contain the proxyPort value in
the end point information for
this listener. It is then the
responsibility of the Network
Address Translation (NAT)
device to map the proxyPort to
the listener's true port. The
default is <empty> indicating
that the feature is disabled (the
listener port will not be masked
in the callback IOR).

Property Default/Options Description

Property Default Description

vbroker.gatekeeper.load.distributor com.inprise.vbroker.
gatekeeper.ext.
RoundRobinDistributor

Specifies the Distributor class to be used by the
Load Balance Manager. Users should not
change this property unless they understand the
distributor interface and implement their own
distributor. The following implementation class
is used as a default distributor: (Round
Robin):com.inprise.vbroker.gatekeeper.ext.RoundR
obinDistributor.

vbroker.ce.iiop.ccm.connectionMax 0 – will not try to close
any of the old active or
cached connections.
<an integer value>

Specifies the maximum number of total
connections within a client. This value is equal
to the number of active connections plus those
that are cached.

vbroker.orb.gcTimeout 30
<an integer value>

Specifies the time in seconds that must pass
before important resources that are not used
are cleared.

vbroker.orb.fragmentSize 0 Specifies the GIOP fragment size. It must be a
multiple of GIOP stream chunk size.

vbroker.orb.streamChunkSize 4096
<a number which is the
power of 2>

Specifies the GIOP message chunk size. It
must be the power of 2.

vbroker.orb.bufferCacheTimeout 6000
<an integer value>

Specifies (in milliseconds) the time in which a
message chunk has been cached before it is
discarded.

78 VisiBroker GateKeeper Guide

Performance and load balancing

vbroker.gatekeeper.load.slaves <empty> – no slaves
GateKeeper
<a list of slaves> – see
description.

Specifies the list of Slave GateKeepers to be
clustered together for the purpose of Load
Balancing by this Master GateKeeper. The list
of names is separated by commas. For each
name in the list, a property such as
“vbroker.gatekeeper.load.slave.<slave_name>”
is added to the property file. There is no default
value for this property. Note that this property is
used in the Master GateKeeper property only.
For example:

vbroker.gatekeeper.load.slaves=abc,xyz.
Note: If you set this property, you must load the
appropriate library. See the description of
vbroker.orb.dynamicLibs in “Miscellaneous ORB
properties” on page 83.

vbroker.gatekeeper.load.slave.<slave_name> <empty>
<Specific Slave IOR> –
see description.

Specifies the IOR or a URL pointing to specific
Slave GateKeeper to be clustered for the
purpose of Load Balancing by this Master
GateKeeper. Note that this property is used in
Master GateKeeper property only. For example:

vbroker.gatekeeper.load.slave.abc=http://
host1:9091/GateKeeper.ior

vbroker.gatekeeper.load.slave.xyz=http://
host2:9091/GateKeeper.ior.

Note: If you set this property, you must load the
appropriate library. See the description of
vbroker.orb.dynamicLibs in “Miscellaneous ORB
properties” on page 83.

vbroker.gatekeeper.load.balancer <empty>
<master>

Specifies that the master GateKeeper's sole
purpose is to do load balancing and it will never
take a turn in serving clients. In the default
mode, the master itself is also a slave, in the
sense that it is included in the list of available
GateKeepers and will take turn among the
slaves. When a particular GateKeeper is
unavailable, the client will come back to the
master to obtain the next slave GateKeeper in
turn (this can be one of the slaves or the master
itself).
Note: If you set this property, you must load the
appropriate library. See the description of
vbroker.orb.dynamicLibs in “Miscellaneous ORB
properties” on page 83.

Property Default Description

Appendix A: GateKeeper propert ies 79

Support for b idirect ional communicat ions

Support for bidirectional communications
The following table lists the properties that support bidirectional communications.
These properties are evaluated only once, when the SCMs are created. In all cases,
the exportBiDir and importBiDir properties on the SCMs are given priority over the
enableBiDir property. In other words, if both properties are set to conflicting values, the
SCM-specific properties will take effect. This allows you to set the enableBiDir property
globally, and more importantly, turn off bidirectionality in individual SCMs.

Support for pass-through connections
Note The vbroker.gatekeeper.enablePassthru property is the only property that supports

pass-through connections.

Property Default Description
vbroker.orb.enableBiDir both server and client:

none
See “Callback with
GateKeeper's
bidirectional support”
on page 38.

You can selectively make bidirectional
connections. If the client defines
vbroker.orb.enableBiDir=client, and the
server defines
vbroker.orb.enableBiDir=server, the value of
vbroker.orb.enableBiDir in GateKeeper
determines the state of the connection.
Note: Just as you can selectively enable
bidirectional communication on a per-SCM
basis, you can also selectively enable
bidirectional communication on GateKeeper.
For example, if you set the
vbroker.se.exterior.scm.ex--
iiop.manager.importBiDir property to true,
GateKeeper will accept bidirectional
connections from the client. Setting the
vbroker.se.exterior.scm.ex--
iiop.manager.exportBiDir property to true
causes GateKeeper to request bidirectional
connections with the server.

Property Default Description
vbroker.gatekeeper.enablePassthru false – disabled

true – enabled
Specifies enabled or disabled Passthru mode in
GateKeeper.

vbroker.gatekeeper.passthru.blockSize 16384
<an integer value>

Specifies the buffer size that the channel uses
for each read and write operation. A high value
handles large messages with a single read and
write, but increases the resources used by a
single channel. A low value will optimize
resource utilization, while degrading
performance due to multiple reads and writes.

vbroker.gatekeeper.passthru.connectionTimeout 300000 milliseconds
(5 minutes)
<an integer value>

Specifies the amount of time in milliseconds a
given channel will wait before it stops waiting
for connections and shuts down the channel.

vbroker.gatekeeper.passthru.inPortMin 1024
<a port number>

Used together with
vbroker.gatekeeper.passthru.inPortMax. It
specifies the start of a range of interior port for
pass-through incoming connections.

vbroker.gatekeeper.passthru.inPortMax 65535
<a port number>

Used together with
vbroker.gatekeeper.passthru.inPortMin. It
specifies the end of a range of ports for pass-
through in-coming connections.

80 VisiBroker GateKeeper Guide

Secur i ty services (SSL)

Security services (SSL)
The following table lists the properties used in the Security Services.

Note If you set this property then you load the appropriate library. See the description of
vbroker.orb.dynamicLibs in “Miscellaneous ORB properties” on page 83.

vbroker.gatekeeper.passthru.logLevel 0 – no logging
<an integer value>

Enables the level of logging for the pass-
through component.

vbroker.gatekeeper.passthru.outPortMin 0
<a port number>

Used together with
vbroker.gatekeeper.passthru.outPortMax. It
specifies the start of a range of exterior port for
pass-through outgoing connections.

vbroker.gatekeeper.passthru.outPortMax 65535
<a port number>

Used together with
vbroker.gatekeeper.passthru.outPortMin. It
specifies the end of a range of exterior port for
pass-through outgoing connections.

vbroker.gatekeeper.passthru.streamTimeout 2000
<an integer value>

Specifies the amount of time in milliseconds an
established channel will wait for messages
before it shuts down.

Property Default Description

Property Default Description

vbroker.orb.alwaysSecure false – disabled
true – enabled

Specifies whether GateKeeper will
make secure connections to the
server.

vbroker.security.peerAuthenticationMode See description. Refer to the Security Properties
for Java or the Security Properties
for C++ section in the Security
Guide for more details.

vbroker.security.trustpointsRepository See description. Refer to the Security Properties
for Java or the Security Properties
for C++ section in the Security
Guide for more details.

vbroker.security.wallet.identity See description. Refer to the Security Properties
for Java or the Security Properties
for C++ section in the Security
Guide for more details.

vbroker.security.wallet.password See description. Refer to the Security Properties
for Java or the Security Properties
for C++ section in the Security
Guide for more details.

Appendix A: GateKeeper propert ies 81

Locat ion services (Smart Agent)

Location services (Smart Agent)
The following table lists the Smart Agent (OSAgent) properties used in the Location
Service to locate server objects.

Property Default Description
vbroker.agent.addr null – see

description.
Specifies the IP address or host name of the host
running the Smart Agent (OSAgent). The default
value, null, installs VisiBroker applications to use the
value from the OSAGENT_ADDR environment
variable. If the OSAGENT_ADDR variable is not
set,it is assumed that the Smart Agent is running on
the local host or will be located by a broadcast
message. Refer to “Using the Smart Agent” in the
VisiBroker for C++ Developer's Guide or the
VisiBroker for Java Developer's Guide for more
details.

vbroker.agent.port null Specifies the port number that defines a domain
within your network. VisiBroker applications and
Smart Agent (OSAgent) work together when they
have the same port number. This is the same
property as the OSAGENT_PORT environment
variable.
Refer to “Using the Smart Agent” section in the
VisiBroker for C++ Developer's Guide or the
VisiBroker for Java Developer's Guide for more
details.

vbroker.agent.addrFile null Specifies a file that stores information on where the
IP address(es) or host names(s) of the Smart Agent
may be found. Refer to “Using the Smart Agent”
section in the VisiBroker for C++ Developer's Guide
or the VisiBroker for Java Developer's Guide for
more details.

vbroker.agent.failOver true
false

When set to true, allows a VisiBroker application to
failover to another Smart Agent. Refer to “Using the
Smart Agent” section in the VisiBroker for C++
Developer's Guide or the VisiBroker for Java
Developer's Guide for more details.

vbroker.agent.enableCache true
false

When set to true, allows VisiBroker applications to
cache object references. Setting this property to true
improves performance when locating servers, but
disables Smart Agent round-robin activity. Refer to
“Using the Smart Agent” section in the VisiBroker for
C++ Developer's Guide or the VisiBroker for Java
Developer's Guide for more details.

82 VisiBroker GateKeeper Guide

Backward compat ib i l i ty wi th Vis iBroker 4.x and below

Backward compatibility with VisiBroker 4.x and below
GateKeeper Version 5.x by default is not compatible with programs developed with
VisiBroker 4.x and below. To make GateKeeper Version 5.x run properly with programs
developed with VisiBroker 4.x and below, set the following property to true.

Note Earlier versions of GateKeeper are by default compatible with older programs
developed with Visibroker 4.x and below. With GateKeeper 5.x, however, you must
explicitly set this property.

Server's properties for firewall specifications
Note These properties should only be set in the property file for the server. If you set any of

these properties then you load the appropriate library. See the description of
vbroker.orb.dynamicLibs in the section “Miscellaneous ORB properties” on page 83.

The following properties specify the communication paths from the client to the server.
See “Specifying communication paths to the server” on page 33 for examples of its
usage.

Property Default Description

vbroker.orb.enableVB4backcompat true
false

Specifies whether GateKeeper is compatible with
older VisiBroker versions. Setting the property to
false makes GateKeeper compatible with
programs developed with VisiBroker 4.5.x
onwards. Setting this property to true makes
GateKeeper compatible with versions earlier than
VisiBroker 4.5.x as well. (See Appendix B for more
information.)
Note: This value is set to true by default in
GateKeeper. This value, however, is false by
default on the client and server.

Property Default Description
vbroker.se.iiop_tp.firewallPaths <empty>

<List of paths>
Specifies a list of communication paths from the clients
to the servers. <List of paths> is a set of user defined
names for the paths separated with commas. An
example of the <List of paths> is:

vbroker.se.iiop_tp.firewallPaths=x,y

vbroker.firewall-path.<pathname> <empty>
<List of components>

Specifies the list of components in the firewall path
<pathname>. For example,

vbroker.firewall-path.x=a,b vbroker.
firewall-path.y=c

vbroker.firewall.<component>.type <empty>
PROXY TCP

Specifies the type of the components. For example:
vbroker.firewall.a.type = PROXY
vbroker.firewall.b.type = TCP

vbroker.firewall.<component>.ior <empty>
<Filename of ior file>
<URL of the ior file>
IOR:<GateKeeper's
stringified ior>

Specifies the ior of the component. This is specified
together with vbroker.firewall.<component.type>=PROXY.
Examples of the values are:

1. file:C:/GateKeeper/GateKeeper.ior
2. http://www.inprise.com/GK GateKeeper.ior
3. IOR:2398402841729073423497234234234

vbroker.firewall.<component>.host <empty>
<fake host name>

Specifying fake host of the server. This is specified
together with vbroker.firewall.<component>.types=TCP
and the component is a TCP Firewall with NAT.

vbroker.firewall.<component>.iiop_port <empty>
<fake IIOP Port>

Specifies a fake IIOP port for the server. This is
specified together with
vbroker.firewall.<component>.types=TCP and the
component is a TCP Firewall with NAT.

Appendix A: GateKeeper propert ies 83

Miscel laneous ORB propert ies

Miscellaneous ORB properties
These properties are common ORB objects and are directly and indirectly related to
GateKeeper. They are not necessarily set in the GateKeeper property file, so please
read each description carefully.

vbroker.firewall.<component>.ssl_port <empty>
<fake SSL Port>

Specifies a fake SSL port for the server. This is
specified together with
vbroker.firewall.<component>.type=TCP and the
component is a TCP Firewall with NAT.

vbroker.firewall.<component>.hiop_port <empty>
<fake HIOP Port>

Specifies a fake HIOP port for the server. This is
specified together with
vbroker.firewall.<component>.type=TCP and the
component is a TCP Firewall with NAT.

Property Default Description

Property Default Description

vbroker.orb.gatekeeper.ior <empty>
<ior filename>

Specifies the URL of the GateKeeper IOR
file. This property must be set in the HTML
files with applets because of the change in
the behavior of the Applet Viewer.

vbroker.orb.alwaysProxy false – disable
true – enabled

Specifies whether the client must always
connect to the server via GateKeeper. This
property can be set in the client or
GateKeeper. If set in the client, the client will
always connect to the server via
GateKeeper. If set in GateKeeper, it will
connect to the server via another
GateKeeper. See the VisiBroker
Programmer's Reference for more details.

vbroker.locator.ior.ior <empty>
<ior filename>

Specifies URL of the GateKeeper IOR file.
This property is usually set in the client
applet, but can also be set in an application.
Note: GateKeeper provides limited location
services. It cannot forward location requests
to another GateKeeper. This is in contrast to
the Smart Agent which is able to forward
requests to another available Smart Agent.

vbroker.orb.alwaysTunnel false – disabled
true – enabled

Specifies whether the client must always
make HTTP tunnel (IIOP wrapper)
connections to the server. This property can
be set in the client or GateKeeper. See the
VisiBroker Programmer's Reference for more
details.

vbroker.orb.dynamicLibs <empty>
<a list of libraries>
See description

Specifies a list of libraries. Only libraries
related to GateKeeper are described here.
If the firewall component is specified, you
must set this property in the properties of the
client and server to:

com.inprise.vbroker.firewall.Init

If the load balancing component is
specified, you must set this property in
GateKeeper's property file to:

com.inprise.vbroker.gatekeeper.ext.Init

84 VisiBroker GateKeeper Guide

Appendix B: GateKeeper deployment scenarios 85

A p p e n d i x

Chapter6GateKeeper deployment scenarios
This appendix shows some common deployment scenarios in a multi-network
environment with and without using GateKeeper.

TCP firewall (without GateKeeper)

Scenario 1.1: Smart Agent behind firewall
This scenario shows how to configure a client object to access a Smart Agent located
behind a firewall.

Client's environment setting (using environment variables or Windows Registry):

OSAGENT_PORT

Client's properties:

vbroker.agent.addr=<osagent_host>
vbroker.agent.port=<OSAGENT_PORT>

Firewall settings:
■ Allow UDP packets for both directions between the client host and the Smart Agent

host on port <OSAGENT_PORT>.
■ Allow TCP and UDP packets for both directions between the client host and the

Smart Agent host on port <OSAGENT_CLIENT_HANDLER_PORT>.

86 VisiBroker GateKeeper Guide

TCP f i rewal l (wi thout GateKeeper)

Scenario 1.2: Using IIOP communication

Client's properties: none required

Server's properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683

Firewall setting:

Allow TCP packet from client host to server host on port 683.

Scenario 1.3: Using IIOP/SSL communication

Secured Client's properties:

Enabling Security Service
vbroker.security.disable=false

Enforcing secure transport at client side
vbroker.security.alwaysSecure=true

Setting peerAuthenticationMode
vbroker.security.peerAuthenticationMode=REQUIRE_AND_TRUST
vbroker.security.trustpointsRepository=Directory:./trustpoints

Secured Server's properties:

Enabling Security Service
vbroker.security.disable=false

Setting SSL Layer Attributes
vbroker.security.peerAuthenticationMode=REQUIRE_AND_TRUST
vbroker.security.trustpointsRepository=Directory:./trustpoints

Set the ssl listener port at 443
vbroker.se.iiop_tp.scms=iiop_tp,ssl
vbroker.se.iiop_tp.scm.ssl.listener.port=443
vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Disabled-IIOP

Appendix B: GateKeeper deployment scenar ios 87

TCP f i rewal l (wi thout GateKeeper)

Note The sample properties assume that valid certificate information has already been
loaded into the Secured Client and Secured Server similar to the <install_dir>/
examples/vbroker/security/bank_ssl example.

Firewall setting:

Allow SSL packet from client host to server host on port 443.

Scenario 1.4: Firewall performs address translation only

Firewall setting:

Address translation: 199.10.9.6 to 101.10.2.6

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=101.10.2.6
 vbroker.se.iiop_tp.proxyHost=199.10.9.6
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683

Method 2: Using firewall component

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.host=101.10.2.6
vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=fw
vbroker.firewall.fw.type=TCP
vbroker.firewall.fw.host=199.10.9.6
vbroker.firewall.fw.iiop_port=683
vbroker.firewall.fw.hiop_port=0

Note Specify real port when there is no port translation, and 0 if the listener port is disabled.

88 VisiBroker GateKeeper Guide

TCP f i rewal l (wi thout GateKeeper)

Scenario 1.5: Firewall performs port translation only

Firewall setting:

Port translation: 1683 to 683

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=101.10.2.6
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=1683

Method 2: Using firewall component

 vbroker.se.iiop_tp.host=101.10.2.6
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw
 vbroker.firewall.fw.type=TCP
 vbroker.firewall.fw.host=101.10.2.6
 vbroker.firewall.fw.iiop_port=1683
 vbroker.firewall.fw.hiop_port=0

Note Specify real host when there is no address translation.

When method 2 is used, add the following to the client's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init

Scenario 1.6: Firewall performs both address and port translations

Combine the settings in Scenarios 1.4 and 1.5 when the firewall performs both address
and port translation.

Appendix B: GateKeeper deployment scenar ios 89

TCP f i rewal l (wi thout GateKeeper)

Note For firewall component method, specify the firewall once combining both the fake host
and fake port into the same firewall entry like the following:

vbroker.se.iiop_tp.host=101.10.2.6
vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=fw
vbroker.firewall.fw.type=TCP
vbroker.firewall.fw.host=199.10.9.6
vbroker.firewall.fw.iiop_port=1683
vbroker.firewall.fw.hiop_port=0

Note For secure connection with NAT (Network Address Translation), use the security
properties settings in Scenario 1.3.

Scenario 1.7: Callback without NAT
Refer to Scenario 1.2 for forward communication settings.

Client's properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=16001

Firewall setting:

Allow TCP packet from server host to client host on port 16001.

Scenario 1.8: Callback with NAT
Refer to Scenario 1.2 for forward communication settings.

Firewall setting:

Address translation: 130.129.129.10 to 99.29.29.10 for packets from server network to
client network. Port translation: 16100 to 16001 for packets from server network to
client network.

90 VisiBroker GateKeeper Guide

TCP f i rewal l (wi thout GateKeeper)

Client's properties:

vbroker.se.iiop_tp.host=99.29.29.10
vbroker.se.iiop_tp.proxyHost=130.129.129.10
vbroker.se.iiop_tp.scm.iiop_tp.listener.port=16001
vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=16100

Scenario 1.9: Bidirectional communication
Use the settings in Scenario 1.2, 1.3, 1.4, 1.5, or 1.6 with the following additional
settings to enable bidirectional communication.

In the figure above, the same connections are used for both forward and reverse
communications paths.

Client's Properties:

vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.enableBiDir=server

Scenario 1.10: Multiple firewalls in front of server
This scenario shows two firewalls in front of the server host. It can be extended
similarly to more than two firewalls.

Both firewalls do not perform NAT
When both firewalls do not perform NAT, configure both the firewalls to allow TCP
packets (for IIOP communication) on port Ps.

Only Firewall 1 performs NAT

Appendix B: GateKeeper deployment scenar ios 91

TCP f i rewal l (wi thout GateKeeper)

Firewall performs the following NAT:
■ Address translation: H1 to HsPort translation: P1 to Ps
■ Firewall 2 must be configured to allow TCP packets on port Ps.
■ Clients will send IIOP packets to host H1 on port P1.

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.proxyHost=<H1>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=<P1>

Method 2: Using firewall component

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw1
 vbroker.firewall.fw1.type=TCP
 vbroker.firewall.fw1.host=<H1>
 vbroker.firewall.fw1.iiop_port=<P1>
 vbroker.firewall.fw1.hiop_port=0

Only firewall2 performs NAT

Firewall2 performs the following NAT:
■ Address translation: H2 to HsPort translation: P2 to Ps
■ Firewall1 must be configured to allow TCP packets on port P2.
■ Clients will send IIOP packets to host H2 on port P2.

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.proxyHost=<H2>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=<P2>

92 VisiBroker GateKeeper Guide

TCP f i rewal l (wi thout GateKeeper)

Method 2: Using firewall component

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw2
 vbroker.firewall.fw2.type=TCP
 vbroker.firewall.fw2.host=<H2>
 vbroker.firewall.fw2.iiop_port=<P2>
 vbroker.firewall.fw2.hiop_port=0

Both firewalls perform NAT

Firewall1 performs the following NAT:
■ Address translation: H1 to H2Port translation: P1 to P2
■ Firewall2 performs the following NAT:
■ Address translation: H2 to HsPort translation: P2 to Ps
■ Clients will send IIOP packets to host H1 on port P1.

Server's properties: Use only one of the following two methods.

Method 1: Using IIOP profile

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.proxyHost=<H1>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=<P1>

Method 2: Using firewall component

 vbroker.se.iiop_tp.host=<Hs>
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<Ps>
 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw1
 vbroker.firewall.fw1.type=TCP
 vbroker.firewall.fw1.host=<H1>
 vbroker.firewall.fw1.iiop_port=<P1>
 vbroker.firewall.fw1.hiop_port=0

Note The NAT information of Firewall2 does not need to be configured. The proxyHost and
proxyPort specify only the first NAT fake host and fake port. For the firewall component
and the firewall path, only specify the first NAT device.

Appendix B: GateKeeper deployment scenar ios 93

GateKeeper deployment

GateKeeper deployment

Scenario 2.1: GateKeeper as Web Server
GateKeeper can acts as a Web Server to serve HTML pages, client applet and IOR
files.

Set the GateKeeper HTTP listener using the following GateKeeper's properties:

vbroker.se.exterior.scms=ex-iiop,ex-hiop
vbroker.se.exterior.scm.ex-hiop.listener.port=8088

From the web browser of the client host,
■ Use the following to load an HTML file or client applet:

 http://gatekeeper:8088/ClientApplet.html

■ Use the following to load GateKeeper's IOR:

 http://gatekeeper:8088/gatekeeper.ior

Configure the client applet (ClientApplet.html) using the following example:

<applet archive=vbjorb.jar code="ClientApplet.class" width="200" height="80">
<param name="org.omg.CORBA.ORBClass" value="com.inprise.vbroker.orb.ORB">
<param name="vbroker.orb.alwaysTunnel" value="true">
<param name="vbroker.orb.gatekeeper.ior" value="http://gatekeeper:8088/
gatekeeper.ior">
</applet>

Any additional client properties needed can be set similarly using param name and
value.

Scenario 2.2: GateKeeper as IIOP Proxy

94 VisiBroker GateKeeper Guide

GateKeeper deployment

Client's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.alwaysProxy=true

GateKeeper's properties:

vbroker.se.exterior.scm.ex-iiop.listener.port=683
vbroker.se.exterior.scm.ex-hiop.listener.port=8088

Server's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.exportFirewallPath=true
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gatekeeper:8088/gatekeeper.ior

If the client is an applet that wants to use IIOP instead of HTTP Tunneling, use the
following configuration, do not specify the property

<param name="vbroker.orb.alwaysTunnel" value="true">:
<applet archive=vbjorb.jar code="ClientApplet.class" width="200" height="80">
<param name="org.omg.CORBA.ORBClass" value="com.inprise.vbroker.orb.ORB">
<param name="vbroker.orb.alwaysProxy" value="true">
<param name="vbroker.orb.gatekeeper.ior" value="http://gatekeeper:8088/
gatekeeper.ior">
</applet>

Scenario 2.3: HTTP Tunneling Connection

Client's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init,com.inprise.vbroker.H
IOP.Init
vbroker.orb.alwaysTunnel=true
vbroker.orb.alwaysProxy=true
vbroker.orb.gatekeeper.ior=http://gatekeeper:8088/gatekeeper.ior

GateKeeper's properties:

vbroker.se.exterior.scm.ex-hiop.listener.port=8088
vbroker.se.exterior.scm.ex-iiop.listener.port=683

Server's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gatekeeper:8088/gatekeeper.ior
vbroker.orb.exportFirewallPath=true

Appendix B: GateKeeper deployment scenar ios 95

GateKeeper deployment

If the client is an applet that wants to use HTTP Tunneling, use the following
configuration:

<applet archive=vbjorb.jar code="ClientApplet.class" width="200" height="80">
<param name="org.omg.CORBA.ORBClass" value="com.inprise.vbroker.orb.ORB">
<param name="vbroker.orb.alwaysTunnel" value="true">
<param name="vbroker.orb.gatekeeper.ior" value="http://gatekeeper:8088/
gatekeeper.ior">
</applet>

Scenario 2.4: Secure connection (SSL)

Client's properties:

Firewall related properties
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.alwaysProxy=true

Set SSL related properties
vbroker.security.disable=false
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity= paul
vbroker.security.wallet.password= Paul$$$$
vbroker.security.trustpointsRepository=Directory:./trustpoints

GateKeeper's properties:

vbroker.se.exterior.scms=ex-iiop,ex-ssl
vbroker.se.exterior.scms.ex-iiop.listener.type=Disabled-IIOP
vbroker.se.exterior.scms.ex-hiop.listener.port=8088
vbroker.se.exterior.scms.ex-ssl.listener.port=443

Set SSL related properties
vbroker.security.disable=false
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity= kevin
vbroker.security.wallet.password= Kevin$$$$
vbroker.security.trustpointsRepository=Directory:./trustpoints
vbroker.se.iiop_tp.scm.ssl.listener.port=<server SSL: listener port>

Server's properties:

Firewall related properties
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.exportFirewallPath=true
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gatekeeper:8088/gatekeeper.ior

96 VisiBroker GateKeeper Guide

GateKeeper deployment

SSL related properties
vbroker.security.disable=false
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity= kevin
vbroker.security.wallet.password= Kevin$$$
vbroker.security.trustpointsRepository=Directory:./trustpoints

vbroker.se.iiop_tp.scms=iiop_tp,ssl
vbroker.se.iiop_tp.scm.ssl.listener.port=<server SSL listener port>
vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Disabled-IIOP

Scenario 2.5: Secure HTTP Tunneling
Use the client and server settings in Scenario 2.4 and add the following to the client's
properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init,
 com.inprise.vbroker.HIOP.Init
 com.inprise.security.Init,
 com.inprise.security.hiops.Init
vbroker.orb.alwaysTunnel=true

GateKeeper's properties:

vbroker.orb.dynamicLibs=com.inprise.security.Init,
 com.inprise.vbroker.gatekeeper.ssl.Init,
 com.inprise.security.hiops.Init
vbroker.se.exterior.scms=ex-IIOP,ex-hiop,ex-hiops
vbroker.se.exterior.scm.ex-iiop.listener.type=Disabled-IIOP
vbroker.se.exterior.scm.ex-hiops.listener.port=443
vbroker.se.exterior.scm.ex-hiop.listener.port=8088
vbroker.security.wallet.type=Directory:./identities
vbroker.security.wallet.identity=Kevin
vbroker.security.wallet.password=Kevin$$$
vbroker.security.secureTransport=true
vbroker.security.trustpointsRepository=Directory:./trustpoints
vbroker.security.peerAuthenticationMode=none

Scenario 2.6: Callback connection (for VisiBroker 3.x style)
Refer to Scenario 2.2 for forward communication settings.

Set the following client's property:

vbroker.se.iiop_tp.scm.iiop_tp.type=Callback-IIOP
vbroker.se.iiop_tp.scm.iiop_tp.listener.gatekeeper=http://gk_host:8088/
gatekeeper.ior

Appendix B: GateKeeper deployment scenar ios 97

GateKeeper deployment

Enable GateKeeper callback (VisiBroker 3.x style) using the following GateKeeper's
properties:

vbroker.gatekeeper.callbackEnabled=true
vbroker.gatekeeper.backcompat.callback=true
vbroker.gatekeeper.backcompat.callback.listeners=iiop
vbroker.gatekeeper.backcompat.callback.listener.iiop.port=<exterior callback
port>
vbroker.gatekeeper.backcompat.callback.listener.iiop.type=IIOPCallback

The interior port in-iiop is automatically enabled when callback is enabled. Only for
secured callback, you need to add the SCM for in-ssl, ex-ssl and ex-hiops as
required.

Scenario 2.7: Bidirectional communication
Use the settings in Scenario 2.2, 2.3, 2.4, or 2.5 with the following additional settings to
enable bidirectional communication.

Client's Properties:

vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.enableBiDir=server

GateKeeper's Properties:

vbroker.orb.enableBiDir=both

Scenario 2.8: Pass-through connection
Use the settings in Scenario 2.2 or 2.4 with the following additional settings to enable
pass-through connection.

Client's Properties:

vbroker.orb.proxyPassthru=true

GateKeeper's Properties:

vbroker.gatekeeper.enablePassthru=true

Scenario 2.9: GateKeeper in dual-homed host configuration

98 VisiBroker GateKeeper Guide

GateKeeper wi th server-s ide f i rewal l

Use the following GateKeeper's properties to configure:
■ exterior host and interior host address

 vbroker.se.exterior.host=199.10.9.5
 vbroker.se.interior.host=101.10.2.6

■ exterior listener ports

 vbroker.se.exterior.scm.ex-iiop.listener.port=<exterior IIOP port>
 vbroker.se.exterior.scm.ex-hiop.listener.port=<exterior HIOP port>

■ interior listener ports (used for VisiBroker 3.x style callback)

 vbroker.se.interior.scm.in-iiop.listener.port=<interior IIOP port>

GateKeeper with server-side firewall
Note Routers can also perform the function of a firewall.

Firewall in front of GateKeeper

Scenario 3.1: Firewall performs packet-filtering without NAT

GateKeeper's properties:

vbroker.se.exterior.scm.ex-iiop.listener.port=683
vbroker.se.exterior.scm.ex-hiop.listener.port=8088

Firewall setting:

Allow routing of TCP packets on port 683 and HTTP packets on port 8088 from the
external network to the internal network.

Server's properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://101.10.2.10:8088/gatekeeper.ior

Appendix B: GateKeeper deployment scenar ios 99

GateKeeper wi th server-s ide f i rewal l

Scenario 3.2: Firewall performs NAT

Firewall NAT setting:

Address translation: 199.10.9.10 to 101.10.2.10 Port translations: 10683 to 683 and
8000 to 8088

There are two methods for specifying a NAT on a firewall in front of GateKeeper (use
only one of the following two methods):
■ Using GateKeeper's proxyHost and proxyPort configuration

GateKeeper's properties:

 vbroker.se.exterior.host=101.10.2.10
 vbroker.se.exterior.proxyHost=199.10.9.10
 vbroker.se.exterior.scm.ex-iiop.listener.port=683
 vbroker.se.exterior.scm.ex-iiop.listener.proxyPort=10683
 vbroker.se.exterior.scm.ex-hiop.listener.port=8088
 vbroker.se.exterior.scm.ex-hiop.listener.proxyPort=8000

Server's properties:

 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=gk
 vbroker.firewall.gk.type=PROXY
 vbroker.firewall.gk.ior=http://101.10.2.10:8088/gatekeeper.ior

■ Using the server's firewall component

GateKeeper's properties:

 vbroker.se.exterior.host=101.10.2.10
 vbroker.se.exterior.scm.ex-iiop.listener.port=683
 vbroker.se.exterior.scm.ex-hiop.listener.port=8088

100 VisiBroker GateKeeper Guide

GateKeeper wi th server-s ide f i rewal l

Server's properties:

 vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
 vbroker.se.iiop_tp.firewallPaths=p
 vbroker.firewall-path.p=fw,gk
 vbroker.firewall.fw.type=TCP
 vbroker.firewall.fw.host=199.10.9.10
 vbroker.firewall.fw.iiop_port=10683
 vbroker.firewall.fw.hiop_port=8000
 vbroker.firewall.gk.type=PROXY
 vbroker.firewall.gk.ior=http://101.10.2.10:8088/gatekeeper.ior

Scenario 3.3: Callback connection (for VisiBroker 3.x style)
Refer to Scenario 3.1 or 3.2 for forward communication settings.

Set the following client's property:

vbroker.se.iiop_tp.scm.iiop_tp.type=Callback-IIOP
vbroker.se.iiop_tp.scm.iiop.listener.gatekeeper=http://gk_host:8088/
gatekeeper.ior

Enable GateKeeper callback (VisiBroker 3.x style) and specify the callback port using
the following properties:

vbroker.gatekeeper.callbackEnabled=true
vbroker.gatekeeper.backcompat.callback=true
vbroker.gatekeeper.backcompat.callback.host=101.10.2.10
vbroker.gatekeeper.backcompat.callback.listeners=iiop
vbroker.gatekeeper.backcompat.callback.listener.iiop.port=2683
vbroker.gatekeeper.backcompat.callback.listener.iiop.type=IIOPCallback

The firewall must allow the client to establish a callback connection (TCP protocol) to
GateKeeper using port 2683.

Configure the interior ports using the following GateKeeper's properties:

vbroker.se.interior.scm.in-iiop.listener.port=16000

Appendix B: GateKeeper deployment scenar ios 101

GateKeeper wi th server-s ide f i rewal l

If the firewall performs NAT on the GateKeeper's host and callback port (address
translation:199.10.9.10 to 101.10.2.10 and port translation: 12683 to 2683), add the
following into GateKeeper's properties:

vbroker.gatekeeper.backcompat.callback.proxyHost=199.10.9.10
vbroker.gatekeeper.backcompat.callback.listener.iiop.proxyPort=12683

Scenario 3.4: Bidirectional communication
Use the settings in Scenario 3.1 or 3.2 with the following additional settings to enable
bidirectional communication.

Client's Properties:

vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.enableBiDir=server

GateKeeper's Properties:

vbroker.orb.enableBiDir=both

Scenario 3.5: Pass-through connection
Use the settings in Scenario 3.1 or 3.2 with the following additional settings to enable
pass-through connection.

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.proxyPassthru=true

GateKeeper's Properties:

vbroker.gatekeeper.enablePassthru=true
vbroker.gatekeeper.passthru.inPortMin=<in_min_port>
vbroker.gatekeeper.passthru.inPortMax=<in_max_port>

Firewall setting:

Caution Allow routing of TCP packets on port range <in_min_port> to <in_max_port> from the
client host to the GateKeeper. The firewall must not perform port translation on this
range of ports.

Firewall in front and behind of GateKeeper

GateKeeper is deployed in the Demilitarized Zone (DMZ) while the servers are
deployed in the internal network.

Note Refer to the previous section for a configuration related to a firewall in front of
GateKeeper. This section concentrates on the configuration related to the firewall
between the GateKeeper and servers.

102 VisiBroker GateKeeper Guide

GateKeeper wi th server-s ide f i rewal l

Scenario 4.1: Configuring firewall behind GateKeeper
Use the settings in Scenario 3.1 or 3.2 to configure the communication between clients
and GateKeeper. The settings described here should be used in conjunction to the
settings in Scenario 3.1 or 3.2.

Specify the server IIOP listener port using the following server's properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683

Configure Firewall2 to allow IIOP packet (TCP protocol) from GateKeeper to the server
host on port 683.

Scenario 4.2: Firewall behind GateKeeper performs NAT
Use the settings in Scenario 3.1 or 3.2 to configure the communication between clients
and GateKeeper. The settings described here should be used in conjunction to the
settings in Scenario 3.1 or 3.2.

Firewall2 NAT setting:

Address translation: 199.10.9.10 to 101.10.2.10
Ports translation: 1683 to 683

There are two methods for specifying NAT on Firewall2. Use only one of the following
two methods.

Appendix B: GateKeeper deployment scenar ios 103

GateKeeper wi th server-s ide f i rewal l

Server's properties:

Method 1: Using IIOP profile

vbroker.se.iiop_tp.host=101.10.2.6
vbroker.se.iiop_tp.proxyHost=199.10.9.6
vbroker.se.iiop_tp.scm.iiop_tp.listener.port=683
vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=1683

Method 2: Using firewall component

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk,fw2
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gatekeeper:8088/gatekeeper.ior
vbroker.firewall.fw2.type=TCP
vbroker.firewall.fw2.host=199.10.9.6
vbroker.firewall.fw2.iiop_port=1683
vbroker.firewall.fw2.hiop_port=0

Scenario 4.3: Callback connection (for VisiBroker 3.x style)
Use the settings in Scenario 3.3 callback connection between client and GateKeeper.

Configure the interior ports using the following GateKeeper's properties:

vbroker.se.interior.scm.in-iiop.listener.port=16000

Firewall2 must allow the server to communicate with GateKeeper on port 16000 using
TCP protocol.

If Firewall2 performs the following NAT for packets routed from the server to
GateKeeper:

Address Translation: 121.100.2.19 to 101.10.2.10Port Translation: 161000 to 16000

Then add the following properties to the GateKeeper's properties:

vbroker.se.interior.host=101.10.2.10
vbroker.se.interior.proxyHost=121.100.2.19
vbroker.se.interior.scm.in-iiop.listener.port=16000
vbroker.se.interior.scm.in-iiop.listener.proxyPort=16100

104 VisiBroker GateKeeper Guide

GateKeeper wi th server-s ide f i rewal l

Scenario 4.4: Bidirectional communication
Use the settings in Scenario 4.1 or 4.2 with the following additional settings to enable
bidirectional communication.

Client's Properties:

vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.enableBiDir=server

GateKeeper's Properties:

vbroker.orb.enableBiDir=both

Scenario 4.5: Pass-through connection
Use the settings in Scenario 4.1 or 4.2 with the following additional settings to enable
pass-through connection.

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.proxyPassthru=true

GateKeeper's Properties:

vbroker.gatekeeper.enablePassthru=true
vbroker.gatekeeper.passthru.inPortMin=<in_min_port>
vbroker.gatekeeper.passthru.inPortMax=<in_max_port>
vbroker.gatekeeper.passthru.outPortMin=<out_min_port>
vbroker.gatekeeper.passthru.outPortMax=<out_max_port>

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<server IIOP port>

Caution The value of <server IIOP port> must fall in the range of <out_min_port> and
<out_max_port>.

Configure Firewall1 to allow routing of TCP packets in port range <in_min_port> to
<in_max_port> from the client host to the GateKeeper. Configure Firewall2 to allow
routing of TCP packets in port range <out_min_port> to <out_max_port> from the
GateKeeper to the server host. The firewalls must not perform port translation on these
ports.

Scenario 4.6: Smart Agent in internal network
Use the settings in Scenario 1.1 assuming GateKeeper is the client.

Appendix B: GateKeeper deployment scenar ios 105

GateKeeper wi th c l ient-s ide f i rewal l

GateKeeper with client-side firewall

Scenario 5.1: Firewall allows IIOP
The client-side firewall allows clients from the internal network to send IIOP messages
(TCP protocol) to the external network.

Refer to Scenarios 3.x replacing the server-side firewall in front of GateKeeper with a
client-side firewall. As GateKeeper is outside the client domain, the client-side
administrator who control the firewall, usually does not have the authority to modify the
GateKeeper's configuration. The administrator has to collect the GateKeeper's listener
ports information to configure the client-side firewall accordingly.

Scenario 5.2: Firewall allows HTTP only
The client-side firewall allows clients from the internal network to send HTTP
messages only to the external network. IIOP message will be blocked by the firewall.
Therefore, clients have to use HTTP tunneling to communicate with a GateKeeper
outside the client-side firewall.

Set the following client's property to force the client to always use HTTP tunneling.

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.alwaysTunnel=true

Note HTTP tunneling does not support the VisiBroker 3.x style callback. If callback is
required, use a bidirectional connection. Pass-through connection is also not available
with HTTP tunneling.

106 VisiBroker GateKeeper Guide

GateKeeper load balancing and faul t - to lerance

GateKeeper load balancing and fault-tolerance

Scenario 6.1: Using multiple GateKeepers for fault-tolerance
Instead of relying on a single GateKeeper, you can deploy multiple GateKeepers for
fault-tolerance. Assign more than one GateKeepers to a server to create redundancy.

The server's properties in this example are as follows:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p1,p2
vbroker.firewall-path.p1=gk1
vbroker.firewall.gk1.type=PROXY
vbroker.firewall.gk1.ior=http://gk1_host:8088/gatekeeper.ior
vbroker.firewall-path.p2=gk2
vbroker.firewall.gk2.type=PROXY
vbroker.firewall.gk2.ior=http://gk2_host:8088/gatekeeper.ior

The following property is required for both GK1 and GK2:

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.ext.Init

Clients can use either GK1 or GK2 to communicate with the server. When one
GateKeeper is down, the client can use the other one to communicate with the server.

Appendix B: GateKeeper deployment scenar ios 107

GateKeeper load balancing and faul t - to lerance

Scenario 6.2: Master/Slave configuration for load balancing

The figure above shows a master/slave GateKeeper configuration with GK1 as the
master GateKeeper while GK2 and GK3 are the slave GateKeepers

GateKeeper GK1 properties (master):

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.ext.Init
vbroker.gatekeeper.load.slaves=gk2,gk3
vbroker.gatekeeper.load.slave.gk2=http://gk2_host:8088/gatekeeper.ior
vbroker.gatekeeper.load.slave.gk3=http://gk3_host:8088/gatekeeper.ior

No additional properties are required for slave GateKeepers GK1 and GK2:

Server's Properties (specify only the master GateKeeper):

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk1
vbroker.firewall.gk1.type=PROXY
vbroker.firewall.gk1.ior=http://gk1_host:8088/gatekeeper.ior

If the client is not able to obtain the server's IOR directly, then the client can specify a
GateKeeper to contact using the following property:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.gatekeeper.ior=http://gk1_host:8088/gatekeeper.ior

This configuration also provides fault-tolerance. For each connecting client, the master
GateKeeper assigns the next slave GateKeeper in turn to serve the client, but if that
slave GateKeeper is down, the client will come back to the master GateKeeper to get
assigned to the next available slave GateKeeper, and so on, until the client obtains a
usable GateKeeper.

The master GateKeeper actually keeps a list of available GateKeepers, which it can
assign to a connecting client. The list contains all slave GateKeepers as well as the
master GateKeeper itself. Therefore, when its turn comes around, the master
GateKeeper will assign itself to a client.

When the following property is set on the master GateKeeper, the master GateKeeper
is not included in the list.

vbroker.gatekeeper.load.balancer=master

108 VisiBroker GateKeeper Guide

GateKeeper load balancing and faul t - to lerance

In the case that all slave GateKeepers are down, in order to prevent clients from
coming back to the master GateKeeper for obtaining a usable GateKeeper again and
again infinitely, the following property should be set on the client side:

vbroker.orb.rebindForward=N

where N must be less than the number of slave GateKeepers.

When the master GateKeeper itself is down, the rebind mechanism on the client ORB
will make all clients connect through the first available slave GateKeeper, there will be
no load balancing in this situation as the load balance functionality is in the master
GateKeeper and the master is down. However, fault tolerance is preserved because
clients still can get through and connect to the servers.

Scenario 6.3: Multiple instances of same server for load balancing

You can deploy multiple instances of the same server to provide load balancing and
fault-tolerance for the server. For load balancing, the GateKeeper will direct the request
to the multiple servers using a round-robin mechanism. For fault-tolerance, if one
server is down, another server can continue to provide the same service.

Add the following property to the GateKeeper:

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.ext.Init

Server1 and Server2 properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk
vbroker.firewall.gk.type=PROXY
vbroker.firewall.gk.ior=http://gk_host:8088/gatekeeper.ior

Appendix B: GateKeeper deployment scenar ios 109

GateKeeper chaining

GateKeeper chaining

Scenario 7.1: Server-side chaining

Use the following server's properties to specify the server-side GateKeeper chaining:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk1,gk2
vbroker.firewall.gk1.type=PROXY
vbroker.firewall.gk1.ior=http://gk1_host:8088/gatekeeper.ior
vbroker.firewall.gk2.type=PROXY
vbroker.firewall.gk2.ior=http://gk2_host:8088/gatekeeper.ior

When the client obtains the server's IOR, it will be able to use the GateKeeper chaining
to communicate with the server.

Scenario 7.2: Client-side chaining

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.gatekeeper.ior=http://GK1:8088/gatekeeper.ior

GK1's Properties:

vbroker.orb.gatekeeper.ior=http://GK2:8088/gatekeeper.ior

Note In order for the client to communicate with the server using the chained GateKeepers,
the last GateKeeper on the chain (GK2) must be able to obtain the server's IOR.

110 VisiBroker GateKeeper Guide

GateKeeper chaining

Scenario 7.3: Both server-side and client-side chaining

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.gatekeeper.ior=http://gk_host:8088/gatekeeper.ior

Server's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.p=gk2
vbroker.firewall.gk2.type=PROXY
vbroker.firewall.gk2.ior=http://gk2_host:8088/gatekeeper.ior

If GK1 always connect to GK2, you can chain GK1 to GK2 statically using the following
GK1 property:

vbroker.orb.gatekeeper.ior=http://gk2_host:8088/gatekeeper.ior

Otherwise, GK1 must be able to obtain the IOR of the server or GK2 using a Smart
Agent or Naming Services.

Scenario 7.4: Callback communication (VisiBroker 3.x style)

Set the following properties to allow VisiBroker 3.x style callback communication.

Client's Properties:

vbroker.orb.alwaysProxy=true
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.se.iiop_tp.scm.iiop_tp.listener.type=Callback-IIOP
vbroker.se.iiop_tp.scm.iiop_tp.listener.gatekeeper=http://gk1_host:8088/
gatekeeper.ior

Appendix B: GateKeeper deployment scenar ios 111

GateKeeper chaining

GK1 and GK2 properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.gatekeeper.ext.Init
vbroker.gatekeeper.callbackEnabled=true
vbroker.gatekeeper.backcompat.callback=true
vbroker.gatekeeper.backcompat.callback.listeners=iiop
vbroker.gatekeeper.backcompat.callback.listener.iiop.type=IIOPCallback
vbroker.gatekeeper.backcompat.callback.listener.iiop.port=<exterior callback
port>
vbroker.gatekeeper.backcompat.callback.host=<GK exterior IP address>
vbroker.se.interior.scm.in-iiop.listener.port=<interior port>

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<IIOP listener port>
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.exportFirewallPath=true
vbroker.se.iiop_tp.firewallPaths=p
vbroker.firewall-path.intranet=gk1,gk2
vbroker.firewall.gk1.type=PROXY
vbroker.firewall.gk1.ior=http://gk1_host:8088/gatekeeper.ior
vbroker.firewall.gk2.type=PROXY
vbroker.firewall.gk2.ior=http://gk2_host:8088/gatekeeper.ior

Scenario 7.5: Bi-directional connection
Refer to Scenario 7.1, 7.2, or 7.3.

Add the following additional settings to enable bi-directional communication.

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.enableBiDir=client

Server's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.enableBiDir=server

GK1 and GK2 Properties:

vbroker.orb.enableBiDir=both

Scenario 7.6: Pass-through connection
Refer to the diagrams in Scenario 7.1, 7.2, or 7.3.

Client's Properties:

vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init
vbroker.orb.proxyPassthru=true

GK1 and GK2 Properties:

vbroker.gatekeeper.enablePassthru=true
vbroker.gatekeeper.passthru.inPortMin=<in_min_port>
vbroker.gatekeeper.passthru.inPortMax=<in_max_port>
vbroker.gatekeeper.passthru.outPortMin=<out_min_port>
vbroker.gatekeeper.passthru.outPortMax=<out_max_port>

Server's Properties:

vbroker.se.iiop_tp.scm.iiop_tp.listener.port=<server IIOP port>

Note The value of <server IIOP port> must fall in the range of <out_min_port> and
<out_max_port> of GK2. The range of <in_min_port> and <in_max_port> of GK2 must fall
in the range of <out_min_port> and <out_max_port> of GK1.

112 VisiBroker GateKeeper Guide

Using Vis iBroker in a mult ip le f i rewal l /subnet environment

If there is a firewall between any of the hosts, refer to the following table for the ports to
be opened.

Caution The firewalls must not perform any port translation on the pass-through ports.

Using VisiBroker in a multiple firewall/subnet environment
VisiBroker can be used in multiple firewall scenarios. In general, VisiBroker provides
two different approaches to cross firewalls.

First, the Network Address Translation (also called TCP firewalls) can be configured
using the following properties:

 vbroker.se.iiop_tp.host=www.realdomain.com
 vbroker.se.iiop_tp.proxyHost=www.fakedomain.com
 vbroker.se.iiop_tp.scm.iiop_tp.listener.port=25000
 vbroker.se.iiop_tp.scm.iiop_tp.listener.proxyPort=32000

In the above-mentioned configuration, the real host / port information is lost in the IOR,
which means only the fake host /port is available in the IOR. Another commonly
deployed TCP firewall configuration is a server-side configuration. Since this
configuration is an ORB built-in mechanism, it also applies to all types of services (for
example GateKeeper, Naming Service, and so forth).

 vbroker.orb.exportFirewallPath=true
 vbroker.se.iiop_tp.firewallPaths =Queen
 vbroker.firewall-path.Queen=Atlantic
 vbroker.firewall-path.Atlantic.type=TCP
 vbroker.firewall-path.Atlantic.host=www.fakedomain.com
 vbroker.firewall-path.Atlantic.iiop_port=32000
 vbroker.firewall-path.Atlantic.hiop_port=32003
 vbroker.firewall-path.Atlantic.ssl_port=32004

The advantage of the technique above is that the configuration information is not lost.
The internal client can connect to the servers directly using the real IP host / port
information. The risk involved with this configuration, however, is that both the IP host /
port (real and fake) are exposed in the generated IOR file.

Second, GateKeeper can be run on the firewall server to act as a GIOP proxy server.
Various mechanisms are available in GateKeeper that are designed for different
purposes. For example:
■ Normal mode: Used when the firewalls can allow at least one port for the GIOP

Proxy Server (such as GateKeeper). It is an automatic mode which can switch to
HTTP tunneling if required.

■ Pass through mode: Used when the firewalls can allow a range of ports and
packets exchanged between the client and server that is not to be interpreted by
GateKeeper. In such a scenario, GateKeeper will act as a resource manager only.
GateKeeper acts as a resource manager because it allocates IP ports to be used by
the clients.

Table 6.1 Firewall ports

Firewall location Range of open ports

Between Client and GK1 GK1 exterior IIOP and HIOP listener port, and GK1 <in_min_port>
and <in_max_port>

Between GK1 and GK2 GK2 exterior IIOP and HIOP listener port, and GK2 <in_min_port>
and <in_max_port>

Between GK2 and Server GK2 <out_min_port> and <out_max_port>

Appendix B: GateKeeper deployment scenar ios 113

Firewal l and Smart Agent scenario

■ HTTP tunneling: Used when the firewalls allow only HTTP traffic. In such a
scenario, the GIOP Proxy Server cannot be run in the firewall. Instead, an HTTP
proxy server sits before GateKeeper. The client ORB has a built in mechanism to
convert GIOP messages into HTTP messages which will be sent to the HTTP proxy
server or the firewall. Then, the HTTP proxy server (or the applicable firewall)
forwards the HTTP messages to GateKeeper. Additionally, GateKeeper will convert
the HTTP messages into GIOP messages and forwards it to the required target
(such as server or another GateKeeper). This configuration is also useful in a client-
side configuration when outgoing HTTP traffic is allowed by the firewall, but other
types of TCP connections are not allowed.

Note Multiple firewalls may need a combination of the above configuration techniques.
Basically, the use of multiple firewalls is a deployment issue and, therefore, all possible
combinations cannot be covered in this document. Some general guidelines are.
■ The Smart Agent should be avoided because it is designed to work in a single

domain only.
■ CORBA Naming Service should be used to store and lookup CORBA object IOR.
■ Domain Name Service (DNS) lookups should be avoided.
■ Network Address Translation (NAT) or TCP Firewall configuration should be used

only on the outermost firewall in the firewall enclaves. In such scenarios, even the
internal clients are expected to behave as if they are outside the firewall.

■ GateKeeper can be used wherever it is possible to run it in a firewall environment.
HTTP Tunneling feature can be used if TCP connections are not allowed by the
firewall.

■ GateKeeper chaining can be used when multiple firewalls are involved. With
GateKeeper chaining, multiple hops can be configured.

■ Multiple GateKeepers should be used for load balancing and distribution.

Firewall and Smart Agent scenario
Within a firewall architecture, the Smart Agent is not expected to run on the firewall
host. Instead, the Smart Agent can be run within the internal network. Usually, the
Smart Agent should not be exposed to the external network because of security
reasons. The Smart Agent uses an IPv4 UDP broadcast message to advertise itself.
Since the firewall / routers can block broadcast messages from being forwarded to the
next hop in the network, the Smart Agent is usually visible only in the local network. If
the Smart Agent needs to be accessible from an external network, you must open
specific a port on the firewall.

The following environment variables are used by the Smart Agent:
■ OSAGENT_PORT

■ OSAGENT_CLIENT_HANDLER_PORT

The VisiBroker-ORB requires the OSAGENT_PORT environment variable to be set to
register and query CORBA objects using the Smart Agent. The default value of
OSAGENT_PORT is 14000. By setting OSAGENT_PORT to an appropriate TCP/IP port, you can
define a virtual domain. One can run any number of Smart Agents in a given subnet.
Setting different OSAGENT_PORT values will create different domains, which means
CORBA objects registered in one Smart Agent domain will not be visible to CORBA
client querying from a different domain.

Set the following TCP/IP address or port to be used by CORBA application to reach the
Smart Agent:
■ vbroker.agent.addr=143.186.142.21

■ vbroker.agent.port=25873

114 VisiBroker GateKeeper Guide

Using the Smart Agent in a f i rewal l scenar io

If the client, server, or GateKeeper does not require the use of the Smart Agent, set the
following property in the respective property files to disable it:

vbroker.agent.enableLocator=false

GateKeeper is run on a multi-homed (or firewall) host. The Smart Agent can be run
either on the multi-homed host on in the internal network. GateKeeper can be
configured to use a designated Smart Agent using the following properties (for
example):

 vbroker.agent.addr=143.186.142.21
 vbroker.agent.port=25873

The server in the internal network should register itself to the same Smart Agent as the
GateKeeper if your client program expects GateKeeper to query the server objects to
get the IOR using the following properties (for example).

 vbroker.agent.addr=143.186.142.21
 vbroker.agent.port=25873

GateKeeper can use only one Smart Agent domain at a time. The Smart Agent domain
is determined by setting the OSAGENT_PORT value or the vbroker.agent.port property. All
servers accessible through GateKeeper should register to the same Smart Agent
domain or to the Naming Service. It is recommended to run the Smart Agent on the
same subnet as GateKeeper in the internal network.

The following ports are required by the Smart Agent:

1 OSAGENT_PORT (UDP type)

2 OSAGENT_CLIENT_HANDLER_PORT (UDP type)

3 OSAGENT_CLIENT_HANDLER_PORT (TCP type)

The OSAGENT_PORT used by the ORB applications is a UDP port. The only TCP type of
port (also known as the OSAGENT_CLIENT_HANDLER_PORT) used by the Smart Agent is
assigned to the Location Service. The OSAGENT_CLIENT_HANDLER_PORT of the UDP type is
used by the Smart Agent itself. Please note that OSAGENT_CLIENT_HANDLER_PORT should be
set only on those hosts where the Smart Agent is running.

Using the Smart Agent in a firewall scenario
The Smart Agent has some built-in fail-over and load-balancing capabilities. The
domain of the Smart Agent is defined by the OSAGENT_PORT in use. If an ORB application
(such as a server) is registered to one of the Smart Agents in a given domain (the
Smart Agent domain), other ORB applications (such as a client program) can query the
server objects in that domain from any of Smart Agents in the same domain . Thus,
Smart Agents can query within a domain to locate a server object without making the
client application aware of the process. Therefore, if one Smart Agent fails, the ORB
application can find another Smart Agent in the same domain, register itself again, and
proceed.

By design, the load-balancing capability of Smart Agents is not extended to firewalls
because each firewall has unique behavior. For example, a NAT (Network Address
Translation) device is a type of firewall which changes the IP address/port. The Smart
Agent is not designed to handle NAT scenarios. Also, some firewalls may allow only
specific types of packets, others may require security and encryption, and some may
not allow DNS lookups. Therefore, the Smart Agent should not be used in any kind of
firewall or NAT configuration.

Appendix B: GateKeeper deployment scenar ios 115

Behavior dur ing the Smart Agent fa i lure in a f i rewal l scenario

Although the Smart Agent is not designed to be used in a firewall scenario, there are
few steps to follow if an application must access a Smart Agent sitting behind the
firewall. The following steps, however, apply to inter-departmental firewalls only:

1 Open the OSAGENT_PORT and OSAGENT_CLIENT_HANDLER_PORT on the firewall. Certain
firewalls may require that you set static forwarding routes so that the packets can
reach the Smart Agent. All the intermediate firewalls between the applications
should open these ports as well. Since firewalls may be on a multi-homed host, edit
the localaddr (located, for example, in the <instal_dir>var/defaults/adm/properties/
services/osagentfile folder) and set OSAGENT_LOCAL_ADDR_FILE to specify all the
interfaces Smart Agent should bind to listen for request packets.

2 Set the Smart Agent IP address in the agentaddr file to allow the Smart Agent on one
network to contact a Smart Agent on another network.

3 Set OSAGENT_PORT and OSAGENT_CLIENT_HANDLER_PORT on all hosts from where ORB
applications may be launched. Please note that these ports should be the same as
those opened on the firewalls.

Note Even though it is possible to use the Smart Agent with the above settings, such usage
is not recommend because this type of configuration may work with some firewalls, but
will not work with all types of firewalls.

Behavior during the Smart Agent failure in a firewall scenario
If the Smart Agent fails, the ORB application is expected to switch to another Smart
Agent in the same subnet. Because the Smart Agent OSAGENT_PORT is already fixed, the
ORB application sends a UDP broadcast to locate another Smart Agent. If there is a
firewall, the ORB application should have access to reach another host where the
Smart Agent is running. The ORB application may not have the knowledge of the
location of an alternative Smart Agent, so it can't do much. If the Smart Agent starts up
again on the same host, the client may be able to contact it. Basically, it is important to
understand that the Smart Agent uses a UDP broadcast-based technology. Some
firewalls and routers may not forward UDP broadcasts and this is one of the reasons
why the Smart Agent cannot be used across firewalls. Another Smart Agent, however,
can be used if a Smart Agent in the same subnet fails.

Client behavior for using the Smart Agent
A client ORB application can be configured to use a specific range of ports to bind to
the Smart Agent by setting the following properties:

 vbroker.agent.clientPort
 vbroker.agent.clientPortRange

The port range ensures that the client ORB uses the local ports in a given range only.
The client port range is required because Windows/NT delays actual closure of ports
resulting in limited use of the port range.

116 VisiBroker GateKeeper Guide

Using GateKeeper wi th other CORBA serv ices

Using GateKeeper with other CORBA services
From a client's perspective, GateKeeper is transparent to all other CORBA Services.
There is no distinction made between a usual server object and other CORBA services
such as the Naming Service, Transaction Service, Notification Service, Event Service,
and so forth..

In a server-side configuration, the server can be configured to specify the firewall
component in its IOR which is identified by the client ORB and is used only when
required. In such cases, the client fails over to bind to the server using GateKeeper
only if a direct connection could not be established. Assuming that iiop_tp is the
default server-engine used by the server, the following example shows a typical set of
properties for a firewall configuration:

 vbroker.orb.exportFirewallPath=true
 vbroker.se.iiop_tp.firewallPaths =Queen,King
 vbroker.firewall-path.Queen=Atlantic,Pacific
 vbroker.firewall-path.King=Indian
 vbroker.firewall-path.Atlantic.type=TCP
 vbroker.firewall-path.Atlantic.host=www.borland.com
 vbroker.firewall-path.Atlantic.iiop_port=25000
 vbroker.firewall-path.Atlantic.hiop_port=25003
 vbroker.firewall-path.Atlantic.ssl_port=25004
 vbroker.firewall-path.Pacific.type=PROXY
 vbroker.firewall-path.Pacific.ior=http://www.mygk1domain.com/gatekeeper.ior
 vbroker.firewall-path.Indian.type=PROXY
 vbroker.firewall-path.Indian.ior=http://www.mygk1domain.com/gatekeeper.ior

In a client-side configuration, the GateKeeper IOR can be provided to the Client ORB.
In such a scenario, the client makes all its operations using GateKeeper. In this case,
the following properties are useful:

vbroker.orb.alwaysProxy=true
vbroker.orb.gatekeeper.ior=http://www.mydomain.com/gatekeeper.ior

In some cases, when the Smart Agent is not accessible by the client, GateKeeper is
used to locate server objects. In such a scenario, it is recommended that you use the
Location Service available through GateKeeper. In this case, the following property is
used for GateKeeper:

vbroker.gatekeeper.locationService=true

Additionally, the following property is used on the client-side to locate objects:

vbroker.locator.ior=http://www.mydomain.com/gatekeeper.ior

Configuring GateKeeper with an HTTP proxy server
When an HTTP proxy server is running between the client and GateKeeper,
GateKeeper needs to publish the HTTP proxy server's IP host/port address in its IOR.
The technique described below can be used to achieve this goal. The following
GateKeeper properties can be set which resemble a Network Address Translation
configuration. In this case, the HTTP Proxy Server is acting as a NAT.

vbroker.se.exterior.proxyHost=142.186.142.21
vbroker.se.exterior.scm.ex-hiop.listener.proxyPort=32001

Note Setting both of the above properties is not mandatory. In this scenario, GateKeeper
appears to be behind a NAT device and, as such,.all clients trying to communicate with
GateKeeper using HTTP tunneling will always pass their requests through the HTTP
Proxy Server.

Appendix B: GateKeeper deployment scenar ios 117

Addit ional server engines in GateKeeper

Additional server engines in GateKeeper
There are three in-built server engines available in GateKeeper:
■ iiop_tp
■ exterior
■ interior

The iiop_tp server engine is used for administrative purposes only. The exterior and
interior server engines are used for external and internal networks, respectively. When
using TCP/IP networks, each server engine may be associated with a network IP host
address, for example:

vbroker.se.exterior.host=142.186.142.21
vbroker.se.interior.host=142.186.182.30
vbroker.se.iiop_tp.host=192.73.8.25

This version of GateKeeper does not allow adding new server engines using the
properties file.

Additional listeners or server connection managers in GateKeeper
GateKeeper can have more than one server connection manager (SCM) or listener for
a given type of service. Usually, an SCM provides a specific type of service, such as
IIOP, SSL, HIOP, HIOPS, and so forth. Each SCM is bound to a server engine, such as
exterior or interior. To configure an SCM, you must assign a logical name (for example,
myscm), and append this name to the following property:

vbroker.se.exterior.scms=ex-iiop,ex-hiop,myscm

Furthermore, the following properties must be added for each SCM (see Appendix A
for more details):

vbroker.se.exterior.scm.myscm.manager.type=Socket
vbroker.se.exterior.scm.myscm.manager.connectionMax=0
vbroker.se.exterior.scm.myscm.manager.connectionMaxIdle=0
vbroker.se.exterior.scm.myscm.listener.type=IIOP
vbroker.se.exterior.scm.myscm.listener.port=683
vbroker.se.exterior.scm.myscm.listener.proxyPort=0
vbroker.se.exterior.scm.myscm.listener.giopVersion=1.2
vbroker.se.exterior.scm.myscm.dispatcher.type=ThreadPool
vbroker.se.exterior.scm.myscm.dispatcher.threadMax=100
vbroker.se.exterior.scm.myscm.dispatcher.threadMin=0
vbroker.se.exterior.scm.myscm.dispatcher.threadMaxIdle=300

GateKeeper stress/load metrics
Because GateKeeper is a Java based ORB service implementation, many Java tools
can be used to obtain performance characteristics.

The VisiBroker Console provides certain real time performance characteristics about
any ORB service (including GateKeeper). It can display information related to allocated
memory, numbers of threads, connections, fragmentation, and so forth.

118 VisiBroker GateKeeper Guide

Deploying GateKeeper as a servlet

Deploying GateKeeper as a servlet
This section describes an example of deploying GateKeeper as a servlet into a Tomcat
5.0 web server. For earlier or later versions of Tomcat, some small modifications may
be required.

This example makes use of the bank_agent example along with the supplied
Client.properties, which among other things will force the client to connect to a server
only via the gatekeeper servlet embedded in the web server. The bank_agent example
is located in the following directory:

<install_dir>/examples/vbroker/basic/bank_agent

The additional files you will need to run the example in this scenario are:
■ web.xml—the deployment descriptor for gatekeeper to be deployed as a servlet.
■ Client.properties—the properties needed to set the bank_agent client to connect to

the bank server via the GateKeeper embedded inside a web server as a servlet.

At the end of this section there are screen dumps of web.xml and Client.properties (see
web.xml and Client.properties) which you can copy, paste, and save to designated files
in specified directories.

Building the example

1 Download free copy of Tomcat web server from http://jakarta.apache.org/tomcat/
index.html, and follow the instructions to install it. A properly functioning installation
can be verified by launching a web browser for http://localhost:8080.

2 Copy, paste, and save web.xml (see web.xml) to <Tomcat root install>/webapps/
gatekeeper_servlet/WEB-INF/web.xml. Create subdirectories as needed.

3 Open and edit the file

<Tomcat root install>/webapps/gatekeeper_servlet/WEB-INF/web.xml

and change the following portion to correctly refer to your osagent Tomcat ports.

<init-param>
 <param-name>vbroker.agent.port</param-name>
 <param-value>YOUR OSAGENT PORT</param-value>
</init-param>
 ...
<init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-hiop.listener.port
 </param-name>
 <param-value>
 TOMCAT HTTP PORT. OUT OF TOMCAT BOX, THIS MUST BE 8080
 </param-value>
</init-param>

Appendix B: GateKeeper deployment scenar ios 119

Deploying GateKeeper as a servlet

4 Copy the following jars from

<install_dir>/lib/

to

<Tomcat install root dir>/shared/lib

Putting the jars into the Tomcat shared/lib/ directory will make them available to all
web applications deployed in the container. If this is not desired, consult the Tomcat
documentation for the other lib directories.
■ lm.jar
■ sanctuary.jar
■ vbjorb.jar
■ sanct4.jar
■ vbjclientorb.jar
■ vbsec.jar

5 Copy, paste, and save Client.properties (see Client.properties) to

<install_dir>/examples/vbroker/basic/bank_agent

and open and edit the following settings.

vbroker.orb.gatekeeper.ior=http://<host>:<port>/gatekeeper_servlet/
gatekeeper.ior

where <host> is the IP of machine on which Tomcat is running and <port> is the
HTTP port to which Tomcat is listening. This must be the same number as the port
in the web.xml above. For out-of the box Tomcat installations this must be set to
8080.

Running this example

1 Set the proper environment for the existing VisiBroker (that is, execute
${VBROKERDIR}/vbroker.sh on UNIX platform).

2 Build the basic/bank_agent example if necessary.

3 Make sure osagent is running.

4 Make sure that ${JAVA_HOME} and ${PATH} consistently refer to the desired JDK.

5 Start Tomcat by executing the following command:

Windows <Tomcat root install>/bin/startup.bat

UNIX <Tomcat root install>/bin/startup.sh

6 Navigate to the example basic bank agent directory:

<install_dir>/examples/vbroker/basic/bank_agent

7 Start the bank server by executing the following command:

vbj Server

8 Start the client by executing the following command:

vbj -DORBpropStorage=Client.properties Client

120 VisiBroker GateKeeper Guide

Deploying GateKeeper as a servlet

web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//
EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

 <display-name>GateKeeper Servlet</display-name>

 <description>GateKeeper as a servlet example</description>

 <servlet>

 <servlet-name>GateKeeperServlet</servlet-name>

 <servlet-class>
 com.inprise.vbroker.gatekeeper.servlet.Servlet
 </servlet-class>

 <load-on-startup />

 <init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-hiop.listener.path
 </param-name>
 <param-value>
 /gatekeeper_servlet/servlet
 </param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.agent.port</param-name>
 <param-value>PUT YOUR OSAGENT PORT</param-value>
 </init-param>

<!-- Some setups may not allow UDP broadcast to locate osagent
 In that case, uncomment and set the following correctly
 <init-param>
 <param-name>vbroker.agent.address</param-name>
 <param-value>
 PUT IP OF THE MACHINE, ON WHICH OSAGENT IS RUNNING
 </param-value>
 </init-param>
-->

 <init-param>
 <param-name>vbroker.gatekeeper.referenceStore</param-name>
 <param-value>
 webapps/gatekeeper_servlet/gatekeeper.ior
 </param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.se.exterior.scms</param-name>
 <param-value>ex-iiop,ex-hiop</param-value>
 </init-param>

Appendix B: GateKeeper deployment scenar ios 121

Deploying GateKeeper as a servlet

<!-- If you want Visibroker log messages, uncomment this.
 Log messages will go to the specified file below, relative
 to Tomcat root install dir

 <init-param>
 <param-name>vbroker.orb.debug</param-name>
 <param-value>true</param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.orb.logLevel</param-name>
 <param-value>7</param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.orb.warn</param-name>
 <param-value>2</param-value>
 </init-param>

 <init-param>
 <param-name>vbroker.orb.logger.output</param-name>
 <param-value>webapps/gatekeeper_servlet/log.txt</param-value>
 </init-param>
-->

 <init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-iiop.listener.type
 </param-name>
 <param-value>Disabled-IIOP</param-value>
 </init-param>

 <init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-hiop.listener.port
 </param-name>
 <param-value>8080</param-value>
 </init-param>

 <init-param>
 <param-name>
 vbroker.se.exterior.scm.ex-iiop.listener.port
 </param-name>
 <param-value>0</param-value>
 </init-param>

 </servlet>

 <servlet-mapping>
 <servlet-name>GateKeeperServlet</servlet-name>
 <url-pattern>/servlet</url-pattern>
 </servlet-mapping>

</web-app>

122 VisiBroker GateKeeper Guide

Deploying GateKeeper as a servlet

Client.properties

The following line is only one (single) line
vbroker.orb.dynamicLibs=com.inprise.vbroker.firewall.Init,com.inprise.vbroker.H
IOP.Init

vbroker.orb.alwaysTunnel=true
vbroker.orb.alwaysProxy=true

The following line is only one (single) line
vbroker.orb.gatekeeper.ior=http://host:8080/gatekeeper_servlet/gatekeeper.ior

Uncomment the following lines for debug messages
vbroker.orb.debug=true
vbroker.orb.warn=2
vbroker.orb.logLevel=7

Index 123

Symbols
... ellipsis 4
[] brackets 4
| vertical bar 4

A
access control 40
access control properties 75
access rules 40
adjacent networks 12
administration properties 74
administrative service 22
alwaysProxy 29
alwaysSecure 30
alwaysTunnel 30
asynchronized invocation 46

B
backward compatibility, GateKeeper properties 82
bid order of clients in GateKeeper 31
bidding mechanism of GateKeeper 45
bidirectional communication 38

GateKeeper properties 79
bidirectional communication

scenario 85, 93, 98, 101, 109
Borland Developer Support, contacting 4
Borland Technical Support, contacting 4
Borland Web site 4, 5

C
cache, managing 45
call types 48
callback

listener port 31
scenario 93, 98
VisiBroker 3.x style 31

callback scenario 85, 93, 101, 109
callback types 48
callbacks

and bidirectional communication 38
in GateKeeper 22
VisiBroker 3.x properties 76
VisiBroker 3.x style 22
with GateKeeper 36

chaining
dynamic in GateKeeper 36
of GateKeeper 35
static chaining of GateKeeper 35

client properties, configuring in GateKeeper 29
client-side firewall 7

in GateKeeper 105
client-side server engine properties 66
clustering of GateKeepers 42, 44, 77

command line options for GateKeeper 9
commands, conventions 4
communication paths 32, 33
compatibility with VisiBorker 4.x and below 82
connection managers 117
connections

in GateKeeper 47
passthrough, in GateKeeper 30
secure, in GateKeeper 30

connections, managing in GateKeeper 46
CORBA 7
CORBA Services with GateKeeper 116

D
debugging GateKeeper. See troubleshooting 55
debugging mode, starting GateKeeper in 57
Demilitarized Zon, in GateKeeper 101
Developer Support, contacting 4
distributor, GateKeeper properties 77
DMZ, in GateKeeper 101
documentation 2

.pdf format 3
accessing Help Topics 3
Borland Security Guide 2
on the web 5
platform conventions used in 4
type conventions used in 4
updates on the web 3
VisiBroker for .NET Developer's Guide 2
VisiBroker for C++ API Reference 2
VisiBroker for C++ Developer's Guide 2
VisiBroker for Java Developer's Guide 2
VisiBroker GateKeeper Guide 3
VisiBroker Installation Guide 2
VisiBroker VisiNotify Guide 2
VisiBroker VisiTelcoLog Guide 2
VisiBroker VisiTime Guide 2
VisiBroker VisiTransact Guide 2

dual homed host scenario 93
dual-homed host, with GateKeeper 12
dynamic chaining 36
dynamicLibs, GateKeeper properties 77, 83
dynamicsLibs 80

E
environment variables 57
errors and FAQs 62
ex-hiop 23
ex-hiop properties 67
ex-hiops properties 69
ex-iiop 23
ex-iiop properties 68
ex-ssl properties 71
exterior server engine 23, 117
exterior server engine properties 66

Index

124 VisiBroker GateKeeper Guide

F
fake port 32
fault_tolerance with GateKeeper 44
fault-tolerance in GateKeeper 106
firewall

client-side 7, 105
server-side 7, 98
troubleshooting in GateKeeper 62

firewall configurations 33
firewall package, loading in GateKeeper 29
firewalls

and Smart Agent in GateKeeper 113, 114, 115
GateKeeper properties 82
in GateKeeper 20
multiple with GateKeeper 112

G
GateKeeper

access control 40
access control properties 75
administration properties 74
administrative service 22
and multiple networks 15
and SSL 48
as IIOP proxy 93
as Web Server 93
asynchronized invocation 46
backward compatibility property 82
bidding mechanism 45
bidirectional callbacks 38
bidirectional communication 38
bidirectional communication properties 79
cache management 45
call types 48
callbacks 22, 36
chaining 35, 109
client-side server engine properties 66
clustering 42, 44
compatibility with VisiBorker 4.x and below 82
configuring 21
configuring services 21
connections 46, 47
custom-designed load balancing 43
debugging. See troubleshooting 55
definition of 7
deploy as servlet 118
dynamic chaining 36
errors and FAQs 62
ex-hiop properties 67
ex-hiops properties 69
ex-iiop properties 68
ex-ssl properties 71
exterior server engine properties 66
fault_tolerance 44
firewall configuration 20
firewall properties 82
general properties 65
HTTP proxy server 116
HTTP tunneling 116
in adjacent networks 12
in dual-homed host 12, 93
in-iiop properties 72
in-ssl properties 73
installation 8

interior server engine properties 72
internetworking devices 15
licensing 49
listener ports 21
listeners 117
load balancing 42
load metrics 117
location service 23
location service properties 81
managing 10
master 42
message marshalling 45
multi-homed host 18
multiple firewalls 112
naming service 52
OAD 23
Object Activation Demon 23
ORB properties 83
passthrough conections 22
pass-through connections properties 79
passthrough mode 47
performance guidelines 44
port configuration 21
proxy servers 63
registry settings 58
removing an NT service 10
security 49
security considerations 40
security properties 75
security services (Java) 24
server connection managers 117
server engines 117
server side interior engine properties 72
slave 42
Smart Agent properties 81
SSL 93
SSL bidirectional communication 49
SSL connections to 48
starting as a servlet 10
starting as an NT service 10
starting from the command line 9
starting in debugging mode 57
static chaining 35
stress metrics 117
subnet environment 112
thread management 46
ThreadPool 47
ThreadSession 47
troubleshooting 55
using the Smart Agent 23
vbroker properties 83
VisiBroker 3.x callback properties 76
VisiBroker Console 10
VisiSecure (Java) 24
where to deploy 11
with CORBA Services 116

GateKeeper chaining
client-side 109
server-side 109
server-side and client-side 109

GateKeeper"per ormance 10
general properties of GateKeeper 65
GIOP Proxy Server 7
GIOP, GateKeeper properties 77

Index 125

H
Help Topics, accessing 3
HIOP and GateKeeper 10
HIOP properties in GateKeeper 67
hiop_ts 23
HIOPS properties 69
HTTP proxy server 116
HTTP tunneling 11, 30, 93, 116
HTTP Tunneling scenario 93

I
IIOP in GateKeeper 85, 105
IIOP listener port 32

disabling 32
IIOP properties in GateKeeper 68, 72
IIOP proxy in GateKeeper 11
IIOP proxy scenario in GateKeeper 93
IIOP/SSL in GateKeeper 85
iiop_tp 23
iiop_tp server engine in GateKeeper 117
in GateKeeper performance properties 47
in-hiop in GateKeeper 23
in-iiop properties in GateKeeper 72
in-SSL in GateKeeper 23
in-ssl properties in GateKeeper 73
installing GateKeeper 8
interior server engine in GateKeeper 23, 117
interior server engine properties in GateKeeper 72
internetworking devices with GateKeeper 15
IOR files, troubleshooting GateKeeper 62
IP forwarding in GateKeeper 18

J
java policy, troubleshooting GateKeeper 62
Java sandbox security in GateKeeper 11

L
listener port in GateKeeper 21
listener ports

IIOP 32
random 32
VisiBroker 3.x callbacks 31

listeners in GateKeeper 117
load balancing

custom-designed in GateKeeper 43
GateKeeper properties 77
in GateKeeper 106
with GateKeeper 42

load metrics in GateKeeper 117
location service

GateKeeper properties 81
in GateKeeper 23

log enable in GateKeeper 55
log level in GateKeeper 55

M
managing GateKeeper 10
marshalling of messages 45
master GateKeeper 42
master slave 106
message marshalling in GateKeeper 45
multi-homed host in GateKeeper 18
multiple firewalls in GateKeeper 85
multiple networks with GateKeeper 15

N
naming service in GateKeeper 52
NAT in GateKeeper 21
NAT (Network Address Translation) 32
NATs scenario 85

in GateKeeper 98
netstat, with GateKeeper 58
Network Address Translation in GateKeeper 21
Network Address Translation (NAT) 32
network configuration with GateKeeper 59
network interface card with GateKeeper 18
Newsgroups 5
NIC, with GateKeeper 18
nslookup, with GateKeeper 58

O
OAD in GateKeeper 23
Object Activation Demon in GateKeeper 23
online Help Topics, accessing 3
ORB GateKeeper properties 83
OSAGENT_CLIENT_HANDLER_PORT 113
OSAGENT_PORT 113
osfind, with GateKeeper 58
overview 1

P
passthrough conections in GateKeeper 22
pass-through connections

GateKeeper properties 79
troubleshooting GateKeeper 61

passthrough connections in GateKeeper 30
passthrough mode in GateKeeper 47
passthrough scenario 93

in GateKeeper 93, 98, 101, 109
PDF documentation 3
performance

GateKeeper properties 77
of GateKeeper 44
properties in GateKeeper 47

ping with GateKeeper 58
POAs

configuring globally in GateKeeper 28
programming individually in GateKeeper 27

port configuring in GateKeeper 21
port translation in GateKeeper 32
printior with GateKeeper 58

126 VisiBroker GateKeeper Guide

properties file, troubleshooting GateKeeper 61
Proxy 7
proxy servers, with GateKeeper 63
proxy Passthru 30

R
registry settings and GateKeeper 58
removing GateKeeper as NT service 10
response time of GateKeeper 44
round robin GateKeeper properties 77
round-robin algorithm in GateKeeper load

distribution 43
route with GateKeeper 58
routing table

in GateKeeper 19
troubleshooting GateKeeper 61

S
sandbox security in GateKeeper 11
scalability of GateKeeper 44
Scenario

address and port translations 85
address translation 85
bi-directional communication 85, 93, 98, 101, 109
callback 85, 93, 98, 101, 109
client-side chaining 109
client-side firewall 105
dual homed host configuration 93
fault-tolerance 106
Firewall and Smart Agent 113, 114, 115
firewall behind GateKeeper 101
firewall behind GateKeeper with NAT 101
HTTP Tunneling 93
IIOP 85
IIOP proxy 93
IIOP/SSL 85
load balancing 106
master slave configuration 106
multiple firewalls 85
passthrough 93, 98, 101, 109
port translation 85
secure HTTP Tunneling 93
server-side and client-side chaining 109
server-side chaining 109
server-side firewall 98
server-side firewall with NAT 98
Smart Agent 85, 101
SSL 93
Web Server 93

SCM
ex-hiop 23
ex-hiop properties 67
ex-hiops properties 69
ex-iiop 23
ex-iiop properties 68
ex-ssl properties 71
GateKeeper properties 66, 74
hiop_ts 23
iiop_tp 23
in GateKeeper 23
in-hiop 23
in-iiop properties 72
in-SSL 23
in-ssl properties 73

secure connections in GateKeeper 30
secure HTTP Tunneling 93
secure HTTP tunneling Scenario 93
security

access control properties 75
enabling in GateKeeper 49
in GateKeeper 40

security service in GateKeeper 49
security services, GateKeeper properties 80
security services (Java) in GateKeeper 24
server connection manager

ex-hiop properties 67
ex-hiops properties 69
ex-iiop properties 68
ex-ssl properties 71
GateKeeper properties 66, 74
in-iiop properties 72
in-ssl properties 73

server connection manager (See SCM) 23
server connection managers in GateKeeper 117
server engine, GateKeeper properties 66, 67, 72, 74
server engines in GateKeeper 23, 117
server side interior engine properties in GateKeeper 72
server-side firewall 7

in Gatekeeprer 98
services, configuring in GateKeeper 21
servlet, running GateKeeper as 10
slave GateKeepers 42
Smart Agent 85

and client behavior 115
and firewall with GateKeeper 113, 114, 115
GateKeeper properties 81
in GateKeeper 23, 101
port configuration 115
registry settings for GateKeeper 58
troubleshooting GateKeeper 61

Software updates 5
SSL

and GateKeeper 48
bidirectional communication in GateKeeper 49
GateKeeper properties 80
troubleshooting GateKeeper 62

SSL connections
in GateKeeper 30
to GateKeeper 48

SSL properties in GateKeeper 71, 73
SSL scenario in GateKeeper 93
starting GateKeeper

as an NT service 10
command line options 9
from the command line 9

startup option
-h 9
-J-D 9
-props 9
-quiet 9

static chaining of GateKeeper 35
stress metrics in GateKeeper 117
subnet environment with GateKeeper 112
Support, contacting 4
symbols

brackets [] 4
ellipsis ... 4
vertical bar | 4

Index 127

T
TCP firewall 34
Technical Support, contacting 4
ThreadPool in GateKeeper 47
threads, managing in GateKeeper 46
ThreadSession in GateKeeper 47
traceroute with GateKeeper 58
tracert with GateKeeper 58
troubleshooting

common errors and FAQs for GateKeeper 62
enable log in GateKeeper 55
environment variables 57
firewall in GateKeeper 62
GateKeeper 55
IOR files in GateKeeper 62
java policy in GateKeeper 62
log level in GateKeeper 55
network configuration 59
pass-through connections in GateKeeper 61
properties file in GateKeeper 61
registry settings for GateKeeper 58
routing table in GateKeeper 61
Smart Agent in GateKeeper 61
SSL in GateKeeper 62

troubleshooting command options
client 57
GateKeeper 57
server 57

troubleshooting tools for GateKeeper 58
tunneling HTTP in GateKeeper 30

V
vbroker GateKeeper properties 83
vbroker.orb.dynamicLibs property 24
vbroker.se.exterior.scm.ex-hiop.listener.type

property 24
vbroker.se.exterior.scm.ex-iiop.listener.type

property 24
vbroker.se.exterior.scms property 24
vbroker.security.disable property 24
VisiBroker 3.x callbacks 31
VisiBroker Console in GateKeeper 10
VisiBroker overview 1
VisiSecure (Java) in GateKeeper 24

W
Web Server with GateKeeper 10
Web Server scenario in GateKeeper 93
Windows registry settings and GateKeeper 58
World Wide Web

Borland documentation on the 5
Borland newsgroups 5
Borland updated software 5

128 VisiBroker GateKeeper Guide

	GateKeeper Guide
	Contents
	Ch 1: Introduction to Borland VisiBroker
	VisiBroker Overview
	VisiBroker features

	VisiBroker Documentation
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within the VisiBroker Console
	Documentation conventions �����
	Platform conventions

	Contacting Borland support
	Online resources
	World Wide Web
	Borland newsgroups

	Ch 2: Introduction to GateKeeper
	What is GateKeeper?
	GateKeeper as a Gateway or Proxy
	Additional capabilities of GateKeeper
	Primary Use of GateKeeper

	Installing GateKeeper
	Starting GateKeeper
	Starting GateKeeper from the command line
	Command line options

	Running GateKeeper as an NT service
	Removing GateKeeper as an NT service

	Running GateKeeper as a servlet in a Web Server

	Managing GateKeeper

	Ch 3: Configuring GateKeeper and internetworking devices
	Where to deploy GateKeeper
	Client and server on the same network
	Client and server on adjacent networks
	Multiple networks between client and server

	Configuring a multi-homed host
	Enable IP-forwarding
	Routing table

	Configuring the firewall
	Using Network Address Translation (NAT)
	Configuring GateKeeper
	Listener ports
	Administrative service
	Enabling callbacks (VisiBroker 3.x style)
	Enabling pass-through connections
	Enabling the location service
	Specifying the Smart Agent (osagent)
	Specifying the Object Activation Demon (OAD)
	Configuring GateKeeper server engines
	Security services
	SSL Transport Identity and Trustpoint
	Installing SSL Identity using Wallet properties
	Installing SSL Identity on GateKeeper using Certificate Login
	Setting peerAuthenticationMode

	Applet and Java Webstart
	VisiBroker settings on a typical applet client
	VisiBroker Application Deployed as a Java Webstart

	Ch 4: Configuring user programs
	Using objects behind firewalls
	Programming a single POA
	Configuring the firewall policy for all POAs associated with a�server
	Loading a firewall package at runtime

	Configuring client properties
	Specify always proxy on a client
	Specify HTTP tunneling on a client
	Specify secure connections on a client
	Specify pass-through connections on a client
	Enabling pass-through connections
	Specifying the client bid order
	Specifying a client callback listener port (for VisiBroker 3.x style)

	Configuring server properties
	Specifying the listener port of the server
	Random listener port
	Specific listener port
	Port translation (NAT)
	Disabling the IIOP port

	Specifying communication paths to the server
	Specify the component of a proxy server
	Specify the component of a TCP firewall with NAT

	Ch 5: Advanced features
	Chaining of GateKeepers
	Static chaining of GateKeepers
	Dynamic chaining of GateKeepers

	Callbacks
	Callbacks without GateKeeper
	Callbacks without GateKeeper using bidirectional GIOP
	Callback with GateKeeper's bidirectional support
	Bidirectional connection example
	Security considerations

	Access control
	Custom-designed access control in GateKeeper

	Load balancing and fault tolerance
	Load balancing
	Custom-designed load balancing in GateKeeper
	Fault tolerance

	Scalability and performance guidelines
	GateKeeper performance tuning
	Bidding mechanism
	Cache management
	Message marshalling
	Thread management
	Connection management

	Impact of asynchronized invocation of GateKeeper

	GateKeeper performance properties
	Connection settings
	Thread related settings
	GateKeeper modes
	Call types

	GateKeeper and SSL
	SSL connections to GateKeeper
	SSL for forward and bidirectional calls

	Enabling the Security Service in GateKeeper
	Enabling access to the Naming Service through GateKeeper

	Ch 6: Troubleshooting GateKeeper
	Preparation for troubleshooting
	Getting debugging information
	Starting GateKeeper in debugging mode
	Environment settings
	Tools for troubleshooting
	Getting information about the computer network

	Essential checks
	Check the Smart Agent
	Check the property files
	Check the routing table
	Check pass-through connections
	Check the Java policy
	Check SSL
	Check the IOR files
	Check firewall settings

	Common errors and FAQs
	Proxy servers and GateKeeper

	Ap A:GateKeeper properties
	General properties
	Exterior server engine
	ex-hiop server connection manager (SCM)
	ex-iiop server connection manager (SCM)
	ex-hiops server connection manager (SCM)
	ex-ssl server connection manager (SCM)

	Interior server engine
	in-iiop server connection manager (SCM)
	in-ssl server connection manager (SCM)

	Administration
	Access control
	VisiBroker 3.x style callback
	Performance and load balancing
	Support for bidirectional communications
	Support for pass-through connections
	Security services (SSL)
	Location services (Smart Agent)
	Backward compatibility with VisiBroker 4.x and below
	Server's properties for firewall specifications
	Miscellaneous ORB properties

	Ap B: GateKeeper deployment scenarios
	TCP firewall (without GateKeeper)
	GateKeeper deployment
	GateKeeper with server-side firewall
	Firewall in front of GateKeeper
	Firewall in front and behind of GateKeeper

	GateKeeper with client-side firewall
	GateKeeper load balancing and fault-tolerance
	GateKeeper chaining
	Using VisiBroker in a multiple firewall/subnet environment
	Firewall and Smart Agent scenario
	Using the Smart Agent in a firewall scenario
	Behavior during the Smart Agent failure in a firewall scenario
	Client behavior for using the Smart Agent
	Using GateKeeper with other CORBA services
	Configuring GateKeeper with an HTTP proxy server
	Additional server engines in GateKeeper
	Additional listeners or server connection managers in GateKeeper
	GateKeeper stress/load metrics
	Deploying GateKeeper as a servlet
	Building the example
	Running this example
	web.xml
	Client.properties

	Index
	Symbols - E
	F -G
	H - P
	R - S
	T - W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

