
Borland
VisiBroker™ 8.0

VisiTelcoLog Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance
with the License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications
covering subject matter in this document. Please refer to the product CD or the About
dialog box for the list of applicable patents. The furnishing of this document does not give
you any license to these patents.

Copyright 1992–2006 Borland Software Corporation. All rights reserved. All Borland brand
and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. All other marks are the property of
their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB 80 VisiTelcoLog Guide
April 2007

i

Contents

Chapter 1
VisiTelcoLog Service overview 1

Chapter 2
Logging for event aware applications 3
Using log factories 4
Logging events . 5
Forwarding logged events. 7
Filtering events . 7

Chapter 3
Logging for event unaware applications 11
Using the log factory 11
Writing log records 13

Chapter 4
Understanding the Log interface 15
Log and Typed Log records 15
Log Quality of Service 16
Log size and manipulation 16

Controlling the log size. 17
Log full action 17
Log record life 17

Setting log attributes 17
Copying logs . 18
Log record query, retrieval and iterators 18

Retrieving records based on time 18
Querying for records based on constraint 19
Iterators . 19

Deleting log records. 20

Chapter 5
Advanced features 23
Log duration. . 23
Log scheduling . 24

Log generated events 26
Object Creation Event 29
Object Deletion Event 29
Attribute Value Change (AVC) Event 30
State Change Event 31
Threshold Alarm Event 31
Processing Error Alarm Event 32

Chapter 6
Running the VisiTelcoLog Service 33
Getting entry references 33
Properties . 34

Index 37

ii

 1 : V is iTelcoLog Service overview 1

VisiTelcoLog Service overview
The VisiTelcoLog Service is Borland's OMG compliant implementation of the OMG
Telecom Log Service specification version 1.1.2. It supports all of the features defined
by the OMG specification, including all operations of the log interfaces, their factories,
and their detailed semantics. This document is a user guide for the VisiTelcoLog
Service, and it assumes that the reader is familiar with the OMG Telecom Log Service
specification.

The essential purpose of the VisiTelcoLog Service is to transparently log events
passing through a channel of an event or a notification service. VisiTelcoLog Service is
typically used by mission-critical distributed monitor control applications, such as a
telecommunication management network (TMN). These applications not only require a
high performance event or notification service to forward events with a negligible
overhead, but also require the ability to log a portion or all of these events efficiently
and transparently. Though the specification is called OMG Telecom Log Service and
the Borland implementation is called VisiTelcoLog Service, the architecture itself is
very generic and can be used by any application.

The VisiTelcoLog Service provides a high level event-logging model to shield
applications from the details of event logging. This allows higher performance and
application-generic log services to be implemented by third parties. It is possible for
applications to implement and connect an event consumer to log transparently all
received events into a conventional database or other form of external persistent
repository without using the VisiTelcoLog Service, but the disadvantage of this kind of
custom-built event logging at the application level is that it forces the application
developer to implement a full event unmarshalling as well as application-specific record
schema and events-to-records translation code. The consequences would be poor
performance (namely, event throughput) and high development and maintenance
costs.

With VisiTelcoLog Service, events received by an event or notification channel can be
logged transparently at the application level. An event-logging object (also referred to
in this document as DsEventLog object, or an event-based log object) is also a
conventional OMG event channel (in other words, it extends from OMG event channel).
This allows applications to be designed and developed without depending on whether
or how events are to be logged. Existing event-based applications can also utilize the
event logging of VisiTelcoLog Service with neither application code change nor
redeployment.

Besides the transparency for event and notification-based applications, DsEventLog is
also extended from the Log object. On this log object, explicit non-event record logging,
as well as log record querying, updating, deleting, log object control and administration
operations can be performed. A DsEventLog object is simply extended from a
conventional event channel and the log object.

2 VisiBroker Vis iTelcoLog Guide

VisiTelcoLog Service overview

For every kind of OMG defined event channel, such as event channel, typed event
channel, notification channel, and typed notification channel, there is a corresponding
log object. For applications that are not event-aware, a BasicLog object is also
provided.

Architecture and interface inheritance views of VisiTelcoLog Service's EventLog are
illustrated in the following figures. The first figure shows how an event supplier can log
its events while at the same time forwarding events to all the consumers. Using the Log
interface another user can also query the logged events.

The following figure describes an event-based log object's hierarchy.

 2: Logging for event aware appl icat ions 3

Logging for event aware applications
This chapter discuses how an event or notification service-based application (or any
event aware application in general) can use VisiTelcoLog Service to log events.
VisiTelcoLog Service is basically an event logger. Log, in this context, is an event
channel that propagates events apart from logging the events to a persistent store.

There are four kinds of event-based log objects that an event-aware application can
use:

– EventLog

– NotifyLog

– TypedEventLog

– TypedNotifyLog

The following table describes the VisiTelcoLog Service module and interface names
and the features available for event and notification service-based applications.

In this chapter, the following topics will be explained:

– Using log factories to obtain event based log objects

– Logging events on event based log objects

– Forwarding logged events to consumers

Feataures
OMG Event Service
application

OMG Notification
Service application

Module name DsEventLogAdmin DsNotifyLogAdmin

Factory interface name EventLogFactory NotifyLogFactory

Log interface name EventLog NotifyLog

Factory service name EventLogService NotifyLogService

Typed Events Module name DsTypedEventLogAdmin DsTypedNotifyLogAdmin

Typed Events Factory Interface name TypedEventLogFactory TypedNotifyLogFactory

Typed Event Log Interface name TypedEventLog TypedNotifyLog

Typed Events Factory service name TypedEventLogService TypedNotifyLogService

Log forwarding Yes Yes

Filtering while log forwarding No Yes

Filtering while storing No Yes

4 VisiBroker Vis iTelcoLog Guide

Using log factor ies

– Filtering events to be logged

Using log factories
For an event aware application that wishes to log events, an event-based log is first
bootstrapped using the log's factory. For example, a notification service-based
application first resolves to NotifyLogFactory using the object name NotifyLogService,
and then obtains a log of type NotifyLog. For other types of event-based applications,
see the table above. This section explains the steps to be taken to obtain reference to
an event-based log object.

The example code below first bootstraps to NotifyLogFactory using the object name
NotifyLogService. It then attempts to find a NotifyLog log with ID equal to 100 from the
factory. If it does not find NotifyLog it attempts to create one. The maximum size
specified is 0 (zero). This means that no predefined limit is used; however, a
predefined limit is recommended.

Note

Example code is located in the <install_dir>/examples/vbroker/telcolog/primitive_cpp
directory.

C++ // get service reference
CORBA::Object_var service =
 orb->resolve_initial_references("NotifyLogService");

DsNotifyLogAdmin::NotifyLogFactory_var factory =
 DsNotifyLogAdmin::NotifyLogFactory::_narrow(service);

// find log with id 100
DsLogAdmin::LogId id = 100;
DsLogAdmin::Log_var log = factory->find_log(id);

// if log not created, create log
if(log.in() == NULL)
{
 CORBA::ULongLong max_size = 4 * 1024 * 1024;
 DsLogAdmin::CapacityAlarmThresholdList thresholds;
 CosNotification::QoSProperties initial_qos;
 CosNotification::AdminProperties initial_admin;

 log = factory->create_with_id(id, DsLogAdmin::wrap,
 max_size, thresholds, initial_qos, initial_admin);
}

DsNotifyLogAdmin::NotifyLog_var notify_log=
 DsNotifyLogAdmin::NotifyLog::_narrow(log.in());

Note

Example code is located in the <install_dir>/examples/vbroker/telcolog/primitive_java
directory.

Java // get service reference
org.omg.CORBA.Object service =
 orb.resolve_initial_references("NotifyLogService");

org.omg.DsNotifyLogAdmin.NotifyLogFactory factory =
 org.omg.DsNotifyLogAdmin.NotifyLogFactoryHelper.narrow(
 service);

 2: Logging for event aware appl icat ions 5

Logging events

// find log with id 100
int id = 100;
org.omg.DsLogAdmin.Log log = factory.find_log(id);

// if log not created, create log
if(log == null)
{
 long max_size = 4 * 1024 * 1024;
 log = factory.create_with_id(id,
 org.omg.DsLogAdmin.wrap.value, max_size, new short[0],
 new org.omg.CosNotification.Property[0],
 new org.omg.CosNotification.Property[0]);
}

org.omg.DsNotifyLogAdmin.NotifyLog notify_log =
 org.omg.DsNotifyLogAdmin.NotifyLogHelper.narrow(log);

Logging events
Once the reference to the event-based log object is resolved, an event propagation (or
forwarding) operation such as push or pull is used to propagate events. Since this
channel object also has the characteristics of a log, it logs all the events that are
propagated through it. Filters can also be attached to the log. See Log filtering for
further details on how to selectively log events.

Furthermore, notification-based applications can use all the notification service
features such as QoS framework, Event Filters, and others.

For further details on developing Notification Service supplier applications, see
Developing supplier and consumer applications in the VisiBroker VisiNotify Guide.

VisiTelcoLog Service optimizes the event logging at the GIOP level.

On a log full condition, if the log full action is set to wrap, then the oldest events are
over-written. If the log full action is set to halt, and if the log record expire time is
specified, then all the expired events are over-written. Otherwise the following
exceptions are thrown:

– Insufficient space: If the log space is not sufficient for logging the event then a
NO_RESOURCE system exception with LOGFULL minor code (1001) is thrown.

– Off-duty log: If the log is off-duty then a NO_RESOURCE system exception with minor
code LOGOFFDUTY (1000) is thrown.

– Locked log: If the log is locked then a NO_PERMISSION system exception with minor
code LOGLOCKED (1003) is thrown.

– Disabled log: If the log is disabled, then TRANSIENT system exception with minor code
equal to LOGDISABLED (1002) is thrown.

Note that if the supplier is using event batching the exceptions will not reach the
supplier. See VisiBroker Event Buffering/Batch in the VisiBroker VisiNotify Guide for
further details on event batching.

Also note that for the connected pull suppliers, the channel pulls the events and then
logs those events. On a log full condition, the channel continually attempts to log until
log space is available. There is no way the connected supplier application can know
about this condition. Using the vbroker.dslog.waitForLogAvailable property a wait
period can be specified for this loop. By default it is 20 seconds.

The following code sample shows a structured supplier logging TMN QoS Alarm event.
The supplier application first obtains the default supplier admin from the log (as the log
is also a channel in itself), and then after obtaining structured proxy push consumer,
connects to it. It then creates a TMN QoS Alarm event and pushes the event through
the log. When the event is pushed in the log, the log stores the event and then forwards
the event based on the log's forwarding state.

6 VisiBroker Vis iTelcoLog Guide

Logging events

Note

Example code is located in the <install_dir>/examples/vbroker/telcolog/primitive_cpp
directory.

C++ // get default supplier admin object from the log
CosNotifyChannelAdmin::SupplierAdmin_var admin =
 notify_log->default_supplier_admin();

CosNotifyChannelAdmin::ProxyID proxy_id;

// create a proxy consumer on the log
CosNotifyChannelAdmin::ProxyConsumer_var proxy =
 admin->obtain_notification_push_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, proxy_id);

CosNotifyChannelAdmin::StructuredProxyPushConsumer_var
 Consumer =
CosNotifyChannelAdmin::StructuredProxyPushConsumer::_narrow(proxy);

// connect to the proxy consumer
consumer->connect_structured_push_supplier(NULL);

// fill a structured event with TMN QoS Alarm event
TMN::Event event;
CosNotification::StructuredEvent structured;
TMN::QoSAlarmInfo qosalrm_info;
misc::forge_qosAlrmInfo(qosalrm_info);
event.name = (const char*)
 " TMN::Events::qosAlarm";
event.info <<= qosalrm_info;
misc::gathering(event, structured);

// push the structured event into log
consumer->push_structured_event(structured);

Note

Example code is located in the <install_dir>/examples/vbroker/telcolog/primitive_java
directory.

Java // get default supplier admin object from the log
org.omg.CosNotifyChannelAdmin.SupplierAdmin admin
 = notify_log.default_supplier_admin();

org.omg.CORBA.IntHolder proxy_id =
 new org.omg.CORBA.IntHolder();

// create a proxy consumer on the log
org.omg.CosNotifyChannelAdmin.ProxyConsumer proxy =
 admin.obtain_notification_push_consumer(
 org.omg.CosNotifyChannelAdmin.ClientType.STRUCTURED_EVENT,
 proxy_id);

org.omg.CosNotifyChannelAdmin.StructuredProxyPushConsumer
 consumer =
 org.omg.CosNotifyChannelAdmin.StructuredProxyPushConsumerHelper.narrow(
 proxy);

// connect to the proxy consumer
consumer.connect_structured_push_supplier(null);

 2: Logging for event aware appl icat ions 7

Forwarding logged events

// fill a structured event with TMN QoS Alarm event
TMN.Event event = new TMN.Event();
org.omg.CosNotification.StructuredEvent structured =
 new org.omg.CosNotification.StructuredEvent();
TMN.QoSAlarmInfo qosalrm_info = new TMN.QoSAlarmInfo();
event.header = new TMN.EventHeader();
event.info = orb.create_any();
Util.forge_event_header(event.header);
Util.forge_qosAlrmInfo(qosalrm_info);
event.name = "TMN::Events::qosAlarm";
TMN.QoSAlarmInfoHelper.insert(event.info,qosalrm_info);
Util.gathering(event, structured);

// push the structured event into log
consumer.push_structured_event(structured);

Forwarding logged events
The events that get pushed into a log or pulled by the log are forwarded to any down-
stream consumers after the events are logged. Any consumer application can start
consuming events that are propagated. See Developing supplier and consumer
applications in the VisiBroker VisiNotify Guide for information on writing consumer
applications.

By setting its forwarding state to off, the log object can be configured so that it does not
forward logged events. The following code snippet shows how an application can
disable forwarding on a NotifyLog object and check the current forwarding state of the
log.

All the features of an event service and a notification service can be used for event
propagation such as attaching filters, QoS, etc.

C++ notify_log->set_forwarding_state(DsLogAdmin::off);

DsLogAdmin::ForwardingState current_state =
 notify_log->get_forwarding_state();

Java notify_log.set_forwarding_state(
 org.omg.DsLogAdmin.ForwardingState.off);

org.omg.DsLogAdmin::ForwardingState current_state =
 notify_log.get_forwarding_state();

Filtering events
A filter set for a NotifyLog or a TypedNotifyLog can also filter events being logged to the
log. The log uses the filter object defined by the notification service,
CosNotifyFilter::Filter. See Setting the Quality of Service and Filters in the
VisiBroker VisiNotify Guide for information about how to create a filter and how to write
constraints.

Note that only one filter object can be associated with a log. By default, no filter objects
are associated with the log and all events are logged. Also, whenever a set_filter()
method is called the log will generate an AttributeValueChange event.

The following example shows how to create a filter, set a filter on the log, and get a
filter from the log.

C++

// MAKE USE OF FILTERS
// STEP 1) Get default filter factory

8 VisiBroker Vis iTelcoLog Guide

Fi l ter ing events

CosNotifyFilter::FilterFactory_var ffact =
 log->default_filter_factory();

// STEP 2) Create filter
CosNotifyFilter::Filter_var filter1;
filter1 = ffact->create_filter("EXTENDED_TCL");

// STEP 3) Create constraint
CosNotifyFilter::ConstraintExpSeq constr_seq1;
constr_seq1.length(1);
constr_seq1[0].constraint_expr = CORBA::string_dup(
 "$type_name == 'TMN::Events::qosAlarm'"
);

// STEP 4) Add constraint to filter
filter1->add_constraints(constr_seq1);

// STEP 5) Set filter on the log
log->set_filter(filter1);

// STEP 6) Get the filter associated with the log
CosNotifyFilter::Filter_var filter2;
Filter2 = log->get_filter();

Java

//Make Use of Filters
//[1] Get a filter factory
org.omg.CosNotifyFilter.FilterFactory ffact =
 channel.default_filter_factory();

//[2] Create a filter
org.omg.CosNotifyFilter.Filter filter = null;
filter = ffact.create_filter("EXTENDED_TCL");

//[3] Create a constraint
org.omg.CosNotifyFilter.ConstraintExp [] constraints =
 new org.omg.CosNotifyFilter.ConstraintExp[1];
constraints [0] =
 new org.omg.CosNotifyFilter.ConstraintExp();
constraints [0].constraint_expr =
 new String ("$type_name == 'TMN::Events::qosAlarm'");

//[4] Add constraint to filter
org.omg.CosNotifyFilter.ConstraintInfo[] info = null;
info = filter.add_constraints(constraints);

//[5] Set filter on the log
log.set_filter (filter);

//[6] Get the filter associated with the log
org.omg.CosNotifyFilter.Filter filter2 = null;
filter2 = log.get_filter();

 2: Logging for event aware appl icat ions 9

Fi l ter ing events

10 VisiBroker Vis iTelcoLog Guide

 3 : Logging for event unaware appl icat ions 11

Logging for event unaware
applications
Legacy applications and event unaware clients can also use the VisiTelcoLog Service.
Using the BasicLog interface and explicit write operations using CORBA Any, an event
unaware application can make use of the VisiTelcoLog Service. These applications,
however, will not be able to use features such as log filtering, forwarding, and event
generation.
The following table describes the VisiTelcoLog Service module and interface names

and the log features available for event unaware applications.

In this chapter, the following topics will be explained:

– Using the log factory to obtain the log object for event unaware applications

– Writing log records for event unaware applications

Using the log factory
In order to log, an event unaware application needs to get a reference to the BasicLog
from its factory, BasicLogFactory. Apart from creating the basic log object, the factory
interface also supports some other basic management operations such as find and list.

Resolving the BasicLogService name gets the BasicLogFactory object reference. In the
following code snippet, the application looks for a BasicLog with an ID equal to 100, and
if it does not find one a BasicLog is created with size equal to 0 (zero). A size equal to

Features Event unaware application

Module name DsLogAdmin

Factory Interface name BasicLogFactory

Log Interface name BasicLog

Factory service name BasicLogService

Log forwarding No

Filtering while log forwarding No

Filtering while storing No

12 VisiBroker Vis iTelcoLog Guide

Using the log factory

0 (zero) means that there is no predefined size limit. Note that by setting log size to
zero, the log continues to expand till all the disk space is used. Specifying a more
meaningful value is recommended.

C++

// get service reference
CORBA::Object_var service =
 orb->resolve_initial_references("BasicLogService");

DsLogAdmin::BasicLogFactory_var factory =
 DsLogAdmin::BasicLogFactory::_narrow(service);

// find log with id 100
DsLogAdmin::LogId id = 100;
DsLogAdmin::Log_var log = factory->find_log(id);

// if log not created, create log
if(log.in() == NULL)
{
 CORBA::ULongLong max_size = 4 * 1024 * 1024;
 // max_size=0 (zero) leaves the max log size unbounded.

 log = factory->create_with_id(id, DsLogAdmin::wrap,
 max_size);
}

Java

DsLogAdmin::BasicLog_var basic_log=
 DsLogAdmin::BasicLog::_narrow(log.in());

// get service reference
org.omg.CORBA.Object service =
 orb.resolve_initial_references("BasicLogService");

org.omg.DsLogAdmin.BasicLogFactory factory =
 org.omg.DsLogAdmin.BasicLogFactoryHelper.narrow(
 service);

// find log with id 100
int id = 100;
org.omg.DsLogAdmin.Log log = factory.find_log(id);

// if log not created, create log
if(log == null)
{
 long max_size = 4 * 1024 * 1024;
 // max_size=0 (zero) leaves the max log size unbounded.

log = factory.create_with_id(id,
 org.omg.DsLogAdmin.wrap.value, max_size);
}

org.omg.DsLogAdmin.BasicLog basic_log =
 org.omg.DsLogAdmin.BasicLogHelper.narrow(log);

 3: Logging for event unaware appl icat ions 13

Wri t ing log records

Writing log records
The write_records operation is used to write records to logs. The input parameter for
this operation is a sequence of CORBA Any. Each Any in the sequence denotes an
individual log record.

If the log is full while writing, then the LogFull user exception is thrown. The exception
also contains the number of records written from the original sequence of Anys.

If the log's state is off_duty the LogOffDuty user exception is thrown. If the log's state is
locked the LogLocked user exception is thrown. If the log is disabled the LogDisabled
exception is thrown.

The following code snippet shows steps to write some TMN events using the
write_records operation.

C++

// TMN events
TMN::Event event;
TMN::AttrValChgSeq attrvalchg_info;
TMN::AttrValSeq objcrt_info;
TMN::AttrValSeq objdel_info;
TMN::QoSAlarmInfo qosalrm_info;

// Fill TMN events with some data
misc::forge_event_header(event.header);
misc::forge_attrValChgInfo(attrvalchg_info);
misc::forge_objCrtInfo(objcrt_info);
misc::forge_objDelInfo(objdel_info);
misc::forge_qosAlrmInfo(qosalrm_info);

// Sequence of Anys to be written
DsLogAdmin::Anys anys;
anys.length(4);

// Insert the TMN events into Any Sequence
event.name = (const char*)
 "TMN::Events::attributeValueChange";
event.info <<= attrvalchg_info;
anys[0] <<= event;

event.name = (const char*)
 "TMN::Events::objectCreation";
event.info <<= objcrt_info;
anys[1] <<= event;

event.name = (const char*)
 "TMN::Events::objectDeletion";
event.info <<= objdel_info;
anys[2] <<= event;

event.name = (const char*)
 "TMN::Events::qosAlarm";
event.info <<= qosalrm_info;
anys[3] <<= event;

// Write the sequence of Anys to log
basic_log->write_records(anys);

14 VisiBroker Vis iTelcoLog Guide

Wri t ing log records

Java

// TMN events
TMN.Event event = new TMN.Event();
TMN.AttrValChgSeqHolder attrvalchg_info =
 new TMN.AttrValChgSeqHolder();
TMN.AttrValSeqHolder objcrt_info =
 new TMN.AttrValSeqHolder();
TMN.AttrValSeqHolder objdel_info =
 new TMN.AttrValSeqHolder();
TMN.QoSAlarmInfo qosalrm_info =
 new TMN.QoSAlarmInfo();

// Fill TMN events with some data
event.header = new TMN.EventHeader();
event.info = orb.create_any();
Util.forge_event_header(event.header);
Util.forge_attrValChgInfo(attrvalchg_info);
Util.forge_objCrtInfo(objcrt_info);
Util.forge_objDelInfo(objdel_info);
Util.forge_qosAlrmInfo(qosalrm_info);

// Sequence of Anys to be written
org.omg.CORBA.Any[] anys =
 new org.omg.CORBA.Any[4];
for (int i = 0; i < 4; i++)
{
 anys[i] = orb.create_any();
}

// Insert the TMN events into Any Sequence
event.name = "TMN::Events::attributeValueChange";
TMN.AttrValChgSeqHelper.insert(event.info,
 attrvalchg_info.value);
TMN.EventHelper.insert(anys[0],event);

event.name = "TMN::Events::objectCreation";
TMN.AttrValSeqHelper.insert(event.info,objcrt_info.value);
TMN.EventHelper.insert(anys[1],event);

event.name = "TMN::Events::objectDeletion";
 TMN.AttrValSeqHelper.insert(event.info,objdel_info.value);
TMN.EventHelper.insert(anys[2],event);

event.name = "TMN::Events::qosAlarm";
 TMN.QoSAlarmInfoHelper.insert(event.info,qosalrm_info);
TMN.EventHelper.insert(anys[3],event);

// Write the sequence of Anys to log
basic_log.write_records(anys);

 4: Understanding the Log interface 15

Understanding the Log interface
Log characteristics are the same for both event-based log objects and basic log
objects. These characteristics are captured in the DsLogAdmin::Log interface. All log
objects inherit from this interface and therefore have common characteristics.

In this chapter, the following topics will be explained:

– Log and Typed Log records

– Log Quality of Service

– Log size and manipulation

– Setting log attributes

– Copying logs

– Log record query, retrieval and iterators

– Deleting log records

Log and Typed Log records
When an event aware or event unaware application uses the VisiTelcoLog Service to
write records to logs using push, pull, or write_record operations, for each received
event or each CORBA Any in the Any sequence a LogRecord is created. Similarly,
TypedLogRecord is the log record created for each typed event received.

The LogRecord and TypedLogRecord structures are described in the following IDL snippet.

struct LogRecord
{
 RecordId id;
 TimeT time;
 NVList attr_list;
 any info;
};

struct TypedLogRecord
{
 RecordId id;
 TimeT time;
 NVList attr_list;

16 VisiBroker Vis iTelcoLog Guide

Log Qual i ty of Service

 RepositoryId interface_id;
 Identifier operation_name;
 ArgumentList arg_list;
};

For more detailed structure definitions, please see the OMG Telecom Log Service
Specification.

In the structures given in the IDL snippet above, RecordId id is a unique number
assigned to the record by the log and is unique in the log only.

TimeT time is the time stamp for the record, when the record was written to the
underlying back end.

NVList attr_list can store a list of user-defined attributes for each log record. The
attributes are not attached to the log records at the time of writing, but using separate
set_attribute() API. See Setting log attributes for further information on setting
attributes.

The log data itself is stored in the CORBA Any. For typed events, the log data is
encapsulated in the argument list for the typed event operation.

RepositoryId interface_id and Identifier operation_name are the repository ID of the
interface and the operation name of the operation that emitted the typed event.

Log Quality of Service
In compliance with OMG Telecom Log Service Specification, VisiTelcoLog Service
provides a lightweight Quality of Service framework with set_log_qos() and
get_log_qos() APIs. This is in addition to the extensive quality of service framework of
the Notification Service specification.

VisiTelcoLog Service supports the following Quality of Service properties:

VisiTelcoLog Service takes only the highest value of the Quality of Service specified in
the set_log_qos() operation. For example, If all the three Quality of Service properties
are specified, then only QoSReliability is taken. This is reflected in get_log_qos()
operation. The following code snippet illustrates this point.

C++ DsLogAdmin::QosList qos;
qos.length(3);
qos[0] = DsLogAdmin::QoSNone;
qos[1] = DsLogAdmin::QoSFlush;
qos[2] = DsLogAdmin::QoSReliability;

// set all the three QoS
basic_log->set_log_qos(qos);

// Only QoSReliability
qos = basic_log->get_log_qos();

Log size and manipulation
This section explains how to control the log size, determine the log full action, and
control log record life.

QoS property Description

QoSNone When this is specified no Quality of Service is promised. Calling flush()
operation will not flush log records.

QoSFlush When this is specified, calling flush() will flush/commit all the log records to
the back end.

QoSReliability When this is specified, log records will be written directly to the back end.

 4 : Understanding the Log inter face 17

Sett ing log at t r ibutes

Controlling the log size

The maximum size (in bytes) of the log can be specified at log creation time. All the log
factory log creation operations take a log size parameter (see code snippets in Using
log factories for examples). Log size is the maximum size the log can grow to. Size of 0
(zero) means that there is no predefined limit, and the log can grow indefinitely. Once
the size has been set it can be altered again by using the set_max_size() and
get_max_size() operations. The maximum size of the log is different from current size.
Current size is the number of bytes taken up by the log records.

Calling the set_max_size() with a new value less than the current size of the log throws
InvalidParam user exception. Calling set_max_size() with any value less than 1 MB will
also throw InvalidParam. A minimum of 1 MB is required for the maximum size value.
This is an implementation limit. Attempting to create a log with initial maximum size
less than 1 MB will automatically set the maximum size to 1 MB.

Log full action

If the current size of the log reaches the maximum size, then the log is said to be in a
log full condition. Under such a log full condition, VisiTelcoLog Service specifies the log
full action that needs to be taken. The default log full action of any log is specified when
the log is created.

By calling set_log_full_action(), the action to be taken in a log full condition can be
specified to wrap or halt the log. When the log full action is wrap, the oldest log records
are deleted until there is enough space that the new log record can be written.

When the log full action is halt, and if the maximum record life for the log is specified,
then all the log records that have expired are deleted from the log. Once the expired
records are deleted the write operation attempt is repeated. If the write fails again
appropriate exceptions are thrown. See Using logs for “event aware” applications and
Using logs for “event unaware” applications for the exceptions thrown and detail on
write operations.

Log record life

Log record life can be specified by the set_max_record_life() API, with units in
seconds. Specifying a value of 0 (zero) for maximum record life creates a condition
where no log records ever expire.

If the log record life is specified, a garbage collector thread will attempt to delete all
expired log records periodically. By default the garbage collector thread starts every 60
minutes. The time interval for this thread can be configured using the property
vbroker.dslog.backend.garbageCollectorInterval.

Setting log attributes
In compliance with OMG Telecom Log Service Specification, VisiTelcoLog Service
allows client applications to define an attribute list of name-value pairs that are
meaningful to the application for log records. These log record attributes (as shown in
the log record structure) are readable and writable.

Using the log record ID or grammar and constraint, attributes can be set or retrieved for
log records. Using the set_record_attribute() API, attributes can be set on log records
based on log record ID. Similarly, using the set_records_attribute() API, attributes can
be set on multiple log records which meet the constraint expression specified in the
grammar and constraint parameters.

Please note that VisiTelcoLog Service is optimized for log writing. For this reason these
operations are comparatively expensive. While setting attributes, the entire log is
copied and then replaced.

18 VisiBroker Vis iTelcoLog Guide

Copying logs

Copying logs
In compliance with OMG Telecom Log Service Specification, VisiTelcoLog Service
provides two copy operations to make a copy of an existing log object. The copy()
operation creates an empty log with similar characteristics as the original log. The log
ID of the new log object copy is returned in the out parameter.

The copy_with_id() operation takes a log ID and creates an empty log with the input log
ID with characteristics similar to the original log. If a log with the input log ID already
exists, the LogIdAlreadyExists user exception is thrown. Both of the operations throw
NO_RESOURCES system exception if the log factory cannot create a new log because of
resource constraints.

Log record query, retrieval and iterators
In compliance with OMG Telecom Log Service Specification, VisiTelcoLog Service
provides two methods to query for log records:

– The retrieve method retrieves records based on time.

– The query method retrieves records based on constraint.

For typed log records the corresponding methods are:

– The typed_retrieve method retrieves records based on time.

– The typed_query method retrieves records based on constraint.

The retrieve and query methods return an iterator as an out parameter to handle large
record retrievals. Please note that the query and retrieve operations are sequential in
nature, and they may be time consuming if the number of log records is very large.

Retrieving records based on time

The Log interface provides the retrieve() and typed_retrieve() methods to perform
queries based on time. You can also specify how many records in sequence forwards
or backwards to retrieve from the specified time. An iterator may be provided to handle
large record retrievals. The following code snippet is an example of how to retrieve
records based on time.

C++ DsLogAdmin::TimeT from_time;
DsLogAdmin::RecordList_var time_recs;
DsLogAdmin::Iterator_var time_itr;
...
// Starting from 'from_time' retrieve 10 records backwards (i.e -10).
// Store any remaining records in an Iterator 'time_itr'
// if the number of records to retrieve is greater than 1000

time_recs =
 log->retrieve(from_time, -10, time_itr.out());
...

Java org.omg.DsLogAdmin.TimeT from_time;
org.omg.DsLogAdmin.RecordList time_recs = null;
org.omg.DsLogAdmin.Iterator time_itr = null;
...
// Starting from 'from_time' retrieve 10 records backwards (i.e -10).
// Store any remaining records in an Iterator 'time_itr'
// if the number of records to retrieve is greater than 1000
time_recs =
 log.retrieve(from_time, -10, time_itr);
...

 4 : Understanding the Log inter face 19

Log record query, retr ieval and i terators

Querying for records based on constraint

The Log interface provides the query() and typed_query() methods to perform queries
based on a given constraint. The constraint is based on the VisiBroker VisiNotify Filter
Constraint. See Writing Filter Constraint Expressions in the VisiBroker VisiNotify Guide
for information about writing constraints using the Extended Trader Constraint
Language (Extended TCL). A query call takes in a grammar to use and the constraint
expression, and an iterator may be provided to deal with a large number of records.

When you write constraints to query LogRecord or TypedLogRecord structures see Log
and Typed Log records for their definition.

The following example illustrates how to query using constraints. Note that
VisiTelcoLog Service only recognizes the default EXTENDED_TCL as the grammar for
constraints.

C++ DsLogAdmin::RecordList_var recs_found;
DsLogAdmin::Iterator_var itr;
...
// Query using the "EXTENDED_TCL" grammar and
// search for log records with an id below 100 "$.id

Java omg.org.DsLogAdmin.RecordList recs_found = null;
omg.org.DsLogAdmin.Iterator itr = null;
...
// Query using the "EXTENDED_TCL" grammar and
// search for log records with an id below 100 "$.id

Iterators

Iterators are returned by a retrieve() or query() method when a large number of log
records is returned. The number of records that a retrieve() or query() method should
return before using an iterator is controlled by the vbroker.dslog.getRecMaxList
property. If the number of records matched from a query() or a retrieve() operation is
greater than the value specified by vbroker.dslog.getRecMaxList the excess matched
log records will be added to an iterator. Note that when typed_retrieve() or
typed_query() is called a TypedRecordIterator is returned.

A log iterator provides two methods: get() and destroy(). The get() method allows the
caller to retrieve the records stored by the iterator. When you call the get() method
you need to indicate the position and how many records to obtain from the specified
position. Note that the position in the iterator moves forward only, therefore you cannot
request values before the position of the last request. Requesting for invalid values will
throw an InvalidParam exception.

The following code snippet is an example of how to use an iterator's get() method.

C++ DsLogAdmin::RecordList_var recs_found;
DsLogAdmin::Iterator_var itr;
...
// Query using the "EXTENDED_TCL" grammar and
// search for log records with an id below 100 "$.id

Java omg.org.DsLogAdmin.RecordList recs_found = null;
omg.org.DsLogAdmin.Iterator itr = null;
...
// Query using the "EXTENDED_TCL" grammar and
// search for log records with an id below 100 "$.id

When an iterator has been exhausted, and we call get() and use the position of the last
record in the iterator, the get() method will return an empty log record list to the caller.
This indicates that the iterator has been exhausted. The application must ensure that
the destroy() method is called in order to destroy the object from the VisiTelcoLog
Service.

20 VisiBroker Vis iTelcoLog Guide

Delet ing log records

Deleting log records
The Log interface allows deletion of log records and typed log records using either
grammar and constraint expression or by ID. Two APIs, delete_records() and
delete_records_by_id(), are provided for this purpose and are described in the follow-
ing table.

VisiTelcoLog Service optimizes event log records and typed event log record deletion
by not deleting them immediately, but marking them as deleted. Over time, the log can
become fragmented because of this optimization. For this reason, when the
fragmentation exceeds a fragmentation limit, the default for which is 75 percent (which
can be configured by the user using property See the section on Properties), the delete
operation automatically kicks in the defragmentation thread. Defragmentation logic is
essentially a copying operation, where all the log records are reflowed. Please note
that the defragmentation operation is expensive.

The following code snippet illustrates deleting a log record of ID 200 using grammar
and constraint expressions. The same thing can also be achieved using
delete_records_by_id().

C++ // constraint for log rec with id = 200
const char* grammar = "EXTENDED_TCL";
const char* constraint = "$.id == 200";

// delete the log record matching the constraint
basic_log->delete_records(grammar, constraint);

Java // delete the log record where the log record id = 200
basic_log.delete_records("EXTENDED_TCL", "$.id == 200");

Method Description

delete_records() Deletes log records based on grammar and constraint expression.

delete_records_by_id() Deletes log records based on log record ID numbers.

 4 : Understanding the Log inter face 21

Delet ing log records

22 VisiBroker Vis iTelcoLog Guide

 5: Advanced features 23

Advanced features
This section covers the following advanced topics:

– Log duration

– Log scheduling

– Log generated events

Log duration
Setting a log duration interval allows users to create a coarse-grained time interval
(window) during which an unlocked and enabled log object is functional. When the log
duration is set the log object will only allow writing log records or events to the log
within the specified time interval.

The log duration time interval is set and retrieved with the following methods:

set_interval(in DsLogAdmin::TimeInterval interval);

and

DsLogAdmin::TimeInterval get_interval();

The input parameter and return value are an IDL structure defined as:

module DsLogAdmin {
 typedef TimeBase::TimeT TimeT;
 struct TimeInterval {
 TimeT start;
 TimeT stop;
 };
};

The start and stop fields of a time interval are of type CORBA::ULongLong. Their values
are numbers of 10–7 seconds (or 100 nanoseconds) counted from 00:00:00, Oct 15,
1582 using Greenwich Mean Time (GMT).

Although the start and stop time unit is specified by OMG as 10–7 second, the actual
time resolution supported by VisiTelcoLog is in seconds. Start and stop values
specified in set_interval() will be rounded to the nearest value of full seconds by the
VisiTelcoLog Service.

If the start and stop values are both set to 0 (zero), or rounded to zero seconds, the log
will always be in a functional state.

24 VisiBroker Vis iTelcoLog Guide

Log schedul ing

To retrieve the current log duration setting, users can call the get_interval() operation
on the target log.

Log scheduling
Log scheduling allows users to set a series of fine-grained weekly time intervals
(weekly masks) on a given log object. When scheduling is set up the log object will only
allow writing log records or events to the log within these time intervals, if it is within a
log duration (see Log duration above), and the log is in an unlocked and enabled state.

Log scheduling time intervals are set and retrieved via the following methods:

set_week_mask(in DsLogAdmin::WeekMask weekmask);

and

DsLogAdmin::WeekMask get_week_mask();

The input parameter and return value of above methods are an IDL sequence of an IDL
structure WeekMaskItem. They are defined as:

module DsLogAdmin {
 struct Time24 {
 unsigned short hour; // 0 - 23
 unsigned short minute; // 0 - 59
 };

 struct Time24Interval {
 Time24 start;
 Time24 stop;
 };

 typedef sequence<Time24Interval> IntervalsOfDay;
 typedef unsigned short DaysOfWeek;

 struct WeekMaskItem {
 DaysOfWeek days;
 IntervalsOfDay intervals;
 };

 typedef sequence<WeekMaskItem> WeekMask;
};

Greenwich Mean Time zone (GMT) is used by default. The user can choose to use the
local time zone of the log server by starting the VisiTelcoLog Service with the following
property setting:

vbroker.dslog.scheduleByServerLocalTime=true

For diagnostic purposes the log schedule setting changes and active behavior can be
observed on the Console stdout by starting the VisiTelcoLog Service with the following
property setting:

vbroker.dslog.timerDebug=true

VisiTelcoLog Service is shipped with an example of log schedule in the following
directory:

<install_dir>/examples/vbroker/telcolog/primitive_cpp/scheduler.C

The following C++ code snippet illustrates how to use set_week_mask():

// 7:30 am to 12:00 am
DsLogAdmin::Time24Interval morning = {{7,30},{12,0}};

// 13:30 (1:30 pm) to 17:30 (5:30 pm)
DsLogAdmin::Time24Interval afternoon = {{13,30},{17,30}};

 5: Advanced features 25

Log schedul ing

// 21:00 (9:00 pm) to 23:30 (11:30 pm)
DsLogAdmin::Time24Interval night = {{21,0},{23,30}};

// 19:30 (7:30 pm) to 22:30 (11:30 pm)
DsLogAdmin::Time24Interval evening = {{19,30},{22,30}};

// 9:00 am to 16:30 (4:30 pm)
DsLogAdmin::Time24Interval wkend_day = {{9,0},{16,30}};

DsLogAdmin::WeekMask new_weekmask;
new_weekmask.length(2);

// weekday schedule in the 0th weekmask item
new_weekmask[0].days = (DsLogAdmin::Monday
 | DsLogAdmin::Tuesday
 | DsLogAdmin::Wednesday
 | DsLogAdmin::Thursday
 | DsLogAdmin::Friday);

new_weekmask[0].intervals.length(3); // 3 intervals
new_weekmask[0].intervals[0] = morning;
new_weekmask[0].intervals[1] = afternoon;
new_weekmask[0].intervals[2] = night;

// weekend schedule in the 1st weekmask item
new_weekmask[1].days = (DsLogAdmin::Sunday
 | DsLogAdmin::Saturday);

new_weekmask[1].intervals.length(2); // 2 intervals
new_weekmask[1].intervals[0] = wkend_day;
new_weekmask[1].intervals[1] = evening;

// set new week mask on the log
log->set_week_mask(new_weekmask);

The following C++ code snippet illustrates how to use get_week_mask() and process the
result:

// retrieve current week mask from the log
DsLogAdmin::WeekMask_var holder;
holder = log->get_week_mask();

const char* day_names[7] = {
 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};

const DsLogAdmin::WeekMask& mask = holder.in();
CORBA::Short day, daybit;
CORBA::ULong i, j;

// print retrieved schedule by days.
for(day=0,daybit=1;day<7;daybit = daybit*2, day++) {
 cout << " " << day_names[day] << ": ";
 for(i=0;i<mask.length();i++) {
 const DsLogAdmin::WeekMaskItem& item = mask[i];

 if((daybit & item.days) == 0) {
 continue;

26 VisiBroker Vis iTelcoLog Guide

Log generated events

 }

 for(j=0;j<item.intervals.length();j++) {
 const DsLogAdmin::Time24Interval& interval =
 item.intervals[j];
 char buf[32];

 sprintf(buf, "[%02u:%02u-%02u:%02u] ",
 interval.start.hour,
 interval.start.minute,
 interval.stop.hour,
 interval.stop.minute);

 cout << buf;
 }
 }

 cout << endl;
 }
}

On processing set_week_mask() requests, the log object server validates the input
weekly mask parameter. Exceptions that are raised on set_week_mask() and their corre-

sponding weekly mask setting errors are explained in the following table.

On failure of set_week_mask() due to errors, the log's existing weekly mask will remain
and a DsLogNotification::ProcessingErrorAlarm log event (see Log generated events)
will be sent. On success of set_week_mask() the existing weekly mask will be completely
replaced by the new weekly mask. Therefore, to completely erase an existing weekly
mask, the application can invoke set_week_mask() with an empty weekly mask that is a
weekly mask of length zero. A log with an empty weekly mask will accept logging
during the whole week.

Log generated events
According to the OMG Telecom Log Service specification, event-aware Log factories
and logs can generate events on log object creation and deletion, state and attribute
change, threshold crossover, and processing error. A value-added extension of the
VisiTelcoLog Service allows a BasicLog object to generate these events. These log
generated events are called log events. Therefore, in VisiTelcoLog Service, a log
factory (Basic, Event, TypedEvent, Notify, or TypedNotify factory) is a
CosNotifyChannelAdmin::ConsumerAdmin.

Exception Description

DsLogAdmin::InvalidTime Hour or minute field in one of the interval's start or stop
fields is out of range. The valid range for hour is 0 to 23,
and the valid range for minute is 0 to 59.

DsLogAdmin::InvalidTimeInterval Case 1: Start time is later than stop time. Therefore, an
interval starting at midnight and stopping after midnight is
not supported. The effect of an interval that spans days
should be done using two intervals: one that stops before
just before midnight (23:59) and another that starts just
after midnight on the next day (00:00).

Case 2: Time intervals overlap. Start or stop time of one
scheduled interval is within the bounds of another
scheduled interval in the same weekly mask parameter.

 5: Advanced features 27

Log generated events

Figure 5.1 Log factory inheritance interface

The purpose of LogFactory “is a” ConsumerAdmin is to expose downstream or consumer-
side functionality of an event channel inside each log factory. This event channel is
called a log event channel. Log events generated from a log factory and from its logs
are all sent to the log event channel of this factory. To receive log events an application
can create consumer-side proxies on the log factory through its operations inherited
from ConsumerAdmin and connect to these proxies.

The following C++ code (also located in <install_dir>/examples/vbroker/telcolog/
primitive_cpp/logEventReceiver.C) illustrates how to connect an event consumer to log
event channel of a NotifyLogFactory:

int main(int argc, char** argv)
{
 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

 // get service reference (the Notify Log Factory)
 CORBA::Object_var service
 = orb->resolve_initial_references(
 "NotifyLogService");

 // directly narrow the factory to consumer admin.
 CosNotifyChannelAdmin::ConsumerAdmin_var admin
 = CosNotifyChannelAdmin::ConsumerAdmin
 ::_narrow(service);

 CosNotifyChannelAdmin::ProxyID proxy_id;

 // create a proxy
 CosNotifyChannelAdmin::ProxySupplier_var proxy
 = admin->obtain_notification_push_supplier(
 CosNotifyChannelAdmin::ANY_EVENT, proxy_id);

 CosNotifyChannelAdmin::ProxyPushSupplier_var supplier;
 supplier = CosNotifyChannelAdmin::ProxyPushSupplier
 ::_narrow(proxy);

// allocate the consumer implementation
 PushConsumerImpl* servant = new PushConsumerImpl;

 // activate it on root poa
 CORBA::Object_var obj
 = orb->resolve_initial_references("RootPOA");
 PortableServer::POA_var poa
 = PortableServer::POA::_narrow(obj);
 poa->activate_object(servant);

 // activate the root poa
 PortableServer::POAManager_var poa_manager

28 VisiBroker Vis iTelcoLog Guide

Log generated events

 = poa->the_POAManager();
 poa_manager->activate();

 // get consumer object reference
 CORBA::Object_var ref
 = poa->servant_to_reference(servant);
 CosNotifyComm::PushConsumer_var consumer =
 CosNotifyComm::PushConsumer::_narrow(ref);

 // connect the consumer to the supplier proxy
 supplier->connect_any_push_consumer(consumer);

 cout << "log event receiver is ready" << endl;

 // work loop
 orb->run();
 }
 catch(CORBA::Exception& e) {
 cout << "caught exception:" << endl << e << endl;
 }

 return 0;
}

The following Java code illustrates how to connect an event consumer to a log event
channel of a NotifyLogFactory:

import org.omg.CosNotifyChannelAdmin.*;
import org.omg.PortableServer.*;
import org.omg.CosNotifyComm.*;

public class logEventReceiver {

 public static void main(String[] args) {
 try {
 org.omg.CORBA.ORB orb
 = org.omg.CORBA.ORB.init(args, null);

 // get service reference (the Notify Log Factory)
 org.omg.CORBA.Object service
 = orb.resolve_initial_references(
 "NotifyLogService");

 // directly narrow the factory to a consumer admin.
 ConsumerAdmin admin
 = ConsumerAdminHelper.narrow(service);

 org.omg.CORBA.IntHolder proxy_id
 = new org.omg.CORBA.IntHolder();

// create a proxy
 ProxySupplier proxy
 = admin.obtain_notification_push_supplier(
 ClientType.ANY_EVENT, proxy_id);

 ProxyPushSupplier supplier
 = ProxyPushSupplierHelper.narrow(proxy);

 // allocate the consumer implementation
 PushConsumerImpl servant = new PushConsumerImpl();

 // activate it on root poa

 5: Advanced features 29

Log generated events

 org.omg.CORBA.Object obj
 = orb.resolve_initial_references("RootPOA");
 POA poa = POAHelper.narrow(obj);
 poa.activate_object(servant);

 // activate the root poa
 POAManager poa_manager = poa.the_POAManager();
 poa_manager.activate();

 // get consumer object reference
 org.omg.CORBA.Object ref
 = poa.servant_to_reference(servant);
 PushConsumer consumer
 = PushConsumerHelper.narrow(ref);

 // connect the consumer to the supplier proxy
 supplier.connect_any_push_consumer(consumer);

 System.out.println("untyped push consumer is ready");

 // work loop
 orb.run();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}

Possible log events and their meanings have been specified by OMG as described in
the following sections.

Object Creation Event

This event is emitted from a log factory itself on a successful log object creation. The
new log ID and the log creation time is encapsulated in the CORBA Any event body as
an IDL structure defined as:

module DsNotification {
struct ObjectCreation
 {
 LogId id;
 TimeT time;
 };
};

Object Deletion Event

This event is emitted from a log factory itself on a successful log object deletion. The
deleted log ID and the log deletion time is encapsulated in the CORBA Any event body
as an IDL structure defined as:

module DsNotification {
struct ObjectDeletion
 {
 LogId id;
 TimeT time;
 };
};

30 VisiBroker Vis iTelcoLog Guide

Log generated events

Attribute Value Change (AVC) Event

This event is emitted from a log on a successful log attribute value change. Information
about the attribute value change is encapsulated in the CORBA Any event body as an
IDL structure defined as:

module DsNotification {
struct AttributeValueChange
 {
 Log logref;
 LogId id;
 TimeT time;
 AttributeType type;
 Any old_value;
 Any new_value;
 };
};

In this structure

– logref is the reference of the log object itself.

– id is the log ID of the log object.

– time is the time the attribute value change was made.

– type indicates the type of the changed attribute. See discussion below.

– old_value encapsulates the original value of the attribute before the change.

– new_value encapsulates the new value of the attribute after the change.

OMG specifies following attribute types of log object:

Attribute type Description

capacityAlarmThreshold
(type = 0)

This type of AVC event is triggered by a successful
set_capacity_thresholds() invocation on a log object and
changes its previous capacity alarm threshold setting.

logFullAction
(type = 1)

This type of AVC event is triggered by a successful
set_full_action() invocation on a log object and changes its
previous log full action setting.

maxLogSize
(type = 2)

This type of AVC event is triggered by a successful
set_max_size() invocation on a log object and changes its
previous log max size setting.

startTime
(type = 3)

This type of AVC event is triggered by a successful
set_interval() invocation on a log object and changes its log
interval start time setting.

stopTime
(type = 4)

This type of AVC event is triggered by a successful
set_interval() invocation on a log object and changes its log
interval stop time setting.

weekMask
(type = 5)

This type of AVC event is triggered by a successful
set_week_mask() invocation on a log object.

filter
(type = 6)

This type of AVC event is triggered by a successful set_filter()
invocation on a log object and changes its filter.

maxRecordLife
(type = 7)

This type of AVC event is triggered by a successful
set_max_record_life() invocation on a log object and changes its
max record life setting.

qualityOfService
(type = 8)

This type of AVC event is triggered by a successful set_log_qos()
invocation on a log object and changes its log QoS setting.

 5: Advanced features 31

Log generated events

State Change Event

This event is emitted from a log on OMG specified log state change. Information about
the state change is encapsulated in the CORBA Any event body as an IDL structure
defined as:

module DsNotification {
struct StateChange
 {
 Log logref;
 LogId id;
 TimeT time;
 StateType type;
 Any new_value;
 };
};

In this structure

– logref is the reference of the log object itself.

– id is the log id of the log object.

– time is the time of the state change.

– type indicates the type of the changed state. See discussion below.

– new_value encapsulates the new state value after the change.

OMG specifies following state change event types for a log object:

Threshold Alarm Event

This event is emitted from a log object when a log write operation causes the log to
grow beyond its size threshold. Information about the attribute value change is
encapsulated in the CORBA Any event body as an IDL structure defined as:

module DsNotification {
struct ThresholdAlarm
 {
 Log logref;
 LogId id;
 TimeT time;
 Threshold crossed_value;
 Threshold observed_value;
 PerceivedSeverityType perceived_severity;
 };
};

In this structure

– logref is the reference of the log object itself.

– id is the log ID of the log object.

State change event type Description

administrativeState
(type = 0)

This type of state change event is triggered by a successful
set_administrative_state() invocation on a log object and
changes its administrative state, allowing or disallowing log record
write operations (insert, update, delete, etc.).

operationalState
(type = 1)

This type of state change event is not used by the VisiTelcoLog
Service implementation in this release.

forwardingState
(type = 2)

This type of state change event is triggered by a successful
set_forwarding_state() invocation on a log object and changes
its forwarding state, which enables or disables event forwarding.

32 VisiBroker Vis iTelcoLog Guide

Log generated events

– time is the time of the occurrence.

– crossed_value the threshold value just being crossed.

– observed_value the current log space usage percentage.

– perceived_severity critical(0), minor(1) and cleared(2).

Processing Error Alarm Event

This event is emitted from a log factory or a log object when a problem occurs within
the factory or log object. Information about the attribute value change is encapsulated
in the CORBA Any event body as an IDL structure defined as:

module DsNotification {
struct ProcessingErrorAlarm
 {
 long error_num;
 string error_string;
 };
};

In this structure

– error_num is the highest 20 bits of this field which are reserved for vender specific
error ids.

– error_string is the text string that explains the error.

 6: Running the Vis iTelcoLog Service 33

Running the VisiTelcoLog Service
The VisiTelcoLog Service is implemented as a C++ service. VisiBroker for C++ is
prerequisite for running VisiTelcoLog Service. To run the service make sure that
VisiBroker Smart Agent (osagent executable) is running in the network. To start the
VisiTelcoLog Service in the background use the following command:

UNIX

prompt> visitelcolog &

Windows

prompt> start visitelcolog.exe

By default the service starts at port 14200. The port can be changed using the property
vbroker.dslog.listener.port. Once started, the service prints the following message to
the console:

Telco Log service is ready

VisiTelcoLog Service creates a directory called visidslog.dir to store all of its
persistent data. By default it creates this directory in the current directory. The location
for the data store directory can be changed using the vbroker.dslog.dir property. This
directory also contains the log back end.

Also note that for the sake of convenience the compiled stub and skeleton code of the
OMG Telecom Log Service IDLs are provided as static library. Please see the
examples on how to use it. The generated skeletons are for POA.

Getting entry references
VisiTelcoLog starts up by default at port 14200. This port can be changed using
vbroker.dslog.listener.port property.

Applications trying to bind to BasicLogService, EventLogService, NotifyLogService,
TypedEventLogService or TypedNotifyLogService can use corbaloc to resolve initial
reference to the service.

Applications can use the following ORB property:

-ORBInitRef corbaloc::<host>:<port>/BasicLogService
-ORBInitRef corbaloc::<host>:<port>/EventLogService
-ORBInitRef corbaloc::<host>:<port>/NotifyLogService

34 VisiBroker Vis iTelcoLog Guide

Propert ies

-ORBInitRef corbaloc::<host>:<port>/TypedEventLogService
-ORBInitRef corbaloc::<host>:<port>/TypedNotifyLogService

Properties

Property Default Description

vbroker.dslog.listener.port 14200 Specifies the listener port for the
service.

Valid values include any legal port
value in the port range.

vbroker.dslog.console true When true, prints to the console when
the service starts up. For daemon
processes, this should be set to false.

vbroker.dslog.dir ./visidslog.dir The service stores all of its persistent
data in the specified directory. If the
directory is not valid or does not have
the right permissions, the service will
fail to start up.

Valid values include any valid directory
location.

vbroker.dslog.getRecListMax 1000 The number of LogRecords that need to
be matched in the query for an iterator
to be returned.

vbroker.dslog.scheduleByServerLocalTime false When set to true, calls tzset() for
scheduler time.

vbroker.dslog.waitForLogAvailables 20 Waiting period (in seconds) for the pull
supplier for space to be available to log
a pulled event. Valid values include any
non-zero wait duration in seconds.

vbroker.dslog.basicLogFactory.name VisiBasicLogFactory The name with which the BasicLog
factory is activated. Valid values
include any object name.

vbroker.dslog.basicLogFactory.iorFile null The name of the file where the
BasicLog factory object's IOR will be
written. Valid values include any valid
file name.

vbroker.dslog.eventLogFactory.name VisiEventLogFactory The name with which the event log
factory is activated. Valid values
include any object name.

vbroker.dslog.eventLogFactory.iorFile null The name of the file where the event
log factory object's IOR will be written.
Valid values include any valid file name.

vbroker.dslog.notifyLogFactory.name VisiNotifyLogFactory The name with which the notify log
factory is activated. Valid values
include any object name.

vbroker.dslog.notifyLogFactory.iorFile null The name of the file where the notify
log factory object's IOR will be written.
Valid values include any valid file name.

vbroker.dslog.backend.garbageCollectorInterval 60 The time interval (in minutes) for the log
record garbage collector thread to run.
When the thread runs, it garbage
collects all expired log records. The
thread runs only when the record life for
the log is specified. Otherwise, it does
not run. Valid values fall in the range of
1 to 180 minutes.

 6 : Running the Vis iTelcoLog Serv ice 35

Propert ies

vbroker.dslog.backend.file.fragmentationLimit 75% Percentage of fragmentation that
triggers automatic defragmentation.
Automatic defragmentation happens
only when deleting. Valid values fall in
the range of 10% to 80%.

vbroker.dslog.backend.file.dir null The directory location for back end
database and support files. The
directory path should be valid and
should have the necessary
permissions. Please note that the
performance of the service depends on
this directory.

vbroker.log.enable false To see the debug log statements from
this service, set this property to true.
For the various source names options
for debug log filtering, see the “Debug
Logging properties” section of the
VisiBroker for C++ Developer's Guide.

Property Default Description

36 VisiBroker Vis iTelcoLog Guide

Index 37

L
log interface, VisiTelcoLog 15
log, VisiTelcoLog 23

Q
QoS, VisiTelcoLog 16

V
VisiTelcoLog

advanced features 23
constraint-based query 19
copying logs 18
deleting records 20
duration 23
entry references 33
event aware applications 3
event filtering 7
event forwarding 7
event logging 5
event unaware applications 11
events 26, 29, 30, 31, 32
iterators 18, 19
log attributes 17
log factory 4, 11
log full action 16, 17
log interface 15
log record life 16, 17
log records 15
log size 16, 17
overview 1
properties 34
QoS 16
query 18
retrieval 18
running service 33
scheduling 24
time-based retrieval 18
typed log records 15
writing records 13

Index

38 VisiBroker Vis iTelcoLog Guide

	Contents
	VisiTelcoLog Service overview
	Logging for event aware applications
	Using log factories
	Logging events
	Forwarding logged events
	Filtering events

	Logging for event unaware applications
	Using the log factory
	Writing log records

	Understanding the Log interface
	Log and Typed Log records
	Log Quality of Service
	Log size and manipulation
	Controlling the log size
	Log full action
	Log record life

	Setting log attributes
	Copying logs
	Log record query, retrieval and iterators
	Retrieving records based on time
	Querying for records based on constraint
	Iterators

	Deleting log records

	Advanced features
	Log duration
	Log scheduling
	Log generated events
	Object Creation Event
	Object Deletion Event
	Attribute Value Change (AVC) Event
	State Change Event
	Threshold Alarm Event
	Processing Error Alarm Event

	Running the VisiTelcoLog Service
	Getting entry references
	Properties

