
Borland
VisiBroker™ 8.0

VisiTime Guide

Borland Software Corporation
20450 Stevens Creek Blvd., Suite 800
Cupertino, CA 95014 USA
www.borland.com

Refer to the file deploy.html for a complete list of files that you can distribute in accordance with the
License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject
matter in this document. Please refer to the product CD or the About dialog box for the list of applicable
patents. The furnishing of this document does not give you any license to these patents.

Copyright 1992–2006 Borland Software Corporation. All rights reserved. All Borland brand and product
names are trademarks or registered trademarks of Borland Software Corporation in the United States
and other countries. All other marks are the property of their respective owners.

Microsoft, the .NET logo, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

For third-party conditions and disclaimers, see the Release Notes on your product CD.

VB 80 VisiTime Guide
April 2007

i

Contents

Chapter 1
Using the VisiTime Service 1
Time Service Overview 1

How the Time Service Defines Time 1
Time Service Components 2

Universal Time Object 2
Time Interval Object 2

Time Service Services. 2
Timer Event Service 2
Secure Time Service 3

VisiTime Service 3
Starting the VisiTime Service 3
Starting Secure VisiTime Service 4
Bootstrapping the VisiTime Service 4

Bootstrapping Using ORBInitRef 5
Bootstrapping Using ORBDefaultInitRef 5
Bootstrapping Using the SmartAgent. 5

Running the Time Service In-process 6
NTP Server Support for Time Source 6

Specifying NTP Server Addresses and Failover 6
Configuring the VisiTime Service 7
Creating Time Service Objects with the TimeService

interface . 8
Creating UTOs using the TimeService interface 9
Creating TIOs using the TimeService interface 9

Using the Timer Event Service 10

Creating TimerEventHandlers 10
Setting Alarms for TimerEventHandlers 11
Cancelling a Timer and Unregistering a

TimerEventHandler 12
Friendly Time Object 12

Index 15

ii

 1 : Using the Vis iTime Service 1

Using the VisiTime Service
This section describes the VisiTime Service, a complete implementation of the OMG
Time Service Specification, Version 1.1. The OMG Time Service specification defines
two types of services which are implemented in VisiBroker:

– Basic Time Service: provides an interface to create objects representing time (a
time stamp, for example) and intervals of time.

– Timer Event Service: provides an interface to manage Timer Event Handler
objects. These objects are used to generate time based events based on user
defined time settings.

Time Service Overview
According to the OMG Time Service Specification, the OMG Time Service was created
to allow a user to obtain the current time as well as an error estimate associated with it.
Additionally, the Time Service was to provide a means of tracking events by
ascertaining the order in which events occur, generate time-based event triggers or
“alarms”, and compute the interval between two events.

How the Time Service Defines Time

The OMG Time Service Specification defines time using the Universal Time
Coordinated (UTC) representation. The UTC representation uses hundreds of
nanoseconds (10–7 seconds) as its basic unit of time, with its base time set at 15
October 1582 00:00:00 GMT. A range of approximately 30,000 years A.D. is supported
by the UTC representation.

Similarly, the UTC representation defines a intervals of time or “relative time”. Like
regular time, the basic unit of a relative time is 10–7 seconds. Ranges can span
approximately plus-or-minus 30,000 years.

The Time Service relies on the presence of an underlying time source that provides the
time and performs any necessary time synchronization. If the underlying time source
meets the security criteria set out in Appendix A of the OMG Time Service
Specification, then the Time Service is able to provide secure time as well.

2 VisiBroker Vis iTime Guide

Time Service Overview

Time Service Components

The Time Service defines two types of CORBA objects that can be used by
applications. These objects are the Universal Time Object (UTO), and the Time Interval
Object (TIO). Utilizing these two objects, a CORBA Time Service must provide for the
ability to:

– Getting the current time with associated inaccuracy in a UTO object called
universal_time.

– Getting the current time and associated inaccuracy in a UTO object if the criteria for
secure time source can be met via the secure_universal_time object.

– Creating a UTO object to represent arbitrary time called a new_universal_time object.

– Creating a UTO object from UtcT structure, an object called uto_from_utc.

– Creating a TIO, known as a new_interval.

Universal Time Object
The UTO interface corresponds to an object that contains UTC time and provides
means to manipulate time in that object. UTO is an immutable object; it does not allow
modifying the value of time contained in it. A UTO also provides for operations to be
performed on basic time, such as comparing UTOs, comparing a UTO to a TIO
interval, and getting the constituent parts of the UTO object.

Time Interval Object
Like a UTO, a TIO is an immutable object that represents a time interval and provides
operations on time intervals. Methods are provided to get the interval value stored in
the TIO object, determine overlapping between a TIO and one or more UTOs, and
convert a TIO into a UTO.

Time Service Services

In addition to providing time objects that can be manipulated and used by applications,
the Time Service also specifies a Timer Event Service and a Secure Time Service. The
Timer Event Service provides a means for timer alarms to trigger events, which can be
responded to using callback objects. The Secure Time Service allows only specified
users of the system to set the time and/or specify the source of time.

Timer Event Service
The Timer Event Service provides a mechanism by which you can receive notifications
when an event gets triggered. In other words, Timer Event Service provides a kind of
alarm service. Your programs can register a CosEventComm::PushConsumer callback
object with the Timer Event Service and obtain a special event handler object that
provides operations to set and cancel alarms. When an alarm goes off, the Timer Event
Service sends a notification to the callback object.

A Timer Event Handler object holds information about an event that is to be triggered at
a specific time and the action to be taken when the event is triggered. The action taken
is basically a call on the push method on the CosEventComm::PushConsumer object
registered as the event handler. This method takes a CORBA::Any which contains the
data to be pushed (the data is also specified when the event handler is registered with
the event service). The following operations are provided by the Timer Event Handler
interface:

– Querying whether an event has been triggered with the time_set method.

– Querying the status of the Timer Event Handler with the status method.

– Setting the time for an event to trigger an alarm with the set_timer method.

– Cancelling a trigger that has yet to go off with the cancel_timer method.

 1 : Using the Vis iTime Service 3

VisiTime Service

– Setting the data to be pushed when the event is triggered with the set_data method.

Alarms can be set using absolute or relative time definitions. They can also be set to
occur periodically. The Timer Event Service interface provides operations for the
complete lifecycle for the Timer Event Handler. The following operations are provided
by the Timer Event Service interface:

– Registering an event handler and specify the callback object and the event data with
the register method.

– Un-registering a previously registered event handler with the unregister method.

– Getting the time at which an event was triggered with the event_time method.

Secure Time Service
Only administrators authorized by the system security policy may set the time and
specify the source of time. Once this is guaranteed the administrator can configure the
Time Service to return secured time. With this in place it can be safely assumed that
the underlying time source is secured and calling a secure_universal_time operation on
the Time Service interface will return a secured time. If the underlying time source is
not secured, a CosTime::TimeUnavailable exception will be raised upon invocation of the
secure_universal_time operation on the Time Service interface.

VisiTime Service
The VisiTime Service is a factory for creating Universal Time Objects and Time Interval
Objects.

Starting the VisiTime Service

The VisiTime Service can be started by using the timeserv launcher located in the bin
directory of your VisiBroker installation. Running this command starts both the VisiTime
Service and Timer Event Service. The command syntax is:

UNIX

timeserv [driver_options] [timeserv_options] &

Windows

timeserv [driver_options] [timeserv_options]

You can also start the Time Service using the VBJ launcher:

vbj [driver_options] com.borland.vbroker.CosTime.TimeServer

The following driver options are available:

The general driver options are also available. See VisiBroker for Java Developer's
Guide or VisiBroker for C++ Developer's Guide for more information.

Option Description

–install <service-name> (Windows only) Install as an NT service using the name provided.
This option cannot be used when starting the Time Service using
vbj.

–remove <service-name> (Windows only) Uninstalls this NT service. This option cannot be
used when starting the VisiTime Service using vbj.

4 VisiBroker Vis iTime Guide

VisiTime Service

The following VisiTime Service options are available:

Starting Secure VisiTime Service

When the underlying time source is secure and follows the guidelines given in
Appendix A of the OMG Time Service specification, then the VisiTime Service can be
started as a secure Time Service. Calls to TimeService::secure_universal_time would
succeed in this case. Note that here security only refers to the security of the
underlying time source. To start a secured VisiTime Service:

UNIX

timeserv -J-Dvbroker.time.source.secured=true &

Windows

start timeserv -J-Dvbroker.time.source.secured=true

Bootstrapping the VisiTime Service

There are three ways to start a client application to get the initial reference to the
VisiTime Service. These are:

– Using the ORBInitRef command-line option.

– Using the ORBDefaultInitRef command-line option.

– Using the Smart Agent.

When using either of the command-line options, client applications can make use of
the ORB's resolve_initial_references method to obtain the Time Service or the Timer
Event Service. For example:

C++ ...
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

// Get reference to Time Service
CORBA::Object_var obj_t = orb->resolve_initial_references("CosTimeService");
CosTime::TimeService_var time_svc = CosTime::TimeService::_narrow (obj_t.in());

// Get reference to Timer Event Service
CORBA::Object_var obj_te = orb-
>resolve_initial_references("CosTimerEventService");
CosTimerEvent::TimerEventService_var timer_svc =
 CosTimerEvent::TimerEventService::_narrow
(obj_te.in());
...

Option Description

–?, –h, –help, –usage Print usage information.

–props <properties-file> Use the supplied properties file as the configuration file when
starting up the VisiTime Service. Note that a property defined in this
file will get overridden if the same property is also passed on the
command line.

 1 : Using the Vis iTime Service 5

VisiTime Service

Java // Get reference to Time Service
org.omg.CosTime.TimeService timeSvc = org.omg.CosTime.TimeServiceHelper.narrow(

orb.resolve_initial_references("CosTimeService"));

// Get reference to Timer Event Service
org.omg.CosTimerEvent.TimerEventService timerSvc =

org.omg.CosTimerEvent.TimerEventServiceHelper.narrow(

orb.resolve_initial_references("CosTimerEventService"));
...

Bootstrapping Using ORBInitRef
The most common usage scenario for ORBInitRef is to use a corbaloc URL to specify
the initial reference. Other URL schemes are also possible. For example, using the
IOR string or the file URL (Java only) to specify the name of the file containing Time
Service IOR. For example, the following commands bootstrap the Time Service and
Timer Event Service running on port 5566 to the client application:

C++ <client_application> -ORBInitRef CosTimeService=corbaloc::<host>:5566/
CosTimeService

<client_application> -ORBInitRef CosTimerEventService=corbaloc::<host>:5566/
CosTimerEventService

Java vbj <client_application> -ORBInitRef CosTimeService=corbaloc::<host>:5566/
CosTimeService

vbj <client_application> -ORBInitRef
CosTimerEventService=corbaloc::<host>:5566/CosTimerEventService

Bootstrapping Using ORBDefaultInitRef
Like ORBInitRef, ORBDefaultInitRef commonly uses corbaloc URLs to specify initial
references. Other URL schemes are valid as well, depending on your implementation.
The following command bootstraps both the Time Service and the Timer Event Service
to the client application, using ORBDefaultInitRef:

C++ <client_application> -ORBDefaultInitRef corbaloc::<host>:5566

Java vbj <client_application> -ORBDefaultInitRef corbaloc::<host>:5566

You can also specify the ORBDefaultInitRef as a property with the vbj command
starting the client application. The following command also bootstraps the Time
Service, but specifies ORBDefaultInitRef as a property:

vbj -DORBDefaultInitRef=corbaloc::<host>:5566 <client_application>

Bootstrapping Using the SmartAgent
Client applications can also make use of the VisiBroker bind method to get the initial
reference to the Time Service and the Timer Event Service from the SmartAgent. In
Java the TimeServiceHelper and TimerEventServiceHelper classes are used to perform
the bind. When executing the method, you specify the name of the Time Service and
Timer Event Service to which you're connecting (and in Java, the ORB hosting them).
For example:

C++ CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

// Get reference to Time Service
CosTime::TimeService_var time_svc =
CosTime::TimeService::_bind("VBTimeService");

6 VisiBroker Vis iTime Guide

VisiTime Service

// Get reference to Timer Event Service
CosTimerEvent::TimerEventService_var timer_svc =

CosTimerEvent::TimerEventService::_bind("VBTimerEventService");

Java org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

// Get reference to Time Service
org.omg.CosTime.TimeService timeSvc =
org.omg.CosTime.TimeServiceHelper.bind(orb,

"VBTimeService");

// Get reference to Timer Event Service
org.omg.CosTimerEvent.TimerEventService timerSvc =

org.omg.CosTimerEvent.TimerEventServiceHelper.bind(orb,

"VBTimerEventService");

Running the Time Service In-process

The VisiTime service has the ability to run in-process or co-located with Java
applications. You need not make any application code changes when switching from
out-of-process to in-process mode. Enabling the in-process Time Service is controlled
through the VisiBroker property vbroker.time.enableInProc.

Regardless of whether the Time Service is using in-process or out-of-process
execution mode, user applications will use
orb.resolve_initial_references("CosTimeService") and
orb.resolve_initial_references("CosTimerEventService") to obtain initial references to
the Time Service and Timer Event Service respectively. There would be a difference in
the bootstrapping mechanism for in-process and remote Time Service respectively.
User applications should not specify the ORBInitRef property with in-process Time
Service. Instead, they must enable the VisiBroker property
vbroker.time.enableInProc=true. If ORBInitRef is used together with
vbroker.time.enableInProc=true, only ORBInitRef will take effect.

NTP Server Support for Time Source

By default, the VisiTime Service implementation uses the System Time as the Time
Source. Alternatively it can be configured to use a NTP Server as a Time Source. This
is controlled through the VisiBroker property vbroker.time.ntp.addr.

Specifying NTP Server Addresses and Failover
The value for the vbroker.time.ntp.addr can be one or a sequence of comma-
separated strings representing the NTP Server addresses. Both IPv4 and IPv6 format
addresses can be specified as well. For example, consider three NTP server
addresses given here:

vbroker.time.ntp.addr=foo.com,[fe220::103:baaa:fbbb:fedf]:
123,101.121.145.100:124

The first address, foo.com, relies on the internal DNS lookup. Since no port is specified,
the default NTP port 123 is used. The second entry, [fe220::103:baaa:fbbb:fedf]:123, is
an IPv6 format address enclosed in square brackets. Here, the port is defined
specifically as 123. The final entry, 101.121.145.100:124 is the familiar IPv4 format, with
the port number 124 specified as well.

The VisiTime Service will first try to contact the first NTP Server in the sequence. If the
address is valid and the server is available, the time of the NTP Server will be returned
to the caller. Assuming that the first server in the list was not available, the
implementation will transparently fail over to the second in the list and so on until it
retrieves the required time value from one of the Server in the list. If all of the Servers

 1 : Using the Vis iTime Service 7

VisiTime Service

are unreachable, VisiTime Service will throw an exception to the caller. Depending on
the method called, the exception can be either CosTime::TimeUnavailable or a CORBA
system exception such as COMM_FAILURE.

Configuring the VisiTime Service

The VisiTime Service can be configured using the VisiBroker Console, using properties
specified on the command line, or using properties specified in a properties file. The
following properties are provided for the VisiTime Service.

Property Default Description

vbroker.time.name (none) Specifies a name for this Time Service. This name is
used to identify a particular Time Service in the
Console or through Server Manager.

vbroker.time.listener.port 0 The listener port for the Time Service. The default
value of 0 means any random port will be picked.
This property does not take effect if the listener port is
set through the Server Manager's
vbroker.se.iiop_tp.scm.iiop_tp.listener.port property.

vbroker.time.timeRefFile (none) Specifies the name of file where Time Service IOR is
written. Not effective when the Time Service is run in
in-process execution mode.

vbroker.time.timerEventRefFile (none) Specifies the name of file where the Timer Event
Service IOR is written. This property is not effective
for in-process Time Service.

vbroker.time.enableInProc false Java only. Run the Time Service as in-process. It
should be specified on the Time Service client and
not the Time Service itself.

vbroker.time.leapSeconds 0 Adds leap seconds to the time returned by the Time
Source. A leap second is a second added to
Coordinated Universal Time (UTC) to make it agree
with astronomical time to within 0.9 second. The
current value is 23 seconds (since June 30, 1972).
Use this property in cases when the time source
attached to Time Service is not corrected for leap
seconds.

Property Default Description

vbroker.time.source.secured false Tells the Time Service that the Time Source is a
secured one. When this property is true, a call to
secure_universal_time will always succeed. Otherwise,
it throws the TimeUnavailable exception.

Property Default Description

vbroker.time.threadMax 0 Sets the maximum number of threads in the Timer
Event Service thread pool.

vbroker.time.threadMin 5 Sets the minimum number of threads in the Timer
Event Service thread pool.

vbroker.time.threadMaxIdle 100 Sets the time in seconds after which an idle thread will
be removed from the pool. However, the number of
threads in the pool will be kept to the value of threadMin.

8 VisiBroker Vis iTime Guide

VisiTime Service

Creating Time Service Objects with the TimeService interface

The VisiTime Service interface TimeService provides methods for creating UTOs and
TIOs, but doesn't provide any methods to deactivate/destroy these Objects.
VisiBroker's TimeService implementation uses the default servant-based dispatch
mechanism limiting the number of these objects, meaning that for any number of these
references the real servant processing the request is only one. You will not, therefore,
need to be concerned with a large number of Time Service objects—UTOs and TIOs—
being created. You use the TimeService interface to create UTOs and TIOs. Before
creating these objects, you must resolve to the Time Service and narrow it (using the
TimeServiceHelper in Java). The following code samples explain how to do this:

Property Default Description

vbroker.time.logLevel C++: 0
Java: emerg

Specifies the logging level of message that will
be logged. When set to the default value the
system logs messages when the system is
unusable, or in a panic condition. Acceptable
values are:

■ emerg (0): indicates some panic condition.

■ alert (1): a condition that requires user
attention—for example, if security has been
disabled.

■ crit (2): critical conditions, such as a device
error.

■ err (3): error conditions.

■ warning (4): warning conditions—these may
accompany some troubleshooting advice.

■ notice (5): conditions that are not errors but
may require some attention, such as upon the
opening of a connection.

■ info (6): informational, such as binding in
progress.

■ debug (7): debug conditions understood by
developers.

vbroker.time.logger.output stdout The name of the file where the logger output is
written. Default is to print to screen.

vbroker.time.logger.appName TimeService The name of the application to appear in the log
output.

vbroker.log.enable false To see the debug log statements from this
service, set this property to true. For the various
source names options for debug log filtering, see
the Debug Logging properties section of the
VisiBroker for C++ Developer's Guide.

Property Default Description

vbroker.time.ntp.addr (none) Specifies the NTP server's address and port. The value for
this property is specified as follows:

addr<:port>[, addr<:port>]
Where addr is the host name such as myhost.com or an IP
address. Both IPv4 and IPv6 addresses are supported.
IPv6 addresses must be enclosed in square brackets. The
port is optional. If not specified, the default Time Service
port 123 is used. When multiple addresses are specified,
then NTP server failover happens if communication with
one of the servers fails. The Time Service will try all the
servers before throwing a TimeUnavailable exception.

vbroker.time.ntp.timeout 5000 The time in milliseconds to wait for a reply from the NTP
server. If multiple NTP servers are specified then failover
to next server happens after the timeout expires.

 1 : Using the Vis iTime Service 9

VisiTime Service

C++ //Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

//Resolve the TimeService interface
CORBA::Object_var obj_t = orb->resolve_initial_references("CosTimeService");

//Narrow the TimeService interface
CosTime::TimeService_var time_svc = CosTime::TimeService::_narrow (obj_t.in());

Java import org.omg.CORBA.ORB;
import org.omg.CosTime.*;
...
//Initialize the ORB
ORB orb = ORB.init(args, null);

//Resolve the TimeService interface
org.omg.CORBA.Object obj = orb.resolve_initial_references("CosTimeService");

//Narrow it properly using the Helper
TimeService timeService = TimeServiceHelper.narrow(obj);

Once you have resolved to and narrowed the TimeService interface, you can use it to
create UTOs and TIOs.

Creating UTOs using the TimeService interface
Use the TimeService method universal_time() to create a Universal Time Object
containing the current time. For example,

C++ CosTime::UTO_var uto = time_svc-> universal_time();

Java UTO uto = timeService.universal_time();

creates a Universal Time Object uto whose time value is the current time at the
execution of the method.

You can also create a UTO containing a relative time of your choosing (not obtained
using a Time Source) using the new_universal_time method. You provide three
arguments to this method:

– the 64-bit time value. This is the number of hundreds of nanoseconds that have
elapsed since base time and is a C++ CORBA::ULongLong or Java long data type.

– the time inaccuracy value.

– the TdfT value, a C++ CORBA::Short or Java short data type.

For example:

C++ CosTime::UTO_var uto =
 time_svc->
new_universal_time((CORBA::ULongLong)10000000,0,(CORBA::Short)0);

Java UTO uto = timeService.new_universal_time(10000000L,0,(short)0);

Creating TIOs using the TimeService interface
You can create TIOs using the TimeService interface. The new_interval method takes
two arguments of type CORBA::ULongLong (C++) or long (Java), which are the bounds of
the time interval expressed as hundreds of nanoseconds since base time. For
example:

C++ //Create a TIO that represents a specific interval
CosTime::TIO_var tio = time_svc->new_interval((CORBA::ULongLong)10000000,
 (CORBA::ULongLong)20000000);

Java //Create a TIO that represents a interval
TIO tio = _timeService.new_interval(10000000L, 20000000L);

10 VisiBroker Vis iTime Guide

VisiTime Service

Using the Timer Event Service

This section explains how to resolve to a Timer Event Service, obtain
TimerEventHandlers, set alarms using the TimerEventHandlers, cancel an alarm that was
previously set, and unregister a TimerEventHandler.

Before creating and utilizing TimerEventHandlers, you must resolve to the Timer Event
Service itself, as well as the ORB's standard Event Service providing the PushConsumer
object. For example:

C++ //Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

//Resolve the TimerEventService
CORBA::Object_var obj_t = orb-
>resolve_initial_references("CosTimerEventService");
CosTime::TimerEventService_var time_evsvc =
 CosTime:: TimerEventService::_narrow (obj_t.in());

//Resolve to the EventService
CORBA::Object_var obj_ev = orb->resolve_initial_references("EventService");
CosEventChannelAdmin::EventChannel_var channel =
 CosEventChannelAdmin::EventChannel::_narrow(obj_ev.in());

Java import org.omg.CORBA.*;
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.CosTime.*;
import org.omg.CosTimerEvent.*;
import org.omg.TimeBase.*;
...

//Initialize the ORB
ORB orb = ORB.init(args, null);

//Resolve the TimerEventService
TimerEventService timerEventService=TimerEventServiceHelper.narrow(

_orb.resolve_initial_references("CosTimerEventService"));

//Resolve to the EventService
EventChannel channel =

EventChannelHelper.narrow(_orb.resolve_initial_references("EventService"));

Creating TimerEventHandlers
the Timer Event Service provides an operation to register a CosEventComm::PushConsumer
together with a CORBA::Any that provides event data. Internally, the TimerEventHandler is
created and the event data and PushConsumer are associated with the it. You can at any
point change the event data, but the PushConsumer is immutably associated with the
TimerEventHandler and cannot be changed.

Once you have resolved the Timer Event Service and Event Service, and you have
obtained a channel from the latter, you can create the Event Handler implementation.
To do so, you must follow these six steps:

1 Create a ProxyPushSupplier object to push the event data to the consumer.

2 Create a PushConsumer object to receive the event data.

3 Associate the ProxyPushSupplier with its PushConsumer.

4 Obtain a ProxyPushConsumer object from the event channel. This is the object that will
be registered with the Timer Event Service.

 1: Using the Vis iTime Service 11

VisiTime Service

5 Create the event data with a new CORBA::Any.

6 Create the event handler by executing the Timer Event Service's register method,
using the ProxyPushConsumer and the CORBA::Any objects as arguments.

The following tables show source code used to execute each of the steps above:

Setting Alarms for TimerEventHandlers
In order to use your newly-created TimerEventHandler, you set alarms using the
EventTimer interface. The set_timer method is used to set an alarm. It takes two
arguments: the type of alarm and a UTO object. Three types of alarms are available:

– TTAbsolute: the alarm is triggered at an absolute time specified by the UTO.

– TTRelative: the alarm is triggered at the UTO relative to the current time (the UTO
represents time from the current absolute time, not the time base).

– TTPeriodic: the alarm occurs periodically, repeating at each relative time specified by
the UTO.

To set an alarm, you must:

1 Create a Timer Event Service object.

2 Create a new UTO that will be used to trigger the alarm.

3 Use the Event Handler's set_timer method to set the alarm.

For example, the following code sets an alarm for a TimerEventHandler object called
eventHandler:

C++ //Create an UTO that represents relative time
CosTime::UTO_var uto =

Step Code

1 //Create a ProxyPushSupplier
CosEventChannelAdmin::ConsumerAdmin_var cns_adm = channel->for_consumers();
CosEventChannelAdmin::ProxyPushSupplier_var pushSupplier =

cns_adm->obtain_push_supplier();

2 //Create the PushConsumer, PushView here is the implementation of PushConsumer

PushView* view = new PushView();

3 //Connect the PushConsumer

pushSupplier->connect_push_consumer(view->_this());

4 //Get a ProxyPushConsumer from the Event Channel

CosEventChannelAdmin::SupplierAdmin_var sup_adm = channel->for_suppliers();

CosEventChannelAdmin::ProxyPushConsumer_var proxy = sup_adm->obtain_push_consumer();

5 //Create the data that we want to receive when the event is triggered

CORBA::Any any ;

any <<="my data";

6 //Register the PushConsumer and the event data to obtain a TimerEventHandler

CosTimerEvent:: TimerEventHandler_var eventHandler = time_evsvc->register(proxy,any);

Step Code

1 //Create a ProxyPushSupplier
ProxyPushSupplier pushSupplier = channel.for_consumers().obtain_push_supplier();

2 //Create the PushConsumer, PushView here is the implementation of PushConsumer
PushView view = new PushView();

3 //Connect the PushConsumer
pushSupplier.connect_push_consumer(view._this(orb));

4 //Get a ProxyPushConsumer from the Event Channel
ProxyPushConsumer proxy = channel.for_suppliers().obtain_push_consumer();

5 //Create the data that we want to receive when the event is triggered
Any any = orb.create_any();
Any.insert_string("my data");

6 //Register the PushConsumer and the event data to obtain a TimerEventHandler
TimerEventHandler eventHandler = timerEventService.register(proxy,any);

12 VisiBroker Vis iTime Guide

VisiTime Service

 time_svc-
>new_universal_time((CORBA::ULongLong)10000000,0,(CORBA::Short)0);

//set a periodic timer on the TimerEventHandler, this alarm would trigger after
every 1
//second (10000000/10000) second has elapsed and the event data will be pushed
to the
//PushConsumer that was previously registered
eventHandler->set_timer(CosTimerEvent::TTPeriodic,uto);

Java //Create an UTO that represents a relative time
UTO uto = timeService.new_universal_time(10000000L,0,(short)0);

//set a periodic timer on the TimerEventHandler, this alarm would trigger after
every 1
//second (10000000 /10000)second has elapsed and the event data will be pushed
to the
//PushConsumer that was previously registered
eventHandler.set_timer(TimeType.TTPeriodic,uto);

Note

The Timer Event Service minimum relative interval for which an alarm can be set is 1
millisecond. Any value less than 1 millisecond will be transparently converted to 1 ms.

Cancelling a Timer and Unregistering a TimerEventHandler
To cancel an event handler's timer, simply execute the handler's cancel_timer method:

C++ eventHandler->cancel_timer();

Java eventHandler.cancel_timer();

To unregister an event handler entirely, call the event service's unregister method:

C++ eventService->unregister(eventHandler);

Java eventService.unregister(eventHandler);

Friendly Time Object

This is an object with a friendly interface to convert the 64-bit time representation to
human readable components like year, month, day etc and vice versa: the TimeI object.
The TimeI object can be viewed as a representation conversion object. The general
technique for using it is to create one using the operation
FriendlyTime::TimeService::time(). This creates a TimeI object with time set to zero in
it. Then the _set operations can be used to set the values of the various attributes.
Finally, the attribute time can be used to get the corresponding TimeT value.

Conversely, one can set any TimeT value in the time attribute and then get the year,
month, and so forth. from the appropriate attributes.

The IDL for the friendly time object is as follows:

module FriendlyTime {
 interface TimeI {
 attribute YearT year;
 attribute MonthT month;
 attribute DayT day;
 attribute HourT hour;
 attribute MinuteT minute;
 attribute SecondT second;
 attribute MicrosecondT microsecond;
 attribute TimeBase::TimeT time;
 void reset(); // set all attributes to zero
};

 1: Using the Vis iTime Service 13

VisiTime Service

The following code sample illustrates the usage of the friendly time object:

C++ //Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

//Resolve the FriendlyTimeService
CORBA::Object_var obj_t = orb->resolve_initial_references("CosTimeService");
FriendlyTime::TimeService_var time_svc = FriendlyTime::TimeService::_narrow
(obj_t.in());

//Get a TimeI object from the FriendlyTime
FriendlyTime::TimeI_var timeI = time_svc->time();

//Get the current time in a UTO
CosTime::UTO_var uto = time_svc-> universal_time();

//Set the current time in the TimeI object
timeI->time(uto->time());

//Get the various attributes from TimeI Object in a human readable format and
print to
//the standard output
cout << " Year is :" << timeI->year() << endl;
cout << " Month is :" << timeI->month() << endl;
cout << " Day is :" << timeI->day() << endl;
cout << " Hour is :" << timeI->hour() << endl;
cout << " Minute is :" << timeI->minute() << endl;
cout << " Second is :" << timeI->second() << endl;
cout << " MicroSecond is :" << timeI->microsecond() << endl;

Java import org.omg.CORBA.ORB;
import org.omg.CosTime.*;
...
//Initialize the ORB
ORB orb = ORB.init(args, null);

//Resolve the FriendlyTimeService
org.omg.FriendlyTime.TimeService friendlyTs =
 org.omg.FriendlyTime.TimeServiceHelper.narrow(
 _orb.resolve_initial_references("CosTimeService"));

//Get a TimeI object from the FriendlyTime
org.omg.FriendlyTime.TimeI timeI = friendlyTs.time();

//Get the current time in a UTO
UTO uto = friendlyTs.universal_time();

//Set the current time in the TimeI Object
timeI.time(uto.time());

//Get the various attributes from TimeI Object in a human readable format and
print to //the standard output
System.out.println("Year is :"+ timeI.year());
System.out.println("Month is :"+ timeI.month());
System.out.println("Day is :"+ timeI.day());
System.out.println("Hour is :"+ timeI.hour());
System.out.println("Minute is :"+ timeI.minute());
System.out.println("Second is :"+ timeI.second());
System.out.println("MicroSecond is :"+ timeI.microsecond());

14 VisiBroker Vis iTime Guide

VisiTime Service

Index 15

A
alarms, setting 11

B
bootstrapping using ORBDefaultInitRef 5
bootstrapping using ORBInitRef 5
bootstrapping using SmartAgent 5
bootstrapping VisiTime 4

C
cancelling timers 12
components, time service 2

F
failover, NTP 6
friendly time object 12

I
in-process time service 6
interface TimeService 8

N
NTP failover 6
NTP server addresses 6
NTP support 6

O
ORBDefaultInitRef, bootstrapping 5
ORBInitRef, bootstrapping 5
osagent, bootstrapping 5
overview 1

P
properties 7

R
running in-process 6

S
secure time services 3
server addresses, NTP 6
setting alarms 11
SmartAgent, bootstrapping 5
starting secure service 4
starting service 3

T
time definition 1
time interval object 2
time service configuration 7
time service services 2
time service, components 2
time source, NTP 6
timer event handler, unregistering 12

timer event handlers, creating 10
timer event service 2
timer event service, using 10
TimeService interface 8
TIO 2
TIO creation 9

U
universal time object 2
unregistering timer event handler 12
UTC 2
UTO 2
UTO creation 9

V
VisiTime 1
VisiTime service 3

Index

16 VisiBroker Vis iTime Guide

	Contents
	Using the VisiTime Service
	Time Service Overview
	How the Time Service Defines Time
	Time Service Components
	Universal Time Object
	Time Interval Object

	Time Service Services
	Timer Event Service
	Secure Time Service

	VisiTime Service
	Starting the VisiTime Service
	Starting Secure VisiTime Service
	Bootstrapping the VisiTime Service
	Bootstrapping Using ORBInitRef
	Bootstrapping Using ORBDefaultInitRef
	Bootstrapping Using the SmartAgent

	Running the Time Service In-process
	NTP Server Support for Time Source
	Specifying NTP Server Addresses and Failover

	Configuring the VisiTime Service
	Creating Time Service Objects with the TimeService interface
	Creating UTOs using the TimeService interface
	Creating TIOs using the TimeService interface

	Using the Timer Event Service
	Creating TimerEventHandlers
	Setting Alarms for TimerEventHandlers
	Cancelling a Timer and Unregistering a TimerEventHandler

	Friendly Time Object

