VisiBroker 8.5.2

VisiBroker for .NET
Developer’s Guide

Micro Focus

The Lawn

22-30 Old Bath Road

Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2009-2014. All rights reserved. VisiBroker contains
derivative works of Borland Software Corporation, Copyright 1992-2010 Borland
Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.

BORLAND, the Borland logo and VisiBroker are trademarks or registered trademarks
of Borland Software Corporation or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2014-06-30

Contents

Introduction to VisiBroker for .NET ... 1
Accessing VisiBroker online help topics in the standalone Help Viewer 1
Accessing VisiBroker online help topics from within a VisiBroker GUI tool.................. 1
Documentation CONVENTIONS.t ettt ettt ettt et et e e e ee e rane s 2

Platform CONVENTIONSt ettt ettt et e neenens 2
(@] g = Tox [o 1Y/ 1o o N 0T P 2
Further Information and Product SUPPOIT.........ciieiiiiii i eee e 2
INFOrmMation We NEEd ...ttt aaas 3
CoNntact INTOrMATION ... ettt aanees 3

Understanding the VisiBroker for .NET model..................all. 5

What is ViSiBroKer for (NET 2 ... e e 5
Changes in VisiBroker for (NET ... 6
VisiBroker for .NET developer tOOIS ... 6
VisiBroker for .NET FUNTIMIE ...t eas 6
VisiBroker for .NET fEatUres ... 7

RVAY g = U ST AN I 7
CommON laNQUAgE FUNTIMIE ...ttt eaanee e enees 7
INET Framework Class lDrary ... e e 8
A1 I =T 10 T Vo 8
Managed vs. Unmanaged ApPlICAtIONSoviuiiiiii e eae 8

R AT g = U o o 9
ENterprise JAVABEANSoiii ettt 9
JaVA R L et 9

WAt 1S CORB A ? .. e e 10
Interface Definition LanQUAageco.eiii i e 10
CORBA and .NET ReMOTING «.cuuutiiiieteteeiteteae ettt et et e e e eeae e eeanee e eanneeaanas 10

Microsoft Visual Studio .NET OPLiONSuieiiiieii ittt e e eaaneeaas 11

Developing VisiBroker for .NET client applications 13
Some SIMPle eXaMIPIES 13

A simple .NET Remoting example ... e 13
A simple J2EE eXamiple e 14
A simple CORBA eXamPIe. ... eee s 15

.NET Remoting configurationooiiiiiiii et eeaas 15

Specifying the object [0Cation s 16
URL SCREMES .. e ee e 16
Specifying the Remoting channel s 17

Client-activated objects vs. server-activated objects ..., 18

Programmatic aCtivation oo e 19

CoNTIgUIING PrOPEITIES. .. e eaean 21
Setting properties at the command liNe....... ... 21
Setting properties programmaticallycooiiiiiiiiii e 22
Setting properties within a configuration file ... 22
VisiBroker for .NET property desCriptiOnsS.couiiiiii et iii e e eaaeeeaaas 23

Resolving the Naming SerVICeuiiiiiiiiii e aaees 23
ORBINIERET . e 23
(I ToT=T B o o N o] g 0] 011 o 1Y/ 24
Janeva.liCense.dir ... e 24
TranNSaCTIONS PrOPEITIESttt ettt e n e enens 24
JANEVA.TraANSACTIONS. ...t 24
janeva.transactions.factory.url.... 25
Server-side ProPeITIES ... 25

VisiBroker for .NET Developer’s Guide

janeva.server.defaultPorto e 25

FE= e LEaVZ= WE=T=T V=T o8 =1 o g o] o [o 26
INteroperability PrOPEITY ... e 26

T e el T o) (=T fo] oI 1Y/ 0 01 1Y/ & 1= 26

ST Tol L] Y2 o1] o 1= g 111 27
JANEBVAL.SECUIITY ..ttt ettt e e e 27
JANEVA.SECUNTY.USEIMAIME ...\ttt et eeneanes 28
JANEVA.SECUNTY.PASSWONT ...t et eneeaes 28
Janeva.security.realm e 28
janeva.security.certificate. 28
Server-side SecUrity Properties.o 29
JANBVA. S CUNIEY . SBIV O ittt ettt et e e et e e e eaane e eaaneeann 29
janeva.security.server.defaultPort..........cooiiiiiiiiii e 30
janeva.security.server.certificateooiiiiiiiiii i e 30

=N = 1| I o] o 01T o 1/ PP 31
Janeva.firewall e 31

Portable INterceptor PrOPErtYo et anen 31
JANEVA. OFDL NI . e 31

VisiBroker Smart Agent Propertiesot e 32
JANBVALAGENT .. e 32
Janeva.agent. POt ... 32
Janeva.agent.addr.o 32

Setting VisSiBroKer properties. 33
Building and deploying VisiBroker for .NET applications............ 35
Generating VisiBroker for .NET stubs and skeletons.........c..ccoiviiiiiiiiiiii i 35
Adding references to VisiBroker for .NET runtime libraries..............ccooiiiiiiiiiin... 36
Deploying VisiBroker for .NET appliCationsciciiiiiiiiiiii i aaeea 37
Microsoft .NET Framework Redistributable Packageccccoovviiiiiiiiiiiiine.. 38
VisiBroker for .NET runtime librariescooiiiiiiiiiii e 38
VisiBroker for .NET deployment license Key........coooiiiiiiiiiiiiiiiiiiiiiiie i 38
Including the license as an embedded resource..........cooviiiiiiiiiieiiinnnnn. 39

Copying the license to the application virtual root..............c.c.cooiiiiiii. 39

Modifying the application configuration file ..., 39
Developing VisiBroker for .NET Remoting servers...................... 41
o) o To 1184 o o 41
Y oo 181 S) I (=T o 2T €T T 41
About VisiBroKer for .NET SEeIVErt 42
Developing a server in .NET Remoting Stylecoooiiiiiiiiii e 43
Singleton object coNfigUIatioNc.ciiiii e 44
[SD%qo] [Tod 1 A '=To |15 o =1 £ o] o [P 44

IMPLICIt regiStrationo e eaaeens 44

SingleCall object configUIrationoeiiiiii e 45
EXPLCIt regisStrationeeoi i e 45

IMPLICIE regiStrationo e e eaaeens 46

Adding callbacks to a VisiBroker for .NET Remoting client............c.ccoviiiiiiiiieiinn... 47
R (0] =T 1= 48
Using hints and custom marshaling ... 49
VisiBroker for .NET code generation—an exampleccoooiiiiiiiiiiiiiiiiiii i 49
ValUEFaCtOry Class e 50
ValueFactory methods ..o 51

AN INtroduction t0 NINtS ... s 52
Supplying the implementation of a value typec.cooiiiiiiiiiiiiiii e 52
Replacing the default implementation with a custom implementation.............. 53
Mapping interfaces with Methods..........ooiiii i e 55

iv VisiBroker for .NET Developer’s Guide

Using signature type to hide implementation detailsc.cooviiiiiiiiiiiiiiiiiieen, 57

DT o [To3 1 Al 7= 1o e] 1/ o7 0 T [58
00T 810 =T o] =2 PP 59
(OIUES] o] 0 0 I F= T =] o T=1 1 o PP 60
HINtS file SChemMa ... e e ae 63
One-to-many marshaling PreCeAENCE. ... it 64
Using Quality Of SEIrVICE ... 65
Understanding Quality Of SErVICe ..o e eeen 65
Setting policies per CORBA ODJECTo e 65
Policy overrides and effective poliCieso 65

QOS NI S . . . e e e e e 65
(@0 7= o S 66

(O] o] 1= o3 0 1 1=1 ¥ Lo o £ 66

[0 [0 Y41V, =T = o [68
PolicyManager MethOdsSouiiiiiiiie ittt iaeeaas 68

[0 [T03 Y O Ly = 0 69

[T= =] g =TT a0 =0 1o 69
DeferBindPOlICY Properti€se i e aaeeens 69
EXCluSiveCoNNECTIONPOIICY e e e e 70
ExclusiveConnectionPolicy properties.ooeeiiieiiiiiii i 70
RelativeConnectioNTiMEOUTPOIICYiinii e e ees 70
RelativeConnectionTimeoutPolicy methods ..., 71
REDINAPOIICY . .. e 72
RebINAFOrWardPOIICY ... e 75
RebindForwardPolicy methodsc.ccvviiiiiiii i e 75
RelativeRequestTimeOULPOIICYoui i e aaes 75
RelativeRoundTripTimeoUtPOlICYcoii e 76

S oS Yol] o 1] oo T3 Y 77

(@ 10 I T =)o =7 o] [0 1 78
Using the dynamically managed types.......cccooviiiiiiiiiiiiiiiiiiinnn.. 79
[0 N)Y 14 0T 79
LU ToT o [=T o g T [0 1 P 79
Creating @ DY NMANY ... e et 79
Initializing and accessing the value in a DYNANY ... 80

(070] oS3 1 g U Tox (=To [0 P X = N 1Y/ o 11 80
Traversing the components in a constructed data type......................... 80

[0 =1 0 5 80
L1977 15 6T 80

[0 0 11 o T o 81
DynNSequenCe and DY NAITAYceueee et et e et e e et e et e e e eaaneeaaanes 81
Using Portable INterCepPltorsSoviiiiiiiiiii e 83
Portable INterCeptors OVEIVIEWiiiiieiiiit ettt ettt e e e eeaaaneeann 83
Types oOf Portable INterCeptorso e eeeens 83
Portable Interceptor classes and iNterfacesccovviiiiiiiiiiiiiii e 83
g (ST ot =T o) (o gl o] = L= 83
REQUEST INTEICEPTON .. et e e e e e eaees 84
ClientReqUESTINTEICEPTON .. .o et eaens 84
ServerRequestINterCePLOro 85

L@ T g |] (=T o= o) (o] S P 86
Portablelnterceptor (PI) CUrrent ... 86

(@ T 1= o 86

(@Yo [Tl = o (o] Y 2 86
Creating a Portable INterCeplOrt eaeeeas 86
Registering Portable INTerCepPtors ... e aaeeaas 87

VisiBroker for .NET Developer’s Guide V

VisiBroker for .NET extensions to Portable Interceptors........ccooviiiiiiiiiiiiiiiinnnnn. 87

POA scoped Server Request INterCeptorsov i eiiiii it eaaeens 87
TORINTOEXE INTEITACE ... e 87
Limitations of the Portable Interceptors Implementation...............ccooeevieene.. 87
Using Portable Object Adapterscoooiiiiiiiiii e 89
What is a Portable ObjJect Adapler?ot e eaas 89
(@ N (=T g 0 011 g o] Lo o)Y P 90
Steps for creating and USING POAS ... e 920
POA POl CIES. e e aaas 91
THread POIICY ... e 91
LifeSPaN POIICY .. e 91
Object ID UNIQUENESS POLICY . .nunie ettt e 91
ID ASSIgNMIENT POIICY . ettt ettt et e e et et e e e e aaneeaanes 92
Servant Retention POIICY ...coiiiiiiiii i e e, 92
ReqUEST ProCeSSING POIICY ...ttt et ettt et e e e aaaeeans 92
IMplicit ACtIVAtION POLICY ... e e 93
BiNd SUPPOIT POIICY ittt e e aaaeens 93
(O == L o = 93
POA Naming CONVENTION ...t et ettt e e e enen 93
Obtaining the ROOT POA.t e e ens 94
Setting the POA POLICIES ...t e e a s 94
Creating and activating the POA ... e 94
ACHIVAiNG OB OIS ... 95
Activating objects exXpliCitlyo e 95
Activating objects Oon demandcciiiiiiiiiiii e 96
Activating objects IMmPlCItly ... e 96
Activating with the default Servantccooiiiiiiiiii i e 96
Deactivating ODJECES ...t 98
Using Servants and Servant ManagersS.ottt e e e aaaaeens 98
SEIVANTACTIVATOISttt ettt ettt et et e e e 99
ST =T Y 7= T g o I o= 101 = 101
Managing POAS With the POA MaNAGEYt eanens 103
Getting the CUMENt STATEo e eee s 103
[(0] [o [T T =Y = P 103
ACTIVE ST .. 104
DiSCArding STATet 104
INACTIVE STALE ... e 104
Listening and Dispatching: Server Engines, Server Connection Managers, and their
0] 0] 0 T= T 1= 105
Server ENGINe and POAS . ..ottt et e 105
Associating a POA with a Server ENngineoooiiiiiiiiiiiiiiiiiic i 106
Defining Hosts for Endpoints for the Server Enginec.c.cccvviieivnnan 106
Server CoNNECtiON MANAGEIScuuiieet et ean e eaeeans 107
MBNAGET ... e 107
1S =] = P 108
THTOP liSteNer PrOPErtiES. ... et e e e 108
DISPALCNET ... et 108
When to use these Propertieso 109
AdApPLer ACTIVATOIS ...t 110
g o Tod TS [o =T 11 L=} 111
Using the Transaction SerVICEe 113
Configuring VisiBroker for .NET for transactionsS..........oooiiiiiiiiiiii i eeieenns 113
Creating VisiBroker for .NET-managed transactionsSc.vovoeviiiiiiiiiieiiiieinieenn. 113
Obtaining a Current object referencCeccoviiiiiiiiii s 114
Looking at the CosTransactions Modulecoiiiiiiiiii e 114

Vi VisiBroker for .NET Developer’s Guide

Transaction service classes and INterfacesoovvviiiiiiiiiiii s 114

(OT0 =T o) T] = - U= 114
CUrrent METNOAS ... e e 114
TransactionFactory INtErfacCeuiiiii i e 117
TransactionFactory Methodsoveiiiiiiiii e 118

(0] 1 (o] BT 01 (=T o =] = P 118
CoNtrol METNOAS. ... e 119

TerminNator INTEITACEo e 119
Terminator Methods.o e 119
CoordiNator INTEITACE ... 120
Coordinator Methods ..o e 120
RecoveryCoordinator INtErTaCec.vviiiii i e eaaas 122
RecoveryCoordinator methods.......ccvviiiiiiiiiiii e 122

RESOUICE INTEITACE ...ttt ettt aaneeaaaas 122
RESOUICE METNOUS ...t e 122
Synchronization INTerface........cccoviiiiiii e aaeee 124
Synchronization Methods.........coiiiiiiiii e 124
TransactionalObjJeCt INTerface.coui i e 126
USING the SEeCUNITY SEIVICE ...t e 127
VisiBroker for .NET SeCUIitY OVEIVIEWcoiii i e 127
Enabling VisiBroker for .NET SECUIITYo eeee e 128
Interoperating with J2EE servers and CORBA SEIVErScoiiiiieiii i, 128
User name and password authenticationo, 128

Using the .NET Remoting API for user name and password authentication129

Using the CORBA-based API for user name and password authentication130
Using a configuration file for user name and password authentication.. 131

Certificate-based authentication........o 131
Using the .NET Remoting API for certificate-based authentication........ 131

Using the CORBA-based API for certificate-based authentication 132

Using a configuration file for certificate-based authentication.............. 133

Y NS o VL = BT oY (=0 = o o PP 133
ASP.NET CONfIQUIatioON ... et e rneas 134
Enabling security for .NET SEIrVErS ... e reeas 135

Using VisiBroker for .NET with Partially Trusted Applications.. 137

Using VisiBroker for .NET in Partially Trusted Environments...............ccooiiiiiiiiann. 137
Permissions Required by VisiBroker for .NETo 138
Usage in No Touch Deployment environmentsccooiiiiiiiiii i 138
Using VisiBroker for .NET wWith COM.............oooiiiiiiiiii e, 141
OVerriding COM ViSibDility ...t et aeeeaanees 142
Classinterface attribDULES oo 142
Defining CUuStom INTEITACESo e e 143
Support for array-valued parameters and return values..............c.coooiiiiiiiiiiienn. 145
Avoiding Progld COIlISIONS e e e aes 146
Using VisiBroker for .NET with GateKeeperccccvvvviiiiiiina.. 149
ATAT o L RS R €= U =T L= =T o 1= 149
Enabling the VisiBroker for .NET Firewall featureccooiiiiiiiiiiiiiiiiiiiiiieenns 149
VisiBroker for .NET server-side configurationc.cccvioiiiiiiiiiiiiii i eieeeenne 150
VisiBroker for .NET client-side configuration..............coiiiiiiiiiii i eieeee 151
Callbacks with GateKeeper's bidirectional SUPPOIt.........ccviiiiiiiiiii i irieeaens 152
Security CONSIAEratioNS i e 152

= T 0 8] o 1= 153

VisiBroker for .NET Developer’s Guide

Vii

(7] 5 0] o1 1 [>T gt] e) o] 8 155

(10] 22 [S 155
JAV A2 CS e 156
] I o O 2 o =T e] o] 1 T 159
I = 0 =T P 159
Reserved generated SUTTIXES ... e 160
RESEIVEO WOIAS ...ttt ettt ettt et e ettt r e et e ane e e 160
o] ol 1Y/ 0 1= PP 161
L7 S o 110 PP 162

[T T 0] == T o P 162

L -V 162
SEHNG AN W S NG - - et et 162
=TT T 17/ 6 1= 162

L1 I Y o TSI =g (=] 0 1] [0 1 162
(O] 151 = g | 1 PP 163
(@] 15 1 B Tox =T I 74 o 1< 163
= o TU] 01T =1 £ o] o R PP 164

] 1 10 P 164

L8] 0T To] 1= PP 165

ST=To [T glotoT =T g T B Y g =)£ S 167
1170 T L] = 167
1= = T =L 167
Signature and Operations INTerfacesoooiiiiii i 168
HelPEr ClasSSES ... e 168
Methods for all Helper classes.... ..o 169

Methods generated for interfacescccoviiiiiiiii i i 169

Generated StUD ClasSSes ... e 170
ADSEract INTErfaces ... e 170
=TT a Lo T o F= U= T 1= (] = 170

L 0 = Lo oo o = S 171

[V E=Yo] 11 Te I (o] =3 (el=T o) £ 1o] o 1= P 171
User-defined @XCePTIONSot e 171
SYSTEIM EXCEPTIONS ..ottt ettt ettt e ettt e e e e e e e n e e e enenanens 172
Mapping fOr The ANY BY P ..o et 172
Mapping for certain Nested tyPeSo e 173
MappPing fOor TYPE DT ... e 173
Java built-in type SUPPOIT ...t eeaaaas 175
JAVAL AN - s 175
272 V8 T 176
272 T8 .= L 176
2722 T8 = 177
272 T8 2.0 177
2722 T8 o | 177
22 2 = 1 o 178
2722 2 = U 1 T 178
2 Y= O 0 179
B E2 Y= b o = = 1o [0 o 179
JAVALUT s 179
ApPlication SErVer SUPPOITt 181
a0 = TR UPTT 183

viii VisiBroker for .NET Developer’s Guide

Introduction to VisiBroker
for .NET

Micro Focus VisiBroker for .NET product provides a runtime environment
and a set of developer tools to deliver high-performance connectivity from
the Microsoft .NET runtime to J2EE and CORBA servers. This product allows
applications developed for the .NET Framework to access heterogeneous
server-side components via IIOP, the highly scalable, interoperable and
secure protocol.

Important

VisiBroker for .NET was named Janeva in previous releases. Many instances
of the term Janeva still exist within examples, commands, parameters,
class names, properties, and Ul elements. This Developer's Guide uses the
term Janeva when referring to these components.

Accessing VisiBroker online help topics in the
standalone Help Viewer

To access the online help through the standalone Help Viewer on a machine
where the product is installed, use one of the following methods:
Windows

« Choose Start > Programs > VisiBroker > Help Topics

or

« open the Command Prompt and go to the product installation \bin
directory, then type:

help

UNIX

Open a command shell and go to the product installation /bin directory,
then type:

help

During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option and
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use . /help to start the help viewer.

Accessing VisiBroker online help topics from within
a VisiBroker GUI tool

To access the online help from within a VisiBroker GUI tool, choose Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

VisiBroker for .NET Developer’'s Guide 1

Documentation conventions

Documentation conventions

The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Convention Used for

italics Used for new terms and book titles.

computer Information that the user or application provides, sample
command lines and code.

bold computer In text, bold indicates information the user types in. In code
samples, bold highlights important statements.

[1 Optional items.
Previous argument that can be repeated.

> Two mutually exclusive choices.

Platform conventions

The VisiBroker documentation uses the following symbols to indicate
platform-specific information:

Windows: All supported Windows platforms.

Win2003: Windows 2003 only

WinXP: Windows XP only

Win2000: Windows 2000 only

UNIX: UNIX platforms

Solaris: Solaris only

Linux: Linux only

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support

Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

+ The WebSync service, where you can download fixes and documentation
updates.

« The Knowledge Base, a large collection of product tips and workarounds.

« Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.
Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you

2 VisiBroker for .NET Developer’'s Guide

http://www.microfocus.com

Contacting Micro Focus

obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Information We Need

However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

+ The name and version number of all products that you think might be
causing a problem.

« Your computer make and model.

* Your operating system version number and details of any networking
software you are using.

+ The amount of memory in your computer.
« The relevant page reference or section in the documentation.

* Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and addresses.
Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

» https://www.microfocus.com/product-trials/corba/
index.aspx?productname=VisiBroker (VisiBroker trial software)

« http://supportline.microfocus.com/
xmlloader.asp?type=home&redirectpage=temporary.asp?aspneturl=/

websync/productupdatessearch.aspx (updated VisiBroker files and other
software)

« https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

VisiBroker for .NET Developer’s Guide 3

https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Understanding the
VisiBroker for .NET model

This chapter introduces the VisiBroker for .NET components, and it
describes the technologies with which VisiBroker for .NET lets your
applications interoperate.

What is VisiBroker for .NET?

The VisiBroker for .NET product provides high performance connectivity
between the Microsoft .NET runtime and J2EE and CORBA components. This
product allows you to build managed client-side and server-side
applications developed for the .NET Framework (and ASP.NET applications)
that can access heterogeneous server-side components via I1OP, the highly
scalable, interoperable and secure communications protocol.

Figure 1 illustrates how a deployment with VisiBroker for .NET-powered
applications might look. The left and right sides of the figure show two .NET
application environments, the top ones running stand-alone .NET
applications, and the others running ASP.NET hosted applications. In the
middle of the diagram the J2EE and CORBA server environments are shown.

The functionality provided by VisiBroker for .NET, the client stubs, server
skeletons, and the VisiBroker for .NET runtime, is displayed in the shaded
areas. Note that there is no shading in the J2EE and CORBA server
environments, indicating that VisiBroker for .NET does not need to be
deployed into the server environment in order to interoperate with the .NET
environment.

.NET Client side

C# Basic C++

VisiBroker for .NET Stubs

.NET Runtime

VisiBroker for .NET Runtime

C# Basic C++

VisiBroker for .NET Stubs

ASP .NET Runtime

VisiBroker for .NET Runtime

VisiBroker for .NET Developer’s Guide

Figure 1 VisiBroker for .NET client-side deployment diagram
EJBy EJB; .NET Server side
J2EE Server c# Basic C++
VisiBroker for .NET Skeletons
[IOP [HOP
——» RMI-IIOP .NET Runtime
—p || VisiBroker for .NET Runtime
> Distributed
Services
Obj, Obj,
CORBA Server
L ! IDL-IIOP

5

What is VisiBroker for .NET?

Changes in VisiBroker for .NET

Earlier versions of VisiBroker for .NET (before version 7.0) used J#
reflection to instantiate the class type. From version 7.0 onwards,
VisiBroker for .NET runtime is now independent from either Microsoft J# or
the SUN JDK. It is now completely in .NET MSIL. Therefore, the default
access control for class default constructor may not work as before.

Important

You must explicitly declare class SampleServerLoader using the keyword
"public" in order for .NET runtime to access it. If you do not do so, an
exception is raised and you cannot possibly access the default constructor.

VisiBroker for .NET developer tools

Stubs and skeletons are required for VisiBroker for .NET-powered
applications to invoke methods on J2EE and CORBA objects. Stubs and
skeletons are interface-specific objects that provide parameter marshaling
and communication for an application to invoke methods on an object that
is running in a different execution environment. The VisiBroker for .NET
developer tools provide you with compilers to generate the stubs and
skeletons needed to communicate with your CORBA and J2EE server
objects.

The J2EE-based compiler reads interfaces specified in Java Remote Method
Invocation (RMI) files. The CORBA-based compiler reads interfaces specified
in Interface Definition Language (IDL) files. The resulting stubs and
skeletons target the .NET Common Type System (CTS), Microsoft’'s
language-neutral type system. Although the compilers generate stubs and
skeletons in the C# programming language, once the C# stub or skeleton is
compiled into the Microsoft Common Intermediate Language (CIL) by a C#
compiler it is usable from any .NET-compatible language.

VisiBroker for .NET runtime

The VisiBroker for .NET runtime is a collection of libraries and network
resources that integrates within end-user applications, and allows your
applications to locate and use objects. The runtime exposes the basic
CORBA and J2EE APIs required for using remote objects. These APls are
compliant with the Microsoft Common Language System, and are therefore
accessible to any .NET programming language.

The VisiBroker for .NET runtime provides the following capabilities:

« Marshaling—a high-performance, scalable engine for reading and writing
I1OP packets.

« Connection management—controls the allocation of TCP connections
and other communication resources.

« Security—encryption and authentication of messages based on the
widely adopted standards: SSL, TLS, X.509, etc. (Note that this enables
secure connectivity to any J2EE 1.3 compatible product.)

« Objects-by-value—allows arbitrarily complex data types to be passed
across client-server boundaries (for J2EE 1.3 products).

« Invocation context propagation—provides the ability to augment 110P
packets with system-level data.

6 VisiBroker for .NET Developer’'s Guide

What is .NET?

« Portable interceptors—provides the ability to augment I1OP packets
with user- or system-level data. This is particularly important for
products that provide distributed transaction support based on the OTS
and XA specifications. (Note that interoperable transaction support is
optional in J2EE 1.3, and is therefore only provided by a subset of J2EE
vendors.)

VisiBroker for .NET features

The VisiBroker for .NET product provides the following capabilities:

+ High Performance: VisiBroker for .NET provides binary data formatting
by using I1OP for client-server networking.

« Stateful services: VisiBroker for .NET provides a full distributed object
model, which can support arbitrary server-side components and arbitrary
life-cycle requirements.

« Advanced security support: Encryption, authentication and
authorization are all supported in VisiBroker for .NET, based on the latest
security standards.

« Support for complex data types: Using VisiBroker for .NET, data
conversions are handled automatically, which is both more efficient and
less error prone.

« Enterprise Quality of Service: VisiBroker for .NET provides advanced
QoS out of the box, including:

« Load balancing: The ability to fan-out requests to a collection of
service providers.

« Fault tolerance: The ability to redirect requests from a failed server to
an alternate provider.

« Transactions: The ability to propagate two-phase-commit transaction
contexts across application boundaries and start transactions on the
client side.

« Scalability: The ability to control the lifetime of connections, multiplex
over connections, etc., for optimizing resource utilization.

What is .NET?

Microsoft .NET provides developers with a single approach to build both
desktop applications and Web-based applications. It also enables
developers to use the same tools and skills to develop software for a variety
of systems, using a variety of programming languages, and it can minimize
conflicts between applications by helping incompatible software components
coexist.

The .NET Framework consists of the .NET Framework class library (FCL), for
building .NET applications, and the common language runtime (CLR), for
running them. The .NET Framework is available as a free download from
Microsoft.

VisiBroker for .NET uses Microsoft .NET Framework version 3.0.

Common language runtime

The common language runtime (CLR) is the runtime engine in the Microsoft
.NET Framework for executing applications. The CLR also provides managed

VisiBroker for .NET Developer’s Guide 7

What is .NET?

applications with services such as cross-language integration, code access
security, object lifetime management, and debugging and profiling support.

Programs can be written for the CLR in just about every language, including
C#, C++, Microsoft Visual Basic, and JScript. The runtime simplifies
programming by assisting with many mundane tasks of writing code. These
tasks include memory management—which can be a big generator of
bugs—security management, and error handling.

When it is compiled using a compiler in a .NET language, the code written in
your programming language of choice is compiled into an assembly-like
language called common intermediate language (CIL). The CIL is compiled
down to executable code by the common language runtime at execution
time.

.NET Framework class library

Programmers who write Windows applications are familiar with the Windows
API, standard class libraries, and functions or classes of their own. The .NET
Framework class library (FCL) includes prepackaged sets of functionality
that developers can use to build applications that use the types, methods,
and properties that target the common language runtime. Writing code
using the types provided in the FCL is the surest way to have completely
interoperable .NET applications.

Some of the features included in the FCL are:
« ASP.NET to help build Web applications and Web services.
« Windows Forms for client user interface development.

« ADO.NET to help connect applications to databases.

.NET Remoting

Distributed applications are traditionally based on DCOM, CORBA, and Java
RMI remoting technologies using binary protocols, such as IIOP, that utilize
network bandwidth efficiently. In contrast, much of .NET interoperability
centers on XML and SOAP.

The VisiBroker for .NET runtime provides a managed code implementation
of 110P for the .NET Framework. VisiBroker for .NET allows you, the
developer, to locate and call methods on remote objects using .NET
Remoting-style calls, shielding you from having to learn how to write
CORBA or Java RMI-style calls. See application development examples in
“Developing VisiBroker for .NET client applications” and “Developing VisiBroker for
.NET Remoting servers”.

Managed vs. Unmanaged Applications

The .NET Framework supports what it calls managed and unmanaged
applications. Managed applications are programs that you create using a
supported .NET language, such as C#, and which adhere to various rules
imposed by the Framework. All VisiBroker for .NET code is managed code.

8 VisiBroker for .NET Developer’s Guide

What is J2EE?

Unmanaged applications are programs created in unsupported languages,
or which do not completely adhere to .NET Framework rules. These
applications, many of which are legacy applications, can still be run within a
wrapper process provided by the .NET Framework.

What is J2EE?

Java 2 Platform, Enterprise Edition (J2EE) technology and its component
based model simplifies enterprise development and deployment. The J2EE
platform manages the infrastructure and supports the Web services to
enable development of secure, robust and interoperable business
applications. J2EE consists of several APIs to implement Enterprise
JavaBeans, Java Servlets, Java Server Pages, and JDBC for database
access, among many others.

J2EE simplifies enterprise applications by basing them on standardized,
modular components, by providing a complete set of services to those
components, and by handling many details of application behavior
automatically. J2EE takes advantage of CORBA technology for interaction
with existing enterprise resources.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) technology gives developers the ability to model
a wide range of objects useful in the enterprise by defining two distinct
types of EJB components: Session Beans and Entity Beans. Session Beans
represent behaviors associated with client sessions. Entity Beans represent
collections of data, such as records in a database, and encapsulate
operations on the data they represent. Entity Beans are intended to be
persistent, surviving as long as the data they're associated with.

Client applications communicate with EJBs using strictly standardized
EJBHome and EJBObject interfaces to locate, instantiate, and invoke
methods on remote objects. You can use the VisiBroker for .NET developer
tools to generate all the code needed to communicate with the EJBs, from
its Java RMI source to the .NET-compatible C# language.

Java RMI

Java Remote Method Invocation (RMI) technology allows developers to
work completely in the Java programming language to produce Java
technology-based distributed applications. There is no separate Interface
Definition Language (IDL) or mapping to learn. Java RMI technology that is
run over Internet Inter-Orb Protocol (RMI-110P) delivers CORBA distributed
computing capabilities to the J2EE platform.

Like CORBA, RMI-IIOP is based on open standards defined with the
participation of hundreds of vendors and users in the Object Management
Group. Like CORBA, RMI-110P uses IIOP as its communication protocol.
I1OP eases legacy application and platform integration by allowing
application components written in C++, C, COBOL, and other CORBA
supported languages to communicate with components running on the Java
platform.

VisiBroker for .NET Developer’s Guide 9

What is CORBA?

What is CORBA?

Common Object Request Broker Architecture (CORBA) is an architectural
specification that provides the capability for distributed applications to
interoperate without understanding detailed communication requirements
on one end or the other. CORBA is based on open standards defined with
the participation of hundreds of vendors and users in the Object
Management Group.

A common model of a CORBA application is a typical client-server model,
with the exception that it uses a middle layer, known as middleware, or
more specifically, an Object Request Broker (ORB). An ORB is a collection of
services that manage interactions between distributed applications.

Interface Definition Language

The Interface Definition Language (IDL) is a descriptive language you use to
describe your CORBA interfaces to remote objects. You use an IDL compiler
to generate a client stub file and a server skeleton file in your
implementation language, usually C++, Java, C#, or another high-level
language. The Object Management Group (OMG) has defined specifications
for language mappings to a variety of programming languages. VisiBroker
for .NET provides a language mapping for IDL in C#. See “IDL to C# mapping”
for more information.

You can write your IDL code in any IDE but you need an IDL compiler to
generate .NET compatible stubs and skeletons. Using the VisiBroker for
.NET developer tools, you can use one of the IDL compilers included to
generate the C# client stub from an IDL file. The IDL compiler reads the IDL
file and generates a class or other addressable object that includes stubs,
which are general methods that accept a simple message request from an
application. The stub passes the request to the object implementation, on
the server for example, and, on receiving a response, decodes the response
and returns the results to the calling application, or client.

The VisiBroker for .NET features comply with the CORBA specification
(version 3.0) from the Object Management Group (OMG) and are
interoperable with VisiBroker.

CORBA and .NET Remoting

Much of .NET interoperability centers on XML and SOAP. While these
technologies have their strengths, primarily in being able to use
connectionless protocols, such as HTTP, they have serious drawbacks when
it comes to synchronous communications.

In those cases, using peer-to-peer protocols, such as IIOP, are more
efficient and secure. Additionally, using synchronous client-server
communication allows you to pass binary data across a more tightly-
coupled system, providing more data security and recovery capabilities.

VisiBroker for .NET allows you to bootstrap to the CORBA middleware, and
locate objects using either CORBA-style calls or .NET Remoting calls in your
client code. See examples of application development in “Developing
VisiBroker for .NET client applications” and “Developing VisiBroker for .NET Remoting
servers”.

10 VvisiBroker for .NET Developer's Guide

Microsoft Visual Studio .NET options

If you selected the Microsoft Visual Studio .NET component when you
installed VisiBroker for .NET, your Visual Studio environment will have some
extra elements to make your VisiBroker for .NET application development
go smoothly.

To configure the VisiBroker for .NET options in Visual Studio:
1 Select the Tools menu and click Options

2 Select the VisiBroker for .NET options group

The following configuration options are available:

« Installation directory—the directory where the VisiBroker for .NET
components are installed.

« JRE directory—the directory where the Java Runtime Environment is
installed.

« Supported file extensions—displays the VisiBroker for .NET compiler for
each supported file extension.

« Defaults—allows you to configure default command line arguments for
each of the VisiBroker for .NET compilers. For descriptions of command
line arguments see “Compiler options”.

VisiBroker for .NET Developer’'s Guide 11

12 VvisiBroker for .NET Developer's Guide

Developing VisiBroker for
.NET client applications

This chapter introduces the development process for creating .NET client
applications that can access J2EE and CORBA server objects using the
VisiBroker for .NET runtime. Simple examples are provided to illustrate the
three different methods for making calls on remote objects.

VisiBroker for .NET provides you with three methods for developing client
applications that communicate with distributed objects: .NET Remoting,
CORBA, and J2EE. These three technologies each define a standard way of
doing essentially the same steps: bootstrap the middleware, locate and
instantiate remote objects, and invoke methods on them.

The syntax, APIs, and programming models are slightly different for each of
the three technologies, but the following examples will prove that whichever
way you write it you can accomplish the same result with each of them.

Where do I go from here?

If you are a Microsoft developer, already comfortable with .NET Remoting,
or new to distributed technologies, start with “A simple .NET Remoting
example”. Developers familiar with J2EE should start with “A simple J2EE
example”, and those familiar with CORBA should start with “A simple CORBA
example”.

Some simple examples

The following sections show you some simple examples of the three
methods you can use to bootstrap the middleware, locate and instantiate
remote objects, and invoke methods on them.

A simple .NET Remoting example

If you are a Microsoft developer, already comfortable with .NET Remoting,
or new to distributed technologies, you will be pleased to learn that you can
develop .NET applications that interoperate with objects on both J2EE and
CORBA servers using the .NET Remoting programming model.

The following three lines of code show how easily you can instantiate the
remote object MyServer and call a Method () on it.

static void Main(string[] args) {
RemotingConfiguration.Configure (“MyApplication.exe.config”);
MyServerHome myServerHome = new MyServerHomeRemotingProxy () ;
MyServer myServer = myServerHome.Create() ;
myServer.Method () ;

}

The information for establishing a connection with the server and locating
the remote object are contained in an XML configuration file, as shown in
“NET Remoting configuration”.

Let’s walk through the example line by line:

The first line specifies the configuration file where the .NET Remoting is
configured.

RemotingConfiguration.Configure (“MyApplication.exe.config”) ;

VisiBroker for .NET Developer’'s Guide 13

Some simple examples

The next line of code instantiates the factory object MyServerHome.
MyServerHome myServerHome = new MyServerHomeRemotingProxy () ;

A factory object is a lookup mechanism for locating and creating a remote
object. You look it up first in order to locate and create an instance of the
actual object you want to invoke methods on.

There is no concept of narrowing an object’s type in .NET. You locate the
object and cast it to its specific type all in one step.

The next line creates an instance of myServer.
MyServer myServer = myServerHome.Create() ;
You can now call methods on your instance of myServer.

myServer.Method () ;

It’'s that simple! If you want more information on configuring .NET Remoting
using the VisiBroker for .NET protocol, see “.NET Remoting configuration”.

A simple J2EE example

VisiBroker for .NET provides a method for allowing developers familiar with
writing calls to EJBs to do so in the .NET application.

Consider the following example.

static void Main(string[] args) {
J2EE.Naming.Context root = new J2EE.Naming.InitialContext (args) ;

string serverName = "location/of/my/server";
object myServerHomeObject = root.Lookup (serverName) ;
MyServerHome myServerHome = (MyServerHome)

J2EE.Rmi.PortableRemoteObject .Narrow (myServerHomeObject,
typeof (MyServerHome)) ;
MyServer myServer = myServerHome.Create () ;
myServer.Method () ;

As you can see this is somewhat more complex than the .NET Remoting
example. There is no configuration file in which to hide the details required
for locating the objects.

Let’s walk through the example line by line:
In the first line we establish the root context for the J2EE naming service.
J2EE.Naming.Context root = new J2EE.Naming.InitialContext (args) ;

The next two lines declare a variable to contain the location of the EJBHome
object (myServerHomeObject) on the server, and look it up.

string serverName = "location/of/my/server";
object myServerHomeObject = root.Lookup (serverName) ;
The next line narrows myServerHomeObject to its type, MyServerHome.

MyServerHome myServerHome = (MyServerHome)
J2EE.Rmi.PortableRemoteObject .Narrow (myServerHomeObject,
typeof (MyServerHome)) ;

The next line creates an instance of myServer.
MyServer myServer = myServerHome.Create () ;
Finally we can invoke a method on MyServer:

myServer.Method () ;

14 visiBroker for .NET Developer's Guide

.NET Remoting configuration

A simple CORBA example

VisiBroker for .NET provides a method for allowing developers familiar with
writing calls to CORBA objects to do so in the .NET application.

The following example shows the calls you might make.

static void Main(string[] args) {
CORBA.ORB orb = CORBA.ORB.Init (args) ;
CORBA.Object rootObject = orb.ResolvelInitialReferences ("NameService") ;
CosNaming.NamingContextExXt root =

CosNaming.NamingContextExtHelper.Narrow (rootObject) ;

string serverName = "location/of/my/server";
CORBA.Object myServerHomeObject = root.ResolveStr (serverName) ;
MyServerHome myServerHome = MyServerHomeHelper.Narrow (myServerHomeObject) ;
MyServer myServer = myServerHome.Create() ;
myServer.Method () ;

As you can see this is somewhat more complex than the .NET Remoting
example. There is no configuration file in which to hide the details required
for locating the objects.

Let’s walk through the example line by line:
In the first line we initialize the ORB.
CORBA.ORB orb = CORBA.ORB.Init (args) ;

In the next two lines we obtain the root context for the CORBA naming
service.

CORBA.Object rootObject = orb.ResolvelInitialReferences ("NameService") ;
CosNaming.NamingContextExt root =
CosNaming.NamingContextExtHelper.Narrow (rootObject) ;

The next two lines declare a variable to contain the location of the factory
object (myServerHomeObject) on the server, and look it up.

string serverName = "location/of/my/server";
CORBA.Object myServerHomeObject = root.ResolveStr (serverName) ;

The next line narrows myServerHomeObject to its type, MyServerHome.
MyServerHome myServerHome = MyServerHomeHelper.Narrow (myServerHomeObject) ;
The next line creates an instance of myServer.
MyServer myServer = myServerHome.Create () ;
Finally we can invoke a method on MyServer.

myServer.Method () ;

.NET Remoting configuration

This section contains the details of the configuration file alluded to in the
.NET example in “A simple .NET Remoting example”.

Let’s recall that .NET Remoting example:

static void Main(string[] args) {
RemotingConfiguration.Configure (“MyApplication.exe.config”) ;
MyServerHome myServerHome = new MyServerHomeRemotingProxy () ;
MyServer myServer = myServerHome.Create () ;
myServer.Method () ;

VisiBroker for .NET Developer’'s Guide 15

.NET Remoting configuration

<configuration>

The information for establishing a connection with the server and locating
the remote object are hidden away in an XML configuration file. This
technique is known as declarative activation in .NET.

A configuration file for our example might look like the following:

<system.runtime.remoting>
<application name="MyApplication">

<client>

<wellknown type="MyServerHomeRemotingProxy, MyApplicationAssembly"
url="janeva:corbaname:rir:#location/of/my/server/object"/>

</client>

<channels>

<channel type="Janeva.Remoting.IiopChannel,
Borland.Janeva.Runtime"/>
</channels>
</application>
</system.runtime.remoting>

</configuration>

Specifying the object location

When we instantiated MyServerHome in the first line of the example, we
used the new operator on MyServerHomeRemot ingProxy (). In order to
locate the object on which to make the call, the example configuration file
uses the wellknown element,

<wellknown type="MyServerHomeRemotingProxy, MyApplication"
url="janeva:corbaname:rir:#location/of/my/server/
object"/>

where MyServerHomeRemot ingProxy is the type name and MyApplication is
the name of the assembly where the type is defined.

Note:

MyServerHome is represented as a wellknown object (also known as
Server-activated object or SAO). Any CORBA or EJB server object can be
represented as an SAO. In addition, EJBs can be represented as Client
Activated Objects (CAO). See “Client-activated objects vs. server-activated
objects” for more information.

The .NET programming model requires that you locate the remote object
with a URL. URLs are formed with two parts:

+ The janeva: protocol prefix tells the application to use the 110P channel
(Janeva.Remoating.liopChannel), specified in the <channel> element of the
configuration file.

Typically in .NET the first part of the URL contains the communication
protocol. VisiBroker for .NET extends .NET Remoting with a new protocol:
CORBA 110P.

* corbaname: rir :#location/of/my/server/object is one of several CORBA ORB
string to object () compatible URL schemes. See the table in “URL
schemes” for more examples and descriptions of the URL schemes.

URL schemes

To address the problem of bootstrapping and allow for more convenient
exchange of human-readable object references, VisiBroker for .NET allows

16 VisiBroker for .NET Developer’'s Guide

URL
scheme

corbaname:

corbaloc:

osagent :

IOR:

http:

file:

.NET Remoting configuration

URLs in the formats listed in the following table to be converted into object

references.

Examples

janeva:corbaname:rir:#location/of/my/
server/object
or

janeva:corbaname:rir:<NS_host>:
<NS_ports>#location/of/my/server/object

janeva:corbaloc:rir:<host>:<ports>/
object_key

janeva:osagent :poa:<poa_name>:
<object_id>[:<server host_name>]

or
janeva:osagent :repid:

<interface repository ids
[:<object_name>] [:<server_host_name>]

janeva:IOR:
<stringified object reference>

janeva:http:<host_ addresss/location/of/my/

ior/file

janeva:file:<host_addresss/location/of/my/

ior/file

Description

The corbaname URL scheme is most
often used to resolve EJBs. It allows URLs
to denote entries in a Naming Service. The
host address is the location and listening
port of the Naming Service and it can be
formatted as
<NS_host_name=>:<NS_port> or
<NS_ip_address>:<NS_port>. More
details about the corbaname URL
scheme are available in the OMG CORBA
specification.

The corbaloc URL scheme provides
direct access to server objects by location
and object key. It is not often used
because of the limited amount of
addressing power. More details about the
corbaloc URL scheme are available in
the OMG CORBA specification.

The osagent scheme is a private feature
for using with VisiBroker CORBA server
objects.

To avoid ambiguity, all colons (:) in the
<interface_repository_id> must be
prefixed with the backslash (\) character,
as follows:
janeva:osagent:repid:IDL\ : com/
semagroup/targys/servicelayer/
corba/ServiceRootI\
:1.0:SL_demo_server

The IOR URL scheme allows you to look
up an object by stringified object
reference (IOR).

The HTTP URL scheme points to a text file
containing the stringified object reference.

The file URL scheme points to a text file
containing the stringified object reference.

<channel type="Janeva.Remoting.IiopChannel,

Specifying the Remoting channel

To communicate with remote objects a .NET client application has to create
and register a Remoting channel. The channel provides a conduit for
communication between a client and a remote object.

Instead of using the .NET Framework Channels types, VisiBroker for .NET
provides the Janeva.Remoting.IiopChannel type for creating a channel

on IIOP.

Borland.Janeva.Runtime"/>

The second argument is the VisiBroker for .NET runtime assembly name.

VisiBroker for .NET Developer’'s Guide 17

Client-activated objects vs. server-activated objects

Client-activated objects vs. server-activated objects

VisiBroker for .NET supports both types of activation for remotable objects:

« Server activation. Server-activated objects (SAO) are created by the
server only when they are needed. They are not created when the client
proxy is created by calling new or Activator.GetObject, but rather
when the client invokes the first method on that proxy. The previous
sections in this chapter are examples of this object activation method.

« Client activation. Use client-activated objects when the application
needs to retain state between method calls and also needs to pair each
client with a unique object instance. Client-activated objects (CAO) are
created on the server when the client calls new or
Activator.CreatelInstance.

Any kind of remote object supported by VisiBroker for .NET can be used on
the client-side as an SAO. In addition, a J2EE server object can also be
represented as a CAO.

The client activation in VisiBroker for .NET is based on the fact that many
J2EE components follow the factory design pattern. Namely, any remotely
accessible EJB (that is, stateful or stateless session or entity bean) exposes
a home interface which is used to create or resolve the bean instance. For
EJBs configured as CAOs, VisiBroker for .NET allows you to skip resolving
the home interface and to create or resolve the bean instance simply by
creating an instance of bean’s proxy class.

For example, let’s consider a simple EJB interface, SimpleSession, and its
home interface, SimpleSessionHome:

public interface SimpleSession extends javax.ejb.EJBObject {
public void ping() throws java.rmi.RemoteException;
}

public interface SimpleSessionHome extends javax.ejb.EJBHome
public SimpleSession create(String name) ;

The SimpleSession interface configured as an SAO can be accessed on the
client side in C# as follows:

SimpleSessionHome home = new SimpleSessionHomeRemotingProxy () ;
SimpleSession session = home.Create ("my name") ;
session.Method () ;

If the SimpleSession interface is represented as a CAO, the client code is
a bit simpler:

SimpleSession session = new SimpleSessionRemotingProxy ("my name") ;
session.Method() ;

Now, let’s explore in detail how VisiBroker for .NET supports the client
activation model for J2EE components.

First, the java2cs compiler has extended knowledge of the EJB home
interface. The compiler maps some methods defined on the EJB home
interface to constructors of the bean’s Remoting Proxy class in the
generated C# code. For the Session EJB home (stateful or stateless), these
are any create () methods. For the Entity EJB home, this is the
findByPrimaryKey () method. Also, the java2cs compiler preserves the
parameters of the original home method in the generated proxy constructor.
For example, the SimpleSessionHome.create (String name) method
maps to the SimpleSessionRemotingProxy (string name) constructor in
the generated C# code.

18 VisiBroker for .NET Developer's Guide

Programmatic activation

When a new instance of the CAO Remoting Proxy is created, the VisiBroker
for .NET runtime does a few things under the covers. First, it resolves the
bean’s home interface based on the VisiBroker for .NET URL specified in the
Remoting object configuration. Then, depending on whether this is a
Session bean or an Entity bean, the runtime remotely calls either the
corresponding Session’s create () method, or the Entity’s
findByPrimaryKey () method. Lastly, the Remoting Proxy of the EJB
instance, resulted by this call, becomes an object returned by the new
statement.

While the VisiBroker for .NET CAO usage model resembles the original .NET
Remoting CAO model quite closely, it is worth noting a few peculiarities:

1 Creating an EJB Remoting Proxy, configured as a CAO, does not always
imply that a new EJB instance is created on the server side (the EJB
container). While this is true for the Session beans, the Entity beans
behave differently. For Entities, the CAO constructor call translates into
the findByPrimaryKey () call, therefore an existing instance with the
corresponding primary key must already exist, otherwise an exception
will be thrown. Thus, the CAO representation of the Entity bean can be
used only to resolve a bean instance, not to create one. To create a new
Entity instance use the SAO model.

2 VisiBroker for .NET Client-activated objects do not support the lifetime
lease model. This is due to the fact that the EJB models this concept.
Moreover, the EJB life cycle is different depending on the EJB type. The
client-side developer needs to understand these differences and explicitly
call the Remove () method on the EJB interface or the home when the EJB
instance is no longer needed.

A configuration file for a CAO example should look like the following:

<configurations
<system.runtime.remoting>
<application name="MyApplication">
<client url="janeva:corbaname:rir:#location/of/my/server/object”>
<activated type="SimpleSessionRemotingProxy,
MyApplicationAssembly"/>
</client>
<channelss>
<channel type="Janeva.Remoting.IiopChannel,
Borland.Janeva.Runtime"/>
</channels>
</application>
</system.runtime.remoting>
</configuration>

Programmatic activation

An alternative to configuration files for writing your .NET calls to server side
objects is to activate the Remoting channel and specify the location of the
remote object directly in the code. The following code sample shows how
this might look for an SAO.

static void Main(string[] args) {

Janeva.Remoting.IiopChannel channel = new Janeva.Remoting.IiopChannel
(args) ;
System.Runtime.Remoting.Channels.ChannelServices.RegisterChannel (channel) ;
string objectUrl = "janeva:corbaname:rir:#" +
"location/of /my/server/object";
MyServerHome myServerHome = (MyServerHome)

System.Activator.GetObject (typeof (MyServerHome) , objectUrl) ;

VisiBroker for .NET Developer’'s Guide 19

Programmatic activation

MyServer myServer = myServerHome.Create () ;
myServer.Method () ;

The following code sample shows how this might look for a CAO.

static void Main(string[] args) {

Janeva.Remoting.IiopChannel channel = new Janeva.Remoting.IiopChannel
(args) ;
System.Runtime.Remoting.Channels.ChannelServices.RegisterChannel (channel) ;
string objectUrl = "janeva:corbaname:rir:#" +
"location/of /my/server/object";
MyServer myServer = (MyServer) System.Activator.CreatelInstance (
typeof (MyServerRemotingProxy), new object[] {“my name”});

myServer.Method () ;

The first two lines in each example deal with setting up the VisiBroker for
.NET Remoting channel on I1OP.

Janeva.Remoting.IiopChannel channel = new Janeva.Remoting.IiopChannel (args) ;
System.Runtime.Remoting.Channels.ChannelServices.RegisterChannel (channel) ;

The third line declares a variable to contain the location of the factory object
(myServerHomeObject) on the server, and look it up similar to the way it
was done in the J2EE and CORBA examples in the previous sections, except
that there is no narrowing in .NET.

20 VisiBroker for .NET Developer’s Guide

Configuring properties

There are three ways to set VisiBroker for .NET properties. These are given
below in order of priority, from highest to lowest.

1 Using command-line arguments
2 Setting properties programmatically

3 Using a configuration file

Note

The settings with higher priority override the settings with lower priority.
For example, the properties set at the command-line override the
properties defined programmatically.

Setting properties at the command line

If you are running a VisiBroker for .NET application from a command
prompt, then you may specify VisiBroker for .NET properties as space-
delimited key-value pairs, and the key is preceded by a hyphen (-). For
example:

Client -ORBInitRef NameService=corbaloc:iiop:1.2@hostl:3075/NameService

In the application code, for developers who use the VisiBroker for .NET style
API, the command line arguments can be passed into the corresponding
version of the Janeva.Remoting.IiopChannel () constructor. For
example:

static void Main(string[] args) {
Janeva.Remoting.IiopChannel channel = new
Janeva.Remoting.IiopChannel (args) ;

}

For developers using the CORBA style API, pass these arguments to the
static ORB.Init () constructor:

static void Main(string[] args) {
CORBA.ORB orb = CORBA.ORB.Init (args) ;

}

For J2EE developers, VisiBroker for .NET supports an equivalent ORB
initialization APl using J2EE.Naming.InitialContext (). For example,
suppose your J2EE server is running on the local host with a Naming Service
listening to port 2809. Your client can use the -ORBInitRef style
initialization to point to the Naming Service as follows:

Client -ORBInitRef NameService=corbaname:iiop:localhost:2809/NameService
In you application code, you simply pass these arguments to the static
J2EE.Naming.InitialContext constructor:

static void Main(string[] args) {
J2EE.Naming.Context context =
J2EE.Naming.InitialContext (args) ;

VisiBroker for .NET Developer’'s Guide 21

Setting properties programmatically

Setting properties programmatically

You can store VisiBroker for .NET properties in a
System.Collections.Hashtable object, and pass these to either
CORBA.ORB.Init (), J2EE.Naming.InitialContext (), or
Janeva.Remoting.IiopChannel (). This provides a cleaner approach to
setting VisiBroker for .NET properties than the command-line approach and
is useful when the command-line is not available.

The .NET Remoting developer may pass the Hashtable settings into the
appropriate version of the Janeva.Remoting.IiopChannel constructor:

static void Main(string[] args) {
System.Collections.Hashtable props = new System.Collections.Hashtable() ;
props.Add ("ORBInitRef™",
“NameService=corbaloc:iiop:1.2@hostl:3075/NameService”) ;
props.Add(“janeva.transaction”, true);
Janeva.Remoting.IiopChannel channel =
new Janeva.Remoting.IiopChannel (args. props) ;
// other code here

}

The following CORBA example creates a Hashtable object and sets three
properties:

static void Main(string[] args) {
System.Collections.Hashtable props = new System.Collections.Hashtable() ;
props.Add ("ORBInitRef™",
“NameService=corbaloc:iiop:1.2@hostl:3075/NameService”) ;
props.Add ("janeva.transactions", true);
CORBA.ORB orb = CORBA.ORB.Init (args, props);
// other code here

}

For J2EE developers, you may also use a Hashtable to initialize the
application:

static void Main(string[] args) {
System.Collections.Hashtable props = new System.Collections.Hashtable() ;
props.Add ("ORBInitRef",
“NameService=corbaloc:iiop:1.2@hostl:3075/NameService”) ;

props.Add ("janeva.transactions", true);
J2EE.Naming.InitialContext context = new J2EE.Naming.InitialContext
(props) ;

// other code here

}

Setting properties within a configuration file
VisiBroker for .NET properties can be set by using a configuration file.

Important

The configuration file section <janeva> is renamed to <visinet> in
VisiBroker for .NET 7.0 and later versions. However, for backward
compatibility with older versions, the section name <janeva=> is still
supported.

22 VisiBroker for .NET Developer’s Guide

VisiBroker for .NET property descriptions

Properly named, the configuration file is loaded automatically. For ASP.NET
applications, this is the Web.config file. For other applications, this is the
<app_assembly _name=>.exe.config file located in the same directory where
the <app_assembly_name=>.exe is.

Note

In Microsoft Visual Studio .NET you must add a file called app.config to your
project to get the appropriately named XML configuration file included in

your build.
The example below shows a sample configuration file.
<configurations
<configSections>
<section name="visinet" type="Janeva.Settings, Borland.Janeva.Runtime"/>
</configSections>

<visinets>
<transactions enabled="true"/>
<gserver defaultPort="10000">
<remoting enabled="true"/>
</server>
</visinet>
</configuration>
Notice that all of the VisiBroker for .NET settings are grouped under the
<viginet> section in the configuration file. Since the VisiBroker for .NET
settings are not part of the standard .NET configuration XML, it is important
to instruct the .NET runtime to read the <visinet> XML. This is achieved
by adding the <configSections> section as it is demonstrated in the
example above.

VisiBroker for .NET property descriptions

Each VisiBroker for .NET property has a counterpart setting in the
configuration file. The following sections describe each VisiBroker for .NET
property and the corresponding configuration file setting in detail.

Resolving the Naming Service

The following property is used to resolve the Naming Service.

ORBInNnitRef
Type: string
Default value: none
XML:
<naming url="NameService=URL" />

Each application server has its own URL syntax as shown in the following

table.
Application
server Naming Service URL format
WebLogic 7 or 8 corbaloc::localhost:7001/NameService
IBM WebSphere 5 corbaname:iiop:localhost:2809/NameServiceServerRoot
Oracle's 0C4J: corbaloc:iiop:1.2@localhost:5555/NameService
Sybase corbaloc:iiop:1.2@localhost:9000/NameService

VisiBroker for .NET Developer’'s Guide 23

VisiBroker for .NET property descriptions

Note also that the default port number may vary for your deployment.

Note

Resolving the naming service for VisiBroker is automatic (based on
OSAgent), so this configuration is optional for VisiBroker. Other application
servers require this configuration.

Examples

To resolve the Naming Service using the command line the argument
should be in the following format:

> client -ORBInitRef NameService=corbaloc::localhost:7001/NameService

The property setting in the configuration file would resemble the following
example.

<visinets>
<naming url="corbaloc::localhost:7001/NameService” />
</visinet>

Licensing property

This property is configured to enable the VisiBroker for .NET runtime to
locate the license if necessary.

janeva.license.dir

Set the path to the directory where the VisiBroker for .NET license file is
located. The path can be absolute or relative to the current directory.

Type: string
Default value: none
XML:

<license dir="path” />

Example
The following example sets the janeva.license.dir property in a configuration
file.
<visinets>
<license dir="C:\Micro Focus\VisiBroker\” />
</visinet>

Transactions properties

These properties are configured to enable VisiBroker for .NET transaction
support.

janeva.transactions

Set this property to true to enable support of the client-demarcated
transactions. Keep in mind that it is impossible to start a new transaction
without turning this feature on. Namely, the
orb.ResolveInitialReferences ("TransactionCurrent") call will fail
if transactions are not enabled.

This feature is disabled by default, as, when enabled, it adds an additional
performance overhead during a remote invocation.

24 VisiBroker for .NET Developer’s Guide

<viginet>

VisiBroker for .NET property descriptions

Type: boolean [true | false]
Default value: false
XML:

<transactions enabled="value” />

Note

If the <transactions> section is present in the configuration file, and the
enabled attribute is missing, the default VisiBroker for .NET behavior is to
enable transactions.

Example
The following example configurations set the janeva. transactions property to
true.

<visinets>
<transactions enabled="true” />
</visinet>

<vigsinet>
<transactions />
</visinet>

janeva.transactions.factory.url
This URL points to a transaction service Current factory.

Type: string
Default value: none
XML:

<transactions>
<factory url="corbaloc::URL" />
</transactionss>

Example
The following example configuration sets the
janeva.transactions.factory.url property.

<transactions enabled="true”>
<factory url="corbaloc::localhost:6666/TransactionFactory” />
</transactions>

</visinets>

Server-side properties

These properties are used to configure VisiBroker for .NET server-side
support.

Jjaneva.server.defaultPort

This property sets the port on which a VisiBroker for .NET server listens to
for 110OP requests. The value O (zero) means that the system will pick a
random port number.

Type: integer

Default value: O (zero)

VisiBroker for .NET Developer’'s Guide 25

VisiBroker for .NET property descriptions

XML:

<server defaultPort="value”>

janeva.server.remoting

This property is configured when using remoting-style callbacks and
remoting-style VisiBroker for .NET servers. If set to true, then remoting-
style callbacks and remoting-style VisiBroker for .NET servers are enabled.

This feature is disabled by default. When enabled, it adds an additional
performance overhead during a remote invocation.

Type: boolean [true | false]
Default value: false
XML:

<servers><remoting enabled="value” /></server>

Example

The following example sets the janeva.server.port and the
janeva.server.remoting properties in a configuration file.

<vigsinet>
<server defaultPort="2809">
<remoting enabled="true” />
</servers
</visinet>

Interoperability property

This property is used to configure various VisiBroker for .NET
interoperability aspects.

janeva.interop.jvmType

This property controls how VisiBroker for .NET writes certain data types on
the wire. It specifies the JVM on the receiving side of the outgoing
communication. This is pertinent when communicating with a server
running on Java. When communicating between a .NET client and .NET
server this property must be set to the same value on both sides.

Type: integer [1]2]3]
Default value: 1
XML:
<interop jvmType="value” />

Note that the marshaling format for various data types evolves over time as
the JDK changes. In order for VisiBroker for .NET to be able to write such
changing data types, this flag can be used to indicate which type of VM you
are inter-operating with.

Currently there are three valid setting for this flag:

1 A value of 1 indicates that you are using a version 1.1, 1.2 or 1.3 JVM.
2 A value of 2 indicates that you are using a version 1.4.0 or 1.4.1 JVM
3 A value of 3 indicates that you are using a version 1.4.2 or later JVM.

The main difference between JVM Type 1 and 2 is the format for writing an
instance of:

26 VisiBroker for .NET Developer’s Guide

VisiBroker for .NET property descriptions

java.lang.Random
java.math.BigDecimal
java.math.BigInteger

This format changed in JDK version 1.4.0, and if you need to send such data
from a VisiBroker for .NET process to a Java process, you must set this flag
appropriately.

The main difference between JVM Type 2 and 3 is the format for writing an
instance of:

java.util.Vector
java.util.Stack

This format changed in JDK version 1.4.2, and if you need send such data
from a VisiBroker for .NET process to a Java process, you must set this flag
appropriately.

A few notes on JVM interoperability:

* The janeva.interop.jvmType property only affects the write side of
VisiBroker for .NET.

« The VisiBroker for .NET read side always supports all JVMs. So, it is
possible to receive Random, Vector, and Stack instances from J2EE
applications running on any JVM irrespective of the setting for the
jvmType flag. Only when the VisiBroker for .NET process needs to send
such objects to a J2EE application will the jvmType need to be specified.

Example

The following example sets the janeva.interop.jvmType property in a
configuration file.

<visinets>
<interop jvmType="2"/>
</visinet>

Security properties

These properties are used to configure VisiBroker for .NET security support.

janeva.security

Set this property to true to enable VisiBroker for .NET security support.

This feature is disabled by default. When enabled, it adds an additional
performance overhead during a remote invocation.

Type: boolean [true | false]
Default value: false
XML:

<security enabled="value”/>

Note

If the <securitys> section is present in the configuration file, and the
enabled attribute is missing, the default VisiBroker for .NET behavior is to
enable security.

VisiBroker for .NET Developer’'s Guide 27

VisiBroker for .NET property descriptions

janeva.security.username

This property configures the user name for the security identity passed to
the server-side for authentication. This property is used in conjunction with
the janeva.security.password property.

Type: string
Default value: none
XML:

<security><identitys><username>value</username></
identity></securitys>

janeva.security.password

Specifies the password in the clear text format.
Type: string

Default value: none

XML:

<gsecuritys
<identitys>
<password>value</passwords>
</identity>
</security>

janeva.security.realm

This is the authentication realm to be used in conjunction with the user
name and password elements in the security identity configuration. By
default, users belong to the security realm called default. This property
should be set when using an authentication realm other than a realm called
default.

Type: string
Default value: default
XML:

<securitys>
<identitys>
<realms>value</realm>
</identitys>
</securitys>

Jjaneva.security.certificate

This property sets the certificate used for authentication. The expected
value is a string representing the friendly name of the certificate located in
the Windows Certificate Store.

Type: string
Default value: none
XML:

<security><identity><certificate>value</certificate></identity></security>

28 VisiBroker for .NET Developer’s Guide

VisiBroker for .NET property descriptions

Examples

The following example sets the janeva.security.username,
janeva.security.password and janeva.security.realm properties for
the security identity in a configuration file.

<visinets>
<gecurity enabled="true”>
<identity>
<username>admin</username>
<password>foobar</passwords>
<realm>MyRealm</realm>
</identity>
</security>
</visinets>

The following example sets the janeva.security.certificate property
for the security identity in a configuration file.

<visinets>
<gecurity enabled="true”>
<identity>
<certificate>joeshopper</certificate>
</identitys>
</securitys>
</visinet>

Server-side security properties

These properties are used to configure VisiBroker for .NET server-side
security.

janeva.security.server

Set this property to true to enable VisiBroker for .NET server-side security
support.

This feature is disabled by default, as, when enabled, it adds an additional
performance overhead during a remote invocation.

Type: boolean [true | false]
Default value: false
XML:

<securitys>
<server enabled="value”/>
</securitys>

Note

If the <security><servers section is present in the configuration file, and
the enabled attribute is missing, the default VisiBroker for .NET behavior is
to enable server-side security.

VisiBroker for .NET Developer’'s Guide 29

VisiBroker for .NET property descriptions

janeva.security.server.defaultPort

Configures the port to be used for SSL over I11OP.
Type: integer

Default value: none

XML:

<securitys>
<server defaultPort="value”/>
</securitys>

janeva.security.server.certificate

This property specifies the friendly name of the certificate. If a certificate is
specified in this section, then it will be used to identify the server peer of
the SSL connection. Note, that if value for this setting is not provided, the
VisiBroker for .NET runtime will try to use a certificate provided in the
janeva.security.certificate setting. If neither of these settings is
specified, VisiBroker for .NET runtime considers this as a bad configuration
and fails to initialize.

Type: string
Default value: none
XML:

<securitys>
<server>
<certificatesvalue</certificates>
</servers
</security>

Example

The following example sets the server-side security properties in a
configuration file.

<visinet>
<gsecuritys
<server enabled="true” defaultPort=”"15000">
<certificate>Book Store</certificates>
</servers
</securitys>
</visinet>

30 VisiBroker for .NET Developer’'s Guide

VisiBroker for .NET property descriptions

Firewall property

This property is used to enable the VisiBroker for .NET firewall support.

janeva.firewall

Enables support of the high-level firewall gateway such as VisiBroker
Gatekeeper.

This feature is disabled by default, as, when enabled, it adds an additional
performance overhead during a remote invocation.

Type: boolean [true | false]
Default value: false
XML:

<firewall enabled="value”/>

Note

If the <firewalls> section is present in the configuration file, and the
enabled attribute is missing, the default VisiBroker for .NET behavior is to
enable the firewall.

Example

The following example sets the janeva.firewall property in a
configuration file.

<visinet>
<firewall enabled="true”/>
</visinet>

Portable Interceptor property

This property is used to configure the portable interceptor.

janeva.orb.init

Specifies the portable interceptor that needs to be loaded by the ORB. If the
portable interceptor is part of the same assembly containing the main class,
then you can just specify the class name. If the portable interceptor is part
of an assembly outside of the assembly containing the main class, then you
need to specify the strongly-named assembly name. You may specify as
many portable interceptors as you wish.

Type: string
Default value: none
XML:

<orb>
<init type="value”/>
</orb>

VisiBroker for .NET Developer’'s Guide 31

VisiBroker for .NET property descriptions

Example

The following example sets the janeva.orb.init property in a
configuration file.

<visinets>
<orbs>
<init type="MyInterceptor, MyInterceptorAssembly, version=1.2.3.4,
culture=neutral, publicKeyToken=xxxx"/>
<init type="MyInterceptor2”/>
</orb>
</visinets>

VisiBroker Smart Agent properties

These properties are configured when you are using the Smart Agent
(OSAgent) for object registration and lookup.

janeva.agent

This property can be used to disable the Smart Agent.
Type: boolean [true | false]

Default value: false

XML:

<agent enabled="value”/>

janeva.agent.port

This property sets the port used by the Smart Agent.
Type: integer

Default value: 14000

XML:

<agent port="value”/>

janeva.agent.addr

This property specifies the physical location of the Smart Agent, either by IP
address or hostname. If not provided, VisiBroker for .NET will look for any
Smart Agent on the network with the proper port during the ping. Providing
a host address will reduce network traffic, as VisiBroker for .NET will ping
the Smart Agent on the provided host address and port.

Type: string

Default value: none

XML:

<agent addr="value”/>

Example

The following example configuration file sets the janeva.agent

janeva.agent.port and janeva.agent .addr properties.
<visinets>

<agent enabled="true” port="14001" addr="localhost.localdomain.com"/>
</visinets>

32 VisiBroker for .NET Developer’'s Guide

Setting VisiBroker properties

VisiBroker for .NET supports all of the properties originally introduced in the
VisiBroker line of products. Among these properties are the settings used to
fine-tune the firewall support. In a configuration file you can specify the
VisiBroker properties as key-value attributes in the <vbroker> section.

The following example show how to set some VisiBroker GateKeeper
properties in a configuration file.

<visinets>
<firewall enabled="true”/>
<vbroker
vbroker.orb.alwaysProxy="true”
vbroker.orb.gatekeeper.ior="ior:..”
/>

</visinet>

VisiBroker for .NET Developer’'s Guide 33

34 VisiBroker for .NET Developer’'s Guide

Building and deploying
VisiBroker for .NET
applications

This chapter describes the process for building and deploying your
VisiBroker for .NET-powered .NET applications. It contains the following
topics:

« Generating VisiBroker for .NET stubs and skeletons
« Adding references to VisiBroker for .NET runtime libraries

« Deploying VisiBroker for .NET applications

Generating VisiBroker for .NET stubs and skeletons

The J2EE and CORBA technologies define object-level interfaces, and
communication between your .NET applications and server objects is
conducted exclusively through these interfaces. In CORBA these interfaces
are defined in IDL, in J2EE they are defined in Java RMI.

The VisiBroker for .NET java2cs and idl2cs tools convert the interfaces
from Java RMI or IDL into C#. VisiBroker for .NET adds features to the
Microsoft Visual Studio .NET so that you can configure and use these tools
in your IDE projects. You can also use the command line to compile the
interfaces.

Visual Studio
To generate VisiBroker for .NET stubs and skeletons in Visual Studio .NET:

1 Add an IDL, JAR, or EAR to your Visual Studio project.

2 Select the file and confirm the VisiBroker for .NET properties as shown in
Figure 2.

Figure 2 Microsoft Visual Studio .NET VisiBroker for .NET properties

B Janeva
Compiler IDLZcs
Caompiler Arguments -gervant
Campiler Arqument: Behavior Append to default
Qutput Filename Bank.cs

For an IDL file the compiler should be set to IDL2cs. A JAR or EAR file
should use the Java2cs compiler. You can add compiler arguments and
rename the output file in the properties dialog.

Important:

If you are generating the server skeleton code be sure to add the
-servant compiler flag to the compiler arguments.

3 To compile just the interface file, right-click the file in the Solution
Explorer and select Build and Browse.

VisiBroker for .NET Developer’'s Guide 35

Adding references to VisiBroker for .NET runtime libraries

If the compile is successful, it should generate a C# file and add it to your
project.

command line

To use the compilers at the command line, make sure that the tools are
available in your path so that it can be run from the command prompt. The
compilers are located in the bin directory of the VisiBroker for .NET
installation directory. To test whether the compilers are in your path, open a
command prompt and type idl2cs. You should get a listing of compiler
switches.

If you did not add it during the installation process, you can add idl2cs to
your path from the command prompt by typing:

prompt> set PATH=<VisiBroker Home>\VisBroker.NET\bin;%$PATH%

Once you've confirmed that the compilers are in your path, you can use
them:

prompt> idl2cs Example.idl

If the compile is successful, it generates a C# file.

Adding references to VisiBroker for .NET runtime

libraries

In order to take advantage of the VisiBroker for .NET runtime, applications
must refer to the VisiBroker for .NET DLLs. The following sections describe
how to add references to the VisiBroker for .NET runtime libraries in your
applications.

Visual Studio

To add references to the VisiBroker for .NET runtime libraries in Visual
Studio .NET:

1 Right-click the References node for your application in the Solution
Explorer.

2 Select Add Reference.

36 VisiBroker for .NET Developer’'s Guide

Deploying VisiBroker for .NET applications

Figure 3 Microsoft Visual Studio .NET Add Reference dialog

Add Reference x|

MET |I:EIM IF'n:uiectsI

Browse. . |
Component Mame | Wersion | Fath | -
Accessibility. dll 1.0.3300.0 CAWINM T Microzoft METWFra.. Select |
adodb 7033000 C:\Program Files\Microsaft ME... —
Cuztornbd arshalers 1.0.3300.0 CAWINM T Microzoft METWFra..
ervdte 7033000 CAWINM T Microzoft METWFra..
extenzibility 7033000 C:\Program Files\Microsaft Vis. .
|IEExecRemote 1.0.3300.0 CAWINM T Microzoft METWFra..
IEH ozt 1.0.3300.0 CAWINM T Microzoft METWFra..
IIEHost 1.0.3300.0 CAWINM T Microzoft METWFra..
|Sprmtrapper 33000 C:Wa MM T Wicrozoft MET
| anera Buntine 0.5 C:Program Fil I f
Janeva Services 6005 C:\Program Files\Microsaft Vis. .
t ananed CH Canmniler FNA3000 CAMAMM T SMicrsaft METSFra LI

Selected|Famporerts:

Component Mame | Type | Source | HEmayeE |

Wk Cancel Help

3 In the .NET tab select the appropriate VisiBroker for .NET reference and
click Select.

If you are building a client application select only the VisiBroker for .NET
Runtime reference. If you are building a server application, select both
the VisiBroker for .NET Runtime and VisiBroker for .NET Services
references.

4 Click OK.

If you selected the VisiBroker for .NET Runtime reference, the

Borland.Janeva.Runtime should appear in your references list. If you

selected the VisiBroker for .NET Services reference, the

Borland.Janeva.Services should appear in your references list.
command line

To add the reference to the VisiBroker for .NET runtime library at compile
time, invoke the C# command line compiler on the C# source code,
including Borland.Janeva.Runtime.dll or Borland.Janeva.Services.dll as a
reference.

prompt> csc /r:Borland.Janeva.Runtime.dll Client.cs

Deploying VisiBroker for .NET applications

To deploy applications using the VisiBroker for .NET technology you will
need to include the following items:

« Microsoft .NET Framework Redistributable Package
 VisiBroker for .NET runtime libraries

« VisiBroker for .NET deployment license key

VisiBroker for .NET Developer’'s Guide 37

Deploying VisiBroker for .NET applications

Microsoft .NET Framework Redistributable
Package

VisiBroker for .NET is a .NET product. As such, it requires the .NET
Framework Redistributable Package for execution, which is available as a
free download from the Microsoft Web site, or it may be included with your
IDE or operating system.

VisiBroker for .NET runtime libraries

For deployment, VisiBroker for .NET supports client applications on the front
end or ASP.NET server applications. You must install the following
VisiBroker for .NET runtime libraries on each machine that runs the
VisiBroker for .NET-powered applications.

« Borland.Janeva.Runtime.dll
« Borland.Janeva.Runtime.Private.dll

The following two need to be installed only if services such as security,
firewall, or transactions are being used:

« Borland.Janeva.Services.dll
« Borland.Janeva.Services.Private.dll

Depending on the application server being used, you will need to install one
or more of the following:

« Borland.Janeva.[BES|Oracle|WebLogic|WebSphere].dll
You can install them in one of two ways:

« Install the VisiBroker for .NET runtime libraries on the target machine
using the VisiBroker CD

« Package the runtime libraries from your VisiBroker for .NET development
installation in an application setup program

Clients (that make use of the VisiBroker for .NET runtime) on the same host
can share the VisiBroker for .NET runtime libraries if you install them in the
GAC.

VisiBroker for .NET deployment license key

The VisiBroker for .NET deployment license key is installed in the location
<install-dir>\VisiNet\client.slip. You can use the license in one of
three ways:

* Include the license as an embedded resource

« Copy the license to the application’s virtual root (for ASP.NET
deployment)

« Point to the license file location in the application configuration file

Important

Refer to your license agreement to determine what constraints exist on the
number and types of machines on which you can use your deployment
license.

38 VisiBroker for .NET Developer’'s Guide

Deploying VisiBroker for .NET applications

Including the license as an embedded resource

The following procedures describe the steps to include the VisiBroker for
.NET deployment license as an embedded resource in your application using
Microsoft Visual Studio .NET.

To embed aresource using Visual Studio .NET:

1 Copy the license file (client.slip or server.slip) from the License directory
on the VisiBroker deployment CD-ROM to your project directory.

Rename the SLIP file to borland.slip.
Click Show All Files in the Solution Explorer.
Right-click the license file, and select Include In Project.

Right-click the license file, and select Properties.

o g b~ WN

Change the Build Action property to Embedded Resource.

Copying the license to the application virtual root

To include the VisiBroker for .NET deployment license in the application root
of an ASP.NET server application:

1 Copy the license file (client.slip or server.slip) from <install-dirs>\
VisiNet\ directory to the application’s root installation directory.

2 Rename the SLIP file to borland.slip.

Modifying the application configuration file

To include the location of the VisiBroker for .NET deployment license in the
application configuration file:

1 Copy the license file (client.slip or server.slip) from the License directory
on the VisiBroker deployment CD-ROM to a directory on your network.

2 Modify the XML to include the <license> element as shown in the
following example.

<?xml version="1.0" encoding="utf-8" ?>
<configurations>
<configSections>
<section name="visinet” type="Janeva.Settings, Borland.Janeva.Runtime"/>
</configSections
<visinets>
<license dir="C:\Program Files\Borland\Janeva”/>
</visinet>
</configuration>

The <license> dir value should be the absolute or relative path to the
file containing the Micro Focus license key.

VisiBroker for .NET Developer’'s Guide 39

40 VisiBroker for .NET Developer’'s Guide

Developing VisiBroker for
.NET Remoting servers

This chapter explains the process for developing a VisiBroker for .NET
Remoting server, and in particular it discusses how to implement a
MarshalByRefObject object in VisiBroker for .NET.

Introduction

This section introduces the concepts of .NET Remoting server and a
VisiBroker for .NET server.

About .NET Remoting

MarshalByRefObject objects are remote objects that run on the server
and accept method calls from clients. .NET Remoting
MarshalByRefObjects can be categorized into two groups:

« Server-activated objects (SAOs)
« Client-activated objects (CAOs)

SAOs can be marked as either Singleton or SingleCall. In the first case, one
instance serves requests of all clients in a multi-threaded fashion. When
using SAOs in SingleCall mode, a new object will be created for each
request and destroyed afterwards. Both Singleton and SingleCall SAO
modes are supported in VisiBroker for .NET. In addition to that, VisiBroker
for .NET supports transient MarshalByRefObject objects that run either
on a server, or on a client for server callback.

VisiBroker for .NET Developer’'s Guide 41

Introduction

About VisiBroker for .NET Server

A VisiBroker for .NET server always starts from an IDL interface definition.
An IDL interface defines the business logic that both the client and the
server abide by. For example, the following example IDL file defines three
interfaces:

+ an AccountManager interface that follows the factory design pattern with
an open method for opening new bank accounts.

+ an Account interface that has operations to query the balance, as well as
to do account debit and credit.

+ a Callback interface for banking event notification.

// Bank.idl
module Bank {
interface Callback ({
void notify(in string message) ;
Vi
interface Account ({
float balance() ;
void credit (in float amount) ;
void debit (in float amount) ;

}i
interface AccountManager {
Account open(in float balance, in Callback callback) ;
Vi
}i

A server will implement both the AccountManager interface and the
Account interface. The client will provide the implementation for the
Callback interface so that the bank server can call back to notify the client
about all of the banking events.

The next two sections will walk through how to write the Bank server in
.NET Remoting style, as well as how to add the callback implementation to
the .NET Remoting style client.

42 VisiBroker for .NET Developer’'s Guide

Developing a server in .NET Remoting style

Developing a server in .NET Remoting style

A server needs to implement the business logic. For the bank example, the
bank server needs to provide implementation for both the AccountManager
interface and the Account interface. The following code snippet shows the
implementation of the AccountManager interface and the Account
interface at the server side:

namespace Server
public class AccountImpl : MarshalByRefObject, Bank.Account {

{

}

}

private float _balance;
private Callback _callback;
internal AccountImpl (float balance, Callback callback) {
_balance = balance;
_callback = callback;
_callback.Notify("Created account with $" + _balance);
}
public float Balance() {
_callback.Notify ("Current balance is $" + _balance);
return balance;
}
public void Credit (float amount)
_callback.Notify ("Crediting account with $" + amount) ;
_balance += amount;
}
public void Debit (float amount) {
if (amount <= balance) {
_callback.Notify ("Debiting account by $" + amount) ;
_balance -= amount;
}
else {
_callback.Notify ("Insufficient funds to debit $" + amount) ;

}
}

public class AccountManagerImpl : MarshalByRefObject, Bank.AccountManager

}

public AccountManagerImpl () {
Console.WriteLine ("AccountManager created on : " +
System.DateTime.UtcNow.ToLongTimeString()) ;
}
public Account Open(float balance, Callback callback) {
Console.WriteLine ("Opening a new account with balance = $" + balance) ;
return new AccountImpl (balance, callback);

}

The Open () method of the AccountManagerImpl class takes in an initial
balance and a Callback object reference that is passed in by the client,
then creates a new instance of AccountImpl class.

The Balance () method of the AccountImpl class simply returns the
balance to the client; the Credit () method credits the passed in amount to
the account balance; the Debit () method debits the requested amount
from the account balance. All of these three account operation events are
notified to the client via the Callback object.

Now that the interface implementation is completed, the next step for the
server is to register the AccountManagerImpl object either as a well
known SingleCall service object or as a well known Singleton object to

VisiBroker for .NET Developer’'s Guide 43

Developing a server in .NET Remoting style

<configurations

the .NET Remoting system. AccountImpl objects are transient as they do
not outlive the process that created them.

Singleton object configuration

When a server implementation object is configured as a Singleton well
known service type, only one instance of the server implementation object
is created. It is this singleton instance that serves all requests coming from
all clients. The configuration can be done either explicitly using .NET
RemotingConfiguration APIs, or implicitly using a .NET Remoting
configuration file.

Explicit registration

Singleton server implementation objects are explicitly registered to the
Remoting system at the server side using the following statement:

RemotingConfiguration.RegisterWellKnownServiceType (
typeof (<TheServerImplClasss>),
“<objectURI>", WellKnownObjectMode.Singleton) ;

For the bank example, the following code snippet explicitly registers an
instance of AccountManagerImpl class as a well known Singleton service
type with AccountManager.iiop as its end point URI:

RemotingConfiguration.RegisterWellKnownServiceType (typeof (
Server .AccountManagerImpl) , “AccountManager.iiop”,
WellKnownObjectMode.Singleton) ;

Implicit registration

Implicit registration of a server implementation object as a well known
Singleton service type is done through the <services property in the
.NET Remoting configuration file as shown in the following example:

<configurations
<system.runtime.remoting>
<applications>
<services>
<wellknown mode="Singleton"
type="<namespace>.<implclassname>, <assembly>"
objectUri="<objectURI>"/>
</services>
</application>
</system.runtime.remoting>
</configuration>

and a call to .NET RemotingConfiguration to load in the configuration
file:

RemotingConfiguration.Configure (“<configfile>");

For the bank example, the complete configuration file of the server is shown
below:

<configSectionss>

<section name="visinet" type="Janeva.Settings, Borland.Janeva.Runtime"/>
</configSections>

<visinets>

<agent port="24300" addr="localhost"/>
<server defaultPort="10000">

<remoting

enabled="true"/>

44 VisiBroker for .NET Developer’'s Guide

Developing a server in .NET Remoting style

</servers>
</visinet>
<gystem.runtime.remoting>
<application name="Server"s>
<channelss>
<channel type="Janeva.Remoting.IiopChannel,
Borland.Janeva.Runtime"/>
</channels>
<services>
<wellknown mode="Singleton"
type="Server.AccountManagerImpl, Server"
objectUri="AccountManager.iiop"/>
</service>
</application>
</system.runtime.remoting>
<janeva.runtime.remotings>
<wellknown objectUri="AccountManager.iiop" jndi="a/b/c"/>
</janeva.runtime.remoting>
</configurations>

For more information on Janeva.Remoting.IiopChannel type and its
properties, see “Specifying the Remoting channel”.

SingleCall object configuration

When a server object is configured as a well known SingleCall object, the
server will create one instance per each client invocation of a method,
execute the method and then destroy the object again. Similar to the
Singleton mode, the configuration can be done either explicitly using .NET
RemotingConfiguration APIs, or implicitly using .NET Remoting
configuration file.

Explicit registration
To register a SingleCall server implementation object explicitly, use the
following codes:

RemotingConfiguration.RegisterWellKnownServiceType (typeof (
<TheServerImplClasss>),
“<objectURI>", WellKnownObjectMode.SingleCall) ;

VisiBroker for .NET Developer’'s Guide 45

Developing a server in .NET Remoting style

Implicit registration

To register a SingleCall server implementation object implicitly, change
the <wellknowns> property’s mode attribute to be SingleCall in the .NET
Remoting configuration file:

<configurations
<configSections>
<section name="visinet" type="Janeva.Settings, Borland.Janeva.Runtime"/>
</configSections>
<visinets>
<agent port="24300" addr="localhost"/>
<server defaultPort="10000">
<remoting enabled="true"/>
</server>
</visinets>
<system.runtime.remoting>
<applications>
<gservices
<wellknown mode="SingleCall"
type="<namespace>.<implclassname>, <assembly>"
objectUri="<objectURI>"/>
</services>
</application>
</system.runtime.remoting>
</configuration>
If you compare the output of the bank server example between Singleton
and SingleCall mode, you’ll notice that in Singleton mode, the
AccountManagerImpl class constructor is invoked only once no matter how
many times a client tries to invoke the open method. While in SingleCall
mode, the constructor is invoked once every time when the client invokes
the open method.

46 VisiBroker for .NET Developer’'s Guide

Adding callbacks to a VisiBroker for .NET Remoting

client

using System;

Adding callback objects to a VisiBroker for .NET remoting client is straight
forward: implement the callback interface defined in the IDL file, then
create an instance of the callback object and pass it as object reference to a
server invocation method. Callback objects are transient objects in
VisiBroker for .NET.

The following code listing shows a complete client implementation of the
bank example:

using System.Runtime.Remoting;

using Bank;

namespace Client {

public class CallbackImpl : MarshalByRefObject, Callback {
public void Notify(string message) {
Console.WriteLine (" Callback: " + message) ;

}

public class Client {
static void Main(string[] args) {

try {

RemotingConfiguration.Configure ("Client.config") ;
AccountManager manager = new AccountManagerRemotingProxy () ;
Callback callback = new CallbackImpl () ;

Account

Console.
Console.

account

Console.
Console.
account.
Console.
Console.
account.
Console.

}

account = manager.Open (1000, callback);

WriteLine ("Balance = $" + account.Balance()) ;

WriteLine ("Withdrawing $500") ;

.Debit (500) ;

WriteLine ("balance = $" + account.Balance()) ;
(

WriteLine ("Depositing $100") ;
Credit (100) ;

WriteLine ("Balance = $" + account.Balance()) ;
WriteLine ("Withdrawing $700") ;

Debit (700) ;

WriteLine ("Balance = $" + account.Balance()) ;

catch (Exception e) {

Console.

}

WriteLine (e) ;

Console.WriteLine ("Press enter key to stop the client...");
Console.ReadLine () ;

VisiBroker for .NET Developer’'s Guide 47

The .NET remoting configuration file Client.config used by the bank
client is listed below:

<configurations>
<system.runtime.remoting>
<application name="Client">
<channelss>
<channel type="Janeva.Remoting.IiopChannel,
Borland.Janeva.Runtime"/>
</channelss>
<clients>
<wellknown type="Bank.AccountManagerRemotingProxy, Client"
url="janeva:corbaloc::localhost:10000/AccountManager.iiop"/>
</client>
</application>
</system.runtime.remoting>
</configuration>

Refer to “.NET Remoting configuration” for details on how write the Remoting
section of the VisiBroker for .NET Remoting configuration file. See
“Configuring properties” for information about configuring VisiBroker for .NET
properties in a configuration file.

Properties

By default, VisiBroker for .NET Remoting server and callback feature is
turned off. You will need to enable it explicitly for developing a VisiBroker
for .NET Remoting server and/or add callback objects into your Remoting
client. This is done by setting the janeva.server.remoting property to
true. See “Configuring properties” for information about configuring VisiBroker
for .NET properties in a configuration file.

48 VisiBroker for .NET Developer’'s Guide

VisiBroker

Using hints and custom
marshaling

This chapter explains how to use hints to control java2cs code generation
for valuetypes in VisiBroker for .NET.

VisiBroker for .NET has a powerful mechanism that lets the user customize
the code generation for Java valuetypes. Valuetypes are value classes that
are implemented in Java (typically extending java.io.Serializable
directly or indirectly). These classes have state and are intended to be
marshaled over the wire as state.

for .NET code generation—an example

In order to fully understand the use of hints and how they affect java2cs
code generation, the following example shows a simple Java type called
User.

public class User implements java.io.Serializable {
public String name;
private String password;
public User (String name, String password) {
this.name = name;
this.password = password;

}
}

Obviously this example class is not realistic as it does not allow access to
initialize or in any way use the private state of this object. However, we are
skipping a real implementation of this object (with appropriate constructors
and methods) for the sake of simplicity. For this discussion methods in Java
classes are irrelevant.

Note:

We are generating a C# class corresponding to the Java class. The methods
in Java classes are irrelevant because porting the methods would involve
essentially reverse engineering the Java class, and so the porting of
methods is not supported. If you would like to have the same or similar
methods in your C# class corresponding to the Java version of your
valuetype, you will have to implement the C# equivalent yourself. Later
sections in this document will explain how that is done.

VisiBroker for .NET Developer’'s Guide 49

VisiBroker for .NET code generation—an example

The important sections of the C# code that is generated from the example
Java class, User, are shown below.

[System.Serializable] public class User
private string _Name;

public virtual string Name {
get { return this. Name; }
set { this. Name = value; }

}

private string Password;

public virtual string Password
get { return this. Password; }
set { this. Password = value; }

}

// Other common object methods omitted

}

The C# type User represents the Java class User. As is apparent, this is
incorrect in a few ways.

It provides public accessors to the private field (password, Password in
C#). This will happen regardless of whether the Java type provides the
same accessors or not. As mentioned, the compiler will not look at the
Java methods.

» This class demotes the access modifier of the field name (_Name in C#)
from public to private, but a public property is provided for access.

« The C# object has no constructors or methods generated from the Java
type.

In short, this class is not very usable. However, it provides you a starting
point from which you can build your real valuetype. You can cut this code
from the generated code, add it to your source, and add all the useful
constructors and methods. We will show you later how to avoid generating
this class again, and instead use your version.

ValueFactory class

Now let us look at the generated ValueFactory class for User. This class is
responsible for creating and initializing an instance of the C# type User
when it reads an instance of the Java class User from the network. it is also
responsible for writing the correct data to the network when you pass an
instance of the C# class User to a remote server. It is important to note
that the ValueFactory is associated with the corresponding Java type. That
is, each distinct Java type will have a distinct factory. This allows more than
one Java type to map to a given C# type.

50 VisiBroker for .NET Developer’'s Guide

VisiBroker for .NET code generation—an example

ValueFactory methods

The ValueFactory class has many methods, but the following example
highlights the most significant ones that you will need to know.

public class UserValueFactory : CORBA.ValueFactory {

}

public virtual CORBA.TypeCode GetTypeCode () {
return UserHelper.GetTypeCode () ;
}
public virtual System.Type GetValueType() {
return typeof (User) ;
}
public virtual User CreateObject()
return new User () ;
}
public virtual void InitObject (UserValueData src data, User dst object) {
dst object.Name = src_data.Name;
dst_object.Password = src_data.Password;
}
public virtual void InitData (User src object, UserValueData dst data) {
dst _data.Name = src_object.Name;
dst data.Password = src_object.Password;

}

Note that UserValueData is a class that contains as public data members
every instance member of the User class as shown in the following
example.

public class UserValueData ({
public string Name;
public string Password;

}

The following table describes the ValueFactory methods:

Method name Description

GetValueType Returns the type of the class that maps to the Java type
MyValue.

CreateObject Returns a new instance of the C# type corresponding to the
Java type MyValue

InitObject Used when reading a Java MyValue. The C# type created by
CreateObject is passed to it as well as the ValueData class.
When the call to InitObject is made, the data for MyValue
has already been unmarshaled into the ValueData class. The
InitObject merely assigns the fields from the ValueData
class to the C# MyValue class. We will see the usefulness of
this pattern later.

InitData Used when writing the C# MyValue to the stream. This
method merely transfers the state of the members of the C#
MyValue to the ValueData class. The infrastructure will then
marshal the state from the ValueData class.

Based on the above table, you see that the ValueData class represents the
data that is marshaled on the wire, irrespective of how the data is stored or
maintained in the C# type.

Notice that the ValueFactory created the object in one step
(CreateObject) and read the data in another step (InitObject). There is
a good reason for this. When unmarshaling or marshaling a type that is
inherited from other stateful types, each type's factory is normally
responsible for marshaling and unmarshaling only the state at its level in
the hierarchy. To achieve this, the infrastructure will first instantiate an

VisiBroker for .NET Developer’'s Guide 51

An introduction to hints

instance of the type that is being unmarshaled, but will pass it to the factory
corresponding to each type in the hierarchy, starting from the base, to
unmarshal the relevant state and work its way up the hierarchy. When
writing, the same process is repeated, this time using the InitData
methods.

An introduction to hints

The hints file is an XML file that provides hints to the java2cs compiler
allowing the user to customize the code that is generated.

The following is an example of a simple hints.xml file.

<?xml version="1.0" ?>
<hints>
<hint>
<java-class>User</java-class>
<cs-impl-type>UserData</cs-impl-type>
</hint>
</hints>

To run the java2cs compiler with the above hints file, enter the following at
the command line:

java2cs -hint file hints.xml -o User.cs User

Supplying the implementation of a value type

Running the compiler with the following hint will cause the compiler to stop
generating the User class.

<?xml version="1.0" ?>
<hints>
<hint>
<java-class>User</java-class>
<cs-impl-type>User</cs-impl-type>
</hint>
</hints>

You can now write your implementation of the User class as desired and
compile it with the generated code.

52 VisiBroker for .NET Developer’'s Guide

An introduction to hints

Replacing the default implementation with a
custom implementation

Running the compiler with the following hint will change the name of the C#
type from User to UserData.

<?xXml version="1.0" ?>
<hints>
<hint>
<java-class>User</java-class>
<cs-impl-type>UserData</cs-impl-type>
</hint>
</hintss>

Using the above hint, the compiler no longer generates the User class or
the UserData class. However, all of the other classes are generated with
the assumption that you will implement the UserData class.

Notice that after generating code using the example hints file, the
ValueFactory no longer refers to the User class. Rather, it refers to the
UserData class

public virtual System.Type GetValueType() ({
return typeof (UserData) ;
}

public virtual UserData CreateObject () {
return new UserData() ;

public virtual void InitObject (UserValueData src_data,
UserData dst object) {
dst object.Name = src_data.Name;
dst object.Password = src_data.Password;

}

public virtual void InitData(UserData src_object,
UserValueData dst data) {
dst data.Name = src_object.Name;
dst data.Password = src_object.Password;

}

VisiBroker for .NET Developer’'s Guide 53

An introduction to hints

You could now write a UserData class (as shown in the following example)

and use it with the generated code.

[System.Serializable] public class UserData

private string _Name;
private string Password;

public UserData() {

}

public UserData (string name, string password)

_Name = name;
_Password = password;

}

internal void Init (string name,
_Name = name;
_Password = password;

}

public string Name ({
get {
return Name;
}
}

public string Password
get{
return _Password;
}
}
}

string password)

You cannot use this class as is. In order for this class to compile, you will
need to expose visible properties (or fields) to InitObject and InitData
called Name and Password (See the code for InitObject and InitData in

the generated valueFactory class).

To fix this you can either add visible properties or change the field names to
be Name and Password and make them visible to the generated code.

While this is straightforward, you may not want to expose the class fields.
Rather you might want to keep your class as shown above. This means you
need to take over the work of InitObject and InitData and rewrite the

hints file.

<?xml version="1.0" ?>
<hints>
<hint>
<java-class>User</java-class>

<cs-impl-types>UserData</cs-impl-types>

<mode>custom</mode>
</hint>
</hints>

54 VisiBroker for .NET Developer’'s Guide

Mapping interfaces with methods

The only difference between this hint file and the previous one is that the
mode is set to custom. The generated code changes very little. In fact the

only difference is in the InitObject and InitData methods. They are
generated as follows:

public abstract class UserValueFactory
CORBA.ValueFactory {

public abstract void InitObject (UserValueData src_data,
UserData dst object) ;

public abstract void InitData (UserData src_ object,
UserValueData dst_data) ;

Notice that the class and these methods are no longer concrete. You will
need to provide a factory for the User type now, but it is a trivial
implementation:

public class UserFactory: UserValueFactory {

public override void InitObject (UserValueData src_data,
UserData dst_object) {
dst _object.Init (src_data.Name, src_data.Password) ;

}

public override void InitData (UserData src_object,
UserValueData dst data) {
dst data.Name = src_object.Name;
dst data.Password = src_object.Password;

}
}

This ValueFactory will automatically be registered as the ValueFactory for
the User Java class as long as one of the Helper classes in the generated
code is used. To explicitly register a ValueFactory you can either call
ORB.RegisterValueFactory (), or you can call

ORB.RegisterAssembly () which will register all of the factories in the
provided assembly.

Mapping interfaces with methods

Consider the Java interface:

public interface Principal {
public String getUserName () ;
}

and the Java class:

public class User implements Principal,
java.io.Serializable ({

private String name;

private String password;

public User (String name, String password)
this.name = name;
this.password = password;

}

public String getUserName () {
return name;

}
}

VisiBroker for .NET Developer’'s Guide 55

Mapping interfaces with methods

Running the compiler on this interface and class, without hints for both the
interface and the class, will result in the following warning:

java2cs: (warning)The type Principal requires a mapping
hint to be fully wvalid (e.g., method signatures will be
ignored) .

java2cs: (warning)The type User requires a mapping hint to
be fully wvalid (e.g., method signatures will be ignored).

This warning indicates that the interface (which is not a remote interface)
has methods that are ignored by the java2cs compiler. The compiler
ignores these methods as it is not possible for the compiler to map methods
that are not designed to be invoked remotely. This is due to the fact that
the parameters that such methods take may be valid only in the local
contexts. If you look at the generated code, the compiler will generate the
following code for Principal:

public interface Principal {
}

and the following code for User:

[System.Serializable] public class User : Principal {

}

The compiler ignored the generating the code for the getUserName method.
The compiler warnings suggest that this is most likely not what is expected,
and therefore you must use a hint to map this to an appropriate .NET
interface.

Let's say that we use the following hint file (note that we are not providing a
hint for User):

<hints>
<hint>
<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-types>
</hint>
</hintss>

This maps the interface Principle to the C# interface IPrinciple (which
the compiler will not generate). Let us say we also add the

IAuthenticatable to our .NET code as follows (note that you could use an
existing interface, such as System.Security.Principals.IPrincipal):

public interface IPrincipal {
string GetName () ;

}

Now, this works better. The generated User extends IPrincipal:

[System.Serializable] public class User : IPrincipal ({

}

The compiler would have still generated the warning:

java2cs: (warning)The type User requires a mapping hint to
be fully wvalid (e.g., method signatures will be ignored).

Now it is obvious why this warning is generated. The User class that is
generated cannot possibly know that the IPrincipal has a method called
GetName that needs to be implemented. And even if it did, it could not
possibly know how the method was implemented.

56 VisiBroker for .NET Developer’'s Guide

Using signature type to hide implementation details

The rule here, therefore, is that whenever the compiler generates a value
class, which it knows contains methods that need to be implemented, it will
generate the warning.

Using signhature type to hide implementation details

In the above case the User type implemented an interface. There are many
cases where we develop classes that implement interfaces but our classes
are private implementations that are never exposed to the user. For
example, consider an Iterator of any collection. While the Iterator
interface is public, all implementations of it are typically hidden and are
never exposed to the user.

For example, if User were one such type, you do not want your
ValueFactories actually exposing the type in its signatures because
ValueFactories are public classes. To avoid this you can use the signature
type in the hint to control what is exposed by the ValueFactory.

The following hint:

<hints>
<hint>
<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>
</hint>
<hint>
<java-class>User</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>
<cs-impl-types>UserData</cs-impl-type>
<mode>custom</mode>
</hint>
</hints>

generates the following ValueFactory:
public abstract class UserValueFactory : CORBA.ValueFactory ({

public virtual System.Type GetValueType()
return typeof (UserData) ;

}

public virtual IPrincipal CreateObject () {
return new UserData() ;

}

public abstract void InitObject (UserValueData src_data, IPrincipal
dst _object) ;

public abstract void InitData (IPrincipal src_object, UserValueData
dst_data);

Note that while the implementation that the factory uses is UserData, all of
the signatures use IPrincipal.

VisiBroker for .NET Developer’'s Guide 57

Explicit factory code

Explicit factory code

Sometimes it is just convenient to write all the factory code yourself. To do
this, use the following hints:

<hints>
<hint>
<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>
</hint>
<hint>
<java-class>User</java-class>
<cs-sig-type>UserData</cs-sig-type>
<mode>custom</mode>
</hint>
</hintss>

The only changes from the previously generated code are the
GetValueType and CreateObject methods which are also abstract now.

public abstract System.Type GetValueType () ;
public abstract UserData CreateObject () ;

The key here is that cs-sig-type element is used in the hint rather than
cs-impl-type. This instructs the compiler to exclude all references to the
implementation class.

Notice that you can still tweak the other aspects of the hints to change
other code generation aspects. For example the following hint:

<hints>
<hint>
<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>
</hint>
<hint>
<java-class>User</java-class>
<cs-sig-type>UserData</cs-sig-type>
</hint>
</hintss>

still results in the InitObject and InitData methods being generated as
shown below:

public virtual void InitObject (UserValueData src_data,
UserData dst object) {
dst object.Name = src_data.Name;
dst object.Password = src_data.Password;

}

public virtual void InitData(UserData src_object,
UserValueData dst data) {
dst data.Name = src_object.Name;
dst data.Password = src_object.Password;

}

58 VisiBroker for .NET Developer’'s Guide

Immutables

Immmutables

public abstract

Consider the earlier example of the UserData class with one slight
modification. In the following example we removed the init method and
the default void constructor:

[System.Serializable] public class UserData

private string Name;
private string Password;

public UserData (String name, string password) {
_Name = name;
_Password = password;

}

public string Name {
get {
return Name;

}

public string Password
get{
return _Password;

}
}

This is an example of a class that cannot be created without initializing its
fields. Also notice that once created there is no way to initialize its fields.
There are no methods to set the Name and Password fields, but here we are
reading the state of the object from the network and we need to set the
object's state to the exact values we read.

However, our ValueFactory creates the object in the CreateObject method
and initializes it in another step (InitObject). This obviously will not work
for us. To support this case, we provide the immutable mode in the hint.

Using this hint:

<hints>
<hint>
<java-class>Principal</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>
</hint>
<hint>
<java-class>User</java-class>
<cs-sig-type>IPrincipal</cs-sig-type>
<cs-impl-typesUserData</cs-impl-types>
<mode>immutable</mode>
</hint>
</hintss>

results in the following signature for InitObject:
IPrincipal InitObject (UserValueData src_data) ;
Also, the CreateObject call is no longer generated (abstract or otherwise).

Notice here how the InitObject returns an IPrincipal rather than
receiving one as argument. This allows you to write a ValueFactory that
creates a UserData with the value data that has already been unmarshaled
and return it.

VisiBroker for .NET Developer’'s Guide 59

Custom marshaling

Such a ValueFactory might look like this:
public class UserFactory: UserValueFactory ({

public override IPrincipal InitObject (UserValueData src_data) ;
return new UserData (src_data.Name, src_data.Password) ;

}

public override void InitData(UserData src object, UserValueData dst data)
dst data.Name = src_object.Name;
dst data.Password = src_object.Password;

}
}

Be aware that with the immutable mode you are responsible for using all
the state in the data object (which will include all the data for all of the base
classes as well) to initialize your immutable object as appropriate.

Custom marshaling

When writing passwords to the network you may want to encrypt them to
prevent passwords from being sent in the clear. To do this you should have
the Java class use custom marshaling.

Consider the following version of the Java User class:

public class User implements Principal,
java.io.Serializable {

private String name;

transient private String password;

public User (String name, String password)
this.name = name;
this.password = password;

}

public String getUserName () {
return name;

}

private void writeObject (java.io.ObjectOutputStream s)
throws java.io.IOException {
s.defaultWriteObject () ;
s.writeObject (encrypt (password)) ;

}

private void readObject (java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject () ;
password = encrypt ((String) s.readObject());

}

private String encrypt (String val)
char[] result = new char([val.length()];
for (int 1 = 0; i < val.length(); i++) {
result[i] = (char) (((byte) val.charAt(i))
}

return new String(result) ;

}

A

0x77) ;

}

This is a custom marshaled Java Serializable class. The default code
generation for this class (with no hints) shows some changes. The value
class is no longer generated. This is because the compiler knows that your

60 VisiBroker for .NET Developer’s Guide

Custom marshaling

class is custom marshaled, so it cannot possibly generate the appropriate
fields in your class. However, it does know to generate the ValueData class,
as that represents the fields (the non-transient fields) that would be
marshaled if the class used default marshaling. As show in the code sample
above, the class also marshals some additional data.

The ValueData is generated as follows:

public class UserValueData {
public string Name;

}

The ValueFactory is generated as follows:
public abstract System.Type GetValueType () ;
public abstract User CreateObject () ;

public abstract void ReadObject (UserValueData data,
CORBA.ObjectInputStream input,
User obj);

public abstract void WriteObject (User obj,
UserValueData data,
CORBA.ObjectOutputStream output) ;

public static void DefaultReadValueData (UserValueData
data,
CORBA.ObjectInputStream input) {

public static void WriteValueData (UserValueData data,
CORBA.ObjectOutputStream output) {

}

Notice that the GetvalueType and CreateObject methods are now
abstract. The compiler requires you to provide the implementation for these
as it does not know the name of your C# class. Second, note that you no
longer have the InitObject and InitData methods. Instead, you have
two new methods: ReadObject and WriteObject. You will have to
implement these methods to provide the appropriate custom marshaling
logic. As you can see, the ValueData object and the value class are still
passed to the method, but in addition a Stream is also passed. This allows
the custom marshaling logic to be written. And finally some additional
methods (DefaultReadvalueData and WriteValueData) are generated to
allow the user to read or write default marshaled data.

In Java, a common use of custom marshaling is to lazy-compute serializable
fields at the time of marshaling and to lazy-initialize transient fields at the
time of unmarshaling. The actual marshaling remains identical. Sometimes,
the custom marshaling reads and writes the default fields but adds some
additional data at the end of the stream.

A sample value factory for the above Java class is shown below, using this
implementation of UserData.

[System.Serializable] public class UserData {

private string Name;
private string Password;

public UserData() {
}

public UserData(string name, string password) {
_Name = name;

VisiBroker for .NET Developer’'s Guide 61

Custom marshaling

_Password = password;

internal Init(string name, string password) {
_Name = name;
_Password = password;

}

public string Name ({
get {
return Name;
}
}

public string Password
get{
return _Password;
}
}
}

The ValueFactory:
public class UserFactory : UserValueFactory ({

public override System.Type GetValueType() {
return typeof (UserData) ;
}

public override UserData CreateObject ()
return new UserData() ;

public string Encrypt (string val)
char[] ersult = new char[val.Length];
for(int i = 0; i < val.Length; i++) {
result[i] = (char) (((byte) wvalli]l * 0x77);

}

return new string(result) ;

public override void ReadObject (UserValueData data,
CORBA.ObjectInputStream input,
User obj) {
DefaultReadValueData (data, input) ;
obj.Init (data.Name, Encrypt (input.ReadString())) ;

}

public override void WriteObject (User obj,
UserValueData data,
CORBA.ObjectOutputStream output) {
data.Name = obj.Name;
DefaultWriteValueData (data, output) ;
output .WriteObject (Encrypt (obj.Password)) ;

}
}

As shown earlier, you may modify the name of the value object and change
the signature that is exposed using the other hint techniques. You may also
write additional data after the DefaultWritevValueData and read the same
addition after the DefaultReadValueData. In addition, calling
DefaultWrite/ReadValueData is not required.

62 VisiBroker for .NET Developer’s Guide

Hints file schema

Hints file schema

The hints file schema is as follows:

<?xml version="1.0"

<xsd:schema

?>

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs1i:schemalocation="http://www.w3.0rg/2001/XMLSchema" >
<xgd:element name="hints">
<xsd:complexTypes>
<xsd:sequence>
<xsd:element name="hint" type="hintType" minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:complexType
<xsd:sequence>
<xsd:element
<xsd:element
<xXsd:element
<xsd:element

</xsd:sequence>

name="hintType" >

name="java-class" type="xsd:string"/>
name="cs-sig-type" type="xsd:string" minOccurs="0"/>
name="cs-impl-type" type="xsd:string" minOccurs="0"/>
name="mode" type="modeType" minOccurs="0"/>

</xsd:complexType>
<xgd:simpleType name="modeType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="automatic"/>
<xsd:enumeration value="custom"/>
<xsd:enumeration value="immutable"/>
</xsd:restrictions>

</xsd:simpleType>

</xsd:schemas>

VisiBroker for .NET Developer’'s Guide 63

One-to-many marshaling precedence

VisiBroker for .NET has a set of built-in value factories, that have a
predetermined precedence. When there is an ambiguity about how to
marshal a particular type, the default behavior is as follows:

// we need a deterministic ordering for value factories, so that the user
// knows how types are marshaled by default. The marshaling preference is
// based on registration order, with highest priority going to the last
// factory registered...

CORBA.ValueFactory[] factories = {

// Lowest priority goes to JDK 1.4 types, since these
// are meaningless to older JDKs...

new J2EE.Factories.LinkedHashMapValueFactory (),

new J2EE.Factories.LinkedHashSetValueFactory(),

// Next in priority are the JDK 1.0 and 1.1 types,

// which are no longer in fashion...

new J2EE.Factories.HashtableValueFactory (),

new J2EE.Factories.PropertiesValueFactory (),

new J2EE.Factories.StackValueFactory (),

new J2EE.Factories.VectorValueFactory (),

// Next, we have the JDK 1.2 types (note that there
// are no relevant JDK 1.3 types)...

// First we have the "less popular" types...

new J2EE.Factories.LinkedListValueFactory (),

new J2EE.Factories.TreeMapValueFactory (),

new J2EE.Factories.TreeSetValueFactory (),

// Then we have the "most popular" types...
new J2EE.Factories.HashMapValueFactory (),
new J2EE.Factories.HashSetValueFactory (),

// And finally ArrayList wins the overall popularity contest!
new J2EE.Factories.ArrayListValueFactory (),

foreach (CORBA.ValueFactory factory in factories) {
orb.RegisterValueFactory (factory) ;

Items lower in the array take precedence over items higher in the array. Of
course, that may not be what you require. In cases where you require a
different precedence, you need to manually override the default behavior.
The simplest way to do this is to register your preferred ValueFactories
explicitly in your main program. If you want java.util.Hashtable to take
precedence over competing types (such as java.util.HashMap), then
your main program would contain:

CORBA.ORB orb = CORBA.ORB.Init();
orb.RegisterValueFactory (J2EE.Util.HashtableValueFactory.GetSingleton()) ;

The ORB.Init is setting up all the default ORB behavior, including doing
the ValueFactory registration shown above. This default has the HashMap
ValueFactory taking precedence over the Hashtable ValueFactory. But
then after initializing the ORB, we explicitly register the Hashtable
ValueFactory, which will cause this to take precedence over all the previous
ValueFactory registrations.

64 VisiBroker for .NET Developer’s Guide

Using Quality of Service

Quality of Service (QoS) utilizes policies to define and manage the
connection between your client applications and the servers to which they
connect.

Understanding Quality of Service

Quality of Service policy management is performed through operations
accessible in the following contexts:

+ The ORB level policies are handled by a locality constrained
PolicyManager, through which you can set Policies and view the current
Policy overrides. Policies set at the ORB level override system defaults.

« Thread level policies are set through PolicyCurrent, which contains
operations for viewing and setting Policy overrides at the thread level.
Policies set at the thread level override system defaults and values set at
the ORB level.

« Object level policies can be applied by accessing the base Object
interface's quality of service operations. Policies applied at the Object
level override system defaults and values set in at the ORB or thread
level.

Setting policies per CORBA object

Use the CORBA.ObjectOperations methods in order to set QoS policies per
CORBA object. To set QoS policies per CORBA object, one needs to cast the
CORBA object to CORBA.ObjectOperations and call the method
SetPolicyOverrides () as shown in the following example.

// Set exclusive connection policy

bool deferBind = true;

Any policyValue = orb.CreatelAny() ;

policyValue.InsertBoolean (deferBind) ;

Policy policies = orb.CreatePolicy (EXCLUSIVE CONNECTION POLICY TYPE.Value,
policyValue) ;

Calc.VisiCalc calc = Calc.VisiCalcHelper.Narrow (
((CORBA.ObjectOperations)objRef) .SetPolicyOverrides (
new Policy [] {orb.CreatePolicy(
QoSExt .EXCLUSIVE CONNECTION POLICY TYPE.Value, policyValue)},
SetOverrideType.SET OVERRIDE)) ;

Policy overrides and effective policies

The effective policy is the policy that would be applied to a request after all applicable
policy overrides have been applied. The effective policy is determined by comparing
the Policy as specified by the IOR with the effective override. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy. If the intersection is empty a CORBA. INV_POLICY exception is raised.

QoS interfaces

The following interfaces are used to get and set QoS policies.

VisiBroker for .NET Developer’'s Guide 65

QoS interfaces

Object

VisiBroker for .NET extends CORBA.Object to provide additional QoS
support as defined in the OMG Messaging specification. This means that
there are two exposed Object interfaces.

Object methods

The CORBA.Object interface contains the following methods used to get
the effective policy and get or set the policy override.

GetClientPolicy
CORBA.Policy GetClientPolicy (int type)

Returns the effective overriding Policy for the object reference. The effective
override is obtained by first checking for an override of the given
PolicyType at the Object scope, then at the Current scope, and finally at
the ORB scope. If no override is present for the requested PolicyType, the
system-dependent default value for that PolicyType is used. Portable
applications are expected to set the desired defaults at the ORB scope since
default Policy values are not specified.

The effective Policy is the one that would be used if a request were made.
This Policy is determined first by obtaining the effective override for the
PolicyType as returned by GetClientPolicy .

The effective override is then compared with the Policy as specified in the
IOR. The effective Policy is the intersection of the values allowed by the
effective override and the IOR-specified Policy. If the intersection is empty,
the system exception INV_POLICY is raised. Otherwise, a Policy with a
value legally within the intersection is returned as the effective Policy. The
absence of a Policy value in the IOR implies that any legal value may be
used. Invoking NonExistent or ValidateConnection_on an object
reference prior to GetPolicy ensures the accuracy of the returned
effective Policy.

If GetPolicy is invoked prior to the object reference being bound, the
returned effective Policy is implementation dependent. In that situation, a
compliant implementation may do any of the following: raise the exception
CORBA.BAD_ INV_ORDER, return some value for that PolicyType which may
be subject to change once a binding is performed, or attempt a binding and
then return the effective Policy.

Note that if the RebindPolicy has a value of TRANSPARENT,
VB_TRANSPARENT, or VB_NOTIFY REBIND, the effective Policy may change
from invocation to invocation due to transparent rebinding.

Parameter Description
type The type of policy requested

66 VisiBroker for .NET Developer’s Guide

QoS interfaces

GetPolicy_
CORBA.Policy GetPolicy (int policy type)

Returns the effective policy for an object reference—a Policy object of the
type specified by the policy type parameter.

Parameter Description
policy type The type of policy to obtain

GetPolicyOverrides_
CORBA.Policy[] GetPolicyOverrides (int[] types)

Returns the list of Policy overrides (of the specified policy types) set at the
Object scope. If the specified sequence is empty, all Policy overrides at this
scope will be returned. If none of the requested PolicyTypes are
overridden at the Object scope, an empty sequence is returned.

Parameter Description
types The policy types queried for

SetPolicyOverrides_

CORBA.Object SetPolicyOverrides (CORBA.Policy[] policies,
CORBA.SetOverrideType set add)

Returns a new Object with the given policies either replacing any existing
policies in this Object or with the given policies added to the existing ones,
depending on the value of the given SetOverrideType object.

This method works in a way similar to the CORBA. PolicyManager method
of the same name. However, it updates the current set of policies of an
Object, thread, or ORB with the requested list of Policy overrides. In
addition, this method returns a CORBA.Object whereas other methods of
the same name return void.

Parameter Description

policies an array of Policy objects containing the policies to be
added or to be used as replacements

set_add either SetOverrideType.SET OVERRIDE, indicating

that the given policies will replace any existing ones, or
SetOverrideType.ADD OVERRIDE, indicating that the
given policies should be added to any existing ones

ValidateConnection_

bool ValidateConnection (out CORBA.Policy (]
inconsistent policies)

Returns a boolean value based on whether the current effective policies for
the object will allow an invocation to be made. It returns the value TRUE if
the current effective policies for the Object allow an invocation to be made.
If the object reference is not yet bound, a binding occurs as part of this
operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer
valid, a rebind is attempted regardless of the setting of any RebindPolicy
override.

The VvalidateConnection_operation is the only way to force such a rebind
when implicit rebinds are disallowed by the current effective RebindPolicy.
The attempt to bind or rebind may involve processing GIOP
LocateRequests by the ORB. Returns the value FALSE if the current

VisiBroker for .NET Developer’'s Guide 67

QoS interfaces

effective policies would cause an invocation to raise the system exception
INV_POLICY.

If the current effective policies are incompatible, the out parameter
inconsistent policies contains those policies causing the
incompatibility. This returned list of policies is not guaranteed to be
exhaustive. If the binding fails due to some reason unrelated to policy
overrides, the appropriate system exception is raised.

Parameter Description

inconsistent p out parameter that returns the list of inconsistent policies
olicies ~ that prevent the invocation from being made

PolicyManager

The CORBA.PolicyManager interface provides methods for getting and
setting Policy overrides at the ORB level.

PolicyManager methods

GetPolicyOverrides
CORBA.Policy[] GetPolicyOverrides (int[] ts)

This method returns a PolicyList sequence of all the overridden policies

for the requested PolicyTypes. If the specified sequence is empty (that is,
if the length of the list is zero), all Policy overrides at the current context
level will be returned. If none of the requested PolicyTypes are overridden
at the target PolicyManager, an empty sequence is returned.

SetPolicyOverrides

void SetPolicyOverrides (CORBA.Policy[] policies,
CORBA. SetOverrideType set add)

This method modifies the current set of policy overrides with the requested
list of Policy overrides. Invoking SetPolicyOverrides with an empty
sequence of policies and a mode of SET_OVERRIDE removes all overrides
from a PolicyManager.

The first input parameter, policies, is a sequence of references to Policy
objects. The second parameter, set_add, of type
CORBA.SetOverrideType indicates whether these policies should be
added onto any other overrides that already exist in the PolicyManager
using ADD_OVERRIDE, or they should be added to a PolicyManager that
doesn't contain any overrides using SET_OVERRIDES.

Only certain policies that pertain to the invocation of an operation at the
client end can be overridden using this operation. Should you attempt to
override policies that do not apply to your client, a CORBA.NO PERMISSION
exception will be raised. If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are changed or

68 VisiBroker for .NET Developer’s Guide

QoS interfaces

added, and an InvalidPolicies exception is raised. There is no
evaluation of compatibility with policies set within other PolicyManagers.

Parameter Description
policies A sequence of references to Policy objects.

set add A parameter of type CORBA. SetOverrideType that indicates
o whether these policies should be added (ADD_OVERRIDE) to any
other overrides that already exist in the PolicyManager, or
added to a clean PolicyManager free of any other overrides
(SET_OVERRIDE). If the request would cause the specified
PolicyManager to be in an inconsistent state, no policies are
changed or added, and an InvalidPolicies exception is raised.

PolicyCurrent

The CORBA.PolicyCurrent interface derives from PolicyManager and
Current without adding new methods. Therefore all operations on the
PolicyManager interface are also available in PolicyCurrent. See
“PolicyManager” for a description of these methods.

PolicyCurrent provides access to the policies overridden at the thread
level. A reference to a thread's PolicyCurrent is obtained by invoking
ResolvelInitialReferences and specifying an identifier of
PolicyCurrent.

DeferBindPolicy

The QoSExt .DeferBindPolicy determines if the ORB will attempt to
contact the remote object when it is first created, or to delay this contact
until the first invocation is made. By default, the ORB connects to the
(remote) object when on a Bind or a StringToObject call.

The valid values for DeferBindPolicy are TRUE and FALSE. If
DeferBindPolicy is set to TRUE, all binds will be deferred until the first
invocation of a binding instance. The default value is FALSE.

If you create a client object, and DeferBindPolicy is set to true, you may
delay the server startup until the first invocation. This option existed before
as an option to the Bind method on the generated helper classes.

DeferBindPolicy properties

Value
bool Value

Returns the current setting of the DeferBindPolicy.

Example

The code sample below illustrates an example for creating a
DeferBindPolicy and setting the policy on the ORB.

public class DeferBindClient ({
static void Main(string[] args) {

try {
CORBA.ORB orb = CORBA.ORB.Init (args) ;

// Initialize the flag and the references
bool deferMode = true;

Any policyValue = orb.CreateAny() ;
policyValue.InsertBoolean (deferMode) ;

VisiBroker for .NET Developer’'s Guide 69

QoS interfaces

}

Policy policies =
orb.CreatePolicy (DEFER_BIND POLICY TYPE.Value, policyValue) ;

// Get a reference to the thread manager
PolicyManager orbManager =
PolicyManagerHelper.Narrow (
orb.ResolveInitialReferences ("ORBPolicyManager")) ;

// Set the policy on the ORB level
orbManager.SetPolicyOverrides (new Policy[] {policies},
SetOverrideType.SET_ OVERRIDE) ;

// Get the binding method
byte[] managerId = orb.StringToObjectId ("BankManager") ;

Bank.AccountManager manager =
Bank.AccountManagerHelper.Bind ("/gos_poa", managerId) ;

// use Jack B. Quick as the account name.
string name = "Jack B. Quick";

// Request the account manager to open a named account.
Bank.Account account = manager.Open (name) ;

// Get the balance of the account.
float balance = account.Balance() ;

// Print out the balance.
Console.WriteLine (
"\n The balance in " + name + "'s account is $" + balance) ;

catch (Exception e) ({

Console.WriteLine (e) ;

ExclusiveConnectionPolicy

The QoSExt.ExclusiveConnectionPolicy is a VisiBroker for .NET-
specific policy that gives you the ability to establish an exclusive (non-
shared) connection to the specified server object. This policy can have a
boolean value of TRUE or FALSE. If the policy is TRUE, connections to the
server object are exclusive. If the policy is FALSE, existing connections are
reused if possible, and a new connection is opened only if reuse is not

possible. The default value is FALSE.

ExclusiveConnectionPolicy properties

Value
bool Value

Returns the current setting of the ExclusiveConnectionPolicy.

RelativeConnectionTimeoutPolicy

The QoSExt.RelativeConnectionTimeoutPolicy indicates a timeout
after which attempts to connect to an object using one of the available
endpoints is aborted. The timeout situation is likely to happen with objects
protected by firewalls, where HTTP tunneling is the only way to connect to

the object.

70 VisiBroker for .NET Developer’s Guide

QoS interfaces

Note
This Policy is not enforced for in-process communications.

The policy value of type unsigned long long specifies the timeout in 100s
of nanoseconds. It is applied to every endpoint that the ORB tries to
connect to. Therefore, if multiple connection attempts are made, the
elapsed time will be a multiple of the configured timeout. The accuracy is
also limited by the Java virtual machine implementation.

RelativeConnectionTimeoutPolicy methods

RelativeExpiry
long RelativeExpiry ()

Gets the timeout in multiples of 100 nanoseconds.

Example

The following code examplesillustrates how to create
RelativeConnectionTimeoutPolicy.

public class ConnClient {
static void Main(string [] args)
try {
// Initialize the ORB.
ORB orb = ORB.Init (args) ;

// Get the manager Id
byte[] managerId = orb.StringToObjectId ("BankManager") ;

string name = "Jack B. Quick";

// Specify the timeout in 100s of Nanosecs.

// To set a timeout of 20 secs, set 20 * 10”7 nanosecs
int connTimeout = 20;

Any ctopolicyValue = orb.CreateAny() ;

ctopolicyValue.InsertUlonglong (connTimeout * 10000000) ;
Policy ctoPolicy = orb.CreatePolicy(
RELATIVE CONN TIMEOUT POLICY TYPE.Value, ctopolicyValue) ;

PolicyManager orbManager = PolicyManagerHelper.Narrow (
orb.ResolveInitialReferences ("ORBPolicyManager")) ;

orbManager.SetPolicyOverrides (new Policy [] {ctoPolicy},
SetOverrideType.SET OVERRIDE) ;

// Locate an account manager. Give the full POA name and

// the servant ID.

AccountManager source =
AccountManagerHelper.Bind ("/gos poa", managerId);

Account account = source.Open (name) ;
float balance = account.Balance() ;
Console.WriteLine ("The balance in {0}'s account is {1}$", name,
balance) ;
}
catch (Exception e) {
Console.WriteLine (e) ;
}

}
}

VisiBroker for .NET Developer’'s Guide 71

QoS interfaces

RebindPolicy

The Messaging.RebindPolicy determines how the client-side ORB
handles closed connections, GIOP location-forward messages and object
failures. The ORB handles fail-overs, rebinds, and reconnections by looking
at the effective policy at the CORBA.Object instance.

The OMG-defined Policy values determine whether the ORB may
transparently rebind once it is successfully bound to a target server. The
extended policy values determine whether the ORB may transparently
failover once it is successfully bound to a target Object.

The RebindPolicy is a client-side-only policy.

Note

The RebindPolicy is enforced only after being successfully bound to an
object. For GIOP-based protocols an object reference is considered bound
once it is in a state where a LocateRequest message would result in a
LocateReply message with status OBJECT HERE.

The RebindPolicy is set only on the client side. It can have one of six
values that determines the behavior in the case of a disconnection, an
object forwarding request, or an object failure. The RebindPolicy accepts
the following constants to define the behavior of the client when rebinding.

The currently supported values are:

* Messaging.TRANSPARENT—allows the ORB to silently handle object-
forwarding and necessary reconnections during the course of making a
remote request.

* Messaging.NO REBIND—allows the ORB to silently handle reopening of
closed connections while making a remote request, but prevents any
transparent object-forwarding that would cause a change in client-visible
effective QoS policies. When RebindMode is set to NO_REBIND, only
explicit rebind is allowed.

* Messaging.NO RECONNECT—prevents the ORB from silently handling
object-forwards or the reopening of closed connections. You must
explicitly rebind and reconnect when RebindMode is set to
NO_ RECONNECT.

* QoSExt.VB_ TRANSPARENT—is the default policy. It extends the
functionality of TRANSPARENT by allowing transparent rebinding with both
implicit and explicit binding.

* QOoSExt.VB _NOTIFY REBIND—throws an exception if a rebind is
necessary. The client catches this exception, and binds on the second
invocation.

* QoSExt.VB _NO REBIND—does not enable failover. It only allows the
client ORB to reopen a closed connection to the same server; it does not
allow object forwarding of any kind.

Note

Be aware that if the effective policy for your client is VB_ TRANSPARENT and
your client is working with servers that hold state data, VB_ TRANSPARENT
could connect the client to a new server without the client being aware of
the change of server, any state data held by the original server will be lost.

72 VisiBroker for .NET Developer’s Guide

QoS interfaces

The following table lists the behavior of the different RebindMode types.

Reestablish closed
connection to the Allow object

RebindMode type same object? forwarding? Object failover?
NO RECONNECT No, throws REBIND No, throws REBIND No
o exception. exception.
NO REBIND Yes Yes, if policies match. No
- No, throws REBIND
exception.
TRANSPARENT Yes Yes No
VB NOTIFY REBIND Yes Yes Yes. VB_NOTIFY REBIND
o o throws an exception after
failure detection, and then
tries a failover on
subsequent requests.
VB_TRANSPARENT Yes Yes Yes, transparently.

using
using
using
using
using
using

The appropriate CORBA exception will be thrown in the case of a
communication problem or an object failure.

Example

The following example creates a RebindPolicy of type TRANSPARENT and
sets the policy on the ORB, thread, and object levels.

System;
System. IO;
CORBA;
QOSEXEt ;
Messaging;
Bank;

public class TransparentClient {
static void Main(string[] args) {
try {

short rebindMode = Messaging.TRANSPARENT.Value;

// initialize the ORB
CORBA.ORB orb = CORBA.ORB.Init (args) ;

// get the object Id
byte[] managerId = orb.StringToObjectId ("BankManager") ;

// locate an account manager; give the full POA name and the object Id
Bank.AccountManager manager =
Bank.AccountManagerHelper.Bind ("/gos_poa", managerId) ;
string s = orb.ObjectToString (manager) ;
CORBA.Object obj = orb.StringToObject (s) ;

// Create the client side policy so that we can receive TRANSIENT

// exception thrown by the server side orb.

Any policyValue = orb.CreateAny () ;

RebindModeHelper. Insert (policyValue, rebindMode) ;

Policy myRebindPolicy =
orb.CreatePolicy (REBIND POLICY TYPE.Value, policyValue) ;

// Set the policy on the AccountManager object.
Bank.AccountManager manager = Bank.AccountManager.Narrow (
((CORBA.ObjectOperations) obj.SetPolicyOverrides (
new Policy [] {orb.CreatePolicy(
QoOSExt .EXCLUSIVE CONNECTION POLICY TYPE.Value,
policyValue) },
SetOverrideType.SET OVERRIDE)) ;

VisiBroker for .NET Developer’'s Guide 73

QoS interfaces

//get a reference to the ORB policy manager
PolicyManager orbManager = null;
try {
orbManager =
PolicyManagerHelper.Narrow (orb.ResolveInitialReferences (
"ORBPolicyManager")) ;

}

catch (CORBA.ORBNS.InvalidName e) {

}

//get a reference to the per-thread manager
CORBA.PolicyManager current = null;
try {
current =
PolicyManagerHelper.Narrow (orb.ResolveInitialReferences (
"PolicyCurrent")) ;

}

catch (CORBA.ORBNS.InvalidName e) {

}

//set the policy on the orb level
try {
orbManager.SetPolicyOverrides (new Policy[] {myRebindPolicy},
SetOverrideType.SET_OVERRIDE) ;
}

catch (CORBA.InvalidPolicies e)

}

// set the policy on the Thread level
try {
current.SetPolicyOverrides (new Policy[] {myRebindPolicy},
SetOverrideType.SET OVERRIDE) ;
}

catch (CORBA.InvalidPolicies e)
}
CORBA.Object oldObjectReference =
Bank.AccountManagerHelper.Bind ("/gos_poa", managerId);
CORBA.Object newObjectReference =
((CORBA.ObjectOperations)oldObjectReference) .SetPolicyOverrides_(
new Policy [] {myRebindPolicy}, SetOverrideType.SET OVERRIDE) ;
}
catch (Exception e) {
Console.WriteLine (e) ;

}
}
}

74 VisiBroker for .NET Developer’s Guide

QoS interfaces

RebindForwardPolicy

The QoSExt .RebindForwardPolicy determines whether the client ORB
attempts to rebind in the case of a failure to connect during a

LOCATION FORWARD. When the client is forwarded to a new object, an
attempt is made to connect to a new destination object. If this attempt fails,
the ORB transparently connects back to the original object (the source of
the forward), under the following circumstances:

« The total number of forwards at this point have not exceeded the value
for forward count specified in this policy.

« This is not the second consecutive attempt to connect to the same
destination object.

The vbroker.orb.rebindForward property sets the value for forward_count at
the ORB level. You can override the value for forward_count at the
ORB, thread or object level programmatically, as in any QoS policy.
The default value of 0 (zero) for the property indicates that no limit has
been specified.

RebindForwardPolicy methods

ForwardCount
short ForwardCount ()

Returns the current setting for forward count of the RebindForward
policy.

RelativeRequestTimeoutPolicy

The Messaging.RelativeRequestTimeoutPolicy indicates the relative
amount of time which a Request or its responding Reply may be delivered.
After this amount of time, the Request is canceled. This policy applies to
both synchronous and asynchronous invocations. Assuming the request
completes within the specified timeout, the Reply will never be discarded
due to timeout. Timeout value is specified in 100s of nanoseconds.

Example

The following code illustrates how to create
RelativeRequestTimeoutPolicy.

public class RequestTimeoutClient
static void Main(string[] args) {

try {
CORBA.ORB orb = CORBA.ORB.Init (args) ;

// get the object Id
byte[] managerId = orb.StringToObjectId ("BankManager") ;

// locate an account manager; give the full POA name and the object Id
Bank.AccountManager manager =
Bank.AccountManagerHelper.Bind ("/gos_poa", managerId) ;

string s = orb.ObjectToString (manager) ;

// Specify the timeout in 100s of Nanosecs.

// To set a timeout of 50 secs, set 50 * 10”7 nanosecs
int regTimeout = 20;

CORBA.Any policyValue = orb.CreateAny() ;
policyValue.InsertUlonglong (regTimeout * 10000000) ;

VisiBroker for .NET Developer’'s Guide 75

QoS interfaces

}

}

}

//set the RelativeRequestTimeoutPolicy
CORBA.Policy regPolicy = orb.CreatePolicy(
RELATIVE_REQ_TIMEOUT_POLICY_TYPE.Value, policyValue) ;

// Get a reference to the thread manager
PolicyManager orbManager = PolicyManagerHelper.Narrow (
orb.ResolveInitialReferences ("ORBPolicyManager")) ;

//Set the policy on the ORB level
orbManager.SetPolicyOverrides (new Policy[] {regPolicy},
SetOverrideType.SET_ OVERRIDE) ;

catch (Exception e) ({

Console.WriteLine (e) ;

RelativeRoundTripTimeoutPolicy

The Messaging.RelativeRoundtripTimeoutPolicy specifies the relative
amount of time for which a Request or its corresponding Reply may be
delivered. If a response has not yet been delivered after this amount of
time, the Request is canceled. Also, if a Request had already been delivered
and a Reply is returned from the target, the Reply is discarded after this
amount of time. This policy applies to both synchronous and asynchronous
invocations. Assuming the request completes within the specified timeout,
the Reply will never be discarded due to timeout. Timeout value is specified

in 100s of nanoseconds.

Example

The following code illustrates how to create
RelativeRoundTripTimeoutPolicy.

public class RoundtripTimeoutClient {

static void Main(string[] args) {
try {

CORBA.ORB orb = CORBA.ORB.Init (args) ;

// get the object Id
byte[] managerId = orb.StringToObjectId ("BankManager") ;

// locate an account manager; give the full POA name and the object Id

Bank.AccountManager manager =
Bank.AccountManagerHelper.Bind ("/gos_poa", managerId) ;
string s = orb.ObjectToString(manager) ;

// Specify the timeout in 100s of Nanosecs.

// To set a timeout of 20 secs, set 20 * 10”7 nanosecs
int rttTimeout = 50;

Any policyValue = orb.CreateAny () ;
policyValue.InsertUlonglong (rttTimeout * 10000000) ;

// Create Policy
CORBA.Policy rttPolicy =

orb.CreatePolicy (RELATIVE RT TIMEOUT POLICY TYPE.Value,policyValue) ;

// Get a reference to the thread manager
PolicyManager orbManager = PolicyManagerHelper.Narrow (
orb.ResolveInitialReferences ("ORBPolicyManager")) ;

// Set the policy on the ORB level

76 VisiBroker for .NET Developer’s Guide

}

QoS interfaces

orbManager.SetPolicyOverrides (new Policy[] {rttPolicy},
SetOverrideType.SET OVERRIDE) ;

(Exception e) {
Console.WriteLine (e) ;

SyncScopePolicy

The Messaging. SyncScopePolicy defines the level of synchronization for
a request with respect to the target. This interface is a local object derived
from CORBA.Policy.

Values of type SyncScope are used in conjunction with a SyncScopePolicy
to control the behavior of one-way operations. It is applied to one-way
operations to indicate the synchronization scope with respect to the target
of that operation request. It is ignored when any non-one-way operation is
invoked.

This policy is also applied when the DIl is used with a flag of
INV_NO_RESPONSE since the implementation of the DIl is not required to
consult an interface definition to determine if an operation is declared one
way.

The default SyncScopePolicy is SYNC_WITH TRANSPORT.

Applications must explicitly set an ORB-level SyncScopePolicy to ensure
portability across ORB implementations. When instances of
SyncScopePolicy are created, a value of type Messaging.SyncScope is

passed to CORBA.ORB.CreatePolicy. This policy is only applicable as a
client-side override.

VisiBroker for .NET Developer’'s Guide 77

The following table lists the behavior of the different SyncScope values:

SyncScope type Description

SYNC WITH TRANSPORT Default. The ORB returns control to the client only after the transport has
o o accepted the request message. There is no guarantee that the request will
be delivered, but provides a useful degree of assurance given knowledge
of the characteristics of the transport. Since no reply is returned from the
server, no location-forwarding can be done with this level of
synchronization.

SYNC NONE The ORB returns control to the client (e.g. returns from the method
- invocation) before passing the request message to the transport protocol.
The client is guaranteed not to block. Since no reply is returned from the
server, no location-forwarding can be done with this level of
synchronization.

SYNC WITH SERVER The server-side ORB is to send a reply before invoking the target
- - implementation. If a reply of NO_EXCEPTION is sent, any necessary
location-forwarding has already occurred. Upon receipt of this reply, the
client-side ORB shall return control to the client application. The client
blocks until all location-forwarding has been completed. For a server using
a POA, the reply would be sent after invoking any ServantManager, but
before delivering the request to the target Servant.

SYNC WITH TARGET Equivalent to a synchronous, non-one way operation in CORBA 2.2. The
- - server-side ORB will only send the reply message after the target has

completed the invoked operation. Note that any LOCATION FORWARD
reply will already have been sent prior to invoking the target and that a
SYSTEM_ EXCEPTION reply may be sent at anytime (depending on the
semantics of the exception). Even though it was declared one way, the
operation actually behaves like a synchronous operation. This form of
synchronization guarantees that the client knows that the target has seen
and acted upon a request. As with CORBA 2.2, only with this highest level
of synchronization can the OTS be used. Any operations invoked with
lesser synchronization precludes the target from participating in the
client's current transaction.

QoS exceptions

+ CORBA.INV_POLICY is raised when there is an incompatibility between
Policy overrides.

« CORBA.REBIND is raised when the RebindPolicy has a value of
NO_REBIND, NO RECONNECT, or VB_NOTIFY REBIND and an invocation on
a bound object references results in an object-forward or location-
forward message.

« CORBA.PolicyError is raised when the requested Policy is not
supported.

« CORBA.InvalidPolicies can be raised when an operation is passed a
PolicyList sequence. The exception body contains the policies from the
sequence that are not valid, either because the policies are already
overridden within the current scope, or are not valid in conjunction with
other requested policies.

78 VisiBroker for .NET Developer’s Guide

Using the dynamically
managed types

The DynAny interface provides a way to dynamically create basic and
constructed data types at runtime. It also allows information to be
interpreted and extracted from an Any object, even if the type it contains
was not known to the server at compile-time. The use of the Dynany
interface enables you to build powerful client and server applications that
create and interpret data types at runtime.

DynAny types

A DynAny object has an associated value that may either be a basic data
type (such as bool, int, or £loat) or a constructed data type. The DynAny
interface provides methods for determining the type of the contained data
as well as for setting and extracting the value of primitive data types.

Constructed data types are represented by the following interfaces, which
are all derived from DynAny. Each of these interfaces provides its own set of
methods that are appropriate for setting and extracting the values it

contains.
Interface TypeCode Description
DynArray _tk_array An array of values with the same data type
that has a fixed number of elements.
DynEnum _tk_enum A single enumeration value.
DynFixed _tk fixed Not supported.

DynSequence tk sequence A sequence of values with the same data
- type. The number of elements may be
increased or decreased.

DynStruct _tk struct A structure.
DynUnion _tk union A union.
DynValue _tk value Not supported.

Usage restrictions

A DynAny object may only be used locally by the process which created it.
Any attempt to use a DynAny object as a parameter on an operation request
for a bound object or to externalize it using the ObjectToString method
will cause a MARSHAL exception to be raised.

Furthermore, any attempt to use a DynAny object as a parameter on DIl
request will cause a NO_IMPLEMENT exception to be raised.

Creating a DynAny
A DynAny object is created by invoking an operation on a DynAnyFactory

object. First obtain a reference to the DynAnyFactory object, and then use
that object to create the new DynAny object.

VisiBroker for .NET Developer’'s Guide 79

Constructed data types

Initializing and accessing the value in a
DynAny

The DynAny. Insert<Type> methods in VisiBroker for .NET allow you to
initialize a DynAny object with a variety of basic data types, where <Type>
is bool, octet, char, and so on. Any attempt to insert a type that does not
match the TypeCode defined for the DynAny will cause an TypeMismatch
exception to be raised.

The DynAny.Get<Type> methods in VisiBroker for .NET allow you to access
the value contained in a DynAny object, where <Types> is bool, octet,
char, and so on. Any attempt to access a value from a DynAny component
which does not match the TypeCode defined for the DynaAny will cause a
TypeMismatch exception to be raised.

The DynAny interface also provide methods for copying, assigning, and
converting to or from an Any object.

Constructed data types

The following types are derived from the DynAny interface and are used to
represent constructed data types.

Traversing the components in a constructed data type
Several of the interfaces that are derived from DynAny actually contain multiple
components. The DynAny interface provides methods that allow you to iterate through
these components. The DynAny-derived objects that contain multiple components
maintain a pointer to the current component.

DynAny method Description

Rewind Resets the current component pointer to the first
component. Has no effect if the object contains only one
component.

Next Advances the pointer to the next component. If there are

no more components or if the object contains only one
component, false is returned.

CurrentComponent Returns a DynAny object, which may be narrowed to the
appropriate type, based on the component's TypeCode.

Seek Sets the current component pointer to the component
with the specified, zero-based index. Returns false if
there is no component at the specified index. Sets the
current component pointer to -1 (no component) if
specified with a negative index.

DynEnum

This interface represents a single enumeration constant. Methods are
provided for setting and obtaining the value as a string or as an integral
value.

DynStruct

This interface represents a dynamically constructed struct type. The
members of the structure can be retrieved or set using a sequence of
NameValuePair objects. Each NameValuePair object contains the

member’'s name and an Any containing the member's type and value.

80 VisiBroker for .NET Developer’'s Guide

Constructed data types

You may use the Rewind, Next, CurrentComponent, and Seek methods to
traverse the members in the structure. Methods are provided for setting
and obtaining the structure's members.

DynUnion

This interface represents a union and contains two components. The first
component represents the discriminator and the second represents the
member value.

You may use the Rewind, Next, CurrentComponent, and Seek methods to
traverse the components. Methods are provided for setting and obtaining
the union's discriminator and member value.

DynSequence and DynArray

A DynSequence or DynArray represents a sequence of basic or constructed
data types without the need of generating a separate DynAny object for
each component in the sequence or array. The number of components in a
DynSequence may be changed, while the number of components in a
DynArray is fixed.

You may use the Rewind, Next, CurrentComponent, and Seek methods to
traverse the members in a DynArray or DynSequence.

VisiBroker for .NET Developer’'s Guide 81

82 VisiBroker for .NET Developer’'s Guide

Using Portable Interceptors

This chapter provides an overview of Portable Interceptors. Portable
Interceptor example code is available in your VisiBroker for .NET
installation.

Portable Interceptors overview

VisiBroker for .NET provides a set of interfaces known as interceptors which
provide a framework for plugging-in additional ORB behavior such as
security, transactions, or logging. These interceptor interfaces are based on
a callback mechanism. For example, using the interceptors, you can be
notified of communications between clients and servers, and modify these
communications if you wish, effectively altering the behavior of the ORB.

At its simplest usage, the interceptor is useful for tracing through code.
Because you can see the messages being sent between clients and servers,
you can determine exactly how the ORB is processing requests.

If you are building a more sophisticated application such as a monitoring
tool or security layer, interceptors give you the information and control you
need to enable these lower-level applications. For example, you could
develop an application that monitors the activity of various servers and
performs load balancing.

Types of Portable Interceptors

There are two kinds of Portable Interceptors defined by the OMG
specification:

« Request Interceptors can enable the ORB services to transfer context
information between clients and servers. Request Interceptors are further
divided into Client Request Interceptors and Server Request Interceptors.

« An IOR interceptor is used to enable an ORB service to add information
in an I0OR describing the server's or object's ORB-service-related
capabilities. For example, a security service (like SSL) can add its tagged
component into the IOR so that clients recognizing that component can
establish the connection with the server based on the information in the
component.

Portable Interceptor classes and interfaces

All Portable Interceptors implement one of the following base interceptor
API classes which are defined and implemented by VisiBroker for .NET:

e ClientRequestInterceptor
¢ ServerRequestInterceptor

* TORInterceptor

Interceptor class

All the interceptor classes mentioned above are derived from a common
class: Interceptor. This Interceptor class has defined common
methods that are available to its inherited classes.

VisiBroker for .NET Developer’'s Guide 83

Portable Interceptor classes and interfaces

Request Interceptor

A request interceptor is used to intercept flow of a request/reply sequence
at specific interception points so that services can transfer context
information between clients and servers. For each interception point, the
ORB gives an object through which the Interceptor can access request
information. There are two kinds of request interceptors and their
respective request information interfaces:

*+ ClientRequestInterceptor and ClientRequestInfo

+ ServerRequestInterceptor and ServerRequestInfo

ClientRequestinterceptor

ClientRequestInterceptor has its interception points implemented on
the client side. There are five interception points defined in
ClientRequestInterceptor by OMG as shown in the following table.

Interception

Points Description

SendRequest Lets a client-side Interceptor query a request and modify
the service context before the request is sent to the server.

SendPoll Lets a client-side Interceptor query a request during a
Time-Independent Invocation (TI1)! polling get reply
sequence.

ReceiveReply Lets a client-side Interceptor query the reply information

after it is returned from the server and before the client
gains control.

ReceiveException Lets a client-side Interceptor query the exception's
information, when an exception occurs, before the
exception is sent to the client.

ReceiveOther Lets a client-side Interceptor query the information which
is available when a request result other than normal reply
or an exception is received.

1711 is not implemented in VisiBroker for .NET. As a result, the
SendPoll () interception point will never be invoked.

Client-side rules
The following are the client-side rules:

« The starting interception points are: SendRequest and SendPoll. On any
given request/reply sequence, one and only one of these interception
points is called.

« The ending interception points are: ReceiveReply, ReceiveException
and ReceiveOther.

« There is no intermediate interception point.

« An ending interception point is called if and only if SendRequest or
SendPoll runs successfully.

+ A ReceiveException is called with the system exception
BAD INV_ORDER with a minor code of 4 (ORB has shutdown) if a request
is canceled because of ORB shutdown.

84 VisiBroker for .NET Developer’'s Guide

Portable Interceptor classes and interfaces

+ A ReceiveException is called with the system exception TRANSIENT

with a minor code of 3 if a request is canceled for any other reason.
Successful invocations SendRequest is followed by ReceiveReply - a
start point is followed by an end point

Retries SendRequest is followed by ReceiveOther - a
start point is followed by an end point

ServerRequestlinterceptor

ServerRequestInterceptor has its interception points implemented on the
server-side. There are five interception points defined in
ServerRequestInterceptor. The following table shows the
ServerRequestInterceptor Interception points.

Interception Points Description
ReceiveRequestService Lets a server-side Interceptor get its service
Contexts context information from the incoming request

and transfer it to
PortableInterceptor.Current's slot.

ReceiveRequest Lets a server-side Interceptor query request
information after all information, including
operation parameters, is available.

SendReply Lets a server-side Interceptor query reply
information and modify the reply service context
after the target operation has been invoked and
before the reply is returned to the client.

SendException Lets a server-side Interceptor query the
exception's information and modify the reply
service context, when an exception occurs,
before the exception is sent to the client.

SendOther Lets a server-side Interceptor query the
information which is available when a request
result other than normal reply or an exception is
received.

Server-side rules

The server-side rules are listed as below:

The starting interception point is: ReceiveRequestServiceContexts.
This interception point is called on any given request/reply sequence.

The ending interception points are: SendReply, SendException and
SendOther. On any given request/reply sequence, one and only one of
these interception points is called.

The intermediate interception point is ReceiveRequest. It is called after
ReceiveRequestServiceContexts and before an ending interception
point.

On an exception, ReceiveRequest may not be called.

An ending interception point is called if and only if
ReceiveRequestServiceContext runs successfully.

A SendException is called with the system exception BAD INV_ORDER
with a minor code of 4 (ORB has shutdown) if a request is canceled
because of ORB shutdown.

VisiBroker for .NET Developer’'s Guide 85

Creating a Portable Interceptor

+ A SsendException is called with the system exception TRANSIENT with a
minor code of 3 if a request is canceled for any other reason.

Successful invocations The order of interception points:
ReceiveRequestServiceContexts,
ReceiveRequest, SendReply - a start point is
followed by an intermediate point which is followed
by an end point .

IORINterceptor

IORInterceptor gives applications the ability to add information describing the
server's or object's ORB service related capabilities to object references to enable the
ORB service implementation in the client to function properly. This is done by calling
the interception point, EstablishComponents. An instance of IORInfo is passed
to the interception point.

Portablelnterceptor (PIl) Current

The PortableInterceptor.Current object (hereafter referred to as
PICurrent) is a table of slots that can be used by Portable Interceptors
implementations to associate thread-specific information with the currently
active request context. Use of PICurrent is optional, and would typically be
used if a client's thread-specific information is required within an
Interceptor.

PICurrent is obtained through a call to:

ORB.ResolvelInitialReferences ("PICurrent") ;

Codec

The Codec provides a mechanism for interceptors to transfer components
between their IDL data types and their CDR encapsulation representations.

CodecFactory

This class is used to create a Codec object by specifying the encoding
format, the major and minor versions. CodecFactory can be obtained a
call to:

ORB.ResolveInitialReferences ("CodecFactory") ;

Creating a Portable Interceptor

The generic steps to create a Portable Interceptor are:

1 The Interceptor must be inherited from one of the following Interceptor
interfaces:

¢ ClientRequestInterceptor
* ServerRequestInterceptor
¢ IORInterceptor

2 The Interceptor implements one or more interception points that are
available to the Interceptor.

86 VisiBroker for .NET Developer’'s Guide

Registering Portable Interceptors

3 The Interceptor can be named or anonymous. All names must be unique
among all Interceptors of the same type. However, any number of
anonymous Interceptors can be registered with the ORB.

Registering Portable Interceptors

Portable Interceptors must be registered with the ORB before they can be
used. To register a Portable Interceptor the janeva.orb.init property is
provided.

-janeva.orb.init pi class name[,assembly name]

Note, that it is possible to specify a list of janeva.pi.init settings to
configure multiple Portable Interceptors:

-janeva.orb.init pi 1 -janeva.orb.init pi 2 -janeva.orb.init pi n

Each janeva.orb.init instance does not overwrite the previous one, but
adds it to a Portable Interceptor list.

VisiBroker for .NET extensions to Portable
Interceptors

POA scoped Server Request Interceptors

Portable Interceptors specified by OMG are scoped globally. VisiBroker for
.NET has defined "POA scoped Server Request Interceptor"”, a public
extension to the Portable Interceptors, by adding a new module call
PortableInterceptorExt. This new module holds a local interface,
IORInfoExt, which is inherited from PortableInterceptor.IORInfo and
has additional methods to install POA scoped server request interceptor.

IORINfoEXt Interface

using PortablelInterceptor;

namespace PortablelInterceptorExt
public interface IORInfoExt : IORInfo ({
void AddServerRequestInterceptor (
ServerRequestInterceptor interceptor) ;
string FullPoaName () ;

}
}

Limitations of the Portable Interceptors
Implementation

The following are limitations of the Portable Interceptor implementation.

ClientRequestinfo

« Arguments, Result, Exceptions, Contexts, and OperationContexts
are only available for DIl invocations.

+ ReceivedException and ReceivedExceptionId will always return a
CORBA.UNKNOWN exception and its respective repository id if a user
exception is thrown by the application.

VisiBroker for .NET Developer’'s Guide 87

VisiBroker for .NET extensions to Portable Interceptors

ServerRequestinfo

+ Exceptions does not return any value; it will raise a
CORBA.NO_RESOURCES exception in both dynamic invocations and static
stub based invocation.

* Contexts returns the list of contexts that are available during operation
invocation.

+ SendingException returns the correct user exception only in the case of
dynamic invocation (provided the user exception can be inserted into an
Any or its TypeCode information is available).

 Arguments, Result, Contexts, and OperationContexts are only
available for DSI invocations.

88 VisiBroker for .NET Developer’'s Guide

Using Portable Object
Adapters

What is a Portable Object Adapter?

The Portable Object Adapter (POA) is a service used to take incoming
requests from clients and map those requests to the appropriate object
implementations. For J2EE developers, it might be useful to think of a POA
as being similar to an EJB Container in that it is responsible for mapping
invocations to the set of objects it logically contains.

As with any container, you can think of the POA as having an external
perspective and an internal perspective. The internal model of the POA is in
terms of Servant objects: these are the objects that implement the user's
business logic. The external model of the POA is in terms of Object
References, which are references that can be used in distributed system
invocations (for example, these Object References are analogous to
instances of java.rmi.Remote in RMI/J2EE terminology, CORBA Object
References in CORBA terminology, or instances of MarshalByRefObject in
.NET Remoting terminology). The task of the POA is to map between
external Object References and internal Servant objects.

The POA is an intermediary between the implementation of an object and
the ORB. In its role as an intermediary, a POA routes requests to Servants
and, as a result may cause Servants to run and create child POAs if
necessary.

Servers can support multiple POAs. At least one POA must be present,
which is called the Root POA. The Root POA is created automatically for you.
The set of POAs is hierarchical; all POAs have the Root POA as their
ancestor.

Servant Managers locate and assign Servants to objects for the POA. When
an Object Reference is assigned to a Servant, it is called an active object
and the Servant is said to incarnate the active object. Every POA has one
Active Object Map which keeps track of the object IDs of active objects and
their associated active Servants.

VisiBroker for .NET Developer’'s Guide 89

What is a Portable Object Adapter?

POA terminology

Contained in the following table are definitions of some terms with which
you should become more familiar as you read through this section.

Term

Active Object Map
adapter activator
etherealize

incarnate
ObjectID

persistent object
POA manager
Policy

Root POA
Servant

Servant Manager

transient object

Description

Table that maps active Object References (through their
object IDs) to Servants. There is one Active Object Map per
POA.

Object that can create a POA on demand when a request is
received for a child POA that does not exist.

Remove the association between a Servant and an Object
Reference.

Associate a Servant with an Object Reference.

Way to identify an Object Reference within the object adapter.
An ObjectID can be assigned by the object adapter or the
application and is unique only within the object adapter in
which it was created. Servants are associated with Object
References through ObjectIDs.

Object References that live beyond the server process that
created them.

Object that controls the state of the POA; for example,
whether the POA is receiving or discarding incoming requests.

Object that controls the behavior of the associated POA and
the objects the POA manages.

Each ORB is created with one POA called the Root POA. You
can create additional POAs (if necessary) from the Root POA.

Any code that implements the methods of an Object
Reference, but is not the Object Reference itself.

An object responsible for managing the association of objects
with Servants, and for determining whether an object exists.
More than one Servant Manager can exist.

An Object Reference that lives only within the process that
created it.

Steps for creating and using POAs

Although the exact process can vary, the basic steps that occur during a

POA life cycle are:

1 Define the POA's policies.

S 0 b~ WDN

Create the POA.
Activate the POA through its POA manager.

Create and activate Servants.
Create and use Servant Managers.

Use adapter activators.

Depending on your needs, some of these steps may be optional. For
example, you only have to activate the POA if you want it to process

requests.

90 VisiBroker for .NET Developer’'s Guide

POA policies

POA policies

Value
ORB_CTRL_MODEL

Each POA has a set of policies that define its characteristics. When creating
a new POA, you can use the default set of policies or use different values to
suit your requirements. You can only set the policies when creating a POA;
you can not change the policies of an existing POA. POAs do not inherit the
policies from their parent POA.

The following sections list the POA policies, their values, and the default
value (used by the Root POA).

Thread policy

The thread policy specifies the threading model to be used by the POA. The
valid values for the thread policy are described in the following table.

Description

(Default) The default POA threading model is multi-threaded, meaning that
concurrent invocations are dispatched to multiple threads concurrently.
Note that this means that Servant implementations must be thread-safe. If
Servants are not thread safe, they must either be made so (using
appropriate locking) or a different threading policy must be used for non-
thread-safe Servants.

SINGLE THREAD MODEL The POA processes requests sequentially. In a multi-threaded environment,

all calls made by the POA to Servants and Servant Managers are thread-
safe.

MAIN THREAD MODEL Calls are processed on a distinguished main thread. Requests for all main-

thread POAs are processed sequentially. In a multi-threaded environment,
all calls processed by all POAs with this policy are thread-safe. The
application programmer designates the main thread by calling ORB.Run ()
or ORB.PerformWork (). For more information about these methods, see
“Activating objects”.

Lifespan policy

The lifespan policy specifies the lifespan of the objects implemented in the
POA. The valid values for the lifespan policy are listed in the following table.

Value Description

TRANSIENT (Default) A transient object activated by a POA cannot outlive
the POA that created it. Once the POA is deactivated, an
OBJECT NOT_EXIST exception occurs if an attempt is made
to use any object references generated by the POA.

PERSISTENT A persistent object activated by a POA can outlive the process
in which it was first created. Requests invoked on a persistent
object may result in the implicit activation of a process, a POA
and the Servant that implements the object.

Object ID Unigueness policy

The Object ID Uniqueness policy allows a single Servant to be shared by
many Object References. The valid values for the Object ID Uniqueness
policy are listed in the following table.

Value Description
UNIQUE ID (Default) Activated Servants support only one Object ID.
MULTIPLE ID Activated Servants can have one or more Object IDs. The

Object ID must be determined within the method being
invoked at run time.

VisiBroker for .NET Developer’'s Guide 91

POA policies

Value

ID Assignment policy

The ID assignment policy specifies whether object IDs are generated by
server applications or by the POA. The valid values for the ID Assignment
policy are listed in the following table.

Value Description
USER_ID Objects are assigned object IDs by the application.
SYSTEM_ ID (Default) Objects are assigned object IDs by the POA. If the

PERSISTENT policy is also set, object IDs must be unique
across all instantiations of the same POA.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for transient
objects. If you want to use SYSTEM_ID for persistent objects, you can
extract them from the Servant or Object Reference.

Servant Retention policy

The Servant Retention policy specifies whether the POA retains active
Servants in the Active Object Map. The valid values for the Servant
Retention policy are listed in the following table.

Value Description

RETAIN (Default) The POA tracks Object Reference activations in the
Active Object Map. RETAIN is usually used with
ServantActivators or explicit activation methods on POA.

NON RETAIN The POA does not retain active Servants in the Active Object
- Map. NON_RETAIN must be used with ServantLocators.

ServantActivators and ServantLocators are types of Servant Managers. For
more information on Servant Managers, see “Using Servants and Servant
Managers”.

Request Processing policy

The Request Processing policy specifies how requests are processed by the
POA. The valid values for the Request Processing policy are listed in the
following table.

Description

USE_ACTIVE OBJECT MAP ONLY (Default) If the Object ID is not listed in the Active Object Map,

an OBJECT_ NOT_EXIST exception is returned. The POA must
also use the RETAIN policy with this value.

USE_DEFAULT SERVANT If the Object ID is not listed in the Active Object Map or the

NON_RETAIN policy is set, the request is dispatched to the
default Servant. If no default Servant has been registered, an
OBJ_ADAPTER exception is returned. The POA must also use
the MULTIPLE ID policy with this value.

USE_SERVANT_ MANAGER If the Object ID is not listed in the Active Object Map or the

NON_RETAIN policy is set, the Servant Manager is used to
obtain a Servant.

92 VisiBroker for .NET Developer’'s Guide

Value

Creating POAs

Implicit Activation policy

The Implicit Activation policy specifies whether the POA supports implicit
activation of Servants. The valid values for the Implicit Activation policy are
listed in the following table.

Description

IMPLICIT ACTIVATION The POA supports implicit activation of Servants. There are two ways

to activate the Servants as follows:

e Converting them to an Object Reference with
PortableServer.POA.ServantToReference ().

* Invoking This_ () on the Servant.
The POA must also use the SYSTEM_ID and RETAIN policies with this
value.

NO IMPLICIT ACTIVATION (Default) The POA does not support implicit activation of Servants.

Bind Support policy

The Bind Support policy (a VisiBroker-specific policy) controls the
registration of POAs and active objects with the VisiBroker Smart Agent
(osagent). If you have several thousands objects, it is not feasible to
register all of them with the osagent. Instead, you can register the POA
with the osagent. When a client request is made, the POA name and the
object ID is included in the bind request so that the osagent can correctly
forward the request. The valid values for the Bind Support policy are listed
in the following table.

Value Description

BY INSTANCE All active objects are registered with the osagent. The POA
- must also use the PERSISTENT and RETAIN policy with this

value.
BY POA (Default) Only POAs are registered with the osagent. The POA
o must also use the PERSISTENT policy with this value.
NONE Neither POAs nor active objects are registered with the smart
agent.

Note:
The Root POA is created with the NONE activation policy.

Creating POAs

To implement objects using the POA, at least one POA object must exist on
the server. To ensure that a POA exists, a Root POA is provided during the
ORB initialization. This POA uses the default POA policies described earlier in
this section.

Once the Root POA is obtained, you can create child POAs that implement a
specific server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical
path name.) The hierarchy is indicated by a slash (/). For example, /A/B/C
means that POA C is a child of POA B, which in turn is a child of POA A. The

VisiBroker for .NET Developer’'s Guide 93

Creating POAs

first slash indicates the Root POA. If the BindSupport :BY POA policy is set
on POA C, then /A/B/C is registered and the client binds with /A/B/C.

If your POA name contains escape characters or other delimiters, VisiBroker
for .NET precedes these characters with a double back slash (\\) when
recording the names internally.

Obtaining the Root POA

The following code sample illustrates how a server application can obtain its
Root POA.

// Initialize the ORB.
CORBA.ORB orb = CORBA.ORB.Init (args) ;

// get a reference to the Root POA
PortableServer.POA rootPOA =

POAHelper .Narrow (orb.ResolveInitialReferences ("RootPOA")) ;

Note:

The ResolveInitialReferences method returns a value of type
CORBA.Object. You are responsible for narrowing the returned object
reference to the desired type, which is PortableServer.POA in the previous
example.

Setting the POA policies

Policies are not inherited from the parent POA. If you want a POA to have a
specific characteristic, you must identify all the policies that are different
from the default value. For more information about POA policies, see “POA
policies”.

CORBA.Policy[] policies = {
rootPOA.CreatelLifespanbPolicy (LifespanPolicyValue.PERSISTENT) ,
rootPOA.CreateRequestProcessingPolicy (
RequestProcessingPolicyValue.USE DEFAULT SERVANT) ,
rootPOA.CreateIdUniquenessPolicy (IdUniquenessPolicyValue .MULTIPLE ID)

}i

Creating and activating the POA

A POA is created using CreatePOA on its parent POA. You can name the
POA anything you like; however, the name must be unique with respect to
all other POAs with the same parent. If you attempt to give two POAs the
same name, a CORBA exception (AdapterAlreadyExists) is raised.

To create a new POA, use CreatePOA as follows:
CreatePOA (“*ThePOAName”, thePOAManager, thePolicyList) ;

The POA manager (<POAManager>) controls the state of the POA (for
example, whether it is processing requests). If null is passed to CreatePOA
as the POA manager name, a new POA manager object is created and
associated with the POA. Typically, you will want to have the same POA
manager for all POAs. For more information about the POA manager, see
“Managing POAs with the POA manager”.

POA managers (and POAs) are not automatically activated once created.
Use Activate () to activate the POA manager associated with your POA.

94 VisiBroker for .NET Developer’'s Guide

Activating objects

The following code sample is an example of creating a POA and activating
the POA manager.

// Create policies for our persistent POA
CORBA.Policy[] policies = {
rootPOA.CreatelLifespanbPolicy (LifespanPolicyValue.PERSISTENT)

}i
// Create myPOA with the right policies
PortableServer.POA myPOA =
rootPOA.CreatePOA ("bank_ agent poa",
rootPOA.ThePOAManager, policies) ;

// Activate the POA manager
root POA.ThePOAManager.Activate () ;

Activating objects

When Object References are associated with an active Servant, if the POA's
Servant Retention Policy is RETAIN, the associated object ID is recorded in
the Active Object Map and the object is activated. Activation can occur in
one of several ways:

« Explicit activation—The server application itself explicitly activates
objects by calling ActivateObject or ActivateObjectWithId.

« On-demand activation—The server application instructs the POA to
activate objects through a user-supplied Servant Manager. The Servant
Manager must first be registered with the POA through
SetServantManager.

« Implicit activation—The server activates objects solely by in response
to certain operations. If a Servant is not active, there is nothing a client
can do to make it active (for example, requesting for an inactive object
does not make it active.)

« Default Servant—The POA uses a single Servant to implement all of its
objects.

Activating objects explicitly

By setting IdAssignmentPolicy.SYSTEM ID on a POA, objects can be
explicitly activated without having to specify an object ID. The server
invokes ActivateObject on the POA which activates, assigns and returns
an object ID for the object. This type of activation is most common for
transient objects. No Servant Manager is required since neither the object
nor the Servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common
scenario is during server initialization where the user invokes
ActivateObjectWithId to activate all the objects managed by the server.
No Servant Manager is required since all the objects are already activated.
If a request for a non-existent object is received, an OBJECT NOT EXIST
exception is raised. This has obvious negative effects if your server
manages large numbers of objects.

VisiBroker for .NET Developer’'s Guide 95

Activating objects

This code sample is an example of explicit activation using
ActivateObjectWithId.

// Create the account manager Servant.
Servant managerServant = new AccountManagerImpl (rootPoa) ;

// Activate the newly created Servant.
byte[] managerId = orb.StringToObjectId (“BankManager”) ;
testPoa.ActivateObjectWithId (managerId, managerServant) ;

// Activate the POAs
testPoa.ThePOAManager.Activate () ;

Activating objects on demand

On-demand activation occurs when a client requests an object that does not
have an associated Servant. After receiving the request, the POA searches
the Active Object Map for an active Servant associated with the object ID. If
none is found, the POA invokes Incarnate on the Servant Manager which
passes the object ID value to the Servant Manager. The Servant Manager
can do one of three things:

« Find an appropriate Servant which then performs the appropriate
operation for the request.

» Raise an OBJECT NOT_ EXIST exception that is returned to the client.
« Forward the request to another object.

The POA policies determine any additional steps that may occur. For
example, if RequestProcessingPolicy.USE SERVANT MANAGER and
ServantRetentionPolicy.RETAIN are enabled, the Active Object Map is
updated with the Servant and object ID association. if
RequestProcessingPolicy.USE SERVANT MANAGER and
ServantRetentionPolicy.RETAIN are enabled, the Active Object Map is
updated with the Servant and object ID association.

Activating objects implicitly

A Servant can be implicitly activated by certain operations if the POA has
been created with ImplicitActivationPolicy. IMPLICIT ACTIVATION,
IdAssignmentPolicy.SYSTEM ID, and
ServantRetentionPolicy.RETAIN. Implicit activation can occur with:

e POA.ServantToReference method
e POA.ServantToId method
 This () Servant method

If the POA has IdUniquenessPolicy.UNIQUE_ID set, implicit activation
can occur when any of the above operations are performed on an inactive
Servant.

If the POA has IdUniquenessPolicy.MULTIPLE ID set,
ServantToReference and ServantToId operations always perform
implicit activation, even if the Servant is already active.

Activating with the default Servant

Use the RequestProcessing.USE_DEFAULT SERVANT policy to have the
POA invoke the same Servant no matter what the object ID is. This is useful
when little data is associated with each object.

96 VisiBroker for .NET Developer’'s Guide

Activating objects

This is an example of activating all objects with the same Servants

using System;

using System.IO;
using PortableServer;
using CORBA;

public class Server {
static void Main(string [] args)
try {
// initialize the ORB
ORB orb = ORB.Init (args) ;

// get a reference to the root POA
POA rootPOA =
POAHelper.Narrow (orb.ResolveInitialReferences ("RootPOA")) ;

// create policies for our persistent POA
Policy[] policies = {
rootPOA.CreateLifespanPolicy (
LifespanPolicyValue.PERSISTENT) ,
rootPOA.CreateRequestProcessingPolicy (
RequestProcessingPolicyValue.USE DEFAULT SERVANT),
rootPOA.CreateIdUniquenessPolicy (
IdUniquenessPolicyValue .MULTIPLE ID)
}i

// create myPOA with the right policies

POA myPOA = rootPOA.CreatePOA ("bank default servant poa",
root POA.ThePOAManager,
policies);

// create the servant
AccountManagerImpl managerServant = new AccountManagerImpl () ;
myPOA . SetServant (managerServant) ;

// Activate the POA manager
rootPOA.ThePOAManager .Activate () ;

// Generate the reference and write it out. One for each
// Checking and Savings account type. Note that we are not
// creating any servants here and just manufacturing a

// reference which is not yet backed by a servant.

// Write out checking object ID

try {

CORBA.Object objref = myPOA.CreateReferenceWithId (
orb.StringToObjectId ("CheckingAccountManager"),
"IDL:Bank/AccountManager:1.0") ;

StreamWriter writer = new StreamWriter ("cref.dat");

writer.WriteLine (orb.ObjectToString (objref)) ;

writer.Close() ;

}

catch (Exception e) {
Console.WriteLine ("Error writing the IOR for
CheckingAccountManager to file");
Console.WriteLine (e) ;

}

try {
// Write out savings object ID
CORBA.Object objref = myPOA.CreateReferenceWithId (
orb.StringToObjectId ("SavingsAccountManager"),
"IDL:Bank/AccountManager:1.0");
StreamWriter writer = new StreamWriter ("sref.dat");

VisiBroker for .NET Developer’'s Guide 97

Using Servants and Servant Managers

}

}

writer.WriteLine (orb.ObjectToString (objref)) ;
writer.Close() ;

(Exception e) {

Console.WriteLine ("Error writing the IOR for
SavingsAccountManager to file");

Console.WriteLine (e) ;

Console.WriteLine ("DefaultServantServer is ready.");
// Wait for incoming requests
orb.Run() ;

catch (Exception e) ({

}

Console.WriteLine (e) ;

Deactivating objects

A POA can remove a Servant from its Active Object Map. This may occur, for
example, as a form of garbage-collection scheme. When the Servant is
removed from the map, it is deactivated. You can deactivate an object using
DeactivateObject (). When an object is deactivated, it doesn't mean this
object is lost forever. It can always be reactivated at a later time.

Using Servants and Servant Managers

Servant Managers perform two types of operations: find and return a
Servant, and deactivate a Servant. They allow the POA to activate objects
when a request for an inactive object is received. Servant Managers are
optional. For example, Servant Managers are not needed when your server
loads all objects at startup. Servant Managers may also inform clients to
forward requests to another object using the ForwardRequest exception.

A Servant is an active instance of an implementation. The POA maintains a
map of the active Servants and the object IDs of the Servants. When a
client request is received, the POA first checks this map to see if the object
ID (embedded in the client request) has been recorded. If it exists, then the
POA forwards the request to the Servant. If the object ID is not found in the
map, the Servant Manager is asked to locate and activate the appropriate
Servant. This is only an example scenario; the exact scenario depends on
what POA policies you have in place.

There are two types of Servant Managers: Servant Activator and Servant
Locator. The type of policy already in place determines which type of
Servant Manager is used. For more information on POA policy, see “POA
policies”. Typically, a Servant Activator activates persistent objects and a
Servant Locator activates transient objects.

To use Servant Managers,
RequestProcessingPolicy.USE SERVANT MANAGER must be set as well
as the policy which defines the type of Servant Manager
(ServantRetentionPolicy.RETAIN for Servant Activator or
ServantRetentionPolicy.NON RETAIN for Servant Locator.)

98 VisiBroker for .NET Developer’'s Guide

Using Servants and Servant Managers

ServantActivators

ServantActivators are used when ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE SERVANT MANAGER are set.

Servants activated by this type of Servant Manager are tracked in the
Active Object Map.

The following events occur while processing requests using Servant
Activators:

1 Aclient request is received (client request contains POA name, the object
ID, and a few others.)

2 The POA first checks the Active Object Map. If the object ID is found
there, the operation is passed to the Servant, and the response is
returned to the client.

3 If the object ID is not found in the Active Object Map, the POA invokes
Incarnate on a Servant Manager. Incarnate passes the object ID and
the POA in which the object is being activated.

4 The Servant Manager locates the appropriate Servant.

5 The Servant ID is entered into the active object map, and the response is
returned to the client.

Note:

The Etherealize and Incarnate method implementations are user-
supplied code.

At a later date, the Servant can be deactivated. This may occur from
several sources, including the DeactivateObject operation, deactivation
of the POA manager associated with that POA, and so forth. More
information on deactivating objects is described in “Deactivating objects”.

The following is the implementation of the ServantActivator.

using System;

using System.Threading;
using System.Collections;
public class

AccountManagerActivator : PortableServer.ServantActivator {
private Hashtable objectMap = new Hashtable() ;
public AccountManagerActivator ()

Console.WriteLine ("AccountManagerActivator () called.");

// Populate the Object Map.
_objectMap.Add ("SavingsAccountManager",
new SavingsAccountManagerImpl ()) ;
_objectMap.Add ("CheckingAccountManager",
new CheckingAccountManagerImpl ()) ;
}

public PortableServer.Servant Incarnate (byte[] oid,
PortableServer.POA adapter) ({

try {

Console.WriteLine (
"AccountManagerActivator.Incarnate() called.");

string accountType = CORBA.ORB.Init () .ObjectIdToString(oid) ;

Console.WriteLine ("\nAccountManagerActivator.Incarnate ()
called with ID = " + accountType) ;

new ObjectDeactivator (adapter, oid) ;

return (PortableServer.Servant) _objectMap[accountTypel;

VisiBroker for .NET Developer’'s Guide 99

Using Servants and Servant Managers

}

catch (Exception e) ({
Console.WriteLine (e) ;

}

return null;

public void Etherealize (byte[] oid,
PortableServer.POA adapter,
PortableServer.Servant serv,
bool cleanupInProgress,
bool remainingActivations) {

Console.WriteLine ("Etheralize () called.");

try {
string accountType = CORBA.ORB.Init () .ObjectIdToString(oid) ;

Console.WriteLine ("\nAccountManagerActivator.Etherealize ()
called with ID = " + accountType) ;

catch (Exception e) {
Console.WriteLine (e) ;

}
}

private const int ONE SECOND = 1000;

private class ObjectDeactivator
private PortableServer.POA _adapter;
private byte[] _oid;

public ObjectDeactivator (PortableServer.POA adapter, bytel[]l oid) {
_adapter = adapter;
_oid = oid;

new Thread (new ThreadStart (Deactivate)) .Start () ;
}
public void Deactivate() {
Console.WriteLine ("Deactivate () called.");
try {
Thread.Sleep (ONE_SECOND * 15) ;
Console.WriteLine ("\nDeactivating the object with ID = " +

CORBA.ORB.Init () .0ObjectIdToString(oid));
_adapter.DeactivateObject (_oid);

}

catch (Exception e) {
Console.WriteLine (e) ;
}

}
}
}

The following is a server implementation similar to the code example in
“Activating with the default Servant”. In this example we highlight the differences
for activating Servants with the ServantActivator.

// create policies for our persistent POA
CORBA.Policy[] policies = {
rootPOA.CreatelLifespanbPolicy (
LifespanPolicyValue.PERSISTENT) ,
rootPOA.CreateRequestProcessingPolicy (
RequestProcessingPolicyValue.USE SERVANT MANAGER)
Vi

100 VisiBroker for .NET Developer's Guide

Using Servants and Servant Managers

// create myPOA with the right policies
POA myPOA =
rootPOA.CreatePOA ("bank servant activator poa",
root POA.ThePOAManager,
policies);

// Create the servant activator servant and get its
// reference
ServantActivator sa = new AccountManagerActivator (orb) ;

// Set the servant activator on our POA
myPOA . SetServantManager (sa) ;

// Activate the POA manager
rootPOA.ThePOAManager.Activate () ;

ServantLocators

In many situations, the POA's Active Object Map could become quite large
and consume memory. To reduce memory consumption, a POA can be
created with RequestProcessingPolicy.USE_SERVANT MANAGER and
ServantRetentionPolicy.NON RETAIN, meaning that the Servant-to-
object association is not stored in the Active Object Map. Since no
association is stored, Servant Locator Servant Managers are invoked for
each request.

The following events occur while processing requests using Servant
Locators:

1 A client request, which contains the POA name and the object id, is
received.

2 Since ServantRetentionPolicy.NON RETAIN is used, the POA does
not search the Active Object Map for the object ID.

3 The POA invokes Preinvoke on a Servant Manager. Preinvoke passes
the object ID, the POA in which the object is being activated, and a few
other parameters.

4 The Servant Locator locates the appropriate Servant.

5 The operation is performed on the Servant and the response is returned
to the client.

6 The POA invokes Postinvoke on the Servant Manager.

Note:

The Preinvoke and Postinvoke method implementations are user-
supplied code.

VisiBroker for .NET Developer’'s Guide 101

Using Servants and Servant Managers

The following is the implementation of the ServantLocator.

using System;

using CORBA;

using PortableServer;

using PortableServer.ServantLocatorNS;

public class AccountManagerLocator : ServantLocator (
private ORB _orb;

public AccountManagerLocator (ORB orb) {
_orb = orb;

}

public Servant Preinvoke (byte[] oid, POA adapter,
string operation, out object theCookie)

string accountType = _orb.ObjectIdToString(oid) ;
theCookie = null;

Console.WriteLine ("\nAccountManagerLocator.preinvoke
called with ID = {0}\n", accountType) ;

if (accountType.Equals ("SavingsAccountManager")) {
return new SavingsAccountManagerImpl () ;

}

return new CheckingAccountManagerImpl () ;

public void Postinvoke (byte[] oid,
POA adapter,
string operation,
object theCookie,
Servant theServant) {
string id = orb.ObjectIdToString(oid) ;
Console.WriteLine ("\nAccountManagerLocator.postinvoke
called with ID = {0}\n", id);
}

}

The following is a server implementation similar to the code example in
“Activating with the default Servant”. This example highlights the differences for
activating Servants using the ServantLocator.

// Create policies for our POA. We need persistence life
// span, use servant manager request processin