
VisiBroker 8.5.2

VisiNotify Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2009-2014. All rights reserved. VisiBroker contains
derivative works of Borland Software Corporation, Copyright 1992-2010 Borland
Software Corporation (a Micro Focus company).

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.

BORLAND, the Borland logo and VisiBroker are trademarks or registered trademarks
of Borland Software Corporation or its subsidiaries or affiliated companies in the
United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2014-06-23

VisiBroker Vis iNot i fy Guide iii

Contents

Introduction to VisiBroker... 1
Accessing VisiBroker online help topics in the standalone Help Viewer 1
Accessing VisiBroker online help topics from within a VisiBroker GUI tool.................. 1
Documentation conventions.. 1

Platform conventions... 2
Contacting Micro Focus .. 2

Further Information and Product Support ... 2
Information We Need .. 3
Contact information .. 3

Introduction to VisiNotify.. 5
OMG Event/Notification Service Communication Model ... 5
OMG Event/Notification Service Object Model.. 6
VisiNotify features... 8

Superior throughput and scalability ... 8
Superior performance with event persistence ... 9
Valuetype support... 9
Typed channel support .. 9
Publish/Subscribe Adapter (PSA)... 10
Typed pulling without using Pull<I> interface ... 10
Explicit RMI and EJB support .. 10
Connection persistence.. 10
Self-adaptive asynchronous flow control .. 11
QoS and filter support ... 11
Thread on demand.. 11

Developing supplier and consumer applications 13
Using pre-defined Event/Notification Services ... 13

Developing push consumer applications ... 13
C++ push consumer example .. 14
Java push consumer example... 15

Develop pull consumer applications ... 16
C++ pull consumer example .. 16
Java pull consumer example .. 17

Developing push supplier applications.. 18
C++ push supplier example ... 18
Java push supplier example ... 19

Developing pull supplier applications ... 19
C++ pull supplier example... 20
Java pull supplier example ... 21

Using Typed Event/Notification Service... 22
Developing typed push consumer applications .. 23

C++ typed push consumer example.. 24
Java typed push consumer example .. 25

Developing typed push supplier applications ... 26
C++ typed push supplier example .. 27
Java typed push supplier example... 27

Developing RMI/EJB applications with VisiNotify .. 28
Developing an RMI typed consumer... 29
Developing an RMI typed supplier ... 32
Developing an EJB bean as a Typed Notification consumer............................ 33
Developing an EJB bean as a Structured Notification consumer 34

VisiBroker Event Buffering/Batch... 35
Disable supplier-side event buffering ... 35
Disable consumer-side event buffering .. 35

iv Vis iBroker Vis iNot i fy Guide

Flush buffered events in supplier application ...35
Initial Reference of VisiNotify ..36

Using the Publish Subscribe Adapter (PSA)39
Introduction ...39
PSA reference and PSA interface IDL..42
User examples ..45

Structured Push Consumer ...45
Typed Push Consumer..47
Structured and Typed Push Supplier...50

Structured Supplier to a Channel...51
Typed Supplier to a Channel ...52

Subscribe a subject using PSA...53
SubjectScheme...53
Subject Reference, Observer ID, and Properties to Subscribe()......................54
Examples of Subscribe() ..55

Subscribe Descriptor and the_subject_addr()......................................58
Unsubscribe a Subject ...58

Publish a Subject...59
SubjectScheme...59
Subject Reference, Provider ID, and Properties to Publish()...........................60
Examples of publish() ..61

Publish Descriptor and the_subject_addr() ...65
Unpublish a subject ...65

Support of Typed Pulling...66
Passive typed pull consumer ...66

C++ passive typed pull consumer example...67
Active typed pull consumer...68

C++ active typed pull consumer example...68
Java active typed pull consumer example ...68

Typed pull supplier ..69
C++ typed pull supplier example ..70
Java typed pull supplier example...71

Additional topics and summary..72
ChannelException..72
Setting Notification Service QoS in PSA ..72
PSA Summary ..72

Setting the Quality of Service and Filters...................................75
Properties of the Quality of Service (QoS)...75

Priority ..75
EventReliability ...75
VBPersistentDbType ..75
VBPersistentCommitSyncPolicy ...75
VBPersistentStorageOverflowBlockTimeout ...76
VBPersistentOverflowDowngradePolicy ...76
ConnectionReliability ...76
MaxEventsPerConsumer...76
DiscardPolicy ..77
OrderPolicy ..77
VBQueueLowWaterMark ...77
VBQueueHighWaterMark ..77
VBProxyPushSupplierThreadModel ...77
VBProxyPushSupplierQueuePreemptWaterMark77
VBReceivedEventsCount...78
VBPendingEventsCount ..78
VBDiscardedEventsCount ...78

VisiBroker Vis iNot i fy Guide v

VBForwardedEventsCount .. 78
VBFilteredEventsCount .. 78

Administration and Validation of QoS properties .. 78
Interface CosNotification::QoSAdmin... 78
Validating QoS in the header of structured events 78
QoS negotiation.. 79

Channel Admin Properties .. 79
Interface CosNotification::AdminPropertiesAdmin.. 79
VBPersistentStorageSize .. 79

Static Properties ... 79
vbroker.notify.console ... 79
vbroker.notify.listener.port ... 80
vbroker.notify.factory.name.. 80
vbroker.notify.channel.name .. 80
vbroker.notify.channel.threadMaxIdle .. 80
vbroker.notify.enableEventQoS ... 80
vbroker.notify.dir .. 80
vbroker.notify.ir .. 81
vbroker.notify.channel.persistentStorageSize 81
vbroker.notify.channel.persistentCommitPolicy.................................... 81
vbroker.notify.channel.persistentOverflowBlock

Timeout .. 81
vbroker.notify.channel.persistentDowngradePolicy 82
vbroker.notify.channel.persistentEvent... 82
vbroker.notify.channel.iorFile.. 82
vbroker.notify.channel.passiveProxyPersistenceMask............................ 82
vbroker.notify.channel.maxDelay .. 83
vbroker.notify.threadPool.threadMax.. 83
vbroker.notify.threadPool.threadMin .. 83
vbroker.notify.threadPool.threadMaxIdle .. 83
vbroker.log.enable .. 83

Levels of Support.. 84
Event Filtering using Filter Objects .. 85

Filtering Events .. 85
Forwarding Filter Evaluation ... 86
Using Forwarding Filters .. 86
Forwarding Filter Limitation.. 88
Writing Filter Constraint Expressions ... 88

Extended Trader Constraint Language (Extended TCL) 89

Index ...93

vi Vis iBroker Vis iNot i fy Guide

VisiBroker Vis iNot i fy Guide 1

Introduction to VisiBroker
VisiBroker is a set of services and tools that enables you to build, deploy,
and manage distributed enterprise applications in your corporate
environment. These applications provide dynamic content by using JSP,
servlets, and Enterprise Java Bean (EJB) technologies.

Accessing VisiBroker online help topics in the
standalone Help Viewer

To access the online help through the standalone Help Viewer on a machine
where the product is installed, use one of the following methods:

Windows

• Choose Start > Programs > VisiBroker > Help Topics

• or, open the Command Prompt and go to the product installation \bin
directory, then type the following command:

help

UNIX

Open a command shell and go to the product installation /bin directory,
then enter the command:

help

Tip

During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option and
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use ./help to start the help viewer.

Accessing VisiBroker online help topics from within
a VisiBroker GUI tool

To access the online help from within a VisiBroker GUI tool, choose Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

Documentation conventions
The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Convention Used for
italics Used for new terms and book titles.
computer Information that the user or application provides, sample

command lines and code.

2 VisiBroker Vis iNot i fy Guide

Contact ing Micro Focus

Platform conventions
The VisiBroker documentation uses the following symbols to indicate
platform-specific information:

Windows: All supported Windows platforms.

Win2003: Windows 2003 only

WinXP: Windows XP only

Win2000: Windows 2000 only

UNIX: UNIX platforms

Solaris: Solaris only

Linux: Linux only

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

bold computer In text, bold indicates information the user types in. In code
samples, bold highlights important statements.

[] Optional items.
... Previous argument that can be repeated.
> Two mutually exclusive choices.

Convention Used for

http://www.microfocus.com

VisiBroker Vis iNot i fy Guide 3

Contact ing Micro Focus

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/visibroker/visibroker-product-
trial.aspx (updated VisiBroker software and other files)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

http://www.microfocus.com/products/visibroker/visibroker-product-trial.aspx
http://www.microfocus.com/products/visibroker/visibroker-product-trial.aspx
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

4 VisiBroker Vis iNot i fy Guide

Contact ing Micro Focus

VisiBroker Vis iNot i fy Guide 5

Introduction to VisiNotify
This chapter provides a general discussion on the architecture of the Object
Management Group (OMG) Event/Notification Service and introduces Micro
Focus's implementation, VisiNotify.

Note

It is recommended that you use this document in conjunction with the
application examples shipped with VisiNotify and the OMG Event/
Notification Specification that is available on the OMG web site http://
www.omg.org/.

OMG Event/Notification Service Communication
Model

In the CORBA environment, the core ORB is a distributed framework for
creating object-oriented client/server applications. The communication
model(s) supported by the core ORB is intended for the client/server
applications with direct (at least conceptually), one-to-one, synchronous
communication. Some of the application requirements go beyond the core
ORB facility, such as:

• Support for distributed publish/subscribe application design, such as,
many-to-many and de-coupled.

• Support for single directional, asynchronous and buffered event
distribution with a throughput substantially higher than synchronous
communication.

• Support for quality of services (QoS), such as event/connection reliability.

• Support for event filtering.

The requirements mentioned above have been supported by traditional
message oriented middleware (MOM) for non-CORBA applications. OMG
Event/Notification Service addresses the same set of requirements for
CORBA applications.

In publish/subscribe applications, objects involved in the communication
could be arbitrary. There are two types of objects in publish/subscribe
communication; the event suppliers (providers and publishers) and event
consumers (observers and subscribers). Also, there are two event transfer
models; the event pushing and event pulling. Objects involved in the
publish/subscribe communication are de-coupled from each other by the
message middleware. These objects are not dependent on the existence
and status of other objects in order to work properly. Event suppliers
transfer events to the channel regardless the existence of consumers.

Note

De-coupling in this instance means independence rather than security. If a
supplier can tell, implicitly, the existence of a consumer, it does not mean
de-coupling is broken.

In single directional event distribution, events flow from upstream into
downstream. Specifically, events flow from suppliers to channels and
subsequently flow from channel into subscribed consumers. Event transfer
is asynchronous and buffered. Suppliers can get acknowledgment from the
message middleware, not from the consumers. This means event transfer

http://www.omg.org/
http://www.omg.org/

6 VisiBroker Vis iNot i fy Guide

OMG Event/Not i f icat ion Service Object Model

routing through a message middleware could have much higher throughput
than synchronous method invocation without routing.

OMG Event/Notification Service Object Model
The main concept in OMG Event/Notification is the channel. Events are sent
into an event channel and replicated to their recipients. Multiple
independent channels can be created and used by a given application.
Events are either pushed or pulled into an event channel from the supplier.
The events flow inside the channel in a downstream direction. Events in the
downstream end are buffered in proxy suppliers and are pushed to or pulled
by consumers. Application level event suppliers or consumers are connected
with proxy objects to transfer events into/from the channel.

In the downstream end of a channel (consumer end):

• Each push consumer needs to create and connect to a dedicated proxy
push supplier. It then passively waits for the channel callback to send
events.

• Pull consumers actively invoke requests on proxy pull suppliers to retrieve
events from the channel.

Proxy suppliers are usually located in the channel server and are created by
applications from consumer admins. Consumer admins are created either as
a default or by applications from channels. Each channel has a default
consumer admin. This creation process forms a [channel]-[consumer(s)
admin(s)]-[supplier proxy(s)] hierarchy.

In the upstream end of a channel (supplier end):

• Push suppliers actively invoke requests on proxy push consumer to push
events into the channel.

• Each pull supplier needs to create and connect to a dedicated proxy pull
consumer. It then passively waits for channel callback to retrieve events.

Proxy consumers are usually located in the channel server and are created
by applications from supplier admins. Supplier admins are created either as
a default or by applications from channels. Each channel has a default
supplier admin. This creation process forms a [channel]-[supplier(s)
admin(s)]-[consumer proxy(s)] hierarchy.

VisiBroker Vis iNot i fy Guide 7

OMG Event /Not i f icat ion Service Object Model

This diagram illustrates the event flow (upstream and downstream) within
the notification communication model:

Like most traditional message oriented middleware, the OMG Notification
Service also defines and supports Qualify of Services (QoS). VisiNotify
supports most OMG defined QoS policies along with additional VisiNotify
extensions. Among those QoS policies, two most important QoSs are event
persistence and connection persistence. With event persistence (or
reliability), buffered events in the channel are temporarily stored in a
persistent repository to prevent event loss due to maintenance shutdown or
accidental system crash. With connection persistence (or reliability), OMG
defines two QoS functions. The first function is that images of channels,
admins, proxies and their current settings are stored in a persistent
repository that allows the channel server to restore these objects upon
channel restart. The second function is that the channel can reestablish
transport connections to pull suppliers and push consumers.

8 VisiBroker Vis iNot i fy Guide

VisiNot i fy features

Another important service defined by the OMG Event/Notification Service is
event filtering. Applications can add filter objects at admin or proxy level to
selectively filter out unwanted events.

The OMG Event/Notification Service defines four types of notification
channels; the untyped, structured, sequence, and typed. The event
interfaces of the first three channels are pre-defined by OMG Event/
Notification specification and are referred to as “pre-defined” channels. The
event interfaces for typed channels are not pre-defined by OMG but by user
applications and are referred to as “user-defined” typed channels. VisiNotify
supports all four types of channels with the exception of the sequence
pulling.

With the untyped channel, events are represented as CORBA Anys. Events
are sent by invoking push() operation with CORBA::Any as an input
parameter using untyped consumer or proxy untyped consumer objects.
With structured and sequence channels, events are represented as
StructuredEvent IDL structures or sequence. Events are sent by invoking
push_structured_event() or push_structured_events() on the
respective consumer or proxy consumer. With a typed channel, there is no
predefined event interface. Event interfaces are defined by user applications
as OMG IDL interfaces. Events are sent by invoking non-pseudo operations
on consumers’ or proxy consumers’ typed interfaces.

Note

Examples of supplier and consumer applications with the above event types
are discussed in “Developing supplier and consumer applications”.

VisiNotify features
Micro Focus VisiNotify is an industrial-strength implementation of OMG
Event/Notification Service. Instead of implementing on the user level,
VisiNotify is implemented on ORB level and registered with the Naming
Service using the generic Naming Service mechanism. See the “Using the
VisiNaming Service” chapters in the VisiBroker for Java and VisiBroker for
C++ Developer’s Guides for more information. With this unique design,
VisiNotify is able to work more efficiently and to provide features that are
difficult or impossible to support on the user level. Here are the main
features of VisiNotify.

Superior throughput and scalability
VisiNotify is designed to work at the GIOP message level. It directly hands
over received event payloads to the downstream consumers. When
replicating any received events, VisiNotify does not de-marshal events
unless there are filters or event level QoS in the stream. And VisiNotify does
not re-marshal events even if there are filters or event level QoS. This
unique design allows VisiNotify to reach a very high event throughput with a
very low CPU usage. On handling client connect through GIOP 1.0 and 1.1,
advanced techniques are used to adjust payload alignment without de-
marshaling and re-marshaling the events.

By leveraging Micro Focus's event buffering/batch technology in VisiBroker
5.1, the throughput displayed by VisiNotify is substantially higher in
magnitude than any user level notification service product on the market.
The use of event buffering and batch processing optimizes VisiNotify
throughput. Different from user level batch technology, (such as sequence
event) the event buffering/batch technology is fully transparent to user
applications and has no restrictions on event type. All event types (untyped,

VisiBroker Vis iNot i fy Guide 9

Vis iNot i fy features

structured, sequence or typed) can be buffered/batched. Therefore,
VisiNotify is able to reach the best end-to-end event throughput by
combining event batch with the smallest event sizes and lowest event
marshaling/de-marshaling cost of typed events.

With user level implementation, event buffering/batch is not transparent to
the application. Also, only restricted event types, namely structured events,
can be sent in batches. Compared to Micro Focus's event buffering/batch
technology, event batch using sequence channel has no advantages.
Therefore, VisiNotify only provides limited support for sequence channel
with the following restrictions:

• Support for only end-to-end push model sequence channel. Filter
constraints and event level QoS policies are only evaluated for the first
event in a sequence and the result is applied to the entire event.

• Maximum batch size setting is ignored.

• Sequence pulling is not supported.

Note: a real industry usage case (ITU-T CORBA/TMN notification) based
throughput benchmark test suite is shipped with this VisiNotify release. See
<install_dir>/examples/vbroker/notify/bench_[itut|tmf]_cpp
and bench_[itut|tmf]_java.

Superior performance with event persistence
Many user level channel products use DynAny to unpack event from events
for persistence support. VisiNotify directly dumps event message payloads
into persistent storage without de-marshaling and unpacking them. This
unique design minimizes the overhead from event persistence. Under the
default setting, VisiNotify event persistence overhead is 5% to 15%.

Valuetype support
VisiNotify is the first and only notification channel that supports valuetypes
in events. Even with the presence of a filter in the event stream, VisiNotify
can still evaluate filter conditions using the attributes before the first
valuetype in a given event.

Typed channel support
The typed channel support is documented in “Developing supplier and consumer
applications”.

VisiNotify is the first OMG Typed Event/Notification implementation that
does not use Dynamic Invocation Interface (DII) and Dynamic Skeleton
Interface (DSI). VisiNotify does not rely on Interface Repository to work
unless there is a filter constraint in the typed event stream. This means that
VisiNotify's typed channel is significantly faster than any typed or untyped
channel implementations.

Since VisiNotify does not rely on the IR when filter is not used, the key
parameters used in calling obtain_typed_..._consumer/supplier() are
not necessarily to be the event interface repository id. Therefore,
applications can choose the proxy keys as an alternative filtering strategy.
Applications can use proxy keys to divide a given typed channel into
multiple logical channels. This approach is more efficient and flexible than
the constraint language parsing based filtering.

10 VisiBroker Vis iNot i fy Guide

VisiNot i fy features

Publish/Subscribe Adapter (PSA)
The Publish/Subscribe Adapter feature is documented in“Using the Publish
Subscribe Adapter (PSA)”.

The PSA is a programming model and software component supported by
VisiBroker (from version 5.1 onwards). It works on top of any OMG Event/
Notification Service. The basic concept of the PSA is to provide a high level
object-oriented abstraction for publish/subscribe communication. The PSA
not only simplifies the code of typed event/notification applications and
provides an elegant solution for typed pulling, it shields the application from
directly dealing with the connection interface difference. Without PSA, using
different event types (untyped, structured, sequence and typed) or transfer
models means different connection interfaces.

Typed pulling without using Pull<I> interface
One elegant feature of the PSA is that it supports typed pulling using the
original user-defined <I> interface instead of the mangled Pull<I>
interface.

Explicit RMI and EJB support
The explicit RMI and EJB support is documented in “Developing supplier and
consumer applications”.

VisiNotify supports two types of RMI/EJB connection scenarios. The first
scenario is the typed event RMI/EJB applications using VisiNotify's typed
channel as a message middleware. In this case, user defined RMI interface
or EJB remote interface is the definition for the typed event interface. All
suppliers are RMI applications making RMI call to push events into VisiNotify
typed channel. All connected consumers are also RMI applications with their
RMI reference connected to the typed event channel.

The second scenario involves using the structured event channel. In this
scenario, all suppliers are CORBA applications sending
CosNotification::StructuredEvent to the structured event channel.
In the downstream end, some consumer applications can be a CORBA
application connected as structured consumers while others are consumers
that can be structured event EJB beans. A structured event EJB bean is no
different from a normal session or entity bean. A structured event bean and
its remote interface implements and declares a
push_structured_event() operation with
org.omg.CosNotification.StructuredEvent as input parameter.
VisiNotify provides a utility, subtool, to connect a structured event bean's
remote interface to a given VisiNotify structure event channel.

These two scenarios provide alternative and pure object-oriented solutions
for event driven J2EE applications. Comparing to Java Message Service
(JMS) and Message Driven Bean (MDB), the advantages are:

• Static type safe RMI stubs and skeleton perform message pack/unpack

• Event are described by user defined Java RMI interface.

Connection persistence
VisiNotify supports the connection persistence as defined by the OMG
specification:

• Restore persistent channels, admins and proxies after channel restart.

VisiBroker Vis iNot i fy Guide 11

Vis iNot i fy features

• Reestablish broken/lost transport connections to push consumers or pull
suppliers.

VisiNotify restores persistent channel, admin and proxy as well as their
current settings and IDs (ChannelID, AdminID and ProxyID). VisiNotify also
reestablish transport connections. VisiNotify also supports an extended
feature that automatically put a proxy on suspended state if the connection
to the connected push consumer or pull supplier is broken. This is a better
scenario than trying to reestablish the transport connection in a loop.

Self-adaptive asynchronous flow control
In OMG Notification Service 1.0, the channel should pull for event messages
from a pull supplier when there is at least one consumer in the event
stream. In OMG Notification Service 1.3, OMG requires the proxy to pull
regardless whether any consumers are connected to the channel. The
argument made from OMG is, that this pulling of events will shield the
supplier from its consumers by preventing the supplier from knowing
whether any consumers are present.

These two scenarios could lead to system and network resource waste on
the unnecessary and tight pulling. However, with self-adaptive
asynchronous flow control, the proxy pull consumer will only pull when
returned events can be handed over to at least one consumer in the
downstream. This implementation requires that each logic channel is
assigned a voting slot. An upstream proxy pull consumer only pulls when
the count in its voting slot is non zero. Each downstream proxy supplier,
either push or pull, has one vote to its logic channel's voting slot. It votes to
pull when the number of events in its queue is lower than the low
watermark. And it withdraws its vote when pending events in its queue are
more than the high watermark. This avoids the upstream proxy pull
consumer pulling events back only to be discarded or rejected by
downstream proxy consumers immediately. By setting the high and lower
watermark, applications can also get OMG Notification Service 1.0 or 1.3
behaviors.

QoS and filter support
VisiNotify supports OMG QoS and VisiNotify extensions. Also, VisiNotify
provides a highly optimized and OMG compliant filter support for structured,
sequence, and typed channels. See “Setting the Quality of Service and Filters”.

Thread on demand
Internally, channels and active proxies (proxy pull consumer and proxy
push supplier) all require threads. However, threads are not assigned to
them as a dedicated servant. They are recycled when other objects above
them (hierarchically) are in an idle state. VisiNotify provides threads
dynamically.

12 VisiBroker Vis iNot i fy Guide

VisiBroker Vis iNot i fy Guide 13

Developing supplier and
consumer applications
This chapter discusses how you can develop supplier and consumer
applications using OMG Notification Service. The following topics are
covered:

• Using pre-defined Event/Notification Services

• Using Typed Event/Notification Service

• Developing RMI/EJB applications with VisiNotify

• VisiBroker Event Buffering/Batch

Using pre-defined Event/Notification Services
The OMG Notification Service specifies three kinds of pre-defined event
channels: Untyped, Structured, and Sequence. The advantage of pre-
defined channels is that they are easy for user level implementations.
Therefore, almost all notification service products on the market support
pre-defined channels. The disadvantage of pre-defined channels are:

• They are slower than user defined typed channels.

• They usually have larger event size.

• They require more type unsafe dynamic manual code to pack and unpack
user data into and from events.

• They do not have a formal, unified, widely adopted event description
language.

For these reasons, the pre-defined untyped, structured and sequence
channels are not a good choice for new CORBA applications. However, they
are supported by VisiNotify for OMG compliance as well as for legacy
applications. New applications should consider using the OMG Typed
Notification Service. See “Using Typed Event/Notification Service” for detailed
information.

Developing push consumer applications
A push consumer is essentially a CORBA callback server application. It
provides an push consumer object implementation. The push consumer
object implementation supports a pre-defined (untyped, structured or
sequence) push consumer interface. The consumer application connects this
consumer object to a channel to receive events.

Developing a push consumer application involves two tasks:

• Implement a normal push consumer server object which support a pre-
defined (untyped, structured or sequence) push consumer interface. This
involves:

• Implementing the push consumer servant.

• Activating the servant on POA.

• Activating the POA manager.

14 VisiBroker Vis iNot i fy Guide

Using pre-def ined Event/Not i f icat ion Services

• Connect the consumer object to a channel. This involves:

• Getting the channel reference.

• Getting consumer admin from channel.

• Obtaining proxy push supplier.

• Connecting the consumer object to the proxy push supplier.

To illustrate the development of the push consumer application, the
structured push consumer is used.

C++ push consumer example
The following push consumer example is located in
<install_dir>/examples/vbroker/notify/basic_cpp/
structPushConsumer.C.

// 1. Implementing the push consumer servant
class StructuredPushConsumerImpl : public
POA_CosNotifyComm::StructuredPushConsumer, public virtual
PortableServer::RefCountServantBase
 {

...
public:
...
void push_structured_event(const CosNotification::StructuredEvent&

event) { ... }
 ...
 };

// The consumer server
int main(int argc, char** argv)
{

// get orb and POA ...
...

// construct a push consumer servant
StructuredPushConsumerImpl* servant = new StructuredPushConsumerImpl;

// 2. Activate the consumer servant on a POA
poa->activate_object(servant);

// 3. Activate the POA
poa->the_POAManager()->activate();

 ...
// 4. Somehow, we get the channel from somewhere
CosNotifyChannelAdmin::EventChannel_var channel = ...;

// 5. Somehow, we decide to use the default admin
CosNotifyChannelAdmin::ConsumerAdmin_var admin =

channel->default_consumer_admin();

// 6. Obtain a proxy push supplier from the admin
CosNotifyChannelAdmin::ProxyID pxy_id;
CosNotifyChannelAdmin::ProxySupplier_var proxy =

admin->obtain_notification_push_supplier(
CosNotifyChannelAdmin::STRUCTURED_EVENT, pxy_id);

CosNotifyChannelAdmin::StructuredProxyPushSupplier_var supplier =
CosNotifyChannelAdmin::StructuredProxyPushSupplier::_narrow(proxy);

VisiBroker Vis iNot i fy Guide 15

Using pre-def ined Event /Not i f icat ion Services

// 7. Get consumer object reference and connect it to the proxy
CORBA::Object_var obj = poa->servant_to_reference(servant);
CosNotifyComm::StructuredPushConsumer_var consumer

= CosNotifyComm::StructuredPushConsumer::_narrow(obj);
supplier->connect_structured_push_consumer(consumer);

// working loop
orb->run();
 }

Java push consumer example
The following push consumer example is located in
<install_dir>/examples/vbroker/notify/basic_java/
structPushConsumer.java.

import org.omg.CosNotifyComm.*;
import org.omg.CosNotifyChannelAdmin,*;
import org.omg.CosNotification.*;

class StructPushConsumerImpl extends StructuredPushConsumerPOA
 {
 ...

// 1. Implement the push consumer servant
 public void push_structured_event(StructuredEvent event) { ... }
 ...

 public static int main(String[] args) {
// get orb and POA ...
 ...

// construct a push consumer servant
 StructPushConsumerImpl servant = new StructPushConsumerImpl();

// 2. Activate the consumer servant on a POA
 poa.activate_object(servant);

// 3. Activate the POA
 poa.the_POAManager().activate();

 ...
// 4. Somehow, we get the channel from somewhere
 EventChannel channel = ...;

// 5. Somehow, we decide to use the default admin
 ConsumerAdmin admin = channel.default_consumer_admin();

// 6. Obtain a proxy push supplier from the admin
ProxyIDHolder pxy_id = new ProxyIDHolder();
ProxySupplier proxy = admin.obtain_notification_push_supplier(

ClientType.STRUCTURED_EVENT, pxy_id);

StructuredProxyPushSupplier supplier
= StructuredProxyPushSupplierHelper.narrow(proxy);

// 7. Get consumer object reference and connect it to the proxy
org.omg.CORBA::Object obj = poa.servant_to_reference(servant);
StructuredPushConsumer consumer = StructuredPushConsumerHelper.narrow(obj);

16 VisiBroker Vis iNot i fy Guide

Using pre-def ined Event/Not i f icat ion Services

supplier.connect_structured_push_consumer(consumer);

// working loop
orb.run();
 }
 }

Develop pull consumer applications
A pull consumer is essentially a CORBA client. It obtains a proxy pull
supplier object in the channel and actively sends request to the proxy to
retrieve buffered events.

Developing a pull consumer application involves two tasks:

• (Optional) Implement a pull consumer server object which supports a
pre-defined (untyped, structured or sequence) pull consumer interface.
This involves:

• Implementing the pull consumer servant.

• Activating the servant on POA.

• Activating the POA manager.

• Get a proxy pull supplier reference and retrieve events from it. This
involves:

• Getting the channel reference.

• Getting consumer admin from channel.

• Obtaining proxy pull supplier.

• Connecting the consumer object (or null) to the proxy pull supplier.

• Actively pulling the event from the proxy pull supplier.

To illustrate the development of the pull consumer application, the
structured pull consumer is used.

C++ pull consumer example
The following pull consumer example is located in
<install_dir>/examples/vbroker/notify/basic_cpp/
structPullConsumer.C.

// The consumer client
int main(int argc, char** argv)
{

// get orb ...
...

// 1. Somehow, we get the channel from somewhere
CosNotifyChannelAdmin::EventChannel_var channel = ...;

// 2. Somehow, we decide to use the default admin
CosNotifyChannelAdmin::ConsumerAdmin_var admin =

channel->default_consumer_admin();

// 3. Obtain a proxy pull supplier from the admin
CosNotifyChannelAdmin::ProxyID pxy_id;
CosNotifyChannelAdmin::ProxySupplier_var proxy =
admin->obtain_notification_pull_supplier(

CosNotifyChannelAdmin::STRUCTURED_EVENT, pxy_id);

VisiBroker Vis iNot i fy Guide 17

Using pre-def ined Event /Not i f icat ion Services

CosNotifyChannelAdmin::StructuredProxyPullSupplier_var supplier =
 CosNotifyChannelAdmin::StructuredProxyPullSupplier::_narrow(proxy);

// 4. Connect to the proxy
supplier->connect_structured_pull_consumer(NULL);

// 5. Pull events from the proxy pull supplier
for(int i=0;i<100;i++) {

CosNotification::StructuredEvent_var event;
event = supplier->pull_structured_event();

 ...
}

// 6. Gracefully cleanup

supplier->disconnect_structured_pull_supplier();
 }

Java pull consumer example
The following pull consumer example is located in
<install_dir>/examples/vbroker/notify/basic_java/
structPullConsumer.java.

import org.omg.CosNotifyComm.*;
import org.omg.CosNotifyChannelAdmin,*;
import org.omg.CosNotification.*;

public class structPullConsumer
{

...
public static int main(String[] args) {

// get orb ...
...
// 1. Somehow, we get the channel from somewhere
EventChannel channel = ...;

// 2. Somehow, we decide to use the default admin
ConsumerAdmin admin = channel.default_consumer_admin();

// 3. Obtain a proxy pull supplier from the admin
ProxyIDHolder pxy_id = new ProxyIDHolder();
ProxySupplier proxy = admin.obtain_notification_pull_supplier(

ClientType.STRUCTURED_EVENT, pxy_id);

StructuredProxyPullSupplier supplier =
StructuredProxyPullSupplierHelper.narrow(proxy);

// 4. Connect to the proxy
supplier.connect_structured_pull_consumer(null);

// 5. Pull events from the proxy pull supplier
for(int i=0;i<100;i++) {

StructuredEvent event = supplier.pull_structured_event();
...
}

// 6. Gracefully cleanup
supplier.disconnect_structured_pull_supplier();
}

}

18 VisiBroker Vis iNot i fy Guide

Using pre-def ined Event/Not i f icat ion Services

Developing push supplier applications
A push supplier application is a CORBA client. It actively invokes requests
on a proxy consumer object to send events to the channel.

Developing a push supplier application involve two tasks:

• (Optional) Implement a push supplier server object which supports a pre-
defined (untyped, structured or sequence) push supplier interface. This
involves:

• Implementing the supplier servant.

• Activating the servant on POA.

• Activating the POA manager.

• Get a proxy push consumer reference and send events to it. This
involves:

• Getting the channel reference.

• Getting supplier admin from channel.

• Obtaining proxy push consumer.

• Connecting the supplier object (or null) to the proxy push consumer.

• Actively pushing events to the proxy push consumer.

To illustrate the development of the push supplier application, the
structured push supplier is used.

C++ push supplier example
The push supplier example is located in examples/vbroker/notify/
basic_cpp/structPushSupplier.C.

// The push supplier client
int main(int argc, char** argv)
{

// get orb ...
...

// 1. Somehow, we get the channel from somewhere
CosNotifyChannelAdmin::EventChannel_var channel = ...;

// 2. Somehow, we decide to use the default admin
CosNotifyChannelAdmin::SupplierAdmin_var admin =
channel->default_supplier_admin();

// 3. Obtain a proxy push consumer from the admin
CosNotifyChannelAdmin::ProxyID pxy_id;
CosNotifyChannelAdmin::ProxyConsumer_var proxy =
admin->obtain_notification_push_consumer(

CosNotifyChannelAdmin::STRUCTURED_EVENT, pxy_id);

CosNotifyChannelAdmin::StructuredProxyPushConsumer_var consumer
 = CosNotifyChannelAdmin::StructuredProxyPushConsumer::_narrow(proxy);

// 4. Connect to the proxy
consumer->connect_structured_push_supplier(NULL);

// 5. Push events to the proxy push consumer
for(int i=0;i<100;i++) {

CosNotification::StructuredEvent_var event = ...;

VisiBroker Vis iNot i fy Guide 19

Using pre-def ined Event /Not i f icat ion Services

consumer->push_structured_event(event);
}

// 6. Gracefully cleanup
consumer->disconnect_structured_push_consumer();

}

Java push supplier example
The push supplier example is located in examples/vbroker/notify/
basic_java/structPushSupplier.java.

import org.omg.CosNotifyComm.*;
import org.omg.CosNotifyChannelAdmin,*;
import org.omg.CosNotification.*;

public class structPushSupplier
{

...
public static int main(String[] args) {

// get orb ...
 ...

// 1. Somehow, we get the channel from somewhere
EventChannel channel = ...;

// 2. Somehow, we decide to use the default admin
ConsumerAdmin admin = channel.default_supplier_admin();

// 3. Obtain a proxy consumer from the admin
ProxyIDHolder pxy_id = new ProxyIDHolder();
ProxyConsumer proxy = admin.obtain_notification_push_consumer (

ClientType.STRUCTURED_EVENT, pxy_id);

StructuredProxyPushConsumer consumer =
StructuredProxyPushConsumerHelper.narrow(proxy);

// 4. Connect to the proxy
consumer.connect_structured_push_supplier(null);

// 5. Push events to the proxy push consumer
for(int i=0;i<100;i++) {

StructuredEvent event = ...;
c onsumer.push_structured_event(event);

}

// 6. Gracefully cleanup
consumer.disconnect_structured_push_consumer();

}
}

Developing pull supplier applications
A pull supplier application is a CORBA callback server. It provides an pull
supplier object implementation. The pull supplier object implementation
supports a pre-defined (untyped, structured or sequence) pull supplier
interface. The supplier application needs to connect this supplier object to a
channel to supply events.

Developing a pull supplier application involves two tasks:

20 VisiBroker Vis iNot i fy Guide

Using pre-def ined Event/Not i f icat ion Services

• Implement a normal pull supplier server object which supports a pre-
defined (untyped, structured, or sequence) pull supplier interface. This
involves:

• Implementing the pull supplier servant.

• Activating the servant on POA.

• Activating the POA manager.

• Connect the supplier object to a channel. This involves:

• Getting the channel reference.

• Getting supplier admin from channel.

• Obtaining proxy pull consumer.

• Connecting the pull supplier object to the proxy pull consumer.

To illustrate the development of the pull supplier application, the structured
pull supplier is used.

C++ pull supplier example
The pull supplier example is located in examples/vbroker/notify/
basic_cpp/structPullSupplier.C.

// 1. Implement the pull supplier servant
class StructuredPullSupplierImpl : public

POA_CosNotifyComm::StructuredPullSupplier, public virtual
PortableServer::RefCountServantBase

{
...
public:
...

CosNotification::StructuredEvent* pull_structured_event() { ... }
CosNotification::StructuredEvent* try_pull_structured_event(

CORBA::Boolean& has_event) { ... }
 ...
 };

// The supplier server
int main(int argc, char** argv)

 {
// get orb and POA ...

 ...

// Construct a pull supplier servant
StructuredPullSupplierImpl* servant = new StructuredPullSupplierImpl;

// 2. Activate the consumer servant on a POA
poa->activate_object(servant);

// 3. Activate the POA
poa->the_POAManager()->activate();

 ...
// 4. Somehow, we get the channel from somewhere
CosNotifyChannelAdmin::EventChannel_var channel = ...;

// 5. Somehow, we decide to use the default admin
CosNotifyChannelAdmin::SupplierAdmin_var admin = channel

->default_supplier_admin();

VisiBroker Vis iNot i fy Guide 21

Using pre-def ined Event /Not i f icat ion Services

// 6. Obtain a proxy pull consumer from the admin
CosNotifyChannelAdmin::ProxyID pxy_id;
CosNotifyChannelAdmin::ProxyConsumer_var proxy = admin

->obtain_notification_pull_consumer(
CosNotifyChannelAdmin::STRUCTURED_EVENT, pxy_id);

CosNotifyChannelAdmin::StructuredProxyPullConsumer_var consumer =
CosNotifyChannelAdmin::StructuredProxyPullConsumer::_narrow(proxy);

// 7. Get supplier object reference and connect it to the proxy
CORBA::Object_var obj = poa->servant_to_reference(servant);
CosNotifyComm::StructuredPullSupplier_var supplier

 = CosNotifyComm::StructuredPullSupplier::_narrow(obj);
consumer->connect_structured_pull_supplier(supplier);

// working loop
orb->run();

 }

Java pull supplier example
The pull supplier example is located in examples/vbroker/notify/
basic_java/structPullSupplier.java.

import org.omg.CosNotifyComm.*;
import org.omg.CosNotifyChannelAdmin,*;
import org.omg.CosNotification.*;

class structPullSupplierImpl extends StructuredPullSupplierPOA
{

...
// 1. Implement the push consumer servant
public StructuredEvent pull_structured_event() { ... }
public StructuredEvent try_pull_structured_event(

org.omg.CORBA.BooleanHolder has_event) {...}
...

public static int main(String[] args) {
// Get orb and POA ...
...

// A pull supplier servant
structPullSupplierImpl servant = new structPullSupplierImpl();

// 2. Activate the supplier servant on a POA
poa.activate_object(servant);

// 3. Activate the POA
poa.the_POAManager()Activate();

...
// 4. Somehow, we get the channel from somewhere
EventChannel channel = ...;

// 5. Somehow, we decide to use the default admin
ConsumerAdmin admin = channel.default_supplier_admin();

// 6. Obtain a proxy pull consumer from the admin
ProxyIDHolder pxy_id = new ProxyIDHolder();
ProxyConsumer proxy = admin.obtain_notification_pull_consumer(

22 VisiBroker Vis iNot i fy Guide

Using Typed Event/Not i f icat ion Service

ClientType.STRUCTURED_EVENT, pxy_id);

StructuredProxyPullConsumer consumer =
StructuredProxyPullConsumerHelper.narrow(proxy);

// 7. Get supplier object reference and connect it to the proxy
org.omg.CORBA::Object obj = poa.servant_to_reference(servant);
StructuredPullSupplier supplier =

StructuredPullSupplierHelper.narrow(obj);
consumer.connect_structured_pull_supplier(supplier);

// working loop
orb.run();

}
}

Using Typed Event/Notification Service
The pre-defined events (untyped, structured, sequence) in OMG Event/
Notification Service present a message-oriented approach. The
disadvantages of this approach are:

• They are slower than user-defined typed channels.

• They usually have larger event size.

• They require more type unsafe dynamic manual code to pack and unpack
user data into/from events.

• They do not have a formal, unified, widely adopted event description
language.

Therefore, in developing new applications, it is recommended to use a user
defined typed event and the OMG Typed Event/Notification Service. By
using the OMG Typed Event/Notification Service, event interfaces are not
pre-defined by OMG but rather by user applications using OMG IDL
language. Using this approach results in the following:

• Application event throughput can be significantly higher.

• Event size can be substantially smaller.

• Event pack and unpack operations utilize type safe IDL generated static
stub/skeleton code.

• Events are formally defined by IDL.

There are minor issues with using the OMG Typed Event/Notification
service. They include:

• Connecting to Typed Event/Notification Service is slightly more
complicated than connecting to (pre-defined) Event/Notification Service.
Applications need to provide an additional handler implementation or/and
perform additional connection operations (for example,
get_typed_consumer()). However, the tradeoff to get the advantages
mentioned is worthwhile.

• Directly using the Event/Notification service to do typed pulling is not
adequately defined by OMG. The OMG solution requires substantial work.

VisiBroker Publish/Subscribe Adapter (PSA) architecture resolves these two
issues. See “Using the Publish Subscribe Adapter (PSA)” for additional
information. The PSA simplifies and unifies the connection procedure to
notification and typed notification services. It also presents an elegant
solution for typed pulling.

VisiBroker Vis iNot i fy Guide 23

Using Typed Event /Not i f icat ion Service

Note

This chapter only discusses how to develop typed push applications directly
using OMG Typed Notification Service. Typed pulling and PSA is discussed in
“Using the Publish Subscribe Adapter (PSA)”.

As the user-defined event type, the following IDL interface definition is used
throughout these examples:

// TMN.idl: typed event definition

// user defined pragma
pragma prefix "example.borland.com"

// user defined module
module TMN {

 // user defined event interface
 interface TypedEvent {
 void attributeValueChange(...);
 void qosAlarm(...);
 ...
 };
};

Developing typed push consumer applications
A typed push consumer is essentially a CORBA callback server application.
It provides an user defined typed consumer object implementation. The
typed push consumer object implementation supports the user defined IDL
interface. The consumer application connects this consumer object to a
typed channel to receive typed events.

Developing a typed push consumer application involves two tasks:

• Implement a normal consumer server object which supports a user
defined IDL interface. This involves:

• Implementing the user defined typed consumer servant, such as the
<I> interface servant.

• Implementing a handler servant. This handler servant supports the
CosTypedNotifyComm::TypedPushConsumer interface and its
get_typed_consumer() operation, which returns a reference of the
user defined typed consumer object (for example, returns the <I>
interface).

• Activating the user defined typed servant on a POA and getting its
reference.

• Activating this handler object and passing it to the user defined typed
consumer object reference (such as the <I> interface).

• Activating the POA manager.

• Connect the consumer object to a channel. This involves:

• Getting the typed channel reference.

• Getting typed consumer admin from channel.

• Obtaining typed proxy push supplier.

• Connecting the handler object to the typed proxy push supplier.

24 VisiBroker Vis iNot i fy Guide

Using Typed Event/Not i f icat ion Service

• The following example compares the procedure of using a pre-defined
event interface. Notice that using typed event requires an additional
implementation on a push consumer application.

C++ typed push consumer example
The typed push consumer example is located in examples/vbroker/
notify/basic_cpp/typedPushConsumer.C.

// 1. Implement the user defined typed consumer servant
class TMNTypedEventImpl : public POA_TMN::TypedEvent,

public virtual PortableServer::RefCountServantBase
{

...
public:
...
void attributeValueChange (...) { ... }
void qosAlarm(...) { ... }
...

};

// 2. Implement the handler servant
class HandlerImpl : public POA_CosTypedNotifyComm::TypedPushConsumer,

public virtual PortableServer::RefCountServantBase
{

CORBA::Object_var _the_typed_consumer; // the <I> interface

public:
HandlerImpl(CORBA::Object_ptr ref)

: _the_typed_consumer(CORBA::Object::_duplicate(ref)) {}

CORBA::Object_ptr get_typed_consumer() {
// return the <I> interface
return CORBA::Object::_duplicate(_the_typed_consumer); }

...
};

// The typed consumer server
int main(int argc, char** argv)
{

// Get orb and POA ...
...

// Construct a push consumer servant
TMNTypedEventImpl* servant = new TMNTypedEventImpl;

// 3. Activate the typed consumer on a POA
poa->activate_object(servant);

// 4. Get typed consumer reference
CORBA::Object_var obj = poa->servant_to_reference(servant);

// 5. Construct a handler servant and pass it the typed consumer reference
HandlerImpl* handler = new HandlerImpl(obj);

// 6. Activate the handler object on a POA
poa->activate_object(handler);

// 7. Activate the POA(s)
poa->the_POAManager()->activate();

VisiBroker Vis iNot i fy Guide 25

Using Typed Event /Not i f icat ion Service

...
// 8. Somehow, we get a typed channel
CosTypedNotifyChannelAdmin::TypedEventChannel_var channel = ...;

// 9. Somehow, we decide to use the default admin
CosTypedNotifyChannelAdmin::TypedConsumerAdmin_var admin =

channel->default_consumer_admin();

// 10. Obtain a proxy push supplier from the admin using the event
// repository id "IDL:example.borland.com/TMN/TypedEvent:1.0" as the key.
CosNotifyChannelAdmin::ProxyID pxy_id;
CosTypedNotifyChannelAdmin::ProxySupplier_var proxy

= admin->obtain_typed_notification_push_supplier(
"IDL:example.borland.com/TMN/TypedEvent:1.0", pxy_id);

// 11. Get handler object reference and connect it to the proxy
CORBA::Object_var ref = poa->servant_to_reference(handler);
CosTypedNotifyComm::TypedPushConsumer_var consumer

= CosTypedNotifyComm::TypedPushConsumer::_narrow(ref);
proxy->connect_typed_push_consumer(consumer);

// working loop
orb->run();

}

Java typed push consumer example
The typed push consumer example is located in examples/vbroker/
notify/basic_java/typedPushConsumer.java.

// 1. Implement the user defined typed consumer servant
class TMNTypedEventImpl extends TMN.TypedEventPOA {

...
public void attributeValueChange (...) { ... }
public void qosAlarm(...) { ... }
...

}

// 2. Implement the handler servant
class TypedPushConsumerImpl

extends org.omg.CosTypedNotifyComm.TypedPushConsumer {
org.omg.CORBA.Object _the_typed_consumer = null; // the <I> interface

TypedPushConsumerImpl(org.omg.CORBA.Object ref) {
_the_typed_consumer = ref;

}
org.omg.CORBA.Object get_typed_consumer() {

// Return the <I> interface
return _the_typed_consumer; }

...

public static void main(String [] args) {
// Get orb and POA ...
...
// Construct a push consumer servant
TMNTypedEventImpl servant = new TMNTypedEventImpl();

// 3. Activate the typed consumer on a POA
poa.activate_object(servant);

26 VisiBroker Vis iNot i fy Guide

Using Typed Event/Not i f icat ion Service

// 4. Get typed consumer reference
org.omg.CORBA.Object obj = poa.servant_to_reference(servant);

// 5. Construct a handler servant and pass it the typed consumer reference
TypedPushConsumerImpl handler = new TypedPushConsumerImpl(obj);

// 6. Activate the handler object on a POA
poa.activate_object(handler);

// 7. Activate the POA(s)
poa.the_POAManager()Activate();

...
// 8. Somehow, we get a typed channel from somewhere
org.omg.CosTypedNotifyChannelAdmin.TypedEventChannel channel = ...;

// 9. Somehow, we decide to use the default admin
org.omg.CosTypedNotifyChannelAdmin.TypedConsumerAdmin admin =

channel.default_consumer_admin();

// 10. Obtain a proxy push supplier from the admin using the event
// repository id "IDL:example.borland.com/TMN/TypedEvent:1.0" as the key.
org.omg.CosNotifyChannelAdmin.ProxyIDHolder pxy_id_holder

= new org.omg.CosNotifyChannelAdmin.ProxyIDHolder();
org.omg.CosTypedNotifyChannelAdmin.ProxySupplier proxy

= admin.obtain_typed_notification_push_supplier(
"IDL:example.borland.com/TMN/TypedEvent:1.0", pxy_id_holder);

// 11. Get handler object reference and connect it to the proxy
org.omg.CORBA.Object ref = poa.servant_to_reference(handler);
org.omg.CosTypedNotifyComm.TypedPushConsumer consumer =

org.omg.CosTypedNotifyComm.TypedPushConsumerHelper.narrow(ref);
proxy.connect_typed_push_consumer(consumer);

// working loop
orb.run();
}

}

Developing typed push supplier applications
A typed push supplier application is a CORBA client. It actively invokes
requests on a typed consumer proxy object to send typed events to the
channel.

Developing a typed push supplier application involves two tasks:

• (Optional) Implement a typed push supplier server object. This involves:

• Implementing the push supplier servant.

• Activating the servant on POA

• Activating the POA manager.

• Get the proxy push consumer reference and send events to it. This
involves:

• Getting the typed channel reference.

• Getting the supplier admin from the typed channel.

• Obtaining the typed proxy push consumer.

VisiBroker Vis iNot i fy Guide 27

Using Typed Event /Not i f icat ion Service

• Calling get_typed_consumer() on the typed proxy push consumer to
get the <I> interface reference.

• Actively pushing events to the <I> interface reference.

The following example compares the procedure of using a pre-defined event
interface. Notice that using typed events requires an additional procedure,
such as get_typed_consumer().

C++ typed push supplier example
The typed push supplier example is located in examples/vbroker/
notify/basic_cpp/typedPushSupplier.C.

// The typed push supplier client
int main(int argc, char** argv)
{

// Get orb ...
...

// 1. Somehow, we get the typed channel from somewhere
CosTypedNotifyChannelAdmin::TypedEventChannel_var channel = ...;

// 2. Somehow, we decide to use the default admin
CosTypedNotifyChannelAdmin::TypedSupplierAdmin_var admin =

channel->default_supplier_admin();

// 3. Obtain a typed proxy push consumer from the admin using the event
// repository id "IDL:example.borland.com/TMN/TypedEvent:1.0"
// as the key.
CosTypedNotifyChannelAdmin::ProxyID pxy_id;
CosTypedNotifyChannelAdmin::TypedProxyPushConsumer_var proxy
= admin->obtain_typed_notification_push_consumer(

"IDL:example.borland.com/TMN/TypedEvent:1.0", pxy_id);

// 4. Connect to the proxy
proxy->connect_typed_push_supplier(NULL);

// 5. Get the <I> interface
CORBA::Object_var obj = proxy->get_typed_consumer();
TMN::TypedEvent_var consumer = TMN::TypedEvent::_narrow(obj);

// 6. Push events to the <I> interface
for(int i=0;i<100;i++) {

consumer->attributeValueChange(...);
consumer->qosAlarm(...);

}

// 7. Flush buffered events
consumer->_non_existent();

// 8. Gracefully cleanup
proxy->disconnect_typed_push_consumer();

}

Java typed push supplier example
The typed push supplier example is located in examples/vbroker/
notify/basic_java/typedPushSupplier.java.

import org.omg.CosTypedNotifyComm.*;
import org.omg.CosTypedNotifyChannelAdmin,*;

28 VisiBroker Vis iNot i fy Guide

Developing RMI/EJB appl icat ions with Vis iNot i fy

import org.omg.CosNotification.*;

public class typedPushSupplier
{

...

// The typed push supplier client
public static void main(String[] args) {

// get orb ...
...

// 1. Somehow, we get the typed channel from somewhere
org.omg.CosTypedNotifyChannelAdmin.TypedEventChannel_var channel = ...;

// 2. Somehow, we decide to use the default admin
org.omg.CosTypedNotifyChannelAdmin.TypedSupplierAdmin admin

 = channel.default_supplier_admin();

// 3. Obtain a typed proxy push consumer from the admin using the event
// repository id "IDL:example.borland.com/TMN/TypedEvent:1.0"
// as the key.
Org.omg.CosTypedNotifyChannelAdmin.ProxyIDHolder pxy_id = new

org.omg.CosTypedNotifyChannelAdmin.ProxyIDHolder();
CosTypedNotifyChannelAdmin::TypedProxyPushConsumer_var proxy

= admin.obtain_typed_notification_push_consumer(
"IDL:example.borland.com/TMN/TypedEvent:1.0", pxy_id);

// 4. Connect to the proxy
proxy.connect_typed_push_supplier(null);

// 5. Get the <I> interface
org.omg.CORBA.Object obj = proxy.get_typed_consumer();

TMN.TypedEvent consumer = TMN.TypedEventHelper.narrow(obj);

// 6. Push events to the <I> interface
for(int i=0;i<100;i++) {

consumer.attributeValueChange(...);
consumer.qosAlarm(...);

}

// 7. Flush buffered events
consumer._non_existent();

// 8. Gracefully cleanup
proxy.disconnect_typed_push_consumer();

}
 }

Developing RMI/EJB applications with VisiNotify
With the introduction of J2EE 1.3, RMI-over-IIOP has been standardized in
the J2EE implementations. Therefore, the interoperation and
interconnection between CORBA and J2EE environments have become
seamless. J2EE is basically a framework for client/server applications.
However, J2EE technology does not provide adequate support for publish/
subscribe applications. The only solutions defined in J2EE are Java
Messaging Service (JMS) and Message Driver Bean (MDB). JMS is purely a
message-oriented service that is mainly used for integrating or

VisiBroker Vis iNot i fy Guide 29

Developing RMI/EJB appl icat ions wi th Vis iNot i fy

interconnecting with legacy message middleware. MDB is simply defined
following the use of JMS and allows legacy message middleware to send
messages to an enterprise bean through JMS. In this regard, the JMS and
MDB based solutions usually share the disadvantages of legacy message
oriented middlewares. They include:

• They are slower than user defined object-oriented typed channels.

• They have relatively larger event size.

• They require more nonstandard or type unsafe dynamic manual code to
pack and unpack user data into/from events.

• They do not have a formal, unified, widely adopted event description
language.

The OMG Typed Event/Notification Service resolves these issues. A typed
notification can be used as a publish/subscribe middleware for RMI/EJB
application. In addition, VisiNotify offers support for direct connection
between OMG Structured channel and RMI/EJB. VisiNotify also provides
direct support of CORBA valuetypes (either in standard marshaling or in
customer marshaling) as well as Java serializeable objects. With these
standard facilities from OMG Typed Event/Notification Service, J2EE 1.3,
and VisiNotify extensions, event driven RMI/EJB applications can be
developed as normal object oriented applications rather than mapping OMG
Notification Service as a JMS provider and then using JMS/MDB. The
advantages of this approach are:

• Significant performance improvement.

• Smaller event size.

• Static type safe RMI stubs and skeleton perform message pack/unpack.

• Events are described by user defined Java RMI interface.

This section describes how OMG Typed Event/Notification Service VisiNotify
is used in the RMI/EJB environments.

This user defined Java RMI remote interface is used as either an RMI server
interface or an EJB consumer bean remote interface throughout the
examples in this section.

 package TMN;

 import java.rmi.Remote;
 import java.rmi.RemoteException;

 public interface Notification extends Remote {
void attributeValueChange(...) throws RemoteException;

 void qosAlarm(...) throws RemoteException;
 ...
 }

Developing an RMI typed consumer
A RMI typed push consumer is essentially an RMI callback application
connected to the OMG Typed Notification service. The typed push consumer
RMI object implements user defined RMI interface. An RMI typed consumer
is very similar to a CORBA typed consumer with slight differences. They
include:

• The RMI object does not need to be explicitly activated on POA.

30 VisiBroker Vis iNot i fy Guide

Developing RMI/EJB appl icat ions with Vis iNot i fy

• The application needs to get RMI object's CORBA object reference as the
<I> interface (see step 4 in the example below).

This code example shows an RMI typed push consumer:

// 1. Implement the user defined typed consumer RMI object
class RMINotifyImpl
 extends PortableRemoteObject
 implements TMN.Notification {
 ...
 public void attributeValueChange (...) { ... }
 public void qosAlarm(...) { ... }
 ...
 }

// 2. Implement the handler servant
public class TypedPushConsumerImpl

extends org.omg.CosTypedNotifyComm.TypedPushConsumer {
org.omg.CORBA.Object _the_typed_consumer = null;
// the <I> interface

TypedPushConsumerImpl(org.omg.CORBA.Object ref){
_the_typed_consumer = ref;

 }
org.omg.CORBA.Object get_typed_consumer() {

// return the <I> interface
return _the_typed_consumer; }

 ...

public static void main(String [] args) {
// Get orb and POA ...

 ...

// 3. Allocate a RMI consumer object
RMINotifyImpl consumer = new RMINotifyImpl();

// 4. Get the CORBA object reference of the RMI consumer
org.omg.CORBA.Object corba_obj =
javax.rmi.CORBA.Util.getTie(consumer).thisObject();

// 5. Allocate a handler servant and pass it the typed // consumer reference
TypedPushConsumerImpl handler = new TypedPushConsumerImpl(corba_obj);

// 6. Activate the handler object on a POA
poa.activate_object(handler);

// 7. Activate the POA(s)
poa.the_POAManager()Activate();

...
// 8. Somehow, we get a typed channel from somewhere
org.omg.CosTypedNotifyChannelAdmin.TypedEventChannel channel = ...;

// 9. Somehow, we decide to use the default admin
org.omg.CosTypedNotifyChannelAdmin.TypedConsumerAdmin admin =

channel.default_consumer_admin();

// 10. Obtain a proxy push supplier from the admin
org.omg.CosNotifyChannelAdmin.ProxyIDHolder pxy_id_holder = new

org.omg.CosNotifyChannelAdmin.ProxyIDHolder();
org.omg.CosTypedNotifyChannelAdmin.ProxySupplier proxy =

VisiBroker Vis iNot i fy Guide 31

Developing RMI/EJB appl icat ions wi th Vis iNot i fy

admin.obtain_typed_notification_push_supplier("RMI.Test" ,
pxy_id_holder);

// 10. Get handler object reference and connect it to the proxy
org.omg.CORBA.Object ref = poa.servant_to_reference (handler);
org.omg.CosTypedNotifyComm.TypedPushConsumer consumer =

org.omg.CosTypedNotifyComm.TypedPushConsumerHelper.narrow(ref);
proxy.connect_typed_push_consumer(consumer);

// working loop
orb.run();
}

 }

32 VisiBroker Vis iNot i fy Guide

Developing RMI/EJB appl icat ions with Vis iNot i fy

Developing an RMI typed supplier
An RMI typed supplier is very similar to its CORBA counterpart except that
the <I> reference, which is returned from get_typed_consumer(), should
be narrowed into the correspondent RMI stub (see step 6 in example
below).

This code example shows an RMI typed push supplier:

import org.omg.CosTypedNotifyComm.*;
import org.omg.CosTypedNotifyChannelAdmin,*;
import org.omg.CosNotification.*;

public class TypedPushSupplierImpl
{

...

// The typed push supplier client
public static void main(String[] args) {

// get orb ...
...

// 1. Somehow, we get the typed channel from somewhere
org.omg.CosTypedNotifyChannelAdmin.TypedEventChannel_var channel = ...;

// 2. Somehow, we decide to use the default admin
org.omg.CosTypedNotifyChannelAdmin.TypedSupplierAdmin admin

= channel.default_supplier_admin();

// 3. Obtain a typed proxy push consumer from the admin
Org.omg.CosTypedNotifyChannelAdmin.ProxyIDHolder pxy_id

 = new org.omg.CosTypedNotifyChannelAdmin.ProxyIDHolder();
CosTypedNotifyChannelAdmin::TypedProxyPushConsumer_var proxy
= admin.obtain_typed_notification_push_consumer("RMI.Test, pxy_id);

// 4. Connect to the proxy
proxy.connect_typed_push_supplier(null);

// 5. Get the <I> interface
org.omg.CORBA.Object obj = proxy.get_typed_consumer();

// 6. Narrowing the CORBA object reference into RMI stub.
TMN.Notification consumer = (TMN.Notification)PortableRemoteObject.

narrow(obj, TMN.Notification.class);

// 7. Push events to the <I> RMI stub
for(int i=0;i<100;i++) {

consumer.attributeValueChange(...);
consumer.qosAlarm(...);

}

// 8. Flush buffered events
com.inprise.vbroker.orb.BufferedEvents.flush();

// 9. Gracefully cleanup
proxy.disconnect_typed_push_consumer();

}
}

VisiBroker Vis iNot i fy Guide 33

Developing RMI/EJB appl icat ions wi th Vis iNot i fy

Developing an EJB bean as a Typed Notification
consumer
An EJB typed event bean can be any type of bean (session or entity,
stateless or stateful), except for an MDB. The EJB typed event bean
implements event operations as declared in the given associated user-
defined remote interface.

This code example shows an EJB bean as a push consumer of a user-
defined TMN.Notification remote interface:

import javax.ejb.*;

 // 1. The bean implementation
 public class TMNNotifyBean implements SessionBean {
 ...
 // implement operations declared in bean's remote interface
 public void attributeValueChange (...) { ... }
 public void qosAlarm(...) { ... }
 ...
 }

After building and deploying this typed EJB bean implementation, your
application can:

• Get its home interfaces from JNDI name.

• Get its remote interface from the home interface.

• Connect its remote interface to an OMG Typed Notification channel.

In this release, a command line utility, subtool, is provided to subscribe an
EJB bean as a typed RMI consumer by knowing its JNDI name. To connect a
typed event EJB bean to an OMG Typed Notification channel, use the
subtool command:

 % subtool [-channel <ior>|-admin <ior>] \
 -home <jndi_name> \
 -type typed \
 -key <proxy_key>

where:

• The -channel or -admin option specify the channel or consumer admin
object as the subscribe point.

• The -home <jndi_name> tells subtool the JNDI name of the bean's
Home interface.

• The -type typed option tells subtool to connect the bean's remote
interface as typed consumer.

• The -key <proxy_key> option tells the subtool what should be the key
parameter for obtain_typed_notification_push_supplier().

This example shows using subtool to subscribe a typed event bean to a
OMG Typed Notification Channel:

 % subtool -channel corbaloc::127.0.0.1:14100/default_channel \
 -home stock_home -type typed -key Stock

34 VisiBroker Vis iNot i fy Guide

Developing RMI/EJB appl icat ions with Vis iNot i fy

Developing an EJB bean as a Structured
Notification consumer
An EJB structured event bean can be any type of EJB bean (session or
entity, stateless or stateful), except for an MDB. This EJB structured event
bean can connect to an VisiNotify Structured Notification Service and
receive structured events originating from non-RMI CORBA applications. An
EJB structured event bean implements, among other mandatory operations,
a void push_structured_event (org.omg.CosNotification.StructuredEvent)
operation. This operation should not be overloaded in this bean and its
remote interface.

Unlike typed event beans, support of structured event beans is a VisiNotify
extension. VisiNotify does a special translation to convert a StructuredEvent
structure that is sent into the channel from a CORBA Structured supplier
application into a StructuredEvent valuebox when it detects the connected
consumer is a structured event EJB bean.

This example shows an EJB bean as a structured push consumer:

import javax.ejb.*;

// The bean implementation
public class MyStructuredNotifyBean implements SessionBean
{
...
public void push_structured_event(
org.omg.CosNotification.StructuredEvent event) { ... }
 ...
 }

After building and deploying this structured event bean, connect its remote
interface to the given VisiNotify's structured event channel. The remote
interface of this bean should declare the push_structured_event()
operation. This code example shows the connection as:

import java.rmi.Remote;
import java.rmi.RemoteException;

// The bean's remote interface
public interface MyStructuredInterface extends Remote {
public void push_structured_event(

 org.omg.CosNotification.StructuredEvent event)
throws

RemoteException;
 ...
 }

The ORB type system does not permit directly connecting this structure
event bean's remote interface as a structured event consumer to OMG
Notification Service structured channel. Therefore, to connect a structured
event bean to a VisiNotify Structured Notification channel, use the subtool
command:

 % subtool [-channel <ior>|-admin <ior>] \
 -home <jndi_name> \
 -type struct

where:

• The -channel or -admin option specify the channel or consumer admin
object as the subscribe point.

VisiBroker Vis iNot i fy Guide 35

VisiBroker Event Buf fer ing/Batch

• The -home <jndi_name> tells subtool the JNDI name of the bean's Home
interface.

• The -type struct option tells subtool to connect the bean's remote
interface as structured consumer.

This example shows using subtool to subscribe a structured event bean to
a VisiNotify Structured Notification Channel:

% subtool -channel corbaloc::127.0.0.1:14100/
default_channel \
 -home stock_home -type struct

VisiBroker Event Buffering/Batch
Event buffering/batch is a mechanism implemented in VisiBroker (since
version 5.1) to optimize VisiNotify event throughput. By default, events are
buffered in supplier-side stubs before being flushed to VisiNotify as a larger
batch message. Also, if VisiNotify detects that the consumer is working on
top of VisiNotify (5.1 or later), it will try to buffer/batch events together.

Disable supplier-side event buffering
Supplier applications can disable supplier-side event buffering by setting
vbroker.orb.supplier.eventBatch to false. For example:

 % typedPushSupplier ... -Dvbroker.orb.supplier.eventBatch=false

or

% vbj ... StructPushSupplier ... -Dvbroker.orb.supplier.eventBatch=false

Disable consumer-side event buffering
Consumer applications can also disable VisiNotify from sending events in
batch by setting vbroker.orb.consumer.eventBatch to false. For
example:

% typedPushConsumer ... -Dvbroker.orb.consumer.eventBatch=false

or

% vbj ... StructPushConsumerImpl ... -Dvbroker.orb.consumer.eventBatch=false

Flush buffered events in supplier application
The supplier-side VisiBroker runtime will flush an event when these
conditions occur:

Event buffer is full: This is a per-stub level flush. The default size of this
stub level event buffer is 32K. A given supplier application can use
vbroker.orb.supplier.eventBufferSize to change this size between
8K and 64K. For example:

% typedPushSupplier ... -Dvbroker.orb.supplier.eventBufferSize=48000

Number of buffered events reaches the maximum batch size: This is
a per-stub level flush. The default maximum number of events that a stub
can hold in its buffer is 128. A supplier application can use
vbroker.orb.supplier.maxBatchSize to change this size to any value
less than 256. For example:

% vbj ... UntypedPushSupplier ... -Dvbroker.orb.supplier.eventBatchSize=32

36 VisiBroker Vis iNot i fy Guide

VisiBroker Event Buffer ing/Batch

Internal buffer flush timeout: This is a global flush. On timeout, all
events buffered in all stubs will be flushed out. The default timeout interval
is 2,000 milliseconds (2 seconds). A supplier application can use
vbroker.orb.supplier.eventBatchTimerInterval to change this time
between 100 millisecond (0.1 second) and 10,000 milliseconds (10
seconds). For example:

% typedPushSupplier ... -Dvbroker.orb.supplier.eventBatchTimerInterval=5000

Supplier invoked a non-bufferable operation on the stub: This is a
per-stub level flush and includes:

• For untyped proxy consumer stub, only the push() operation is
bufferable.

• For structured proxy consumer stub, only the push_structured_event()
operation is bufferable.

• For sequence proxy consumer stub, only the push_structured_events()
operation is bufferable.

Note

Therefore, invoking disconnect_..._push_consumer() operations or
_non_existent() on the proxy stubs (above) will flush out all buffered
events.

• For the <I> interface stub of a typed channel, all non-pseudo operations
are bufferable.

Therefore, a supplier application can invoke _non_existent() operation
on an <I> interface stub to flush its buffered events. Notice that the calling
disconnect_typed_push_consumer() on a typed proxy consumer stub
will not cause the buffer in a corresponding <I> stub to be flushed. The
application should explicitly call _non_existent() on an <I> interface
stub before calling disconnect_typed_push_consumer() on proxy stub.

Java application calling BufferedEvent.flush()

A Java supplier application can explicitly call
com.inprise.vbroker.orb.BufferedEvents.flush() to flush. This is a
global level event flush. It is to support VisiBroker RMI applications because
there is no pseudo operation on a java.rmi.Remote interface, which can be
used for event flush. Calling this static method will flush out all events in
every stub.

Initial Reference of VisiNotify
By default, VisiNotify uses TCP port number 14100 unless -
Dvbroker.notify.listener.port=<port> is used in the command line.
Therefore, as specified by OMG Notification Service, the URL of the Channel
factory and typed channel factory are:

corbaloc::<host>:14100/NotificationService
corbaloc::<host>:14100/TypedNotificationService

where, <host> is the domain name or dotted IP address of the VisiNotify
host machine. The VisiNotify server also creates a default channel. The URL
of this default channel is:

corbaloc::<host>:14100/default_channel

This URL can be registered to the supplier or consumer application's ORB
using these two OMG standardized scenarios:

1 -ORBInitRef ORB_init() command line option. Examples:

VisiBroker Vis iNot i fy Guide 37

-ORBInitRef NotificationService=corbaloc::127.0.0.1:14100/
NotificationService

or

-ORBInitRef TypedNotificationService=corbaloc::127.0.0.1:14100/
TypedNotificationService

2 ORB::register_initial_reference(). Examples:

orb.register_initial_reference("TypedNotificationService",
orb.string_to_object(

"corbaloc::127.0.0.1:14100/
TypedNotificationService");

After registering them as an initial service, the application can use
resolve_initial_reference().

38 VisiBroker Vis iNot i fy Guide

VisiBroker Vis iNot i fy Guide 39

Using the Publish Subscribe
Adapter (PSA)
This chapter introduces VisiBroker Publish/Subscribe Adapter (PSA). The
PSA is primarily a programming model and a component that works in
conjunction with OMG Event/Notification Service. It is interoperable with
applications that use low-level OMG Notification Service interfaces.

Introduction
As “one of the best client/server middleware products,” CORBA provides
solid support for traditional client/server applications that are based on
OMG object-oriented ORB architecture. However, there are some issues
with CORBA in respect to supporting publish/subscribe applications. For
many enterprise business applications, the publish/subscribe
communication model is as important as the client/server model. Direct
support of the publish/subscribe communication model in the CORBA
middleware infrastructure substantially reduces the development effort by
allowing developers to focus on implementing business logic rather than
redesigning system solutions.

Notwithstanding, the ORB level support of the publish/subscribe
communication model has been virtually omitted within OMG along with
third-party ORB vendors. The publish/subscribe communication model is
considered as a “second-class citizen” within the CORBA development
sphere. Consequently, application developers have to resort to COS level
solutions, such as Event/Notification Services, which are more or less
message oriented rather than object oriented. In COS Event/Notification
Service, the publish/subscribe is modeled as replicated client/server
communications. The disadvantages of this modeling are:

• The object abstraction is at a very low level. A large semantic gap has to
be filled by application developers. They have to directly manipulate low
level concepts and objects of client/server communications, such as
consumer proxy, supplier proxy, and so forth, including direct
rearrangement of their interconnections.

• Usage of tight coupling in the object model. Although the channel
connection model, message format (structured, typed, etc.) and message
transfer model (push/pull) are orthogonal, they are tightly coupled. A
change in one part of these components will impact other parts,
especially when changing structured to typed channel or typed push to
typed pull.

Note

CORBA is not the only distributed object middleware that does not provide
support for non-classic communication models at the same object
abstraction level. For instance, within the RMI/EJB environment, instead of
extending the original Java and RMI object model, a message oriented
model (namely, JMS/MDB) is used.

The Publish/Subscribe Adapter (PSA) described in this chapter addresses
the problems previously mentioned. PSA is mainly a programming model
and a software component working on top of OMG standardized Notification
Service. Therefore, PSA can be used along with third party OMG Notification

40 VisiBroker Vis iNot i fy Guide

Introduct ion

Service implementations and is also interchangeable with applications which
are directly built with low-level OMG Notification Service interfaces.

One of the basic functions of the PSA is to hide the details pertaining to
channel connections. Typically, when designing a CORBA publish/subscribe
application, the main goal is to make the application consumer object
receive events from a given channel. The channel is usually specified by its
channel reference or consumer admin reference. The consumer object is
usually specified by its POA and object id. By using OMG Notification Service
directly, the application requires multiple steps in connecting the consumer
object to the channel. However, by using PSA, the application only needs a
single operation to complete this connection.

To introduce the basic concept of PSA, this example shows how a typed
event consumer application is coded. Assume that the typed event is
defined by the IDL interface:

// TMN.idl: typed event definition
#pragma prefix "examples.borland.com"
module TMN {
 interface TypedEvent {
 void attributeValueChange(...);
 ...
 };
};

First, in order for the typed event consumer to be able to receive events, it
needs to provide a servant implementation that derives from the user
defined event interface skeleton, POA_TMN::TypedEvent:

// 1. Implement typed servant
include "TMNEvents_s.hh"
class TMNTypedEventImpl : public POA_TMN::TypedEvent,

public PortableServer::RefCountServantBase
{
 public:
 void attributeValueChange(...) { ... };
 ...
};

Next, activate this servant on a POA:

int main(int argc, char** argv)
{
...
// 2. Get orb and poa environment
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_var obj =

orb->resolve_initial_references("RootPOA");
PortableServer::POA_var poa =
PortableServer::POA::_narrow(obj);
// 3. Construct the typed servant
TMNTypedEventImpl* servant = new TMNTypedEventImpl();
// 4. Activate it on poa
poa->activate_object(servant);

Up to this point, the typed event application is treated as a normal typed
consumer application and nothing special has been added. If this was a
normal client/server example, then, the application would create an object
reference from POA and pass it to clients. In any case, this example is of a
publish/subscribe consumer, therefore, the application does not need to
pass its reference directly to a client, which is the event publisher. Instead,
the consumer needs to connect to a given channel or consumer admin
object reference.

VisiBroker Vis iNot i fy Guide 41

Introduction

With PSA, instead of “connecting” the consumer to the channel, you simply
“subscribe” it to the channel:

// 5. Somehow, this consumer is given a channel reference
CORBA::Object_var channel = ... ;
// 6. Get object id of the consumer servant
PortableServer::ObjectId_var oid =

poa-servant_to_id(servant);
// 7. Narrow the POA to PSA
PortableServerExt::PSA_var psa =
PortableServerExt::PSA::_narrow(poa);
// 8. Subscribe to the channel
PortableServerExt::SubjectScheme scheme = {

 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL:example.borland.com/TMN/
TypedEvent:1.0",
 PortableServerExt::PUSH_EVENT };
 psa->subscribe(scheme, channel, oid,
CORBA::NameValuePairSeq());
// 9. Consumer working loop
poa->the_POAManager()->activate();
orb->run();
}

As shown in the code, the application only needs to create the typed
servant implementation with PSA. The application does not need to have
the CosTypedNotifyComm::TypedPushConsumer servant to support
get_typed_consumer(). Also, notice that the subscribe is a one-step
procedure instead of multiple (six steps) operations to make a “connection.”

Here is the Java code example equivalent:

import com.inprise.vbroker.PortableServerExt.*;
// 1. Implement typed servant
public class TMNTypedEventImpl : extend TMN.TypedEventPOA,
{
 public void attributeValueChange(...) { ... }
};
public class TypedPushConsumerImpl
{

public static void main(String[] args)
{

...
// 2. Get orb and psa environment
org.omg.CORBA.ORB orb = ORB_init(args, null);
org.omg.PortableServer.POA poa =

org.omg.PortableServer.POA.orb.resolve_initial_references("RootPOA");
// 3. Construct the typed servant
TMNTypedEventImpl servant = new TMNTypedEventImpl();
// 4. Activate it on root psa
poa.activate_object(servant);
// 5. Somehow, this consumer is given a channel reference
org.omg.CORBA.Object channel = ...;
// 6. Get object id of the consumer servant
org.omg.PortableServer.ObjectId oid = psa.servant_to_id(servant);
// 7. Narrow the org.omg.PortableServer.POA to com.inprise.vbroker.PSA
PSA psa = PSA.narrow(poa);
// 8. Subscribe to the channel
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.TYPED_SUBJECT,

42 VisiBroker Vis iNot i fy Guide

PSA reference and PSA interface IDL

"IDL:example.borland.com/TMN/TypedEvent:1.0",
SubjectDeliveryScheme.PUSH_EVENT);

 psa.subscribe(scheme, channel, oid, null);

// 9. working loop
 poa.the_POAManager().activate();
 orb.run();
 }
}

This example clearly shows how the PSA works in conjunction with OMG
Event/Notification Service or Typed Event/Notification Service. More
importantly, it shows how it simplifies the CORBA publish/subscribe
application by shielding it from the low level notification service objects
such as admins/proxies and operations.

Later in this chapter, you will see how the PSA de-couples connection logic
from the event interface and transfer model. Connection logic, such as
subscribe, in the PSA is not affected by event interface and transfer model.
For instance, changing a structured consumer to a typed consumer or
changing a typed consumer from push to pull, requires no change in
consumer subscribe logic but only a flag change on subject scheme. These
kind of changes would require major code modifications to consumer
connection logic if the PSA is not used. Additionally, this chapter provides
examples that covers the various application cases and show the power and
usage of the PSA.

PSA reference and PSA interface IDL
PSA is an extension of POA and supports all operations defined for POA.
Since version 5.1, a VisiBroker POA reference can be narrowed down to a
PSA reference and resolve_initial_references() with RootPOA and
RootPSA, which actually return the same internal reference.

This code example shows how to get root PSA.

C++
// Getting root PSA in C++
CORBA::Object_var ref =

orb->resolve_initial_references("RootPSA");
PortableServerExt::PSA_var psa =
PortableServerExt::_narrow(ref);

Java
// Getting root PSA in Java
// get publisher/subscriber adapter
org.omg.CORBA.Object ref =
orb.resolve_initial_references("RootPOA");
PSA psa = PSAHelper.narrow(ref);

PSA is defined in PortableServerExt module and (indirectly) derived from
PortableServer::POA.

module PortableServerExt {
 interface POA : PortableServer::POA {
 readonly attribute CORBA::PolicyList the_policies;
 };
 enum SubjectAddressScheme {
 SUBSCRIBE_ADMIN_ADDR,
 PUBLISH_ADMIN_ADDR,

VisiBroker Vis iNot i fy Guide 43

PSA reference and PSA inter face IDL

 CHANNEL_ADDR,
 SUBJECT_ADDR
 };

enum SubjectInterfaceScheme {
 TYPED_SUBJECT,
 UNTYPED_SUBJECT,
 STRUCTURED_SUBJECT,
 SEQUENCE_SUBJECT
 };
 enum SubjectDeliveryScheme {
 PUSH_EVENT,
 PULL_EVENT
 };
 typedef string SubjectInterfaceId;
 struct SubjectScheme {
 SubjectAddressScheme address_scheme;
 SubjectInterfaceScheme interface_scheme;
 SubjectInterfaceId interface_id;
 SubjectDeliveryScheme delivery_scheme;
 };
 typedef Object Subject;
 typedef CORBA::OctetSequence PublishSubscribeDesc;
 typedef PublishSubscribeDesc SubscribeDesc;
 typedef PublishSubscribeDesc PublishDesc;
 exception InvalidSubjectScheme { long error; };
 exception InvalidSubscribeDesc { long error; };
 exception InvalidPublishDesc { long error; };
 exception InvalidProperties { CORBA::StringSequence names; };
 exception ChannelException { string repository_id; }
 // The Publisher/Subscriber Adapter
 interface PSA : POA {
 // register subject observer
 SubscribeDesc subscribe(
 in SubjectScheme the_subject_scheme,
 in Subject the_subject,
 in PortableServer::ObjectId the_observer_id,
 in CORBA::NameValuePairSeq the_properties)
 raises(InvalidSubjectScheme,
 InvalidProperties,
 ChannelException);
 // Register subject provider
 PublishDesc publish(
 in SubjectScheme the_subject_scheme,
 in Subject the_subject,
 in PortableServer::ObjectId the_pullable_publisher_id,
 in CORBA::NameValuePairSeq the_properties)
 raises(InvalidSubjectScheme,
 InvalidProperties,
 ChannelException);
 // Unregister observer from subject
 void unsubscribe(
 in SubscribeDesc the_subscribe_desc)
 raises(InvalidSubscribeDesc,
 ChannelException);
 // Unregister (pull mode) provider
 void unpublish(
 in PublishDesc the_publish_desc)
 raises(InvalidPublishDesc,
 ChannelException);

44 VisiBroker Vis iNot i fy Guide

PSA reference and PSA interface IDL

// Suspend subject to push into the registered
 // observer or suspend subject to pull from the
 // registered provider
 void suspend(
 in PublishSubscribeDesc the_desc)
 raises(ChannelException);
 // Resume subject to push into the registered
 // observer or resume subject to pull from the
 // registered provider.
 Void resume(
 in PublishSubscribeDesc the_desc)
 raises(ChannelException);
 // Pull (typed) event and dispatch it to a registered
 // observer.
 unsigned long pull_and_dispatch(
 in SubscribeDesc the_subscribe_desc,
 in unsigned long max_count,
 in boolean block_pulling,
 in Boolean async_dispatch)
 raises(InvalidSubscribeDesc,
 InvalidSubjectScheme,
 ChannelException);

 // Pull (typed) event and accept a given visitor to
 // 'visit' the event.
 Unsigned long pull_and_visit(
 in SubscribeDesc the_subscribe_desc,
 in unsigned long max_count,
 in Boolean block_pulling,
 in PortableServer::Servant the_visitor)
 raises(InvalidSubscribeDesc,
 InvalidSubjectScheme,
 ChannelException);
 Subject the_subject_addr(
 in PublishSubscribeDesc the_desc)
 raises(InvalidSubjectScheme);
 // low level access
 Object the_proxy_addr(
 in PublishSubscribeDesc the_desc)
 raises(InvalidSubjectScheme);
 };
 ...
 };

In VisiBroker (version 5.1 and later), all POAs are internally implemented as
PSAs. Therefore, any POA reference in VisiBroker can always be narrowed
into a PSA reference.

This code example shows the narrowing POA to PSA.

C++
// Narrowing a POA into a PSA in C++
PortableServer::POA_var poa = parent_poa->create_POA(...);
PortableServerExt::PSA_var psa =
PortableServerExt::_narrow(poa);

VisiBroker Vis iNot i fy Guide 45

User examples

Java
// Narrowing a POA into a PSA in Java
org.omg.PortableServer.POA poa =
parent_poa.create_POA(...);
com.inprise.vbroker.PortableServerExt.PSA psa =
com.inprise.vbroker.PortableServerExt.PSAHelper.narrow
(poa);

User examples
The following examples compare application code written with the COS
notification method and PSA. The examples are:

• Structured Push Consumer

• Typed Push Consumer

• Structured and Typed Push Supplier

Structured Push Consumer
The table below compares the same structured push consumer application
written in notification connection method (left column) and PSA (right
column). The noticeable difference are:

• PSA simplifies the connection code from three steps to one.

• Push consumers using PSA is very similar to a normal server application.

This code example shows the connection/subscribe structured consumer to
a channel in C++:

Structured Push Consumer using
Notification Service interface (basic_cpp/
structPushConsumer.C)

Structured Push Consumer using
PSA(psa_cpp/structPushConsumer.C)

// Implement consumer servant
class StructuredPushConsumerImpl :
 public POA_CosNotifyComm::

StructuredPushConsumer, Public
PortableServer::RefCountServantBase
{
 public:
 void push_structured_event(...) {...}
 ...
};
using namespace CosNotifyChannelAdmin;
int main(int argc, char** argv)
{

// Implement consumer servant
class StructuredPushConsumerImpl :
 public POA_CosNotifyComm::

StructuredPushConsumer, Public
PortableServer::RefCountServantBase
{
 public:
 void push_structured_event(...)
{...}
 ...
};
// No channel type specific namespace
int main(int argc, char** argv)
{

 // Get orb and poa environment
 CORBA::ORB_ptr orb
 = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->
 resolve_initial_references(
 "RootPOA");
 PortableServer::POA_var poa =

PortableServer::POA::_narrow(obj);

 // Get orb and psa environment
 CORBA::ORB_ptr orb
 = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->
 Resolve_initial_references(
 "RootPSA");
 PortableServerExt::PSA_var psa =

PortableServerExt::PSA::_narrow(obj);

 // Get channel reference
 EventChannel_var channel = ...;
 // Allocate the consumer servant
 StructuredPushConsumerImpl* servant =
 new StructuredPushConsumerImpl();

 // Get channel reference
 CORBA::Object_var channel = ...;
 // Allocate the consumer servant
 StructuredPushConsumerImpl* servant =
 new StructuredPushConsumerImpl();

46 VisiBroker Vis iNot i fy Guide

User examples

This is the Java equivalent.

 // Activate it on root poa
 poa->activate_object(servant);
 // Get consumer object reference
 CORBA::Object_var obj =
 poa->servant_to_reference(servant);
 CosNotifyComm::
StructuredPushConsumer_var

 consumer = CosNotifyComm::

StructuredPushConsumer::_narrow(obj);
// Connect to channel
 // 1. Get default admin
 ConsumerAdmin_var admin =
 channel->default_consumer_admin();

 // Activate it on root psa
 psa->activate_object(servant);
 // Get consumer object id
 PortableServer::ObjectId_var oid =
 poa->servant_to_id(servant);
 // Subscribe to channel

 // Specify the subject scheme
 PortableServerExt::SubjectScheme
scheme =

PortableServerExt::CHANNEL_ADDR,

PortableServerExt::STRUCTURED_SUBJECT,
 (const char*)"",
 PortableServerExt::PUSH_EVENT };

 // 2. Create a proxy
 ProxyID proxy_id;
 ProxySupplier_var proxy = admin->
 obtain_notification_push_supplier(
 STRUCTURED_EVENT, proxy_id);
 // Narrow to the stub
 StructuredProxyPushSupplier_var
supplier
 = StructuredProxyPushSupplier::
_narrow(proxy);
 // 3. Connect proxy supplier
 supplier->
connect_structured_push_consumer(
consumer);
 // working loop
 orb->run();
}

 // 1. Subscribe
 psa->subscribe(scheme, channel, oid,

CORBA::NameValuePairSeq());
 // working loop
 orb->run();
}

Structured Push Consumer using
Notification Service interface (basic_cpp/
structPushConsumer.C)

Structured Push Consumer using
PSA(psa_cpp/structPushConsumer.C)

Structured push consumer using
Notification service interface (basic_java/
structPushConsumer.java)

Structured push consumer using PSA
(psa_java/structPushConsumer.java)

Import org.omg.CORBA.*;
import org.omg.PortableServer.*;
Import org.omg.CosNotifyComm.*;
// Implement consumer servant
class StructuredPushConsumerImpl :
extend StructuredPushConsumerPOA
{
 public void push_structured_event(...)
{...}
 ...
 public static void main(String[] args){

import org.omg.CORBA.*;
Import com.inprise.vbroker.

PortableServerExt.*;
// Implement consumer servant
class StructuredPushConsumerImpl :extend
CosNotifyComm.StructuredPushConsumerPOA
{
 public void push_structured_event(...)
{...}
 ...
 public static void main(String[] args)
{

 // Get orb and poa environment
 ORB orb = ORB_init(args, null);
 Object obj
 = orb.resolve_initial_references(
 "RootPOA");
 POA poa = POA.narrow(obj);

 // Get orb and psa environment
 ORB orb = ORB_init(args, null);
 Object obj
 = orb.resolve_initial_references(
 "RootPSA");
 PSA psa = PSA.narrow(obj);

VisiBroker Vis iNot i fy Guide 47

User examples

Typed Push Consumer
The table below shows the code written with the notification connection
method (left column) and PSA (right column). The noticeable differences
are:

• PSA simplifies the connection code from six steps to one.

• Typed consumer application using PSA does not require the application to
provide a proxy object for get_typed_consumer(). PSA transparently
supplies this function.

• Typed push consumer using PSA is very similar to a normal server
application.

• Typed push consumer using PSA is almost identical to the PSA structured
push consumer, where the PSA shields applications from any changes of
different channels.

 // Get channel reference
 EventChannel channel = ...;
 // Allocate the consumer servant
 StructuredPushConsumerImpl servant =
 New StructuredPushConsumerImpl();
 // Activate it on root poa
 poa.activate_object(servant);
 // Get consumer object reference
 Object ref =
poa.servant_to_reference(servant);
 StructuredPushConsumer consumer =
StructuredPushConsumer.narrow(ref);

 // Get channel reference
 CORBA.Object. channel = ...;
 // Allocate the consumer servant
 StructuredPushConsumerImpl servant =
 New StructuredPushConsumerImpl();
 // Activate it on root psa
 psa.activate_object(servant);
 // Get consumer object id
 org.omg.PortableServer.ObjectId oid
 = psa.servant_to_id(servant);

 // Connect to channel
 // 1. Get default admin
 ConsumerAdmin admin
 = channel.default_consumer_admin();

// 2. Create a proxy
 ProxyID proxy_id;
 ProxySupplier proxy

= admin.

 // Subscribe to channel

 // Specify the subject scheme
 SubjectScheme scheme = new
SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.

STRUCTURED_SUBJECT,
 (const char*)"",
 SubjectDeliveryScheme.PUSH_EVENT);

obtain_notification_push_supplier(
 STRUCTURED_EVENT,
proxy_id);
 // Narrow to the stub
 StructuredProxyPushSupplier supplier
 = StructuredProxyPushSupplier.
narrow(proxy);
 // 3. Connect proxy supplier
 supplier.
Connect_structured_push_consumer(
Consumer);
 // working loop
 orb.run();
}

 // 1. Subscribe
 psa.subscribe(
 scheme, channel, oid, null);
 // working loop
 orb.run();
}

Structured push consumer using
Notification service interface (basic_java/
structPushConsumer.java)

Structured push consumer using PSA
(psa_java/structPushConsumer.java)

48 VisiBroker Vis iNot i fy Guide

User examples

This code example show the connection/subscribe typed consumer to a
channel in C++:

Typed push consumer using Notification
service interface (basic_cpp/
typedPushConsumer.C)

Typed push using PSA (psa_cpp/
typedPushConsumer.C)

// Implement proxy consumer servant
class TypedPushConsumerImpl :
 public POA_CosTypedNotifyComm::

TypedPushConsumer, Public
PortableServer::RefCountServantBase
{
 CORBA::Object_var _I;
 Public:
 TypedPushConsumerImpl(
 CORBA::Object_ptr I) : _I(
 CORBA::Object::_duplicate(I)) {}
 CORBA::Object_ptr
get_typed_consumer() {
 return
CORBA::Object::_duplicate(_I);
 }
 ...
};

// No need to implement the proxy
consumer.
// PSA transparently supplies a proxy to
// support get_typed_consumer().
// implement typed servant
class TMNTypedEventImpl :
 public POA_TMN::TypedEvent, public
PortableServer::RefCountServantBase
{
 public:
 void attributeValueChange (...) ;
 ...
};
// no channel typed specific namespace
int main(int argc, char** argv)
{

// Implement typed servant
class TMNTypedEventImpl :
 public POA_TMN::TypedEvent,
 public
PortableServer::RefCountServantBase
{
 public:
 void attributeValueChange(...);
 ...
};
using namespace
CosTypedNotifyChannelAdmin;
int main(int argc, char** argv)
{

 // Get orb and psa environment
 CORBA::ORB_ptr orb
 = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->
 Resolve_initial_references(
 "RootPSA");
 PortableServerExt::PSA_var psa =

PortableServerExt::PSA::_narrow(obj);

// Get channel reference
 CORBA::Object_var channel = ... ;

 // Get orb and poa environment
 CORBA::ORB_ptr orb
 = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->
 resolve_initial_references(
 "RootPOA");
 PortableServer::POA_var poa =

PortableServer::POA::_narrow(obj);

// Construct the typed servant
 TMNTypedEventImpl* typed_servant =
 new TMNTypedEventImpl();
 // Activate it on root psa
 psa->activate_object(typed_servant);
 // Get its object id
 PortableServer::ObjectId_var oid =
 poa->servant_to_id(typed_servant);

 // Get channel reference
 TypedEventChannel channel = ... ;

// Construct the typed servant
 TMNTypedEventImpl* typed_servant =
 new TMNTypedEventImpl();
 // Activate it on poa
 poa->activate_object(typed_servant);
 // Get its reference
 CORBA::Object_var typed_ref =
 poa->servant_to_reference(
typed_servant);
// Connect to channel
 // 1. Construct the proxy consumer
 TypedPushConsumerImpl* servant =
 new
TypedPushConsumerImpl(typed_ref);

 // Subscribe to channel
 // Specify the subject scheme
 PortableServerExt::SubjectScheme
scheme =
 { PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::TYPED_SUBJECT,
 (const
char*)"IDL:example.borland.com"
 "TMN/TypedEvent:1.0",
 PortableServerExt::PUSH_EVENT };

// 1. Subscribe
 psa->subscribe(scheme, channel, oid,

CORBA::NameValuePairSeq());
 // working loop
 orb->run();
}

VisiBroker Vis iNot i fy Guide 49

User examples

The following code examples show the connection/subscribe typed
consumer to a channel in Java:

 // 2. Activate it on root poa
 poa->activate_object(servant);

 // 3. Get consumer object reference/
 obj = poa

->servant_to_reference(servant);
 CosTypedNotifyComm::TypedPushConsumer_
var consumer = CosTypedNotifyComm::
TypedPushConsumer::_narrow(obj);
 // 4. Get default admin
 TypedConsumerAdmin_var admin =
 channel->default_consumer_admin();
 // 5. Create a proxy
CosNotifyChannelAdmin::ProxyID proxy_id;
TypedProxySupplier_var proxy = admin->
obtain_notification_push_supplier(

"IDL:example.borland.com/"
"TMN/TypedEvent:1.0", proxy_id);

 // 6. Connect proxy supplier
 proxy->connect_typed_push_consumer(

consumer);
 // working loop
 orb->run();
}

Typed push consumer using Notification
service interface (basic_cpp/
typedPushConsumer.C)

Typed push using PSA (psa_cpp/
typedPushConsumer.C)

Typed push consumer using Notification
service interface (basic_java/
typedPushConsumer.java)

Typed push consumer using PSA
(psa_java/typedPushConsumer)

import org.omg.CORBA.*;
Import org.omg.PortableServer.*;
Import org.omg.CosNotifyComm.*;
// Implement typed servant
public class TMNTypedEventImpl :

extend TMN.TypedEventPOA,
{
 public void attributeValueChange(...);
 ...
}
public class TypedPushConsumerImpl :
 extend TypedPushConsumerPOA
{
 Object _I = null;
 public TypedPushConsumerImpl(Object I)
 { _I = I; }
 // Implement get_typed_consumer();
 public object get_typed_consumer(

{return _I; }
 ...
 public static void main(String[]args){

import org.omg.CORBA.*;
Import com.inprise.vbroker.

PortableServerExt.*;
// Implement typed servant
public class TMNTypedEventImpl :
 extend TMN.TypedEventPOA,
{
 public void attributeValueChange(...);
 ...
}
public class typedPushConsumer
{
 // No need to implement the proxy
 // consumer. PSA transparently supplies
 // a proxy to support
 // get_typed_consumer().
 Public static void main(String args) {

 // Get orb and poa environment
 ORB orb = ORB_init(args, null);
 Object obj
 = orb.resolve_initial_references(
 "RootPOA");
 POA poa = POA.narrow(obj);

 // Get orb and psa environment
 ORB orb = ORB_init(args, null);
 Object obj
 = orb.resolve_initial_references(
 "RootPSA");
 PSA psa = PSA.narrow(obj);

50 VisiBroker Vis iNot i fy Guide

User examples

These two examples clearly illustrate how PSA dramatically simplifies and
unifies the procedures of connecting to a notification channel for both
structured and typed consumers. It also shows how PSA de-couples the
event format selection and connecting logic. The application code between
structured and typed channel are substantially different when low level COS
Notification Service is directly used. With PSA, the two examples have
almost no difference in subscribing logic.

Structured and Typed Push Supplier
In these two examples, a typed push supplier and a structured push
supplier applications are written in notification connection method (left
column) and PSA (right column). The noticeable difference is that the typed
push supplier using PSA is almost identical to the PSA structured push
supplier. In both cases, the PSA shields the application from the different
makeup of each channel.

 // Get channel reference
 TypedEventChannel channel = ... ;
 // Allocate the typed servant
 TMNTypedEventImpl typed_servant =
 new TMNTypedEventImpl();
 // Activate it on poa
 poa.activate_object(typed_servant);

 // Get its reference
 Object typed_ref
 = poa.servant_to_reference(

typed_servant);

 // Get channel reference
 Object channel = ... ;
 // Allocate the typed servant
 TMNTypedEventImpl typed_servant =
 new TMNTypedEventImpl();
 // Activate it on root psa
 psa.activate_object(typed_servant);
 // Get its object id
 PortableServer::ObjectId oid
 = psa.servant_to_id(typed_servant);

 // Connect to channel // Subscribe to channel

 // 1. Allocate the proxy consumer
 TypedPushConsumerImpl servant = New
TypedPushConsumerImpl(typed_ref);
 // 2. Activate it on root poa
 poa.activate_object(servant);
 // 3. Get consumer object reference
 obj = poa->

servant_to_reference(servant);
 TypedPushConsumer Consumer
 = TypedPushConsumer.narrow(obj);
 // 4. Get default admin
 TypedConsumerAdmin admin =
 Channel.default_consumer_admin();
 // 5. Create a proxy
CosNotifyChannelAdmin::ProxyID proxy_id;
 TypedProxySupplier proxy = admin.
 Obtain_notification_push_supplier(

"IDL:example.borland.com/"
"TMN/TypedEvent:1.0", proxy_id);

 // 6. Connect proxy supplier
 proxy.connect_typed_push_consumer(

consumer);
 // working loop
 orb.run();
}

 // Specify the subject scheme
 SubjectScheme scheme = new
 (SubjectAddressScheme.CHANNEL_ADDR,

SubjectInterfaceScheme.TYPED_SUBJECT,
(const char*)"IDL:example.borland.com"

 "TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PUSH_EVENT);
 // 1. Subscribe
 psa.subscribe(
 scheme, channel, oid, null);
 // working loop
 orb.run();
}

Typed push consumer using Notification
service interface (basic_java/
typedPushConsumer.java)

Typed push consumer using PSA
(psa_java/typedPushConsumer)

VisiBroker Vis iNot i fy Guide 51

User examples

Structured Supplier to a Channel
This code example shows the connection/subscribe structured supplier to a
channel in C++:

Structured push supplier using Notification
service interface (basic_cpp/
structPushSupplier.C)

Structured push supplier using PSA
(basicpsa_cpp/structPushSupplier.C)

Using namespace CosNotifyChannelAdmin;
int main(int argc, char** argv)
{
 // Get orb and poa environment
 CORBA::ORB_ptr orb
 = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->
 Resolve_initial_references(
 "RootPOA");
 PortableServer::POA_var poa =

PortableServer::POA::_narrow(obj);
 // Get channel reference
 EventChannel channel = ... ;
 // Connect to channel
 // 1. Get default admin
 ConsumerAdmin_var admin =
 Channel->default_supplier_admin();
 // 2. Create a proxy
 ProxyID proxy_id;
 ProxyConsumer_var proxy = admin->
 obtain_notification_push_consumer(
 STRUCTURED_EVENT, proxy_id);
 // 3. Get the StructuredProxyConsumer
 StructuredProxyPushConsumer_var
consumer = StructuredProxyPushConsumer::

_narrow(proxy);
consumer->
connect_structured_push_supplier (NULL);
// Push typed events interface
 for(;;) {
 consumer-
>push_structured_event(...);
 ...
 }
 ...
}

int main(int argc, char** argv)
{
 // Get orb and psa environment
 CORBA::ORB_ptr orb
 = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->
 Resolve_initial_references(
 "RootPSA");
 PSA_var psa = PSA::_narrow(obj);

 // Get channel reference
 CORBA::Object_var channel = ... ;
 // Publish to channel
 // 1. Publish
 PortableServerExt::SubjectScheme
scheme = {
PortableServerExt::CHANNEL_ADDR,

PortableServerExt::STRUCTURED_SUBJECT,
 (const char*)"",
 PortableServerExt::PUSH_EVENT };
 PortableServerExt::PublishDesc_var
desc
 = psa->publish(scheme, channel,

PortableServer::ObjectId(),

CORBA::NameValuePairSeq());
 // 2. Get the StructuredProxyConsumer
 CORBA::Object_var obj
 = psa->the_subject_addr(desc);
StructuredProxyPushConsumer_var consumer
 = StructuredProxyPushConsumer::
_narrow(proxy);

 // Push typed events interface
 for(;;) {
 consumer->
push_structured_event(...);
 ...
 }
 ...
}

52 VisiBroker Vis iNot i fy Guide

User examples

Typed Supplier to a Channel
This code example shows the connection/subscribe typed supplier to a
channel in C++:

These examples illustrate that there is a noticeable difference between the
code and procedure for making a connection for structured and typed
supplier applications when using the Notification Service interface. More
importantly, while using the PSA, the connection code and procedures are
almost identical for both applications.

Note

All examples used in this chapter are condensed from shipped VisiNotify and
PSA examples. These examples are located in the directories:

• <install_dir>/examples/vbroker/notify/basic_<cpp|java>

• <install_dir>/examples/vbroker/notify/psa_<cpp|Java>.

Typed push supplier using Notification
service interface (basic_cpp/
typedPushSupplier.C)

Typed push using PSA(psa_cpp/
typedPushSupplier.C)

using namespace
CosTypedNotifyChannelAdmin;
int main(int argc, char** argv)
{
 // Get orb and poa environment
 CORBA::ORB_ptr orb
 = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->
 Resolve_initial_references(
 "RootPOA");
 PortableServer::POA_var poa =
PortableServer::POA::_narrow(obj);

 // Get channel reference
 TypedEventChannel channel = ... ;
 // Connect to channel
 // 1. Get default admin
 TypedConsumerAdmin_var admin =
 Channel->default_supplier_admin();
 // 2. Create a proxy
 CosNotifyChannelAdmin::ProxyID
proxy_id;
 TypedProxyConsumer_var proxy = admin->
 obtain_notification_push_consumer(

"IDL:example.borland.com/"
"TMN/TypedEvent:1.0", proxy_id);

 // 3. Get the <I> interface
 CORBA::Object_var obj
 = proxy->get_typed_consumer();
 TMN::TypedEvent_var consumer
 = TMN::TypedEvent::_narrow(obj);
proxy->connect_typed_push_supplier
(NULL)
// Push typed events interface
 for(;;) {

consumer->attributeValueChange(...);
 ...
 }
 ...
}

int main(int argc, char** argv)
{
 // Get orb and psa environment
 CORBA::ORB_ptr orb
 = CORBA::ORB_init(argc, argv);
 CORBA::Object_var obj = orb->
 Resolve_initial_references(
 "RootPSA");
 PSA_var psa = PSA::_narrow(obj);

 // Get channel reference
 CORBA::Object_var channel = ... ;
 // Publish to channel
 // 1. Publish
 PortableServerExt::SubjectScheme scheme
= { PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
(const char*)"IDL:example.borland.com"

 "TMN/TypedEvent:1.0",
 PortableServerExt::PUSH_EVENT };
 PortableServerExt::PublishDesc_var desc
 = psa->publish(scheme, channel,
PortableServer::ObjectId(),
CORBA::NameValuePairSeq());

 // 2. Get the <I> interface
 CORBA::Object_var obj
 = psa->the_subject_addr(desc);
 TMN::TypedEvent_var consumer
 = TMN::TypedEvent::_narrow(obj);

 // Push typed events interface
 for(;;) {
 consumer->
attributeValueChange(...);
 ...
 }
 ...
}

VisiBroker Vis iNot i fy Guide 53

Subscr ibe a subject using PSA

Subscribe a subject using PSA
The subscribe operation in PSA allows a consumer object to attach to a
notification/event source for receiving (either push or pull) event messages.
This is a very broad concept which can cover all possible publish/subscribe
scenarios such as:

• Connecting to an OMG notification/event channel.

• Joining a multicast group and establish the external key to internal
consumer id mapping.

• Connecting to an non-IIOP message oriented middle.

PSA supports these scenarios under one single programming model
regardless of the low level transport mechanism and type of the channel/
message format. In this release, PSA only supports subscribe to OMG
notification/event channel (all four channel types). PSA subscribe operation
is defined as:

SubscribeDesc subscribe(
 in SubjectScheme the_subject_scheme,
 in Subject the_subject,
 in PortableServer::ObjectId the_observer_id,
 in CORBA::NameValuePairSeq the_properties)
 raises(InvalidSubjectScheme,
 InvalidProperties,
 ChannelException);

When PSA is used on top of COS Notification, this operation performs all
low-level operations of getting consumer admin, obtaining proxy suppliers
and making the connection. For subscribing to a typed subject, the PSA also
creates and manages the handler proxy object internally to support the
get_typed_consumer() operation and only requires the application to supply
the observer servant implementation that supports the application-specified
typed <I> interface.

SubjectScheme
The first parameter to the subscribe() is SubjectScheme and is defined as:

struct SubjectScheme {
SubjectAddressScheme address_scheme;
SubjectInterfaceScheme interface_scheme;
SubjectInterfaceId interface_id;
SubjectDeliveryScheme delivery_scheme;

};

The SubjectScheme specifies what is the subject reference's address
scheme, interface scheme, interface repository id (for typed channel only),
and delivery scheme.

The address_scheme field specifies the subject reference. For example, an
address can be specified, which can be used directly for push event or an
address to only do subscribe. Currently, there are three values on this field
for subscribing; SUBSCRIBE_ADMIN_ADDR, CHANNEL_ADDR, and
SUBJECT_ADDR, which indicates that the subject reference to the
subscribe() operation is a OMG Notification Consumer Admin, a OMG
Notification Channel (or typed channel) or an event direct pushing address,
respectively.

54 VisiBroker Vis iNot i fy Guide

Subscr ibe a subject using PSA

The three values for the address_scheme field allow the application to
subscribe in the following manner:

• SUBSCRIBE_ADMIN_ADDR - The subject reference to subscribe() is an
OMG Notification Consumer Admin reference, PSA simply calls
obtain_<...>_supplier() on the admin to allocate a proxy on the
admin and then calls connect_<...>_consumer() on the proxy. The
consumer reference connected to the proxy is either null (for pull mode
consumer) or a push consumer object reference created from this PSA
with the_observer_id parameter. For typed channels, the
get_typed_consumer() and get_typed_supplier() are automatically
handled by PSA.

• CHANNEL_ADDR - The subject reference to subscribe() is an OMG
Notification Channel (or typed channel). PSA simply calls
_get_default_consumer_admin() on the channel to get the default
admin and then handles it as a connection through this consumer admin
reference.

• SUBJECT_ADDR - The subject reference to subscribe() is a direct event
pushing address. For example, it could be a multicast IOR, or a typed
<I> interface. For any other channel than typed, it is a proxy push
consumer. PSA calls _get_MyAdmin()/_get_MyChannel()/
_get_default_consumer_admin() and then handles it as a connection
through consumer admin. For typed channels, this is already a push <I>
interface. PSA looks into the reference for a consumer admin component
(not currently supported) and handles it as a connection through
consumer admin.

Additionally, applications need to specify SubjectInterfaceScheme and
SubjectDeliveryScheme.

For SubjectInterfaceScheme the valid values are:

• TYPED_SUBJECT - Subject uses either multicast or OMG Typed
Notification Channel.

• UNTYPED_SUBJECT - Subject uses OMG Untyped Notification Channel.

• STRUCTURED_SUBJECT - Subject uses OMG Structured Notification
Channel.

• SEQUENCE_SUBJECT - Subject uses OMG Sequence Notification Channel.

For SubjectDeliveryScheme the valid values are:

• PUSH_EVENT - Subject uses either multicast or OMG Push Notification
mode (any of the four OMG event types).

• PULL_EVENT - Subject uses OMG Pull Notification mode (any of the four
OMG event types).

For connecting to a typed channel, the repository id of <I> interface must
also be specified. This repository is used as the implicit event filter.

Subject Reference, Observer ID, and Properties
to Subscribe()
The second and third parameters to subscribe() are the reference of the
subject and the object id of a passive consumer object. The subject
reference's interpretation is specified by the SubjectScheme as the first
parameter to subscribe() and has been described above. The passive
consumer object id specifies which consumer object, a received event, can
be dispatched to.

VisiBroker Vis iNot i fy Guide 55

Subscr ibe a subject using PSA

There are two kind of consumer objects; passive and active. All push
consumers are passive consumers and all pull consumers, except for typed
consumer using pull_and_dispatch(), are active.

Passive consumers need to be subscribed with a valid object id and the
consumer servant should be activated or able to be activated (such as, by
servant manager) in the subscribing PSA (that is, the POA). Active
consumers, on the other hand, do not need a valid object id to
subscribe(). In fact, PSA ignores the actual object id parameter when
subscribe() is called to subscribe an active consumer. Also, active
consumers do not need to be activated or able to be activated.

Examples of Subscribe()

Example
This example shows how to connect to an untyped service through channel reference
as a push consumer.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::UNTYPED_SUBJECT,
(const char*)"",
PortableServerExt::PUSH_EVENT };

PortableServerExt::SubscribeDesc_var desc psa->subscribe(
scheme, channel, observer_oid,

CORBA::NameValuePairSeq());

Java
// Java code to connect to an untyped service through
//channel reference as a push consumer
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.UNTYPED_SUBJECT,
"",
SubjectDeliveryScheme.PUSH_EVENT);

SubscribeDesc desc = psa.subscribe(scheme, channel,
observer_oid, null);

Example
This example shows how to connect to an untyped service through channel reference
as a pull consumer.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::UNTYPED_SUBJECT,
(const char*)"",
PortableServerExt::PULL_EVENT };

PortableServerExt::SubscribeDesc_var desc =
psa->subscribe(

scheme, channel, PortableServer::ObjectId(),
CORBA::NameValuePairSeq());

56 VisiBroker Vis iNot i fy Guide

Subscr ibe a subject using PSA

Java
// Java code to connect to an untyped service through
// channel reference as a push consumer
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.UNTYPED_SUBJECT,
"",
SubjectDeliveryScheme.PULL_EVENT);

SubscribeDesc desc = psa.subscribe(scheme, channel, null,
null);

Example
This example shows how to connect to an structured service through channel
reference as a push consumer.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::STRUCTURED_SUBJECT,
(const char*)"",
PortableServerExt::PUSH_EVENT };

PortableServerExt::SubscribeDesc_var desc psa->subscribe(
scheme, channel, observer_oid,

CORBA::NameValuePairSeq());

Java
// Java code to connect to a structured service through
// channel reference as a push consumer
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.STRUCTURED_SUBJECT,
"",
SubjectDeliveryScheme.PUSH_EVENT);

SubscribeDesc desc = psa.subscribe(scheme, channel,
observer_oid, null);

Example
This example shows how to connect to an structured service through channel
reference as a pull consumer.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::STRUCTURED_SUBJECT,
(const char*)"",
PortableServerExt::PULL_EVENT };

PortableServerExt::SubscribeDesc_var desc = psa->
subscribe(

scheme, channel, PortableServer::ObjectId(),
CORBA::NameValuePairSeq());

Java
// Java code to connect to a structured service through
// channel reference as a pull consumer
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,

VisiBroker Vis iNot i fy Guide 57

Subscr ibe a subject using PSA

SubjectInterfaceScheme.STRUCTURED_SUBJECT,
"",
SubjectDeliveryScheme.PULL_EVENT);

SubscribeDesc desc = psa.subscribe(scheme, channel, null,
null);

Example
This example shows how to connect to a typed service through channel reference as a
push consumer.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
(const char*)"IDL:example.borland.com/TMN/

TypedEvent:1.0",
PortableServerExt::PUSH_EVENT };

PortableServerExt::SubscribeDesc_var desc psa->subscribe(
scheme, channel, observer_oid,

CORBA::NameValuePairSeq());

Java
// Java code to connect to an typed service through
// channel reference as a push consumer
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.TYPED_SUBJECT,
"IDL:example.borland.com/TMN/TypedEvent:1.0",
SubjectDeliveryScheme.PUSH_EVENT);

SubscribeDesc desc = psa.subscribe(scheme, channel,
observer_oid, null);

Example
This example shows how to connect to a typed service through channel reference as a
pull consumer.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
(const char*)"IDL::example.borland.com/TMN/

TypedEvent:1.0",
PortableServerExt::PULL_EVENT };

PortableServerExt::SubscribeDesc_var desc = psa->
subscribe(

scheme, channel, PortableServer::ObjectId(),
CORBA::NameValuePairSeq());

Java
// Java code to connect to a typed service through channel
// reference as a pull consumer
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.TYPED_SUBJECT,
"IDL:example.borland.com/TMN/TypedEvent:1.0",
SubjectDeliveryScheme.PULL_EVENT);

58 VisiBroker Vis iNot i fy Guide

Subscr ibe a subject using PSA

SubscribeDesc desc = psa.subscribe(scheme, channel, null,
null);

Subscribe Descriptor and the_subject_addr()
Object the_subject_addr(in PublishSubscribeDesc the_desc);

After a successful subscribe() operation, a subscribe descriptor is returned
which encapsulates all information and mapping to make other operations
on the subscription, such as unsubscribe(), suspend(), resume(). Also, this
descriptor can be saved into a persistent repository and can be later loaded
into the same consumer process session or a new restarted consumer
process session. However, the format of this descriptor is internal to the
given ORB which created it. Therefore, like the object key, a subscribe
descriptor must be used by the same ORB that created it.

For a subscribed push consumer, the channel will actively push events to
the consumer servants activated with the specified observer ids. After a
successful subscribe() operation, applications with untyped/structured/
sequence pull consumers can get their pull addresses (proxy pull suppliers)
from PSA's the_subject_addr() along with the subscribe descriptor. The
subscribe descriptor was returned from the PSA subscribe() method, as a
parameter.

Example
This example shows how to get a proxy untyped/structured/sequence pull supplier
from subscribe descriptor:

C++
CORBA::Object_var proxy_pull_supplier = psa->the_subject_addr(the_desc);

Java
org.omg.CORBA.Object proxy_pull_supplier = psa.the_subject_addr(the_desc);

After narrowing this reference to a specified proxy, the application can pull
the event from the supplier with pull()/try_pull()/pull_structured_event()
and try_pull_structured_event().

Typed pull consumer is discussed in “Support of Typed Pulling”.

Unsubscribe a Subject
PSA unsubscribe() disconnects the consumer from a connected channel
and cleans up any local resource, if necessary (for multicast case, it
removes the subject key to observer id mapping). If the consumer is
connected to an untyped or a typed channel, the PSA invokes
disconnect_push/pull_supplier() to the proxy.

If the consumer is connected to a structured or sequence channel, the PSA
invokes disconnect_structured_push/pull_supplier() or
disconnect_sequence_push/pull_supplier(), respectively.

This code example shows how to unsubscribe a subject:

void unsubscribe(in SubscribeDesc the_subscribe_desc)

VisiBroker Vis iNot i fy Guide 59

Publ ish a Subject

Publish a Subject
Publish in the PSA model is defined as an operation, which attaches a
supplier object or source to a notification/event channel that provides
(either push or pull) event messages.

This is a very broad concept that covers all possible publish/subscribe
scenarios such as:

• Connections to a OMG notification/event channel.

• Attachments to a multicast channel. However, native UDP multicast,
publish() does nothing but only creates and returns a wrapper publish
descriptor.

• Connections to a non-IIOP message oriented middle.

PSA supports many publish/subscribe scenarios under one single
programming model regardless of the low level transport mechanism and
the type of the channel/message format. Currently, the PSA only supports
connect to OMG notification/event channel (all four channel types). The PSA
operation to subscribe a consumer (such as, observer) to a given subject is:

PublishDesc publish(
in SubjectScheme the_subject_scheme,
in Subject the_subject,
in PortableServer::ObjectId the_provider_id,
in CORBA::NameValuePairSeq the_properties)

raises(InvalidSubjectScheme,
 InvalidProperties,
 ChannelException);

When the publish operation is used on top of the COS Notification, it
performs all the operations of getting supplier admin, obtaining proxy
consumers, and connecting to them. Additionally, when the publish
operation is used with a typed subject, PSA also calls
get_typed_consumer() on the proxy consumers to get the <I> reference.

SubjectScheme
SubjectScheme is the first parameter to publish() and is defined as:

struct SubjectScheme {
 SubjectAddressScheme address_scheme;
 SubjectInterfaceScheme interface_scheme;
 SubjectInterfaceId interface_id;
 SubjectDeliveryScheme delivery_scheme;
};

The SubjectScheme parameters specify the subject reference's address
scheme, interface scheme, interface repository id (for typed channel only)
and delivery scheme.

The address_scheme field specifies the subject reference, such as whether
it is an address that can directly push events or an address that can only
subscribe. Currently, VisiBroker supports three valid values for this field,
which indicates that the subject reference to the publish() operation is an
OMG notification consumer admin, an OMG notification channel (or typed
channel) or an event direct pushing address, respectively.

60 VisiBroker Vis iNot i fy Guide

Publ ish a Subject

The three address schemes supported for subscribe are:

• PUBLISH_ADMIN_ADDR - The subject reference to publish() is an OMG
notification supplier admin reference. PSA simply calls
obtain_<...>_consumer() on the admin reference to allocate a proxy
on the admin and then calls connect_<...>_supplier() on the proxy.
The supplier reference connected to the proxy is either null (for push
supplier) or a pull supplier reference created from this PSA with
provider_id parameter. For typed channels, get_typed_consumer()
operation and get_typed_supplier() implementation are
automatically handled by PSA.

• CHANNEL_ADDR - The subject reference to publish() is an OMG
notification channel (or typed channel). PSA simply calls
_get_default_supplier_admin() on the channel to get the default
supplier admin. It handles it as connect through this consumer admin
reference.

• SUBJECT_ADDR - The subject reference to subscribe() is a direct event
pushing address. For example, it could be a multicast IOR or a typed <I>
interface. This is a trivial case. PSA simply wraps a publisher descriptor
and returns.

Your application will also need to specify SubjectInterfaceScheme and
SubjectDeliveryScheme.

The valid SubjectInterfaceScheme values are:

• TYPED_SUBJECT - Subject uses either multicast or OMG typed notification
channel.

• UNTYPED_SUBJECT - Subject uses OMG untyped notification channel.

• STRUCTURED_SUBJECT - Subject uses OMG structured notification
channel.

• SEQUENCE_SUBJECT - Subject uses OMG sequence notification channel.

The valid SubjectDeliveryScheme values are:

• PUSH_EVENT - Subject uses either multicast or OMG push notification
mode (any of the four OMG event types).

• PULL_EVENT - Subject uses OMG pull notification mode (any of the four
OMG event types).

To connect to a typed channel, you must also specify the repository id of
<I> interface. This repository is actually used for narrowing a typed push
reference returned from get_typed_consumer() into <I> stub, which is
also used as a filtering key for both push and pull events.

Subject Reference, Provider ID, and Properties
to Publish()
The subject reference's interpretation is specified by the SubjectScheme as
the first parameter to publish() operation. The second and third
parameters to publish() are the reference of the subject and the object id
of a passive supplier (such as a supplier) object. The passive supplier object
id specifies which supplier object should be used by PSA to pull events for
publishing.

There are two kind of supplier objects; passive and active. All push
suppliers are active while all pull suppliers are passive.

Passive suppliers need to be published with a valid object id and the publish
servant should be activated or able to be activated (for example, by the

VisiBroker Vis iNot i fy Guide 61

Publ ish a Subject

servant manager) in the publishing PSA (such as POA). Active publishes, on
the other hand, do not need a valid object id to call publish(). In fact, PSA
ignores the actual object id parameter when publish() is called to publish
an active supplier. Also, active suppliers do not need to be activated or able
to be activated. Active suppliers do not even need servant implementations.

Note

Active suppliers do not even need servant implementations.

Examples of publish()

Example
This example shows how to connect to an untyped service through channel reference
as a push supplier using namespace PortableServerExt.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::UNTYPED_SUBJECT,
PortableServerExt::(const char*)"",
PortableServerExt::PUSH_EVENT };

PortableServerExt::PublishDesc_var desc psa->publish(
Scheme, channel, PortableServer::ObjectId(),

CORBA::NameValuePairSeq());

Java
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.UNTYPED_SUBJECT,
"",
SubjectDeliveryScheme.PUSH_EVENT);

Byte[] desc = psa.publish(scheme, channel, null, null);

As specified by the scheme, the given subject reference is actually a COS
Notification Service channel reference. PSA internally performs the following
operations:

• Gets the default supplier admin from this channel.

• Obtains an untyped proxy push consumer from the admin.

• Encapsulates the proxy push consumer's reference inside the returned
subscribe descriptor.

Example
This example shows how to connect to an untyped service through a channel
reference as a pull supplier using namespace PortableServerExt.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::UNTYPED_SUBJECT,
(const char*)"",
PortableServerExt::PULL_EVENT };

PortableServerExt::PublishDesc_var desc = psa->publish(
scheme, channel, provider_id,

CORBA::NameValuePairSeq());

62 VisiBroker Vis iNot i fy Guide

Publ ish a Subject

Java
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.UNTYPED_SUBJECT,
"",
SubjectDeliveryScheme.PULL_EVENT);

PublishDesc desc = psa.publish(scheme, channel,
provider_id, null);

As specified by the scheme, the given subject reference is actually a COS
Notification Service channel reference. PSA performs following operations:

• Gets the default supplier admin from this channel.

• Obtains an untyped proxy pull consumer from the admin.

• Creates an pull supplier object reference from PSA with the provider_id
parameter as object id.

• Connects to the proxy with this pull supplier reference.

• Encapsulates the proxy pull consumer's reference inside the returned
subscribe descriptor.

Example
This example shows how to connect to a structured service through a channel
reference as a push supplier using namespace PortableServerExt.

C++
SubjectScheme scheme = {

PortableServerExt::SubjectScheme scheme = {
PortableServerExt::CHANNEL_ADDR,
PortableServerExt::STRUCTURED_SUBJECT,
(const char*)"",
PortableServerExt::PUSH_EVENT

};
PortableServerExt::PublishDesc_var desc = psa->publish(

scheme, channel, PortableServer::ObjectId(),
CORBA::NameValuePairSeq());

Java
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.STRUCTURED_SUBJECT,
"",
SubjectDeliveryScheme.PUSH_EVENT);

PublishDesc desc = psa.publish(scheme, channel, null,
null);

As specified by the scheme, the given subject reference is actually a COS
Notification Service channel reference. PSA performs the following
operations:

• Gets the default supplier admin from this channel.

• Obtains an structured proxy push consumer from the admin.

• Encapsulates the proxy push consumer's reference inside the returned
subscribe descriptor.

VisiBroker Vis iNot i fy Guide 63

Publ ish a Subject

Example
This example shows how C++ code connects to a structured service through channel
reference as a push supplier using namespace PortableServerExt.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::STRUCTURED_SUBJECT,
(const char*)"",
PortableServerExt::PULL_EVENT };

PortableServerExt::PublishDesc_var desc = psa->publish(
 scheme, channel, provider_id,
CORBA::NameValuePairSeq());

Java
SubjectScheme scheme = new SubjectScheme(

SubjectAddressScheme.CHANNEL_ADDR,
SubjectInterfaceScheme.STRUCTURED_SUBJECT,
"",
SubjectDeliveryScheme.PULL_EVENT);

Byte[] desc = psa.publish(scheme, channel, provider_id,
null);

As specified by the scheme, the given subject reference is actually a COS
Notification Service channel reference. PSA performs the following
operations:

• Gets the default supplier admin from this channel.

• Obtains a structured proxy pull consumer from the admin.

• Creates a pull supplier object reference from the PSA with the provider_id
parameter as object id.

• Connects to the proxy with this pull supplier reference.

• Encapsulates the proxy pull consumer's reference inside the returned
subscribe descriptor.

Example
This example shows how to connect to typed services through a channel reference as
a push supplier using namespace PortableServerExt.

C++
PortableServerExt::SubjectScheme scheme = {
 PortableServerExt::CHANNEL_ADDR,
 PortableServerExt::TYPED_SUBJECT,
 (const char*)"IDL:example.borland.com/TMN/
TypedEvent:1.0",
 PortableServerExt::PUSH_EVENT };
PortableServerExt::PublishDesc_var desc psa->publish(
 scheme, channel, PortableServer::ObjectId(),
CORBA::NameValuePairSeq());

Java
SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
"IDL:example.borland.com/TMN/TypedEvent:1.0",

64 VisiBroker Vis iNot i fy Guide

Publ ish a Subject

 SubjectDeliveryScheme.PUSH_EVENT);
PublishDesc desc = psa.publish(scheme, channel, null,
null);

As specified by the scheme, the given subject reference is actually a COS
Notification Service channel reference. PSA performs the following
operations:

• Gets the default supplier admin from this channel.

• Obtains a typed proxy pull consumer from the admin.

• Calls get_typed_consumer() on the proxy reference to get the <I>
interface.

• Connects to the proxy with this pull supplier reference.

• Encapsulates the proxy push consumer's reference and the <I> interface
reference inside the returned subscribe descriptor.

Example
This example shows how to connect to typed services through a channel reference as
a pull supplier using namespace PortableServerExt.

C++
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
ortableServerExt::TYPED_SUBJECT,
(const char*)"IDL::example.borland.com/TMN/

TypedEvent:1.0",
PortableServerExt::PULL_EVENT };

PortableServerExt::PublishDesc_var desc = psa->publish(
 scheme, channel, provider_id,
CORBA::NameValuePairSeq());

Java
SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
"IDL:example.borland.com/TMN/TypedEvent:1.0"
 SubjectDeliveryScheme.PULL_EVENT);
PublishDesc desc = psa.publish(scheme, channel,
provider_id, null);

As specified by the scheme, the given subject reference is actually a COS
Notification Service channel reference. PSA performs the following
operations:

• Gets the default supplier admin from this channel.

• Obtains a typed proxy pull consumer from the admin.

• Creates a typed pull supplier object reference from this PSA with the
provider_id parameter as object id.

• Creates an internal proxy supplier implementation to return the reference
from the get_typed_supplier() method.

• Creates a reference for this proxy implementation.

• Connects to the proxy consumer with this proxy implementation's
reference.

• Encapsulates the proxy pull consumer's reference inside the returned
subscribe descriptor.

VisiBroker Vis iNot i fy Guide 65

Publ ish a Subject

Publish Descriptor and the_subject_addr()
Object the_subject_addr(in PublishSubscribeDesc the_desc);

After a successful publish() operation, a publish descriptor is returned. It
contains information/mapping to implement other publish() operations,
such as unpublish(), suspend(), and resume(). This descriptor can be
saved into a persistent repository and reloaded into the same supplier
process session or a restart of a new supplier session. However, the format
of this descriptor is internal to the ORB that creates it. Therefore, like the
object key, a subscribe descriptor should only be used by the same ORB.

For a published passive supplier (such as pull), the channel will pull events
from the supplier servant that is activated with the specified provider id.

After a successful publish() operation, applications with active (push)
suppliers can get push addresses for the proxy push consumers or for typed
channel with the <I> interface references from PSA's
the_subject_addr() using the publish descriptor. The publish descriptor
is returned from the PSA publish() method, as a parameter.

Example
This example shows how to get a proxy untyped/structured/sequence pull supplier
from a subscribe descriptor:

C++
CORBA::Object_var proxy_pull_supplier =

psa->the_subject_addr(the_desc);

Java
org.omg.CORBA.Object proxy_pull_supplier =

psa.the_subject_addr(the_desc);

After narrowing this reference to a specified proxy or <I> interface stubs,
applications can push events into the connected channels.

Note

Typed pull supplier is discussed in“Support of Typed Pulling”.

Unpublish a subject
void unpublish(in PublishDesc the_publish_desc)
 raises(InvalidPublishDesc,
 ChannelException);

The PSA unpublish() disconnects the supplier from a connected channel
and cleans up any local resource. If the supplier is connected to an untyped
and typed channel, the PSA invokes disconnect_push/pull_consumer()
to the proxy. If it is connected to a structured or sequence channel, the PSA
invokes disconnect_structured_push/pull_consumer() or
disconnect_sequence_push/pull_consumer(), respectively.

66 VisiBroker Vis iNot i fy Guide

Support of Typed Pul l ing

Support of Typed Pulling
One major problem of the Notification Service is dealing with typed pulling.
The programming model defined by OMG makes it difficult to use. It
requires a pull consumer to use a mangled Pull<I> interface and a pull
supplier to implement a Pull<I> servant. Changing from typed push <I>
consumer/supplier to typed Pull<I> consumer/supplier requires a
substantial code change and refinement to the application designs. In
addition, the Pull<I> interfaces are operation specific. For example, pulling
a typed event from a channel requires the pull consumer to be selective on
the operation associated with the event. This does not parallel either typed
push consumer nor structured pull consumer. In typed push consumer, the
pushing consumers do not specify which operation should be associated
with the next arrived events. In structured event case, a structured pull
consumer is not selective on the type_name (a counterpart of operation in
typed event) of next returned event.

The PSA resolves all issues (mentioned above). The PSA has the following
unique advantages:

• Like the typed push consumers, the typed pull consumers implement
original <I> interfaces instead of the mangled Pull<I> interfaces. This
makes the PSA's model intuitive, easy to use and can use existing tools
(such as a normal IDL pre-compiler) to generate type safe code. Pull
consumer applications developed with PSA are always easier to
understand than using the Pull<I> interface.

• Like the typed push suppliers, the typed pull suppliers use original <I>
interface stubs instead of implementing a type specific Pull<I> servant.

• The typed pull consumers are not selective on the operations for returned
events. This is consistent with typed push consumer and structured pull
consumer.

• The PSA supports active typed pull consumer and passive typed pull
consumer to meet different application requirements.

The PSA supports three kinds of typed pulling implementation:

• Passive typed pull consumer

• Active typed pull consumer

• Typed pull supplier

Passive typed pull consumer
At the code level, the passive typed pull consumer is similar to a typed push
consumer. Actually, changing a typed push consumer application into a
passive typed pull consumer application requires nearly no code change. To
create a passive typed consumer, a consumer object still needs to be
available on the POA and requires it to be subscribed to the subject with
associated object id. The only difference between passive typed pull
consumer and typed push consumer is:

• For a normal typed push consumer: the typed events are asynchronously
pushed into the consumer process from the channel, and then,
dispatched to the push consumer object.

• For a passive typed pull consumer: the typed events are synchronously
pulled back to the consumer server from the channel by the consumer
application and dispatched to the passive typed consumer object by the
PSA as if it is an active typed push.

VisiBroker Vis iNot i fy Guide 67

Support of Typed Pul l ing

Therefore, to subscribe a passive typed pull consumer, a valid object id is
needed in PSA subscribe() operation. After the subscribe(), application
uses PSA's pull_and_dispatch() method to pull typed event from
channel and dispatches into the passive consumer. Passive typed pull
consumer is designed for applications that want to use passive consumer
along with the control of incoming events from consumer applications.

C++ passive typed pull consumer example
This example is of the passive typed pull consumer.

// (examples/vbroker/notify/psa_cpp/typedPullConsumer2.C)
// Implement a passive observer
include "TMNEvents_s.hh"
class TMNTypedEventObserver : public POA_TMN::TypedEvent
{
 ...
 public: void attributeValueChange(...) { ... }
 ...
 void qosAlarm(...) { ... }
};
int main(int argc, char** argv)
{
// construct the observer implementation
TMNTypedEventObserver* observer = new TMNTypedEventObserver;

// activate it on PSA
psa->activate_object (observer);
PortableServer::ObjectId_var oid = psa->servant_to_id (observer);

// activate the PSA
PortableServer::POAManager_var poa_manager =

psa->the_POAManager ();
poa_manager->activate ();
 // subscribe to the channel as typed pull consumer
 PortableServerExt::SubjectScheme scheme = {

 PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
(const char*)"IDL::example.borland.com/TMN/TypedEvent:1.0",
PortableServerExt::PULL_EVENT };

 PortableServerExt::SubscribeDesc_var desc =
psa->subscribe scheme, channel, oid.in(),
CORBA::NameValuePairSeq());

// pull and visit max 100 events using block mode.
 psa->pull_and_dispatch(desc, 100, (CORBA::Boolean)1, (CORBA::Boolean)0);
 ...
 }

Compared to a pushed consumer application, the only difference is how the
application gets the typed event. Passive typed consumers require explicit
pull (using pull_and_dispatch()) by the application using PSA, instead of
blocking on the ORB run() and waiting for the channel to send events
asynchronously.

The logic and procedure of a passive typed pull consumer can be
summarized as:

• Write a consumer servant implementation derived from a POA skeleton.

• Activate the servant on a POA and get its object id.

• Subscribe to the channel with SubjectDeliveryScheme to be PULL_EVENT.

68 VisiBroker Vis iNot i fy Guide

Support of Typed Pul l ing

• Call pull_and_dispatch() on the subscribe PSA with the subscribe
descriptor as parameters.

• The pull backed events will be dispatched to the specified consumer
servant asynchronously.

Active typed pull consumer
For active typed pull consumers, the consumer servant is not registered to a
POA, nor does a POA need to be activated. The replied typed events are
directly visited (think about visitor pattern) by a visitor instance derived
from POA_<I> servant skeleton. The visitor instance is directly specified on
each call of pull_and_visit() and does not need to associate with or be
registered on any POA. An active typed pull consumer is more like
conventional typed pulling except it implements POA_<I> to backward visit
the event instead of the Pull<I> stub.

C++ active typed pull consumer example
This example is of the active typed pull consumer.

// (examples/vbe/notify/psa_cpp/typedPullConsumer1.C)
// Implement an active visitor
include "TMNEvents_s.hh"
class TMNTypedEventVisitor : public POA_TMN::TypedEvent
{
 ...
 public: void attributeValueChange(...) { ... }
 ...
 void qosAlarm(...) { ... }
};
int main(int argc, char** argv)
{
 ...
 // subscribe to the channel as typed pull consumer
 PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
(const char*)"IDL::example.borland.com/TMN/TypedEvent:1.0",
PortableServerExt::PULL_EVENT };

 PortableServerExt::SubscribeDesc_var desc = psa->subscribe(
scheme, channel, PortableServer::ObjectId(), CORBA::NameValuePairSeq());

 // create a visitor instance
 TMNTypedEventVisitor visitor;
 // pull and visit max 100 events using block mode.
 psa->pull_and_visit(desc, 100, (CORBA::Boolean)1, &visitor);
 ...
 }

Java active typed pull consumer example
// (examples/vbe/notify/psa_java/TypedPullConsumer1.java)
import com.inprise.vbroker.PortableServerExt.*;
// Implement an active visitor
class TMNTypedEventVisitor extends TMN.TypedEventPOA {
{
 public void attributeValueChange(...) { ... }
 ...
 public void qosAlarm(...) { ... }
};
public class TypedPullConsumer1 {

VisiBroker Vis iNot i fy Guide 69

Support of Typed Pul l ing

 public static void main(String[] args) {
 ...
 // subscribe to the channel as typed pull consumer
 SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "IDL::example.borland.com/TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PULL_EVENT };
 SubscribeDesc desc = psa.subscribe(scheme, channel, null, null);
 // create a visitor instance
 TMNTypedEventVisitor visitor = new TMNTypedEventVisitor();
 // pull and visit max 100 events using block mode.
 psa.pull_and_visit(desc, 100, true, visitor);
 }
 }

The logic and procedure of an active typed pull consumer can be
summarized as:

• Write a visitor (servant) implementation derived from POA skeleton.

• Subscribe to the channel with SubjectDeliveryScheme to be PULL_EVENT.

• Call pull_and_visit() on the subscribe PSA with the subscribe
descriptor and a visitor instance as parameters.

• The pull backed events will be invoked on the specified visitor
synchronously.

Typed pull supplier
The PSA supports typed pull supplier using the “piggybacked reflective
callback” technology. The reflective callback allows pull supplier to be pulled
and still issue events in the same <I> interface originally defined for push
mode.

Simple reflective callback without piggyback works as follows:

• A pull supplier implements, instantiates, and activates a predefined typed
unspecified callback handler, for example, the TypedCallback::PullEvent
handler that only has one single operation, such as, the
pull_typed_event(). The operation has an event receiver object
reference as input parameter.

• When publishing a pull supplier, the reference of this callback handler is
connected to channel.

Here are some characteristics when a channel pulls the supplier:

• The channel prepares an event receive object and gets its reference.

• The channel callbacks pull supplier's TypedCallback::PullEvent handler's
pull_typed_event() operation with the event receiver reference.

• The pull supplier narrows the event receive reference to <I> interface. It
directly invokes the operation defined on the <I> interface to send
specific events to typed channel.

• The channel gets the event from the event receiver and supplies it to the
consumers.

The advantage of simple reflective callback is that it does not require special
support on pull supplier side ORB. The disadvantage is that each pull
operation requires two remote round trips. The first round trip requires the
callback from channel to supplier. The second round trip requires the
callback from supplier to the event receiver.

70 VisiBroker Vis iNot i fy Guide

Support of Typed Pul l ing

The PSA and VisiNotify support and implement piggybacked reflective
callback. Piggybacked reflective callback is a variation of a simple reflective
callback with the following mechanism:

• The PSA creates an internal agent object (resides in a separate internal
singleton POA) which supports pull_typed_event() method without
input parameters.

• A pull supplier implements, instantiates, and activates the predefined
application interface independent TypedCallback::PullEvent handler.

• When application publishes a pull supplier, a callback reference that
points to the ORB internal agent and also encapsulates the callback
handler reference is connected to channel. The application handler is not
actually connected to channel.

• The channel callback to the agent's pull_typed_event() method has no
input parameter.

• The agent resolves the real handler's reference from the object id and
creates a local event receiver.

• The agent makes a local call on the handler's pull_typed_event() with
this local event receiver reference as input parameter.

• An application can narrow this local event receiver reference to <I> and
issue a typed event locally.

• An agent can unpack the event from the local event receiver and send it
back as a reply from the channel's pull_typed_event() call.

The piggybacked reflective callback is transparent to applications. For
example, the application code is independent from simple or piggybacked
reflective callback. Piggybacked reflective callback needs only one round
trip for each pull. However, piggybacked reflective callback requires pull
supplier side ORB to support. VisiBroker PSA supports piggybacked
reflective callback, and VisiNotify only uses piggybacked reflective callback
for reasons of efficiency.

C++ typed pull supplier example
This example is of the typed pull supplier.

// (examples/vbroker/notify/psa_cpp/typedPullSupplier.C)
// implement the TypedCallback::PullEvent handler,
// with piggybacked double callback, this handler is
// called back by local PSA instead of by remote proxy
// pull consumer. Therefore, the event receiver is also
// a local object.
include <TypedCallback_s.hh>
include "TMNEvents_c.hh"
class PullEventImpl : public POA_TypedCallback::PullEvent,

public virtual PortableServer::RefCountServantBase
 {
 public:
 // on typed pulling
 void pull_typed_event(

CORBA::Object_ptr event_receiver,
CORBA::Boolean block)

 {
 // narrow to typed stub
 TMN::TypedEvent_ptr stub

= TMN::TypedEvent::_narrow(event_receiver);
 // reflect the callback to issue an

 // attributeValueChange event

VisiBroker Vis iNot i fy Guide 71

 stub->attributeValueChange(...);
 }
 };
 ...
// create a supplier handler servant to activate it on// the PSA
PullEventImpl* supplier = new PullEventImpl;
psa->activate_object (handler);
PortableServer::ObjectId_var oid = psa->servant_to_id(supplier);
// publish to the channel as typed pull supplier with the
// handler_id but the real <I> interface repository id.
PortableServerExt::SubjectScheme scheme = {

PortableServerExt::CHANNEL_ADDR,
PortableServerExt::TYPED_SUBJECT,
(const char*)"IDL::example.borland.com/TMN/TypedEvent:1.0",
PortableServerExt::PULL_EVENT };

PortableServerExt::SubscribeDesc_var desc = psa->publish(
scheme, channel, oid.in(), CORBA::NameValuePairSeq());

// activate the PSA and wait for pulling.
psa->the_POAManager()->activate();
orb->run();

Java typed pull supplier example
// (examples/vbe/notify/psa_java/TypedPullSupplier.java)
 import com.inprise.vbroker.PortableServerExt.*;
// Implement the TypedCallback::PullEvent handler,
// with piggybacked double callback, this handler is
// called back by local PSA instead of by remote proxy
// pull consumer. Therefore, the event receiver is also a
//local object.
class TypedPullSupplierImpl

extends com.borland.vbroker.TypedCallback.PullEventPOA {
 ...
 public void pull_typed_event(
 org.omg.CORBA.Object event_receiver,
 Boolean block) {
 // narrow to typed stub
 TMN.TypedEvent stub = TMN.TypedEventHelper.narrow(event_receiver);
 // reflect the callback to issue an attributeValueChange event
 stub.attributeValueChange(...);
 }
 }
 public class typedPullSupplier {
 ...
 public static void main(String[] args) {
 ...
 // create a supplier handler servant to activate it on the PSA

TypedPullSupplierImpl supplier = new TypedPullSupplierImpl ();

psa.activate_object (supplier);

byte [] oid = psa.servant_to_id (supplier);
 // publish to the channel as typed pull supplier with the oid
 // but the real <I> interface repository id.
 SubjectScheme scheme = new SubjectScheme(
 SubjectAddressScheme.CHANNEL_ADDR,
 SubjectInterfaceScheme.TYPED_SUBJECT,
 "IDL::example.borland.com/TMN/TypedEvent:1.0",
 SubjectDeliveryScheme.PULL_EVENT);

72 VisiBroker Vis iNot i fy Guide

 SubscribeDesc desc = psa.publish(scheme, channel, oid, null);
 // activate the PSA and wait for pulling.
 psa.the_POAManager().activate();
 orb.run();
 }
 }

The logic and procedure of a typed pull supplier can be summarized as:

• Write a TypedCallback::PullEvent supplier servant implementation
from POA skeleton. The pull_typed_event() operation of this servant
uses reflective callback to generate typed event using the original IDL
interface stub.

• Activate the PullEvent servant on a POA and get its object id.

• Publish this callback to the channel with SubjectDeliveryScheme to be
PULL_EVENT and the object id as publish() parameters.

• Active the POA to handle pull requests.

Additional topics and summary
This section contains miscellaneous information pertaining to the PSA.

ChannelException
Most PSA operations, with the exception of the the_subject_addr() and
the_proxy_addr(), can raise PortableServerExt::ChannelException.
This exception has a string member that is the repository of low level
CORBA User exception. For example, when calling suspend() twice while
using a given push consumer subscribe describer as parameter, you will get
a ChannelException with its repository_id member as being
IDL:omg.org/CosNotifyChannelAdmin/ConnectionAlreadyInactive.

The intention of not declaring a PSA operation to raise Notification Service
exception is to have the PSA framework generic. Although the current
implementation of the PSA works in conjunction with OMG Notification
Service or Typed Notification Service, it is straightforward and extends the
support to cover other publish/subscribe infrastructure such as multicast.

Setting Notification Service QoS in PSA
One approach for setting a QoS policy is to directly get the proxy reference.
After using subscribe/publish operation using the _proxy_addr() method,
change the policy by using set_qos() on the proxy reference.

Another possible approach for setting a QoS policy on a connected proxy
within a PSA application is using property parameters of subscribe() and
publish(). This approach is not implemented in VisiBroker.

PSA Summary
This list summarizes PSA's concepts and features:

• The PSA presents an intuitive high level object abstraction for publish/
subscribe systems and shield applications from low level objects such as
connections, admins, and proxies.

• The PSA supports publish/subscribe as a first-class subject and provides a
high level programmatic model very similar to the POA model. Using PSA

VisiBroker Vis iNot i fy Guide 73

to develop CORBA publish/subscribe applications is similar to developing
POA based client/server applications.

• The PSA de-couples orthogonal objects thereby allowing applications to
change objects or logic implementations, independently. For example,
changing a typed consumer from push to pull requires no change to the
message receiving code but requires only a flag change on subscribe.
This kind of change would be a major engagement without PSA.

• The PSA lets applications use typed event pulling by using the same IDL
<I> interface originally defined for typed event pushing rather than a
cumbersome error prone mangled Pull<I> interface.

• Typed event pulling model under PSA/VisiNotify is symmetric to
structured pulling as well as other event pull models.

• The PSA automatically handles get_typed_consumer()/
get_typed_supplier() and the <I> interface to proxy mapping. This
largely simplifies application code of using typed event/notification
service. Typed notification applications only need to implement and
install the <I> interfaces observers.

• Although the PSA is a high level programming model, it preserves and
allows applications to access low level features defined in OMG
Notification Service, such as querying and modifying QoS.

• With a high level abstraction, the PSA does not assume the underlying
message middleware is OMG Notification Service. The same PSA
programming model can transparently support various multicast
transports and non-OMG message middleware.

74 VisiBroker Vis iNot i fy Guide

VisiBroker Vis iNot i fy Guide 75

Setting the Quality of
Service and Filters
This chapter discusses how to set up the notification channel using event
types and configuring with Filters and QoS properties.

Properties of the Quality of Service (QoS)
The policies set with QoS allow the application to dynamically adjust the
service parameters of the channel during runtime. VisiNotify specifies its
own QoS policies as well as supports a subset of the OMG-specified QoS.
The following are the QoS properties that VisiNotify supports:

Priority
Setting/getting of Priority QoS is supported as per the OMG standard.
Priority is represented as a short value, where -32,767 is the lowest priority
and 32,767 the highest. The default priority for all events is 0 (zero).
Priority can be set at message, proxy, admin, or channel levels. Note that
setting this property on a per-ConsumerAdmin or per-proxy supplier basis
has no meaning.

EventReliability
EventReliability QoS is supported as per the OMG standard. For
performance reasons, each individual proxy supplier is not guaranteed to
remember persistently what events it has sent to its associated consumer.
Therefore, an event can be sent to a consumer more than once if the event
channel crashes and restarts.

VBPersistentDbType
This property specifies the type of persistent storage being used for
persisting events by the channel. VisiNotify stores persistent events either
in memory mapped files or flat files depending on the value of this property.
A value of (CORBA::Short)1 implies memory mapped persistency. A value
of (CORBA::Short)2 implies flat file persistency.

The default is memory mapped persistency.

VBPersistentCommitSyncPolicy
The VBPersistentCommitSyncPolicy property specifies whether the channel
should acknowledge a supplier only after successfully committing the event
into persistent storage.

The constant values setting are:

• True - a channel acknowledges a supplier only after successfully
committing a event into persistent storage.

• False (default) - a channel can acknowledge supplier (such as, return
from a push() call) immediately before committing the event into
persistent storage and perform a lazy commit, afterwards.

76 VisiBroker Vis iNot i fy Guide

Propert ies of the Qual i ty of Service (QoS)

VBPersistentStorageOverflowBlockTimeout
There are times when a new event arrives in the channel and needs to be
made persistent. However, there is a possibility that persistent storage is
already full. To avoid this problem, the supplier can be blocked until space
becomes available in persistent storage.

The VBPersistentStorageOverflowBlockTimeout property specifies how long
the supplier should be blocked to wait for persistent storage to be freed up.
Upon expiration of this time interval, the channel will attempt to downgrade
one or more events to BestEffort to accommodate the new event (see
“VBPersistentOverflowDowngradePolicy”).

The default value of this property is 0, meaning that the channel will not
block, but instead it immediately attempts to downgrade queued events
according to VBPersistentOverflowDowngradePolicy.

VBPersistentOverflowDowngradePolicy
The VBPersistentOverflowDowngradePolicy property controls how the
channel will downgrade existing events to make way for a new (persistent)
event if no space can be found in persistent storage despite waiting for
VBPersistentStorageOverflowBlockTimeout seconds. If an event is
downgraded, this means that its EventReliability is automatically set to
BestEffort, regardless of the message/channel settings.

The constant values setting are:

• AnyOrder (default) - Lifo is used.

• FifoOrder - Events in the queue are downgraded in ascending order of
the time of receipt of the event.

• LifoOrder - The new event is downgraded.

Note

If an event by itself cannot fit into persistent storage, it is downgraded
immediately.

ConnectionReliability
ConnectionReliability is supported as per the OMG standard.

If ConnectionReliability is set to Persistent (at the appropriate channel/
admin/proxy), VisiNotify attempts to recover the following:

1 All persistent channels with original policies, ids, IOR (of the channel) and
all included events.

2 All persistent admins with original policies, ids, and IOR.

3 All persistent proxies with original policies, ids, IOR, attached suppliers/
consumers.

If the ConnectionReliability of a proxy is not specified explicitly through
set_qos(), then the default value is used for active proxies. For example, for
proxy pull consumers and proxy push suppliers default to a setting of
Persistent and the default for passive proxies are described for
vbroker.notify.channel.passiveProxyPersistenceMask.

MaxEventsPerConsumer
The MaxEventsPerConsumer is supported as per the OMG standard.

VisiBroker Vis iNot i fy Guide 77

Propert ies of the Qual i ty of Service (QoS)

DiscardPolicy
To facilitate implementation, such as persistent storage management, only
OMG's AnyOrder, FifoOrder and LifoOrder are supported.

OrderPolicy
This QoS property sets the policy used by a given proxy to order the events
it has buffered for delivery (either to another proxy or a consumer).
AnyOrder, FifoOrder (default) and PriorityOrder are supported.

Note

This property has no meaning if set on a per-message basis.

VBQueueLowWaterMark
After the number of pending events in a proxy supplier queue has breached
the VBQueueHighWaterMark level, (this is when a number of pending
events subsequently falls below this value), this proxy informs the
channel(s) to take the necessary action of unblocking or speeding up
pushing and pulling event into the channel. See section on Flow Control for
more details.

The default value for VBQueueLowWaterMark is 32.

VBQueueHighWaterMark
When the number of pending events in a proxy supplier queue is higher
than the set value, this proxy informs the channel accordingly so that the
channel can take action if necessary to block or slow down the rate of
pushing and pulling events into the channel. See section on Flow Control for
more details.

The default value for VBQueueHighWaterMark is computed by VisiNotify and
depends on the user defined setting of the channel queue size (the
channel's admin property) and the VBQueueLowWaterMark setting.

VBProxyPushSupplierThreadModel
Each proxy push supplier needs a thread to push the events in its queue to
the connected push consumer. This property specifies whether a proxy
should use a dedicated thread or a thread pool to push events.

Valid values are “dedicated” or “pool” with “pool” being the default value.
Any illegal value is silently ignored. For additional information, see the static
property section on configuring the thread pool. Setting this property on the
channel or consumer admin will make all sub objects inherit this value.
Setting this property on the supplier admin or any other type of proxy has
no meaning and will be silently ignored.

VBProxyPushSupplierQueuePreemptWaterMark
This property is used to fine-tune the thread pool behavior and is applicable
only when the VBProxyPushSupplierThreadModel is set to “pool” and the
thread pool is restricted to have a finite number of threads to serve the
proxy push suppliers. A proxy push object picks up a thread from the thread
pool to push events to the connected thread pool. If this proxy object has a
lot of pending events, it may end up hogging the thread, leaving other
proxies starved. To have a control over this situation, a watermark in the
queue of each proxy object can be set, so that on hitting the watermark,
the thread gets preempted to serve a different proxy push supplier object.

78 VisiBroker Vis iNot i fy Guide

Administrat ion and Val idat ion of QoS propert ies

The default value is computed by VisiNotify and depends on the queue size.

VBReceivedEventsCount
Indicates the number of events received. Trying to set any value on this
property by using the set_qos API resets the counter to 0. The actual value
passed in will be ignored.

VBPendingEventsCount
This is a read-only property and indicates the number of events pending in
the queue.

VBDiscardedEventsCount
Indicates the number of events discarded due to queue overflow. Trying to
set any value on this property by using the set_qos API resets the counter
to 0. The actual value passed in will be ignored.

VBForwardedEventsCount
Indicates the total number of events forwarded downstream. Trying to set
any value on this property by using the set_qos API resets the counter to 0.
The actual value passed in will be ignored.

VBFilteredEventsCount
Indicates the total number of events discarded due to failed filter match.
Trying to set any value on this property by using the set_qos API resets
the counter to 0. The actual value passed in will be ignored.

Administration and Validation of QoS properties
The following interfaces and methods are supported for administration of
QoS properties:

Interface CosNotification::QoSAdmin
This interface is supported by channels, supplier/consumer admins and
proxy suppliers/consumers and allows clients of these objects to obtain and
set the QoS properties.

However, there are some limitations on the level of support:

• If set_qos() is passed a VisiBroker-specific QoS, and the property value
is bad, it is silently ignored and no exception is thrown. Exception is
thrown for only OMG specified QoS.

• The propagation of QoS changes is passed down the channel/admin/
proxy hierarchy only for OMG specified QoS and not VisiBroker-specific
QoS.

Validating QoS in the header of structured
events
This is not currently supported.

VisiBroker Vis iNot i fy Guide 79

Channel Admin Propert ies

QoS negotiation
The following QoS negotiation APIs are not currently supported, including:

• CosNotification::QoSAdmin::validate_qos()

• CosNotifyChannelAdmin::ProxySupplier::validate_event_qos()

• CosNotifyChannelAdmin::ProxyConsumer::validate_event_qos()

Channel Admin Properties
The following interfaces are supported for the Channel Admin:

Interface
CosNotification::AdminPropertiesAdmin
This interface is supported by the notification and typed notification event
channels. It is used to retrieve and set the admin properties on the
channel(s).

The following OMG defined properties are supported:

• MaxQueueLength

• MaxConsumers

• MaxSuppliers

• RejectNewEvents

VBPersistentStorageSize
A persistent event (for instance, a channel that has EventReliability set to
persistent) needs to be stored in persistent storage. This admin property
allows restriction on the size of the storage space to prevent VisiNotify from
overrunning the disk space. VisiNotify stores persistent events in files. This
admin property specifies the maximum size of this file in kilobytes.

The default value for VBPersistentStorageSize is 1024. Its type is
CORBA::Ulong.

Static Properties
Unlike the QoS properties, the Static properties can be set only at startup
time of the Notification Service and not during the execution of the service.
The Static properties are specified just like any VisiBroker ORB properties
such as, using -D<property_name>=<property_value>.

The following properties are supported:

vbroker.notify.console
vbroker.notify.console = <Boolean>

This property controls the Notification Service to display the message,
“Notification Service is ready” in the VisiBroker Console.

80 VisiBroker Vis iNot i fy Guide

Stat ic Propert ies

The supported values for the vbroker.notify.console property are:

• True (default) - prints the message.

• False - does not print the message.

vbroker.notify.listener.port
vbroker.notify.listener.port = <ULong>

This is an alias for vbroker.se.iiop_tp.scm.iiop_tp.listener.port.

The default value of the vbroker.notify.listener.port property is 14100.

vbroker.notify.factory.name
vbroker.notify.factory.name = <string>

The vbroker.notify.factory.name property specifies the default factory
name, which is created by the Notification Service. The application can do a
_bind() to obtain a reference to the factory instead of doing a
resolve_initial_references().

The default value of this property is VisiNotifyChannelFactory.

vbroker.notify.channel.name
vbroker.notify.channel.name = <string>

The vbroker.notify.channel.name property specifies the name of the default
channel that is created by the Notification Service. The application can do a
_bind() to obtain a reference to the default channel instead of having to
explicitly create one.

The default value of this property is default_channel.

vbroker.notify.channel.threadMaxIdle
vbroker.notify.channel.threadMaxIdle = <ULong>

The vbroker.notify.channel.threadMaxIdle property specifies that if a
channel/proxy push supplier has waited for threadMaxIdle seconds and no
event arrives in the queue during this time, the channel will release the
thread that waits for events. The channel will restart the thread when a new
event arrives.

The default value of this property is three seconds.

vbroker.notify.enableEventQoS
vbroker.notify.enableEventQoS = <Boolean>

The vbroker.notify.enableEventQoS property specifies whether the channel
should make use of event-level QoS to deliver an event. If set to True, the
performance of the channel is significantly degraded.

The supported values are:

• True - the channel will make use of event-level QoS when delivering
event, such as EventReliability.

• False (default) - the channel ignores event-level QoS when delivering
an event. Instead, the QoS setting at the proxy/admin/channel is
adopted.

vbroker.notify.dir
vbroker.notify.dir = <string>

VisiBroker Vis iNot i fy Guide 81

Stat ic Propert ies

The vbroker.notify.dir specifies the file directory or database table name of
the VisiNotify persistent storage root. If the ConnectionPersistence QoS is
set at the appropriate levels, VisiNotify will persist the following objects in
the repository (depending on EventReliability and ConnectionReliability QoS
policy):

• events

• channels

• consumer and supplier admins

• proxies

• channel admin properties, QoS, filters

The default value of this property is ./visinotify.dir.

vbroker.notify.ir
vbroker.notify.ir = <string>

The vbroker.notify.ir property specifies the IR to be used by VisiNotify. The
string that is specified can either be an IOR or a URL string (for example,
corbaloc).

The default value of this property is null. In this case, VisiNotify tries to bind
to the IR using osagent.

vbroker.notify.channel.persistentStorageSize
vbroker.notify.channel.persistentStorageSize = <ULong>

The vbroker.notify.channel.persistentStorageSize property is similar to the
VBPersistentStorageSize channel admin property, except that it is used only
for the first time the channel is started. Subsequently, VisiNotify will
retrieve the current setting from persistent storage.

The default value of this property is VBPersistentStorageSize.

vbroker.notify.channel.persistentCommitPolicy
vbroker.notify.channel.persistentCommitPolicy = <Boolean>

The vbroker.notify.channel.persistentCommitPolicy property is similar to
VBPersistentCommitSyncPolicy, except that it is used only the first time the
channel is started. Subsequently, VisiNotify will retrieve the current setting
from persistent storage.

The default value of this property is VBPersistentCommitSyncPolicy.

vbroker.notify.channel.persistentOverflowBlock
Timeout

vbroker.notify.channel.persistentOverflowBlockTimeout =
<ULong>

The vbroker.notify.channel.persistentOverflowBlockTimeout property is
similar to VBPersistentStorageOverflowBlockTimeout, with the exception
that vbroker.notify.channel.persistentOverflowBlockTimeout is used only
during the initial start up of the channel. Subsequently, VisiNotify will
retrieve the current setting from persistent storage.

The default value of this property is
VBPersistentStorageOverflowBlockTimeout.

82 VisiBroker Vis iNot i fy Guide

Stat ic Propert ies

vbroker.notify.channel.persistentDowngradePolicy
vbroker.notify.channel.persistentDowngradePolicy = <ULong>

The vbroker.notify.channel.persistentDowngradePolicy property is similar to
VBPersistentOverflowDowngradePolicy, with the exception that
vbroker.notify.channel.persistentDowngradePolicy is used only during the
initial start up of the channel. Subsequently, VisiNotify will retrieve the
current setting from persistent storage.

The valid values supported are:

• AnyOrder (0)

• FifoOrder (1)

• LifoOrder (4)

If the value is set to anything else, the channel silently adopts a value of 0
(AnyOrder).

vbroker.notify.channel.persistentEvent
vbroker.notify.channel.persistentEvent = <Boolean>

The vbroker.notify.channel.persistentEvent property is similar to
EventReliability, with the exception that it is used only during the initial
start up of the channel. Subsequently, VisiNotify will retrieve the current
setting from persistent storage.

A value of True sets the channel's EventReliability to Persistent, otherwise,
it is set to BestEffort.

vbroker.notify.channel.iorFile
vbroker.notify.channel.iorFile = <string>

The vbroker.notify.channel.iorFile property specifies the filename where
VisiNotify can dump the IOR of the default channel. It uses the same syntax
as in 3.x version, -ior <filename> option.

The default value of this property is null.

vbroker.notify.channel.passiveProxyPersistenceMask
vbroker.notify.channel.passiveProxyPersistenceMask =
<Boolean>

In general, it may not be necessary to persist a passive proxy (proxy push
consumer or proxy pull supplier) because after a system crashes and
restart, the user of such a proxy may no longer exist.

This property is used to derive the default ConnectionReliability setting of a
passive proxy, using the following setting:

• let admin's persistence setting = 1 if admin's ConnectionReliability =
Persistent, else let it be 0.

• default persistence of proxy = (this property setting) && (its admin's
persistence setting)

If this default persistence has a value of True, the default
ConnectionReliability setting of a passive proxy is set to Persistent,
otherwise, it is set to BestEffort.

The default value of this property is False.

VisiBroker Vis iNot i fy Guide 83

Stat ic Propert ies

vbroker.notify.channel.maxDelay
vbroker.notify.channel.maxDelay = <ULong>

The vbroker.notify.channel.maxDelay property is a setting that controls the
delay (in milliseconds) that a proxy push supplier conditionally applies when
delivering an event to its consumer. It also can be used to tune the
performance of the channel.

The default value of this property is 2000 milliseconds. The minimum and
maximum values are 20 and 2000, respectively.

vbroker.notify.threadPool.threadMax
vbroker.notify.threadPool.threadMax = <ULong>

This property specifies the maximum number of threads that can be present
at any one time in the thread pool.

The default value of this property is 0, indicating unlimited concurrency.

vbroker.notify.threadPool.threadMin
vbroker.notify.threadPool.threadMin = <ULong>

This property specifies the minimum number of threads that can be present
at any time in the thread pool.

The default value of this property is 0.

vbroker.notify.threadPool.threadMaxIdle
vbroker.notify.threadPool.threadMaxIdle = <ULong>

This property specifies the time, in seconds, that a thread in the thread pool
can idle. After the idle time, the thread is garbage collected.

The default value of this property is 300 seconds.

vbroker.log.enable
vbroker.log.enable = <Boolean>

To see the debug log statements from this service, set this property to true.
For the various source names options for debug log filtering, see the “Debug
Logging properties” section of the VisiBroker for C++ Developer's
Guide.

84 VisiBroker Vis iNot i fy Guide

Levels of Support

Levels of Support
The following table shows the level of support for each QoS property:

Property
Supported
Values

Per
Msg

Per
Proxy

Per
Admin

Per
Channel Comment

1. General
Priority A value of

Short
Yes Yes Yes Yes The values

range from
-32767 to
+32767.

2. Event Persistence
EventReliability • BestEffort

• Persistent

Yes No No Yes For
Persistent
events, the
same event
can be
delivered
to a
consumer
more than
once.

VBPersistentDbType Value of
Short

No No No Yes Value of 1
(default)
implies
Memory
mapped
persistency

Value of 2
implies flat
file
persistency

VBPersistentCommitSync
Policy (extension)

• False
(default)

• True

No No No Yes

VBPersistentStorage
OverflowBlock
Timeout (extension)

Any value of
ULong

No No No Yes In seconds

VBPersistentStorage
Overflow
DowngradePolicy
(extension)

• AnyOrder
(0)

• FifoOrder
(1)

• LifoOrder
(4)

No No No Yes

3. Connection Persistent
ConnectionReliability • BestEffort

• Persistent

No Yes Yes Yes

4. Queue Overflow Handling
MaxEventsPerConsumer Per OMG

specification
No Yes

(proxy
supplier
only)

Yes
(consumer
admin
only)

Yes

DiscardPolicy • AnyOrder
(default)

• FifoOrder

• LifoOrder

No Yes
(proxy
supplier
only)

Yes
(consumer
admin
only)

Yes

5. Event Expiry

VisiBroker Vis iNot i fy Guide 85

Event Fi l ter ing using Fi l ter Objects

Event Filtering using Filter Objects
The OMG Notification Service specification defines two kinds of filters.

• Forwarding Filter

• Mapping Filter

The Forwarding filter allows events to be forwarded if it satisfies a constraint
set by the clients. Thus, consumers can use forwarding filters to receive
only events that interest them. The forwarding filter objects implement the
CosNotifyFilter::Filter interface.

The Mapping filter enables consumers to change the priority and lifetime
properties of events which satisfies a constraint. Mapping filter objects
implements the CosNotifyFilter::MappingFilter interface. However,
VisiNotify currently does not support mapping filters.

Filtering Events
The VisiNotify event filtering is performed on structured events, typed
events and sequence of events. There is no filtering support for untyped
events. For a sequence of events, VisiNotify only filters the first event in the
sequence. If the first event in the sequence does not satisfy the filter then
the entire sequence is discarded.

StopTime Not
supported

Yes No No No

Timeout Not
supported

Yes Yes Yes Yes

StopTimeSupported Not
supported

No Yes Yes Yes

6. Event Delivery
StartTime Not

supported
Yes

StartTimeSupported Not
supported

No Yes Yes Yes

OrderPolicy • AnyOrder

• FifoOrder
(default)

• PriorityOrder

No Yes Yes Yes

MaximumBatchSize Not
supported

No Yes Yes Yes

PacingInterval Not
supported

No Yes Yes Yes

7. Flow Control
VBQueueLowWaterMark
(extension)

A ULong
value

No Yes
(proxy
supplier
only)

Yes
(consumer
admin
only)

Yes

VBQueueHighWaterMark
(extension)

A ULong
value

No Yes
(proxy
supplier
only)

Yes
(consumer
admin
only)

Yes

Property
Supported
Values

Per
Msg

Per
Proxy

Per
Admin

Per
Channel Comment

86 VisiBroker Vis iNot i fy Guide

Event Fi l ter ing using Fi l ter Objects

Note

Refer to the OMG Notification Service specification, Section 2, for more
information on each event (structured, typed, and sequence).

Forwarding Filter Evaluation
A filter object can be attached to a target object such as consumer/supplier
proxy or consumer/supplier admin objects. Any given filter object can have
a set of constraints and each constraint is expressed in the Extended Trader
Constraint Language (TCL). A constraint expression either evaluates to
TRUE (indicating that an event satisfies the constraint) or FALSE (indicating
otherwise).

As long as one of the constraints is set to TRUE, the filter object will forward
the event immediately. An event is discarded if the target object has its
attached filters set to FALSE. For more information about writing constraint
expressions see “Writing Filter Constraint Expressions” on page 88, and for more
information about Extended TCL see “Extended Trader Constraint Language
(Extended TCL)” on page 89.

When a forwarding filter object is attached to an admin object, then all
proxy objects associated with the admin object apply the forwarding filter.
If there are no filters applied to a proxy or admin object then all events
received are forwarded to the next delivery point.

When filters are attached to an admin object along with its proxies, then
event forwarding depends on whether the admin object was created with
AND or OR semantics. An admin object created with AND semantics implies
that an event must pass both admin and its proxy filters. An admin object
created with OR semantics implies that events must pass either admin or its
proxy filters.

You can create a consumer admin by invoking new_for_consumers() on
the channel and pass the value AND_OP (for AND semantics) or OR_OP (for
OR semantics) to set the inter-filter group operator semantics on the
consumer admin object. Likewise, you can create a supplier admin by
invoking new_for_suppliers(). Calling default_consumer_admin() or
default_supplier_admin() on the channel will return the default
consumer admin or supplier admin, respectively, with AND semantics.

Note

Refer to the OMG Notification Service specification (Section 3.4 - The
CosNotifyChannelAdmin Module) for more information on the methods used
with the AND or OR semantics.

Using Forwarding Filters
Use the following steps to apply a forwarding filter:

1 Obtain a Forwarding Filter Factory. VisiNotify provides a default filter
factory. To obtain a reference to it simply invoke the method
default_filter_factory() on the following channel:

CosNotifyFilter::FilterFactory_var ffact = channel-
>default_filter_factory();

2 Create a Forwarding Filter object. VisiNotify only supports the
Extended Trader Constraint Language as specified by the OMG
Notification Service. To create a filter that specifies the constraints,
simply invoke the method create_filter(EXTENDED_TCL) on the filter
factory object obtained in Step 1.

VisiBroker Vis iNot i fy Guide 87

Event Fi l ter ing using Fi l ter Objects

CosNotifyFilter::Filter_var filter = ffact-
>create_filter("EXTENDED_TCL");

3 Creating constraints. For any given filter object a set of constraints can
be associated with it. The constraint expression is written in Extended
TCL.

The following shows how to create a set of constraints and simple
constraint expression.

 CosNotifyFilter::ConstraintExpSeq constraints;
 constraints.length(1); // contains 1 constraint
 constraints[0].constraint_expr = CORBA::string_dup(
"$balance == 123.45");

Note

To learn more about the Extended TCL see “Extended Trader Constraint
Language (Extended TCL)” on page 89 and refer to the OMG Notification
Service specification (Section 2.4 - The Default Filter Constraint
Language).

4 Adding constraints to a filter object. To add a set of constraints
simply invoke the method add_constraints on the filter object obtained
in Step 2 passing in the set of constraints created in Step 3.

filter->add_constraints(constraints);

Note

Refer to the OMG Notification Service specification (Section 3.2.1 - The
Filter Interface) to learn more about other operations such as modifying
or obtaining constraints from a filter object.

5 Adding a filter to a target object. The target object can be an admin
object or a proxy object. The creation of the target object is required
before the filter object is attached to it. This example shows a structured
push supplier proxy:

// create a structured push supplier proxy
CosNotifyChannelAdmin::ProxyID proxy_id;
CosNotifyChannelAdmin::ProxySupplier_var proxy
 = admin->obtain_notification_push_supplier
CosNotifyChannelAdmin::STRUCTURED_EVENT, proxy_id);
CosNotifyChannelAdmin::StructuredProxyPushSupplier_var

supplier =
CosNotifyChannelAdmin::StructuredProxyPushSupplier::
_narrow(proxy);

To attach the filter object to a target object simply invoke add_filter
on the target object. The add_filter operation accepts a filter object
and returns a filter id unique to the particular target object. This example
shows add_filter being invoked on a structured push supplier proxy
and is passed a filter object created in Step 2.

CORBA::Long filter_id;
Filter_id = supplier->add_filter(filter);

Note

Refer to the OMG Notification Service specification (Section 3.2.4 - The
FilterAdmin Interface) to learn more about other operations such as
modifying or obtaining filters from a target object.

88 VisiBroker Vis iNot i fy Guide

Event Fi l ter ing using Fi l ter Objects

Forwarding Filter Limitation
VisiNotify currently does not support the following filter object methods:

• attach_callback

• detach_callback

• get_callbacks

Note

Refer to the OMG Notification Service specification (Section 2.6 - Sharing
Subscriptions and Section 2.6.5 - Obligations on Filter Objects) to learn
more about these methods and sharing subscriptions.

Writing Filter Constraint Expressions
A constraint expression is a boolean expression (that is, it evaluates with either TRUE
or FALSE). A constraint expression typically refers to event data, which also includes
filterable data that the application is most likely to base filtering decisions.

Contents of a structured event
A structured event is defined in CosNotification.idl as follows:

...
typedef string Istring;
typedef Istring PropertyName;
typedef any PropertyValue;

struct Property {
 PropertyName name;
 PropertyValue value;
};
typedef sequence<Property> PropertySeq;

typedef PropertySeq OptionalHeaderFields;
typedef PropertySeq FilterableEventBody;

struct EventType {
 string domain_name;
 string type_name;
};
struct FixedEventHeader {
 EventType event_type;
 string event_name;
};

struct EventHeader {
 FixedEventHeader fixed_header;
 OptionalHeaderFields variable_header;
};

struct StructuredEvent {
 EventHeader header;
 FilterableEventBody filterable_data;
 any remainder_of_body;
};
...

VisiBroker Vis iNot i fy Guide 89

Event Fi l ter ing using Fi l ter Objects

Contents of a typed event
A typed event contains a sequence of name-value pairs in which the first item in the
sequence refers to a CosNotification::EventType that contains
domain_name referring to the name of the typed interface and type_name referring
to the name of the operation in that interface. The remaining items in the sequence of
name-value pairs are filterable data in which each item contains a name referring to an
input parameter for the operation within the typed interface and the value refers to the
parameter value for that operation.

For example, an application may use the following IDL for a typed event:

interface foo {
 void bar(in string first, in long second);
};

In this example, the typed event foo::bar is received and the second item
in the sequence of name-value pairs will be named first paired with a
string value and the third item in the sequence will be named second paired
with a long value.

Note

For details on structured events and typed events please refer to the OMG
Notification Service V1.0 specification, Section 2.2, "Structured Events,"
and Section 2.7, "Filtering Typed Events."

Extended Trader Constraint Language (Extended TCL)
The OMG Notification Service V1.0 specifies the Extended Constraint Language as the
default filter constraint language. Extended TCL is based on the Trader Constraint
Language (TCL) from the OMG Trading Service and in addition, has a few extensions
and changes made.

Note

See the OMG Notification Service V1.0 specification, Section 2.4.1 for
details on the changes made to TCL.

A constraint expression written in Extended TCL evaluates to either a TRUE
or FALSE value. These two values are reserved words in TCL. The value of
TRUE in Extended TCL is 1 and the value of FALSE is 0 (zero). Hence, we
can have an expression like the following:

TRUE + TRUE

that will yield a result of 2. Sub-expressions can be specified by surrounding
the sub-expression with brackets like the following:

(TRUE + TRUE) == 2

Accessing event data
Extended TCL supports the means of referring to complex data types (that is, the IDL
types of struct, enum, union and any) within an event. An event is represented by
a $ (dollar sign) symbol and attributes within an event are referenced by using a .
(period) symbol similar to the C++ or Java programming constructs used today.

For example, in order to refer to a structured event's fixed header
event_name attribute, we would write:

$.header.fixed_header.event_name

In a typed event, if the application has an interface named foo that has an
operation named bar that takes in its first parameter a string called first,
we would refer to it by writing:

$.first

90 VisiBroker Vis iNot i fy Guide

Note

When the event data does not exist or if the data types of both operands for
an operation do not match (for example 'A String' == 3.14) then the
constraint will evaluate to FALSE.

Short-hand notation
It is possible to refer to specific reserved attributes in an event as well as filterable data
by using run-time variables in Extended TCL. A run-time variable is represented by
prefixing a $ (dollar sign) symbol before the identifier name. For example,
$event_name would actually be the same as writing
$.header.fixed_header.event_name. When run-time variables are used, the
identifier is matched with reserved attributes within an event. If the identifier is not a
reserved attribute within an event then it is matched with the filterable data.

Note

Please refer to OMG Notification Service V1.0 specification, Section 2.4.5 for
further details on Short-hand Notation for Filtering a Generic Event.

Positional notation
The current version of VisiNotify does not support positional notation.

Equality, relational and logical operators
Extended TCL uses the same operators as those used in normal TCL plus additional
operators added by the OMG Notification Service V1.0 specification.

Note

The operators in the following table evaluate to either TRUE or FALSE

Arithmetic operators
The result type of the operators in the following table depends on the type of the
operands. The strongly typed operand dictates the resultant data type.

Operator Description Example
== Equality ($.one + $.two) == 3
!= Inequality ($.one + $.two) != 4
< Less than ($.one + $.two) < 3
<= Less than or equals ($.one + $.two) <= 3
> Greater than ($.one + $.two) > 1
>= Greater than or equals ($.one + $.two) >= 2
in Checks if the left operand is a simple primitive

type and is contained in right operand which is a
sequence of the same primitive type

$.one in $.list_of_nums

~ Substring operator to check if the left operand
string is contained in the right operand string

'Notify' ~ 'VisiNotify'

exist Test to see if an identifier exists exist $.one
and Logical AND ($.one == 1) and ($.two

== 2)
or Logical OR ($.one == 1) or ($.two

== 2)
not Logical NOT not exist $.one
default Applies to discriminated union data only. Checks if

a discriminated union has a default member
Default $.myUnion

VisiBroker Vis iNot i fy Guide 91

Note

Character data can be used in arithmetic operations. A string with a length
of one is also considered as a character.

Subscript operator
Arrays and sequences can be accessed via the subscript operator [n]. For example,
in order to access the second element of an array we would write:

$myArray[1]

Lookup for name-value pairs
Name-value pair sequences are often found in events, especially the filterable data that
is a name-value pair sequence. As an example, we can access the filterable data by
writing an expression such as the following:

$.filterable_data[2].name = = "balance" and
$.filterable_data[2].value > 100)

Expressions like these can be lengthy, hence Extended TCL allows short-
form notation like the following:

$.filterable_data(balance) > 100

Reserved implicit members
Extended TCL makes use of reserved member attributes for the event as well as
complex data. Below is a table of the reserved member attribute names and their
purpose.

Operator Description Example
+ Addition $.one + $.two
- Subtraction $.one - $.two
* Multiplication $.one * $.two
/ Division $.two / $.one

Attribute Description Example
_length Length for an array or

sequence
$.mySequence._length

_d Discriminator for a
discriminated union

$.myUnion._d

_type_id Unscoped IDL type name $.myData._type_id
_repos_id Repository ID $.myData._repository_id

92 VisiBroker Vis iNot i fy Guide

VisiBroker Vis iNot i fy Guide 93

Symbols
... ellipsis 1
symbols

square brackets 1
| vertical bar 1

A
Active typed pull consumer 68

B
brackets 1

C
Channel Admin Properties 79

VBPersistentStorageSize 79
ChannelException 72
commands

conventions 1

D
documentation

.pdf format 3
accessing Help Topics 1
platform conventions used in 2
type conventions used in 1
updates on the web 3

downstream end of a channel 6

E
EJB bean as a structured Notification
consumer
developing 33
example 34

EJB Bean as typed notification consumer
developing 32

Event Buffering/Batch
disabling consumer-side 35
disabling supplier-side 35
mechanism 35

Event Filtering 85
forward filter 85
forward filter evaluation 86
using forwarding filters 86

F
Filter

Limitation on Forwarding 88
Filtering

Event 85
Filters

evaluation on forwarding 86
using forwarding filters 86
VisiNotify 85

Flush buffered events 35
Forwarding Filter Limitation 88

H
Help Topics

accessing 1

J
Java RMI remote interface

user defined example 29

N
notification channels 8
Notification Communication Model 6
Notification Service QoS 72

O
OMG Event/Notification Service Object
Model 6

OMG Typed Notification Service
using 23

online Help Topics
accessing 1

P
Passive typed pull consumer 66
PDF documentation 3
PSA Summary 72
Publish a Subject 58
Publish Descriptor 65
Publish Subscribe Adapter (PSA)

introduction 39
using 39

Publish()
examples 61

Publish/Subscribe Adapter (PSA)
Additional topics and summary 72

publish/subscribe applications 5
pull consumer applications

developing 16
example 16

pull supplier applications
developing 19
example 20

push consumer applications
developing 13
example 14

push supplier applications
developing 17
example 18

Q
QoS and Filter support 11
QoS Property

Levels of Support 83
Quality of Service (QoS) 75

VisiNotify 75
Quality of Service (QoS) Negotiation 78
Quality of Service (QoS) properties

Administration and Validation 77
ConnectionReliability 76

Index

 94 VisiBroker VisiNotify Guide

DiscardPolicy 76
EventReliability 75
MaxEventsPerConsumer 76
OrderPolicy 77
Priority 75
VBPersistentCommitSyncPolicy 75
VBPersistentDbType 75
VBPersistentOverflowDowngradePolicy

76
VBPersistentStorageOverflowBlockTime
out 76

VBQueueHighWaterMark 77
VBQueueLowWaterMark 77

R
RMI typed consumer

developing 29
RMI typed push consumer

example 30
RMI typed supplier

developing 31
example 32

RMI/EJB application
developing 28
using OMG Typed Event/Notification
Service 29

S
single directional event distribution 5
square brackets 1
Static Properties 79

vbroker.notify.channel.iorFile 82
vbroker.notify.channel.maxDelay 82
vbroker.notify.channel.passiveProxyPer
sistenceMask 82

vbroker.notify.channel.persistentComm
itPolicy 81

vbroker.notify.channel.persistentDown
gradePolicy 81

vbroker.notify.channel.persistentEvent
82

vbroker.notify.channel.persistentOverfl
owBlockTimeout 81

vbroker.notify.channel.persistentStora
geSize 81

vbroker.notify.channel.threadMaxIdle 8
0

vbroker.notify.console 79
vbroker.notify.dir 80
vbroker.notify.enableEventQoS 80
vbroker.notify.factory.name 80
vbroker.notify.listener.port 80

structured and typed push supplier
example 50

structured Notification consumer
developing 33

Subject Reference, Observer ID, and
Properties to Subscribe() 54

Subject Reference, Provider ID, and
Properties to Publish() 60

SubjectDeliveryScheme values 60

SubjectInterfaceScheme values 60
SubjectScheme 53
Subscribe a subject 52
Subscribe Descriptor 58
Subscribe()

examples 55
subtool 10

connecting to a structured event
bean 34

symbols
ellipsis ... 1
vertical bar | 1

T
Thread on demand 11
TMN.Notification remote interface

example 33
type push consumer applications

developing 23
example 24

type push supplier applications
developing 26
example 27

typed event consumer application
example 40

Typed Event/Notification Service 22
typed Notification consumer supplier

developing 32
Typed pull supplier 69
Typed Push Consumer 47

U
Unpublish a subject 65
Unsubscribe a Subject 58
upstream end of a channel 6

V
VisiNotify

Naming Service and 8
VisiNotify features 8

Connection persistence 10
event persistence 9
Publish/Subscribe Adapter (PSA) 9
QoS and filter support 11
Self-adaptive asynchronous flow
control 11

throughput and scalability 8
Typed channel support 9
Typed pulling 10
Valuetype support 9

	Contents
	Introduction to VisiBroker
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within a VisiBroker GUI tool
	Documentation conventions
	Platform conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Introduction to VisiNotify
	OMG Event/Notification Service Communication Model
	OMG Event/Notification Service Object Model
	VisiNotify features
	Superior throughput and scalability
	Superior performance with event persistence
	Valuetype support
	Typed channel support
	Publish/Subscribe Adapter (PSA)
	Typed pulling without using Pull<I> interface
	Explicit RMI and EJB support
	Connection persistence
	Self-adaptive asynchronous flow control
	QoS and filter support
	Thread on demand

	Developing supplier and consumer applications
	Using pre-defined Event/Notification Services
	Developing push consumer applications
	C++ push consumer example
	Java push consumer example

	Develop pull consumer applications
	C++ pull consumer example
	Java pull consumer example

	Developing push supplier applications
	C++ push supplier example
	Java push supplier example

	Developing pull supplier applications
	C++ pull supplier example
	Java pull supplier example

	Using Typed Event/Notification Service
	Developing typed push consumer applications
	C++ typed push consumer example
	Java typed push consumer example

	Developing typed push supplier applications
	C++ typed push supplier example
	Java typed push supplier example

	Developing RMI/EJB applications with VisiNotify
	Developing an RMI typed consumer
	Developing an RMI typed supplier
	Developing an EJB bean as a Typed Notification consumer
	Developing an EJB bean as a Structured Notification consumer

	VisiBroker Event Buffering/Batch
	Disable supplier-side event buffering
	Disable consumer-side event buffering
	Flush buffered events in supplier application
	Initial Reference of VisiNotify

	Using the Publish Subscribe Adapter (PSA)
	Introduction
	PSA reference and PSA interface IDL
	User examples
	Structured Push Consumer
	Typed Push Consumer
	Structured and Typed Push Supplier
	Structured Supplier to a Channel
	Typed Supplier to a Channel

	Subscribe a subject using PSA
	SubjectScheme
	Subject Reference, Observer ID, and Properties to Subscribe()
	Examples of Subscribe()
	Subscribe Descriptor and the_subject_addr()

	Unsubscribe a Subject

	Publish a Subject
	SubjectScheme
	Subject Reference, Provider ID, and Properties to Publish()
	Examples of publish()
	Publish Descriptor and the_subject_addr()

	Unpublish a subject

	Support of Typed Pulling
	Passive typed pull consumer
	C++ passive typed pull consumer example

	Active typed pull consumer
	C++ active typed pull consumer example
	Java active typed pull consumer example

	Typed pull supplier
	C++ typed pull supplier example
	Java typed pull supplier example

	Additional topics and summary
	ChannelException
	Setting Notification Service QoS in PSA
	PSA Summary

	Setting the Quality of Service and Filters
	Properties of the Quality of Service (QoS)
	Priority
	EventReliability
	VBPersistentDbType
	VBPersistentCommitSyncPolicy
	VBPersistentStorageOverflowBlockTimeout
	VBPersistentOverflowDowngradePolicy
	ConnectionReliability
	MaxEventsPerConsumer
	DiscardPolicy
	OrderPolicy
	VBQueueLowWaterMark
	VBQueueHighWaterMark
	VBProxyPushSupplierThreadModel
	VBProxyPushSupplierQueuePreemptWaterMark
	VBReceivedEventsCount
	VBPendingEventsCount
	VBDiscardedEventsCount
	VBForwardedEventsCount
	VBFilteredEventsCount

	Administration and Validation of QoS properties
	Interface CosNotification::QoSAdmin
	Validating QoS in the header of structured events
	QoS negotiation

	Channel Admin Properties
	Interface CosNotification::AdminPropertiesAdmin
	VBPersistentStorageSize

	Static Properties
	vbroker.notify.console
	vbroker.notify.listener.port
	vbroker.notify.factory.name
	vbroker.notify.channel.name
	vbroker.notify.channel.threadMaxIdle
	vbroker.notify.enableEventQoS
	vbroker.notify.dir
	vbroker.notify.ir
	vbroker.notify.channel.persistentStorageSize
	vbroker.notify.channel.persistentCommitPolicy
	vbroker.notify.channel.persistentOverflowBlock Timeout
	vbroker.notify.channel.persistentDowngradePolicy
	vbroker.notify.channel.persistentEvent
	vbroker.notify.channel.iorFile
	vbroker.notify.channel.passiveProxyPersistenceMask
	vbroker.notify.channel.maxDelay
	vbroker.notify.threadPool.threadMax
	vbroker.notify.threadPool.threadMin
	vbroker.notify.threadPool.threadMaxIdle
	vbroker.log.enable

	Levels of Support
	Event Filtering using Filter Objects
	Filtering Events
	Forwarding Filter Evaluation
	Using Forwarding Filters
	Forwarding Filter Limitation
	Writing Filter Constraint Expressions
	Extended Trader Constraint Language (Extended TCL)

	Index

