
Micro Focus
VisiBroker 8.5.8

VisiBroker for C++
API Reference Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2009-2022. All rights reserved.
MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries. All
other marks are the property of their respective owners.

2022-07-29

VisiBroker for C++ API Reference Guide iii

Contents
Introduction to VisiBroker... 1

Accessing VisiBroker online help topics in the standalone Help Viewer 1
Accessing VisiBroker online help topics from within a VisiBroker GUI tool 1
Documentation conventions.. 2

Platform conventions... 2
Contacting Micro Focus .. 2

Further Information and Product Support ...2
Information We Need .. 3
Contact information .. 3

Generated interfaces and classes .. 5
Generated interfaces and classes overview ... 5
<Interface_name>.. 5

<Interface_name>ObjectWrapper... 5
POA<class_name> .. 6
tie<class_name> .. 6
<class_name>_var ... 6

Core interfaces and classes ... 7
PortableServer::AdapterActivator .. 7

IDL Definition... 7
PortableServer::AdapterActivator methods... 7

BindOptions ... 7
Include file... 8
BindOptions members ... 8

BOA .. 9
Include file... 9
CORBA::BOA methods... 9
Deprecated methods ... 12
VisiBroker extensions to CORBA::BOA ... 13

CompletionStatus ... 13
IDL Definition... 13
CompletionStatus members ... 14

Context ... 14
Include file... 14
Context methods .. 14

PortableServer::Current... 16
IDL Definition... 16
PortableServer::Current methods.. 16

Exception... 17
Include file... 17

Object ... 17
Include file... 17
CORBA::Object methods.. 17
VisiBroker extensions to CORBA::Object .. 20

ORB .. 22
Include file... 22
CORBA::ORB methods... 22
VisiBroker extensions to CORBA::ORB ... 28

PortableServer::POA ... 29
PortableServer::POA methods .. 29

PortableServer::POAManager.. 38
Include file... 39
PortableServer::POAManager methods .. 39

iv Vis iBroker for C++ API Reference Guide

Principal...41
Include file ...41
Principal methods..41

PortableServer::RefCountServantBase..41
Include file ...41
PortableServer::RefCountServantBase methods ..41

PortableServer::ServantActivator ..42
Include file ...42
PortableServer::ServantActivator methods ...42

PortableServer::ServantBase ..43
Include file ...43
PortableServer::ServantBase methods ...43

PortableServer::ServantLocator...44
Include file ...44
PortableServer::ServantLocator methods ...44

PortableServer::ServantManager ...45
Include file ...45

SystemException...45
Include file ...45
SystemException methods..46

UserException...47
Include file ...48
UserException methods..48
UserException derived classes...48

Dynamic interfaces and classes ...49
Any ...49

Include file ...49
Any methods ..49
Insertion operators..50
Extraction operators ..50

ContextList...51
ContextList methods..51

DynamicImplementation ..53
DynamicImplementation methods ...53

DynAny..53
Include file ...54
Important usage restrictions...54
DynAny methods...54
Extraction methods ...55
Insertion methods...56

DynAnyFactory..57
DynAnyFactory methods ..57

DynArray ...57
Important usage restrictions...57
DynArray methods ..57

DynEnum ...58
Important usage restrictions...58
DynEnum methods..58

DynSequence ...59
Important usage restrictions...59
DynSequence methods ..60

DynStruct ..60
Important usage restrictions...60
DynStruct methods ...60

DynUnion ...61
Important usage restrictions...61

VisiBroker for C++ API Reference Guide v

DynUnion methods ... 61
Environment .. 62

Include file... 62
Environment methods ... 63

ExceptionList.. 63
ExceptionList methods... 64

NamedValue... 65
Include file... 65
NamedValue methods.. 65

NVList ... 66
Include file... 66
NVList methods .. 66

Request ... 69
Include file... 69
Request methods.. 70

ServerRequest.. 73
Include file... 73
ServerRequest methods... 73

TCKind .. 75
TypeCode... 76

Include file... 76
TypeCode constructors .. 76
TypeCode methods ... 76

Interface repository interfaces and classes (C++) 81
AliasDef... 81

AliasDef methods.. 81
ArrayDef.. 81

ArrayDef methods... 81
AttributeDef ... 82

AttributeDef methods .. 82
AttributeDescription .. 83

AttributeDescription members .. 83
AttributeMode... 83

AttributeMode values... 83
ConstantDef ... 84

ConstantDef methods.. 84
ConstantDescription .. 84

ConstantDescription members .. 84
Contained .. 85

Include file... 85
Contained methods ... 85

Container... 87
Include file... 87
Container methods ... 87

DefinitionKind... 92
DefinitionKind values... 92

Description .. 93
Description members .. 93

EnumDef ... 93
EnumDef methods .. 93

ExceptionDef .. 94
ExceptionDef methods... 94

ExceptionDescription ... 94
ExceptionDescription members ... 94

FixedDef .. 95
Methods .. 95

vi Vis iBroker for C++ API Reference Guide

FullInterfaceDescription..95
FullInterfaceDescription members ...95

FullValueDescription...96
Variables..96

IDLType ...97
Include file ...97
IDLType methods ..97

InterfaceDef ...97
Include file ...97
InterfaceDef methods ..98

InterfaceDescription .. 100
InterfaceDescription members .. 100

IRObject .. 100
Include file ... 100
IRObject methods ... 101

ModuleDef.. 101
ModuleDescription ... 101

ModuleDescription members ... 101
NativeDef ... 101
OperationDef .. 102

Include file ... 102
OperationDef methods ... 102

OperationDescription ... 104
OperationDescription members ... 104

OperationMode.. 104
OperationMode values.. 104

ParameterDescription... 105
ParameterDescription members... 105

ParameterMode... 105
ParameterMode values... 105

PrimitiveDef.. 105
PrimitiveDef methods .. 105

PrimitiveKind .. 106
PrimitiveKind values .. 106

Repository.. 106
Include file ... 106
Repository methods... 107

SequenceDef .. 108
SequenceDef methods ... 108

StringDef ... 109
StringDef methods .. 109

StructDef ... 109
StructDef methods .. 109

StructMember... 110
StructMember methods.. 110

TypedefDef ... 110
TypeDescription .. 110

TypeDescription members .. 110
UnionDef.. 111

UnionDef methods... 111
UnionMember ... 111

UnionMember members ... 111
ValueBoxDef ... 112

Methods... 112
ValueDef .. 112

Methods... 112
ValueDescription ... 114

VisiBroker for C++ API Reference Guide vii

Values... 115
WstringDef... 115

WStringDef methods ... 115

Activation interfaces and classes... 117
ImplementationStatus ... 117

Include file... 117
ImplementationStatus members ... 117

OAD.. 117
Include file... 119
OAD methods... 119

ObjectStatus .. 122
Include file... 122
ObjectStatus members .. 122

ObjectStatusList ... 122
Include file... 123
ObjectStatusList methods .. 123

Naming Service interfaces and classes (C++) 125
NamingContext... 125

Include file... 125
Code sample .. 125
NamingContext methods ... 126

NamingContextExt .. 130
Include file... 130
Code sample .. 130
NamingContextExt methods ... 130

Binding and BindingList.. 132
Include file... 132
Code sample .. 132

BindingIterator ... 132
Include file... 132
Code sample .. 133
BindingIterator methods .. 133

NamingContextFactory... 133
Include file... 134
Code sample .. 134
Methods .. 134

ExtendedNamingContextFactory.. 135
Include file... 135
Code sample .. 135
Methods .. 135

Event service interfaces and classes.. 137
ConsumerAdmin ... 137

IDL definition ... 137
ConsumerAdmin methods .. 137

EventChannel ... 137
IDL definition ... 138
Methods .. 138

EventChannelFactory ... 138
IDL definition ... 138
EventChannelFactory methods.. 139

ProxyPullConsumer ... 139
IDL definition ... 139

ProxyPushConsumer.. 140
IDL definition ... 140

viii Vis iBroker for C++ API Reference Guide

ProxyPullSupplier .. 140
IDL definition.. 140

ProxyPushSupplier... 140
IDL definition.. 141

PullConsumer ... 141
IDL definition.. 141

PushConsumer.. 141
IDL definition.. 141

PullSupplier .. 142
IDL definition.. 142
PullSupplier methods ... 142

PushSupplier .. 142
IDL definition.. 142

SupplierAdmin .. 143
IDL definition.. 143

Server Manager Interfaces and Classes145
The Container Interface.. 145

Include file ... 145
The Container Interface ... 145

Methods related to property manipulation and queries 145
Methods related to operations... 147
Methods related to children containers ... 147
Methods related to storage... 148

The Storage Interface .. 149
Include file ... 149
Storage Interface Methods for C++ ... 149

Transaction Service interfaces and classes151
CosTransactions and VISTransactions modules... 151

Looking at the CosTransactions module .. 151
Data types ... 151
Structures.. 152
Exceptions ... 153

Looking at the VISTransactions module .. 154
Current interface... 154

Choosing a Current interface .. 154
Obtaining a Current object reference ... 156
Using the Current object reference .. 156
Is your VisiTransact Transaction Service instance available? 156
Checked behavior.. 157
Current methods... 157

Status value definitions.. 160
TransactionalObject interface .. 167
TransactionFactory interface.. 168

TransactionFactory methods ... 169
Control interface ... 171
Terminator interface .. 172

Terminator methods .. 173
Coordinator interface ... 175

Coordinator methods ... 176
RecoveryCoordinator interface... 182

RecoveryCoordinator methods .. 182
Resource interface... 183

Resource methods... 183
Synchronization interface ... 186

Synchronization methods ... 187

VisiBroker for C++ API Reference Guide ix

VISTransactionService class.. 189
VISTransactionService methods .. 189

Commands and arguments... 190
Overview of VisiTransact commands .. 190

vbconsolew.. 191
ots ... 191
vshutdown... 192

Command-line arguments for applications.. 193
Passing command-line arguments to ORB_init() using argc and argv ... 193
Arguments for applications that originate transactions 193
Arguments for applications with an embedded VisiTransact Transaction Service

instance .. 194
Error codes .. 196

VisiTransact Transaction Manager common error codes 196
VisiTransact Transaction Service error codes ... 197
VisiTransact transaction log error codes ... 199

Native Messaging Interfaces and Classes for C++................... 201
RequestAgent... 201

Include File .. 201
IDL definition ... 201
RequestAgent Methods .. 202

create_request... 202
poll... 202
destroy_request ... 202

RequestDesc .. 203
Include File .. 203
IDL Definition... 203

RequestDesc Fields ... 203
ReplyRecipient.. 204

Include File .. 204
ReplyRecipient methods... 204

reply_available... 204
REPLY_NOT_AVAILABLE ... 204

Include File .. 205
IDL definition ... 205

Property .. 205
Include File .. 205
IDL definition ... 205

Property Fields ... 205
PropertySeq ... 205

Include File .. 205
OctetSeq ... 206

Include File .. 206
RequestTag .. 206

Include File .. 206
RequestTagSeq... 206

Include File .. 206
Cookie... 206

Include File .. 206
DuplicatedRequestTag.. 207

Include File .. 207
PollingGroupIsEmpty ... 207

Include File .. 207
RequestNotExist ... 207

Include File .. 207

x VisiBroker for C++ API Reference Guide

Portable Interceptor interfaces and classes for C++................209
About Interceptors .. 209
ClientRequestInfo .. 210

Include file ... 210
ClientRequestInfo methods... 211

ClientRequestInterceptor .. 212
Include file ... 212
ClientRequestInterceptor methods... 213

Codec .. 214
Include file ... 215
Codec Member Classes .. 215
Codec Methods ... 215

CodecFactory .. 216
Include file ... 216
CodecFactory Member.. 216
CodecFactory Method... 216

Current .. 217
Include file ... 217
Current Methods ... 217

Encoding.. 218
Include file ... 218
Members.. 218

ExceptionList .. 218
Include file ... 218

ForwardRequest .. 219
Include file ... 219

Interceptor ... 219
Include file ... 219
Interceptor methods.. 219

IORInfo.. 220
Include file ... 220
IORInfo Methods... 220

IORInfoExt ... 222
Include file ... 222
IORInfoExt Methods .. 222

IORInterceptor.. 222
Include file ... 223
IORInterceptor Methods ... 223

ORBInitializer.. 224
Include file ... 224
ORBInitializer Methods... 224

ORBInitInfo .. 225
Include file ... 225
ORBInitInfo Member Classes... 225
ORBInitInfo Methods ... 225

Parameter .. 228
Include file ... 228
Members.. 228

ParameterList ... 228
Include file ... 228

PolicyFactory .. 228
Include file ... 228
PolicyFactory Method ... 229

RequestInfo.. 229
Include file ... 229
RequestInfo methods... 229

ServerRequestInfo... 232

VisiBroker for C++ API Reference Guide xi

Include file... 233
ServerRequestInfo methods ... 233

ServerRequestInterceptor .. 235
Include file... 235
ServerRequestInterceptor methods ... 235

VisiBroker Interceptor and object wrapper interfaces and classes
for C++ .. 239

Introduction ... 239
InterceptorManagers ... 239
IOR templates .. 240
InterceptorManager... 240
InterceptorManagerControl... 240

Include file... 240
InterceptorManagerInterceptor method ... 240

BindInterceptor .. 241
Include file... 241
BindInterceptor methods ... 241

BindInterceptorManager .. 242
Include file... 242
BindInterceptorManager method... 242

ClientRequestInterceptor ... 243
Include file... 243
ClientRequestInterceptor methods .. 243

ClientRequestInterceptorManager.. 244
Include file... 244
ClientRequestInterceptorManager methods... 245

POALifeCycle Interceptor.. 245
Include file... 245
POALifeCycleInterceptor methods ... 245

POALifeCycleInterceptorManager... 246
Include file... 246
POALifeCycleInterceptorManager method ... 246

ActiveObjectLifeCycleInterceptor ... 246
Include file... 246
ActiveObjectLifeCycleInterceptor methods.. 247
ActiveObjectLifeCycleInterceptorManager... 247
Include file... 247
ActiveObjectLifeCycleInterceptorManager method 247

ServerRequestInterceptor .. 248
Include file... 248
ServerRequestInterceptor methods ... 248

ServerRequestInterceptorManager .. 249
Include file... 249
ServerRequestInterceptorManager method... 249

IORCreationInterceptor.. 250
Include file... 250
IORInterceptor method.. 250

IORCreationInterceptorManager.. 250
Include file... 250
IORCreationInterceptorManager method .. 251

VISClosure... 251
Include file... 251
VISClosure members... 251

VisExtendedClosure... 251
Code sample .. 251

VISClosureData .. 252

xii Vis iBroker for C++ API Reference Guide

VISClosureData methods.. 252
ChainUntypedObjectWrapperFactory .. 252

Include file ... 252
ChainUntypedObjectWrapperFactory methods ... 253

UntypedObjectWrapper .. 254

Quality of Service interfaces and classes255
CORBA::PolicyManager .. 255

IDL definition.. 255
Include file ... 255
Methods... 255

CORBA::PolicyCurrent.. 256
IDL definition.. 256
Include file ... 256

CORBA::Object ... 256
IDL definition.. 256
Include file ... 257
Methods... 257

Messaging::RebindPolicy .. 258
IDL definition.. 258
Include file ... 258
Policy values... 259

QoSExt::DeferBind Policy ... 259
IDL definition.. 260
Include file ... 260

QoSExt::RelativeConnectionTimeoutPolicy .. 260
IDL definition.. 260
Include file ... 260

Messaging::RelativeRequestTimeoutPolicy .. 260
IDL definition.. 261
Include file ... 261

Messaging::RelativeRoundtripTimeoutPolicy .. 261
IDL definition.. 261
Include file ... 261

Messaging::SyncScopePolicy... 261
IDL definition.. 262
Include file ... 262

IOP and IIOP interfaces and classes..263
IIOP::ProfileBody .. 263

Include file ... 263
ProfileBody members... 263

IOP::IOR.. 264
Include file ... 264
IOR members ... 264

IOP::TaggedProfile... 264
Include file ... 264
TaggedProfile members.. 264

Marshal buffer interfaces and classes267
CORBA::MarshalInBuffer .. 267

Include file ... 267
CORBA::MarshalInBuffer constructors/destructors 267
CORBA::MarshalInBuffer methods ... 268
CORBA::MarshalInBuffer operators.. 270

CORBA::MarshalOutBuffer .. 271
Include file ... 271

VisiBroker for C++ API Reference Guide xiii

CORBA::MarshalOutBuffer constructors/destructors................................... 271
CORBA::MarshalOutBuffer methods... 272
CORBA::MarshalOutBuffer operators ... 274

Location service interfaces and classes 275
Agent .. 275

IDL definition ... 275
Include file... 276
Agent methods... 276

Desc ... 279
IDL definition ... 280
Desc members ... 280

Fail ... 280
Fail members ... 280

TriggerDesc.. 281
IDL definition ... 281
TriggerDesc members.. 281

TriggerHandler.. 281
IDL definition ... 281
Include file... 282
TriggerHandler methods... 282

<type>Seq .. 282
<type>Seq methods ... 283

<type>SeqSeq ... 283
<type>SeqSeq methods.. 284

Initialization interfaces and classes .. 285
VISInit .. 285

Include file... 285
VISInit constructors/destructors ... 285
VISInit methods ... 286

Real-Time CORBA interfaces and classes................................. 287
Introduction ... 287

Include file... 287
RTCORBA::Current.. 288

RTCORBA::Current Creation and Destruction .. 288
IDL definition ... 288

RTCORBA::Current methods... 288
RTCORBA::Mutex.. 289

Mutex Creation and Destruction.. 289
IDL definition ... 289

RTCORBA::Mutex Methods ... 290
RTCORBA::NativePriority.. 290

IDL definition ... 290
RTCORBA::Priority .. 290

IDL definition ... 291
RTCORBA::PriorityMapping... 291

PriorityMapping Creation and Destruction... 291
IDL definition ... 292

PriorityMapping Methods.. 292
RTCORBA::PriorityModel .. 293
RTCORBA::PriorityModelPolicy .. 294

IDL definition ... 294
RTCORBA::RTORB... 294

RTORB Creation and Destruction... 295
IDL definition ... 295

xiv VisiBroker for C++ API Reference Guide

RTORB Methods .. 295
RTCORBA::ThreadpoolId .. 297
RTCORBA::ThreadpoolPolicy ... 297

IDL definition ... 297

Pluggable Transport Interface classes.....................................299
VSPTransConnection .. 299

Include file ... 299
VISPTransConnection methods .. 299

VISPTransConnectionFactory ... 302
Include file ... 302
VISPTransConnectionFactory methods.. 302

VISPTransListener ... 303
Include file ... 303
VISPTransListener methods .. 303

VISPTransListenerFactory ... 304
Include file ... 304
VISPTransListenerFactory methods .. 304

VISPTransProfileBase ... 305
Include file ... 305
VISPTransProfileBase methods .. 305
VISPTransProfileBase members ... 306
VISPTransProfileBase base class methods ... 306

VISPTransProfileFactory.. 307
Include file ... 307
VISPTransProfileFactory methods... 307

VISPTransBridge.. 308
Include file ... 308
VISPTransBridge methods .. 308

VISPTransRegistrar .. 309
Include file ... 309
VISPTransRegistrar methods ... 309

VisiBroker for C++ Logging ...311
VISDLoggerMgr... 311

Include file ... 311
VISDLoggerMgr methods.. 311

VISDLogger .. 312
Include file ... 312
VISDLogger methods... 313

VISDAppenderFactory .. 313
Include file ... 313
VISDAppenderFactory methods ... 313

VISDAppender .. 314
Include file ... 314
VISDAppender methods ... 314

VISDLayoutFactory .. 315
Include file ... 315
VISDLayoutFactory methods ... 315

VISDLayout .. 315
Include file ... 316
VISDLayout methods ... 316

VISDConfig... 316
Include file ... 316
LogAppenderConfig structure.. 316

VISDLogRecord ... 317
Include file ... 317

VisiBroker for C++ API Reference Guide xv

VISDLogRecord methods ... 317
VISDLogLevel ... 318

Include file... 318
Level enumeration .. 318

Index ...319

xvi Vis iBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 1

Introduction to VisiBroker
VisiBroker is a set of services and tools that enable you to build, deploy, and
manage distributed enterprise applications in your corporate environment.
These applications provide dynamic content by using JSP, servlets, and
Enterprise Java Bean (EJB) technologies.

Accessing VisiBroker online help topics in the
standalone Help Viewer

To access the online help through the standalone Help Viewer on a machine
where the product is installed, use one of the following methods:

Windows
• Choose Start > Programs > VisiBroker > Help Topics

or

• Open the Command Prompt and go to the product installation \bin
directory, then type the following command:

help

UNIX
Open a command shell and go to the product installation /bin directory,
then enter the command:

help

Tip
During installation on UNIX systems, the default is to not include an entry
for bin in your PATH. If you did not choose the custom install option and
modify the default for PATH entry, and you do not have an entry for
current directory in your PATH, use ./help to start the help viewer.

Accessing VisiBroker online help topics from within
a VisiBroker GUI tool

To access the online help from within a VisiBroker GUI tool, choose Help >
Help Topics.

The Help menu also contains shortcuts to specific documents within the
online help. When you select one of these shortcuts, the Help Topics viewer
is launched and the item selected from the Help menu is displayed.

2 VisiBroker for C++ API Reference Guide

Documentation conventions
The documentation for VisiBroker uses the typefaces and symbols described
below to indicate special text:

Platform conventions
The VisiBroker documentation uses the following symbols to indicate
platform-specific information:

Windows: All supported Windows platforms.

Win2003: Windows 2003 only

WinXP: Windows XP only

Win2000: Windows 2000 only

UNIX: UNIX platforms

Solaris: Solaris only

Linux: Linux only

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The WebSync service, where you can download fixes and documentation
updates.

• The Knowledge Base, a large collection of product tips and workarounds.

• Examples and Utilities, including demos and additional product
documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page.

Note
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you

Convention Used for
italics Used for new terms and book titles.
computer Information that the user or application provides, sample

command lines and code.
bold computer In text, bold indicates information the user types in. In code

samples, bold highlights important statements.
[] Optional items.
... Previous argument that can be repeated.
> Two mutually exclusive choices.

http://www.microfocus.com

VisiBroker for C++ API Reference Guide 3

obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the subject line
and body of your Electronic Product Delivery Notice email that you
received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the WebSync service, where you can download fixes and
documentation updates. To connect, enter http://www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

• https://www.microfocus.com/product-trials/corba/
index.aspx?productname=VisiBroker (updated VisiBroker software and
other files)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

http://www.microfocus.com
https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
https://www.microfocus.com/product-trials/corba/index.aspx?productname=VisiBroker
https://supportline.microfocus.com/productdoc.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

4 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 5

Generated interfaces and
classes
This section describes classes generated by the VisiBroker for C++ IDL
compiler, their uses, and their features.

Generated interfaces and classes overview
The VisiBroker IDL compiler generates classes that make it easier for you to
develop client applications and object servers. Many of these generated
classes are available for CORBA classes.

• stub classes

• servant classes

• tie classes

• var classes

<Interface_name>
The <interface_name> class is generated for a particular IDL interface and
is intended for use by client applications. This class provides all of the
methods defined for a particular IDL interface. When a client uses an object
reference to invoke methods on the object, the stub methods are actually
invoked. The stub methods allow a client operation request to be packaged,
sent to the object implementation, and the results to be reflected. This
entire process is transparent to the client application.

When a client uses a local object reference to invoke methods on the local
object, there is no stub method involved.

Note
You should never modify the contents of a stub class generated by the IDL
compiler.

<Interface_name>ObjectWrapper
This class does not apply to local interfaces. For non-local interfaces, this
class is used to derive typed object wrappers and is generated for all your
non-local interfaces when you invoke the idl2cpp command with the
-obj_wrapper option. For more information about the -obj_wrapper
option, see “Programmer tools for C++” in the VisiBroker for C++
Developer's Guide.

static void add(CORBA::ORB_ptr orb,
CORBA::ObjectFactory factory,
VISObjectWrapper::Location loc);

static void remove(CORBA::ORB_ptr orb,
CORBA::ObjectFactory factory,
VISObjectWrapper::Location loc);

6 VisiBroker for C++ API Reference Guide

Removes an un-typed object wrapper from a server application.

POA<class_name>
The _POA_<class_name> class is an abstract base class generated by the
IDL compiler, which is used to derive an object implementation class.
Object implementations are usually derived from a servant class, which
provides the necessary methods for receiving and interpreting client
operation requests.

tie<class_name>
The _tie_<class_name> class is generated by the IDL compiler to aid in
the creation of delegation implementations. The tie class allows you to
create an object implementation that delegates all operation requests to
another object. This allows you to use existing objects that you do not wish
to inherit from the CORBA::Object class.

<class_name>_var
The <class_name>_var class is generated for an IDL interface and
provides simplified memory management semantics.

Parameter Description
orb The ORB the client wishes to use, returned by the ORB_init

method.
factory The factory method for the object wrapper class that you

want to remove.
loc The location of the object wrapper being removed, which

should be one of the following
values:VISObjectWrapper::Client,
VISObjectWrapper::Server VISObjectWrapper::Both

VisiBroker for C++ API Reference Guide 7

Core interfaces and classes
This section describes the VisiBroker for C++ core interfaces and classes.

PortableServer::AdapterActivator
Adapter activators are associated with Portable Object Adapters (POAs).
They make it possible for POAs to create child POAs under the following
circumstances:

• On demand,

• As a side-effect of receiving a request which names the child POA (or one
of its children), or

• When the find_POA method is called with an activate parameter set to
TRUE.

For more information about POAs, see “Using POAs” in the VisiBroker for
C++ Developer’s Guide.

IDL Definition
interface AdapterActivator {
 boolean unknown_adapter(in POA parent, in string
name);
};

PortableServer::AdapterActivator methods
CORBA::Boolean unknown_adapter(

PortableServer::POA_ptr parent, const char* name);

This method is called when the VisiBroker ORB receives a request for an
object reference which identifies a target POA that does not exist. The
VisiBroker ORB invokes this method once for each POA that must be created
in order for the POA to exist (starting with the ancestor POA closest to the
root POA).

BindOptions
Deprecated interface

This interface is deprecated as of VisiBroker 4.x. It is provided for
backward compatibility support only. For support of the current CORBA
specification, see "Client basics" in the VisiBroker for C++ Developer's
Guide.

Parameter Description
parent The parent POA associated with the adapter activator on

which the method is to be invoked.
name The name of the POA to be created (relative to the parent).

8 VisiBroker for C++ API Reference Guide

struct BindOptions

This structure is used to specify options to the _bind method, described in
“Object”. Each process has a global BindOptions structure that is used for
all _bind invocations that do not specify bind options. You can modify the
default bind options using the Object::_default_bind_options method.

Bind options may also be set for a particular object and will remain in effect
for the lifetime of the connection to that object.

Include file
The corba.h file should be included when you use this structure.

BindOptions members
CORBA::Boolean defer_bind;

If set to TRUE, the establishment of the connection between client and the
object implementation is delayed until the first client operation is issued.

If set to FALSE, the _bind method should establishes the connection
immediately.

CORBA::Boolean enable_rebind;

If set to TRUE and the connection is lost, due to a network failure or some
other error, the VisiBroker ORB attempts to re-establish a connection to a
suitable object implementation.

If set to FALSE, no attempt is made to reconnect the client with the object
implementation.

Deprecated member
CORBA::Long max_bind_tries;

This member has been deprecated. It is no longer used for manipulating
the interactions between the ORB and the OAD. It was used to specify the
number of times to retry a bind request when the OAD is busy.

CORBA::ULong send_timeout;

This member specifies the maximum time in seconds that a client is to block
waiting to send an operation request. If the request times out,
CORBA::NO_RESPONSE exception is raised and the connection to the server
is destroyed.

The default value of 0 (zero) indicates that the client is to block indefinitely.

CORBA::ULong receive_timeout;

This member specifies the maximum time in seconds that a client is to block
waiting for a response to an operation request. If the request times out, a
CORBA::NO_RESPONSE exception is raised and the connection to the server
is destroyed.

The default value of 0 (zero) indicates that the client is to block indefinitely.

CORBA::ULong connection_timeout;

This member specifies the maximum time in seconds that a client is to wait
for a connection. If the time specified is exceeded, a
CORBA::NO_IMPLEMENT exception is raised.

The default value of 0 indicates that the default system time-out for
connections is to be used.

VisiBroker for C++ API Reference Guide 9

BOA
Deprecated interface

This class is deprecated as of VisiBroker 4.x. It is provided for backward
compatibility support only. For more information, see "Using the BOA
with VisiBroker" in the VisiBroker for C++ Developer's Guide. For
support of the current CORBA specification Micro Focus recommends
using POAs; see "Using POAs" in the VisiBroker for C++ Developer's
Guide.

class BOA

The BOA class represents the Basic Object Adaptor and provides methods
for creating and manipulating objects and object references. Object servers
use the BOA to activate and deactivate object implementations and to
specify the thread policy they wish to use.

You do not instantiate a BOA object. Instead, you obtain a reference to a
BOA object by invoking the ORB::BOA_init method.

VisiBroker provides extensions to the CORBA BOA specification which are
covered in “VisiBroker extensions to CORBA::BOA”. These methods provide
for the management of connections, threads, and the activation of services.

Include file
Include the file corba.h when you use this class.

CORBA::BOA methods

CORBA::Object_ptr create(const CORBA::ReferenceData&
refData, extension::CreationImplDef& creationImplDef)

This method registers the specified implementation with the OAD.

void deactivate_impl(extension::ImplementationDef_ptr
implDefPtr)

This method causes requests to the implementation to be discarded.

The method deactivates the implementation specified by implDefPtr. Once
this method is called, no further client requests are delivered to the object
within this implementation until the objects and implementation are re-

Parameter Description
refData This parameter is not used, but is provided for

compliance with the CORBA specification.
creationImplDef This pointer's true type is CreationImplDef. It

provides the interface name, object name, path name
of the executable and the activation policy and other
parameters. See “Activation interfaces and
classes” for a complete discussion of the
CreationImplDef class.

10 VisiBroker for C++ API Reference Guide

activated. To cause the implementation to again accept requests, call
impl_is_ready or obj_is_ready.

void deactivate_obj(CORBA::Object_ptr objPtr)

This method requests that the BOA deactivate the specified object. Once this
method is invoked, the BOA does not deliver any requests to the object until
obj_is_ready or impl_is_ready is invoked.

static CORBA::BOA_ptr _duplicate(CORBA::BOA_ptr ptr)

This static method duplicates the BOA pointer that is passed in as a
parameter.

void exit_impl_ready()

This method provides backward compatibility with earlier releases of
VisiBroker for C++. It invokes BOA::shutdown, described in “void
shutdown()” on page 12 which causes a previous invocation of the
impl_is_ready method to return. This method cannot be invoked in the
context of an active request.

CORBA::ReferenceData_ptr get_id(CORBA::Object_ptr
objPtr)

This method returns the reference data for the specified object. The
reference data is set by the object implementation at activation time and is
guaranteed to remain constant throughout the life of the object.

CORBA::Principal_ptr get_principal(CORBA::Object_ptr
objPtr, CORBA::Environment_ptr env=NULL)

This method returns the Principal object associated with the specified
object. This method may only be called by an object implementation during
the processing of a client operation request.

Parameter Description
implDefPtr This pointer's true type is CreationImplDef. It

provides the interface name, object name, path
name of the executable and activation policy, along
with other parameters.

Parameter Description
objPtr A pointer to the object to be

deactivated.

Parameter Description
ptr A BOA pointer.

Parameter Description
objPtr A pointer to the object whose reference data is to be

returned.

Parameter Description
objPtr A pointer to the object whose implementation is to be

changed.
env A pointer to the Environment object associated with this

Principal.

VisiBroker for C++ API Reference Guide 11

void impl_is_ready(const char *service_name,
 extension::Activator_ptr activator,
 CORBA::Boolean block = 1)

This method instructs the BOA to delay activation of the object
implementation associated with the specified service_name until a client
requests the service. Once a client requests the service, the specified
Activator object is used to activate the object implementation. If block is
set to 0, this method blocks the caller until the exit_impl_ready method
is invoked.

void impl_is_ready(extension::ImplementationDef_ptr
impl=NULL)

This method notifies the BOA that one or more objects in the server are
ready to receive service requests. This method blocks the caller until the
exit_impl_ready method is invoked. If all objects that the implementation
offers were created through C++ instantiation and activated using the
obj_is_ready method, do not specify the ImplementationDef_ptr.

An object implementation may offer only one object and may want to defer
the activation of that object until a client request is received. In these
cases, the object implementation does not need to first invoke the
obj_is_ready method. Instead, it may simply invoke this method, passing
the ActivationImplDef pointer as its single object.

static CORBA::BOA_ptr _nil()

This static method returns a NULL BOA pointer that can be used for
initialization purposes.

void obj_is_ready(CORBA::Object_ptr obj,
 extension::ImplementationDef_ptr impl_ptr = NULL)

This method notifies the BOA that the specified object is ready for use by
clients. There are two different ways to use this method:

• Objects that have been created using C++ instantiation should only
specify a pointer to the object and let the ImplementationDef_ptr
default to NULL.

Parameter Description
service_name The service name associated with the specified

Activator object.
activator The Activator to be used to activate the object

implementation
block If set to 1, indicates that this method should block the

caller. If set to zero, the method does not block. The
default behavior is to block.

Parameter Description
impl This pointer's true type is ActivationImplDef and

provides the interface name, object name, path name
of the executable and activation policy, along with
other parameters.

12 VisiBroker for C++ API Reference Guide

• Objects whose creation is to be deferred until the first client request is
received should specify a NULL Object_ptr and provide a pointer to an
ActivationImplDef object that has been initialized.

static void CORBA::release(CORBA::BOA_ptr boa)

This static method releases the specified BOA pointer. Once the object's
reference count reaches zero, the object is automatically deleted.

static RegistrationScope scope()

This static method returns the registration scope of the BOA. The
registration scope of an object can be SCOPE_GLOBAL or SCOPE_LOCAL.
Only objects with a global scope are registered with the osagent.

static void scope(RegistrationScope val)

This static method changes the registration scope of the BOA to the specified
value.

void shutdown()

This method causes a previous invocation of the impl_is_ready method to
return. This method cannot be invoked in the context of an active request.

CORBA::Object_ptr string_to_object(const char * str)

This method converts a stringified object reference, created with the
object_to_string method described in “char
*object_to_string(CORBA::Object_ptr obj);”, back into an object
reference that may be used to invoke methods on the object.

Deprecated methods

void dispose(CORBA::Object_ptr objPtr)

This method unregisters the implementation of the specified object from the
Object Activation Daemon. Once this method is invoked, all references to
the specified object are invalid and any connections to this object
implementation are broken. If the object has been allocated, it is the
application’s responsibility to delete the object. This method is deprecated

Parameter Description
obj A pointer to the object to be activated.

impl_ptr A optional pointer to an ActivationImplDef object.

Parameter Description
boa A valid BOA pointer.

Parameter Description
val The scope for this BOA. Must be one of the following

values: LOCAL_SCOPE for transient objects.
GLOBAL_SCOPE for objects registered with the
Smart Agent.

Parameter Description
str The string to be converted back to an object reference.

VisiBroker for C++ API Reference Guide 13

since VisiBroker 4.x. We recommend that you use the OAD interface
instead.

VisiBroker extensions to CORBA::BOA

CORBA::ULong connection_max()

This method returns the maximum number of connections allowed.

void connection_max(CORBA::ULong max_conn)

This method is used by servers to set the maximum number of connections
allowed.

CORBA::ULong thread_max()

This method returns the maximum number of threads allowed if the TPool
thread policy has been selected.

void thread_max(CORBA::ULong max)

This method sets the maximum number of threads allowed when the TPool
thread policy has been selected. If the current number of threads exceeds
this number, the extra threads are destroyed one at a time as soon as
they are no longer in use until the number of threads is down to max.

CORBA::ULong thread_stack_size()

Returns the maximum thread stack size (in bytes) when TPool or
TSession thread policy is selected.

void thread_stack_size(CORBA::ULong size)

Sets the maximum thread stack size (in bytes) when TPool or TSession
thread policy is selected.

CompletionStatus

enum CompletionStatus

This enumeration represents how an operation request completed.

IDL Definition
enum CompletionStatus {
 COMPLETED_YES;

Parameter Description
objPtr A pointer to the object to be unregistered.

Parameter Description
max_conn The maximum number of connections allowed.

Parameter Description
max The maximum number of threads to be allowed.

Parameter Description
size The new stack size to be set.

14 VisiBroker for C++ API Reference Guide

 COMPLETED_NO;
 COMPLETED_MAYBE;};

CompletionStatus members

Context

class CORBA::Context

The Context class contains information about a client application's
environment that is passed to a server as an implicit parameter during
static or dynamic method invocations. It can be used to communicate
special information that needs to be associated with a request, but is not
part of the method's argument list.

The Context class consists of a list of properties, stored as name-value
pairs, and provides methods for setting and manipulating those properties.
A Context contains an NVList object and chains the name-value pairs
together.

A Context_var class is also available and provides simpler memory
management semantics.

Include file
Include the corba.h file when you use this class.

Context methods

const char *context_name() const;

This method returns the name used to identify this context. If no name was
provided when this object was created, it returns a NULL value.

void create_child(const char * name, CORBA::Context_out
context_ptr);

This method creates a child Context for this object.

COMPLETED_YES = 0 Indicates the operation request completed
successfully.

COMPLETED_NO = 1 Indicates the operation request was not completed,
due to some sort of exception or error.

COMPLETED_MAYBE = 2 Indicates that the operation request may have
completed, in spite of an exception or error.

Parameter Description
name The name of the new Context object.

context_ptr& A reference to newly created child Context.

VisiBroker for C++ API Reference Guide 15

void delete_values(const char *name);

This method deletes one or more properties from this object.

static CORBA::Context_ptr _duplicate(CORBA::Context_ptr
ctx);

This method duplicates the specified object.

void get_values(const char *start_scope, CORBA::Flags
flag, const char *name, CORBA::NVList_out
NVList_ptr);

This method searches the Context object hierarchy and retrieves one or
more of the name/value pairs specified by the name parameter. If the name
parameter has a trailing wildcard character (*), then all matching properties
and their values are returned. It then creates an NVList object and places
the name/value pairs in the NVList. If the name parameter is an empty
string or a NULL string, the BAD_PARAM standard system exception is
raised. If the name parameter is not found, the BAD_CONTEXT standard
system exception is raised and no property list is returned.

The start_scope parameter specifies the name of the context where the
search begins. If the property is not found, the search continues up the
Context object hierarchy until a match is found, or until there are no more
Context objects to search. If the start_scope parameter is omitted, the
search begins with the specified context object.

static CORBA::Context_ptr _nil();

This method returns a NULL Context_ptr suitable for initialization
purposes.

CORBA::Context_ptr parent();

This method returns a pointer to the parent Context. If there is no parent
Context, a NULL value is returned.

Parameter Description
name The name of the property, or properties, to be

deleted. To delete all matching properties, the name
may contain a trailing "*" wildcard character. To
delete all properties, specify a single asterisk.

Parameter Description
ctx The object to be duplicated.

Parameter Description
start_scope The name of the Context object at which to start

the search. If set to CORBA::Context::_nil(), the
search begins with the current Context. To restrict
the search scope can to just the current Context,
specify CORBA::CTX_RESTRICT_SCOPE.

flag An exception is raised if no matching context name
is found.

name The property name to search for. A trailing "*"
wildcard character may be used to retrieve all
properties that match name.

NVList_ptr A reference to the list of properties found.

16 VisiBroker for C++ API Reference Guide

static void _release(CORBA::Context_ptr ctx);

This static method releases the specified Context object. Once the object's
reference count reaches zero, the object is automatically deleted.

void set_one_value(const char *name, const CORBA::Any&
anAny);

This method adds a property to this object using the specified name and
value.

void set_values(CORBA::NVList_ptr _list);

This method adds one or more properties to this object, using the name/
value pairs specified in the NVList. When you create the NVList object to
be used as an input parameter to this method, you must set the Flags field
to zero and each Any object added to the NVList must have its TypeCode
set to TC_string. For more information on the NVList class, see “Dynamic
interfaces and classes”.

PortableServer::Current

class PortableServer::Current : public CORBA::Current

This class provides methods with access to the identity of the object on
which the method was called. The Current class provides support for
servants which implement multiple objects but can be used within the
context of POA-dispatched method invocations on any servant.

IDL Definition
interface Current : CORBA::Current {
 exception NoContext {};
 POA get_POA() raises (NoContext);
};

PortableServer::Current methods

PortableServer::POA *get_POA();

This method returns a reference to the POA which implements the object in
whose context it is called. If this method is called from outside the context
of a POA-dispatched method, a NoContext exception is raised.

Parameter Description
ctx The object to be released.

Parameter Description
name The property's name.

anAny The property's value.

Parameter Description
_list A list of name/value pairs to be added to this object.

VisiBroker for C++ API Reference Guide 17

PortableServer::ObjectId get_object_id();

This method returns the ObjectId which identifies the object in whose
context it was called. If this method is called from outside the context of a
POA-dispatched method, a NoContext exception is raised.

Exception

class CORBA::Exception

The Exception class is the base class of the system exception and user
exception classes. For more information, see “SystemException”.

Include file
You should include the corba.h file when using this class.

Object

class CORBA::Object

All ORB objects are derived from the Object class, which provides methods
for binding clients to objects and manipulating object references as well as
querying and setting an object's state. Object class methods are
implemented by the ORB.

VisiBroker for C++ provides extensions to the CORBA Object specification.
These are covered in “VisiBroker extensions to CORBA::Object”.

Include file
You should include the file corba.h when using this class.

CORBA::Object methods

void _create_request(CORBA::Context_ptr ctx, const char
*operation, CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr result, CORBA::Request_out
request, CORBA::Flags req_flags);

This method creates a Request for an object implementation that is
suitable for invocation with the Dynamic Invocation Interface.

Parameter Description
ctx The Context associated with this request. For more

information, see “CompletionStatus”.
operation The name of the operation to be performed on the object

implementation.
arg_list A list of arguments to pass to the object implementation.

See “Dynamic interfaces and classes” for more
information.

result The result of the operation. See “Dynamic interfaces and
classes” for more information.

18 VisiBroker for C++ API Reference Guide

void _create_request(
CORBA::Context_ptr ctx,
const char *operation,
CORBA::NVList_ptr arg_list,
CORBA::NamedValue_ptr result,
CORBA::ExceptionList_ptr eList,
CORBA::ContextList_ptr ctxList,
CORBA::Request_out request,
CORBA::Flags req_flags);

This method creates a Request for an object implementation that is
suitable for invocation with the Dynamic Invocation Interface.

static CORBA::Object_ptr _duplicate(CORBA::Object_ptr
obj);

This static method duplicates the specified Object_ptr and returns a
pointer to the object. The object's reference count is increased by one.

CORBA::InterfaceDef_ptr _get_interface();

This method returns a pointer to this object's interface definition. See
“Interface repository interfaces and classes (C++)” for more information.

CORBA::ULong _hash(CORBA::ULong maximum);

This method returns a hash value for this object. This value does change for
the lifetime of this object, however the value is not necessarily unique. If
two objects return different hash values, then they are not identical. The

request A pointer to the Request that is created. For more
information, see “Dynamic interfaces and classes”.

req_flags This flag must be set to OUT_LIST_MEMORY if one or more
of the NamedValue items in arg_list are output
arguments.

Parameter Description
ctx The Context associated with this request. For more

information, see “CompletionStatus”.
operation The name of the operation to be performed on the object

implementation.
arg_list A list of arguments to pass to the object implementation. See

“Dynamic interfaces and classes” for more information.
result The result of the operation. See the “Dynamic interfaces

and classes” for more information.
eList A list of exceptions for this request.

ctxList A list of Context objects for this request.

request A pointer to the Request that is created. See “Dynamic
interfaces and classes” for more information.

req_flags This flag must be set to OUT_LIST_MEMORY if one or more
of the NamedValue items in arg_list are output
arguments.

Parameter Description
obj The object pointer to be duplicated.

Parameter Description

VisiBroker for C++ API Reference Guide 19

upper bound of the hash value may be specified. The lower bound is 0
(zero).

CORBA::Boolean _is_a(const char *logical_type_id);

This method returns TRUE if this object implements the interface associated
with the repository id. Otherwise, it returns FALSE.

CORBA::Boolean _is_equivalent(CORBA::Object_ptr
other_object);

This method returns TRUE if the specified object pointer and this object
point to the same object implementation. Otherwise, it returns FALSE.

static CORBA::Object_ptr _nil();

This static method returns a NULL pointer suitable for initialization
purposes.

CORBA::Boolean _non_existent();

This method returns TRUE if the object represented by this object reference
no longer exists.

CORBA::Request_ptr _request(const char* operation);

This method creates a Request suitable for invoking methods on this
object. A pointer to the Request object is returned. See “Dynamic
interfaces and classes” for more information.

CORBA::Object_ptr _resolve_reference(const char* id);

Your client application can invoke this method on an object reference to
resolve the server-side interface with the specified service identifier. This
method causes the ORB::_resolve_initial_references method to be
invoked on the server-side to resolve the specified service. This method
returns an object reference which your client can narrow to the appropriate
server type.

This method is typically used by client applications that wish to manage a
server's attributes.

Parameter Description
maximum The upper bound of the hash value returned.

Parameter Description
logical_type_id The repository identifier to check.

Parameter Description
other_object Pointer to an object that is to be compared to this object.

Parameter Description
operation The name of the object method to be invoked.

Parameter Description
id The name of the interface to be resolved on the server-

side.

20 VisiBroker for C++ API Reference Guide

VisiBroker extensions to CORBA::Object

CORBA::BindOptions* _bind_options();

This method returns a pointer to the bind options that used for this object
only. For more information, see “BindOptions”.

void _bind_options(const CORBA::BindOptions& opt);

This method sets the bind options for this object only. The options that are
set remain in effect for the lifetime of the proxy object. Any changes to
time-out values will apply to all subsequent send and receive operations as
well as any re-bind operations. For more information, see “BindOptions”.

static CORBA::Object_ptr _bind_to_object(
const char *rep_id,
const char *object_name=NULL,
const char *host_name=NULL,
const CORBA::BindOptions *options=NULL,
CORBA::ORB_ptr orb=NULL);

This method attempts to bind to the object with the specified
repository_id and object_name on the specified host using the specified
BindOptions and ORB.

Deprecated method

CORBA::BOA _boa() const;

This method is deprecated as of VisiBroker 4.x. It is provided for
backward compatibility support only. For more information, see "Using
the BOA with VisiBroker" in the VisiBroker for C++ Developer's
Guide. For current CORBA specification support, Micro Focus
recommends using POAs rather than BOAs. See "Using POAs" in the
VisiBroker for C++ Developer's Guide.

The method returns a pointer to the Basic Object Adaptor with which this
object is registered.

Parameter Description
opt The new bind options for this object.

Parameter Description
rep_id The repository ID of the desired object.

object_name The name of the desired object.

host_name The name of the desired host where the object
implementation is executing.

options The bind options for this connection. See “BindOptions” on
page 7 for more information.

orb The ORB to use.

VisiBroker for C++ API Reference Guide 21

static CORBA::Object_ptr _clone(
CORBA::Object_ptr obj,
CORBA::Boolean reset_connection = 1UL);

This method clones the specified object reference.

static const CORBA::BindOptions
*_default_bind_options();

This method returns a pointer to the global, per client process BindOptions.
For more information, see “BindOptions” on page 7.

static void _default_bind_options(
const CORBA::BindOptions& bindOptions);

This method sets the bind options to be used by default for all _bind
invocations that do not specify their own bind options. For more
information, see “BindOptions” on page 7.

static const CORBA::TypeInfo *_desc();

Returns type information for this object.

const char *_interface_name() const;

This method returns this object's interface name.

CORBA::Boolean _is_bound() const;

This method returns FALSE if the client process has established a
connection to an object implementation.

CORBA::Boolean _is_local() const;

This method returns TRUE if the object implementation resides within the
same process or address space as the client application.

CORBA::Boolean _is_persistent() const;

This method returns TRUE if this object is a persistent object. A FALSE value
returned is not an authoritative answer that the object is not persistent.

CORBA::Boolean _is_remote() const;

This method returns TRUE if the object implementation resides in a different
process or address space than the client application. The client and object
implementation may or may not reside on the same host.

const char *_object_name() const;

This method returns the object name associated with this object.

CORBA::Long _ref_count() const;

Returns the reference count for this object.

Parameter Description
obj The object reference to be cloned.
reset_connection This parameter is not used.

22 VisiBroker for C++ API Reference Guide

void _release();

Decrements this object's reference count and releases the object if the
reference count has reached 0.

const char *_repository_id() const;

This method returns this object's repository identifier.

ORB

class CORBA::ORB

The ORB class provides an interface to the Object Request Broker. It
provides methods to the client object, independent of the particular Object
or Object Adaptor.

VisiBroker provides extensions to the CORBA ORB that are discussed in
“VisiBroker extensions to CORBA::ORB”. These methods are provided for
the management of connections, threads, and the activation of services.

Include file
You should include the file corba.h when using this class.

CORBA::ORB methods

CORBA::Boolean work_pending();

This method returns true if the ORB has any work waiting to be processed.

static CORBA::TypeCode_ptr create_alias_tc(
const char *repository_id,
const char *type_name,
CORBA::TypeCode_ptr original_type);

This static method dynamically creates a TypeCode for the alias with the
specified type and name.

static CORBA::TypeCode_ptr create_array_tc(CORBA::Ulong
length, TypeCode_ptr element_type);

This static method dynamically creates a TypeCode for an array.

Parameter Description
repository_id The identifier generated by the IDL compiler or constructed

dynamically.
type_name The name of the alias's type.

original_type The type of the original for which this alias is being
created.

Parameter Description
length The maximum number of array elements.

element_type The type of elements stored in this array.

VisiBroker for C++ API Reference Guide 23

static CORBA::TypeCode_ptr create_enum_tc(const char
*repository_id, const char *type_name, const
CORBA::EnummemberSeq& members);

This static method dynamically creates a TypeCode for an enumeration with
the specified type and members.

void create_environment(CORBA::Environment_out env);

This method creates an Environment object.

static CORBA::TypeCode_ptr create_exception_tc(
const char *repository_id,
const char *type_name,
const CORBA::StructMemberSeq& members);

This static method dynamically creates a TypeCode for an exception with
the specified type and members.

static CORBA::TypeCode_ptr create_interface_tc(
const char *repository_id, const char *type_name);

This static method dynamically creates a TypeCode for the interface with
the specified type.

void create_list(
CORBA::Long num, CORBA::NVList_out nvList);

This method creates an NVList with the specified number of elements and
returns a reference to the list.

void create_named_value(CORBA::NamedValue_out value);

This method creates a NamedValue object.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the enumeration's type.

members A list of values for the enumeration's members.

Parameter Description
env The reference that will be set to point to the newly

created Environment.

Parameter Description
repository_id The identifier generated by the IDL compiler or constructed

dynamically.
type_name The name of the structure's type.

members A list of values for the structure members.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the interface's type.

Parameter Description
num The number of elements in the list.

nvlist Initialized to point to the newly created list.

24 VisiBroker for C++ API Reference Guide

void create_operation_list(CORBA::OperationDef_ptr
opDefPtr, CORBA::NVList_out nvList);

This method creates an argument list for the specified OperationDef
object.

static CORBA::TypeCode_ptr
create_recursive_sequence_tc(CORBA::Ulong bound,
CORBA::Ulong offset);

This static method dynamically creates a TypeCode for a recursive
sequence. The result of this method can be used to create other types. The
offset parameter determines which enclosing TypeCode describes the
elements of this sequence.

static CORBA::TypeCode_ptr
create_sequence_tc(CORBA::Ulong bound,
CORBA::TypeCode_ptr element_type);

This static method dynamically creates a TypeCode for a sequence.

static CORBA::TypeCode_ptr
create_string_tc(CORBA::Ulong bound);

This static method dynamically creates a TypeCode for a string.

static CORBA::TypeCode_ptr create_struct_tc(
const char *repository_id, const char *type_name,
const CORBA::StructMemberSeq& members);

This static method dynamically creates a TypeCode for the structure with
the specified type and members.

static CORBA::TypeCode_ptr create_union_tc(
const char *repository_id,
const char *type_name,

Parameter Description
bound The maximum number of sequence elements.

offset Position within the buffer where the type code for the current
element was previously generated.

Parameter Description
bound The maximum number of sequence elements.

element_type The type of elements stored in this sequence.

Parameter Description
bound The maximum length of the string.

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the structure's type.

members A list of values for the structure members.

VisiBroker for C++ API Reference Guide 25

CORBA::TypeCode_ptr discriminator_type,
const CORBA::UnionMemberSeq& members);

This static method dynamically creates a TypeCode for a union with the
specified type, discriminator and members.

CORBA::Status get_default_context(
CORBA::Context_ptr& contextPtr);

This method returns the default per-process Context maintained by
VisiBroker. The default Context is often used in constructing DII requests.
For more information, go to “Context”.

CORBA::Status get_next_response(CORBA::Request_out*&
req);

This method blocks waiting for the response associated with a deferred
request. You can use the ORB::poll_next_response method to determine
if there is a response waiting to be received before you call this method.

ObjectIdList *list_initial_services();

This method returns a list of the names of any object services that are
available to your application. These services may include the Location
Service, Interface Repository, Name Service, or Event Service. You can use
any of the returned names with the ORB::resolve_initial_references
method to obtain the top-level object for that service.

char *object_to_string(CORBA::Object_ptr obj);

This method converts the specified object reference to a string, a process
referred to as "stringification" in the CORBA specification. Object references
that have been converted to strings can be stored in files, for example. This
is an ORB method because different ORB implementations may have
different conventions for representing object references as strings.

Deprecated method

CORBA::BOA_ptr ORB::BOA_init(
int& argc, char *const *argv,
const char *boa_identifier = (char *)NULL);

This method is deprecated as of VisiBroker 4.x. It is provided for
backward compatibility support only. For more information, see "Using
the BOA with VisiBroker" in the VisiBroker for C++ Developer's
Guide. For current CORBA specification support, Micro Focus recommend

Parameter Description
repository_id The identifier generated by the IDL compiler or

constructed dynamically.
type_name The name of the union's type.

discriminator_typ The discriminating type for the union.

members A list of values for the union members.

Parameter Description
contextPtr& The property's value.

Parameter Description
req Set to point to the request that has

been received.

26 VisiBroker for C++ API Reference Guide

using POAs. See "Using POAs" in the VisiBroker for C++ Developer's
Guide.

This ORB method returns a handle to the BOA and specifies optional
networking parameters. The argc and argv parameters are the same
parameters passed to the object implementation process when it is
started.

static CORBA::ORB_ptr ORB_init(int& argc, char *const
*argv, const char *orb_id = NULL);

This method initializes the ORB and is used by both clients and object
implementations. It returns a pointer to the ORB that can be used to invoke
ORB methods. The argc and argv parameters passed to the application's
main function can be passed directly to this method. Arguments accepted
by this method take the form of name-value pairs so that they can be
distinguished from other command line arguments.

void perform_work();

This method instructs the ORB to perform some work.

CORBA::Boolean poll_next_response();

This method returns TRUE if a response to a deferred request was received,
otherwise FALSE is returned. This call does not block.

CORBA::Object_ptr resolve_initial_references(const char
* identifier);

This method resolves one of the names returned by the
ORB::list_initial_services method, described in “ObjectIdList
*list_initial_services();”, to its corresponding implementation object. The
resolved object which is returned can then be narrowed to the appropriate
server type. If the specified service cannot be found, an InvalidName
exception is raised.

Parameter Description
argc The number of arguments passed.

argv An array of char pointers to the arguments. All but
two of the arguments take the form of a keyword and
a value. This method ignores any keywords that it
does not recognize.

boa_identifier Identifies the type of BOA to be used. Use TPool if
multiple thread support is desired. Use TSingle if
the implementation does not use threads.

Parameter Description
argc The number of arguments passed.

argv An array of char pointers to the arguments. All but
two of the arguments take the form of a keyword
and a value. This method ignores any keywords
that it does not recognize.

boa_identifier Identifies the type of ORB to be used. The default
is IIOP.

Parameter Description
identifier The name of the service whose top-level object is

to be returned. The identifier is not the name of
the object to be returned.

VisiBroker for C++ API Reference Guide 27

void register_initial_reference (const char *
identifier, CORBA::Object_ptr obj);

This method registers the name to its corresponding implementation object.
The corresponding object id could now be resolved using an object URL
format such as corbaloc. An InvalidName exception is raised if the
identifier is empty or is already registered.

void send_multiple_requests_deferred(const
CORBA::RequestSeq& req);

This method sends all the client requests in the specified sequence as
deferred requests. The ORB will not wait for any responses from the object
implementation. The client application is responsible for retrieving the
responses to each request using the ORB::get_next_response method.

void send_multiple_requests_oneway(const
CORBA::RequestSeq& req);

This method sends all the client requests in the specified sequence as one-
way requests. The ORB does not wait for a response from any of the
requests because one-way requests do not generate responses from the
object implementation.

CORBA::Object_ptr string_to_object(const char *str);

This method converts a string representing an object into an object pointer.
The string must have been created using the ORB::object_to_string
method.

static CORBA::ORB_ptr _duplicate(CORBA::ORB_ptr ptr);

This static method duplicates the specified ORB pointer and returns a
pointer to the duplicated ORB.

static CORBA::ORB_ptr _nil();

This static method returns a NULL ORB pointer suitable for initialization
purposes.

Parameter Description
identifier The name of the service by which the initial

reference will be known.
obj A non-null object reference.

Parameter Description
req A sequence of deferred requests to be sent.

Parameter Description
req A sequence of one-way requests to be sent.

Parameter Description
str A pointer to a string representing an object.

Parameter Description
ptr The ORB pointer to be duplicated.

28 VisiBroker for C++ API Reference Guide

void run();

This method causes the ORB to start processing work. This ORB receives
requests and dispatches them. This call blocks this process until the ORB is
shut down.

static void shutdown(CORBA::Boolean
wait_for_completion=0);

This method causes a previous invocation of the impl_is_ready method to
return. All object adapters are shut down and associated memory is freed.
If the wait_for_completion parameter is TRUE, this operation blocks until
the shutdown is complete. If an application does this in a thread that is
currently servicing an invocation, the BAD_INV_ORDER system exception is
raised. If the wait_for_completion parameter is FALSE, then shutdown
may not have completed upon return.

static void destroy();

This operation destroys the ORB so that its resources can be reclaimed by
the application. If destroy is called on an ORB that has not been shut down,
it will start the shut down process and block until the ORB has shut down
before it destroys the ORB. The behavior is similar to that achieved by
calling shutdown with the wait_for_completion parameter set to TRUE.
If an application calls destroy in a thread that is currently servicing an
invocation, the BAD_INV_ORDER system exception is raised.

VisiBroker extensions to CORBA::ORB

CORBA::Object_ptr bind(
const char *rep_id,
const char *object_name =
(const char*)NULL, const char *host_name =
(const char*)NULL, CORBA::BindOptions *opt =
(CORBA::BindOptions*)NULL);

This method allows you obtain a generic object reference to an object by
specifying the repository id of the object and optionally, its object name and
host name where it is implemented.

Parameter Description
wait_for_completion Specifies whether shutdown will wait for

completion or not

Parameter Description
rep_id The identifier generated by the IDL compiler or

constructed dynamically for the object.
object_name The name of the object. This is an optional

parameter.
host_name The host name where the object implementation is

located. This may be specified as an IP address or
as a fully qualified host name. This is an optional
parameter.

opt Any bind options for the object. This is an optional
parameter. Bind options are described in
“BindOptions”.

VisiBroker for C++ API Reference Guide 29

CORBA::ULong connection_count()

This method is used by client applications to return the current number of
active connections.

void connection_max(CORBA::ULong max_conn)

Client applications use this method to set the maximum number of
connections allowed.

CORBA::ULong connection_max()

Client applications use this method to obtain the maximum number of
connections allowed.

static CORBA::TypeCode_ptr create_wstring_tc(
CORBA::Ulong bound);

This static method dynamically creates a TypeCode for a Unicode string.

PortableServer::POA

class PortableServer::POA

Objects of the POA class manage the implementations of a collection of
objects. The POA supports a namespace for these objects which are
identified by Object Ids. A POA also provides a namespace for other POAs in
that a POA must be created as a child of an existing POA, which then forms
a hierarchy starting with the root POA.

A POA object must not be exported to other processes or be stringified. A
MARSHAL exception is raised if this is attempted.

PortableServer::POA methods

PortableServer::ObjectId* activate_object(
PortableServer::Servant _p_servant);

This method generates an object id and returns it. The object id and the
specified _p_servant are entered into the Active Object Map. If the
UNIQUE_ID policy is present with the POA and the specified _p_servant is
already in the Active Object Map, then a ServantAlreadyActive exception
is raised.

This method requires that the SYSTEM_ID and RETAIN policies be present
with the POA; otherwise, a WrongPolicy exception is raised.

Parameter Description
max_conn The maximum number of

connections to be allowed.

Parameter Description
bound The maximum length of the string.

Parameter Description
_p_servant The Servant to be entered into the Active Object

Map.

30 VisiBroker for C++ API Reference Guide

void activate_object_with_id(
const PortableServer::ObjectId& _oid,
PortableServer::Servant _p_servant);

This method attempts to activate the specified _oid and to associate it with
the specified _p_servant in the Active Object Map. If the _oid already has
a servant bound to it in the Active Object Map, then an
ObjectAlreadyActive exception is raised. If the POA has the UNIQUE_ID
policy present and the _p_servant is already in the Active Object map,
then a ServantAlreadyActive exception is raised.

If the POA has the SYSTEM_ID policy present and it detects that the _oid
was not generated by the system or for the POA, then this method raises a
BAD_PARAM system exception.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

PortableServer::ImplicitActivationPolicy_ptr
create_implicit_activation_policy(

PortableServer::ImplicitActivationPolicyValue _value);

This method returns a pointer to an ImplicitActivationPolicy object
with the specified _value. The application is responsible for calling the
inherited destroy method on the Policy object after the Policy object is
no longer needed.

If no ImplicitActivationPolicy is specified at POA creation, then the
default is NO_IMPLICIT_ACTIVATION.

CORBA::Object_ptr create_reference(const char* _intf);

This method creates and returns an object reference that encapsulates a
POA-generated ObjectId and the specified _intf values. The _intf,
which may be null, becomes the type_id of the generated object
reference. This method does not cause an activation to take place.
Undefined behavior results if the _intf value does not identify the most
derived interface of the object or one of its base interfaces. The ObjectId
may be obtained by invoking the POA::reference_to_id method on the
returned Object.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

Parameter Description
_oid The ObjectId of the object to be activated.

_p_servant The Servant to be entered into the Active Object
Map.

Parameter Description
_value If set to IMPLICIT_ACTIVATION, the POA

implicitly activates servants: also requires
SYSTEM_ID and RETAIN policies. If set to
NO_IMPLICIT_ACTIVATION, the POA will not
implicitly activate servants.

Parameter Description
_intf The repository interface id of the class of the

object to be created.

VisiBroker for C++ API Reference Guide 31

CORBA::Object_ptr create_reference_with_id (
const PortableServer::ObjectId& _oid,const char* _intf);

This method creates and returns an object reference that encapsulates the
specified _oid and _intf values. The _intf, which may be a null string,
becomes the type_id of the generated object reference. An _intf value
that does not identify the most derived interface of the object or one of its
base interfaces will result in undefined behavior. This method does not
cause an activation to take place. The returned object reference may be
passed to clients, so that subsequent requests on those references will
cause the object to be activated if necessary, or the default servant used,
depending on the applicable policies.

If the POA has the SYSTEM_ID policy present and it detects the ObjectId
value was not generated by the system or for the POA, this method may
raise a BAD_PARAM system exception.

PortableServer::IdAssignmentPolicy_ptr
create_id_assignment_policy (
PortableServer::IdAssignmentPolicyValue _value);

This method returns a pointer to an IdAssignmentPolicy object with the
specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

If no IdAssignmentPolicy is specified at POA creation, then the default is
SYSTEM_ID.

PortableServer::IdUniquenessPolicy_ptr
create_id_uniqueness_policy (
PortableServer::IdUniquenessPolicyValue _value);

This method returns a pointer to an IdUniquenessPolicy object with the
specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

If no IdUniquenessPolicy is specified at POA creation, then the default is
UNIQUE_ID.

Parameter Description
_oid The object id for which a reference is to be created.

_intf The repository interface id of the class of the object to be
created.

Parameter Description
_value If set to USER_ID, then objects created by the POA

are assigned object ids only by the application. If set
to SYSTEM_ID, then objects created by the POA are
assigned object ids only by the POA.

Parameter Description
_value If set to UNIQUE_ID, then servants which are

activated with the POA support exactly one object
id. If set to MULTIPLE_ID, then a servant which is
activated with the POA may support one or more
object ids.

32 VisiBroker for C++ API Reference Guide

PortableServer::LifespanPolicy_ptr
create_lifespan_policy (
PortableServer::LifespanPolicyValue _value);

This method returns a pointer to a LifespanPolicy object with the
specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

If no LifespanPolicy is specified at POA creation, then the default is
TRANSIENT.

PortableServer::POA_ptr create_POA(
const char* _adapter_name,
PortableServer::POAManager_ptr _a_POAManager,
const CORBA::PolicyList& _policies);

This method creates a new POA with the specified _adapter_name. The
new POA is a child of the specified _a_POAManager. If a child POA with the
same name already exists for the parent POA, a
PortableServer::AdapterAlreadyExists exception is raised.

The specified _policies are associated with the new POA and are used to
control its behavior.

PortableServer::RequestProcessingPolicy_ptr
create_request_processing_policy (
PortableServer::RequestProcessingPolicyValue _value);

This method returns a pointer to a RequestProcessingPolicy object with
the specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

Parameter Description
_value If set to TRANSIENT, then objects implemented in

the POA cannot outlive the POA instance in which
they were first created. Once a transient POA is
deactivated, the use of any object references
generated from it results in an OBJECT_NOT_EXIST
exception being raised. If set to PERSISTENT, then
the objects implemented in the POA can outlive any
process in which they are first created.

Parameter Description
_adapter_name The name which specifies the new

POA.
_a_POAManager The parent POA object of the new

POA.
_policies A list of policies which are to apply

to the new POA.

VisiBroker for C++ API Reference Guide 33

If no RequestProcessingPolicy is specified at POA creation, then the default
is USE_ACTIVE_OBJECT_MAP_ONLY.

PortableServer::ServantRetentionPolicy_ptr
create_servant_retention_policy (
PortableServer::ServantRetentionPolicyValue _value);

This method returns a pointer to a ServantRetentionPolicy object with
the specified _value. The application is responsible for calling the inherited
destroy method on the Policy object after it is no longer needed.

If no ServantRetentionPolicy is specified at POA creation, then the
default is RETAIN.

PortableServer::ThreadPolicy_ptr create_thread_policy(
PortableServer::ThreadPolicyValue _value);

This method returns a pointer to a ThreadPolicy object with the specified
_value. The application is responsible for calling the inherited destroy
method on the Policy object after it is no longer needed.

If no ThreadPolicy is specified at POA creation, then the default is
ORB_CTRL_MODEL.

Parameter Description
_value If set to USE_ACTIVE_OBJECT_MAP_ONLY and the

object id is not found in the Active Object Map, then an
OBJECT_NOT_EXIST exception is returned to the
client. (The RETAIN policy is also required.)If set to
USE_DEFAULT_SERVANT and the object id is not
found in the Active Object Map or the NON_RETAIN
policy is present, and a default servant has been
registered with the POA using the set_servant method,
then the request is dispatched to the default servant. If
no default servant has been registered, then an
OBJ_ADAPTER exception is returned to the client.
(The MULTIPLE_ID policy is also required.)If set to
USE_SERVANT_MANAGER and the object id is not
found in the Active Object Map or the NON_RETAIN
policy is present, and a servant manager has been
registered with the POA using the
set_servant_manager method, then the servant
manager is given the opportunity to locate a servant or
raise an exception. If no servant manager has been
registered, then an OBJ_ADAPTER is returned to the
client.

Parameter Description
_value If set to RETAIN, then the POA will retain active

servants in its Active Object Map. If set to
NON_RETAIN, then servants are not retained by the
POA.

Parameter Description
_value If set to ORB_CTRL_MODEL, the ORB is responsible

for assigning requests for an ORB-controlled POA to
threads. In a multi-threaded environment, concurrent
requests may be delivered using multiple threads. If
set to SINGLE_THREAD_MODEL, then requests to the
POA are processed sequentially. In a multi-threaded
environment, all upcalls made by the POA to servants
and servant managers are made in a manner that is
safe for code that is multi-thread unaware.

34 VisiBroker for C++ API Reference Guide

void deactivate_object(const PortableServer::ObjectId&
_oid);

This method causes the specified _oid to be deactivated. An ObjectId which
has been deactivated continues to process requests until there are no more
active requests for that ObjectId. An ObjectId is removed from the Active
Object Map when all requests executing for that ObjectId have completed.

If a ServantManager is associated with the POA, then the
ServantActivator::etherealize method is invoked with the ObjectId
and the associated servant after the ObjectId has been removed from the
Active Object map. Reactivization for the ObjectId blocks until
etherealization, if necessary, has completed. However, the method does not
wait for requests or etherealization to complete and always returns
immediately after deactivating the specified _oid.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

void destroy(
CORBA::Boolean _etherealize_objects,
CORBA::Boolean _wait_for_completion);

This method destroys this POA object and all of its descendant POAs. First
the children are destroyed and finally the current container POA. If desired,
later, a POA with that same name in the same process can be created.

Parameter Description
_oid The ObjectId of the object to be

deactivated.

Parameter Description
_etherealize_objects If TRUE, the POA has the RETAIN policy, and a

servant manager has registered with the POA,
then the etherealize method is called on each
active object in the Active Object Map. The
apparent destruction of the POA occurs before
the etherealize method is called, and thus any
etherealize method which attempts to invoke
methods on the POA raises an
OBJECT_NOT_EXIST exception.

_wait_for_completion If TRUE and the current thread is not in an
invocation context dispatched from some POA
belonging to the same ORB as this POA, the
destroy method only returns after all active
requests and all invocations of etherealize have
completed. IfFALSE and the current thread is in
an invocation context dispatched from some POA
belonging to the same ORB as this POA, the
BAD_INV_ORDER exception is raised and POA
destruction does not occur.

VisiBroker for C++ API Reference Guide 35

PortableServer::POA_ptr find_POA(
const char* _adapter_name,CORBA::Boolean
_activate_it);

If the POA object on which this method is called is the parent of the POA
with the specified _adapter_name, the child POA is returned.

PortableServer::Servant get_servant();

This method returns the default Servant associated with the POA. If no
Servant has been associated with the POA, then a NoServant exception is
raised.

This method requires that the USE_DEFAULT_SERVANT policy be present
with the POA; otherwise, a WrongPolicy exception is raised.

PortableServer::ServantManager_ptr
get_servant_manager();

This method returns a pointer to the ServantManager object associated
with the POA. The result is null if no ServantManager is associated with
the POA.

This method requires that the USE_SERVANT_MANAGER policy be present
with the POA; otherwise, a WrongPolicy exception is raised.

CORBA::Object_ptr
id_to_reference(PortableServer::ObjectId& _oid);

This method returns an object reference if the specified _oid value is
currently active. If the _oid is not active, then an ObjectNotActive
exception is raised.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

PortableServer::Servant
id_to_servant(PortableServer::ObjectId& _oid);

This method has three behaviors:

• If the POA has the RETAIN policy present and the specified _oid is in the
Active Object Map, then it returns the servant associated with that object
in the Active Object Map.

• If the POA has the USE_DEFAULT_SERVANT policy present and a default
servant has been registered with the POA, it returns the default servant.

• Otherwise, an ObjectNotActive exception is raised.

Parameter Description
_adapter_name The name of the AdapterActivator associated

with the POA.
_activate_it If set to TRUE and no child POA of the POA

specified by _adapter_name exists, then the
POA's AdapterActivator, if not null, is invoked.
If it successfully activates the child POA, then
that POA is returned. Otherwise an
AdapterNonExistent exception is raised.

Parameter Description
_oid The ObjectId of the object for which a reference is

to be returned.

36 VisiBroker for C++ API Reference Guide

This method requires that the USE_DEFAULT_SERVANT policy be present
with the POA; if neither policy is present, a WrongPolicy exception is
raised.

PortableServer::Servant
reference_to_servant(CORBA::Object_ptr _reference);

This method has three behaviors:

• If the POA has the RETAIN policy and the specified _reference is present
in the Active Object Map, then it returns the servant associated with that
object in the Active Object Map.

• If the POA has the USE_DEFAULT_SERVANT policy present and a default
servant has been registered with the POA, then it returns the default
servant.

• Otherwise, it raises an ObjectNotActive exception.

This method requires that the RETAIN or USE_DEFAULT_SERVANT policies be
present; otherwise, a WrongPolicy exception is raised.

PortableServer::ObjectId*
reference_to_id(CORBA::Object_ptr _reference);

This method returns theObjectId value encapsulated by the specified
_reference. The invocation is valid only if the _reference was created by
the POA on which the method is called. If the _reference was not created
by the POA, a WrongAdapter exception is raised. The object denoted by the
_reference parameter does not have to be active for this method to
succeed.

Though the IDL specifies that a WrongPolicy exception may be raised by
this method, it is simply declared for possible future extension.

PortableServer::ObjectId* servant_to_id(
PortableServer::Servant _p_servant);

This method has four possible behaviors:

• If the POA has the UNIQUE_ID policy present and the specified
_p_servant is active, then the ObjectId associated with the _p_servant
is returned.

• If the POA has the IMPLICIT_ACTIVATION policy present and either the
POA has the MULTIPLE_ID policy present or the specified _p_servant is
not active, then the _p_servant is activated using the POA-generated
ObjectId and the repository interface id associated with the
_p_servant, and that ObjectId is returned.

Parameter Description
_oid The ObjectId of the object for which a servant is

to be returned.

Parameter Description
_reference The object for which a servant is to

be returned.

Parameter Description
_reference The object for which an ObjectId is

to be returned.

VisiBroker for C++ API Reference Guide 37

• If the POA has the USE_DEFAULT_SERVANT policy present, the specified
_p_servant is the default servant, then the ObjectId associated with
the current invocation is returned.

• Otherwise, a ServantNotActive exception is raised.

This method requires that the USE_DEFAULT_SERVANT policy or a
combination of the RETAIN policy and either the UNIQUE_ID or
IMPLICIT_ACTIVATION policies be present; otherwise, a WrongPolicy
exception is raised.

CORBA::Object_ptr
servant_to_reference(PortableServer::Servant
_p_servant);

This method has the following possible behaviors:

• If the POA has both the RETAIN and the UNIQUE_ID policies present and
the specified _p_servant is active, then an object reference
encapsulating the information used to activate the servant is returned.

• If the POA has both the RETAIN and the IMPLICIT_ACTIVATION policies
present and either the POA has the MULTIPLE_ID policy or the specified
_p_servant is not active, then the _p_servant is activated using a POA-
generated ObjectId and repository interface id associated with the
_p_servant, and a corresponding object reference is returned.

• If this method was invoked in the context of executing a request on the
specified _p_servant, the reference associated with the current
invocation is returned.

• Otherwise, a ServantNotActive exception is raised.

This method requires the presence of the RETAIN policy and either the
UNIQUE_ID or IMPLICIT_ACTIVATION policies if invoked outside the
context of a method dispatched by the POA. If this method is not invoked in
the context of executing a request on the specified _p_servant and one of
these policies is not present, then a WrongPolicy exception is raised.

void set_servant(PortableServer::Servant _p_servant);

This method sets the default Servant associated with the POA. The
specified Servant will be used for all requests for which no servant is found
in the Active Object Map.

This method requires that the USE_DEFAULT_SERVANT policy be present
with the POA; otherwise, a WrongPolicy exception is raised.

Parameter Description
_p_servant The Servant for which the ObjectId

to be returned is desired.

Parameter Description
_p_servant The Servant for which a reference

is to be returned.

Parameter Description
_p_servant The Servant to be used as the

default associated with the POA.

38 VisiBroker for C++ API Reference Guide

void set_servant_manager
(PortableServer::ServantManager_ptr _imagr);

This method sets the default ServantManager associated with the POA.
This method may only be invoked after a POA has been created. Attempting
to set the ServantManager after one has already been set raises a
BAD_INV_ORDER exception.

This method requires that the USE_SERVANT_MANAGER policy be present
with the POA; otherwise, a WrongPolicy exception is raised.

PortableServer::AdapterActivator_ptr the_activator();

This method returns the AdapterActivator associated with the POA.
When a POA is created, it does not have an AdapterActivator (i.e., the
attribute is null). It is system dependent whether a root POA has an
activator and the application can assign one as it wishes.

void the_activator(PortableServer::AdapterActivator_ptr
_val);

This method sets the AdapterActivator object associated with the POA to
the one specified.

char* the_name();

This method returns the read-only attribute which identifies the POA
relative to its parent. This parent is assigned at POA creation. The name of
the root POA is system dependent and should not be relied upon by the
application.

PortableServer::POA_ptr the_parent();

This method returns a pointer to the POA's parent POA. The parent of the
root POA is null.

Portableserver::POAManager_ptr the_POAManager();

This method returns the read-only attribute which is a pointer to the
POAManager associated with the POA.

PortableServer::POAManager
Each POA has an associated POA manager which in turn may be associated
with one or more POA objects. A POA manager encapsulates the processing
state of the POAs with which it is associated.

There are four possible states which a POA manager can be in:

• active
• inactive
• holding
• discarding

Parameter Description
_imagr The ServantManager to be used

as the default used with the POA.

Parameter Description
_val The ActivatorAdapter to be

associated with the POA.

VisiBroker for C++ API Reference Guide 39

A POA manager is created in the holding state. The figure below illustrates
the states which a POA manager transitions to based on the method called.

Include file
You should include the file poa_c.hh when using this class.

PortableServer::POAManager methods

void activate();

This method changes the state of the POA manager to active, which enables
the associated POAs to process requests. If invoked while the POA manager
is in the inactive state, the AdapterInactive exception is raised.

void deactivate(CORBA::Boolean _etherealize_objects,
CORBA::Boolean _wait_for_completion);

This method changes the state of the POA manager to inactive, which
causes the associated POAs to reject requests that have not begun
execution, as well as any new requests. If invoked while the POA manager
is in the inactive state, the AdapterInactive exception is raised.

After the state changes, if the etherealize_objects parameter is

• TRUE- the POA manager causes all associated POAs that have the RETAIN
and USE_SERVANT_MANAGER policies to perform the etherealize operation
on the associated servant manager for all active objects.

• FALSE - the etherealize operation is not called. The purpose is to provide
developers with a means to shut down POAs in a crisis (for example,
unrecoverable error) situation.

If the wait_for_completion parameter is FALSE, this operation returns
immediately after changing the state. If the parameter is TRUE and the
current thread is not in an invocation context dispatched by some POA

40 VisiBroker for C++ API Reference Guide

belonging to the same VisiBroker ORB as this POA, this operation does not
return until there are no actively executing requests in any of the POAs
associated with this POA manager (that is, all requests that were started
prior to the state change have completed) and, in the case of a TRUE
etherealize_objects parameter, all invocations of etherealize have
completed for POAs having the RETAIN and USE_SERVANT_MANAGER
policies. If the parameter is TRUE and the current thread is in an invocation
context dispatched by some POA belonging to the same VisiBroker ORB as
this POA, the BAD_INV_ORDER exception is raised and the state is not
changed.

void discard_requests(CORBA::Boolean
_wait_for_completion);

This method changes the state of the POA manager to discarding, which
causes the associated POAs to discard incoming requests. In addition, any
requests that have been queued but have not started executing are
discarded. When a request is discarded, a TRANSIENT system exception is
returned to the client. If invoked while the POA manager is in the inactive
state, the AdapterInactive exception is raised.

If the wait_for_completion parameter is FALSE, this operation returns
immediately after changing the state. If the parameter is TRUE and the
current thread is not in an invocation context dispatched by some POA
belonging to the same VisiBroker ORB as this POA, this operation does not
return until either there are no actively executing requests in any of the
POAs associated with this POA manager (that is, all requests that were
started prior to the state change have completed) or the state of the POA
manager is changed to a state other than discarding. If the parameter is
TRUE and the current thread is in an invocation context dispatched by some
POA belonging to the same VisiBroker ORB as this POA, the BAD_INV_ORDER
exception is raised and the state is not changed.

void hold_requests(CORBA::Boolean
_wait_for_completion);

This method changes the state of the POA manager to holding, which
causes the associated POAs to queue incoming requests. Any requests that
have been queued but are not executing will continue to be queued while in
the holding state. If invoked while the POA manager is in the inactive state,
the AdapterInactive exception is raised.

If the wait_for_completion parameter is FALSE, this operation returns
immediately after changing the state. If the parameter is TRUE and the
current thread is not in an invocation context dispatched by some POA
belonging to the same VisiBroker ORB as this POA, this operation does not
return until there are no actively executing requests in any of the POAs
associated with this POA manager (that is, all requests that were started
prior to the state change have completed) and, in the case of a TRUE
etherealize_objects parameter, all invocations of etherealize have
completed for POAs having the RETAIN and USE_SERVANT_MANAGER
policies. If the parameter is TRUE and the current thread is in an invocation
context dispatched by some POA belonging to the same VisiBroker ORB as
this POA the BAD_INV_ORDER exception is raised and the state is not
changed.

VisiBroker for C++ API Reference Guide 41

Principal
Deprecated feature

typedef OctetSequence Principal

This feature is deprecated as of VisiBroker 4.0. It is provided for
backward compatibility support only. For more information, see "Using
the BOA with VisiBroker" in the VisiBroker for C++ Developer's
Guide. For support of the current CORBA specification support, Micro
Focus recommends using POAs. See "Using POAs" in the VisiBroker for
C++ Developer's Guide.

The Principal is used to represent the client application on whose
behalf a request is being made. An object implementation can accept or
reject a bind request, based on the contents of the client's Principal.

Include file
You should include the file corba.h when using this typedef.

Principal methods
The BOA class provides the get_principal method, which returns a
pointer to the Principal associated with an object. The Object class also
provides methods for getting and setting the Principal.

PortableServer::RefCountServantBase

class RefCountServantBase : public ServantBase

This class can be used as a standard servant reference counting mix-in
class, rather than the PortableServer::ServantBase class which is to be
used with inheritance class. (Also see “PortableServer::ServantBase”.)

Include file
You should include the file poa_c.hh when using this class.

PortableServer::RefCountServantBase
methods

void _add_ref();

This method increments the reference count by one. You can use this
method from the base class to provide true reference counting.

void _remove_ref();

This method decrements the reference count by one. You can override this
method from the base class to provide true reference counting.

42 VisiBroker for C++ API Reference Guide

PortableServer::ServantActivator

class PortableServer::ServantActivator : public
PortableServer::ServantManager

If the POA has the RETAIN policy present, then it uses servant managers
that are PortableServer::ServantActivator objects.

Include file
You should include the file poa_c.hh when using this class.

PortableServer::ServantActivator methods

void etherealize(PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,
PortableServer::Servant serv,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations);

This method is called by the specified adapter whenever a servant for an
object (the specified oid) is deactivated, assuming that the RETAIN and
USE_SERVANT_MANAGER policies are present.

PortableServer::Servant incarnate(const
PortableServer::ObjectId& oid, PortableServer::POA_ptr
adapter);

This method is called by the POA whenever the POA receives a request for
an inactive object (the specified oid) assuming that the RETAIN and
USE_SERVANT_MANAGER policies are present.

The user supplies a servant manager implementation which is responsible
for locating and creating an appropriate servant that corresponds to the
specified oid value. The method returns a servant, which is also entered
into the Active Object map. Any further requests for the active object are
passed directly to the servant associated with it without invoking the
servant manager.

Parameter Description
oid The object id of the object whose servant is to be

deactivated.
adapter The POA in whose scope the object was active.

serv The servant which is to be deactivated.

cleanup_in_progress If set to TRUE, the reason for the invocation of
the method is either that the deactivate or
destroy method was called with the
etherealize_objects parameter set to
TRUE; otherwise, the method was called for
other reasons.

remaining_activations If the specified serv is associated with other
objects in the specified adapter it is set to
TRUE; otherwise it is FALSE.

VisiBroker for C++ API Reference Guide 43

If this method returns a servant that is already active for a different object
id and if the POA also has the UNIQUE_ID policy present, then it raises the
OBJ_ADAPTER exception.

PortableServer::ServantBase

class PortableServer::ServantBase

The Portable::ServantBase class is the base class for your server
application.

Include file
You should include the file poa_c.hh when using this class.

PortableServer::ServantBase methods

void _add_ref();

This method adds a reference count for this servant. It should be overridden
to provide reference counting functionality for classes derived from this
class as the default implementation does nothing.

PortableServer::POA_ptr _default_POA();

This method returns an Object reference to the root POA of the default
VisiBroker ORB in the current process, (i.e., the same return value as an
invocation of ORB::resolve_initial_references("RootPOA") on the
default VisiBroker ORB. Classes derived from the
PortableServer::ServantBase class may override this method to return
the POA of their choice, if desired.

CORBA::InterfaceDef_ptr _get_interface();

This method returns a pointer to this object's interface definition. See
“Interface repository interfaces and classes (C++)” for more information.

CORBA::Boolean _is_a(const char *rep_id);

This method returns TRUE if this servant implements the interface
associated with the repository id. Otherwise, it returns FALSE.

void _remove_ref();

This method removes a reference count for this servant. It should be
overridden to provide reference counting functionality for classes derived
from this class as the default implementation does nothing.

Parameter Description
oid The object id of the object whose servant is to be

activated.
adapter The POA in whose scope the object is to be

activated.

Parameter Description
rep_id The repository identifier against

which to check.

44 VisiBroker for C++ API Reference Guide

PortableServer::ServantLocator

class PortableServer::ServantLocator : public
PortableServer::ServantManager

When the POA has the NON_RETAIN policy present, it uses servant
managers which are PortableServer::ServantLocator objects. The
servant returned by the servant manager will be used only for a single
request.

Because the POA knows that the servant returned by the servant manager
will be used only for a single request, it can supply extra information for the
servant manager's methods and the servant manager's pair of methods
may do something different than a PortableServer::ServantLocator
servant manager.

Include file
You should include the file poa_c.hh when using this class.

PortableServer::ServantLocator methods

PortableServer::Servant preinvoke(const
PortableServer::ObjectId& oid,
PortableServer::POA_ptr adapter,const char*
operation, Cookie& the_cookie);

This method is called by the POA whenever the POA receives a request for
an object that is not currently active, assuming that the NON_RETAIN and
USE_SERVANT_MANAGER policies are present.

The user-supplied implementation of the servant manager is responsible for
locating or creating an appropriate servant that corresponds to the specified
oid value if possible.

void postinvoke(const PortableServer::ObjectId&
oid,PortableServer::POA_ptr adapter,
const char* operation, Cookie the_cookie,
PortableServer::Servant the_servant)

If the POA has the NON_RETAIN and USE_SERVANT_MANAGER policies
present, this method is called whenever a servant completes a request. This
method is considered to be part of the request on an object, (i.e., if the
method finishes normally, but postinvoke raises a system exception, then
the method's normal return is overridden; and the request completes with
the exception).

Parameter Description
oid The ObjectId value that is associated with the

incoming request.
adapter The POA in which the object is to be activated.

operation The name of the operation which will be called by
the POA when the servant is returned.

the_cookie An opaque value which can be set by the servant
manager to be used later in the postinvoke
method.

VisiBroker for C++ API Reference Guide 45

Destroying a servant that is known to a POA can lead to undefined results.

PortableServer::ServantManager

class PortableServer::ServantManager

Servant managers are associated with Portable Object Adapters (POAs). A
servant manager allows a POA to activate objects on demand when the POA
receives a request targeted for an inactive object.

The PortableServer::ServantManager class has no methods; rather it is the
base class for two other classes: the
PortableServer::ServantActivator and the
Portableserver::ServantLocator classes. For more details, see
“PortableServer::ServantActivator” and “PortableServer::ServantLocator”.
The use of these two classes depends on the POA's policies: RETAIN for the
PortableServer::ServantActivator and NON_RETAIN for the
Portableserver::ServantLocator.

Include file
You should include the file poa_c.hh when using this class.

SystemException

class CORBA::SystemException : public CORBA::Exception

The SystemException class is used to report standard system errors
encountered by the VisiBroker ORB or by the object implementation. This
class is derived from the Exception class, described in “Exception”, which
provides methods for printing the name and details of the exception to an
output stream.

SystemException objects include a completion status which indicates if the
operation that caused the exception was completed. SystemException
objects also have a minor code that can be set and retrieved.

Include file
The corba.h file should be included when you use this class.

Parameter Description
oid The ObjectId value that is associated with the

incoming request.
adapter The POA in which the object is to be activated.

operation The name of the operation which will be called by
the POA when the servant is returned.

the_cookie An opaque value which can be set by the servant
manager in the preinvoke method for use in this
method.

the_servant The servant associated with the object.

46 VisiBroker for C++ API Reference Guide

SystemException methods

CORBA::SystemException(CORBA::ULong minor = 0,
CORBA::CompletionStatus status =
CORBA::COMPLETED_NO);

This method creates a SystemException object with the specified
properties.

CORBA::CompletionStatus completed() const;

This method returns TRUE if this object's completion status is set to
COMPLETED_YES.

void completed(CORBA::CompletionStatus status);

This method sets the completion status for this object.

CORBA::ULong minor() const;

This method returns this object's minor code.

void minor(CORBA::ULong val);

This method sets the minor code for this object.

static CORBA::SystemException *_downcast
(CORBA::Exception *exc);

This method attempts to downcast the specified Exception pointer to a
SystemException pointer. If the supplied pointer points to a
SystemException object or an object derived from SystemException, a
pointer to the object is returned. If the supplied pointer does not point to a
SystemException object, a NULL pointer is returned.

Parameter Description
minor The minor code.

status The completion status, one of
CORBA::COMPLETED_YES,
CORBA::COMPLETED_NO, or
CORBA::COMPLETED_MAYBE.

Parameter Description
status The completion status, one of COMPLETED_YES,

COMPLETED_NO, or COMPLETED_MAYBE.

Parameter Description
val The minor code.

Parameter Description
exc An Exception pointer to be down

casted.

VisiBroker for C++ API Reference Guide 47

Note
The reference count for the Exception object is not incremented by this
method.

UserException

class CORBA::UserException : public CORBA::Exception

The UserException base class is used to derive the user exceptions that
your object implementations may want to raise. This class is derived from
the Exception class, described in “Exception”, which provides methods for
printing the name and details of the exception to an output stream.

UserException objects include a completion status which indicates if the
operation that caused the exception was completed. UserException
objects also have a minor code that can be set and retrieved.

Exception name Description
BAD_INV_ORDER Routine invocations out of order.

BAD_OPERATION Invalid operation.

BAD_CONTEXT Error processing context object.

BAD_PARAM An invalid parameter was passed.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF_REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

MARSHAL Error marshalling parameter or
result.

NO_IMPLEMENT Operation implementation not
available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted
operation.

NO_RESOURCES Insufficient resources to process
request.

NO_RESPONSE Response to request not yet
available.

OBJ_ADAPTOR Failure detected by object adaptor.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

UNKNOWN Unknown exception.

48 VisiBroker for C++ API Reference Guide

Include file
The corba.h file should be included when you use this class.

UserException methods
This method creates a UserException object with the specified properties.

UserException derived classes
class AdapterAlreadyExists : public CORBA::UserException
class AdapterInactive : public CORBA::UserException
class AdapterNonExistent : public CORBA::UserException
class InvalidPolicy : public CORBA::UserException
class NoServant : public CORBA::UserException
class ObjectAlreadyActive : public CORBA::UserException
class ObjectNotActive : public CORBA::UserException
class ServantAlreadyActive : public CORBA::UserException
class ServantNotActive : public CORBA::UserException
class WrongAdapter : public CORBA::UserException
class WrongPolicy : public CORBA::UserException
class ManagerAlreadyExists : public CORBA::UserException

Parameter Description
minor The minor code.

status The completion status, one of
CORBA::COMPLETED_YES,
CORBA::COMPLETED_NO, or
CORBA::COMPLETED_MAYBE.

VisiBroker for C++ API Reference Guide 49

Dynamic interfaces and
classes
This section describes the classes that support the Dynamic Invocation
Interface used by client applications and the Dynamic Skeleton Interface
used by object servers.

Any
The CORBA::Any class is used to represent an IDL type so that its value
may be passed in a type-safe manner. Objects of this class have a pointer
to a TypeCode that defines the object's type and a pointer to the value
associated with the object. Methods are provided to construct, copy, and
destroy an object as well as to initialize and query the object's type and
value. In addition, streaming operators are provided to read and write the
object to a stream.

The code sample below provides an example of how to create and use an
Any.

// create an any object

CORBA::Any anObject;
// use the typecode operator to specify that
// 'anObject' object can store long
anObject <<= CORBA::_tc_long;

Include file
Include the CORBA.h file when you use this structure.

Any methods

CORBA::Any();

This is the default constructor. It creates an empty Any object.

CORBA::Any(const CORBA::Any& val);

This is a copy constructor; it creates an Any object that is a copy of the
specified target.

CORBA::Any(CORBA::TypeCode_ptr tc,
void *value, CORBA::Boolean release = 0);

This constructor creates an Any object initialized with the specified value
and TypeCode.

Parameter Description
val The object to be copied.

Parameter Description
tc The TypeCode of the value contained by this Any.

50 VisiBroker for C++ API Reference Guide

static CORBA::Any-_ptr _duplicate(CORBA::Any_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to it.

static CORBA::Any_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::Any_ptr *ptr);

This static method decrements the reference count for the specified object.
When the count reaches zero, all memory managed by the object is
released and the object is deleted.

Insertion operators
void operator<<=(CORBA::Short);
void operator<<=(CORBA::UShort);
void operator<<=(CORBA::Long);
void operator<<=(CORBA::ULong);
void operator<<=(CORBA::Float);
void operator<<=(CORBA::Double);
void operator<<=(const CORBA::Any&);
void operator<<=(const char *);
void operator<<=(CORBA::LongLong);
void operator<<=(CORBA::ULongLong);
void operator<<=(CORBA::LongDouble);

These operators initialize this object with the specified value, automatically
setting the appropriate TypeCode for the value. If this Any object was
constructed with the release flag set to TRUE, the value previously stored
in this Any object is released before the new value is assigned.

void operator<<=(CORBA::TypeCode_ptr tc);

This method initializes this object with the specified TypeCode of the value.

Extraction operators
CORBA::Boolean operator>>=(CORBA::Short&) const;
CORBA::Boolean operator>>=(CORBA::UShort&) const;

value The value contained by this Any.

release If set to TRUE, the memory associated with this Any
object's value is released when this Any object is
destroyed.

Parameter Description
ptr The Any to be duplicated.

Parameter Description
ptr The Any to be released.

Parameter Description
tc The TypeCode to set for this Any.

Parameter Description

VisiBroker for C++ API Reference Guide 51

CORBA::Boolean operator>>=(CORBA::Long&) const;
CORBA::Boolean operator>>=(CORBA::ULong&) const;
CORBA::Boolean operator>>=(CORBA::Float&) const;
CORBA::Boolean operator>>=(CORBA::Double&) const;
CORBA::Boolean operator>>=(CORBA::Any&) const;
CORBA::Boolean operator>>=(const char *&) const;
CORBA::Boolean operator>>=(CORBA::LongLong&) const;
CORBA::Boolean operator>>=(CORBA::ULongLong&) const;
CORBA::Boolean operator>>=(CORBA::LongDouble&) const;

These operators store the value from this object into the specified target. If
the TypeCode of the target does not match the TypeCode of the stored
value, FALSE is returned and no value is extracted. Otherwise, the stored
value is assigned to the target and TRUE is returned.

Deprecated operator
The following extraction operator is deprecated:

CORBA::Boolean operator>>=(char *&) const;

It is supported for backward compatibility, but Micro Focus recommend that
where possible, you use an operator in the above list instead.

CORBA::Boolean operator>>=(CORBA::TypeCode_ptr& tc)
const;

This method extracts the TypeCode of the value stored in this object.

ContextList

class CORBA::ContextList

This class contains a list of contexts that may be associated with an
operation request. See “Request” for more information.

ContextList methods

CORBA::ContextList();

This method constructs an empty Context list.

~CORBA::ContextList();

This method is the default destructor.

void add(const char *ctx);

This method adds the specified context to this object's list.

void add_consume(char *ctx);

This method adds the specified context code to this object's list.
ThisContextList becomes the owner of the context specified by the

Parameter Description
tc The object where the TypeCode for this Any is to

be stored.

Parameter Description
ctx The context to be added to the list.

52 VisiBroker for C++ API Reference Guide

argument. You should not attempt to access or free this Context after you
invoke this method.

CORBA::ULong count() const;

This method returns the number of items currently stored in the list.

const char *item(CORBA::ULong index);

This method returns a pointer to the context that is stored in the list at the
specified index. If the index is invalid, a NULL pointer is returned. You
should not attempt to free the returned context. To remove a context, use
the remove method instead.

void remove(CORBA::ULong index);

This method removes the context with the specified index from the list. If
the index is invalid, no removal will occur.

static CORBA::ContextList-_ptr
_duplicate(CORBA::ContextList_ptr ptr);

This static method increments the reference count for
the object and then returns a pointer to it.

static CORBA::ContextList_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::ContextList *ptr);

This static method decrements the reference count for this object. When the
count reaches zero, all memory managed by the object is released and the
object is deleted.

Parameter Description
ctx The context to be added to the list.

Parameter Description
index The zero-based index of the context

to be returned.

Parameter Description
index The zero-based index of the context

to be removed.

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

VisiBroker for C++ API Reference Guide 53

DynamicImplementation

class PortableServer::DynamicImplementation : public
PortableServer::ServantBase

This base class is used derive object implementations that use the Dynamic
Skeleton Interface instead of a skeleton class generated by the IDL
compiler. You must provide implementations of the invoke and _primary-
interface() methods when deriving from this class.

DynamicImplementation methods

virtual void invoke(CORBA::ServerRequest_ptr request) =
0;

This method is invoked by the POA whenever client operation requests are
received for your object implementation. You must provide an
implementation of this method which validates the ServerRequest object's
contents, performs the necessary processing to fulfill the request, and
returns the results to the client. For more information on the
ServerRequest class, see “ServerRequest”.

virtual CORBA::RepositoryId _primary_interface(
const PortableServer::ObjectId& oid
PortableServer::POA_ptr poa) const;

This method will be invoked as a callback by the POA. The servants that
inherit from the DynamicImplementation class must implement it. This
method should be called directly or unpredictable behavior will result.
Invoking this method under other circumstances may lead to unpredictable
results. The _primary_interface method receives an ObjectId value
and a POA_ptr as input parameters and returns a valid RepositoryId
representing the most-derived interface for that oid.

DynAny

class DynamicAny::DynAny : public CORBA::LocalObject

A DynAny object is used by a client application or server to create and
interpret data types at runtime which were not defined at compile time. A
DynAny may contain a basic type (such as a boolean, int, or float) or a
complex type (such as a struct or union). The type contained by a
DynAny is defined when it is created and may not be changed during the
lifetime of the object.

A DynAny object may represent a data type as one or more components,
each with its own value. The next, seek, rewind, and
current_component methods are provided to help you navigate through
the components.

A DynAnyFactory is created by calling
ORB::resolve_initial_references("DynAnyFactory"). The factory is
then used to create basic or complex types. The DynAnyFactory belongs to
the DynamicAny module.

Parameter Description
request The ServerRequest object that

represents the client's operation
request.

54 VisiBroker for C++ API Reference Guide

DynAny objects for basic types are created using the
DynAnyFactory::create_dyn_any_from_type_code method. A DynAny
object may also be created and initialized from an Any object using the
DynAnyFactory::create_dyn_any method.

The following interfaces are derived from DynAny and provide support for
constructed types that are managed dynamically.

Include file
The dynany.h file should be included when you use this class.

Important usage restrictions
DynAny objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB::object_to_string
method. However, you may use the DynAny::to_any method to convert a
DynAny object into an Any, which can be used as a parameter.

DynAny methods

void assign(DynamicAny::DynAny_ptr dyn_any);

Initializes the value in this DynAny object from the specified DynAny.

A type mismatch exception is raised if the type contained in the Any does
not match the type contained by this object.

DynamicAny::DynAny_ptr copy();

Returns a copy of this object.

virtual CORBA::ULong component_count();

Returns the number of components for the complex type stored inside the
DynAny as an unsigned long.

virtual DynamicAny::DynAny_ptr current_component();

Returns the current component in this object.

virtual void destroy();

Destroys this object.

virtual CORBA::Boolean equal(const
DynamicAny::DynAny_ptr value);

Compares two DynAny values for equality. Returns TRUE if they are equal,
FALSE otherwise.

Constructed type Interface
Array DynArray in “DynArray”.
Enumeration DynEnum in “DynEnum”.
Sequence DynSequence in

“DynSequence”.
Structure DynStruct in “DynStruct”
Union DynUnion in “DynUnion”

VisiBroker for C++ API Reference Guide 55

virtual void from_any(const CORBA::Any& value);

Initializes the current component of this object from the specified Any
object.

A type mismatch exception is raised if the TypeCode of value contained in
the Any does not match the TypeCode that was defined for this object when
it was created.

If the value parameter passed is not legal, the operation raises an
InvalidValue exception.

virtual CORBA::Boolean next();

Advances to the next component, if one exists, and returns TRUE. If there
are no more components, this method returns FALSE.

virtual void rewind();

Sets the current component of this object to be the first component defined
in this DynAny.

If this object contains only one component, invoking this method has no
effect.

virtual CORBA::Boolean seek(CORBA::Long index);

Makes the component with the specified index the current component. If
there is no component at the specified index, this method returns FALSE,
otherwise it returns TRUE.

virtual CORBA::Any* to_any();

Converts the DynAny object into an Any object and returns a pointer to the
Any object.

CORBA::TypeCode_ptr type();

Returns the TypeCode of the value stored in the DynAny.

Extraction methods
The DynAny extraction methods return the type contained in this DynAny
object's current component. The list below shows the name of each of the
extraction methods.

A TypeMismatch exception is raised if the value contained in this DynAny
does not match the expected return type for the extraction method used.

Extraction methods offered by the DynAny class are:

virtual CORBA::Any* get_any();
virtual CORBA::Boolean get_boolean();
virtual CORBA::Char get_char();
virtual CORBA::Double get_double();
virtual DynamicAny::DynAny* get_dyn_any();

Parameter Description
value An Any object containing the value

to set for this object.

Parameter Description
index The zero-based index of the desired

component.

56 VisiBroker for C++ API Reference Guide

virtual CORBA::Float get_float();
virtual CORBA::Long get_long();
virtual CORBA::LongLong get_longlong();
virtual CORBA::Octet get_octet();
virtual CORBA::Object_ptr get_reference();
virtual CORBA::Short get_short();
virtual char* get_string();
virtual CORBA::TypeCode_ptr get_typecode();
virtual CORBA::ULong get_ulong();
virtual CORBA::UlongLong get_ulonglong();
virtual CORBA::UShort get_ushort();
virtual CORBA::ValueBase* get_val();
virtual CORBA::WChar get_wchar();
virtual CORBA::WChar* get_wstring();

Solaris, AIX, HP-UX, and Linux 64-bit:
virtual CORBA::LongDouble get_longdouble();

Insertion methods
An insertion method copies a value of a particular type to this DynAny
object's current component. Following is the list of methods provided for
inserting various types.

These methods raise an InvalidValue exception if the inserted object's
type does not match the DynAny object's type.

Insertion methods offered by the DynAny class are:

virtual void insert_any(const CORBA:Any& value);
virtual void insert_boolean(CORBA::Boolean value);
virtual void insert_char(CORBA::Char value);
virtual void insert_double(CORBA::Double value);
virtual void insert_dyn_any (const DynamicAny::DynAny_ptr

value);
virtual void insert_float(CORBA::Float value);
virtual void insert_long(CORBA::Long value);
virtual void insert_longlong(CORBA::LongLong value);
virtual void insert_octet(CORBA::Octet value);
virtual void insert_reference(CORBA:Object_ptr value);
virtual void insert_short(CORBA::Short value);
virtual void insert_string(const char* value);
virtual void insert_typecode(CORBA:TypeCode_ptr value);
virtual void insert_ulong(CORBA::ULong value);
virtual void insert_ulonglong(CORBA::ULongLong value);
virtual void insert_ushort(CORBA::UShort value);
virtual void insert_val(const CORBA::ValueBase& value);
virtual void insert_wchar(CORBA::WChar value);
virtual void insert_wstring(const CORBA::WChar* value);

Solaris, AIX, HP-UX, and Linux 64-bit:
virtual void insert_longdouble(CORBA::LongDouble value);
Solaris only

VisiBroker for C++ API Reference Guide 57

DynAnyFactory

class DynamicAny::DynAnyFactory : public
CORBA::LocalObject

A DynAnyFactory object is used to create a new DynAny object. To obtain a
reference to the DynAnyFactory object, call
ORB::resolve_initial_references("DynAnyFactory").

DynAnyFactory methods

DynAny_ptr create_dyn_any (const CORBA::Any& value);

Creates a DynAny object of the specified value

DynAny_ptr create_dyn_any_from_type_code
(CORBA::TypeCode_ptr type);

Creates a DynAny object of the specified type.

DynArray

class DynamicAny::DynArray : public VISDynComplex

Objects of this class are used by a client application or server to create and
interpret array data types at runtime which were not defined at compile
time. A DynArray may consist of a sequence of basic types (such as a
boolean, int, or float) or constructed types (such as struct or union).
The type contained by a DynArray is defined when it is created and may
not be changed during the lifetime of the object.

The next, rewind, seek, and current_component methods, inherited
from DynAny, may be used to navigate through the components.

The VISDynComplex class is a helper class that allows the VisiBroker ORB
to manage complex DynAny types.

Important usage restrictions
DynArray objects cannot be used as parameters on operation requests or
DII requests, nor can they be externalized using the
ORB::object_to_string method. However, you may use the
DynAny::to_any method to convert a DynArray object to a sequence of
Any objects, which can be used as a parameter.

DynArray methods

virtual void destroy();

Destroys this object.

Parameter Description
value A new DynAny object of a specified

value.

Parameter Description
type The type of the new DynAny

object.

58 VisiBroker for C++ API Reference Guide

CORBA::AnySeq* get_elements();

Returns a sequence of Any objects containing the values stored in this
object.

void set_elements(const CORBA::AnySeq& _value);

Assigns the elements in the DynArray to those in the sequence specified by
the value parameter.

DynamicAny::DynAnySeq* get_elements_as_dyn_any();

Returns the elements contained in the DynAny as a DynAny sequence.

void set_elements_as_dyn_any (const
DynamicAny::DynAnySeq& value);

Sets the elements contained in the object from the specified DynAny
sequence.

An InvalidValue exception is raised if the number of elements in value is
not equal to the number of elements in this DynArray. A type mismatch
exception is raised if the type of the Any values do not match the TypeCode
of the DynAny.

DynEnum

class DynamicAny::DynEnum : public DynamicAny::DynAny

Objects of this class are used by a client application or server to create and
interpret enumeration values at runtime which were not defined at compile
time.

Since objects of this type contains a single component, the DynAn::rewind
and DynAny::next methods of a DynEnum object always return FALSE.

Important usage restrictions
DynEnum objects cannot be used as parameters on operation requests or
DII requests, nor can they be externalized using the
ORB::object_to_string method. However, you may use the to_any
method to convert a DynEnum object to an Any, which can be used as a
parameter.

DynEnum methods

void from_any(const CORBA::Any& value);

Initializes the value of this object using the specified Any object.

Parameter Description
_value An array of Any objects whose

values will be set in this
DynArray.

VisiBroker for C++ API Reference Guide 59

An Invalid exception is raised if the TypeCode of value contained in the
Any does not match the TypeCode defined for this object when it was
created.

CORBA::Any* to_any();

Returns an Any object containing the value of the current component.

char* get_as_string();

Returns the DynEnum object's value as a string.

void set_as_string(const char* value_as_string);

Sets the value of this DynEnum to the specified string.

CORBA::ULong get_as_ulong()

Returns an unsigned long containing the DynEnum object's value.

void set_as_ulong(CORBA::ULong value_as_ulong)

Sets the value of this DynEnum to the specified CORBA::Ulong.

DynSequence

class DynamicAny::DynSequence : public
DynamicAny::DynArray

Objects of this class are used by a client application or server to create and
interpret sequence data types at runtime which were not defined at compile
time. A DynSequence may contain a sequence of basic types (such as a
boolean, int, or float) or constructed types (such as a struct or
union). The type contained by a DynSequence is defined when it is created
and may not be changed during the lifetime of the object.

The next, rewind, seek, and current_component methods may be used
to navigate through the components.

Important usage restrictions
DynSequence objects cannot be used as parameters on operation requests
or DII requests nor can they be externalized using the
ORB::object_to_string method. However, you may use the to_any
method to convert a DynSequence object to a sequence of Any objects. You
can use the sequence of Any objects as a parameter.

Parameter Description
value An Any object.

Parameter Description
value_as_string A string that will be used to set the

value in this DynEnum.

Parameter Description
value_as_ulong An integer that will be used to set

the value in this DynEnum.

60 VisiBroker for C++ API Reference Guide

DynSequence methods

CORBA::ULong get_length();

Returns the number of elements contained in this DynSequence.

void set_length(CORBA::ULong length);

Sets the number of elements contained in this DynSequence.

If you specify a length that is less than the current number of elements, the
sequence is truncated.

CORBA::AnySeq * get_elements();

Returns a sequence of Any objects containing the value stored in this
object.

void set_elements (const AnySeq& _value)

Sets the elements within this object with specified sequence of Any objects.

set _elements_as_dyn_any();

See “DynArray” for more details.

get_elements_as_dyn_any();

See “DynArray” for more details.

DynStruct

class DynamicAny::DynStruct :public VISDynComplex

Objects of this class are used by a client application or server to create and
interpret structures at runtime which were not defined at compile time.

The next, rewind, seek, and current_component methods may be used
to navigate through the structure members.

You create an DynStruct object by invoking the
DynAnyFactory::create_dyn_any_from_typecode method.

Important usage restrictions
DynStruct objects cannot be used as parameters on operation requests or
DII requests, nor can they be externalized using the
ORB::object_to_string method. However, you may use the to_any
method to convert a DynStruct object to an Any object, which can be used
as a parameter.

DynStruct methods

void destroy();

Destroys this object.

Parameter Description
length The number of components to be

contained in this DynSequence.

VisiBroker for C++ API Reference Guide 61

CORBA::FieldName current_member_name();

Returns the member name of the current component.

CORBA::TCKind current_member_kind();

Returns the TypeCode associated with the current component.

DynamicAny::NameValuePairSeq get_members();

Returns the members of the structure as a sequence of NameValuePair
objects.

void set_members(const DynamicAny::NameValuePairSeq&
value);

Sets the structure members from the array of NameValuePair objects.

DynamicAny::NameDynAnyPairSeq get_members_as_dyn_any();

Returns the members of the structure as a NameDynAnyPair sequence.

void set_members_as_dyn_any(const
DynamicAny::NameDynAnyPairSeq value);

Sets the structure members from NameDynAnyPair objects.

An InvalidValue exception is raised if the length of the value sequence is
not equal to the number of members of DynStruct, and a TypeMismatch
exception is raised when any of the element's typecode does not match that
of the structure.

DynUnion

class DynamicAny::DynUnion : public VISDynComplex

This interface is used by a client application or server to create and interpret
unions at runtime which were not defined at compile time. The DynUnion
contains a sequence of two elements: the union discriminator and the actual
member.

The next, rewind, seek, and current_component methods may be used
to navigate through the components.

You create a DynUnion object by invoking the
DynamicAny::DynAnyFactory::create_dyn_any_from_type_code
method and passing a union type code as an argument.

Important usage restrictions
DynUnion objects cannot be used as parameters on operation requests or
DII requests nor can they be externalized using the
ORB::object_to_string method. However, you may use the
DynAny::to_any method to convert a DynUnion object to an Any object
which can be used as a parameter.

DynUnion methods

DynamicAny::DynAny_ptr get_discriminator();

Returns a DynAny object containing the discriminator for the union.

62 VisiBroker for C++ API Reference Guide

CORBA::TCKind discriminator_kind();

Returns the type code of the discriminator for the union.

DynamicAny::DynAny_ptr member();

Returns a DynAny object for the current component which represents a
union member.

CORBA::TCKind member_kind();

Returns the type code for the current component, which represents a
member in the union.

CORBA::FieldName member_name();

Returns the member name of the current component.

void set_discriminator (const DynamicAny::DynAny_ptr
value);

Sets the discriminator of this DynUnion to the specified value.

void set_to_default_member();

Sets the discriminator to a value that is consistent with the value of the
default case of a union.

void set_to_no_active_member();

Sets the discriminator to a value that does not correspond to any of the
union's case labels.

CORBA::Boolean has_no_active_member();

Returns TRUE if the union has no active member (that is, the union's value
consists solely of its discriminator because the discriminator has a value
that is not listed as an explicit case label).

Environment

class CORBA::Environment

The Environment class is used for reporting and accessing both system
and user exceptions on platforms where C++ language exceptions are not
supported. When an interface specifies that user exceptions may be raised
by the object's methods, the Environment class becomes an explicit
parameter of that method. If an interface does not raise any exceptions, the
Environment class is an implicit parameter and is only used for reporting
system exceptions. If an Environment object is not passed from the client
to a stub, the default of per-object Environment is used.

Multithreaded applications have a global Environment object for each
thread that is created. Applications that are not multithreaded have just one
global Environment object.

Include file
You should include the corba.h file when you use this class.

VisiBroker for C++ API Reference Guide 63

Environment methods

void ORB::create_environment(COBRA::Environment_out
ptr);

This method can be used to create a new Environment object.

Note
This method is provided for CORBA compliance. You may find it easier to
use the constructor provided for this class or the C++ new operator.

Environment();

This method creates an Environment object. This is equivalent to calling
the ORB::create_environment method.

static COBRA::Environment&
CORBA::current_environment();

This static method returns a reference to the global Environment object for
the application process. In multithreaded applications, it returns the global
Environment object for this thread.

void exception(COBRA::Exception *exp);

This method records the Exception object passed as an argument. The
Exception object must be dynamically allocated because the specified
object will assume ownership of the Exception object and will delete it
when the Environment itself is deleted. Passing a NULL pointer to this
method is equivalent to invoking the clear method on the Environment.

CORBA::Exception *exception() const;

This method returns a pointer to the Exception currently recorded in this
Environment. You must not invoke delete on the Exception pointer
returned by this call. If no Exception has been recorded, a NULL pointer is
returned.

void clear();

This method deletes any Exception object that it holds. If this object holds
no exception, this method has no effect.

ExceptionList

class CORBA::ExceptionList

This class contains a list of type codes that represent exceptions that may
be raised by an operation request. See “Request”.

Parameter Description
ptr The pointer will be set to point to

the newly created object.

Parameter Description
exp A pointer to a dynamically allocated Exception

object to be recorded for this Environment.

64 VisiBroker for C++ API Reference Guide

ExceptionList methods

CORBA::ExceptionList();

This method constructs an empty exception list.

CORBA::ExceptionList(CORBA::ExceptionList& list);

This is a copy constructor.

~CORBA::ExceptionList();

This method is the default destructor.

void add(CORBA::TypeCode_ptr tc);

This method adds the specified exception type code to this object's list.

void add_consume(CORBA::TypeCode_ptr tc);

This method adds the specified exception type code to this object's list.
Ownership of the passed argument is assumed by this ExceptionList. You
should not attempt to access or free the argument after invoking this
method.

CORBA::ULong count() const;

This method returns the number of items currently stored in the list.

CORBA::TypeCode_ptr item(CORBA::ULong index);

This method returns a pointer to the TypeCode stored in the list at the
specified index. If the index is invalid, a NULL pointer is returned. You
should not attempt to access or free the argument after invoking this
method. To remove a TypeCode from the list, use the remove method.

void remove(CORBA::long index);

This method removes the TypeCode with the specified index from the list.
If the index is invalid, no removal occurs.

Parameter Description
list The list to be copied.

Parameter Description
tc The type code of an exception to be

added to the list.

Parameter Description
tc The type code of an exception to be

added to the list.

Parameter Description
index The zero-based index of the type

code to be returned.

Parameter Description
index The index of the type code to be

removed. The index is zero-based.

VisiBroker for C++ API Reference Guide 65

static CORBA::ExceptionList-_ptr _duplicate(
CORBA::ExceptionList_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to that object.

static CORBA::ExceptionList_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::ExceptionList *ptr);

This static method decrements the reference count for the specified object.
When the count reaches zero, all memory managed by the object is
released and the object is deleted.

NamedValue

class CORBA::NamedValue

The NamedValue class is used to represent a name-value pair used as a
parameter or return value in a Dynamic Invocation Interface request.
Objects of this class are grouped into an NVList, described in “NVList”. The
value of the name-value pair is represented by using an Any object. The
Request class is described in “Request”.

Include file
You should include the file corba.h when using this class.

NamedValue methods

CORBA::Flags flags() const;

This method returns the flag defining how this name-value pair is to be
used. It returns one of the following:

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

ARG_IN The name-value pair is used as an input parameter.

ARG_OUT The name-value pair is used as an output parameter.

ARG_INOUT The name-value pair is used both as an input and an
output parameter.

IN_COPY_VALUE When combined with the ARG_INOUT flag, this flag
indicates that the ORB copies the output parameter. This
allows the ORB to release memory associated with this
parameter without impacting the client application's
memory.

66 VisiBroker for C++ API Reference Guide

const char *name() const;

This method returns the name portion of this object's name-value pair. You
should never release the storage pointed to by the return argument.

CORBA::Any *value() const;

This method returns the value portion of this object's name-value pair. You
should never release the storage pointed to by the return argument.

static CORBA::NamedValue-_ptr
_duplicate(CORBA::NamedValue_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to it.

static CORBA::NamedValue_ptr _nil();

This static method returns a NULL pointer that can be used to initialize a
CORBA::NamedValue_ptr.

static void _release(CORBA::NamedValue *ptr);

This static method decrements the reference count for the specified object.
When the count reaches zero, all memory managed by the object is
released and the object is deleted.

NVList

class CORBA::NVList

The NVList class is used to contain a list of NamedValue objects, described
in “NamedValue”. It is used to pass parameters associated with a Dynamic
Invocation Interface request. The Request class is described in “Request”.

Several methods are provided for adding items to the list. You should never
release the storage pointed to by the return argument. Always use the
remove method to delete an item from the list.

Include file
You should include the file corba.h when using this class.

NVList methods

CORBA::NamedValue_ptr add(CORBA::Flags flags);

This method adds a NamedValue object to this list, initializing only the flags.
Neither the name or value of the added object are initialized. A pointer is
returned which can be used to initialize the name and value attributes of the

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

VisiBroker for C++ API Reference Guide 67

NamedValue. You should never release the storage associated with the
return argument.

CORBA::NamedValue_ptr add_item(const char *name,
CORBA::Flags flag);

This method adds a NamedValue object to this list, initializing the object's
flag and name attributes. A pointer is returned which can be used to
initialize the value attribute of the NamedValue.

Caution
You should never release the storage associated with the return argument.

NamedValue_ptr add_item_consume(char *nm, CORBA::Flags
flag);

This method is the same as the add_item method, except that the NVList
takes over the management of the storage pointed to by nm. You will not be
able to access nm after this method is called because the list may have
copied and released it. When this item is removed, the storage associated
with it is automatically freed.

Caution
You should never release the memory associated with this method's return
value.

CORBA::NamedValue_ptr add_value(const char *name, const
CORBA::Any *value,CORBA::Flags flag);

This method adds a NamedValue object to this list, initializing the name,
value, and flag. A pointer to the NamedValue object is returned.

Caution
You should never release the storage associated with the return argument.

Parameter Description
flags The flag indicating the intended use of the

NamedValue object. It can be one of ARG_IN,
ARG_OUT, or ARG_INOUT.

Parameter Description
name The name.

flag The flag indicating the intended use of the
NamedValue object. It can be one of ARG_IN,
ARG_OUT, or ARG_INOUT.

Parameter Description
name The name.

flag The flag indicating the intended use of the
NamedValue object. It must be one of ARG_IN,
ARG_OUT, or ARG_INOUT.

Parameter Description
name The name.

68 VisiBroker for C++ API Reference Guide

NamedValue_ptr add_value_consume(char *nm, CORBA::Any
*value, CORBA::Flags flag);

This method is the same as the add_value method, except that the NVList
takes over the management of the storage pointed to by nm and value. You
will not be able to access nm or value after this method is called because
the list may have copied and released them. When this list element is
removed, the storage associated with it is automatically freed.

CORBA::Long count() const;

This method returns the number of NamedValue objects in this list.

static CORBA::Boolean CORBA::is_nil(NVList_ptr obj);

This method returns TRUE if the specified NamedValue pointer is NULL.

NamedValue_ptr item(CORBA::ULong index);

This method returns the NamedValue in the list with the specified index.

Caution
Never release the storage associated with the return argument.

static void CORBA::release(CORBA::NVList_ptr obj);

This static method releases the specified object.

void remove(CORBA::ULong index);

This method deletes the NamedValue object located at the specified index
from this list. Storage associated with items in the list that were added

value The value.

flag The flag indicating the intended use of the
NamedValue object. It can be one of ARG_IN,
ARG_OUT, or ARG_INOUT.

Parameter Description
nm The name.

value The value.

flag The flag indicating the intended use of the
NamedValue object. It must be one of ARG_IN,
ARG_OUT, or ARG_INOUT.

Parameter Description
obj The pointer to the object to be

checked.

Parameter Description
index The zero-based index of the desired

NamedValue object.

Parameter Description
obj The object to be released.

Parameter Description

VisiBroker for C++ API Reference Guide 69

using the add_item_consume or add_value_consume methods is released
before the item is removed.

static CORBA::NVList_ptr _duplicate(CORBA::NVList_ptr
ptr);

This static method increments the reference count for the specified object
and then returns a pointer to that object.

static CORBA::NVList_ptr _nil();

This static method returns a NULL pointer that can be used to initialize an
NV_List pointer. For example, you might do something like this:
CORBA::NV_List_ptr p = CORBA::NVList::_nil();

static void _release(CORBA::NVList *ptr);

This static method decrements the reference count for the specified object.
When the count reaches zero, all memory managed by the object is
released and the object is deleted.

Request

class CORBA::Request

The Request class is used by client applications to invoke an operation on
an ORB object using the Dynamic Invocation Interface. A single ORB object
is associated with a given Request object. The Request represents an
operation that is to be performed on the ORB object. It includes the
arguments to be passed, the Context, and an Environment object, if any.
Methods are provided for invoking the request, receiving the response from
the object implementation, and retrieving the result of the operation.

You can create a Request object by using the Object::_create_request.
For more information, go to “Core interfaces and classes”.

Note
A Request object retains ownership of all return parameters, so you should
never attempt to free them.

Include file
Include the corba.h file when you use this class.

Parameter Description
index The index of the NamedValue

object. Note that indexing is zero-
based.

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

70 VisiBroker for C++ API Reference Guide

Request methods

CORBA::Any& add_in_arg();

This method adds an unnamed input argument to this Request and returns
a reference to the Any object so that you can set its name, type, and value.

CORBA::Any& add_in_arg(const char *name);

This method adds a named input argument to this Request and returns a
reference to the Any object so that you can set its type and value.

Caution
You should never release the memory associated with this method's return
value.

CORBA::Any& add_inout_arg();

This method adds an unnamed inout argument to this Request and
returns a reference to the Any object so that you can set its name, type,
and value.

CORBA::Any& add_inout_arg(const char *name);

This method adds a named inout argument to this Request and returns a
reference to the Any object so that you can set its type and value.

CORBA::Any& add_out_arg();

This method adds an unnamed output argument to this Request and
returns a reference to the Any object so that you can set its name, type,
and value.

CORBA::Any& add_out_arg(const char *name);

This method adds a named output argument to this Request and returns a
reference to the Any object so that you can set its type and value.

CORBA::NVList_ptr arguments();

This method returns a pointer to an NVList object containing the
arguments for this request. The pointer can be used to set or retrieve the
argument values. For more information on NVList, see “NVList”.

Caution
You should never release the memory associated with this method's return
value.

Parameter Description
name The name of the input argument to

be added.

Parameter Description
name The name of the inout argument to

be added.

Parameter Description
name The name of the output argument

to be added.

VisiBroker for C++ API Reference Guide 71

CORBA::ContextList_ptr contexts();

This method returns a pointer to a list of all the Context objects that are
associated with this Request. For more information on the Context class,
go to “Core interfaces and classes”.

Caution
You should never release the memory associated with this method's return
value.

CORBA::Context_ptr ctx() const;

This method returns a pointer to the Context associated with this request.

void ctx(CORBA::Context_ptr ctx);

This method sets the Context to be used with this request. For more
information on the Context class, go to “Core interfaces and classes”.

CORBA::Environment_ptr env();

This method returns a pointer to the Environment associated with this
request. For more information on the Environment class, go to
“Environment”.

CORBA::ExceptionList_ptr exceptions();

This method returns a pointer to a list of all the exceptions that this request
may raise.

Caution
You should never release the memory associated with this method's return
value.

void get_response();

This method is used after the send_deferred method has been invoked to
retrieve a response from the object implementation. If there is no response
available, this method blocks the client application until a response is
received.

void invoke();

This method invokes this Request on the ORB object associated with this
request. This method blocks the client until a response is received from the
object implementation. This Request should be initialized with the target
object, operation name and arguments before this method is invoked.

const char* operation() const;

This method returns the name of the operation that this request performs.

CORBA::Boolean poll_response();

This non-blocking method is invoked after the send_deferred method to
determine if a response has been received. This method returns TRUE if a
response has been received, otherwise it returns FALSE.

Parameter Description
ctx The Context object to be associated

with this request.

72 VisiBroker for C++ API Reference Guide

CORBA::NamedValue_ptr result();

This method returns a pointer to a NamedValue object where the return
value for the operation will be stored. The pointer can be used to retrieve
the result value after the request has been processed by the object
implementation. For more information on the NamedValue class, go to
“NamedValue”.

CORBA::Any& return_value();

This method returns a reference to an Any object that represents the return
value of this Request object.

void set_return_type(CORBA::TypeCode_ptr tc);

This method sets the TypeCode of the return value that is expected. You
must set the return value's type before using the invoke method or one of
the send methods.

void send_deferred();

Like the invoke method, this method sends this Request to the object
implementation. Unlike the invoke method, this method does not block
waiting for a response. The client application can retrieve the response
using the get_response method.

void send_oneway();

This method invokes this Request as a oneway operation. Oneway
operations do not block and do not result in a response being sent from the
object implementation to the client application.

CORBA::Object_ptr target() const;

This method returns a reference to the target object on which this request
will operate.

static CORBA::Request-_ptr
_duplicate(CORBA::Request_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to that object.

static CORBA::Request_ptr _nil();

This static method returns a NULL pointer that can be used to initialize a
CORBA::Request_ptr object.

static void _release(CORBA::Request_ptr ptr);

This static method decrements the reference count for the specified object.
When the count reaches zero, all memory managed by the object is
released and the object is deleted.

Parameter Description
tc The return value's type.

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

VisiBroker for C++ API Reference Guide 73

ServerRequest
The ServerRequest class is used to represent an operation request
received by an object implementation that is using the Dynamic Skeleton
Interface. When the POA receives a client operation request, it invokes the
object implementation's invoke method and passes an object of this type.

This class provides the methods needed by the object implementation to
determine the operation being requested and the arguments. It also
provides methods for setting the return value and reflecting exceptions to
the client application.

You should never attempt to free memory associated with any value
returned by this class.

Include file
The corba.h file should be included when you use this class.

ServerRequest methods

void arguments(CORBA::NVList_ptr param);

This method sets the parameter list for this request.

CORBA::Context_ptr ctx()

This method returns the Context object associated with the request.

Caution
You should never release the memory associated with this method's return
value.

void exception(CORBA::Any_ptr exception);

This method is used to reflect the specified exception to the client
application.

const char *operation() const;

Returns the name of the operation being requested.

const char* op_name() const

This method returns the name of the operation associated with the request.
The object implementation uses this name to determine if the request is
valid, to perform the appropriate processing to fulfill the request, and to
return the appropriate value to the client.

Parameter Description
params The parameter list to be filled in. You must initialize

this list with the appropriate number of Any objects
and set their type and flag values prior to invoking
this method.

Parameter Description
exception The exception that was raised. If this pointer is

NULL, a CORBA::UnknownUserException is
reflected.

74 VisiBroker for C++ API Reference Guide

void params(CORBA::NVList_ptr params);

This method accepts an NVList object initialized with the appropriate
number of Any objects. The method fills the NVList in with the parameters
supplied by the client.

void result(CORBA::Any_ptr result);

This method sets the result that is to be reflected to the client application.

void set_exception(const CORBA::Any& a);

This method sets the exception that is to be reflected to the client
application.

void set_result(const CORBA::Any& a);

This method sets the result that is to be reflected to the client application.

static CORBA::ServerRequest-_ptr
_duplicate(CORBA::ServerRequest_ptr ptr);

This static method increments the reference count for the specified object
and then returns a pointer to the object.

static CORBA::ServerRequest_ptr _nil();

This static method returns a NULL pointer that can be used for initialization
purposes.

static void _release(CORBA::ServerRequest *ptr);

This static method decrements the reference count for the specified object.
When the count reaches zero, all memory managed by the object is
released and the object is deleted.

Parameter Description
params The parameter list to be filled in. You must initialize

this list with the appropriate number of Any objects
and set their type and flag values prior to invoking
this method.

Parameter Description
result An Any object representing the return value.

Parameter Description
a An Any object representing the

exception.

Parameter Description
a An Any object representing the

return value.

Parameter Description
ptr The object to be duplicated.

Parameter Description
ptr The object to be released.

VisiBroker for C++ API Reference Guide 75

TCKind

enum TCKind

This enumeration describes the various types that a TypeCode object,
described in “TypeCode”, may represent.

The values are shown in the following table.

Name Meaning
tk_abstract_interface abstract interface

tk_alias alias

tk_any Any

tk_array array

tk_boolean boolean

tk_char char

tk_double double

tk_enum enum

tk_except exception

tk_fixed fixed type

tk_float float

tk_long long

tk_longdouble long double

tk_longlong long long

tk_native native type

tk_null NULL

tk_objref object reference

tk_octet octet string

tk_Principal Principal

tk_sequence sequence

tk_short short

tk_string string

tk_struct struct

tk_TypeCode TypeCode

tk_ulonglong unsigned long long

tk_union union

tk_ulong unsigned long

tk_ushort unsigned short

tk_value value

tk_value_box value box

tk_void void

tk_wchar Unicode character

tk_wstring Unicode string

76 VisiBroker for C++ API Reference Guide

TypeCode

class CORBA::TypeCode

The TypeCode class represents the various types that can be defined in IDL.
Type codes are most often used to define the type of value being stored in
an Any object, described in “Any”. Type codes may also be passed as
parameters to method invocations.

TypeCode objects can be created using the various
CORBA::ORB.create_<type>_tc methods, whose description begins in
“Core interfaces and classes”. You may also use the constructors listed
here.

Include file
Include the corba.h file when you use this class.

TypeCode constructors

CORBA::TypeCode(CORBA::TCKind kind, CORBA::Boolean
is_constant);

This method constructs a TypeCode object for types that do not require any
additional parameters. A BAD_PARAM exception is raised if kind is not a
valid type for this constructor.

TypeCode methods

CORBA::TypeCode_ptr content_type() const;

This method returns the TypeCode of the elements in a sequence or array.
It also will return the type of an alias. A BadKind exception is raised if this
object's kind is not CORBA::tk_sequence, CORBA::tk_array, or
CORBA::tk_alias.

Parameter Description
kind Describes the type of object being

represented. Must be one of the following:
CORBA::tk_null, CORBA::tk_void,
CORBA::tk_short, CORBA::tk_long,
CORBA::tk_ushort, CORBA::tk_ulong,
CORBA::tk_float, CORBA::tk_double,
CORBA::tk_boolean, CORBA::tk_char,
CORBA::tk_octet, CORBA::tk_any,
CORBA::tk_TypeCode, CORBA::tk_Principal,
CORBA::tk_longlong, CORBA::tk_ulonglong,
CORBA::tk_longdouble, or CORBA::tk_wchar,
CORBA::tk_fixed, CORBA::tk_value,
CORBA::tk_value_box, CORBA::native,
CORBA::tk_abstract_interface.

is_constant If TRUE, the type is to be considered a
constant. Otherwise, the object is not a
constant.

VisiBroker for C++ API Reference Guide 77

CORBA::Long default_index() const;

This method returns the default index of a TypeCode representing a union.
If this object's kind is not CORBA::tk_union, a BadKind exception is
raised.

CORBA::TypeCode_ptr discriminator_type() const;

This method returns the discriminator type of a TypeCode representing a
union. If this object's kind is not CORBA::tk_union, a BadKind exception is
raised.

CORBA::Boolean equal(CORBA::TypeCode_ptr tc) const;

This method compares this object with the specified TypeCode. If they
match in every respect, TRUE is returned. Otherwise, FALSE is returned.

const char* id() const;

This method returns the repository identifier of the type being represented
by this object. If the type being represented does not have a repository
identifier, a BadKind exception is raised. Types that have a repository
identifier include:

• CORBA::tk_struct
• CORBA::tk_union
• CORBA::tk_enum
• CORBA::tk_alias
• CORBA::tk_except
• CORBA::tk_objref
CORBA::TCKind kind() const

This method returns this object's kind.

CORBA::ULong length() const;

This method returns the length of the string, sequence, or array
represented by this object. The length of a string is the number of
characters. The length of an array or sequence is the number of elements. A
BadKind exception is raised if this object's kind is not CORBA::tk_string,
CORBA::tk_sequence, or CORBA::tk_array.

CORBA::ULong member_count() const;

This method returns the member count of the type being represented by
this TypeCode object. If the type being represented does not have
members, a BadKind exception is raised. Types that have members
include:

• CORBA::tk_struct
• CORBA::tk_union
• CORBA::tk_enum
• CORBA::tk_except

Parameter Description
tc The object to be compared to this

object.

78 VisiBroker for C++ API Reference Guide

CORBA::Any_ptr member_label(CORBA::ULong index) const;

This method returns the label of the member with the specified index from
a TypeCode object for a union. If this object's kind is not
CORBA::tk_union, a BadKind exception is raised. If the index is invalid, a
Bounds exception is raised.

const char *member_name(CORBA::ULong index) const;

This method returns the name of the member with the specified index from
the type being represented by this object. If the type being represented
does not have members, a BadKind exception is raised. If the index is
invalid, a Bounds exception is raised.

Types that have members include:

• CORBA::tk_struct
• CORBA::tk_union
• CORBA::tk_enum

• CORBA::tk_except

CORBA::TypeCode_ptr member_type(CORBA::ULong index)
const;

This method returns the type of the member with the specified index from
the type being represented by this object. If the type being represented
does not have members with types, a BadKind exception is raised. If the
index is invalid, a Bounds exception is raised. Types that have members
include:

• CORBA::tk_struct
• CORBA::tk_union

• CORBA::tk_except

const char *name() const;

This method returns the name of the type represented by this object. If the
type does not have a name, a BadKind exception is raised. Types that have
a name include:

• CORBA::tk_objref
• CORBA::tk_struct
• CORBA::tk_union
• CORBA::tk_enum
• CORBA::tk_alias

Parameter Description
index The label of the union member whose type is to be

returned. This index is zero-based.

Parameter Description
index The zero-based index of the

member whose name is to be
returned.

Parameter Description
index The zero-based index of the

member whose name is to be
returned.

VisiBroker for C++ API Reference Guide 79

• CORBA::tk_except

static CORBA::TypeCode_ptr _duplicate(
CORBA::TypeCode_ptr obj);

This static method duplicates the specified TypeCode object.

static CORBA::TypeCode_ptr _nil();

This static method returns a NULL TypeCode pointer that can be used for
initialization purposes.

static void _release(CORBA::TypeCode_ptr obj);

This static method decrements the reference count to the specified object.
When the reference count is zero, it also frees all memory that it is
managing and then deletes the object.

CORBA::Boolean equivalent (CORBA_TypeCode_ptr tc)
const;

The equivalent operation is used by the ORB when determining the type
equivalence for values stored in an IDL.

CORBA_TypeCode_ptr get_compact_typecode() const;

The get_compact_code operation strips out all optional name & member
name fields, but it leaves all alias typecodes intact.

virtual CORBA::Visibility
member_visibility(CORBA::ULong index) const;

This method returns the Visibility of the valuetype member identified by
index.

Note
The member_visibility operation can only be invoked on valuetype
TypeCodes, not on valueboxes (or boxed values).

virtual CORBA::ValueModifier type_modifier() const;

The type_modifier operations can only be invoked on non-boxed
valuetype TypeCodes. This method returns the ValueModifier that applies
to the valuetype represented by the target TypeCode.

virtual CORBA::TypeCode_ptr concrete_base_type()

The concrete_base_type operations can only be invoked on non-boxed
valuetype TypeCodes. If the value represented by the target TypeCode has
a concrete base valuetype, this method returns a TypeCode for the concrete
base, otherwise it returns a nil TypeCode reference.

Parameter Description
obj The object to be duplicated.

Parameter Description
obj The object to be released.

80 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 81

Interface repository
interfaces and classes
(C++)
This section describes the classes and interfaces that you can use to access
the interface repository. The interface repository maintains information on
modules and the interfaces they contain as well as other types like
operations, attributes, and constants.

AliasDef

class CORBA::AliasDef : public CORBA::TypedefDef

This class is derived from the TypedefDef class and represents an alias for
a typedef that is stored in the interface repository. This class provides
methods for setting and obtaining the IDLType of the original typedef.

For more information on the TypedefDef class, go to “TypedefDef” for
more information. For more information on the IDLType class, go to
“IDLType” for more information.

AliasDef methods

CORBA::IDLType original_type_def();

This method returns the IDLType of the original typedef for which this
object is an alias.

void original_type_def(CORBA::IDLType_ptr val);

This method sets the IDLType of the original typedef for which this object
is an alias.

ArrayDef

class CORBA::ArrayDef : public CORBA::IDLType

This class is derived from the IDLType class and represents an array that is
stored in the interface repository. It provides methods for setting and
obtaining the type of the elements in the array as well as the length of the
array.

ArrayDef methods

CORBA::TypeCode element_type();

This method returns the TypeCode of the array's elements.

Parameter Description
val The IDLType to set for this alias.

82 VisiBroker for C++ API Reference Guide

CORBA::IDLType_ptr element_type_def();

This method returns the IDLType of the elements stored in this array.

void element_type_def(CORBA:IDLType_ptr
element_type_def);

This method sets the IDLType of the elements stored in the array.

CORBA::ULong length();

This method returns the number of elements in the array.

void length(CORBA::ULong length);

This method sets the number of elements in the array.

AttributeDef

class CORBA::AttributeDef : public CORBA::Contained,
public CORBA::Object

The class is used to represent an interface attribute that is stored in the
interface repository. It provides methods for setting and obtaining the
attribute's mode, typedef . A method is also provided for obtaining the
attribute's type.

AttributeDef methods

CORBA::AttributeMode mode();

This method returns the mode of the attribute. The return value will be
either CORBA::AttributeMode ATTR_READONLY for read only attributes or
CORBA::AttributeMode ATTR_NORMAL for read-write ones. Go to
“AttributeMode” for more information.

void mode(CORBA::AttributeMode _val);

This method sets the mode of the attribute.

CORBA::TypeCode_ptr type();

This method returns the TypeCode that represents the attribute's type.

CORBA::IDLType_ptr type_def();

This method returns this object's IDLType.

Parameter Description
element_type_def The IDLType of the elements in

the array.

Parameter Description
length The number of elements in the

array.

Parameter Description
_val The mode to set.

VisiBroker for C++ API Reference Guide 83

void type_def(CORBA::IDLType_ptr type_def);

This method sets the IDLType for this object.

AttributeDescription

struct CORBA::AttributeDescription

The AttributeDescription structure describes an attribute that is stored
in the interface repository.

AttributeDescription members
CORBA::Identifier_var name

The name of the attribute.

CORBA::RepositoryId_var id

The repository id of the attribute.

CORBA::RepositoryId_var defined_in

The repository id of the interface in which this attribute is defined.

CORBA::String_var version

The attribute's version.

CORBA::TypeCode_var type

The attribute's IDL type.

CORBA::AttributeMode mode

The mode of this attribute.

AttributeMode

enum CORBA::AttributeMode

The enumeration defines the values used to represent the mode of an
attribute; either read-only or normal (read-write).

AttributeMode values

Parameter Description
type_def The IDLType of this object.

Constant Represents
ATTR_NORMAL This is a read-write attribute.

ATTR_READONLY This is a read-only attribute.

84 VisiBroker for C++ API Reference Guide

ConstantDef

class CORBA::ConstantDef : public CORBA::Contained

The class is used to represent a constant definition that is stored in the
interface repository. This interface provides methods for setting and
obtaining the constant's type, value, and typedef.

ConstantDef methods

CORBA::TypeCode_ptr type();

This method returns the TypeCode representing the object's type.

CORBA::IDLType_ptr type_def();

This method returns this object's IDLType.

void type_def(CORBA::IDLType_ptr type_def);

This method sets the IDLType of the constant.

CORBA::Any *value();

This method returns a pointer to an Any object representing this object's
value.

void value(CORBA::Any& _val);

This method sets the value of this constant.

ConstantDescription

struct CORBA::ClassName

The ConstantDescription structure describes a constant that is stored in
the interface repository.

ConstantDescription members
CORBA::Identifier_var name

The name of the constant.

CORBA::RepositoryId_var id

The repository id of the constant.

CORBA::RepositoryId_var defined_in

The name of the module or interface in which this constant is defined.

CORBA::String_var version

The constant's version.

Parameter Description
type_def The IDLType of this constant.

Parameter Description
_val An Any object that represents this

object's value.

VisiBroker for C++ API Reference Guide 85

CORBA::TypeCode_var type

The constant's IDL type.

CORBA::Any value

The value of this constant.

Contained

class CORBA::Contained : public CORBA::IRObject, public
CORBA::Object

The Contained class is used to derive all interface repository objects that
are themselves contained within another interface repository object. This
class provides methods for:

• Setting and retrieving the object's name and version.

• Determining the Container that contains this object.

• Obtaining the object's absolute name, containing repository, and
description.

• Moving an object from one container to another.

Include file
Include the file corba.h when you use this class.

interface Contained: IRObject {
 attribute RepositoryId id;
 attribute Identifier name;
 attribute String_var version;

 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_Repository;
 struct Description {
 DefinitionKind kind;
 any value;
 };
 Description describe();
 void move(
 in Container new_Container,
 in Identifier new_name,
 in String_var new_version
);
};

Contained methods

CORBA::String_var absolute_name();

This method returns the absolute name, which is the name that uniquely
identifies this object within its containing Repository. If the object's
defined_in attribute (set when the object is created) references a
Repository, then the absolute name is simply the object's name preceded
by the string "::".

86 VisiBroker for C++ API Reference Guide

CORBA::Repository_ptr containing_repository();

Returns a pointer to the repository that contains this object.

CORBA::Container_ptr defined_in();

Returns a pointer to the Container where this object is defined.

Description* describe();

Returns this object's Description. Go to “Description” for more
information on the Description structure.

CORBA::String_var id();

Returns this object's repository identifier.

void id(const char *id);

Sets the repository identifier that uniquely identifies this object.

CORBA::String_var name();

This method returns the name which uniquely identifies the object within
the scope of its container.

void name(const char * val);

This method sets the name of the contained object.

CORBA::String_var version();>

This method returns the object's version. The version distinguishes this
object from other objects that have the same name.

void version(CORBA::String_var& val);

This method sets this object's version.

void move(CORBA::Container_ptr new_container, const
char *new_name, CORBA::String_var& new_version);

Moves this object from its current Container to the new_container.

Parameter Description
id The repository identifier for this

object.

Parameter Description
name The object's name.

Parameter Description
val The object's version.

Parameter Description
new_container The Container to which this object

is being moved.
new_name The new name for the object.

new_version The new version specification for
the object.

VisiBroker for C++ API Reference Guide 87

Container

class CORBA::Container : public CORBA::Container,
public CORBA::Object

The Container class is used to create a containment hierarchy in the
interface repository. A Container object holds object definitions derived
from the Contained class. All object definitions derived from the
Container class, with the exception of the Repository class, also inherit
from the Contained class.

The Container provides methods to create types of IDL types defined in
orbtypes.h, including InterfaceDef, ModuleDef and ConstantDef
classes, but not the ValueMemberDef class. The defined_in attribute of
each definition that is created is initialized to point to this object.

Include file
The corba.h file should be included when you use this class.

interface Container: IRObject {

 Contained lookup(in ScopedName search_name);
 ContainedSeq contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);
 ContainedSeq lookup_name(
 in Identifier search_name,
 in long levels_to_search,
 in CORBA::DefinitionKind limit_type,
 in boolean exclude_inherited
);
 struct Description {
 Contained Contained_object;
 DefinitionKind kind;
 any value;
 };
 typedef sequence<Description> DescriptionSeq;
 DescriptionSeq describe_contents(
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);

Container methods

CORBA::AbstractInterfaceDef_ptr create_abstract_interface(
const char* _arg_id,
const char* _arg_name,
const char* _arg_name,

88 VisiBroker for C++ API Reference Guide

const char* _arg_version,
const CORBA_AbstractInterfaceDefSeq&_arg_base_interfaces)

This method creates an AbstractInterfaceDef object with the specified
attributes in the Container and returns a pointer to the newly created
object.

CORBA::ContainedSeq * contents(CORBA::DefinitionKind
limit_type, CORBA::Boolean exclude_inherited);

This method returns the list of definitions of contained objects that are
either directly contained or inherited into the container. You can use this
method to navigate through the hierarchy of object definitions in the
Repository. This method returns all object definitions contained by
modules in the Repository, followed by all object definitions contained
within each of those modules.

CORBA::AliasDef_ptr create_alias(const char * id,
 const char *name,
 const CORBA::String_var& version,
 CORBA::IDLType_ptr original_type);

This method creates an AliasDef object with the specified attributes in this
Container and returns a pointer to the newly created object.

CORBA::ConstantDef_ptr create_constant(const char * id,
 const char *name,
 const CORBA::String_var& version,
 CORBA::IDLType_ptr type,
 const CORBA::Any& value);

This method creates a ConstantDef object with the specified attributes in
this Container and returns a pointer to the newly created object.

Parameter Description
id The interface id.

name The interface name.

version The interface version.

base_interfaces A list of all abstract interfaces from which this
interface inherits.

Parameter Description
limit_type The interface object types to be returned. If you

specify dk_all, objects of all types are returned.
exclude_inherited If set to TRUE, inherited objects are not returned.

Parameter Description
id The alias's id.

name The alias's name.

version The alias's version.

original_type The type of the object for which this object is an alias.

Parameter Description
id The constant's id.

name The constant's name.

version The constant's version.

VisiBroker for C++ API Reference Guide 89

CORBA::EnumDef_ptr create_enum(const char * id,
const char *name, const CORBA::String_var& version,
const CORBA::EnumMemberSeq& members);

This method creates an EnumDef object with the specified attributes in this
Container and returns a pointer to the newly created object.

CORBA::ExceptionDef_ptr create_exception(const char *
id,
const char *name,
const CORBA::String_var& version,
const CORBA::StructMemberSeq& members);

This method creates an ExceptionDef object with the specified attributes
in this Container and returns a pointer to the newly created object.

CORBA::InterfaceDef_ptr create_interface(const char * id,
const char *name,
const CORBA::String_var& version,
const CORBA::InterfaceDefSeq& base_interfaces);

This method creates an InterfaceDef object with the specified attributes
in this Container and returns a pointer to the newly created object.

type The type of the value specified below.

value The constant's value.

Parameter Description
id The enumeration's id.

name The enumeration's name.

version The enumeration's version.

members A list of the enumeration's fields.

Parameter Description
id The exception's id.

name The exception's name.

version The exception's version.

members The sequence for the structure's fields, if any.

Parameter Description
id The interface's id.

name The interface's name.

version The interface's version.

base_interfaces A list of all interfaces that this interface inherits
from.

Parameter Description

90 VisiBroker for C++ API Reference Guide

CORBA::ModuleDef_ptr create_module(const char * id,
 const char *name,
 const CORBA::String_var& version);

This method creates a ModuleDef object with the specified attributes in this
Container and returns a pointer to the newly created object.

CORBA::StructDef_ptr create_struct(const char * id,
 const char *name,
 const CORBA::String_var& version,
 const CORBA::StructMemberSeq& members);

This method creates a StructureDef object with the specified attributes in
this Container and returns a pointer to the newly created object.

CORBA::UnionDef_ptr create_union(const char * id,
 const char *name,
 const CORBA::String_var& version,
 CORBA::IDLType_ptr discriminator_type,
 const CORBA::UnionMemberSeq& members);

This method creates a UnionDef object with the specified attributes in this
Container and returns a pointer to the newly created object.

CORBA::DescriptionSeq *
describe_contents(CORBA::DefinitionKind limit_type,
CORBA::Boolean exclude_inherited,
CORBA::Long max_returned_objs);

This method returns a description for all definitions directly contained by or
inherited into this container.

Parameter Description
id The module's id.

name The module's name.

version The module's version.

Parameter Description
id The structure's id.

name The structure's name.

version The structure's version.

members The sequence for the structure's
fields.

Parameter Description
id The Union's id.

name The Union's name.

version The Union's version.

discriminator_type The type of the Union's discriminant value.

members The sequence of each of the Union's fields.

Parameter Description
limit_type The interface object types whose descriptions are to

be returned. Specifying dk_all will return the
descriptions for objects of all types.

VisiBroker for C++ API Reference Guide 91

CORBA::Contained_ptr lookup(const char *search_name);

This method locates a definition relative to this container, given a scoped
name. An absolute scoped name, one beginning with "::", may be specified
to locate a definition within the enclosing repository. If no object is found, a
NULL value is returned.

CORBA::ContainedSeq * lookup_name(const char
*search_name,
CORBA::Long levels_to_search, CORBA::DefinitionKind
limit_type,
CORBA::Boolean exclude_inherited);

This method locates an object by name within a particular object. The
search can be constrained by the number of levels in the hierarchy to be
searched, the object type, and whether inherited objects should be
returned.

CORBA::ValueDef_ptr create_value(const char * id,
const char *name,
const char version,
CORBA::boolean is_custom,
CORBA::boolean is_abstract,
const CORBA::ValueDef_ptr _base_value,
CORBA::boolean is_truncatable,
const CORBA::ValueDefSeq& abstract_base_values,
const CORBA::InterfaceDefSeq& supported _interfaces,
const CORBA.InitializerSeq& initializers)

This method creates a ValueDef object with the specified attributes in this
Container and returns a reference to the newly created object.

exclude_inherited If set to true, descriptions for inherited objects are
not returned.

max_returned_objs The maximum number of descriptions to be
returned. If you set this parameter to -1, all objects
are returned.

Parameter Description
search_name The object's interface name.

Parameter Description
search_name The contained object's name.

levels_to_search The number of levels in the hierarchy to search. If
you set this parameter to a value of -1, all levels are
searched. If you set this parameter to 1, only this
object is searched.

limit_type The interface object types to be returned. Specifying
dk_all will return objects of all types.

exclude_inherited If set to true, inherited objects are not returned.

Parameter Description
id The structure's repository id.
name The structure's name.
version The structure's version.
is_custom If set to true, creates a custom valuetype.

Parameter Description

92 VisiBroker for C++ API Reference Guide

CORBA::ValueBoxDef_ptr create_value_box(const char* id,
const char* name, const char* version,
CORBA::IDLType_ptr original_type)

This method creates a ValueBoxDef object in this Container with the
specified attributes and returns a reference to the newly created object.

DefinitionKind

enum CORBA::DefinitionKind

The constants in the DefinitionKind enumeration define the possible
types of interface repository objects.

DefinitionKind values

is_abstract If set to true, creates and abstract valuetype.
base_values The list of supported base values.
is_truncatable If set to true, creates a truncatable valuetype.
abstract_base_values The list of supported abstract base values.
supported _interfaces The list of supported interfaces.
initializer The list of initializers this value type supports

Parameter Description
id The structure's repository id.
name The structure's name.
version The structure's version.
original_type The IDL type of the original object for which this is an

alias.

Parameter Description

Constant Represents
dk_none Exclude all types (used in repository lookup

methods)
dk_all All possible types (used in repository lookup

methods)
dk_Alias Alias

dk_Array Array

dk_Attribute Alias

dk_Constant Constant

dk_Enum Enum

dk_Exception Exception

dk_Fixed Fixed

dk_Interface Interface

dk_Module Module

dk_Native Native

dk_Operation Interface Operation

dk_Primitive Primitive type (such as int or long)

dk_Repository Repository

dk_Sequence Sequence

VisiBroker for C++ API Reference Guide 93

Description

struct CORBA::Container::Description

This structure provides a generic description for items in the interface
repository that are derived from the Contained class.

Description members
CORBA::Contained_var contained_object

The object contained in this struct.

CORBA::DefinitionKind kind

The object's kind.

CORBA::Any value

The object's value.

EnumDef

class CORBA::EnumDef : public CORBA::TypedefDef, public
CORBA::Object

The class is used to describe an enumeration stored in the interface
repository. This interface provides methods for setting and retrieving the
enumeration's list of members.

EnumDef methods

CORBA::EnumMemberSeq *members();

This method returns the enumeration's list of members.

void members(CORBA::EnumMemberSeq members);

This method sets the enumeration's list of members.

dk_String String

dk_Struct Struct

dk_Typedef Typedef

dk_Union Union

dk_Value ValueType

dk_ValueBox ValueBox

dk_ValueMember ValueMember

dk_Wstring Unicode string

Constant Represents

Parameter Description
members The list of members.

94 VisiBroker for C++ API Reference Guide

ExceptionDef

class ExceptionDef : public CORBA::Contained

The class is used to describe an exception that is stored in the interface
repository. This class provides methods for setting and retrieving the
exception's list of members as well as a method for retrieving the
exception's TypeCode.

ExceptionDef methods

CORBA::StructMemberSeq *members();

This method returns this exception's list of members.

void members(CORBA:StructMemberSeq& members);

This method sets the exception's list of members.

CORBA::TypeCode_ptr type();

This method returns the TypeCode that represents this exception's type.

ExceptionDescription

struct CORBA::ExceptionDescription

This structure is used to describe an exception that is stored in the interface
repository.

ExceptionDescription members
CORBA::String_var defined_in

The repository Id of the module or interface in which this exception is
defined.

CORBA::String_var id

The repository id of the exception.

CORBA::String_var name

The name of the exception.

CORBA::TypeCode_var type

The exception's IDL type.

CORBA::String_var version

The exception's version.

Parameter Description
members The list of members.

VisiBroker for C++ API Reference Guide 95

FixedDef

CORBA::FixedDef public CORBA::IDLType, public
CORBA::Object

This interface is used to describe a fixed definition that is stored in the
Interface Repository.

Methods

CORBA::UShort digits();

This method sets the number of digits for the fixed type.

void digits(CORBA::UShort _digits);

This method sets the attribute for fixed type.

CORBA::Short scale();

This method sets the scale for the fixed type.

void scale(CORBA::Short _scale);

This method sets the attribute for the fixed type.

FullInterfaceDescription

struct CORBA::FullInterfaceDescription

The FullInterfaceDescription structure describes an interface that is
stored in the interface repository.

FullInterfaceDescription members
CORBA::String_var Name

The name of the interface.

CORBA::String_var id

The repository id of the interface.

CORBA::String_var defined_in

The name of the module or interface in which this interface is defined.

CORBA::String_var version

The interface's version.

CORBA::OpDescriptionSeq operations

The list of operations supported by this interface.

CORBA::AttrDescriptionSeq attributes

The list of attributes contained in this interface.

CORBA::RepositoryIdSeq base_interfaces

The interfaces from which this interface inherits.

CORBA::RepositoryIdSeq derived_interfaces

The interfaces derived from this interface.

96 VisiBroker for C++ API Reference Guide

CORBA::TypeCode_var type

This interface's TypeCode.

CORBA::Boolean is_abstract

Indicates whether or not this interface is abstract.

FullValueDescription

struct CORBA::FullValueDescription

This structure is used to represent a full value definition that is stored in the
Interface Repository.

Variables

CORBA::String_var name

The name of the valuetype.

CORBA::String_var id

The repository id of the valuetype.

CORBA::Boolean is_abstract

If this variable is true, specifies an abstract valuetype.

CORBA::Boolean is_custom

If this variable is true, specifies custom marshalling for the valuetype.

CORBA::String_var defined_in

The repository Id of the module in which this valuetype is defined.

CORBA::String_var version

The valuetype's version.

CORBA::OpDescriptionSeq operations

The list of operations offered by the valuetype.

CORBA::AttrDescriptionSeq attributes

The valuetype's list of valuetype's member attributes.

CORBA::.ValueMemberSeq members

The array of value definitions.

CORBA::InitializerSeq initializers

The array of initializers.

CORBA::RepositoryIdSeq supported_interfaces;

The list of supported interfaces.

VisiBroker for C++ API Reference Guide 97

CORBA::RepositoryIdSeq abstract_base_values;

The list of abstract value types from which this valuetype inherits.

CORBA::Boolean is_truncatable;

If this variable is set to true, the value can be truncated to its base
valuetype safely.

CORBA::String_var base_values;

The description of the value type from which this valuetype inherits.

CORBA::TypeCode_var type

The valuetype's IDL type code.

IDLType

class CORBA::IDLType : public CORBA::IRObject, public
CORBA::Object

The IDLType class provides an abstract interface that is inherited by all
interface repository definitions that represent IDL types. This class provides
a method for returning an object's Typecode, which identifies the object's
type. The IDLType is unique; the Typecode is not.

Include file
You should include the file corba.h when using this class.

interface IDLType:IRObject {
readonly attribute TypeCode type;

};

IDLType methods

CORBA::Typecode_ptr type();

This method returns the typecode of the current IRObject.

InterfaceDef

class CORBA::InterfaceDef : public CORBA::Container,
public CORBA::Contained, public CORBA::IDLType

The InterfaceDef class is used to define an ORB object's interface that is
stored in the interface repository.

For more information, see “Container”, “Contained”, and “IDLType”.

Include file
You should include the file corba.h when you use this class.

interface InterfaceDef: Container, Contained, IDLType {

98 VisiBroker for C++ API Reference Guide

typedef sequence<RepositoryId> RepositoryIdSeq;
typedef sequence<OperationDescription> OpDescriptionSeq;
typedef sequence<AttributeDescription> AttrDescriptionSeq;
 attribute InterfaceDefSeq base_interfaces;
 attribute boolean is_abstract;
 readonly attribute InterfaceDefSeq
 derived_interfaces
boolean is_a(in RepositoryId interface_id);
 struct FullInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
String_var version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
 RepositoryIdSeq derived_interfaces;
TypeCode type;
 boolean is_abstract;
};
FullInterfaceDescription describe_interface();
 AttributeDef create_attribute(
 in RepositoryId id,
 in Identifier name,
 in String_var version,
 in IDLType type,
 in CORBA::AttributeMode mode
);
 OperationDef create_operation(
 in RepositoryId id,
 in Identifier name,
 in String_var version,
 in IDLType result,
 in OperationMode mode,
 in ParDescriptionSeq params,
 in ExceptionDefSeq exceptions,
 in ContextIdSeq contexts
);
 struct InterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 String_var version;
 RepositoryIdSeq base_interfaces;
 boolean is_abstract;
 };
};

InterfaceDef methods

CORBA::InterfaceDefSeq *base_interfaces();

This method returns a list of interfaces from which this
class inherits.

void base_interfaces(const CORBA::InterfaceDefSeq& val);

VisiBroker for C++ API Reference Guide 99

This method sets the list of the interfaces from which this class inherits.

CORBA::AttributeDef_ptr create_attribute(const char *
id, const char * name, const CORBA::String_var&
version, CORBA::IDLType_ptr type,
CORBA::AttributeMode mode);

This method returns a pointer to a newly created AttributeDef that is
contained in this object. The id, name, version, type, and mode are set to
the values specified.

CORBA::OperationDef_ptr create_operation(const char
*id, const char *name, CORBA::String_var& version,
CORBA::IDLType_ptr result,
CORBA::OperationMode mode,
const CORBA::ParDescriptionSeq& params,
const CORBA::ExceptionDefSeq& exceptions,
const CORBA::ContextIdSeq& contexts);

This method creates a new OperationDef that is contained by this object
using the specified parameters. The defined_in attribute of the newly
created OperationDef is set to identify this InterfaceDef.

CORBA::InterfaceDef::FullInterfaceDescription
*describe_interface();

This method returns the FullInterfaceDescription which describes this
object's interface.

Parameter Description
val The list of interfaces from which this interface inherits.

Parameter Description
id The interface id to use.

name The interface name to use.

version The interface version to use.

mode The interface mode. Go to “AttributeMode” for a list of
possible values.

Parameter Description
id The interface id for this operation.

name The name of this operation.

version The operation's version.

result The IDL type returned by the operation.

mode The mode of this operation--oneway or normal.

params The list of parameters to pass to this operation.

exceptions The list of exceptions raised by this operation.

contexts Context lists are names of values expected in context and
passed along with the request.

100 VisiBroker for C++ API Reference Guide

CORBA::Boolean is_a(const char * interface_id);

This method returns true if this interface is identical to or inherits from the
specified interface directly or indirectly.

InterfaceDescription

struct:CORBA:: InterfaceDescription

This structure describes an object that is stored in the interface repository.

InterfaceDescription members
CORBA::String_var name

The name of the interface.

CORBA::String_var id

The interface's repository identifier.

CORBA::String_var defined_in

The name of the repository Id in which the interface is defined.

CORBA::String_var version

The interface's version.

CORBA::RepositoryIdSeq base_interfaces

A list of base interfaces for this interface.

CORBA::Boolean is_abstract

Indicates whether or not this interface is abstract.

IRObject

class IRObject : CORBA::Object

The IRObject class offers the most generic interface for interface
repository objects. The Container class, IDLType, Contained, and others
are derived from this class.

Include file
You should include the file corba.h when you use this class.

interface IRObject {
 readonly attribute DefinitionKind def_kind;
 void destroy();
};

Parameter Description
interface_id The id of the interface to be checked against this interface.

VisiBroker for C++ API Reference Guide 101

IRObject methods

CORBA::DefinitionKind def_kind();

This method returns the type of this interface repository object. Go to
“DefinitionKind” for a list of possible types.

void destroy();

This method deletes this object from the interface repository. If this object
is a Container, this method also deletes all of its contents. If the object is
currently contained by another object, it is removed. The destroy method
returns the Exception(CORBA::BAD_PARAM) when invoked on a
PrimitiveDef or Repository object. The Repository class is described
in “Repository”.

ModuleDef

class ModuleDef : CORBA::Container,CORBA::Contained

The class is used to represent an IDL module in the interface repository.

ModuleDescription

struct ModuleDescription

The ModuleDescription structure describes a module that is stored in the
interface repository.

ModuleDescription members
CORBA::String_var name

The name of the module.

CORBA::String_var id

The repository id of the module.

CORBA::String_var defined_in

The name of the repository Id in which this module is defined.

CORBA::String_var version

The module's version.

NativeDef

class CORBA::NativeDef

This interface is used to represent a native definition that is stored in the
Interface Repository.

102 VisiBroker for C++ API Reference Guide

OperationDef

class CORBA::OperationDef : public virtual
CORBA::Contained, public CORBA::Object

The OperationDef class contains information about an interface operation
that is stored in the interface repository. This class is derived from the
Contained class, which is described in “Contained”. The inherited
describe method returns a OperationDescription structure that
provides complete information on the operation.

Include file
You should include the file corba.h when you use this class.

interface OperationDef: Contained {
 typedef sequence<ParameterDescription>
ParDescriptionSeq;
 typedef Identifier ContextIdentifier;
 typedef sequence<ContextIdentifier> ContextIdSeq;
 typedef sequence<ExceptionDef> ExceptionDefSeq;
 typedef sequence<ExceptionDescription>
ExcDescriptionSeq;
 readonly attribute TypeCode result;
 attribute IDLType result_def;
 attribute ParDescriptionSeq params;
 attribute CORBA::OperationMode mode;
 attribute ContextIdSeq contexts;
 attribute ExceptionDefSeq exceptions;

readonly attribute OperationKind bind;
};
struct OperationDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 String_var version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
};

OperationDef methods

CORBA::ContextIdSeq * contexts();

This method returns the list of context identifiers that apply to the
operation.

void context(const CORBA::ContextIdSeq& val);

This method sets the list of context identifiers that apply to this operation.

Parameter Description
val The list of context identifiers.

VisiBroker for C++ API Reference Guide 103

CORBA::ExceptionDefSeq * exceptions();

This method returns the list of the exception types that can be raised by this
operation.

void exceptions(const CORBA::ExceptionDefSeq& val);

This method sets the list of exception types that may be raised by this
operation.

CORBA::OperationMode mode();

This method returns the mode of the operation represented by this
OperationDef. The mode may be normal or oneway. Operations that have
a normal mode are synchronous and return a value to the client application.
Oneway operations do not block and no response is sent from the object
implementation to the client.

void mode(CORBA::OperationMode val);

This method sets the mode of the operation.

CORBA::ParDescriptionSeq * params();

This method returns a pointer to a list of ParameterDescription
structures that describe the parameters to this OperationDef.

void params(const CORBA::ParDescriptionSeq& val);

This method sets the list of the ParameterDescription structures for this
OperationDef. The order of the structures is significant and should
correspond to the order defined in the IDL definition for the operation.

CORBA::TypeCode_ptr result();

This method returns a pointer to a TypeCode representing the type of the
value returned by this Operation. The TypeCode is a read-only attribute.

CORBA::IDLType_ptr result_def();

This method returns a pointer to the definition of the IDL type returned by
this OperationDef.

void result_def(CORBA::IDLType_ptr val);

This method sets the definition of the type returned by this OperationDef.

Parameter Description
val The list of exceptions that this operation may raise.

Paramete
r Description
val The desired mode of this operation, either OP_ONEWAY or

OP_NORMAL. Go to “OperationMode” for more
information.

Parameter Description
val The list of ParameterDescription structures.

Parameter Description
val A pointer to the type definition to

use.

104 VisiBroker for C++ API Reference Guide

OperationDescription

struct CORBA::OperationDescription

The OperationDescription structure describes an operation that is stored
in the interface repository.

OperationDescription members
CORBA::String_var name

The name the of the operation.

CORBA::String_var id

The repository id of the operation.

CORBA::String_var defined_in

The repository id of the interface or valuetype in which this operation is
defined.

CORBA::String_var version

The operation's version.

CORBA::TypeCode_var result

The operation's result.

CORBA::OperationMode mode

The operation's mode.

CORBA::ContextIdSeq contexts

The operation's associated context list.

CORBA::ParameterDescriptionSeq parameters

The operation's parameters.

CORBA::ExceptionDescriptionSeq exceptions

The exceptions that this operation may raise.

OperationMode

enum CORBA:OperationMode

The enumeration defines the values used to represent the mode of an
operation; either oneway or normal. Oneway operations are those for which
the client application does not expect a response. Normal requests involve a
response being sent to the client by the object implementation that contains
the results of the request.

OperationMode values

Constant Represents
OP_NORMAL A normal operation request.

OP_ONEWAY A oneway operation request.

VisiBroker for C++ API Reference Guide 105

ParameterDescription

struct CORBA::ParameterDescription

The ParameterDescription structure describes a parameter for an
operation that is stored in the interface repository.

ParameterDescription members
CORBA::String_var name

The name of the parameter.

CORBA::TypeCode_var type

The parameter's typecode.

CORBA::IDLType_var type_def

The parameter's IDL type.

CORBA::ParameterMode mode

The parameter's mode.

ParameterMode

enum CORBA::ParameterMode

The values that represent the possible modes of parameters to operations.

ParameterMode values

PrimitiveDef

class PrimitiveDef : public CORBA::IDLType, public
CORBA::Object

The class is used to describe a primitive (such as an int or a long) that is
stored in the interface repository. It provides a method for retrieving what
kind of primitive it is.

PrimitiveDef methods

CORBA::PrimitiveKind kind();

This method returns the kind of primitive represented by this object.

Constant Represents
PARAM_IN Parameter is for input from the client to the server.

PARAM_OUT Parameter is for output of results from the server to the
client.

PARAM_INOUT Parameter may be used for both input from the client
and output from the server.

106 VisiBroker for C++ API Reference Guide

PrimitiveKind

enum CORBA::PrimitiveKind

The PrimitiveKind enumeration contains the constants that define the
primitive types of objects that may be stored in the interface repository.

PrimitiveKind values

Repository

class Repository : public CORBA::Container, public
CORBA::Object

The Repository class provides access to the interface repository and is
derived from the Container class. Go to “Contained” for more information.

Include file
You should include the file corba.h when using this class.

interface Repository: Container {
 Contained lookup_id(in RepositoryId search_id);
 PrimitiveDef get_primitive(in CORBA::PrimitiveKind
kind);
 StringDef create_string(in unsigned long bound);
 WStringDef create_wstring(in unsigned long bound)

Constant Represents
pk_null Null value

pk_void Void

pk_short Short

pk_long Long

pk_ushort Unsigned short

pk_ulong Unsigned long

pk_float Float

pk_double Double

pk_boolean Boolean

pk_char Character

pk_octet Octet

pk_any Any

pk_TypeCode TypeCode

pk_Principal Principal

pk_string String

pk_objref Object reference

pk_longlong Long long

pk_ulonglong Unsigned long long

pk_longdouble Long double

pk_wchar Unicode character

pk_wstring Unicode string

VisiBroker for C++ API Reference Guide 107

 SequenceDef create_sequence(
 in unsigned long bound,
 in IDLType element_type
 };
 ArrayDef create_array(
 in unsigned long length,
 n IDLType element_type
);
 FixedDef create_fixed(
 in unsigned short digits,
 in short scale
);
;

Repository methods

CORBA::ArrayDef_ptr create_array(CORBA::ULong length,
CORBA::IDLType_ptr element_type);

This method creates a new ArrayDef and returns a pointer to it.

CORBA::SequenceDef_ptr create_sequence
(CORBA::ULong bound,
CORBA::IDLType_ptr element_type);

This method creates a new SequenceDef object and returns a pointer to it.

CORBA::StringDef_ptr create_string(CORBA::Ulong bound);

This method creates a new StringDef object and returns a pointer to it.

CORBA::WstringDef_ptr create_wstring(CORBA::Ulong
bound);

This method creates a new WstringDef object and returns a pointer to it.

Parameter Description
length The maximum number of elements in the array. This

value must be greater than zero.
element_type The IDLType of the elements in the array.

Parameter Description
bound The maximum number of items in the sequence. This

value must be greater than zero.
element_typ
e

A pointer to the IDLType of the items in the sequence.

Parameter Description
bound The maximum length of the string. This value must be

greater than zero.

Parameter Description
bound The maximum length of the string. This value must be

greater than zero.

108 VisiBroker for C++ API Reference Guide

CORBA::PrimitiveDef_ptr
get_primitive(CORBA::PrimitiveKind kind);

This method returns a reference to a PrimitiveKind.

CORBA::Contained_ptr lookup_id(const char * search_id);

This method searches for an object in the interface repository that matches
the specified search id. If no match is found, a NULL value is returned.

CORBA::FixedDef_ptr create_fixed(CORBA::UShort digits,
CORBA::Short scale)

This method sets the number of digits and the scale for the fixed type.

SequenceDef

class SequenceDef : public CORBA::IDLType, public
CORBA::Object

The class is used to represent a sequence that is stored in the interface
repository. This interface provides methods for setting and retrieving the
sequence's bound and element type.

SequenceDef methods

CORBA::ULong bound()

This method returns the bounds of the sequence.

void bound(CORBA::ULong bound)

This method sets the bound of the sequence.

CORBA::TypeCode_ptr element_type();

This method returns the TypeCode of the elements in this sequence.

CORBA::IDLType_ptr element_type_def();

This method returns the IDL type of the elements in this sequence.

Parameter Description
kind The reference to be returned.

Parameter Description
search_id The identifier to use for the search.

Parameter Description
Ushort digits The number of digits for the fixed

type.
short scale The scale of the fixed type.

Parameter Description
members The list of members.

VisiBroker for C++ API Reference Guide 109

void element_type_def(CORBA::IDLType_ptr
element_type_def);

This method sets the IDL type of the elements in this sequence.

StringDef

class StringDef : public CORBA::IDLType, public
CORBA::Object

The class is used to describe Strings stored in the interface repository.
This interface provides methods for setting and retrieving the bounds of the
strings.

StringDef methods

CORBA::ULong bound();

This method returns the bounds of the String.

void bound(CORBA::ULong bound);

This method sets the bounds of the String.

StructDef

class StructDef : public CORBA::TypedefDef, public
CORBA::Container, public CORBA::Object

The class is used to represent a structure that is stored in the interface
repository.

StructDef methods

CORBA::StructMemberSeq *members();

This method returns the structures's list of members.

void members(CORBA::StructMemberSeq& members);

This method sets the structure's list of members.

Parameter Description
element_type_def The IDL type to set elements to.

Parameter Description
bound The list of members.

Parameter Description
members The list of members.

110 VisiBroker for C++ API Reference Guide

StructMember

struct CORBA::StructMember

This interface is used to define the member for the struct. It uses the name
and type variables in the definition.

StructMember methods

CORBA::String_var name

The name of the type.

CORBA::TypeCode_var type

The type's IDL type.

CORBA::IDLType_var type_def

The IDL type's IDL type definition.

TypedefDef

class TypedefDef : public CORBA::Contained, public
CORBA::IDLType, public CORBA::Object

This abstract base class represents a user-defined structure that is stored in
the interface repository. The following interfaces all inherit from this class:

• “AliasDef”.

• “ExceptionDef”.

• “StructDef”.

• “UnionDef”.

• “WstringDef”.

TypeDescription

structure TypeDescription

The TypeDescription structure contains the information that describes a
type for an operation stored in the interface repository.

TypeDescription members
CORBA::String_var name

The name of the type.

CORBA::String_var id

The repository id of the type.

CORBA::String_var defined_in

The name of the module or interface in which this type is defined.

CORBA::String_var version

The type's version.

VisiBroker for C++ API Reference Guide 111

CORBA::TypeCode_var type

The type's IDL type.

UnionDef

class UnionDef : public CORBA::TypedefDef, public
CORBA::Container, public CORBA::Object

This class is used to represent a Union that is stored in the interface
repository. This class provides methods for setting and retrieving the
union's list of members and discriminator type.

UnionDef methods

CORBA::TypeCode_ptr discriminator_type();

This method returns the TypeCode of the discriminator of the Union.

CORBA::IDLType_ptr discriminator_type_def();

This method returns the IDL type of the Union's discriminator.

void discriminator_type_def(CORBA::IDLType_ptr
discriminator_type_def);

This method sets the IDL type of the Union's discriminator.

CORBA::UnionMemberSeq *members();

This method returns the Union's list of members.

void members(CORBA::UnionMemberSeq& members);

This method sets the Union's list of members.

UnionMember

struct CORBA::UnionMember

The UnionMember struct contains information that describes a Union that is
stored in the interface repository.

UnionMember members
CORBA::String_var name

The name of the Union.

CORBA::Any label

The label of the Union.

Parameter Description
discriminator_type_def The list of members.

Parameter Description
members The list of members.

112 VisiBroker for C++ API Reference Guide

CORBA::TypeCode_var type

The Union's typecode.

CORBA::IDLType_var type_def

The Union's IDL type.

ValueBoxDef

class ValueBoxDef public CORBA::Contained, public
COBRA::IDLType, public CORBA::Object

This interface is used as a simple valuetype that contains a single public
member of any IDL type. ValueBoxDef is a simplified version of ValueType:

public valuetype <IDLType> value;

This declaration is almost equal to valuetype boxed type <IDLType> but
ValueBoxDef is not the same as simple ValueTypeDef.

Methods

CORBA::IDLType_ptr original_type_def();

This method identifies the type being boxed.

void original_type_def(CORBA::IDLType_ptr
original_type_def);

This method sets the type being boxed.

ValueDef

class CORBA::ValueDef public CORBA::Container, public
CORBA::Contained, public CORBA::IDLType, public
CORBA::Object

This interface describes the IDL value type called a construct. This
interface is very close to a class type. It represent a value definition that is
stored in the Interface Repository.

Methods

CORBA::InterfaceDefSeq supported_interfaces();

This method lists the interfaces which this value type supports.

void supported_interfaces(const CORBA::interfaceDefSeq&
supported_interfaces);

This method sets the supported interfaces.

CORBA::InitializerSeq& initializers();

This method returns the list of initializers.

VisiBroker for C++ API Reference Guide 113

void initializers(const CORBA::InitializerSeq&
initializers);

This method sets the initializers.

CORBA.ValueDef_ptr base_value();

This method describes the value types from which this value inherits.

void base_value(CORBA::ValueDef_ptr base_value);

This method sets the value types

CORBA.ValueDefSeq& abstract_base_values();

This method returns the list of the abstract value types from which this
value inherits.

void abstract_base_values(const CORBA::ValueDef[Seq&
abstract_base_values);

This method defines the abstract value type's base value.

CORBA::Boolean is_abstract();

This method returns true if the value is an abstract value type.

void is_abstract(CORBA::Boolean is_abstract);

This method sets the valuetype to be an abstract value type.

CORBA::Boolean is_custom();

This method returns true if the value uses custom marshalling.

void is_custom(CORBA::Boolean is_custom);

This method sets the custom marshalling for the value.

CORBA::Boolean is_truncatable():

This method returns true if the value can be truncated from its base value
safely.

void is_truncatable(CORBA::Boolean is_truncatable);

This method sets the truncated attribute for this value.

CORBA::Boolean is_a(const char* value_id);

This method returns true if the value on which it is invoked either is
identical to or inherits, directly or indirectly from the interface or value
defined by the value_id parameter. Otherwise it returns false.

CORBA::ValueDef _ptr FullValueDescription*
describe_value();

This method returns a FullValueDescription describing the value
including its operations and attributes.

114 VisiBroker for C++ API Reference Guide

CORBA::ValueMemberDef_ptr create_value_member(const
Char* id, const Char* name, const Char* version,
CORBA::IDLType_ptr type_def, CORBA::short access);

This method returns a new ValueMemberDef contained in the ValueDef on
which it is invoked.

CORBA::AttributeDef_ptr create_attribute(const Char*
id, const Char* name,const Char* version,
CORBA::IDLType_ptr type, CORBA::AttributeMode mode);

This method creates a new attribute definition for this valuetype and
returns a new AttributeDef for it

CORBA::OperationDef_ptr create_operation(const Char*
id, const Char* name, const Char* version,
CORBA::IDLType_ptr result, CORBA::OperationMode mode,
const CORBA::ParDescriptionSeq& params, const
CORBA::ExceptionDefSeq& exceptions, const
CORBA::ContextIDSeq& contexts);

This method creates a new Operation for this valuetype and returns an
OperationDef for it.

ValueDescription

struct CORBA::ValueDescription

This interface describes a value type that is stored in the Interface
Repository.

Parameter Description
id The repository id for this type.
name The name of this type.
version The object's version.
type_def The value's IDL type.
short access The access value.

Parameter Description
id The repository id for this type.
name The name of this type.
version The object's version.
type The type's IDL type.
mode The object's mode.

Parameter Description
id The repository id for this type.
name The name of this type.
version The object's version.
result The IDL type of the operation.
mode The object's mode.
params The list of the operation's

parameters.
exceptions The list of the operation's

exceptions.
contexts The list of the operation's contexts.

VisiBroker for C++ API Reference Guide 115

Values
CORBA::String_var name

The name of the type.

CORBA::String_var id

The repository id of the type.

CORBA::Boolean is_abstract

If this variable is true, the value is an abstract value type.

CORBA::Boolean is_custom

If this variable is true, the valuetype is custom marshalled.

CORBA::String_var defined_in.

The repository Id of the module in which this type is defined.

CORBA::String_var version

The type's version.

CORBA::RepositoryIdSeq& supported_interfaces

The list of interfaces which this value type supports.

CORBA::RepositoryIdSeq& abstract_base_values

The list of abstract value types from which this value inherits.

CORBA::Boolean is_truncatable

If this variable is true, the value type can be truncated to its base value
type safely.

CORBA::String_var base_value

The value types from which this value inherits.

WstringDef

class WstringDef : public CORBA::IDLType, public
CORBA::Object

This class is used to describe Unicode strings that are stored in the interface
repository. It provides methods for setting and retrieving the bounds of a
Unicode string.

WStringDef methods

CORBA::ULong bound();

This method returns the bounds of the Wstring.

void members(CORBA::ULong bound);

This method sets the bounds of the Wstring.

Parameter Description
members The list of members.

116 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 117

Activation interfaces and
classes
This section describes the interfaces and classes used in the activation of
object implementations.

ImplementationStatus

struct ImplementationStatus

ImplementationStatus is used to track the activation state for a server
that is registered with the OAD.

module Activation
{
 . . .
 struct ImplementationStatus {
 extension::CreationImplDef impl;
 ObjectStatusList status;
 };
 . . .
};

Include file
Include the oad_c.hh file when you use this class.

ImplementationStatus members

CreationImplDef impl;

The OAD registration information for the object implementation.

ObjectStatusList status;

Represents a list of status information for each object offered by the server.
See “ObjectStatusList” for information on the ObjectStatusList class.

OAD
The OAD interface provides access to the OAD (Object Activation Daemon).
It is used by the administration tools for listing, registering, and
unregistered objects. It can also be used by client code for programmatic
administration of the OAD.

The following code sample shows the OAD IDL:

interface OAD {
 extension::CreationImplDef create_CreationImplDef();

 Object reg_implementation(in extension::CreationImplDef
impl)
 raises(DuplicateEntry, InvalidPath);

118 VisiBroker for C++ API Reference Guide

 extension::CreationImplDef get_implementation(
 in COBRA::RepositoryId repId,
 in string object_name)
 raises(NotRegistered);

 void change_implementation(
 in extension::CreationImplDef old_info,
 in extension::CreationImplDef new_info)
 raises(NotRegistered, InvalidPath, IsActive);

 attribute boolean destroy_on_unregister;

 void unreg_implementation(
 in CORBA::RepositoryId repId,
 in string object_name)
 raises(NotRegistered);

 void unreg_interface(in CORBA::RepositoryId repId)
 raises(NotRegistered);

 void unregister_all();

ImplementationStatus get_status(
 in CORBA::RepositoryId repId,
 in string object_name)
 raises(NotRegistered);

 ImplStatusList get_status_interface(
 in CORBA::RepositoryId repId)
 raises(NotRegistered);

 ImplStatusList get_status_all();

 Object lookup_interface(in CORBA::RepositoryId repId,
in long timeout)
 raises(NotRegistered, FailedToExecute,
 NotResponding, Busy);
 Object lookup_implementation(in CORBA::RepositoryId
repId, in string object_name, in long timeout)
 raises(NotRegistered, FailedToExecute,
 NotResponding, Busy);

 extension::CreationImplDef boa_activate_obj(
 in Object obj,
 in string repository_id,
 in long unique_id)
 raises(NotRegistered);

void boa_deactivate_obj(in Object obj,
 in string repository_id,
 in long unique_id)
 raises(NotRegistered);

string generated_command(in extension::CreationImplDef
impl);

string generated_environment(in extension::CreationImplDef
impl);

VisiBroker for C++ API Reference Guide 119

};

For a complete description of the IDL source codes, refer to the oad.idl file
located in the VisiBroker installation in the following directory:

<install_dir>\idl\

Include file
Include the oad_c.hh file when you use this class.

OAD methods

void change_implementation(const
extension::CreationImplDef&_old_info,
const extension::CreationImplDef& _new_info);

This method changes an objects implementation dynamically. You can use
this method to change the registration's activation policy, path name,
argument settings, and environment settings.

Caution
You cannot change information for a currently active implementation. Be
sure to exercise caution when changing an object's implementation name
and object name with this method. Doing so will prevent client applications
from locating the object using the old name.

extension::CreationImplDef_ptr
create_CreationImplDef();

Returns an instance of an extension::CreationImplDef_ptr object. You
can then set its attributes as explained in “CreationImplDef impl;”.

void destroy_on_unregister(CORBA::Boolean val);

Sets the destroy_on_unregister attribute for the OAD.

Note
Currently, this attribute cannot be set programatically.

Parameter Description
_old_info The information you want to change.
_new_info The information to replace the old info.

Exception Description
NotRegistered The object you specify is not registered. You must

specify a registered object.
IsActive The object implementation is currently running.

Deactivate the object and then try to change its
information.

InvalidPath The implementation class or executable you specify
cannot be located.

Parameter Description
val If set to TRUE, any active implementations are shut down

when they are unregistered. Otherwise, they will not be shut
down when unregistered.

120 VisiBroker for C++ API Reference Guide

CORBA::Boolean destroy_on_unregister();

Returns the setting for the destroy_on_unregister attribute for an
implementation. If the attribute is set to TRUE, any active implementations
are shut down when unregistered.

extension::CreationImplDef_ptr get_implementation(const
char *repId, const char *object_name);

This method retrieves information about implementations registered for the
specified repository identifier and object name. It returns a
extension::CreationImplDef_ptr object.

ImplementationStatus *get_status(const char *repId,
const char *object_name);

This method retrieves the status information about implementations
registered for the specified repository identifier and object name.

ImplStatusList *get_status_all();

Returns an ImplStatusList containing the status information for all
implementations.

ImplStatusList *get_status_interface(cost char *repId);

Parameter Description
repId The repository identifier.

object_name The object name.

Exception Description
NotRegistered The object you specify is not registered. You must

specify a registered object.

Parameter Description
repId The repository identifier.

object_name The object name.

Exception Description
NotRegistered The object you specify is not registered. You must

specify a registered object.

VisiBroker for C++ API Reference Guide 121

This method gets the status information about implementations registered
for the specified repository identifier.

::CORBA::Object_ptr reg_implementation(
const extension::CreationImplDef& _impl);

This method registers an implementation with the OAD and the VisiBroker
directory service.

void unreg_implementation(const char *repId, const char
*object_name);

This method unregisters implementations by repository identifier and object
name. If the destroy_on_unregister attribute is set to true, this method
terminates all processes currently implementing the repository identifier
and object name that is specified.

void unreg_interface(const char *repId);

This method unregisters all implementations for a repository identifier. If
the destroy_on_unregister attribute is set to true, this method
terminates all processes currently implementing the repository identifier
specified.

Parameter Description
repId The repository identifier.

Exception Description
NotRegistered The object you specify is not

registered. You must specify a
registered object.

Parameter Description
_impl The instance of CreationImplDef.

Exception Description
DuplicateEntry The object you specify is a duplicate entry. You must

specify an unregistered object.
InvalidPath The implementation class or executable you specify

cannot be located.

Parameter Description
repId The repository identifier.

object_name The object name.

Exception Description
NotRegistered The object you specify is not registered. You

must specify a registered object.

Parameter Description
repId The repository identifier.

Exception Description
NotRegistered The object you specify is not registered. You must

specify a registered object.

122 VisiBroker for C++ API Reference Guide

void unregister_all();

This method unregisters all implementations. Unless the attribute
destroy_on_unregister is set to true, all active implementations
continue to execute.

ObjectStatus

struct ObjectStatus

This structure is used to store information about a particular object offered
by an object implementation that is registered with the OAD. This structure
is returned by the ObjectStatusList class, described in
“ObjectStatusList”.

module Activation
{
 . . .
 struct ObjectStatus {
 long unique_id;
 State activation_state;
 Object objRef;
 };
 . . .
};

Include file
Include the oad_c.hh file when you use this class.

ObjectStatus members
CORBA::Long unique_id;

A unique identifier for the object.

State activation_state;

The object's current activation state. It can be one of these values:

• ACTIVE
• INACTIVE
• WAITING_FOR_ACTIVATION
CORBA::Object objRef;

The object whose state is represented in the structure.

ObjectStatusList

class ObjectStatusList

This class implements a list of ObjectStatus structures and is used to
represent information about the objects offered by a server.

See also
“ObjectStatus”.

VisiBroker for C++ API Reference Guide 123

Include file
Include the oad_c.hh file when you use this class.

ObjectStatusList methods

void length(CORBA::ULong len);

Sets the length of the list.

CORBA::ULong length() const;

Returns the length of the list.

CORBA::ULong maximum() const;

Returns the maximum length of the list.

ObjectStatus& operator[](CORBA::ULong index);

Returns the ObjectStatus structure with the specified index in the list.

Parameter Description
len The length of the list.

Parameter Description
index The zero-based index of the item in

the list.

124 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 125

Naming Service interfaces
and classes (C++)
This section describes the interfaces and classes for the VisiBroker Naming
Service (VisiNaming).

NamingContext

class _VISNMEXPORT NamingContext : public virtual
CORBA_Object

This object is used to contain and manipulate a list of names that are bound
to the VisiBroker ORB objects or to other NamingContext objects. Client
applications use this interface to resolve or list all of the names within
that context. Object implementations use this object to bind names to
object implementations or to bind a name to a NamingContext object.

Include file
Include the file CosNaming_c.hh when using this class.

Code sample
The code sample below shows the IDL specification for the NamingContext.

module CosNaming {
 interface NamingContext {
 void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);
 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
 void bind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);
 void rebind_context(in Name n, in NamingContext nc)
 raises(NotFound, CannotProceed, InvalidName);
 Object resolve(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 NamingContext new_context();
 NamingContext bind_new_context(in Name n)
 raises(NotFound, CannotProceed, InvalidName,
AlreadyBound);
 void destroy()
 raises(NotEmpty);
 void list(in unsigned long how_many,
 out BindingList bl,
 out BindingIterator bi);
 };
};

126 VisiBroker for C++ API Reference Guide

NamingContext methods

virtual void bind(const Name& _n, CORBA::Object_ptr _obj);

If the parameter _n is a complex name, this method attempts to bind the
specified Object to the specified Name by resolving the context associated
with the first NameComponent and then binding the object to the new
context using the following Name:

Name[NameComponent₂,...,
NameComponent_(n-1),NameComponent_n]

This recursive process of resolving and binding continues until the context
associated with the NameComponent (n-1) is resolved and the actual name-
to-object binding is stored. If parameter _n is a simple name, _obj will be
bound to _n within this NamingContext.

This method may raise the following exceptions:.

virtual void rebind(const Name& _n, CORBA::Object_ptr
_obj);

This method is exactly the same as the bind method, except that it never
raises the AlreadyBound exception. If the specified Name has already been
bound to another object, this method replaces that binding with the new
binding.

Parameter Description
_n A Name, initialized with the desired name for the

object.
_obj The object to be bound.

Exception Description
NotFound The Name, or one of its components, could not be

found.
CannotProceed One of the NameComponent objects in the

sequence could not be resolved. The client may
still be able to continue the operation from the
returned naming context.

InvalidName The specified Name has no name components or
the id field of one of its name components is an
empty string.

AlreadyBound The specified Name has already been bound to
another object within the NamingContext.

Parameter Description
_n A Name structure, initialized with the desired name

for the object.
_obj The object to be rebound.

VisiBroker for C++ API Reference Guide 127

The following exceptions may be raised by this method.

virtual void bind_context(const Name& _n, NamingContext_ptr
_nc);

This method is identical to the bind method, except that it associates the
supplied Name with a NamingContext, not an arbitrary VisiBroker ORB
object.

The following exceptions may be raised by this method.

virtual void rebind_context(const Name& _n,
NamingContext_ptr _nc);

This method is exactly the same as the bind_context method, except that
this method never raises the AlreadyBound exception. If the specified
Name has already been bound to another naming context, this method
replaces that binding with the new binding.

Exception Description
NotFound The Name, or one of its components, could not be

found.
CannotProceed One of the NameComponent objects in the sequence

could not be resolved. The client may still be able to
continue the operation from the returned naming
context.

InvalidName The specified Name has no name components or the
id field of one of its name components is an empty
string.

Parameter Description
_n A Name structure initialized with the desired name

for the naming context. The first (n-1)
NameComponent structures in the sequence must
resolve to a NamingContext.

_nc The NamingContext object to be bound.

Exception Description
NotFound The Name, or one of its components, could not be

found.
CannotProceed One of the NameComponent objects in the sequence

could not be resolved. The client may still be able
to continue the operation from the returned naming
context.

InvalidName The specified Name has no name components or the
id field of one of its name components is an empty
string.

AlreadyBound The specified Name has already been bound to
another object within the NamingContext.

Parameter Description
_n A Name structure, initialized with the desired name

for the object.
_nc The NamingContext object to be rebound.

128 VisiBroker for C++ API Reference Guide

The following exceptions may be raised by this method.

virtual CORBA::Object _ptr resolve(const Name& _n);

This method attempts to resolve the specified Name and return an object
reference. If parameter _n is a simple name, it is resolved relative to this
NamingContext.

If _n is a complex name, it is resolved using the context associated with the
first NameComponent. Next, the new context to resolve the following Name:

Name[NameComponent₍₂₎,...,
NameComponent_(n-1),NameComponent_n]

This recursive process continues until the object associated with the nth
NameComponent is returned.

The following exceptions may be raised by this method.

virtual void unbind(const Name& _n);

This method performs the inverse operation of the bind method, removing
the binding associated with the specified Name.

The following exceptions may be raised by this method.

Exception Description
NotFound The Name, or one of its components, could not be

found.
CannotProceed One of the NameComponent objects in the sequence

could not be resolved. The client may still be able to
continue the operation from the returned naming
context.

InvalidName The specified Name has no name components or the
id field of one of its name components is an empty
string.

Parameter Description
_n A Name structure, initialized with the name for the

desired object.

Exception Description
NotFound The Name, or one of its components, could not be

found.
CannotProceed One of the NameComponent objects in the sequence

could not be resolved. The client may still be able to
continue the operation from the returned naming
context.

InvalidName The specified Name has no name components or the
id field of one of its name components is an empty
string.

Parameter Description
_n A Name structure, initialized with the desired name to

be unbound.

Exception Description
NotFound The Name, or one of its components, could not be

found.

VisiBroker for C++ API Reference Guide 129

virtual NamingContext_ptr new_context();

This method creates a new naming context. The newly created context is
implemented within the same server as this object. The new context is
initially not bound to any Name.

virtual NamingContext_ptr bind_new_context(const Name& _n)
raises ;

This method creates a new context and binds it to the specified Name within
this Context.

The following exceptions can be raised by this method.

virtual void destroy() ;

This method deactivates this naming context. Any subsequent attempt to
invoke operations on this object raises a CORBA::OBJECT_NOT_EXIST
runtime exception.

Before using this method, all Name objects that have been bound relative to
this NamingContext should be unbound using the unbind method. Any
attempt to destroy a NamingContext that is not empty raises a NotEmpty
exception.

The following exceptions can be raised by this method.

virtual void list(CORBA::ULong _how_many, BindingList_out
_bl,
BindingIterator_out _bi)

This method returns all of the bindings contained by this context. A
maximum of _how_many Names are returned with the BindingList. Any

CannotProceed One of the NameComponent objects in the sequence
could not be resolved. The client may still be able to
continue the operation from the returned naming
context.

InvalidName The specified Name has no name components or the id
field of one of its name components is an empty string.

Parameter Description
_n A Name structure, initialized with the specified Name

for the newly created NamingContext object.

Exception Description
NotFound The Name or one of its components could not be

found.
CannotProceed One of the NameComponent objects in the sequence

could not be resolved. The client may still be able to
continue the operation from the returned
NamingContext.

InvalidName The specified Name has no name components or the
id field of one of its name components is an empty
string.

AlreadyBound The specified Name has already been bound to
another object within the NamingContext.

Exception Description
NotEmpty The NamingContext to be destroyed is not empty.

Exception Description

130 VisiBroker for C++ API Reference Guide

left over bindings are returned via the BindingIterator. The returned
BindingList and BindingIterator are described in detail in “Binding
and BindingList” and can be used to navigate the list of names.

NamingContextExt

class _VISNMEXPORT NamingContextExt : public virtual
NamingContext, public virtual CORBA_Object

The NamingContextExt interface, which extends NamingContext,
provides the operations required to use stringified names and URLs.

Include file
Included the naming file CosNaming_c.hh when you use this class.

Code sample
This code sample shows the IDL Specification for the NamingContextExt
interface.

module CosNaming {
 interface NamingContextExt {
 typedef string StringName;
 typedef string Address;
 typedef string URLString;
 StringName to_string(in Name n)
 raises(InvalidName);
 Name to_name(in StringName sn)
 raises(InvalidName);
 exception InvalidAddress {};
 URLString to_url(in Address addr, in StringName sn)
 raises(InvalidAddress, InvalidName);
 Object resolve_str(in StringName n)
 raises(NotFound, CannotProceed, InvalidName);
};

};

NamingContextExt methods
virtual char* to_string(const Name& _n);

This operation returns the stringified representation of the specified Name.

Parameter Description
_how_many The maximum number of Names to be returned.
_bl A list of Names returned to the caller. The number of

names in the list will not exceed how_many.
_bi An iterator for use in traversing the rest of the

Names.

Parameter Description
_n A Name structure initialized with the

desired name for object.

VisiBroker for C++ API Reference Guide 131

The following exception can be raised by this method.

virtual Name* to_name(const char* _sn);

This operation returns a Name object for the specified stringified name.

The following exceptions can be raised by this method.

virtual char* to_url(const char* _addr, const char* _sn);

This operation returns a fully-formed string URL using the URL specified in
_addr and the stringified name in _sn.

The following exceptions can be raised by this method.

virtual CORBA::Object_ptr resolve_str(const char* _n);

This operation returns a Name object for the specified stringified name.

The following exceptions can be raised by this method.

Exception Description
InvalidName The specified Name has no name

components or the id field of one of
its name components is an empty
string.

Parameter Description
_sn The stringified name of an object.

Exception Description
InvalidName The specified Name has no name

components or the id field of one of
its name components is an empty
string.

Parameter Description
_addr A URL component of the form

myhost.inprise.com:800. If the
Address is empty, it is the local
host.

_sn A stringified name of an object.

Exception Description
InvalidAddress The specified Address is malformed.
InvalidName The specified Name has no name

components or the id field of one of
its name components is an empty
string.

Parameter Description
_n A stringified name of an object.

Exception Description
NotFound The Name, or one of its components, could not be

found.

132 VisiBroker for C++ API Reference Guide

Binding and BindingList
The Binding, BindingList, and BindingIterator interfaces are used to
describe the name-object bindings contained in a NamingContext. The
Binding struct encapsulates one such pair. The binding_name field
represents the Name and the binding_type indicates whether the Name is
bound to a VisiBroker ORB object or a NamingContext object.

The BindingList is a sequence of Binding structures contained by a
NamingContext object. An example program that uses the BindingList
can be found in <install dir>/examples/vbroker/ins/
pluggable_adaptor.

Include file
Include the file CosNaming_c.hh when you use these data types and
structure.

Code sample
This code sample shows the IDL specification for the Binding structure.

module CosNaming {
 enum BindingType {
 nobject,
 ncontext
 };
 struct Binding {
 Name binding_name;
 BindingType binding_type;
 };
 typedef sequence <Binding> BindingList;
};

BindingIterator

class _VISNMEXPORT BindingIterator : public virtual
CORBA_Object

This object allows a client application to walk through the unbounded
collection of bindings returned by the NamingContext operation list. An
example program that uses the BindingIterator can be found in
<install dir>/examples/vbroker/ins/pluggable_adaptor.

Include file
Include the file CosNaming_c.hh when you use this class.

CannotProceed One of the NameComponent objects in the sequence
could not be resolved. The client may still be able to
continue the operation from the returned
NamingContext.

InvalidName The specified Name has no name components or the
id field of one of its name components is an empty
string.

Exception Description

VisiBroker for C++ API Reference Guide 133

Code sample
This code sample shows the IDL specification for the BindingIterator
interface.

module CosNaming {
 interface BindingIterator {
 boolean next_one(out Binding bl);
 boolean next_n(in unsigned long how_many, out
BindingList b);
 void destroy();
 };
};

BindingIterator methods

virtual CORBA::Boolean next_one(Binding_out _b);

This method returns the next Binding from the collection. It returns
CORBA::FALSE if the list has been exhausted. Otherwise, it returns
CORBA::TRUE.

virtual CORBA::Boolean next_n(CORBA::ULong _how_many,
BindingList_out _bl);

This method returns a BindingList containing the number of requested
Binding objects from the list. The number of bindings returned may be less
than the requested amount if the list is exhausted. FALSE is returned when
the list has been exhausted. Otherwise, TRUE is returned.

virtual void destroy();

This method destroys this object and releases the memory associated with
the object. Failure to call this method will result in increased memory usage.

NamingContextFactory

class _VISNMEXPORT NamingContextFactory : public virtual
CORBA_Object

This interface is provided to instantiate an initial NamingContext. A client
may bind to an object of this type and use the create_context method to
create an initial context. Once the initial context has been created, the
new_context method can be used to create other contexts. An instance of
this naming context factory is created when the naming service is started,
described in the Naming Service section of the VisiBroker C++
Developer's Guide.

Parameter Description
_b The next Binding object from the

list.

Parameter Description
_how_many The maximum number of Binding

object desired.
_bl A BindingList containing no more

than the requested number of
Binding objects.

134 VisiBroker for C++ API Reference Guide

To create an initial NamingContextFactory that automatically creates a
single root context, go to “ExtendedNamingContextFactory”.

Include file
Include the file CosNamingExt_c.hh when you use this class.

Code sample
This code sample shows the IDL specification for the
NamingContextFactory.

module CosNamingExt {
 interface NamingContextFactory {

CosNaming::NamingContextExt create_context();
ClusterManager get_cluster_manager();
void remove_stale_contexts(in string password);
NamingContextList list_all_roots(in string password);
oneway void shutdown();

 };
};

Methods

virtual CosNaming::NamingContextExt_ptr
create_context();

This method allows a client to create a naming context. Since the
specification for naming contexts states that they do not have any notion of
a root context, simply instantiating a NamingContextFactory does not
create a naming context.

virtual ClusterManager_ptr get_cluster_manager();

This method returns the cluster manager.

virtual NamingContextList* list_all_roots (const char*
_password);

This method lists a minimum set of root contexts which allows you to access
every context in the namespace.

virtual void remove_stale_contexts (const char*
_password);

This method allows the client to remove bindings which relate to a
destroyed context.

virtual void shutdown();

This method allows a client to shut the naming service down gracefully. If
the service is restarted with the same backing store, the factory is restored
to the state it had prior to being shut down.

VisiBroker for C++ API Reference Guide 135

ExtendedNamingContextFactory

class _VISNMEXPORT ExtendedNamingContextFactory :
public virtual CosNamingExt::NamingContextFactory,
public virtual CORBA_Object

This interface extends the NamingContextFactory interface and allows the
creation of a default root within a factory when the extended naming
service is started, described in the Naming Service section of the
VisiBroker C++ Developer's Guide.

Include file
Include the file CosNamingExt_c.hh when you use this class.

Code sample
This code sample shows the IDL specification for the
ExtendedNamingContextFactory.

module CosNamingExt {
 interface ExtendedNamingContextFactory :
NamingContextFactory{
CosNaming::NamingContextExt root_context();

 };
};

Methods

virtual CosNaming::NamingContextExt_ptr root_context();

This method returns the root naming context that was created
automatically when this object was instantiated.

136 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 137

Event service interfaces and
classes
This section describes the interfaces and classes for the VisiBroker for C++
Event Service.

ConsumerAdmin

public interface ConsumerAdmin extends ConsumerAdminPOA

This interface is used by consumer applications to obtain a reference to a
proxy supplier object. This is the second step in connecting a consumer
application to an EventChannel.

IDL definition
module CosEventChannelAdmin {
 interface ConsumerAdmin {
 ProxyPushSupplier obtain_push_supplier();
 ProxyPullSupplier obtain_pull_supplier();
 };
};

ConsumerAdmin methods

public ProxyPushSupplier obtain_push_supplier();

The obtain_push_supplier method should be invoked if the calling
consumer application is implemented using the push model. If the
application is implemented using the pull model, the
obtain_pull_supplier method should be invoked.

public ProxyPullSupplier obtain_pull_supplier();

The returned reference is used to invoke either the
connect_push_consumer, described in , or the connect_pull_consumer
method, described in “ProxyPullConsumer”.

EventChannel
public interface EventChannel

The EventChannel provides the administrative operations for adding
suppliers and consumers to the channel and for destroying the channel. For
information on creating an event channel, see “EventChannelFactory”.

Suppliers and consumers both use the _bind method to obtain an
EventChannel reference. As with any _bind invocation, the caller can
optionally specify the object name of the desired EventChannel as well as
any desired bind options. These arguments can be passed to the supplier or
consumer as initial parameters or they may be obtained from the Naming
Service, if it is available. If the object name is not specified, VisiBroker
Edition locates a suitable EventChannel. Once a supplier or consumer is

138 VisiBroker for C++ API Reference Guide

connected to an EventChannel, it may invoke any of the EventChannel
methods.

IDL definition
module CosEventChannelAdmin {
interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};
};

Methods
The following code sample shows the supplier binding to an EventChannel
with the object name "power".

int main(int argc, char* const* argv)
{
 ...
 CosEventChannelAdmin::EventChannel_var my_channel
=

CosEventChannelAdmin::EventChannel::_bind("power");
 CosEventChannelAdmin::SupplierAdmin_var =

channel->for_suppliers();
 ...
}

ConsumerAdmin for_consumers();

This method returns a ConsumerAdmin object that can be used to add
consumers to this EventChannel.

SupplierAdmin for_suppliers();

This method returns a SupplierAdmin object that can be used to add
suppliers to this EventChannel.

void destroy();

This method destroys this EventChannel.

EventChannelFactory

public interface EventChannelFactory

The EventChannelFactory provides methods for creating, locating, and
destroying event channels.

IDL definition
module CosEventChannelAdmin {
 interface EventChannelFactory {
 exception AlreadyExists();
 exception ChannelsExist();
 EventChannel create();

VisiBroker for C++ API Reference Guide 139

 EventChannel create_by_name(in string name)
 raises(AlreadyExists);
 EventChannel lookup_by_name(in string name);
 void destroy()
 raises(ChannelsExist);
 };
};

EventChannelFactory methods

EventChannel create();

This method creates an anonymous, transient event channel.

EventChannel create_by_name(in string name)
raises(AlreadyExists);

This method creates a named, persistent event channel. If an event channel
with the specified name has already been created, an AlreadyExists
exception is raised.

EventChannel lookup_by_name(in string name);

This method attempts to return the EventChannel with the specified name.
If no channel with the specified name exists, a NULL value is returned.

void destroy();

This method destroys this event channel. The disconnect methods of all
suppliers and consumers connected to the channel are called before the
channel is destroyed. Once destroyed, if the channel was created by the
create_by_name method, it is no longer found by the lookup_by_name
method.

ProxyPullConsumer

public interface ProxyPullConsumer

This interface is used by a pull supplier application and provides the
connect_pull_supplier method for connecting the supplier's
PullSupplier-derived object to the EventChannel. An
AlreadyConnected exception is raised if an attempt is made to connect the
same proxy more than once. It can also raise the TypeError exception if
the proxy objects of an event channel implementation impose additional
type constraints that are connected to them.

IDL definition
module CosEventChannelAdmin {
 exception AlreadyConnected();
 interface ProxyPullConsumer :
CosEventComm::PullConsumer {
 void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
 raises(AlreadyConnected, TypeError);
 };
};

140 VisiBroker for C++ API Reference Guide

ProxyPushConsumer

public interface ProxyPushConsumer

This interface is used by a push supplier application and provides the
connect_push_supplier method which is used to connect the supplier's
PushSupplier-derived object to the EventChannel. An
AlreadyConnected exception is raised if an attempt is made to connect the
same proxy more than once.

IDL definition
module CosEventChannelAdmin {
 exception AlreadyConnected();
 interface ProxyPushConsumer :
CosEventComm::PushConsumer {
 void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
 raises(AlreadyConnected);
 };
};

ProxyPullSupplier

public interface ProxyPullSupplier

This interface is used by a pull consumer application and provides the
connect_pull_consumer method which is used for connecting the
consumer's PullConsumer-derived object to the EventChannel. An
AlreadyConnected exception is raised if an attempt is made to connect the
same PullConsumer more than once.

IDL definition
module CosEventChannelAdmin {
 exception AlreadyConnected();
 interface ProxyPullSupplier :
CosEventComm::PullSupplier {
 void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
 raises(AlreadyConnected);
 };
};

ProxyPushSupplier

public interface ProxyPushSupplier

This interface is used by a push consumer application and provides the
connect_push_consumer method which is used to connect the consumer's
PushConsumer-derived object to the EventChannel. An
AlreadyConnected exception is raised if an attempt is made to connect the
same PushConsumer more than once. It can also raise the TypeError
exception if the proxy objects of an event channel implementation impose
additional type constraints that are connected to them.

VisiBroker for C++ API Reference Guide 141

IDL definition
module CosEventChannelAdmin {
 exception AlreadyConnected();
 interface ProxyPushSupplier :
CosEventComm::PushSupplier {
 void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
 raises(AlreadyConnected, TypeError);
 };
};

PullConsumer

public interface PullConsumer

This interface is used to derive consumer objects that use the pull model of
communication. The pull method is called by a consumer whenever it
wants data from the supplier. A Disconnected exception is raised if the
supplier has disconnected.

The disconnect_pull_consumer method is used to deactivate this
consumer if the channel is destroyed.

IDL definition
module CosEventComm {
 exception Disconnected {};
 interface PullConsumer {
 void push(in any data) raises(Disconnected);
 void disconnect_pull_consumer();
 };
};

PushConsumer

public interface PushConsumer

This interface is used to derive consumer objects that use the push model of
communication. The push method is used by a supplier whenever it has
data for the consumer. A Disconnected exception is raised if the consumer
has disconnected.

IDL definition
module CosEventComm {
 exception Disconnected();
 interface PushConsumer {
 void push(in any data) raises(Disconnected);
 void disconnect_push_consumer();
 };
};

142 VisiBroker for C++ API Reference Guide

PullSupplier

public interface PullSupplier

This interface is used to derive supplier objects that use the pull model of
communication.

IDL definition
module CosEventComm {
 interface PullSupplier {
 any pull() raises(Disconnected);
 any try_pull(out boolean has_event)
raises(Disconnected);
 void disconnect_pull_supplier();
 };
};

PullSupplier methods

any pull();

This method blocks until there is data available from the supplier. The data
is returned an Any type. If the consumer has disconnected, this method
raises a Disconnected exception.

any try_pull(out boolean has_event);

This non-blocking method attempts to retrieve data from the supplier.
When this method returns, has_event is set to the valuetrue and the data
is returned as an Any type if there was data available. If the value of
has_event is false, then no data is available and the return value is NULL.

void disconnect_pull_supplier();

This method deactivates this pull server if the channel is destroyed.

PushSupplier

public interface PushSupplier

This interface is used to derive supplier objects that use the push model of
communication. The disconnect_push_supplier method is used by the
EventChannel to disconnect supplier when it is destroyed.

IDL definition
module CosEventComm {
 exception AlreadyConnected();
 interface PushSupplier {
 void disconnect_push_supplier();
 };
};

VisiBroker for C++ API Reference Guide 143

SupplierAdmin

public interface SupplierAdmin

This interface is used by supplier applications to obtain a reference to the
proxy consumer object. This is the second step in connecting a supplier
application to an EventChannel.

IDL definition
module CosEventChannelAdmin {
 interface SupplierAdmin {
 ProxyPushConsumer obtain_push_consumer();
 ProxyPullConsumer obtain_pull_consumer();
 };
};

public ProxyPushConsumer obtain_push_consumer();

The obtain_push_consumer method should be invoked if the supplier
application is implemented using the push model. If the application is
implemented using the pull model, the obtain_pull_consumer method
should be invoked.

public ProxyPullConsumer obtain_pull_consumer();

The returned reference is used to invoke either the connect_push_supplier
or the connect_pull_supplier method.

144 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 145

Server Manager Interfaces
and Classes
This section describes the VisiBroker for C++ Server Manager interfaces
and classes. For additional information about the Server Manager, see
“Using the VisiBroker Server Manager” in the VisiBroker for C++
Developer's Guide.

The Container Interface

class _VISSVMGREXPORT Container : public virtual
CORBA_Object

A container can hold properties, operations, and other containers. Each
major ORB component is represented as a container. The top-level
container does not support any properties or operations but contains child
containers, such as the ORB container. The ORB container in turn contains
ORB properties, a shutdown method, and other containers like RootPOA,
Agent, DebugLogger, ServerEngines and so forth.

Include file
Include the file servermgr_c.hh when using this class.

The Container Interface
This section explains the C++ methods that can be executed on the
container interface. There are four categories:

• Methods related to property manipulation and queries

• Methods related to operations

• Methods related to children containers

• Methods related to storage

Methods related to property manipulation and queries

virtual CORBA::StringSequence* list_all_properties();

Returns the names of all the properties in the container as a
StringSequence.

virtual PropertySequence* get_all_properties();

Returns the PropertySequence containing the names, values, and read-
write status of all the properties in the container.

virtual Property* get_property(const char * name);

Returns the value of the property name passed as an input parameter.

Parameter Description
name The name of the property.

146 VisiBroker for C++ API Reference Guide

It throws NameInvalid exception if the parameter passed is not a valid
property name.

virtual void set_property(const char* name, CORBA::Any&
value);

Sets the value of the property name to the requested value.

It can throw these exceptions:

• NameInvalid if the property name is invalid, for example if the property
does not exist in the container.

• ValueInvalid if the property value is not valid.

• ValueNotSettable if the property value cannot be set, for example if the
property is read-only.

virtual void persist_properties(CORBA::Boolean
recurse);

Causes the container to actually store its properties to the associated
“Storage Interface Methods for C++”. If no storage is associated with the
container, a StorageException will be raised. When it is invoked with the
parameter recurse=true, the properties of the children containers are also
stored into the storage. It is up to the container to decide if it has to store
all the properties or only the changed properties.

It throws StorageException exception if an error occurs while persisting the
properties.

virtual void restore_properties(CORBA::Boolean
recurse);

Instructs the container to obtain its properties from the storage. A container
knows exactly what properties is manages and it attempts to read those
properties from the storage. The containers shipped with the ORB do not
support restoring from the storage. You must create containers that support
this feature yourself.

It throws StorageException exception if an error occurs while restoring the
properties.

Parameters Descriptions
name The name of the property whose

value is to be set.
value The property value as Any type.

Parameter Description
recurse Indicates whether the sub-

containers' persist_properties
should be called recursively.

Parameter Description
recurse Indicates whether the sub-

containers' restore_properties
should be called recursively.

VisiBroker for C++ API Reference Guide 147

Methods related to operations

virtual CORBA::StringSeqence* list_all_operations();

Returns the names of all the operations supported in the container.

virtual OperationSequence* get_all_operations();

Returns all the operations along with the parameters and the type code of
the parameters so that the operation can be invoked with the appropriate
parameters.

virtual Operation* get_operation(const char* name);

Returns the parameter information of the operation specified by name
which can be used to invoke the operation.

It can throw NameInvalid exception if the parameter specifies an operation
which is not supported.

CORBA::Any* do_operation(const Operation& op);

Invokes the method in the operation and returns the result.

It can throw these exceptions:

• NameInvalid if the operation is not defined on the container.

• OperationFailed if the operation failed to execute.

• ValueInvalid if the value for any of the parameter is not of the
expected type.

Methods related to children containers

virtual CORBA::StringSequence* list_all_containers();

Returns the names of all the children containers of the current container.

virtual NamedContainerSequence* get_all_containers();

Returns all the named children containers.

virtual NamedContainer* get_container(const char *
name) ;

Returns the named child container identified by the name parameter.

Parameter Description
name The name of the operation to get

the parameter information.

Parameter Description
op The operation which is to be

performed on the server.

Parameter Description

name The name of the container on
which the children containers are
to be queried.

148 VisiBroker for C++ API Reference Guide

If there is no child container with this name, a NameInvalid exception is
raised.

virtual void add_container(const NamedContainer&
container);

Adds the container as a child container of this container.

It throws NameAlreadyPresent exception if a container with the specified
name already exists. It throws ValueInvalid exception if the named
container value is invalid.

virtual void set_container (const char * name,
Container_ptr value);

Modifies the child container identified by the name parameter to one in the
value parameter.

It can throw these exceptions:

• NameInvalid if no container with the specified name exists.

• ValueNotSettable if the i the container could not be replaced, for
example if the original container is created to be irreplaceable.

• ValueInvalid if the named container value is invalid.

Methods related to storage

virtual void set_storage(Storage_ptr s, CORBA::Boolean
recurse);

Sets the storage of this container. If recurse=true, it also sets the storage
for all its children as well.

virtual Storage_ptr get_storage();

Returns the current storage of the container.

Parameter Description

container The named container to be added
into this container.

Parameter Description

name The name of the container whose
value is to be replaced.

value The new child container.

Parameter Description

s The new storage to be set.
recurse Indicates whether to set the

storage recursively for the
children containers.

VisiBroker for C++ API Reference Guide 149

The Storage Interface

class _VISSVMGREXPORT Storage : public virtual
CORBA_Object

The Server Manager provides an abstract notion of storage that can be
implemented in any fashion. Individual containers may choose to store their
properties in databases, flat files, or some other means. The storage
implementation included with the VisiBroker ORB uses a flat-file-based
approach.

Include file
Include the file servermgr_c.hh when using this class.

Storage Interface Methods for C++

virtual void open();

Opens the storage and makes it ready for reading and writing the
properties. For the database-based implementation, logging into the
database is performed in this method.

It can throw StorageException if the storage could not be opened for any
reasons.

virtual void close();

Closes the storage. This method also updates the storage with any
properties that have been changed since the last
Container::persist_properties call. In database implementations, this
method closes the database connection.

It can throw StorageException if the closing fails for any reasons.

virtual Container::PropertySequence* read_properties();

Reads all the properties from the storage. It can throw StorageException if
the properties could not be read from the Storage.

virtual Container::Property* read_property(const char *
propertyName);

Returns the property value for propertyName read from the storage.

It throws NameInvalid. exception if the property name is not known to the
container. It throws StorageException if an error occurs while reading the
property from the storage.

Parameter Description

propertyName The name of the property which is
to be read from the Storage.

150 VisiBroker for C++ API Reference Guide

virtual void write_properties(const
Container::PropertySequence& p);

Saves the property sequence into the storage.

It can throw StorageException if an error occurs while writing the
properties to storage.

virtual void write_property(const Container::Property&
p);

Saves the single property into the storage.

It can throw StorageException if an error occurs while writing the
property to storage.

Parameter Description

p The sequence of properties which
have been changed in the
session.

Parameter Description

p The property which is to be
written to the persistent storage.

VisiBroker for C++ API Reference Guide 151

Transaction Service
interfaces and classes
This section describes the VisiBroker VisiTransact Transaction Service
interfaces and classes.

CosTransactions and VISTransactions modules
This section introduces the CosTransactions and VisTransactions
modules, and describes the data types, structures, and exceptions for the
CosTransactions module.

Looking at the CosTransactions module
The CosTransactions module is the Transaction Service IDL that conforms
to the final OMG Transaction Service document. This is the module to use to
restrict yourself strictly to CORBA-compliant methods. The IDL for this
module is contained in the file CosTransactions.idl.

You might also consider using the VISTransactions module, which
contains the IDL for some VisiBroker VisiTransact extensions to the
standard. The IDL for the VISTransactions module is contained in the file
VISTransactions.idl. You can use VISTransactions.idl in your code to
obtain both the CosTransactions and VISTransactions modules. For
more information, see “Looking at the VISTransactions module”.

Data types
The CosTransactions module defines the data types enum Status and enum
Vote.

The definition for the enum Status data type is:

enum Status
{
 StatusActive,
 StatusMarkedRollback,
 StatusPrepared,
 StatusCommitted,
 StatusRolledBack,
 StatusUnknown,
 StatusNoTransaction
 StatusPreparing,
 StatusCommitting,
 StatusRollingBack,
};

For a description of each Status value, see “Status value definitions” on
page 160.

The enum Vote data type is used only by implementations of the
CosTransactions::Resource interface. It is used to indicate the result of
a Resource's attempt to prepare a transaction.

152 VisiBroker for C++ API Reference Guide

The definition for the enum Vote data type is:

enum Vote
{
 VoteCommit,
 VoteRollback,
 VoteReadOnly
};

The Vote values are:

• VoteCommit. The Resource is able to write (or has already written) all the
data needed to commit the transaction to stable storage, as well as an
indication that it has prepared the transaction.

• VoteRollback. For any reason, the Resource could not vote to commit
the transaction. This includes not having any knowledge about the
transaction (which might happen after a crash).

• VoteReadOnly. No persistent data associated with the Resource has been
modified by the transaction.

Structures
The CosTransactions module defines these structures, which are used to save the
transaction context.

• otid_t contains an object transaction ID (or otid), which is a globally
unique ID for a transaction. The otid_t structure is a more efficient OMG
IDL version of the X/Open-defined transaction identifier (XID). The
otid_t can be transformed to an X/Open XID and vice versa.

• TransIdentity contains certain key information for a transaction: its
Coordinator, its Terminator (optionally), and its otid.

• PropagationContext contains a transaction's TransIdentity and its
time-out. In addition, it contains a TransIdentity for the parent and
each ancestor transaction, up to the top-level transaction, formatted as a
sequence (or array). Because nested transactions are not implemented in
VisiTransact, every transaction is a top-level transaction, and the
parents sequence will always be empty.

For the most part, these structures are used behind the scenes; you won't
reference them directly.

struct otid_t
{
 long formatID;
 long bqual_length;
 sequence <octet> tid;
};
struct TransIdentity
{
 Coordinator coordinator;
 Terminator terminator;
 otid_t otid;
};
struct PropagationContext
{
 unsigned long timeout;
 TransIdentity current;
 sequence <TransIdentity> parents;
 any implementation_specific_data;
};

VisiBroker for C++ API Reference Guide 153

When the transaction context is passed from one object to another object,
usually a TransactionalObject, it is commonly passed as a
PropagationContext. The implementation_specific_data field is
reserved for the VisiTransact Transaction Service.

For the most part, these structures are used behind the scenes; you won't
reference them directly. Certain methods, however, work explicitly with
PropagationContext.

• Coordinator::get_txcontext() extracts a PropagationContext.

• TransactionFactory::recreate() uses a PropagationContext to
create a new Control object.

The transaction context is always passed to a transactional object implicitly.
In addition, a program may be passed a transaction context explicitly, as a
parameter. You can use Coordinator::get_txcontext() to get the
PropagationContext. For more information on propagation of transaction
context, see “TransactionalObject interface”.

Another method that obtains information from these structures is the
VISTransactions::Current::get_otid() method, which extracts the
otid from the PropagationContext.

Exceptions
Exceptions are divided into three categories: Standard, Heuristic, and Method-specific.

Exception When this exception is thrown ...
CORBA::INVALID_TRANSACTION The invoking thread has an invalid transaction context.

CORBA::NO_PERMISSION The invoking thread does not have permission to
complete the transaction. For example, only the
transaction-originator thread can call this method.

CORBA::TRANSACTION_REQUIRED The invoking thread does not have a transaction context.

CORBA::TRANSACTION_ROLLEDBACK The transaction has been rolled back.

CORBA::WrongTransaction Raised by the ORB when returning the response to a
deferred synchronous request. This exception is raised
only if the request was implicitly associated with a
different transaction than the thread requesting the
response through Request::get_response() or
ORB::get_next_response(). See the VisiBroker
section on Dynamic Invocation Interface (DII).

Exception When this exception is thrown ...
CosTransactions::
HeuristicCommit

The rollback operation on a Resource raises this
exception to report that a heuristic decision was made,
and that all relevant updates have been committed.

CosTransactions::
HeuristicMixed

A heuristic decision was made when attempting to
commit the transaction. Some relevant updates have
been committed and others have been rolled back.

CosTransactions::
HeuristicHazard

A heuristic decision may have been made when
attempting to commit the transaction. The disposition of
all relevant updates is not known. For those updates
whose disposition is known, either all have been
committed or all have been rolled back. (In other words,
the HeuristicMixed exception takes priority over the
HeuristicHazard exception.)

CosTransactions::
HeuristicRollback

The commit operation on a Resource raises this exception
to report that a heuristic decision was made and that all
relevant updates have been rolled back.

154 VisiBroker for C++ API Reference Guide

Looking at the VISTransactions module
Interfaces in the VISTransactions module inherit from and extend the
CosTransactions interfaces. The VISTransactions module defines no
new data types, structures, or exceptions over those in CosTransactions.
For example, the Current interface includes VisiBroker VisiTransact
methods that make certain programming operations shorter and more
convenient. The IDL for this module is contained in the file
VISTransactions.idl.

For related information see “Choosing a Current interface” and “Obtaining a
Current object reference”.

Current interface
The Current interface defines methods to:

• Enable a program to manage transactions.

• Use implicit transaction propagation.

• Obtain information about the current transaction.

• Register Resources and Synchronization objects.

VisiBroker VisiTransact supports a number of extensions to the OMG
Transaction Service specification--additional methods for added
convenience. VisiBroker VisiTransact methods on the Current interface can
simplify the use of the VisiTransact Transaction Service for most programs.

Choosing a Current interface
The VisiTransact Transaction Service provides the Current interface in the
following IDL files:

• CosTransactions.idl contains the Transaction Service IDL that conforms
to the final OMG Transaction Service document.

• VISTransactions.idl provides both the CosTransactions interface and
the VISTransactions interface, which inherits and extends the
CosTransactions::Current interface. This interface includes

Exception When this exception is thrown
CosTransactions::Inactive The transaction has already been prepared.

CosTransactions::InvalidControl The Control parameter passed to resume is not valid in
the current execution environment.

CosTransactions::NotPrepared A commit has been issued but the Resource has not been
prepared.

CosTransactions::NoTransaction No transaction is associated with the client thread.

CosTransactions::
NotSubtransaction

Not raised in VisiTransact.

CosTransactions::
SubtransactionsUnavailable

Because VisiBroker VisiTransact does not support nested
transactions, this exception is raised if an attempt is
made to begin a transaction when a transaction is
already in progress for this client thread.

CosTransactions::
SynchronizationUnavailable

Not raised in VisiTransact.

CosTransactions::Unavailable The requested object cannot be provided. For example,
the Control object could not provide a Terminator.

VisiBroker for C++ API Reference Guide 155

VisiBroker VisiTransact extensions such as begin_with_name(),
register_resource(), and others.

You should use one of these IDL files. To restrict yourself strictly to CORBA-
compliant methods, use the CosTransactions.idl. If you decide to use any
of the VisiTransact extensions, use VISTransactions.idl.

The following example shows the CosTransactions interface for Current.

...
interface Current
{
 void begin()
 raises(SubtransactionsUnavailable);
 void commit(in boolean report_heuristics)
 raises (NoTransaction,
 HeuristicMixed,
 HeuristicHazard);
 void rollback()
 raises(NoTransaction);
 void rollback_only()
 raises(NoTransaction);
 Status get_status();
 string get_transaction_name();
 void set_timeout(in unsigned long seconds);
 Control get_control();
 Control suspend();
 void resume(in Control which)
 raises(InvalidControl);
};
...

The next example shows the VISTransactions interface for Current.

interface Current : CosTransactions::Current
{
 void begin_with_name(in string user_transaction_name)

raises(CosTransactions::SubtransactionsUnavailable);
 CosTransactions::RecoveryCoordinator
 register_resource(in CosTransactions::Resource
resource)
 raises(CosTransactions::Inactive);
 void register_synchronization(in
CosTransactions::Synchronization synch)
 raises(CosTransactions::NoTransaction,
 CosTransactions::Inactive,

CosTransactions::SynchronizationUnavailable
 CosTransactions::Unavailable);
 CosTransactions::otid_t get_otid();
 raises(CosTransactions::NoTransaction,
 CosTransactions::Unavailable);
 CosTransactions::PropagationContext get_txcontext()
 raises(CosTransactions::Unavailable,
 CosTransactions::NoTransaction);
 attribute string ots_name;
 attribute string ots_host;
 attribute string ots_factory;
};

156 VisiBroker for C++ API Reference Guide

Obtaining a Current object reference
To gain access to a VisiTransact-managed transaction, you must obtain an
object reference to the Current object. The Current object reference is valid
throughout the process.

The example below shows how a reference to the Current object is obtained
using the resolve_initial_references() method, and then how the
object returned by that method is narrowed to a
CosTransactions::Current object.

int main(....)
{
 try
 {

 // ORB related initialization
 // get reference to a CosTransactions::Current instance
 CORBA::Object_var
 obj = orb-
>resolve_initial_references("TransactionCurrent");
 CosTransactions::Current_var
 current = CosTransactions::Current::_narrow(obj);
 ...
 }
 catch(...) { } // catch all exceptions or exceptions
you care about,
}

VisiBroker VisiTransact offers extensions to the Current interface to
simplify certain operations. To take advantage of these extensions, narrow
to a VISTransactions::Current object.

VISTransactions::Current::_narrow(obj)

Using the Current object reference
The Current object reference is valid for the entire process under which you
create it; you can use it in any thread. You can either make multiple calls to
obtain references to the Current object or use just one reference throughout
the entire process. Typically, you would obtain one reference to avoid
multiple invocations of resolve_initial_references().

The C++ header files that you include must also correspond to your choice
of interfaces.

• For VISTransactions, use #include <VISTransactions_c.hh>.

• For CosTransactions, use #include <CosTransactions_c.hh>.

For more information, see the VisiBroker VisiTransact Guide.

Is your VisiTransact Transaction Service
instance available?
You can issue begin() or begin_with_name() to determine if the instance
of your VisiTransact Transaction Service is available. The method will raise
CORBA:NO_IMPLEMENT exception if the instance is not available.

Calling get_status() when there is no available instance of the
VisiTransact Transaction Service will return the current transaction state,

VisiBroker for C++ API Reference Guide 157

and cannot be used to determine if the instance of the VisiTransact
Transaction Service is available.

Checked behavior
Checked behavior is supported by the VisiTransact Transaction Service to
provide an extra level of transaction integrity. Specifically, checked
behavior is supported for transactions originated with Current::begin().
The purpose of the checks is to ensure that all transactional requests made
by the application have completed their processing before the transaction is
committed. This guarantees that a commit will not succeed unless all
transactional objects involved in the transaction have completed the
processing of their transactional requests. For checks that are part of the
commit process, see “commit()”. For more information about checked
behavior, see the VisiBroker VisiTransact Guide.

Current methods

begin()

void begin()
raises SubtransactionsUnavailable;

This method creates a new transaction. Because nested transactions are not
supported in VisiBroker VisiTransact, this is always a top-level transaction.

The transaction context of the client thread is modified so that the thread is
associated with the new transaction. If the client thread is already
associated with a transaction, the SubtransactionsUnavailable
exception is raised.

Included in the Current interface in CosTransactions.idl

The following exceptions may be raised when calling this method.

For more information, see the VisiBroker VisiTransact Guide.

begin_with_name()

void begin_with_name(in string user_transaction_name)
raises(CosTransactions::SubtransactionsUnavailable);

This VisiBroker VisiTransact method is a begin() method that enables its
caller to pass a user-defined informational transaction name. For example,
this helps with diagnostics because the user-defined transaction name is
included in the value returned by the get_transaction_name() method.
The name also helps with administration, because the Console will report
the name in the detailed information about an outstanding transaction.

To use this method, narrow the object returned from
resolve_initial_references() to VISTransactions::Current. For
more information, see “Obtaining a Current object reference”.

Included in the Current interface in VISTransactions.idl

Exception When thrown
CosTransactions::
SubtransactionsUnavailable

Because VisiBroker VisiTransact does
not support nested transactions, this
exception is raised if a transaction is
already in progress for this client
thread.

158 VisiBroker for C++ API Reference Guide

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

commit()

void commit(in boolean report_heuristics)
raises(NoTransaction,
 HeuristicMixed,
 HeuristicHazard
);

This method commits the transaction associated with the client thread. The
effect of this method is equivalent to calling the commit() method on the
corresponding Terminator object.

If this transaction has been marked for rollback, or any Resource votes for
rollback, this call raises CORBA::TRANSACTION_ROLLEDBACK. If there is no
current transaction, a CosTransactions::NoTransaction exception is
raised. If the caller is not the transaction originator, commit() raises the
exception CORBA::NO_PERMISSION.

Checks are made to ensure checked behavior. See the VisiBroker
VisiTransact Guide for more information.

On return from this method, the client thread is no longer associated with a
transaction. Any attempt to use Current, as if there were a transaction, will
raise an exception, such as NoTransaction or
CORBA::TRANSACTION_REQUIRED, or will return a null object reference.

This method does not return until the transaction is complete, and all
related Synchronization objects have been notified.

Included in the Current interface in CosTransactions.idl

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Parameter Description
user_transaction_name This user-defined informational

transaction name can be used to trace
transactions and debug programs.

Exception When thrown
CosTransactions::
SubtransactionsUnavailable

This exception is thrown if the thread
already has a transaction context.

Parameter Description
in boolean report_heuristics true: Requests that the program be

notified when heuristic decisions are
made.
false: Requests that the heuristic
information is not returned to the
program.

Exception When thrown
CosTransactions::
NoTransaction

No transaction is associated with the
client thread.

CosTransactions::
HeuristicMixed

A heuristic decision was made and
report_heuristics is true. Some
relevant updates have been committed
and others have been rolled back.

VisiBroker for C++ API Reference Guide 159

For more information on the heuristic log, see the VisiBroker VisiTransact
Guide.

get_control()

Control get_control();

This method returns a Control object reference that represents the
transaction context currently associated with the client thread.

If the client thread is not associated with a transaction, a null object
reference is returned.

Caution
See the VisiBroker VisiTransact Guide for details on checked behavior and
the implications of using this method.

Included in the Current interface in CosTransactions.idl.

For related material, see “Control interface” and “Terminator interface”. For
more information see the VisiBroker VisiTransact Guide.

get_otid()

CosTransactions::otid_t get_otid()
raises(CosTransactions::NoTransaction,
 CosTransactions::Unavailable);

Most applications will not normally call this method.

This VISTransactions::Current method provides the object transaction
ID (otid) through the Current interface as a convenience. This avoids
going to the Coordinator and looking through a PropagationContext. The
otid is used to identify a transaction to a recoverable object. This method
raises CosTransactions::NoTransaction if no transaction is associated
with the client thread.

To use this method, narrow the object returned from
resolve_initial_references() to VISTransactions::Current. For
more information, see “Obtaining a Current object reference”.

Included in the Current interface in VISTransactions.idl.

CosTransactions::
HeuristicHazard

A heuristic decision may have been
made and report_heuristics is
true. The disposition of all relevant
updates is not known. For those
updates whose disposition is known,
either all have been committed or all
have been rolled back. If the known
updates are a mixture of commits and
rollbacks, then the HeuristicMixed
exception is raised.

CORBA::NO_PERMISSION Only the transaction-originator thread
can call this method.

CORBA::OBJECT_NOT_EXIST It is unknown whether the transaction
was committed or rolled back because
a different thread or process could
have terminated the transaction
already. For example, the transaction
has already timed out.

CORBA::TRANSACTION_ROLLEDBACK The transaction was rolled back.

Exception When thrown

160 VisiBroker for C++ API Reference Guide

The following exceptions may be raised when calling this method.

For related material, see “Control interface” and “Terminator interface”.

get_status()

Status get_status();

This method returns an enumerated value (enum Status) that represents
the status of the transaction associated with the client thread.

Calling this method is equivalent to calling the get_status() method on
the corresponding Coordinator object. If there is no transaction associated
with the current thread, then the method returns
CosTransactions::StatusNoTransaction.

The possible return values are:

• StatusActive
• StatusMarkedRollback
• StatusPrepared
• StatusCommitted
• StatusRolledBack
• StatusUnknown
• StatusNoTransaction
• StatusPreparing
• StatusCommitting
• StatusRollingBack

Included in the Current interface in CosTransactions.idl.

No user exceptions are raised.

Status value definitions
Some implications of the enum Status values are:

• StatusActive: A transaction is associated with the target object and it is
in the active state. The VisiTransact Transaction Service returns this
status after a transaction has been started and prior to a Coordinator
issuing any prepare statements, unless the transaction has been marked
for rollback or timed out.

• StatusMarkedRollback: A transaction is associated with the target
object and has been marked for rollback, perhaps as the result of the
rollback_only() method.

• StatusPrepared: A transaction is associated with the target object and
has been prepared.

• StatusCommitted: A transaction is associated with the target object and
has been committed. It is likely that heuristics exist, otherwise the

Exception When thrown
CosTransactions::
NoTransaction

No transaction is associated with the
client thread.

CosTransactions::Unavailable This exception is thrown if the
VisiTransact Transaction Service
chooses to restrict the availability of
the PropagationContext.

VisiBroker for C++ API Reference Guide 161

transaction would have been quickly destroyed and
StatusNoTransaction returned.

• StatusRolledBack: A transaction is associated with the target object
and the outcome has been determined as rollback. It is likely that
heuristics exist, otherwise the transaction would have been quickly
destroyed and StatusNoTransaction returned.

• StatusUnknown: A transaction is associated with the target object, but
the VisiTransact Transaction Service cannot determine its current status.
This is a transient condition, and a subsequent invocation will ultimately
return a different status.

• StatusNoTransaction: No transaction is currently associated with the
target object. This will occur after a transaction has completed.

• StatusPreparing: A transaction is associated with the target object and
it is in the process of preparing. The VisiTransact Transaction Service
returns this status if the transaction has started preparing, but has not
yet completed the process, perhaps because it is waiting for responses to
prepare from one or more Resources.

• StatusCommitting: A transaction is associated with the target object
and is in the process of committing. The VisiTransact Transaction Service
returns this status if the transaction has begun to commit, but has not
yet completed the process, perhaps because it is waiting for responses
from one or more Resources.

• StatusRollingBack: A transaction is associated with the target object
and it is in the process of rolling back. The VisiTransact Transaction
Service returns this status if the transaction is being rolled back, but has
not yet completed the process, perhaps because it is waiting for
responses from one or more Resources.

get_transaction_name()

string get_transaction_name();

This method returns a printable string that is a descriptive name for the
transaction. This method is intended to assist in diagnostics and debugging.
If the transaction was created by the begin_with_name() method, the
returned string is the user-defined name assigned to the transaction, rather
than the VisiTransact Transaction Service-generated name.

The effect of this method is equivalent to calling the
get_transaction_name() method on the corresponding Coordinator
object. If there is no transaction associated with the client thread, an empty
string is returned.

Included in the Current interface in CosTransactions.idl.

No user exceptions are raised.

get_txcontext()

CosTransactions::PropagationContext get_txcontext()
raises(CosTransactions::Unavailable,
 CosTransactions::NoTransaction);

Most applications will not normally call this method.

This VISTransactions::Current method returns a
PropagationContext, which can be used by one VisiTransact Transaction
Service domain to export a transaction to a new VisiTransact Transaction
Service domain.

162 VisiBroker for C++ API Reference Guide

To use this method, narrow the object returned from
resolve_initial_references() to VISTransactions::Current. For
more information, see “Obtaining a Current object reference”.

Included in the Current interface in VISTransactions.idl.

The following exceptions may be raised when calling this method.

For related material, go to “Coordinator interface” and “Terminator
interface”.

ots_factory

attribute string ots_factory;

If you are using VISTransactions.idl, you can control the instance of the
VisiTransact Transaction Service used to create a transaction by setting this
attribute before you call VISTransactions::Current::begin().
Subsequent calls to the begin() method create transactions on the
specified VisiTransact Transaction Service. This attribute applies to all the
threads in your program. When the attribute is set, it retains its value until
set again.

This attribute specifies the VisiTransact Transaction Service instance by
IOR. VisiTransact uses the specified IOR
(CosTransactions::TransactionFactory) to locate the desired instance
of a VisiTransact Transaction Service instance on the network. This
argument enables VisiTransact to operate without the use of a Smart Agent
(osagent).

If you specify the IOR with either the Host Name or VisiTransact Transaction
Service Name attributes, the Smart Agent will find the VisiTransact
Transaction Service instance by IOR only and ignore the other attributes. If
you leave all three attributes null, the ORB chooses a VisiTransact
Transaction Service instance using the VisiBroker Smart Agent.

Included in the Current interface in VISTransactions.idl.

To set this attribute, use the appropriate method generated automatically
for the language you are using.

Related attributes: “ots_host” and “ots_name”

For more information, see the VisiBroker VisiTransact Guide.

ots_host

attribute string ots_host;

If you are using VISTransactions.idl, you can control the instance of the
VisiTransact Transaction Service used to create a transaction by setting this
attribute before you call VISTransactions::Current::begin().
Subsequent calls to the begin() method create transactions on the
specified VisiTransact Transaction Service. This attribute applies to all the
threads in your program. When the attribute is set, it retains its value until

Exception When thrown
CosTransactions::Unavailable This exception is thrown if the

VisiTransact Transaction Service
chooses to restrict the availability of
the PropagationContext.

CosTransactions::
NoTransaction

No transaction is associated with the
client thread.

VisiBroker for C++ API Reference Guide 163

set again. To return this attribute to the default VisiTransact instance, set it
to an empty or null string.

This attribute specifies the VisiTransact Transaction Service instance by host
name. The Smart Agent will find any available VisiTransact Transaction
Service instance that is located on the specified host.

If you specify a combination of Host Name and VisiTransact Transaction
Service Name attributes, the Smart Agent will find the named VisiTransact
Transaction Service instance on the named host. If you leave all three
attributes null, the ORB chooses a VisiTransact Transaction Service instance
using the VisiBroker Smart Agent.

Included in the Current interface in VISTransactions.idl.

To set this attribute, use the appropriate method generated automatically
for the language you are using.

Related attributes: “ots_factory” and “ots_name”

For more information, see the VisiBroker VisiTransact Guide.

ots_name

attribute string ots_name;

If you are using VISTransactions.idl, you can control the instance of the
VisiTransact Transaction Service used to create a transaction by setting this
attribute before you call VISTransactions::Current::begin().
Subsequent calls to the begin() method create transactions on the
specified VisiTransact Transaction Service. This attribute applies to all the
threads in your program. When the attribute is set, it retains its value until
set again. To return this attribute to the default VisiTransact instance, set it
to an empty or null string.

This attribute specifies the VisiTransact Transaction Service instance by
name. The Smart Agent will find the named VisiTransact Transaction
Service instance anywhere on the network.

If you specify a combination of Host Name and VisiTransact Transaction
Service Name attributes, the Smart Agent will find the named VisiTransact
Transaction Service instance on the named host. If you leave all three
attributes null, the ORB chooses a VisiTransact Transaction Service instance
using the VisiBroker Smart Agent.

Included in the Current interface in VISTransactions.idl.

To set this attribute, use the appropriate method generated automatically
for the language you are using.

Related attributes: “ots_factory” and “ots_name”

For more information, see the VisiBroker VisiTransact Guide.

register_resource()

CosTransactions::RecoveryCoordinator
 register_resource(in CosTransactions::Resource
resource)
raises(CosTransactions::Inactive);

Most applications will not normally call this method.

This VISTransactions::Current method registers a Resource for a
recoverable object. This method is a shortcut for using the Control and
Coordinator objects to register a Resource for a recoverable object. It

164 VisiBroker for C++ API Reference Guide

returns a Recovery Coordinator object that can be used to help coordinate
recovery. If this method is invoked when there is no transaction associated
with the client thread, the CORBA::TRANSACTION_REQUIRED exception is
thrown.

To use this method, narrow the object returned from
resolve_initial_references() to VISTransactions::Current. For
more information, see “Obtaining a Current object reference”.

Included in the Current interface in VISTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

For related material, see “Coordinator interface”.

register_synchronization()

void register_synchronization(in
CosTransactions::Synchronization synch)
raises(CosTransactions::NoTransaction,
 CosTransactions::Inactive,
 CosTransactions::SynchronizationUnavailable
 CosTransactions::Unavailable);

This VISTransactions::Current method registers a Synchronization
object. This method is a short-cut for using the Control and Coordinator
object to register a Synchronization object. To use this method, narrow the
object returned from resolve_initial_references() to
VISTransactions::Current. For more information, see “Obtaining a
Current object reference”.

Included in the Current interface in VISTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Parameter Description
in CosTransactions::
Resourceresource

The Resource object for the
recoverable object.

Exception When thrown
CosTransactions::Inactive The transaction has already been

prepared.
CORBA::TRANSACTION_ROLLEDBACK The transaction has been marked

for rollback.

Parameter Description
in CosTransactions::
Synchronization synch

The Synchronization object to
register.

Exception When thrown
CosTransactions::
NoTransaction

No transaction is associated with the
client thread.

CosTransactions::
Inactive

The transaction has already been
prepared.

VisiBroker for C++ API Reference Guide 165

For more information, see the VisiBroker VisiTransact Guide.

resume()

void resume(in Control which)
raises(InvalidControl);

Associates the client thread with the specified transaction. Typically, this is
used to either

• Associate a transaction context with a thread for use in implicit
transaction propagation, or

• Resume a transaction that was previously suspended by a suspend()
method.

The client thread becomes associated with the specified transaction. If the
client thread was already associated with a transaction, the previous
transaction context is forgotten. If resume() is invoked with a NULL
control, no transaction is associated with the current thread, and the
transaction context is forgotten.

Caution
Any transaction context you set via resume() is propagated back to the
invoking object.

Included in the Current interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

For more information, see the VisiBroker VisiTransact Guide.

rollback()

void rollback()
raises(NoTransaction);

Rolls back the transaction associated with the client thread. This is
equivalent to calling the rollback() method on the corresponding
Terminator object. This method does not return until the transaction is
complete, and all related Synchronization objects have been notified. On
return from this method, the client thread is no longer associated with a
transaction. Any attempt to use Current, as if there were a transaction, will

CosTransactions::Synchroniza
tionUnavailable

This exception is not raised by VisiBroker
VisiTransact.

CosTransactions::Unavailable Raised if the VisiTransact Transaction
Service restricts the availability of the
PropagationContext.

Parameter Description
in Control which A Control object used to set the thread's

transaction context.

Exception When thrown
CosTransactions::
InvalidControl

The Control parameter passed to
resume is not valid in the current
execution environment.

Exception When thrown

166 VisiBroker for C++ API Reference Guide

raise an exception, such as CosTransactions::NoTransaction or
CORBA::TRANSACTION_REQUIRED, or return a null object reference. If a
heuristic occurs, this method will not throw a heuristic-related exception.

If the caller is not the transaction originator, rollback() raises the
exception CORBA::NO_PERMISSION.

Included in the Current interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

For more information, see the VisiBroker VisiTransact Guide.

rollback_only()

void rollback_only()
raises(NoTransaction);

The method modifies the transaction associated with the client thread so
that rollback is the only possible transaction outcome. The effect of this
request is equivalent to calling the rollback_only() method on the
corresponding Coordinator object. A client that is restricted from performing
the rollback() operation, can nonetheless call rollback_only().

Included in the Current interface in CosTransactions.idl.

Exceptions

The following exceptions may be raised when calling this method.

For more information, see the VisiBroker VisiTransact Guide.

set_timeout()

void set_timeout(in unsigned long seconds);

This method establishes a new timeout for transactions started by
subsequent calls to the Current::begin() method in all threads within
this program.

To establish a new timeout, use these values of the seconds parameter:

• = 0 Sets any subsequent transaction that is begun to the default
transaction timeout for the VisiTransact Transaction Service instance that
it uses.

• > 0 Sets the new timeout to the specified number of seconds. If the
seconds parameter exceeds the maximum timeout valid for a

Exception When thrown
CosTransactions::
NoTransaction

No transaction is associated with the current client
thread.

CORBA::NO_PERMISSION Only the transaction-originator thread can call this
method.

CORBA::OBJECT_NOT_
EXIST

It is unknown whether the transaction was
committed or rolled back because a different
thread or process could have terminated the
transaction already. For example, the transaction
has already timed out.

Exception When thrown
CosTransactions::
NoTransaction

No transaction is associated with
the current client thread.

VisiBroker for C++ API Reference Guide 167

VisiTransact Transaction Service instance being used, then the new
timeout is set to that maximum, to bring it in range.

Note
When a transaction, created by a subsequent call to begin() in any thread
in the process, takes longer to start transaction completion than the
established timeout, it will be rolled back. If the timeout occurs before the
transaction enters the completion stage (begins two-phase or one-phase
processing) the transaction will be rolled back. Otherwise, the timeout is
ignored.

Included in the Current interface in CosTransactions.idl.

The following parameters are used by this method.

No user exceptions are raised.

For more information see the description of set_timeout() in the
VisiBroker VisiTransact Guide.

suspend()>

Control suspend();

This method suspends the transaction currently associated with the client
thread and returns a Control object for that transaction. If the client thread
is not associated with a transaction, a null object reference is returned.

The Control object can be passed to the resume() method to reestablish
this context in the same thread or a different thread.

After the call to suspend(), no transaction is associated with the client
thread. Any attempt to use Current, as if there were a transaction, will raise
an exception, such as CosTransactions::NoTransaction or
CORBA::TRANSACTION_REQUIRED, or return a null object reference.

Included in the Current interface in CosTransactions.idl.

No user exceptions are raised.

TransactionalObject interface
The TransactionalObject interface provides for the automatic
propagation of transaction context on method calls of transactional objects.
The TransactionalObject interface defines no methods.

Methods that work on transactions must have access to the transaction
context.

The transaction context can be made available to such methods in two
ways:

• Explicit propagation. A method receives and passes the transaction
context as a Terminator, Control, Coordinator, or PropagationContext
structure. For further information, see the VisiBroker VisiTransact Guide.

• Implicit propagation. The transaction context is passed automatically
(and implicitly) on method calls. For further information, see the
VisiBroker VisiTransact Guide.

Parameter Description
in unsigned long seconds Numbers of seconds before timeout

will occur on subsequent begin()
operations.

168 VisiBroker for C++ API Reference Guide

Implicit propagation is the typical, and easiest, way. This is the capability
that the TransactionalObject interface provides to your transactional
objects.

For information about the details of what information is in the transaction
context, see “Structures”.

An instance of TransactionalObject can participate in implicit
propagation. Implicit propagation is where the transaction context
associated with the client thread is automatically propagated to
TransactionalObject instances through method calls.

To use VisiTransact-managed transactions, all of your transactional objects
must inherit from TransactionalObject. By using VisiTransact-managed
transactions, you benefit from checked behavior.

The following example shows the TransactionalObject interface in the
CosTransactions.idl file.

interface TransactionalObject
{
};

The transaction context is always passed implicitly to an object that inherits
from CosTransactions::TransactionalObject. In addition, a program
may be passed a transaction context explicitly, as a parameter.

TransactionFactory interface
As described in “Current interface”, the Current interface enables a
program to initiate VisiTransact-managed transactions. This section, by
contrast, describes the TransactionFactory interface, which defines
methods that enable a program to initiate non-VisiTransact-managed
transactions. The TransactionFactory interface gives programs direct
control over the propagation of transaction context.

In the CosTransactions module, the TransactionFactory interface
provides three methods:

• create() Begins a transaction.

• create_with_name() Available if you are using the VISTransactions
IDL interface (with the VisiBroker VisiTransact extensions).

• recreate() Creates a new representation of a transaction.

For further information about using different IDL files, see “Choosing a
Current interface”.

Note
You acquire a TransactionFactory object the way you do any CORBA object;
for example, by binding.

Methods that are VisiBroker VisiTransact extensions are flagged by the icon
where described or cross-referenced.

The following example shows the CosTransactions IDL for
TransactionFactory.

...
interface TransactionFactory
{
 Control create(in unsigned long time_out);
 Control recreate(in PropagationContext ctx);

VisiBroker for C++ API Reference Guide 169

};
...

The next example shows the VISTransactions IDL for
TransactionFactory.

...
interface TransactionFactory :
CosTransactions::TransactionFactory
{
 CosTransactions::Control
 create_with_name(in unsigned long time_out,
 in string user_transaction_name);
};...
...

TransactionFactory methods

create()

CosTransactions::Control create(in unsigned long
time_out);

This method accepts a timeout parameter (time_out) and creates a new
transaction. It returns a Control object. The Control object can be used to
manage or to control participation in the new transaction. The Control
object can be used by any thread and passed around explicitly, just like any
other CORBA object.

Note
Checked behavior cannot be provided for transactions that use this method.

Included in the TransactionFactory interface in CosTransactions.idl.

The following parameters are used by this method.

To establish a new timeout, use the following values of the time_out
parameter.

• = 0 Sets any subsequent transaction that is begun to the default
transaction timeout for the VisiTransact Transaction Service instance that
it uses.

• > 0 Sets the new timeout to the specified number of seconds. If the
seconds parameter exceeds the maximum timeout valid for a
VisiTransact Transaction Service instance being used, then the new
timeout is set to that maximum.

Note
If a transaction does not start transaction completion (begin two-phase or
one-phase processing) before the timeout expires, it will be rolled back.

The new timeout applies only to the transaction created on this call.

See the description of set_timeout() in the VisiBroker VisiTransact Guide.

No user exceptions are raised.

Parameter Description
in unsigned long time_out A timeout, in seconds, that applies

to this invocation only.

170 VisiBroker for C++ API Reference Guide

create_with_name()

CosTransactions::Control
create_with_name(in unsigned long time_out,
 in string user_transaction_name);

This VISTransactions method extends the CosTransactions::
TransactionFactory::create() method by enabling you to create a new
transaction and assign it an informational transaction name that can be
used for debugging and error reporting. The user-defined transaction name
is included in the value returned by get_transaction_name().

Note
Checked behavior cannot be provided for transactions that use this method.

This method returns a Control object. The Control object can be used to
manage or to control participation in the new transaction. The Control
object can be used by any thread and passed around explicitly, just like any
other CORBA object.

Included in the TransactionFactory interface in VISTransactions.idl.

The following parameters are used by this method.

To establish a new timeout, use these values of the time_out parameter:

• = 0 Sets any subsequent transaction that is begun to the default
transaction timeout for the VisiTransact Transaction Service instance that
it uses.

• > 0 Sets the new timeout to the specified number of seconds. If the
seconds parameter exceeds the maximum timeout valid for VisiTransact
Transaction Service instance being used, then the new timeout is set to
that maximum.

Note
If a transaction does not start transaction completion (begin two-phase or
one-phase processing) before the timeout expires, it will be rolled back.

The new timeout applies only to the transaction created on this call.

See the description of set_timeout() in the VisiBroker VisiTransact Guide.

No user exceptions are raised.

For more information, see the VisiBroker VisiTransact Guide.

recreate()

Control recreate(in PropagationContext context);

Most applications will not normally call this method.

This method creates a new Control object using its PropagationContext
parameter. The Control object can be used to manage or to control
participation in the transaction.

Parameter Description
in unsigned long
time_out

A timeout, in seconds, for this transaction.

in string
user_transaction_name

This user-defined informational transaction
name can be used to trace transactions and
debug applications.

VisiBroker for C++ API Reference Guide 171

To get a transaction's PropagationContext, invoke the get_txcontext()
method on the transaction's Coordinator object.

Included in the TransactionFactory interface in CosTransactions.idl.

The following parameters are used by this method.

No user exceptions are raised.

The following example shows the way get_txcontext() and recreate()
work together to recreate a transaction.

...
CosTransactions::Coordinator_var coord;
CosTransactions::TransactionFactory_var newDomainFactory;
...
propxtxt = coord->get_txcontext();
CosTransactions::Control_var control = newDomainFactory-
>recreate(propctxt);
...

Control interface
The Control interface enables a program to explicitly manage or propagate
a transaction context. A Control object is implicitly associated with one
specific transaction.

The Control interface defines two methods:

• get_coordinator()
• get_terminator()

The get_coordinator() method returns a Coordinator object, which
supports methods used by participants in the transaction. The
get_terminator() method returns a Terminator object, which supports
methods to complete the transaction. The Terminator and Coordinator
objects support methods that are typically performed by different parties.
Providing two objects enables each set of methods to be made available
only to the parties that require those methods.

The example below contains the IDL for the Control interface, an excerpt
from the CosTransactions.idl file.

...
interface Control
{
 Terminator get_terminator()
 raises(Unavailable);
 Coordinator get_coordinator()
 raises(Unavailable);
};
...

You can obtain a Control object by using one of the methods of the
TransactionFactory. See “TransactionFactory interface”. You can also
obtain a Control object for the current transaction (associated with a
thread) through methods of the Current object.

Parameter Description
in PropagationContext
context

Context of the transaction to
import.

172 VisiBroker for C++ API Reference Guide

get_coordinator()

Coordinator get_coordinator()
raises(Unavailable);

This method returns a Coordinator object. The Coordinator provides
methods that are called by participants in a transaction. These participants
are typically either recoverable objects or agents of recoverable objects.

Included in the Control interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

For more information, see “Coordinator interface” for details on methods
you can use once you obtain the Coordinator object.

get_terminator()

Terminator get_terminator()
raises(Unavailable);

This method returns a Terminator object. The Terminator can be used to
rollback or commit the transaction associated with the Control. The
Unavailable exception is raised if the Control cannot provide the
requested object due to the inability of the Terminator object to be
transmitted to or be used in other execution environments.

Included in the Control interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

For more information, see the VisiBroker VisiTransact Guide.

Terminator interface
The Terminator interface supports methods to commit or rollback a
transaction. Typically, these methods are used by the transaction
originator, but any program that has access to a Terminator object for that
transaction can commit or rollback the transaction.

The following example contains the IDL for the Terminator interface, an
excerpt from the CosTransactions.idl file.

...
interface Terminator
{
 void commit(in boolean report_heuristics)
 raises (HeuristicMixed,
 HeuristicHazard);
 void rollback();
};
...

Exception When thrown
CosTransactions::
Unavailable

The Control object cannot provide
the requested Coordinator object.

Exception When thrown
CosTransactions::
Unavailable

The Control object cannot provide
the requested Terminator object.

VisiBroker for C++ API Reference Guide 173

Terminator methods

commit()

void commit(in boolean report_heuristics)
raises(HeuristicMixed,
 HeuristicHazard);

Before committing the transaction, this method performs some checks. If
the transaction has not been marked rollback only, and all of the
participants in the transaction agree to commit, the transaction is
committed and the operation terminates normally. Otherwise, the
transaction is rolled back and the CORBA::TRANSACTION_ROLLEDBACK
standard exception is raised.

If the report_heuristics parameter is true, the VisiTransact Transaction
Service will report inconsistent or possibly inconsistent outcomes using the
CosTransactions::HeuristicMixed and
CosTransactions::HeuristicHazard exceptions when appropriate.
Information about the Resources involved in a heuristic outcome will be
written to a heuristic log file corresponding to the instance of the
VisiTransact Transaction Service. For more information on heuristics, see
the VisiBroker VisiTransact Guide.

When a transaction is committed, all changes to recoverable objects made
in the scope of this transaction are made permanent and visible to other
transactions or clients.

Included in the Terminator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Parameter Description
report_heuristics true: Requests that the HeuristicMixed or

HeuristicHazard exceptions be raised, when
appropriate.
false: Requests that the heuristic information is not
returned to the program.

Exception When thrown
CosTransactions::
HeuristicMixed

A heuristic decision was made. Some
relevant updates have been committed, and
others have been rolled back.

CosTransactions::
HeuristicHazard

A heuristic decision may have been made,
the disposition of all relevant updates is not
known. For those updates whose disposition
is known, either all have been committed or
all have been rolled back. If the known
updates are a mixture of commits and
rollbacks, then the HeuristicMixed exception
is raised.

CORBA::TRANSACTION_
ROLLEDBACK

The transaction has been marked for
rollback.

CORBA::OBJECT_NOT_EXIST It is unknown whether the transaction was
committed or rolled back because a
different thread or process could have
terminated the transaction already. For
example, the transaction has already timed
out.

174 VisiBroker for C++ API Reference Guide

The example below shows how to use the commit() method with and
without heuristics.

// Using commit() without heuristics.
try
{
 terminator->commit(0);
}
catch(CORBA::TRANSACTION_ROLLEDBACK&)
{
 cerr << "Transaction failed" << endl;
}
...
// Using commit() with heuristics.
try
{
 terminator->commit(1);
}
catch(CORBA::TRANSACTION_ROLLEDBACK&)
{
 cerr << "Transaction failed" << endl;
}
catch(CosTransactions::HeuristicMixed&)
{
 cerr << "HeuristicMixed exception was raised" << endl;
}
catch(CosTransactions::HeuristicHazard&)
{
 cerr << "HeuristicHazard exception was raised" << endl;
}
catch(CORBA::OBJECT_NOT_EXIST&)
{
 cerr << "Transaction no longer exists" << endl;
}

For more information, see the VisiBroker VisiTransact Guide.

rollback()

void rollback();

This method rolls back the transaction. When a transaction is rolled back, all
changes to recoverable objects made in the scope of this transaction are
rolled back. All Resources locked by the transaction are made available to
other transactions as appropriate to the degree of isolation enforced by the
Resources.

This method does not return until the transaction is complete and all related
Synchronization objects have been notified. Any heuristic outcome that may
occur will be provided through the Console.

Included in the Terminator interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

Exception When thrown
CORBA::NO_PERMISSION Only the transaction-originator thread can call

this method.
CORBA::OBJECT_NOT_
EXIST

It is unknown whether the transaction was
committed or rolled back because a different
thread or process could have terminated the
transaction already. For example, the transaction
has already timed out.

VisiBroker for C++ API Reference Guide 175

For more information, see the VisiBroker VisiTransact Guide.

Coordinator interface
The Coordinator interface provides methods that are used by participants
in a transaction. These participants are typically either recoverable objects
or agents of recoverable objects. Each Coordinator is implicitly associated
with a single transaction.

The following example shows the CosTransactions IDL for the
Coordinator interface.

...
interface Coordinator
{
 Status get_status();
 Status get_parent_status();
 Status get_top_level_status();

 boolean is_same_transaction(in Coordinator coord);
 boolean is_related_transaction(in Coordinator coord);
 boolean is_ancestor_transaction(in Coordinator coord);
 boolean is_descendant_transaction(in Coordinator coord);
 boolean is_top_level_transaction();

 unsigned long hash_transaction();
 unsigned long hash_top_level_tran();

 RecoveryCoordinator register_resource(in Resource
resource)
 raises(Inactive);

 void register_synchronization(in Synchronization synch)
 raises(Inactive, SynchronizationUnavailable);

 void register_subtran_aware(in
SubtransactionAwareResource resource)
 raises(Inactive, NotSubtransaction);

 void rollback_only()
 raises(Inactive);

 string get_transaction_name();

 Control create_subtransaction()
 raises(SubtransactionsUnavailable, Inactive);

 PropagationContext get_txcontext()
 raises(Unavailable);
};

Because VisiTransact does not support nested transactions, several of the
Coordinator methods have become equivalent--that is, they return the
same result. More information is provided later in the section with the
method descriptions.

The following methods are equivalent:

• get_status()
• get_top_level_status()

176 VisiBroker for C++ API Reference Guide

• get_parent_status()

Similarly, certain methods return true only when the target object and the
parameter refer to the same Coordinator object. Therefore, the following
methods are also equivalent:

• is_same_transaction()
• is_related_transaction()
• is_ancestor_transaction()
• is_descendant_transaction()

And, the following methods are equivalent:

• hash_transaction()
• hash_top_level_tran()

Finally, without nested transactions, the create_subtransaction()
method is not useful and is therefore excluded from this version of
VisiTransact (and this documentation), although it is described in the OMG
specification.

Coordinator methods

get_parent_status()

Status get_parent_status();

Because VisiTransact does not support nested transactions, every
transaction is top-level, and get_parent_status() of a top-level
transaction is equivalent to get_status(), by OMG definition. For further
information, see “recreate()”.

Included in the Coordinator interface in CosTransactions.idl.

get_status()

Status get_status();

This method returns the status of the transaction associated with the target
object, as an enumerated value (enum Status). If there is no transaction
associated with the target object, then the method returns the value
StatusNoTransaction.

The following are the possible return values, as defined in
CosTransactions.idl:

• StatusActive
• StatusMarkedRollback
• StatusPrepared
• StatusCommitted
• StatusRolledBack
• StatusUnknown
• StatusNoTransaction
• StatusPreparing
• StatusCommitting
• StatusRollingBack

For information about each Status value, see “Status value definitions”.

VisiBroker for C++ API Reference Guide 177

Included in the Coordinator interface in CosTransactions.idl.

For more information, see the VisiBroker VisiTransact Guide.

get_top_level_status()

Status get_top_level_status();

Because VisiTransact does not support nested transactions, every
transaction is top-level. Therefore, this method is equivalent to the
get_status() method.

Included in the Coordinator interface in CosTransactions.idl.

get_transaction_name()

string get_transaction_name();

This method returns a printable string that is a descriptive name for the
transaction. This method is intended to assist with diagnostics and
debugging. If the transaction was created by the
VISTransactions::TransactionFactory::create_with_name()
method, the return string is the user-defined descriptive transaction name
rather than the VisiTransact Transaction Service-generated name. If there
is no transaction associated with the client thread, an empty string is
returned.

Included in the Coordinator interface in CosTransactions.idl.

For more information, see the VisiBroker VisiTransact Guide.

get_txcontext()

PropagationContext get_txcontext()
raises(Unavailable);

Most applications will not normally call this method.

The get_txcontext() method returns a PropagationContext, which can
be used by one VisiTransact Transaction Service domain to export a
transaction to a new VisiTransact Transaction Service domain.

Included in the Coordinator interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

hash_top_level_tran()

unsigned long hash_top_level_tran();

Most applications will not normally call this method.

Because VisiTransact does not support nested transactions, every
transaction is a top-level transaction. Therefore, this method is equivalent
to the hash_transaction() method.

This method returns a hash code for the transaction associated with the
target object. Each transaction has a single hash code. The hash code can
be used to efficiently compare Coordinators for inequality against the hash
codes of other transactions. If the hash codes of two Coordinators are not

Exception When thrown
CosTransactions::Unavailable The VisiTransact Transaction

Service restricts the availability of
the PropagationContext.

178 VisiBroker for C++ API Reference Guide

equal, then they represent different transactions. If two hash codes are
equal, then Coordinator::is_same_transaction() must be used to
guarantee equality or inequality, because two Coordinators might have the
same hash code but, in fact, represent two different transactions.

Included in the Coordinator interface in CosTransactions.idl.

For more information, see the VisiBroker VisiTransact Guide.

hash_transaction()

unsigned long hash_transaction();

Most applications will not normally call this method.

This method returns a hash code for the transaction associated with the
target object. Each transaction has a single hash code. The hash code can
be used to efficiently compare Coordinators for inequality against the hash
codes of other transactions. If the hash codes of two Coordinators are not
equal, then they represent different transactions. If two hash codes are
equal, then Coordinator::is_same_transaction() must be used to
guarantee equality or inequality, because two Coordinators might have the
same hash code but, in fact, represent two different transactions.

Included in the Coordinator interface in CosTransactions.idl.

The example below shows a method that uses hash_transaction() to
efficiently reject unequal Coordinators.

CORBA::Boolean are_same(Coord1, Coord2)
{
 CORBA::ULong hash1 = Coord1->hash_transaction();
 CORBA::ULong hash2 = Coord2->hash_transaction();
 if(hash1 != hash2)
 {
 return 0;
 }
 else
 {
 return Coord1->is_same_transaction(Coord2);
 }
}

For more information, see the VisiBroker VisiTransact Guide.

is_ancestor_transaction()

boolean is_ancestor_transaction(in Coordinator coord);

Because VisiTransact does not support nested transactions, this method
returns true if, and only if, the target object and the parameter object refer
to the same transaction.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

Parameter Description
coord The Coordinator with which the target Coordinator

is compared.

VisiBroker for C++ API Reference Guide 179

is_descendant_transaction()

boolean is_descendant_transaction(in Coordinator
coord);

Because VisiTransact does not support nested transactions, this method
returns true if, and only if, the target object and the parameter object refer
to the same transaction.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

is_related_transaction()

boolean is_related_transaction(in Coordinator coord);

Because VisiTransact does not support nested transactions, this method
returns true if, and only if, the target object and the parameter object refer
to the same transaction.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

is_same_transaction()

boolean is_same_transaction(in Coordinator coord);

This method returns true if, and only if, the target object and the parameter
object both refer to the same transaction.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

For more information, see the VisiBroker VisiTransact Guide.

is_top_level_transaction()

boolean is_top_level_transaction(in Coordinator coord);

Because VisiTransact does not support nested transactions, this method
always returns true.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

Parameter Description
coord The Coordinator with which the

target Coordinator is compared.

Parameter Description
coord The Coordinator with which the

target Coordinator is compared.

Parameter Description
coord The Coordinator with which the

target Coordinator is compared.

Parameter Description
coord The Coordinator with which the target Coordinator

is compared.

180 VisiBroker for C++ API Reference Guide

For more information, see the VisiBroker VisiTransact Guide.

register_resource()

RecoveryCoordinator register_resource(in Resource
resource)
raises(Inactive);

This method registers the specified Resource as a participant in the
transaction associated with the target object. When the transaction is
terminated, the Resource will receive requests to prepare, commit, or
rollback the updates performed as part of the transaction. For information
on Resource methods, see “Resource interface”.

This method returns a RecoveryCoordinator that can be used by this
Resource during recovery.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

register_synchronization()

void register_synchronization(in Synchronization synch)
raises(Inactive, SynchronizationUnavailable);

This method registers the specified Synchronization object so that it will be
notified to perform the necessary processing before and after completion of
the transaction. Such methods are described in the description of the
Synchronization interface; see “Synchronization interface”.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

Parameter Description
resource The Resource object to register.

Exception When thrown
CosTransactions::Inactive This exception is thrown if the

transaction has already been
prepared.

CORBA::TRANSACTION_ROLLEDBACK This exception is thrown if the
transaction has been marked for
rollback.

Parameter Description
synch The Synchronization object to

register.

Exception When thrown
CosTransactions::Inactive This exception is thrown if the

transaction has already been
prepared.

VisiBroker for C++ API Reference Guide 181

For more information, see “Resource interface”, and “Synchronization
interface” and see the VisiBroker VisiTransact Guide.

register_subtran_aware()

void register_subtran_aware(in
SubtransactionAwareResource resource)
raises(Inactive, SubtransactionsUnavailable);

Because VisiTransact does not support nested transactions, this method
always raises CosTransactions::SubtransactionsUnavailable.

Included in the Coordinator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

rollback_only()

void rollback_only()
raises (Inactive);

This method modifies the transaction associated with the Coordinator so
that rollback is the only possible transaction outcome.

Included in the Coordinator interface in CosTransactions.idl.

The following exceptions may be raised when calling this method.

For more information about invoking rollback_only(), see the VisiBroker
VisiTransact Guide.

CosTransactions::
SynchronizationUnavailable

This exception is never raised.

CORBA::TRANSACTION_ROLLEDBACK This exception is thrown if the
transaction has been marked for
rollback.

Parameter Description
resource The Resource to be registered with

the subtransaction.

Exception When thrown
CosTransactions::Inactive This exception is never thrown.

CosTransactions::
SubtransactionsUnavailable

This exception is thrown whenever
this method is invoked.

Exception When thrown
CosTransactions::Inactive This exception is thrown if the

transaction has already been
prepared.

Exception When thrown

182 VisiBroker for C++ API Reference Guide

RecoveryCoordinator interface
When a Resource is registered with the Coordinator, a RecoveryCoordinator
is returned. The RecoveryCoordinator is implicitly associated with a single
Resource registration request and can only be used by that Resource. In
case recovery is necessary, the Resource can use the RecoveryCoordinator
during the recovery process.

Also, the Resource can use the RecoveryCoordinator if it needs to know the
current status of the transaction. For example, the Resource can set its own
timeout, and if commit or rollback does not occur within the timeout, the
Resource can invoke replay_completion() to determine the status of the
transaction.

The following example shows the RecoveryCoordinator interface in the
CosTransactions.idl file.

...
interface RecoveryCoordinator
{
 Status replay_completion(in Resource resource)
 raises(NotPrepared);
};
...

RecoveryCoordinator methods

replay_completion()

Status replay_completion(Resource resource)
raises(NotPrepared);

This method notifies the VisiTransact Transaction Service that the Resource
is available. This method is typically used during recovery, and can be used
by the Resource to determine the status of the transaction.

Note
This method does not initiate completion.

Included in the RecoveryCoordinator interface in CosTransactions.idl.

The following parameters are used by this method.

The following exceptions may be raised when calling this method.

For more information on Status values, see “Status value definitions” in
“Current interface”.

Parameter Description
resource The Resource for which the

recovery is being undertaken.

Exception When thrown
CosTransactions::
NotPrepared

This exception is thrown if
replay_completion() is called for a
Resource that has not yet been prepared.

VisiBroker for C++ API Reference Guide 183

Resource interface
VisiBroker VisiTransact uses a two-phase commit protocol to complete a
top-level transaction with each Resource registered with it--that is, with
each Resource that might change during the transaction. The Resource
interface defines the methods invoked by the VisiTransact Transaction
Service on each Resource. Each object supporting the Resource interface is
implicitly associated with a single top-level transaction.

The following example shows the Resource interface in the
CosTransactions.idl file.

...
interface Resource
{
 Vote prepare()
 raises(
 HeuristicMixed,
 HeuristicHazard
);
 void rollback()
 raises(
 HeuristicCommit,
 HeuristicMixed,
 HeuristicHazard
);
 void commit()
 raises(
 NotPrepared,
 HeuristicRollback,
 HeuristicMixed,
 HeuristicHazard
);
 void commit_one_phase()
 raises(
 HeuristicHazard
);
 void forget();
};
...

VisiBroker VisiTransact provides this interface, but you must provide the
implementation in your Resource. A typical application does not implement
a Resource.

Resource methods

commit()

void commit()
raises(NotPrepared
 HeuristicRollback
 HeuristicMixed
 HeuristicHazard
);

This method attempts to commit all changes associated with the Resource.
If a heuristic outcome exception is raised, the Resource must keep the
heuristic decision in persistent storage until the forget() method is

184 VisiBroker for C++ API Reference Guide

performed so that it can return the same outcome in case commit() is
invoked again during recovery. Otherwise, the Resource can immediately
forget all knowledge of the transaction.

Included in the Resource interface in CosTransactions.idl.

The following exceptions may be thrown when calling this method.

For more information, see the VisiBroker VisiTransact Guide.

commit_one_phase()

void commit_one_phase()
raises (HeuristicHazard);

The commit_one_phase() method requests the Resource to commit all
changes made as part of the transaction. This method is an optimization for
use when a transaction has only one participating Resource. The
commit_one_phase() method can be called on the Resource, instead of
first calling prepare() and then commit() or rollback().

If a heuristic outcome exception is raised, the Resource must keep the
heuristic decision in persistent storage until the forget() method is
performed. This enables the Resource to return the same outcome in case
commit_one_phase() is performed again during recovery. Otherwise, the
Resource immediately forgets all knowledge of the transaction.

Included in the Resource interface in CosTransactions.idl.

If a failure occurs during commit_one_phase(), it is called again when the
failure is repaired. Since there is only a single Resource, the
HeuristicHazard exception is used to report heuristic decisions related to
that Resource.

The following exceptions may be thrown when calling this method.

Exception When thrown
CosTransactions::
NotPrepared

The commit() method was called before
the prepare() method was called.

CosTransactions::
HeuristicRollback

A heuristic decision was made and all
relevant updates have been rolled back.

CosTransactions::
HeuristicMixed

A heuristic decision was made. Some
relevant updates have been committed
and others have been rolled back.

CosTransactions::
HeuristicHazard

A heuristic decision may have been
made, the disposition of all relevant
updates is not known. For those updates
whose disposition is known, either all
have been committed or all have been
rolled back. If the known updates are a
mixture of commits and rollbacks, then
the HeuristicMixed exception is
raised.

Exception When thrown
CosTransactions::
HeuristicHazard

A heuristic decision may have been made,
the disposition of all relevant updates is not
known. For those updates whose disposition
is known, either all have been committed or
all have been rolled back.

CORBA::TRANSACTION_
ROLLEDBACK

The commit_one_phase() method
cannot commit all changes made as part of
the transaction.

VisiBroker for C++ API Reference Guide 185

For more information, see the VisiBroker VisiTransact Guide.

forget()

void forget();

When VisiBroker VisiTransact receives a heuristic exception, it records the
exception. The VisiTransact Transaction Service will ultimately call
forget() on the Resource. This means that the Resource can discard all
information about the transaction that raised the heuristic exception. This
method is called only if a heuristic exception was raised from rollback(),
commit(), or commit_one_phase().

Included in the Resource interface in CosTransactions.idl.

For more information, see the VisiBroker VisiTransact Guide.

prepare()

Vote prepare()
raises(HeuristicMixed
 HeuristicHazard
);

This method performs the prepare operation--the first step in the two-phase
commit protocol for a Resource object. When finished, the method returns
one of these Vote values.

• VoteReadOnly--No persistent data associated with the Resource has
been modified by the transaction.

• VoteCommit--The following data has been saved to persistent storage:

a All data changed as part of the transaction

b A reference to the RecoveryCoordinator object

c An indication that the Resource has been prepared

• VoteRollback--Some circumstance has caused the Resource to call for a
rollback, such as inability to save the relevant data, inconsistent
outcomes, or no knowledge of the transaction (which might happen after
a crash).

After returning VoteReadOnly or VoteRollback, the Resource can forget all
knowledge of the transaction.

If a heuristic outcome exception is raised, the Resource must save the
heuristic decision in persistent storage until the forget() method is called
so that it can return the same outcome in case prepare() is called again.

Included in the Resource interface in CosTransactions.idl.

The following exceptions may be thrown when calling this method.

Exception When thrown
CosTransactions::
HeuristicMixed

A heuristic decision has been made. Some
relevant updates have been committed and
others have been rolled back.

CosTransactions::
HeuristicHazard

A heuristic decision may have been made, the
disposition of all relevant updates is not known.
For those updates whose disposition is known,
either all have been committed or all have been
rolled back. If the known updates are a mixture
of commits and rollbacks, then the
HeuristicMixed exception is raised.

186 VisiBroker for C++ API Reference Guide

For more information, see the VisiBroker VisiTransact Guide.

rollback()

void rollback()
raises(HeuristicCommit
 HeuristicMixed
 HeuristicHazard
);

This method rolls back all updates associated with the Resource object.

If a heuristic outcome exception is raised, the Resource must save the
heuristic decision in persistent storage until the forget() method is
invoked. This enables the Resource to return the same outcome in case
rollback() is called again during recovery. Otherwise, the Resource
immediately forgets all knowledge of the transaction.

Included in the Resource interface in CosTransactions.idl.

The following exceptions that may be raised when calling this method.

For more information, see the VisiBroker VisiTransact Guide.

Synchronization interface
The Synchronization interface defines methods that enable a
transactional object to be notified before the start of the two and one-phase
commit protocol, and after its completion, as described in the VisiBroker
VisiTransact Guide.

In the CosTransactions module, the Synchronization interface provides
two methods:

• before_completion()--Ensures that before_completion() is invoked
before starting to commit a transaction.

• after_completion()--Ensures a transactional object is notified after the
transaction has been completed. This applies to all transactions whether
they were committed or rolled back.

Here are two limitations you should be aware of:

• If the VisiTransact Transaction Service cannot contact your
Synchronization object while trying to call before_completion(), then
the transaction will be rolled back. If a Synchronization object is
unavailable after completion, it will be ignored.

Exception When thrown
CosTransactions::
HeuristicCommit

A heuristic decision was made and all relevant
updates have been committed.

CosTransactions::
HeuristicMixed

A heuristic decision was made and some relevant
updates have been committed, and others have
been rolled back.

CosTransactions::
HeuristicHazard

A heuristic decision may have been made, the
disposition of all relevant updates is not known.
For those updates whose disposition is known,
either all have been committed or all have been
rolled back. If the known updates are a mixture of
commits and rollbacks, then the
HeuristicMixed exception is raised.

VisiBroker for C++ API Reference Guide 187

• When the VisiTransact Transaction Service instance recovers from a
failure, it does not remember Synchronization objects, and will only
replay completion and not Synchronization objects. If a failure occurs,
the Synchronization object will not be notified of how the transaction was
completed by the VisiTransact Transaction Service.

Note
In certain cases, after_completion() is called when
before_completion() was not called. before_completion() is called
only if a transaction is still continuing towards a commit at the outset of
completion. after_completion() is always called (unless the VisiTransact
Transaction Service crashes before the transaction completes).

Synchronization objects are not recoverable. If an instance of a VisiTransact
Transaction Service fails, any transactions that are completed will not
involve Synchronization objects.

Note
Although the signatures of these methods are fixed by the
Synchronization interface, their implementations are user-defined. This
enables an application to do custom processing at key points in a
transaction--before and after transaction completion.

The following example shows the CosTransactions IDL for the
Synchronization interface.

...
interface Synchronization : TransactionalObject
 {
 void before_completion();
 void after_completion(in Status status);
 };
...

Synchronization methods

after_completion()

void after_completion(in Status status);

This is a method that you write that performs customized processing after
the completion of the transaction. It is essentially a callback.

Note
The after_completion() method is always invoked during normal
processing.

As shown above, IDL for the Synchronization interface inherits from the
TransactionalObject interface. As a programmer, you are responsible
for writing the implementation of an after_completion() method that
conforms to the IDL.

If after_completion() is to be called in processing a particular
transaction, the following actions must be taken:

• A Synchronization object must be created, by the transaction originator or
some other transaction participant.

• The Synchronization object must be registered by getting the
transaction's Coordinator, and calling the

188 VisiBroker for C++ API Reference Guide

register_synchronization() method in Coordinator and Current. See
“register_synchronization()” in “Coordinator interface”. Registration
must be done after the transaction is created and before the start of the
two-phase commit.

Multiple Synchronization objects can be created and registered for a single
transaction.

The VisiTransact Transaction Service calls this method after the two-phase
commit protocol completes. As an example of its use,
after_completion() can be used by a transactional object to discover the
outcome of the transaction. This is particularly useful for transactional
objects that are not also recoverable objects, and so are not automatically
notified of the outcome.

You can call get_status() to see whether or not the transaction has been
marked for rollback.

Notice that because Synchronization inherits from
TransactionalObject, the transaction context will be available through
the Current object.

Included in the Synchronization interface in CosTransactions.idl.

The following parameters are used by this method.

All exceptions will be ignored.

For more information see the VisiBroker VisiTransact Guide.

before_completion()

void before_completion();

This is a method that you write to perform customized processing at the
onset of the completion of a transaction. It is called only if the transaction is
still continuing towards successful completion. It is essentially a callback.

Note
The before_completion() method is invoked after the application invokes
commit(), but before the VisiTransact Transaction Service begins
transaction completion. The before_completion() method is not invoked
for a rollback request.

As shown in the beginning of this section the IDL for the Synchronization
interface inherits from the TransactionalObject interface. As a
programmer, you are responsible for writing the implementation of a
before_completion() method that conforms to the IDL.

If before_completion() is to be called when processing a particular
transaction, the Synchronization object must be registered using the
register_synchronization() method in the Coordinator interface.
Register the Synchronization object from your transactional object or
recoverable server. Registration must be done after the transaction is
created and before the start of the two-phase commit.

Multiple Synchronization objects can be created and registered for a single
transaction.

Parameter Description
status A Status value passed by the Terminator to the

Synchronization object once the outcome of the
transaction has been determined.

VisiBroker for C++ API Reference Guide 189

The VisiTransact Transaction Service calls this method after the transaction
work has been done but before the two-phase commit protocol starts; that
is, before prepare() is called on the participating Resource. VisiBroker
VisiTransact calls before_completion() only if a transaction is still
continuing towards a commit at the outset of completion. This means that
Terminator->commit() was called and the transaction has not been
marked for rollback. If Terminator->rollback() was called, or the first of
several Synchronization objects marked the transaction for rollback, or the
transaction was already marked for rollback, before_completion() calls
will not be called again for this transaction.

Within this method, you can ensure the transaction will be rolled back by
calling the rollback_only() method. You can also call get_status() to
see whether or not the transaction has been marked for rollback. At the
time the method is called, however, you cannot rely upon the status to
indicate whether or not the transaction will actually be committed.

Notice that because the Synchronization interface inherits from
TransactionalObject, the transaction context will be available through
the Current object. This means that before_completion() can use all
objects on the Current object, such as get_status() and get_control().

Included in the Synchronization interface in CosTransactions.idl.

All CORBA exceptions raised by your Synchronization objects will result in
the transaction being rolled back.

For more information see the VisiBroker VisiTransact Guide.

VISTransactionService class
The VISTransactionService class is provided to help you link an instance
of the VisiTransact Transaction Service with your application process.

Its methods, in the visits.h file, include:

• init()
• terminate()

The following section documents these methods.

VISTransactionService methods

init()

static void init(int &argc, char* const* argv);

This method initializes all the instances of the VisiTransact Transaction
Service that are linked in your application process. It must be invoked to
activate an instance of the VisiTransact Transaction Service that you have
linked into your process by adding the ots_r library and the otsinit object
file to the link line.

If you want to initialize the embedded instance of the VisiTransact
Transaction Service, the init() method must be called. After ORB_init()
has been invoked, all the recognized VisiTransact arguments will be stripped
from the original parameter list so that they will not interfere with any other
argument processing that your client program requires.

190 VisiBroker for C++ API Reference Guide

Caution
If the in-process VisiTransact Transaction Service instance has been de-
activated using terminate(), vshutdown, or the Console, do not invoke
init() again.

Included in the VISTransactionService interface in visits.h.

The following parameters are used by this method.

Note
The argc and argv parameters should be argc and argv from the main
function.

terminate()

static void terminate();

This method will cleanup all the instances of the VisiTransact Transaction
Service that have been initialized by a call to init(). This method will not
bring down your application process unless the command line option
OTSexit_on_shutdown is set to 1.

If this option is either not set, or set to 0, it will deactivate the VisiTransact
Transaction Service objects registered with the Smart Agent but will NOT
bring down your application process.

Included in the VISTransactionService interface in visits.h.

For more information, see the VisiBroker VisiTransact Guide.

Commands and arguments
This section provides information about arguments for VisiTransact
Transaction Manager commands and ORB_init().

Overview of VisiTransact commands
The commands in the next few sections relate to one another as described
in the following table.

Parameter Description
argc The number of arguments being passed to the init()

method.
argv The actual arguments being passed to the init()

method.

VisiTransact Transaction
Manager component Related commands
VisiBroker Console “Note”. This command starts the

VisiBroker Console.
VisiTransact Transaction Service “ots”. This command starts an instance of

the VisiTransact Transaction Service.

“vshutdown”. This command shuts down
an instance of the VisiTransact Transaction
Service.

VisiBroker for C++ API Reference Guide 191

Note
VisiBroker Console is no longer automatically installed. It is available as an
optional component. To install, please download and extract the
<PRODUCT_VERSION>_opt_GUI_<PLATFORM>.tar.gz archive or
<PRODUCT_VERSION>_opt_GUI_<PLATFORM>.zip archive onto your
product installation.

The GUI components archive can be downloaded from our Software License
& Download (SLD) site, which is part of the Micro Focus Support Portal.
Among other benefits, this site provides access to product license keys and
install-kits, including the relevant GUI components.

For more information on the SLD, please see our Support Portal overview:

https://support.microfocus.com/help/support-portal-overview.pdf

The GUI components have been separated from the product as they do not
fully comply with the Section 508 and WCAG accessibility requirements and
guidelines. It is intended that future product releases will include updated
GUI components that comply with the relevant accessibility guidelines.

vbconsolew
This command invokes the VisiBroker Console, and can be run on any node
that has the executable for the Console installed. The Console does not
have to be local to the VisiTransact Transaction Service instances that it
administers. However, to administer these instances, they must be running
when the Console is started.

Syntax

prompt>vbconsolew

Arguments

None.

ots
This command starts an instance of the VisiTransact Transaction Service.

Syntax

prompt>ots [-Dvbroker.ots.defaultTimeout=<seconds>]
[-Dvbroker.ots.defaultMaxTimeout=<seconds>]
[-Dvbroker.ots.name=<transaction_service_name>]
[-Dvbroker.ots.logDir=<directory_name>]
[-Dvbroker.ots.iorFile=<ior_file_name>]

Example

prompt>ots -Dvbroker.ots.defaultTimeout=60
-Dvbroker.ots.defaultMaxTimeout=120
-Dvbroker.ots.name=Sales

Arguments

The following arguments can be used with this command.

Argument Description
-Dvbroker.ots.defaultTimeout=
<seconds>

Sets the default transaction timeout value for this
VisiTransact Transaction Service instance. If not set, this
defaults to 600 seconds.

-Dvbroker.ots.defaultMaxTimeout=
<seconds>

Sets the maximum allowed transaction timeout value for
this VisiTransact Transaction Service instance. If not set,
this defaults to 3600 seconds.

https://support.microfocus.com/help/support-portal-overview.pdf

192 VisiBroker for C++ API Reference Guide

vshutdown
This command can be used to shutdown the VisiTransact Transaction Service and the
VisiTransact XA Resource Director.

If it is used to shutdown an instance of the VisiTransact Transaction Service,
it defaults to allow the VisiTransact Transaction Service to wait for
outstanding transactions to complete before shutting down, but will not
accept any new transactions. You can direct the instance of the VisiTransact
Transaction Service to shutdown without resolving transactions by using the
optional -immediate argument.

Note
You can use this command to shutdown an instance of the VisiTransact
Transaction Service that is embedded within an application process
provided the -Dvbroker.ots.exitOnShutdown argument was passed to
the application's ORB_init() method. For information about shutting down
an instance of the VisiTransact Transaction Service that is embedded in an
application process, see “Arguments for applications with an embedded
VisiTransact Transaction Service instance”.

Syntax

prompt>vshutdown -help
prompt>vshutdown -type <object_type>
[-name <object_name>]
[-host <host_name>]
[-immediate]
[-noprompt]

Example

prompt>vshutdown -type ots -name myTxnSvc

Arguments

The following arguments can be used with this command.

-Dvbroker.ots.name=
<transaction_service_name>

Sets the name of the VisiTransact Transaction Service
instance used when registering its interface with the
Smart Agent. The default is <host_name>_ots.

-Dvbroker.ots.logDir=<
directory_name>

Names the directory in which logs and logger information
are kept. If you do not specify, the default is
<VBROKER_ADM>\its\<transaction_service_name>\
logger.

-Dvbroker.ots.iorFile=
<ior_file_name>

Takes in a file name whereby the IOR of the transaction
service will be written into. If this option is not given or
filename given by this option is not accessible, the IOR of
the transaction service will be written to STDOUT.

Argument Description

Argument Description
-help Use this argument to display the usage information for this

command. If you use this argument, vshutdown ignores all
other arguments and just gives you usage information.

-type Valid types are:

ots--VisiTransact Transaction Service
rd--VisiTransact XA Resource Director

If you specify only the type, vshutdown lists all the services
of that particular type and prompts you whether to shut
them down or not.

VisiBroker for C++ API Reference Guide 193

Command-line arguments for applications
You can pass arguments to ORB_init() (or ORB.init() for Java
applications) which affect the VisiTransact Transaction Service and your
application components. The following sections explain these options.

Passing command-line arguments to ORB_init() using
argc and argv
As a component of VisiBroker, command line arguments are passed to VisiTransact
Transaction Manager components through the VisiBroker ORB initialization call
ORB_init(). Therefore, in order for arguments specified on the command line to
have effect on the VisiTransact operation in a given application process, applications
must pass the original argc and argv arguments to ORB_init() from the main
program. For example:

int main(int argc, char * const* argv)
{
 try
 {
 // initialize the ORB
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
 }
...
}

The ORB_init() function will parse both ORB arguments and VisiTransact
Transaction Manager arguments, removing them from the argv vector
before returning.

For Java, the command-line arguments are passed to
org.omg.CORBA.ORB.init(). For example,

public static void main(String[] args) throws Exception
{
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,
null);
...
}

Arguments for applications that originate transactions
By default, the first time you start a transaction with Current::begin(), an
instance of the VisiTransact Transaction Service is found using the Smart Agent. You
can specify an instance of the VisiTransact Transaction Service to use, and the timeout
value for transactions, by using the arguments described in this section.

-name
<object_name>

The name of the object to be shutdown. By default
vshutdown looks up all the objects of the specified type and
prompts you whether to shut them down or not.

-host
<host_name>

The host machine where the service resides that you wish to
shutdown. By default vshutdown locates all the objects of a
particular type and name (if mentioned) on the network and
prompts you whether to shut them down or not.

-immediate Use this argument to direct the instance of the VisiTransact
Transaction Service to shutdown immediately without
resolving any outstanding transactions.

-noprompt Use this argument if you do not want to be prompted for
confirmation when you get a list of all object types, names,
or hosts to be shut down.

Argument Description

194 VisiBroker for C++ API Reference Guide

You pass these arguments at the command line when starting your
transactional server manually. Your application handles these command-
line input arguments using the ORB_init() method as described in
“Passing command-line arguments to ORB_init() using argc and argv”.

The following table explains the arguments that can be passed to
ORB_init() from the command line for applications that originate
transactions.

For example, to start the billing C++ transactional server that uses the
Accounting VisiTransact Transaction Service, you would use the following
command:

prompt>billing -Dvbroker.ots.currentName=Accounting

To start the Billing Java transactional server that uses the Accounting
VisiTransact Transaction Service, and has a timeout period of 2400 seconds,
you would use this command:

prompt>vbj -Dvbroker.orb.dynamicLibs=
com.visigenic.services.CosTransactions.TSServiceLoader

-Dvbroker.ots.currentName=Accounting
-Dvbroker.ots.currentTimeout=2400 Billing

Note
To execute Java transactional objects, you must use the vbj command to
invoke the virtual machine. The options beginning
-Dvbroker.orb.dynamicLibs are required to use ORB services. Be sure
to use the correct capitalization of this option.

If you specify a combination of -Dvbroker.ots.currentHost and
-Dvbroker.ots.currentName, the Smart Agent will find the named
VisiTransact Transaction Service instance on the named host. If you specify
-Dvbroker.ots.currentFactory with either
-Dvbroker.ots.currentHost or -Dvbroker.ots.currentName, the
Smart Agent will find the VisiTransact Transaction Service instance by IOR
only. It ignores the other arguments.

Arguments for applications with an embedded
VisiTransact Transaction Service instance
You can specify an instance of the VisiTransact Transaction Service to use with the
arguments described in this section. You can also specify whether your application
process will be brought down when the embedded instance of the VisiTransact
Transaction Service terminates.

Argument to ORB_init() Description
-Dvbroker.ots.currentFactory VisiTransact Transaction Manager uses the specified IOR

for the requested Transaction Service
(CosTransactions::TransactionFactory) to
locate the desired instance of the VisiTransact
Transaction Service on the network. This argument
enables VisiTransact Transaction Manager to operate
without the use of a Smart Agent (osagent).

-Dvbroker.ots.currentHost The Smart Agent will find any available VisiTransact
Transaction Service instance that is located on the
specified host.

-Dvbroker.ots.currentName The Smart Agent will find the named VisiTransact
Transaction Service instance anywhere on the network.

-Dvbroker.ots.currentTimeout Sets the transaction timeout value for Current. If the
transaction is still alive after the timeout expires, the
transaction is automatically rolled back.

VisiBroker for C++ API Reference Guide 195

You pass these arguments at the command line when starting your
transactional server manually. Your application handles these command-
line input arguments using the ORB_init() method as described in
“Passing command-line arguments to ORB_init() using argc and argv”.

The following table explains the arguments that can be passed to
ORB_init() from the command line for applications that embed an
instance of the VisiTransact Transaction Service.

Argument to ORB_init() Description
-Dvbroker.ots.defaultTimeout=
<seconds>

Sets the default transaction timeout value for this
VisiTransact Transaction Service instance. If not set,
this defaults to 600 seconds.

-Dvbroker.ots.defaultMaxTimeout=
<seconds>

Sets the maximum allowed transaction timeout value
for this VisiTransact Transaction Service instance. If not
set, this defaults to 3600 seconds.

-Dvbroker.ots.name=
<transaction_service_name>

Sets the name of the VisiTransact Transaction Service
instance used when registering its interface with the
Smart Agent. The default is <host_name>_ots.

-Dvbroker.ots.logDir=
<directory_name>

Names the directory in which logs and logger
information are kept. If you do not specify, the default
is <VBROKER_ADM>\its\<transaction_service_name>\
logger.

-Dvbroker.ots.exitOnShutdown If set to true, this will terminate your in-process
instance of the VisiTransact Transaction Service and
bring down your application process as well when the
VisiTransact Transaction Service is shut down remotely
using vshutdown or the Console.

If it is either not set or set to false, this will deactivate
the VisiTransact Transaction Service objects registered
with the Smart Agent but will NOT bring down your
application process.

196 VisiBroker for C++ API Reference Guide

Error codes
This section provides information about error codes for VisiTransact
Transaction Manager.

VisiTransact Transaction Manager common
error codes
The following table lists common error codes for VisiTransact Transaction
Manager.

Error
code Description Possible causes Solutions
201 Permission to

access the file or
directory is
denied.

The process does not
have the necessary
permissions for accessing
the file or directory.

Change the file or
directory permissions to
allow the process to
access it.

202 The process
cannot open the
requested file.

The file is in the wrong
directory.

Verify that the file is in
the correct directory,
and try again.

The process does not
have permission to
access the file.

Change the file
permissions to allow the
process to access it.

203 An error
occurred while
reading the file.

The process does not
have permission to read
the file.

Change the file
permissions to allow the
process to read the file.

204 An error
occurred while
writing to the
file.

The process has read-
only permission. it does
not have permission to
write to the file.

The storage is full, and
the system does not have
enough room to write the
changes to the file.

Change the file
permissions to allow the
process to write to the
file.

Clean up the storage,
and then try again.

801 An error
occurred while
attempting to
list an object of
the given type.

No Location Service is
available.

Verify that a Location
Service is available. See
the VisiBroker ORB
documentation for
details.

No Smart Agent is
running.

Start the Smart Agent
using the osagent
command. See the
VisiBroker ORB
documentation for
details.

The process is
experiencing a
communication problem.

Verify that all required
processes are running,
and all machines are up,
and try again.

VisiBroker for C++ API Reference Guide 197

VisiTransact Transaction Service error codes
The following table lists the error codes for the VisiTransact Transaction
Service.

Error code Description Possible causes Solutions
4000 An instance of the

VisiTransact Transaction
Service was started
successfully.

This is an informational
message only.

This message requires no
action.

4001 An instance of the
VisiTransact Transaction
Service is shutting down
by request.

An administrator or other
individual has shutdown
the instance of the
VisiTransact Transaction
Service using either the
vshutdown command,
Ctrl+C or the kill
command.

This message requires no
action.

4002 The instance of the
VisiTransact Transaction
Service is prepared to
shutdown, but is waiting
for outstanding
transactions to enter the
completion stage before
exiting.

The request to shutdown
the instance of the
VisiTransact Transaction
Service was issued without
the -immediate
argument, allowing the
instance to let outstanding
transactions enter the
completion stage before
exiting.

This message requires no
action.

If you want to shutdown
an instance of the
VisiTransact Transaction
Service without allowing
outstanding transactions
to enter the completion
stage, use the -
immediate argument
when issuing the
vshutdown command.

4003 The instance of the
VisiTransact Transaction
Service is shutting down
without waiting for
outstanding transactions
to enter the completion
stage.

The request to shutdown
the instance of the
VisiTransact Transaction
Service was issued with
the -immediate
argument, allowing the
instance to shutdown
without letting outstanding
transactions enter the
completion stage.

This message requires no
action.

If you want to shutdown
an instance of the
VisiTransact Transaction
Service and allow
outstanding transactions
to enter the completion
stage, issue the
vshutdown command
without the -immediate
argument.

4004 A HeuristicHazard
exception was raised by a
Resource. For complete
details on this exception,
see the output of the
heuristic log file.

A Resource made a
heuristic decision and does
not know the outcome of
at least one relevant
update.

There is a possible loss of
data integrity. Look up the
error in the heuristic log,
and notify your database
administrator of the
transaction identifier. Your
database administrator will
need to locate this error on
the Resource and correct
any problems manually.

4005 A HeuristicCommit
exception was raised by a
Resource. For complete
details on this exception,
see the output of the
heuristic log file.

A Resource made a
heuristic decision to
commit all relevant
updates.

There is a possible loss of
data integrity. Look up the
error in the heuristic log,
and notify your database
administrator of the
transaction identifier. Your
database administrator will
need to locate this error on
the Resource and correct
any problems manually.

198 VisiBroker for C++ API Reference Guide

4006 A HeuristicRollback
exception was raised by a
Resource. For complete
details on this exception,
see the output of the
heuristic log file.

A Resource made a
heuristic decision to
rollback all relevant
updates.

There is a possible loss of
data integrity. Look up the
error in the heuristic log,
and notify your database
administrator of the
transaction identifier. Your
database administrator will
need to locate this error on
the Resource and correct
any problems manually.

4007 A HeuristicMixed exception
was raised by a Resource.
For complete details on
this exception, see the
output of the heuristic log
file.

A Resource made a
heuristic decision which
differs from the outcome
of the transaction. Some
updates have been
committed, others have
been rolled back.

There is a possible loss of
data integrity. Look up the
error in the heuristic log,
and notify your database
administrator of the
transaction identifier. Your
database administrator will
need to locate this error on
the Resource and correct
any problems manually.

4008 An exception was caught
and ignored during the
callback for a specific
alarm (listed in the
message).

This message could be
thrown for various
reasons, including running
out of system resources.

Ignore this message.

4009 An internal application
error occurred.

An internal module of
VisiTransact Transaction
Manager, used by several
VisiTransact components,
could not be initialized due
to an unknown exception.

Contact VisiBroker
Technical Support.

4010 An internal application
error occurred, as
described in the message.

An internal module of
VisiTransact Transaction
Manager, used by several
VisiTransact components,
could not be initialized due
to the exception listed in
the message.

Contact VisiBroker
Technical Support.

4011 An exception occurred
while parsing the
initialization arguments
listed in the message.

The wrong command-line
arguments were entered
when executing a
VisiTransact command.

Verify the command-line
arguments, and try again.

4012 An exception occurred
while parsing some
initialization arguments,
but it is unknown which
arguments were incorrect.

The wrong command-line
arguments were entered
when executing a
VisiTransact command.

Verify the command-line
arguments, and try again.
See

4014 An initialization failure
(specified in the message)
occurred while starting an
instance of the
VisiTransact Transaction
Service.

The wrong configuration
file was used, or incorrect
values were entered for
initialization parameters.
An internal application
error has occurred.

Verify you are using the
correct configuration file,
and are entering correct
values for the initialization
parameters.
Contact VisiBroker
Technical Support.

4015 A runtime exception
occurred within a running
instance of the
VisiTransact Transaction
Service.

An internal application
error has occurred.

Contact VisiBroker
Technical Support.

Error code Description Possible causes Solutions

VisiBroker for C++ API Reference Guide 199

VisiTransact transaction log error codes
The following table lists error codes for the VisiTransact transaction log.

4016 The default transaction
timeout has been changed
to the value of the
maximum transaction
timeout.

The value of the default
transaction timeout was
higher than the value of
the maximum transaction
timeout.

Verify that you have
coordinated your timeout
settings between your
applications and any
command-line arguments
you are using when
starting instances of the
VisiTransact Transaction
Service.

4017 An invalid value was
provided for the default
transaction timeout. The
timeout value was reset to
600 seconds.

When setting the default
timeout value, a zero or a
negative value was
provided. The default
timeout value must be at
least 1 second.

When setting the default
timeout value, make sure
to set it to a value greater
than or equal to 1 second.
The recommended value is
600 seconds.

4018 An unexpected exception
was received by the
VisiTransact Transaction
Service during transaction
completion. The
VisiTransact Transaction
Service will retry
transaction completion.

An internal application
error has occurred.

Contact VisiBroker
Technical Support.

4019 An unexpected CORBA
exception was received by
the VisiTransact
Transaction Service during
transaction completion.
The VisiTransact
Transaction Service will
retry transaction
completion.

An internal application
error has occurred.

Contact VisiBroker
Technical Support.

Error code Description Possible causes Solutions

Error code Description Possible causes Solutions
8001 An internal error occurred

in the logger module. See
the message log for
details.

See the error text in the
message log.

If you cannot resolve this
error from the error text
displayed in the message
log, contact VisiBroker
Technical Support.

200 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 201

Native Messaging Interfaces
and Classes for C++
This section describes the interfaces and classes associated with the Native
Messaging.

RequestAgent

class NativeMessaging::RequestAgent : public virtual
CORBA_Object

The Request Agent interface defines operations of the Native Messaging
Request Agent.

Include File
Include the NativeMessaging_c.hh file when you use this class.

IDL definition
module NativeMessaging {
 interface RequestAgent {

 exception DuplicatedRequestTag {};
 exception PollingGroupIsEmpty {};
 exception RequestNotExist {};

 Request create_request(
 in RequestDesc desc) raises
(DuplicatedRequestTag);

 RequestTagSeq poll(
 in string polling_group,
 in unsigned long timeout,
 in boolean unmask) raises
(PollingGroupIsEmpty);

 void destroy_request(
 in Request req) raises
(RequestNotExist);

 };
};

202 VisiBroker for C++ API Reference Guide

RequestAgent Methods

create_request

virtual ::CORBA::Object_ptr create_request(
const NativeMessaging::RequestDesc& _desc);

This method creates and returns an asynchronous method invocation
request object in the Request Agent.

The method throws DuplicatedRequestTag exception.

poll

virtual NativeMessaging::RequestTagSeq* poll(const
char* _polling_group, ::CORBA::Ulong _timeout,
::CORBA::Boolean _umask);

The method returns the sequence of request tags whose replies are ready.

This method throws PollingGroupIsEmpty exception.

destroy_request

virtual void destroy_request(::CORBA::Object_ptr _req);

This method destroys an async request.

This method throws RequestNotExist exception.

Parameter Description
_desc The RequestDesc structure containing information

about the target object and async request.

Parameter Description
_polling_group The name of the polling group
_timeout The timeout interval in "milliseconds" to wait if the polling

group has no readily available replies. The values have
following meanings:

• timeout > 0 poll will block for that much time. If after
the timeout, there are still no replies available, an
empty sequence of request tags is returned.

• timeout=0 poll will not block. If there are any replies
available, their tags will be returned to the caller. If
there are no replies available, an empty sequence is
returned.

• timeout < 0 (or timeout=2^(32-1)) poll will block until
a reply is available.

_unmask If this flag is false, subsequent calls to poll on the same
polling group will also return the request tags returned in
the previous polls, until those request get destroyed
either as a result of manual or automatic trash. If this
flag is true, once a request tag is returned in the poll, it
will not appear in subsequent polls.

Parameter Description
_req The async request object reference

to be destroyed.

VisiBroker for C++ API Reference Guide 203

RequestDesc

struct NativeMessaging::RequestDesc;

A descriptor structure containing all the information needed to service a
async request.

Include File
Include the NativeMessaging_c.hh file when you use this struct.

IDL Definition
module NativeMessaging {
 typedef Object Request;
 typedef sequence<octet> OctetSeq;
 typedef OctetSeq RequestTag;
 typedef sequence<RequestTag> RequestTagSeq;
 typedef OctetSeq Cookie;

 struct RequestDesc {
 Object target;
 string repository_id;
 ReplyRecipient reply_recipient;
 Cookie the_cookie;
 string polling_group;
 RequestTag request_tag;
 PropertySeq properties;
 };
};

RequestDesc Fields

Field Description
target Reference of the target object, on which client wish

to invoke an operation. CORBA::BAD_PARAM
exception will result if a null value is passed.

repository_id Repository id of the target object. If this is an empty
string, request agent will try to extract the rep id
from the target object reference. If rep id empty
here and also null or empty in the target IOR
reference, a CORBA::BAD_PARAM exception is
thrown. Clients can also use a repository id of *. This
acts as a wild card and is_a operation on the
request object returns true for any repository id.

reply_recipient The reference of the reply recipient (or reply
handler) when using callback model. If this reference
is not null then the Request Agent will call its
reply_available method when a reply is ready.

the_cookie A user specified sequence of octets. It will be sent to
the reply_recipient when reply_available is
called. The information inside the cookie is user
defined.

204 VisiBroker for C++ API Reference Guide

ReplyRecipient

class NativeMessaging::ReplyRecipient : public virtual
CORBA_Object

Defines the interface for callback reply recipient.

Include File
Include the NativeMessaging_c.hh file when you use this class.

module NativeMessaging {
interface ReplyRecipient {
 void reply_available(
 in Request reply_holder,
 in string operation,
 in Cookie the_Cookie);
 };
};

ReplyRecipient methods

reply_available

virtual void reply_available(::CORBA::Object_ptr
_reply_holder, const char* _operation, const
NativeMessaging::OctetSeq& _the_Cookie);

REPLY_NOT_AVAILABLE
This constant defines the CORBA::NO_RESPONSE exception minor code
value thrown by the RequestAgent to the polling client when the reply for a
request is not available.

polling_group A user assigned polling group name. The group
name is scoped inside the Request Agent. Group
names are not uniquely used. If a non-empty group
name string is assigned and the Request Agent
doesn't have a polling group with the same name, a
new group with that name will be implicitly created.
However, if a group already exists, the created
request object is inserted into that group.

request_tag User assigned. If non-empty, it uniquely identifies
the request in the group. If another request in the
group has the same tag, create_request method
throws DuplicatedRequestTag exception.

properties Sequence of Property structure. Currently only one
Property value is defined (see Property structure)

Field Description

Parameter Description
_reply_holder async request for which reply is

received.
_operation operation invoked by the client.
_the_Cookie cookie passed by the client when

creating the request.

VisiBroker for C++ API Reference Guide 205

Include File
Include the NativeMessaging_c.hh file when you use this constant.

IDL definition
module NativeMessaging {
const unsigned long REPLY_NOT_AVAILABLE = 100;
};

Property

struct NativeMessaging::Property;

Holds a symbolic property name and its value inside an CORBA::Any.

Include File
Include the NativeMessaging_c.hh file when you use this struct.

IDL definition
module NativeMessaging {
 struct Property {
 string name;
 any value;
 };
};

Property Fields

PropertySeq

class NativeMessaging::PropertySeq : private
VISResource

A Sequence of Property that is passed inside RequestDesc while creating
async Request.

Include File
Include the NativeMessaging_c.hh file when you use this class.

Field Description
name The name of the property. Currently only one name is

recognized: RequestManualTrash
value The value of the property. The

RequestManualTrash has a value of type boolean:
If set to true, the request is destroyed manually by
calling destroy_request method. If set to false,
the request is destroyed automatically once the reply
is read (default).

206 VisiBroker for C++ API Reference Guide

OctetSeq

class NativeMessaging::OctetSeq : private VISResource

This class represents a sequence of octets. Similar to CORBA::OctetSeq
but defined here to make the NativeMessaging.idl independent of any
other IDL.

Include File
Include the NativeMessaging_c.hh file when you use this class.

RequestTag
typedef OctetSeq RequestTag;

An octet sequence identifying a request inside a polling group.

Include File
Include the NativeMessaging_c.hh file when you use this class.

RequestTagSeq

class NativeMessaging::RequestTagSeq : private
VISResource

Instances of this class are returned by the RequestAgent's poll method
when group polling is performed. Each element in the sequence is a
RequestTag; the octet sequence identifying a request inside the polling
group.

Include File
Include the NativeMessaging_c.hh file when you use this class.

Cookie

typedef OctetSeq Cookie

An octet sequence that is passed inside RequestDesc while creating async
Request. The contents inside the Cookie are user defined. The Request
Agent passes this Cookie to ReplyRecipient's reply_available method
when callback occurs.

Include File
Include the NativeMessaging_c.hh file when you use this type.

VisiBroker for C++ API Reference Guide 207

DuplicatedRequestTag

class DuplicatedRequestTag : public CORBA_UserException

This class defines a UserException that is raised if the async request is
created with a polling group name specified and the there is another
request in the polling group with the same request tag.

Include File
Include the NativeMessaging_c.hh file when you use this class.

PollingGroupIsEmpty

class PollingGroupIsEmpty : public CORBA_UserException

This class defines a UserException that is raised if poll method is called
on the RequestAgent and:

1 There is no group with the specified name.

2 The polling group exists but contains no requests that are waiting for
replies.

Include File
Include the NativeMessaging_c.hh file when you use this class.

RequestNotExist

class RequestNotExist : public CORBA_UserException

This class defines a UserException that is raised if the destroy_request
method is called on RequestAgent and the specified request could not be
found or is already destroyed.

Include File
Include the NativeMessaging_c.hh file when you use this class.

208 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 209

Portable Interceptor
interfaces and classes for
C++
This section describes the VisiBroker implementation of Portable
Interceptors interfaces and classes as defined by the OMG Specification. For
a complete description of these interfaces and classes, refer to OMG Final
Adopted Specification, ptc/2001-04-03, Portable Interceptors.

Note
See “Using Portable Interceptors” in the VisiBroker C++ Developer's
Guide before using these interfaces.

About Interceptors
The VisiBroker ORB provides a set of APIs known as interceptors which
provide a way to plug in additional VisiBroker ORB behavior such as support
for transactions and security. Interceptors are hooked into the VisiBroker
ORB through which VisiBroker ORB services can intercept the normal flow of
execution of the VisiBroker ORB. The following table lists the types of
interceptor that VisiBroker supports.

For more information about using portable interceptors, see “Using Portable
Interceptors” in the VisiBroker C++ Developer's Guide.

For more information about using interceptors, go to “VisiBroker Interceptor
and object wrapper interfaces and classes for C++”, and the VisiBroker
for C++ Developer's Guide, “Using Portable Interceptors” section for
more information.

The following table lists the two types of portable interceptor.

For more information about using portable interceptors, see “Using Portable
Interceptors” in the VisiBroker for C++ Developer's Guide.

Interceptor Type Description
Portable Interceptor Portable Interceptors is an OMG standardized feature

that allows you to write portable code for interceptors
and use it with different vendor ORBs.

VisiBroker
Interceptors

VisiBroker Interceptors are Micro Focus proprietary
interceptors defined in VisiBroker.

Interceptor Type Description
Request Interceptor Use to enable VisiBroker ORB services to transfer context

information between clients and servers. Request
Interceptors are further divided into Client Request
Interceptors and Server Request Interceptors.

IOR Interceptors Use to enable a VisiBroker ORB service to add
information, in an IOR, describing the server's or object's
ORB service related capabilities. For example, a security
service (like SSL) can add its tagged component into the
IOR so that clients recognizing that component can
establish the connection with the server based on the
information in the component.

210 VisiBroker for C++ API Reference Guide

ClientRequestInfo

class PortableInterceptor::ClientRequestInfo : public
virtual RequestInfo

This class is derived from RequestInfo. It is passed to the client side
interceptors point.

Some methods on ClientRequestInfo are not valid at all interception
points. The following table shows the validity of each attribute or method. If
an attribute is not valid, attempting to access it results in a BAD_INV_ORDER
being raised with a standard minor code of 14.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

send_
request

send_
poll

receive_
reply

receive_
exception

receive_
other

request_id yes yes yes yes yes

operation yes yes yes yes yes

arguments yes1 no yes no no

exception yes no yes yes yes

contexts yes no yes yes yes

operation_context yes no yes yes yes

result no no yes no no

response_expected yes yes yes yes yes

sync_scope yes no yes yes yes

reply_status no no yes yes yes

forward_reference no no no no yes2

get_slot yes yes yes yes yes

get_request_service_
context

yes no yes yes yes

get_reply_service_
context

no no yes yes yes

target yes yes yes yes yes

effective_target yes yes yes yes yes

effective_profile yes yes yes yes yes

received_exception no no no yes no

received_exception_id no no no yes no

get_effective_component yes no yes yes yes

get_effective_components yes no yes yes yes

get_request_policy yes no yes yes yes

add_request_service_
context

yes no no no no

1 When ClientRequestInfo is passed to send_request(), there is an
entry in the list for every argument, whether in, inout, or out. But only the
in and inout arguments will be available.
2 If the reply_status() does not return LOCATION_FORWARD, accessing
this attribute raises BAD_INV_ORDER with a standard minor code of 14.

VisiBroker for C++ API Reference Guide 211

ClientRequestInfo methods

virtual CORBA::Object_ptr target() = 0;

This method returns the object which the client called to perform the
operation. See effective_target() below.

virtual CORBA::Object_ptr effective_target() = 0;

This method returns the actual object on which the operation will be
invoked. If the reply_status() returns LOCATION_FORWARD, then on
subsequent requests, effective_target() will contain the forwarded
IOR, while target will remain unchanged.

virtual IOP::TaggedProfile* effective_profile() = 0;

This method returns the profile, in the form of IOP::TaggedProfile, that
will be used to send the request. If a location forward has occurred for this
operation's object and that object's profile changed accordingly, then this
profile will be that located profile.

virtual CORBA::Any* received_exception() = 0;

This method returns the data, in the form of CORBA::Any, that contains the
exception to be returned to the client.

If the exception is a user exception which cannot be inserted into a
CORBA::Any (for example, it is unknown or the bindings don't provide the
TypeCode), then this attribute will be a CORBA::Any containing the system
exception UNKNOWN with a standard minor code of 1. However, the
RepositoryId of the exception is available in the
received_exception_id attribute.

virtual char* received_exception_id() = 0;

This method returns the ID of the received_exception to be returned to
the client.

virtual IOP::TaggedComponent*
get_effective_component(CORBA::ULong _id) = 0;

This methods returns the IOP::TaggedComponent with the given ID from
the profile selected for this request.

If there is more than one component for a given component ID, it is
undefined which component this operation returns. If there is more than
one component for a given component ID, get_effective_components()
will be called instead.

If no component exists for the given component ID, this operation will raise
BAD_PARAM with a standard minor code of 28.

Parameter Description
_id ID of the component which is to be

returned.

212 VisiBroker for C++ API Reference Guide

virtual IOP::TaggedComponentSeq*
get_effective_components(
CORBA::ULong _id) = 0;

This method returns all the tagged components with the given ID from the
profile selected for this request. This sequence is in the form of an
IOP::TaggedComponentSeq.

If no component exists for the given component ID, this operation will raise
BAD_PARAM with a standard minor code of 28.

virtual CORBA::Policy_ptr
get_request_policy(CORBA::ULong _type) = 0;

This method returns the given policy in effect for this operation.

If the policy type is not valid, either because the specified type is not
supported by this ORB or because a policy object of that type is not
associated with this Object, INV_POLICY with a standard minor code of 2 is
raised.

virtual void add_request_service_context(
const IOP::ServiceContext& _service_context,
CORBA::Boolean _replace) = 0;

This method allows interceptors to add service contexts to the request.

There is no declaration of the order of the service contexts. They may or
may not appear in the order in which they are added.

ClientRequestInterceptor

class PortableInterceptor::ClientRequestInterceptor :
public virtual Interceptor

This ClientRequestInterceptor class is used to derive user-defined
client side interceptor. A ClientRequestInterceptor instance is
registered with the VisiBroker ORB (go to “ORBInitializer” for more
information).

Include file
Include the PortableInterceptor_c.hh file when you use this class.

Parameter Description
_id ID of the components which are to

be returned.

Parameter Description
_type Type of policy which specifies the

policy to be returned.

Parameter Description
_service_context IOP::ServiceContext to be added to the

request.
_replace Indicates the behavior of this method when a service

context already exists with the given ID. If false,
then BAD_INV_ORDER with a standard minor code
of 15 is raised. If true, then the existing service
context is replaced by the new one.

VisiBroker for C++ API Reference Guide 213

ClientRequestInterceptor methods

virtual void send_request(ClientRequestInfo_ptr _ri) =
0;

This send_request() interception point allows an interceptor to query
request information and modify the service context before the request is
sent to the server.

This interception point may raise a system exception. If it does, no other
interceptors' send_request() interception points are called. Those
interceptors on the Flow Stack are popped and their
receive_exception() interception points are called.

This interception point may also raise a ForwardRequest exception (go to
“ForwardRequest” for more information). If an Interception raises this
exception, no other interceptors' send_request methods are called. The
remaining interceptors in the Flow Stack are popped and have their
receive_other() interception point called.

virtual void send_poll(ClientRequestInfo_ptr _ri) = 0;

This send_poll() interception point allows an interceptor to query
information during a Time-Independent Invocation (TII) polling get reply
sequence.

However, as the VisiBroker ORB does not support TII, this send_poll()
interception point will never be called.

virtual void receive_reply(ClientRequestInfo_ptr _ri) =
0;

This receive_reply() interception point allows an interceptor to query the
information on a reply after it is returned from the server and before control
is returned to the client.

This interception point may raise a system exception. If it does, no other
interceptors' receive_reply() methods are called. The remaining
interceptors in the Flow Stack will have their receive_exception()
interception point called.

virtual void receive_exception(ClientRequestInfo_ptr
_ri) = 0;

This receive_exception() interception point is called when an exception
occurs. It allows an interceptor to query the exception's information before
it is raised to the client.

This interception point may raise a system exception. This has the effect of
changing the exception which successive interceptors popped from the Flow

Parameter Description
_ri ClientRequestInfo instance to

be used by interceptor.

Parameter Description
_ri ClientRequestInfo instance to

be used by interceptor.

Parameter Description
_ri ClientRequestInfo instance to

be used by interceptor.

214 VisiBroker for C++ API Reference Guide

Stack receive on their calls to receive_exception(). The exception raised
to the client will be the last exception raised by an interceptor, or the
original exception if no interceptor changes the exception.

This interception point may also raise a ForwardRequest exception (go to
“ForwardRequest” for more information). If an interceptor raises this
exception, no other interceptors' receive_exception() interception
points are called. The remaining interceptors in the Flow Stack are popped
and have their receive_other() interception point called.

virtual void receive_other(ClientRequestInfo_ptr _ri) =
0;

This receive_other() interception point allows an interceptor to query the
information available when a request results in something other than a
normal reply or an exception. For example, a request could result in a retry
(for example, a GIOP Reply with a LOCATION_FORWARD status was
received), or on asynchronous calls, the reply does not immediately follow
the request, but control will return to the client and an ending interception
point will be called.

For retries, depending on the policies in effect, a new request may or may
not follow when a retry has been indicated. If a new request does follow,
while this request is a new request, with respect to interceptors, there is
one point of correlation between the original request and the retry: because
control has not returned to the client, the request scoped
PortableInterceptor::Current for both the original request and the
retrying request is the same (go to “Current” for more information).

This interception point may raise a system exception. If it does, no other
interceptors' receive_other() interception points are called. The
remaining interceptors in the Flow Stack are popped and have their
receive_exception() interception point called.

This interception point may also raise a ForwardRequest exception (go to
“ForwardRequest” for more information). If an interceptor raises this
exception, successive interceptors' receive_other() methods are called
with the new information provided by the ForwardRequest exception.

Codec

class IOP::Codec

The formats of IOR components and service context data used by ORB
services are often defined as CDR encapsulations encoding instances of IDL
defined data types. Codec provides a mechanism to transfer these
components between their IDL data types and their CDR encapsulation
representations.

A Codec is obtained from the CodecFactory. The CodecFactory is
obtained through a call to
ORB::resolve_initial_references("CodecFactory").

Parameter Description
_ri ClientRequestInfo instance to

be used by interceptor.

Parameter Description
_ri ClientRequestInfo instance to

be used by interceptor.

VisiBroker for C++ API Reference Guide 215

Include file
Include the IOP_c.hh file when you use this class.

Codec Member Classes

class Codec::InvalidTypeForEncoding : public
CORBA_UserException

This exception is raised by encode() or encode_value() when an invalid
type is specified for the encoding.

class Codec::FormatMismatch : public
CORBA_UserException

This exception is raised by decode() or decode_value() when the data in
the octet sequence cannot be decoded into a CORBA::Any.

class Codec::TypeMismatch : public CORBA_UserException

This exception is raised by decode_value() when the given TypeCode
does not match the given octet sequence.

Codec Methods

virtual CORBA::OctetSequence* encode(const CORBA::Any&
_data) = 0;

This method converts the given data in the form of a CORBA::Any into an
octet sequence based on the encoding format effective for this Codec. This
octet sequence contains both the TypeCode and the data of the type.

This operation may raise InvalidTypeForEncoding.

virtual CORBA::Any* decode(const CORBA::OctetSequence&
_data) = 0;

This method decodes the given octet sequence into a CORBA::Any object
based on the encoding format effective for this Codec.

This method raises FormatMismatch if the octet sequence cannot be
decoded into a CORBA::Any.

virtual CORBA::OctetSequence* encode_value(const
CORBA::Any& _data) = 0;

This method converts the given CORBA::Any object into an octet sequence
based on the encoding format effective for this Codec. Only the data from
the CORBA::Any is encoded, not the TypeCode.

Parameter Description
_data Data, in the form of a

CORBA::Any, to be encoded into
an octet sequence.

Parameter Description
_data Data, in the form of an octet

sequence, to be decoded into a
CORBA::Any.

216 VisiBroker for C++ API Reference Guide

This operation may raise InvalidTypeForEncoding.

virtual CORBA::Any* decode_value(const
CORBA::OctetSequence& _data,CORBA::TypeCode_ptr _tc)
= 0;

This method decodes the given octet sequence into a CORBA::Any based on
the given TypeCode and the encoding format effective for this Codec.

This method raises FormatMismatch if the octet sequence cannot be
decoded into a CORBA::Any.

CodecFactory

class IOP::CodecFactory

This class is used to obtained a Codec. The CodecFactory is obtained
through a call to
ORB::resolve_initial_references("CodecFactory").

Include file
Include the IOP_c.hh file when you use this class.

CodecFactory Member

class CodecFactory::UnknownEncoding : public
CORBA_UserException

This exception is raised if CodecFactory cannot create a Codec. See
create_codec() function below.

CodecFactory Method

virtual Codec_ptr create_codec(const Encoding& _enc) =
0;

This create_codec() method creates a Codec of the given encoding.

This method raises UnknownEncoding if this factory cannot create a Codec
of the given encoding.

Parameter Description
_data Octet sequence containing the data

from the encoded CORBA::Any.

Parameter Description
_data Data, in the form of an octet

sequence, to be decoded into a
CORBA::Any.

_tc TypeCode to be used to decode
the data.

Parameter Description
_enc Specifies the encoding to be used

for creating a Codec.

VisiBroker for C++ API Reference Guide 217

Current

class PortableInterceptor::Current: public virtual
CORBA::Current, public virtual CORBA_Object

The Current class is merely a slot table, the slots of which are used by
each service to transfer their context data between their context and the
request's or reply's service context.

Each service which wishes to use Current reserves a slot or slots at
initialization time (go to “virtual CORBA::ULong allocate_slot_id() = 0;”
for more information) and uses those slots during the processing of
requests and replies.

Before an invocation is made, Current is obtained by way of a call to
ORB::resolve_initial_references("PICurrent").

From within the interception points, the data on Current that has moved
from the thread scope to the request scope is available by way of the
get_slot() method on the RequestInfo object. A Current can still be
obtained by way of resolve_initial_references(), but that is the
interceptor's thread scope Current.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

Current Methods

virtual CORBA::Any* get_slot(CORBA::ULong _id);

A service can get the slot data it sets in PICurrent by way of the
get_slot() method. The data is in the form of a CORBA::Any object.

If the given slot has not been set, a CORBA::Any containing a type code
with a TCKind value of tk_null, no value is returned.

If get_slot() is called on a slot that has not been allocated, InvalidSlot
is raised.

If get_slot() is called from within an ORB initializer, BAD_INV_ORDER with
a minor code of 14 is raised.

virtual void set_slot(CORBA::ULong _id, const
CORBA::Any& _data);

A service sets data in a slot with set_slot(). The data is in the form of a
CORBA::Any object.

If data already exists in that slot, it is overridden.

If set_slot() is called on a slot that has not been allocated, InvalidSlot
is raised.

Parameter Description
_id SlotId of the slot from which the

data will be returned.

218 VisiBroker for C++ API Reference Guide

If set_slot() is called from within an ORB initializer (go to “ORBInitializer”
for more information) BAD_INV_ORDER with a minor code of 14 is raised.

Encoding

struct IOP::Encoding

This structure defines the encoding format of a Codec. It details the
encoding format, such as CDR Encapsulation encoding, and the major and
minor versions of that format.

The supported encodings are:

• ENCODING_CDR_ENCAPS, version 1.0;

• ENCODING_CDR_ENCAPS, version 1.1;

• ENCODING_CDR_ENCAPS, version 1.2;

• ENCODING_CDR_ENCAPS for all future versions of GIOP as they arise.

Include file
Include the IOP_c.hh file when you use this struct.

Members
CORBA::Short format;

This member holds the encoding format for a Codec.

CORBA::Octet major_version;

This member holds the major version number for a Codec.

CORBA::Octet minor_version;

This member holds minor version number for a Codec.

ExceptionList

class Dynamic::ExceptionList

Use this class to hold exceptions information returned from the method
exceptions() in the class RequestInfo. It is an implementation of
variable-length array of type CORBA::TypeCode. The length of
ExceptionList is available at run time.

For more information, go to “virtual Dynamic::ExceptionList* exceptions()
= 0;”.

Include file
Include the Dynamic_c.hh file when you use this class.

Parameter Description
_id SlotId of the slot from which the

data will be set.
_data data, in the form of a

CORBA::Any object, which will be
set to the identified slot.

VisiBroker for C++ API Reference Guide 219

ForwardRequest

class PortableInterceptor::ForwardRequest : public
CORBA_UserException

The ForwardRequest exception is the means by which an interceptor can
indicate to the ORB that a retry of the request should occur with the new
object given in the exception. This behavior of causing a retry only occurs if
the ORB receives a ForwardRequest from an interceptor. If
ForwardRequest is raised anywhere else, it is passed through the ORB as
is normal for a user exception.

If an interceptor raises a ForwardRequest exception in response to a call of
an interceptor, no other interceptors are called for that interception point.
The remaining interceptors in the Flow Stack will have their appropriate
ending interception point called: receive_other() on the client, or
send_other() on the server. The reply_status() in the
receive_other() or send_other() will return LOCATION_FORWARD.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

Interceptor

class PortableInterceptor::Interceptor

This is the base class from which all interceptors are derived.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

Interceptor methods

virtual char* name() = 0;

This method returns the name of the interceptor. Each interceptor may
have a name which can be used to order the lists of interceptors. Only one
interceptor of a given name can be registered with the VisiBroker ORB for
each interceptor type. An interceptor may be anonymous, such as it has an
empty string as the name attribute. Any number of anonymous interceptors
may be registered with the VisiBroker ORB.

virtual void destroy() = 0;

This method is called during ORB::destroy(). When ORB::destroy() is
called by an application, the VisiBroker ORB:

1 waits for all requests in progress to complete

2 calls the Interceptor::destroy() method for each interceptor

3 completes destruction of the ORB

Method invocations from within Interceptor::destroy() on object
references for objects implemented on the ORB being destroyed result in
undefined behavior. However, method invocations on objects implemented
on VisiBroker ORB, other than the one being destroyed, are permitted. (This

220 VisiBroker for C++ API Reference Guide

means that the VisiBroker ORB being destroyed is still capable of acting as a
client, but not as a server.)

IORInfo

class PortableInterceptor::IORInfo

The IORInfo interface provides the server side ORB service with access to
the applicable policies during IOR construction and the ability to add
components. The ORB passes an instance of its implementation of this
interface as a parameter to
IORInterceptor::establish_components().

The table below defines the validity of each attribute or method in IORInfo
in the methods defined in the IORInterceptor.

If an illegal call is made to an attribute or method in IORInfo, the
BAD_INV_ORDER system exception is raised with a standard minor code
value of 14.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

IORInfo Methods

virtual CORBA::Policy_ptr
get_effective_policy(CORBA::ULong _type) = 0;

An ORB service implementation may determine what server side policy of a
particular type is in effect for an IOR being constructed by calling the
get_effective_policy() method. When the IOR being constructed is for
an object implemented using a POA, all Policy objects passed to the
PortableServer::POA::create_POA() call that created that POA are
accessible via get_effective_policy.

If a policy for the given type is not known to the ORB, then this method will
raise INV_POLICY with a standard minor code of 3.

establish_components components_established
get_effective_policy yes yes

add_ior_component yes no

add_ior_component_to_profile yes no

manager_id yes yes

state yes yes

adapter_template no yes

current_factory no yes

Parameter Description
_type CORBA::PolicyType specifying

the type of policy to return.

VisiBroker for C++ API Reference Guide 221

virtual void add_ior_component(const
IOP::TaggedComponent& _a_component) = 0;

This method is called from establish_components() to add a tagged
component to the set which will be included when constructing IORs. The
components in this set will be included in all profiles.

Any number of components may exist with the same component ID.

virtual void add_ior_component_to_profile(const
IOP::TaggedComponent& _a_component, CORBA::ULong
_profile_id) = 0;

This method is called from establish_components() to add a tagged
component to the set which will be included when constructing IORs. The
components in this set will be included in the specified profile.

Any number of components may exist with the same component ID.

If the given profile ID does not define a known profile or it is impossible to
add components to that profile, BAD_PARAM is raised with a standard minor
code of 29.

virtual CORBA::Long manager_id() = 0;

This method returns the attribute that provides an opaque handle to the
manager of the adapter. This is used for reporting state changes in adapters
managed by the same adapter manager.

virtual CORBA::Short state() = 0;

This method returns the current state of the adapter. This must be one of
HOLDING, ACTIVE, DISCARDING, INACTIVE, NON_EXISTENT.

virtual ObjectReferenceTemplate_ptr adapter_template()
= 0;

This method returns the attribute that provides a means to obtain an object
reference template whenever an IOR interceptor is invoked. There is no
standard way to directly create an object reference template. The value of
adapter_template() returns is the template created for the adapter
policies and IOR interceptor calls to add_component() and
add_component_to_profile(). The value of the adapter_template()
returns is never changed for the lifetime of the object adapter.

virtual ObjectReferenceFactory_ptr current_factory() =
0;

This method returns the attribute that provides access to the factory that
will be used by the adapter to create object references.
current_factory() initially has the same value as the
adapter_template attribute, but this can be changed by setting
current_factory to another factory. All object references created by the

Parameter Description
_a_component IOP::TaggedComponent to be

added.

Parameter Description
_a_component IOP::TaggedComponent to be

added.
_profile_id IOP::ProfileId of the profile to

which this component will be added.

222 VisiBroker for C++ API Reference Guide

object adapter must be created by calling the make_object() method on
current_factory.

virtual void current_factory(ObjectReferenceFactory_ptr
_current_factory) = 0;

This method sets the current_factory attribute. The value of the
current_factory attribute that is used by the adapter can only be set
during the call to the components_established method.

IORInfoExt

class IORInfoExt: public PortableInterceptor::IORInfo

This is the VisiBroker extensions to Portable Interceptors to allow installing
of a POA scoped Server Request Interceptor. This IORInfoExt interface is
inherited from IORInfo interface and has additional methods to support POA
scoped Server Request Interceptor.

Include file
Include the PortableInterceptorExt_c.hh file when you use this class.

IORInfoExt Methods

virtual void add_server_request_interceptor (
ServerRequestInterceptor_ptr _interceptor) = 0;

This method is used to add a POA-scoped server side request interceptor to
a service.

virtual char* full_poa_name();

This method return the full POA name.

IORInterceptor

class PortableInterceptor::IORInterceptor : public
virtual Interceptor

In some cases, a portable ORB service implementation may need to add
information describing the server's or object's ORB service related
capabilities to object references in order to enable the ORB service
implementation in the client to function properly.

This is supported through the IORInterceptor and IORInfo interfaces.

The IOR Interceptor is used to establish tagged components in the profiles
within an IOR.

Parameter Description
_current_factory current_factory object which

is to be set.

Parameter Description
_interceptor ServerRequestInterceptor

to be added.

VisiBroker for C++ API Reference Guide 223

Include file
Include the PortableInterceptor_c.hh file when you use this class.

IORInterceptor Methods

virtual void establish_components(IORInfo_ptr _info) =
0;

A server side ORB calls the establish_components() method on all
registered IORInterceptor instances when it is assembling the list of
components that will be included in the profile(s) of an object reference.
This method is not necessarily called for each individual object reference. In
the case of the POA, these calls are made each time POA::create_POA() is
called. In other adapters, these calls would typically be made when the
adapter is initialized. The adapter template is not available at this stage
since information (the components) needed in the adapter template is being
constructed.

virtual void components_established(IORInfo_ptr _info)
= 0;

After all of the establish_components() methods have been called, the
components_established() methods are invoked on all registered IOR
interceptors. The adapter template is available at this stage. The
current_factory attribute may be get or set at this stage.

Any exception that occurs in components_established() is returned to
the caller of components_established(). In the case of the POA, this
causes the create_POA call to fail, and an OBJ_ADAPTER exception with a
standard minor code of 6 is returned to the invoker of create_POA().

virtual void adapter_manager_state_changed(CORBA::Long
_id, CORBA::Short _state) = 0;

Any time the state of an adapter manager changes, the
adapter_manager_state_changed() method is invoked on all registered
IOR interceptors.

If a state change is reported through
adapter_manager_state_changed(), it is not reported through
adapter_state_changed().

Parameter Description
_info IORInfo instance used by the ORB service to

query applicable policies and add components to be
included in the generated IORs.

Parameter Description
_info IORInfo instance used by the ORB

service to access applicable policies.

Parameter Description
_id IORInfo instance used by the ORB

service to access applicable policies.
_state new state of the object adapter.

224 VisiBroker for C++ API Reference Guide

virtual void adapter_state_changed(const
ObjectReferenceTemplateSeq& _templates, CORBA::Short
_state) = 0;

Object adapter state changes are reported to this method any time the
state of one or more adapters changes for reasons unrelated to adapter
manager state changes. The templates argument identifies the object
adapters that have changed state by the template ID information. The
sequence contains the adapter templates for all object adapters that have
made the state transition being reported.

ORBInitializer

class PortableInterceptor::ORBInitializer

An interceptor is registered by registering an associated ORBInitializer
object which implements the ORBInitializer class. When an ORB is
initializing, it calls each registered ORBInitializer, passing it an
ORBInitInfo object which is used to register its interceptor.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ORBInitializer Methods

virtual void pre_init(ORBInitInfo_ptr _info) = 0;

This method is called during ORB initialization. If it is expected that initial
services registered by an interceptor will be used by other interceptors,
then those initial services are registered at this point via calls to
ORBInitInfo::register_initial_reference().

virtual void post_init(ORBInitInfo_ptr _info) = 0;

This method is called during ORB initialization. If a service must resolve
initial references as part of its initialization, it can assume that all initial
references will be available at this point.

Calling the post_init() methods is not the final task of ORB initialization.
The final task, following the post_init() calls, is attaching the lists of
registered interceptors to the ORB. Therefore, the ORB does not contain the
interceptors during calls to post_init(). If an ORB-mediated call is made
from within post_init(), no request interceptors will be invoked on that

Parameter Description
_templates identifies the object adapters that

have changed state by the template
ID information.

_state new state of the object adapter.

Parameter Description
_info an object that provides initialization

attributes and methods by which
interceptors can be registered.

VisiBroker for C++ API Reference Guide 225

call. Likewise, if a method is performed which causes an IOR to be created,
no IOR interceptors will be invoked.

ORBInitInfo

class PortableInterceptor::ORBInitInfo

This ORBInitInfo class is passed to ORBInitializer object for
registering interceptors.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ORBInitInfo Member Classes

class DuplicateName : public CORBA_UserException;

Only one interceptor of a given name can be registered with the ORB for
each interceptor type. If an attempt is made to register a second interceptor
with the same name, DuplicateName is raised.

An interceptor may be anonymous, such as it has an empty string as the
name attribute. Any number of anonymous interceptors may be registered
with the ORB, so if the interceptor being registered is anonymous, the
registration operation will not raise DuplicateName.

class InvalidName: public CORBA_UserException

This exception is raised by register_initial_reference() and
resolve_initial_references().

register_initial_reference() raises InvalidName if:

• this method is called with an empty string id; or

• this method is called with an id that is already registered, including the
default names defined by OMG.

resolve_initial_references() raises InvalidName if the name to be
resolved is invalid.

ORBInitInfo Methods

virtual CORBA::StringSequence* arguments() = 0;

This method returns the arguments passed to ORB_init(). They may or
may not contain the ORB's arguments.

virtual char* orb_id() = 0;

This method returns the ID of the ORB being initialized.

Parameter Description
_info An object that provides initialization

attributes and methods by which
interceptors can be registered.

226 VisiBroker for C++ API Reference Guide

virtual IOP::CodecFactory_ptr codec_factory() = 0;

This method returns the IOP::CodecFactory. The CodecFactory is
normally obtained via a call to
ORB::resolve_initial_references("CodecFactory"), but since the
ORB is not yet available and interceptors, particularly when processing
service contexts, will require a Codec, a means of obtaining a Codec is
necessary during ORB initialization.

virtual void register_initial_reference(const char*
_id, CORBA::Object_ptr _obj) = 0;

If this method is called with an id, "Y", and an object, YY, then a subsequent
call to register_initial_reference() will return object YY.

This method is identical to ORB::register_initial_reference(). This
same functionality exists here because the ORB, not yet fully initialized, is
not yet available but initial references may need to be registered as part of
Interceptor registration. The only difference is that the version of this
method on the ORB uses PIDL (CORBA::ORB::ObjectId and
CORBA::ORB::InvalidName) whereas the version in this interface uses IDL
defined in this interface; the semantics are identical.

register_initial_reference() raises InvalidName if:

• this method is called with an empty string id; or

• this method is called with an id that is already registered, including the
default names defined by OMG.

virtual CORBA::Object_ptr
resolve_initial_references(const char* _id) = 0;

This method is only valid during post_init(). It is identical to
ORB::resolve_initial_references(). This same functionality exists
here because the ORB, not yet fully initialized, is not yet available but initial
references may be required from the ORB as part of Interceptor
registration.

If the name to be resolved is invalid, resolve_initial_references()
will raise InvalidName.

virtual void
add_client_request_interceptor(ClientRequestIntercept
or_ptr _interceptor) = 0;

This method is used to add a client side request interceptor to the list of
client side request interceptors.

Parameter Description
_id ID by which the initial reference will

be known.
_obj The initial reference itself.

Parameter Description
_id ID by which the initial reference will

be known.

VisiBroker for C++ API Reference Guide 227

If a client side request interceptor has already been registered with this
interceptor's name, DuplicateName will be raised.

virtual void add_server_request_interceptor(
ServerRequestInterceptor_ptr _interceptor) = 0;

This method is used to add a server side request interceptor to the list of
server side request interceptors.

If a server side request interceptor has already been registered with this
interceptor's name, DuplicateName is raised.

virtual void add_ior_interceptor(IORInterceptor_ptr
_interceptor) = 0;

This method is used to add an IOR interceptor to the list of IOR
interceptors.

If an IOR interceptor has already been registered with this interceptor's
name, DuplicateName is raised.

virtual CORBA::ULong allocate_slot_id() = 0;

returns the index to the slot which has been allocated.

A service calls allocate_slot_id to allocate a slot on
PortableInterceptor::Current.

Note
While slot id's can be allocated within an ORB initializer, the slots
themselves cannot be initialized. Calling set_slot() or get_slot() on the
Current within an ORB initializer will raise a BAD_INV_ORDER with a minor
code of 14.

virtual void register_policy_factory(CORBA::ULong
_type, PolicyFactory_ptr _policy_factory) = 0;

This method registers a PolicyFactory for the given PolicyType.

If a PolicyFactory already exists for the given PolicyType,
BAD_INV_ORDER is raised with a standard minor code of 16.

Parameter Description
_interceptor ClientRequestInterceptor

to be added.

Parameter Description
_interceptor ServerRequestInterceptor

to be added.

Parameter Description
_interceptor IORInterceptor to be added.

Parameter Description
_type CORBA::PolicyType that the

given PolicyFactory serves.
_policy_factory factory for the given

CORBA::PolicyType.

228 VisiBroker for C++ API Reference Guide

Parameter

struct Dynamic::Parameter

This structure holds the parameter information. This structure is the
element used in ParameterList (go to “ParameterList” for more
information).

Include file
Include the Dynamic_c.hh file when you use this struct.

Members

CORBA::Any argument;

This member stores the parameter data in the form of CORBA::Any.

CORBA::ParameterMode mode;

This member specifies the mode of a parameter. Its value can be one of the
enum values: PARAM_IN, PARAM_OUT or PARAM_INOUT.

ParameterList

class Dynamic::ParameterList

This class is used to pass parameters information returned from the method
arguments() in the class RequestInfo. It is an implementation of
variable-length array of type Parameter. The length of ParameterList is
available at run-time.

For more information, go to “virtual Dynamic::ParameterList*
arguments() = 0;”.

Include file
Include the Dynamic_c.hh file when you use this class.

PolicyFactory

class PortableInterface::PolicyFactory

A portable ORB service implementation registers an instance of the
PolicyFactory interface during ORB initialization. The POA is required to
preserve any policy which is registered with ORBInitInfo in this manner.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

VisiBroker for C++ API Reference Guide 229

PolicyFactory Method

virtual CORBA::Policy_ptr create_policy(CORBA::ULong
_type, const CORBA::Any& _value) = 0;

The ORB calls create_policy() on a registered PolicyFactory instance
when CORBA::ORB::create_policy() is called for the PolicyType under
which the PolicyFactory has been registered. The create_policy()
method then returns an instance of the appropriate interface derived from
CORBA::Policy whose value corresponds to the specified CORBA::Any. If it
cannot, it will raise an exception as described for
CORBA::ORB::create_policy().

RequestInfo

class PortableInterceptor::RequestInfo

This is the base class from which ClientRequestInfo and
ServerRequestInfo are derived. Each interception point is given an object
through which the Interceptor can access request information. client side
and server side interception points are concerned with different information,
so there are two information objects: ClientRequestInfo is passed to the
client side interception points and ServerRequestInfo is passed to the
server side interception points. But there is information that is common to
both, so they both inherit from this common interface: RequestInfo.

Include file
Include the PortableInterceptor_c.hh file when you use this class.

RequestInfo methods

virtual CORBA::ULong request_id() = 0;

This method returns the ID which uniquely identifies an active request /
reply sequence. Once a request / reply sequence is concluded this ID may
be reused.

Note
This ID is not the same as the GIOP request_id. If GIOP is the transport
mechanism used, then these IDs may very well be the same, but this is not
guaranteed nor required.

virtual char* operation() = 0;

This method returns name of the operation being invoked.

Parameter Description
_type A CORBA::PolicyType specifying the type of policy

being created.
_value An CORBA::Any containing data with which to construct

the CORBA::Policy.

230 VisiBroker for C++ API Reference Guide

virtual Dynamic::ParameterList* arguments() = 0;

This method returns a Dynamic::ParameterList containing the arguments
on the operation being invoked. If there are no arguments, this attribute
will be a zero length sequence.

virtual Dynamic::ExceptionList* exceptions() = 0;

This method returns a Dynamic::ExceptionList describing the
TypeCodes of the user exceptions that this operation invocation may raise.
If there are no user exceptions, this attribute will be a zero length
sequence.

virtual CORBA::StringSequence* contexts() = 0;

This method returns a CORBA::StringSequence describing the contexts
that may be passed on this operation invocation. If there are no contexts,
this attribute will be a zero length sequence.

virtual CORBA::StringSequence* operation_context() = 0;

This method returns a CORBA::StringSequence containing the contexts
being sent on the request.

virtual CORBA::Any* result() = 0;

This method returns the data, in the form of CORBA::Any, that contains the
result of the operation invocation. If the operation return type is void, this
attribute will be a CORBA::Any containing a type code with a TCKind value
of tk_void and no value.

virtual CORBA::Boolean response_expected() = 0;

This method returns a boolean value which indicates whether a response is
expected.

On the client, a reply is not returned when response_expected() is false,
so receive_reply() cannot be called. receive_other() is called unless
an exception occurs, in which case receive_exception() is called.

virtual CORBA::Short sync_scope() = 0;

This method returns an attribute, defined in the Messaging specification, is
pertinent only when response_expected() is false. If
response_expected() is true, the value of sync_scope() is undefined. It
defines how far the request will progress before control is returned to the
client. This attribute may have one of the following values:

• Messaging::SYNC_NONE
• Messaging::SYNC_WITH_TRANSPORT
• Messaging::SYNC_WITH_SERVER
• Messaging::SYNC_WITH_TARGET

On the server, for all scopes a reply will be created from the return of the
target operation call, but the reply will not return to the client. Although it
does not return to the client, it does occur, so the normal server side
interception points are followed (for example,
receive_request_service_contexts(), receive_request(),
send_reply() or send_exception()).

For SYNC_WITH_SERVER and SYNC_WITH_TARGET, the server does send an
empty reply back to the client before the target is invoked. This reply is not
intercepted by server side Interceptors.

VisiBroker for C++ API Reference Guide 231

virtual CORBA::Short reply_status() = 0;

This method returns an attribute which describes the state of the result of
the operation invocation. Its value can be one of the following:

• PortableInterceptor::SUCCESSFUL = 0

• PortableInterceptor::SYSTEM_EXCEPTION = 1

• PortableInterceptor::USER_EXCEPTION = 2

• PortableInterceptor::LOCATION_FORWARD = 3

• PortableInterceptor::TRANSPORT_RETRY = 4

On the client:

• Within the receive_reply interception point, this attribute will only be
SUCCESSFUL.

• Within the receive_exception interception point, this attribute will be
either SYSTEM_EXCEPTION or USER_EXCEPTION.

• Within the receive_other interception point, this attribute will be any
of: SUCCESSFUL, LOCATION_FORWARD, or TRANSPORT_RETRY.
SUCCESSFUL means an asynchronous request returned successfully.
LOCATION_FORWARD means that a reply came back with
LOCATION_FORWARD as its status. TRANSPORT_RETRY means that the
transport mechanism indicated a retry - a GIOP reply with a status of
NEEDS_ADDRESSING_MODE, for instance.

On the server:

• Within the send_reply interception point, this attribute will only be
SUCCESSFUL.

• Within the send_exception interception point, this attribute will be
either SYSTEM_EXCEPTION or USER_EXCEPTION.

• Within the send_other interception point, this attribute will be any of:
SUCCESSFUL, or LOCATION_FORWARD. SUCCESSFUL means an
asynchronous request returned successfully. LOCATION_FORWARD means
that a reply came back with LOCATION_FORWARD as its status.

virtual CORBA::Object_ptr forward_reference() = 0;

If the reply_status() returns LOCATION_FORWARD, then this method
returns an object to which the request will be forwarded. It is indeterminate
whether a forwarded request will actually occur.

virtual CORBA::Any* get_slot(CORBA::ULong _id) = 0;

This method returns the data, in the form of a CORBA::Any, from the given
slot of the PortableInterceptor::Current that is in the scope of the
request.

If the given slot has not been set, then a CORBA::Any containing a type
code with a TCKind value of tk_null is returned.

If the ID does not define an allocated slot, InvalidSlot is raised.

Go to “Current” for an explanation of slots and the
PortableInterceptor::Current.

Parameter Description
_id SlotId of the slot which is to be

returned.

232 VisiBroker for C++ API Reference Guide

virtual IOP::ServiceContext*
get_request_service_context(CORBA::ULong _id) = 0;

This method returns a copy of the service context with the given ID that is
associated with the request.

If the request's service context does not contain an entry for that ID,
BAD_PARAM with a standard minor code of 26 is raised.

virtual IOP::ServiceContext*
get_reply_service_context(CORBA::ULong _id) = 0;

This method returns a copy of the service context with the given ID that is
associated with the reply.

If the request's service context does not contain an entry for that ID,
BAD_PARAM with a standard minor code of 26 is raised.

ServerRequestInfo

class PortableInterceptor::ServerRequestInfo : public
virtual RequestInfo

This class is derived from RequestInfo. It is passed to server side
interception points.

Some methods on ServerRequestInfo are not valid at all interception
points. The table below shows the validity of each attribute or method. If it
is not valid, attempting to access it will result in a BAD_INV_ORDER being
raised with a standard minor code of 14.

Parameter Description
_id IOP::ServiceContext of the

slot which is to be returned.

Parameter Description
_id IOP::ServiceContext of the

slot which is to be returned.

receive_
request_
service_
contexts

receive_
request send_reply

send_
exception send_other

request_id yes yes yes yes yes

operation yes yes yes yes yes

arguments no yes1 yes no2 no2

exceptions no yes yes yes yes

contexts no yes yes yes yes

operation_context no yes yes no no

result no no yes no no

response_expected yes yes yes yes yes

sync_scope yes yes yes yes yes

reply_status no no yes yes yes

forward_reference no no no no yes2

get_slot yes yes yes yes yes

get_request_service
_context

yes yes yes yes yes

VisiBroker for C++ API Reference Guide 233

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ServerRequestInfo methods

virtual CORBA::Any* sending_exception() = 0;

This method returns data, in the form CORBA::Any, that contains the
exception to be returned to the client.

If the exception is a user exception which cannot be inserted into a
CORBA::Any (e.g., it is unknown or the bindings don't provide the
TypeCode), then this attribute will be an CORBA::Any containing the
system exception UNKNOWN with a standard minor code of 1.

get_reply_service_
context

no no yes yes yes

sending_exception no no no yes no

object_id no yes yes yes3 yes3

adapter_id no yes yes yes3 yes3

server_id no yes yes yes yes

orb_id no yes yes yes yes

adapter_name no yes yes yes yes

target_most_derived
_interface

no yes no4 no4 no4

get_server_policy yes yes yes yes yes

set_slot yes yes yes yes yes

target_is_a no yes no4 no4 no4

add_reply_service_
context

yes yes yes yes

receive_
request_
service_
contexts

receive_
request send_reply

send_
exception send_other

1When ServerRequestInfo is passed to receive_request(), there is an
entry in the list for every argument, whether in, inout, or out. But only the
in and inout arguments will be available.
2If the reply_status() does not returns LOCATION_FORWARD, accessing
this attribute will raise BAD_INV_ORDER with a standard minor code of 14.
3If the servant locator caused a location forward, or raised an exception,
this attribute / method may not be available in this interception point.
NO_RESOURCES with a standard minor code of 1 will be raised if it is not
available.
4The method is not available in this interception point because the
necessary information requires access to the target object's servant, which
may no longer be available to the ORB. For example, if the object's adapter
is a POA that uses a ServantLocator, then the ORB invokes the interception
point after it calls ServantLocator::postinvoke().

234 VisiBroker for C++ API Reference Guide

virtual char* server_id() = 0;

This method returns the value that was passed into the ORB::init call
using the -ORBServerId argument when the ORB was created.

virtual char* orb_id() = 0;

The method returns the value that was passed into the ORB::init() call.

In Java, this is accomplished using the -ORBid argument in the ORB.init
call that created the ORB containing the object adapter that created this
template. What happens if the same ORBid is used on multiple
ORB::init() calls in the same server is currently undefined.

virtual CORBA::StringSequence* adapter_name() = 0;

The method returns the name for the object adapter, in the form of
CORBA::StringSequence, that services requests for the invoked object. In
the case of the POA, the adapter_name is the sequence of names from the
root POA to the POA that services the request. The root POA is not named in
this sequence.

virtual CORBA::OctetSequence* object_id() = 0;

This method returns the opaque object_id, in the form of
CORBA::OctetSequence, that describes the target of the operation
invocation.

virtual CORBA::OctetSequence* adapter_id() = 0;

This method returns opaque identifier for the object adapter, in the form of
CORBA::OctetSequence.

virtual char* target_most_derived_interface() = 0;

This method returns the RepositoryID for the most derived interface of
the servant.

virtual CORBA::Policy_ptr
get_server_policy(CORBA::ULong _type) = 0;

This method returns the policy in effect for this operation for the given
policy type. The returned CORBA::Policy object will only be a policy whose
type was registered via register_policy_factory().

If a policy for the given type was not registered via
register_policy_factory, this method will raise INV_POLICY with a
standard minor code of 3.

virtual void set_slot(CORBA::ULong _id, const
CORBA::Any& _data) = 0;

This method allows an Interceptor to set a slot in the
PortableInterceptor::Current that is in the scope of the request. If
data already exists in that slot, it will be overwritten.

If the ID does not define an allocated slot, InvalidSlot is raised.

Parameter Description
_type The CORBA::PolicyType which

specifies the policy to be returned.

VisiBroker for C++ API Reference Guide 235

Go to “Current” for an explanation of slots and
PortableInterceptor::Current.

virtual CORBA::Boolean target_is_a(const char* _id) =
0;

This method returns true if the servant is the given RepositoryId, false if
it is not.

virtual void add_reply_service_context(const
IOP::ServiceContext& _service_context,CORBA::Boolean
_replace) = 0;

This method allows Interceptors to add service contexts to the request.

There is no declaration of the order of the service contexts. They may or
may not appear in the order that they are added.

ServerRequestInterceptor

class PortableInterceptor::ServerRequestInterceptor :
public virtual Interceptor

This ServerRequestInterceptor class is used to derive user-defined
server side interceptor. A ServerRequestInterceptor instance is
registered with the ORB (go to “ORBInitializer” for more information).

Include file
Include the PortableInterceptor_c.hh file when you use this class.

ServerRequestInterceptor methods

virtual void receive_request_service_contexts(
ServerRequestInfo_ptr _ri) = 0;

At this receive_request_service_contexts() interception point,
Interceptors must get their service context information from the incoming
request and transfer it to PortableInterceptor::Current's slots.

Parameter Description
_id The SlotId of the slot.

_data The data, in the form of a
CORBA::Any, to store in that slot.

Parameter Description
_id The caller wants to know if the

servant is this
CORBA::RepositoryId.

Parameter Description
_service_context The IOP::ServiceContext to add to the reply.

_replace Indicates the behavior of this method when a service
context already exists with the given ID. If false, then
BAD_INV_ORDER with a standard minor code of 15 is
raised. If true, then the existing service context is
replaced by the new one.

236 VisiBroker for C++ API Reference Guide

This interception point is called before the servant manager is called.
Operation parameters are not yet available at this point. This interception
point may or may not execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' receive_request_service_contexts() interception points
are called. Those Interceptors on the Flow Stack are popped and their
send_exception() interception points are called.

This interception point may also raise a ForwardRequest exception (go to
“ForwardRequest” for more information). If an Interceptor raises this
exception, no other Interceptors'
receive_request_service_contexts() methods are called. Those
Interceptors on the Flow Stack are popped and their send_other
interception points are called.

virtual void receive_request(ServerRequestInfo_ptr _ri)
= 0;

This receive_request() interception point allows an Interceptor to query
request information after all the information, including method parameters,
are available. This interception point will execute in the same thread as the
target invocation.

In the DSI model, since the parameters are first available when the user
code calls arguments(), receive_request() is called from within
arguments(). It is possible that arguments() is not called in the DSI
model. The target may call set_exception() before calling arguments().
The ORB will guarantee that receive_request() is called once, either
through arguments() or through set_exception(). If it is called through
set_exception(), requesting the arguments() will result in
NO_RESOURCES being raised with a standard minor code of 1.

This interception point may raise a system exception. If it does, no other
Interceptors' receive_request() methods are called. Those Interceptors
on the Flow Stack are popped and their send_exception interception
points are called.

This interception point may also raise a ForwardRequest exception (go to
“ForwardRequest” for more information). If an Interceptor raises this
exception, no other Interceptors' receive_request() methods are called.
Those Interceptors on the Flow Stack are popped and their send_other()
interception points are called.

virtual void send_reply(ServerRequestInfo_ptr _ri) = 0;

This send_reply() interception point allows an Interceptor to query reply
information and modify the reply service context after the target operation
has been invoked and before the reply is returned to the client. This
interception point will execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' send_reply() interception points are called. The remaining

Parameter Description
_ri This is the ServerRequestInfo

instance to be used by Interceptor.

Parameter Description
_ri This is the ServerRequestInfo

instance to be used by Interceptor.

VisiBroker for C++ API Reference Guide 237

Interceptors in the Flow Stack will have their send_exception()
interception point called.

virtual void send_exception(ServerRequestInfo_ptr _ri)
= 0;

This send_exception() interception point is called when an exception
occurs. It allows an Interceptor to query the exception information and
modify the reply service context before the exception is raised to the client.
This interception point will execute in the same thread as the target
invocation.

This interception point may raise a system exception. This has the effect of
changing the exception which successive Interceptors popped from the Flow
Stack receive on their calls to send_exception. The exception raised to the
client will be the last exception raised by an Interceptor, or the original
exception if no Interceptor changes the exception.

This interception point may also raise a ForwardRequest exception (go to
“ForwardRequest” for more information). If an Interceptor raises this
exception, no other Interceptors' send_exception() interception points
are called. The remaining Interceptors in the Flow Stack will have their
send_other interception points called.

virtual void send_other(ServerRequestInfo_ptr _ri) = 0;

This send_other() interception point allows an Interceptor to query the
information available when a request results in something other than a
normal reply or an exception. For example, a request could result in a retry
(e.g., a GIOP Reply with a LOCATION_FORWARD status was received). This
interception point will execute in the same thread as the target invocation.

This interception point may raise a system exception. If it does, no other
Interceptors' send_other() methods are called. The remaining
Interceptors in the Flow Stack will have their send_exception interception
points called.

This interception point may also raise a ForwardRequest exception.

Parameter Description
_ri This is the ServerRequestInfo

instance to be used by Interceptor.

238 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 239

VisiBroker Interceptor and
object wrapper interfaces
and classes for C++
This section describes the interfaces and classes that you can use with
VisiBroker interceptors and object wrappers.

For more information, see “Using VisiBroker Interceptors” and “Using Object
Wrappers” in the VisiBroker for C++ Developer's Guide.

Introduction
Similar to Portable Interceptors, VisiBroker interceptors offer the VisiBroker
ORB services a mechanism to intercept normal flow of execution of the
ORB. The table below lists the three forms of VisiBroker interceptor.

InterceptorManagers
Interceptors are installed and managed via interceptor managers. The
InterceptorManager interface is the generic interceptor manager from
which all interceptor-specific managers inherit. An InterceptorManager
type is associated with each interceptor type. An InterceptorManager
holds a list or chain of a particular kind of interceptors, all of which have the
same scope and need to start at the same time. Therefore, global
interceptors, such as POALifeCycle and Bind have global
InterceptorManagers while scoped interceptors, per-POA and per-object,
have an InterceptorManager for each scope. Each scope, either global,
POAs, or objects, may hold multiple types of interceptors. You get the right
kind of manager for a particular interceptor from an
InterceptorManagerControl.

Global interceptors may be handed additional interceptor managers to
install localized interceptors, for example, per-POA interceptors use the
POAInterceptorManager.

To obtain an instance of the global interceptor manager,
InterceptorManager, call ORB.resolve_initial_references and pass
the String InterceptorManager as an argument. This value is only
available when the ORB is in administrative mode, that is, during ORB
initialization. It can only be used to install global interceptors such as,
POALifeCycle interceptors or Bind interceptors.

Interceptor
Type Description
Client Interceptor System level interceptors which can be used to hook

ORB services such as transactions and security into
the client ORB processing.

Server Interceptor System level interceptors which can be used to hook
ORB services such as transactions and security into
the server ORB processing.

Object Wrappers User level interceptors which provide a simple
mechanism for users to intercept calls to stubs and
skeletons. These allow for simple tracing and data
caching among other things.

240 VisiBroker for C++ API Reference Guide

The POA interceptor manager is a per-POA manager and is only available to
POALifeCycleInterceptors during their create call.
POALifeCycleInterceptors may set up all other server side interceptors
during the call to create. The Bind Interceptor Manager is a per-object
manager and is only available to Bind interceptors during their
bind_succeeded() call. Bind interceptors may set up ClientRequest
interceptors during the bind_succeeded call.

IOR templates
In addition to the interceptor, the Interoperable Object Reference (IOR)
template may be modified directly on the POAIntercptorManager
interface during the call to POALifeCycleInterceptor::create(). The
IOR template is a full IOR value with the type_id not set, and all
GIOP::ProfileBodyValueshave incomplete object keys. The POA sets the
type_id and fills in the object keys of the template before calling the
IORCreationInterceptors.

InterceptorManager

class Interceptor::InterceptorManager

This is the base class from which all interceptor managers are derived.
Interceptor managers are interfaces which are used to manage the
installation and removal of interceptors from the system.

InterceptorManagerControl

class Interceptor::InterceptorManagerControl public
CORBA::PseudoObject

This is the class that is responsible for controlling a set of related interceptor
managers. It holds all available managers identified by a string that
corresponds to the type of interceptors to be managed. There is one
InterceptorManagerControl per scope.

Include file
Include the interceptor_c.hh file when you use this class.

InterceptorManagerInterceptor method

InterceptorManager_ptr get_manager(const char name);

This method returns an instance of the InterceptorManager which returns
a string identifying the manager.

Parameter Description
name The name of the interceptor.

VisiBroker for C++ API Reference Guide 241

BindInterceptor

class Interceptor::BindInterceptor public
VISPseudoInterface

You can use this class to derive your own interceptor for handling bind and
rebind events for a client or server application. The Bind Interceptors are
global interceptors invoked on the client side before and after binds.

If an exception is thrown during a bind, the remaining interceptors in the
chain are not called and the chain is truncated to only those interceptors
already called. Exceptions thrown during bind_succeeded or bind_failed
are ignored.

Include file
You should include the interceptor_c.hh file when you use this class.

BindInterceptor methods

virtual IOP::IORValue_ptr bind(IOP::IORValue_ptr ior,
CORBA::Object_ptr obj, CORBA::Boolean rebind,
VISClosure& closure);

This method is called during all ORB bind operations.

virtual IOP::IORValue_ptr bind_failed(IOP::IORValue_ptr
ior, CORBA::Object_ptr obj, VISClosure& closure);

This method is called if a bind operation failed.

Parameter Description
ior The Interoperable Object Reference (IOR) for the server

object to which the client is binding.
obj The client object which is being bound to the server. The

object will not be properly initialized at this time, so do
not attempt an operation on it. However, it may be
stored in a data structure and used after the bind has
completed.

rebind An attempt to rebind to the server. After a bind() has
failed, depending on the current quality of service, a
rebind may be attempted.

closure A new closure object for the bind operation. The closure
will be used in corresponding calls to either
bind_failure or bind_succeeded.

return Returns a new IOR, if the bind operation is to be
continued using this new IOR. Otherwise, it returns a
null value and the bind will proceed using the original
IOR.

Returning the same IOR as the parameter passed in is
incorrect and generates an exception at bind time.

Parameter Description
ior The IOR of the server object on

which the bind operation failed.
obj The client object which is being

bound to the server.

242 VisiBroker for C++ API Reference Guide

virtual void bind_succeeded(IOP::IORValue_ptr ior,
CORBA::Object_ptr obj, CORBA::Long profileIndex,
InterceptorManagerControl_ptr interceptorControl,
VISClosure& closure);

This method is called if a bind operation succeeded.

BindInterceptorManager

class Interceptor::BindInterceptorManager public
InterceptorManager, public VISPseudoInterface

This is the class that manages all the global bind interceptors. It only has
one public method, which allows you to register interceptors.

The BindInterceptorManager must always be used at ORB_init(). It
has no effect after the orb is initialized. Therefore, it only needs to be used
in the context of a loader class that inherits from VISinit.

To obtain a BindInterceptorManager from the
InterceptorManagerControl, use
InterceptorManagerControl::get_manager() with the identification
string Bind.

Include file
You should include the interceptor_c.hh file when you use this class.

BindInterceptorManager method

void add (BindInterceptor _ptr interceptor)

This method is used to add a BindInterceptor to the list of interceptors to
be started at bind time.

closure The closure object previously given
in the bind call.

return Returns a new IOR if a rebind is to
be attempted against this IOR.
Otherwise, it returns null, and a
rebind is not attempted.

Parameter Description
ior The IOR of the server object on

which the bind operation
succeeded.

obj The client object which is being
bound to the server.

profileIndex Identifies the connection protocol.

interceptorControl This Manager provides a list of the
types of Managers.

closure The closure object previously given
in the bind call.

Parameter Description

VisiBroker for C++ API Reference Guide 243

ClientRequestInterceptor

class Interceptor::ClientRequestInterceptor public
VISPseudoInterface

You use this class to derive your own client side interceptor. The Client
Request interceptors may be installed during the bind_succeeded call of a
bind interceptor and remain active for the duration of the connection. The
methods defined in your derived class will be invoked by the ORB during the
preparation or sending of an operation request, during the receipt of a reply
message, or if an exception is raised.

Include file
Include the interceptor_c.hh file when you use this class.

ClientRequestInterceptor methods

virtual void preinvoke_premarshal (CORBA::Object_ptr
target, const char* operation,
IOP::ServiceContextList& service_contexts,
VisClosure& closure);

This method is invoked by the ORB on every request, before the request
has been marshaled. An exception thrown from this interceptor results in
the request being completed immediately. In this case, the chain is
shortened to only those interceptors that have already fired, the request will
not be sent, and exception_occurred() is called on all interceptors still in
the chain.

virtual void preinvoke_postmarshal(CORBA::Object_ptr
target, CORBA_MarshallOutBuffet& payload, VISClosure&
closure);

This method is invoked after every request has been marshaled, but before
it was sent.

If an exception is thrown in this method:

• the rest of the chain is not invoked,

• the request is not sent to the server, and

• exception_occurred() is called on the whole interceptor chain.

Parameter Description
target The client object which is being bound to the server.

operation The name of the operation being invoked.

service_context The services assigned by the ORB. These services are
identified by a tag registered with the OMG.

closure The closure object previously given in the bind call.

Parameter Description
target The client object which is being

bound to the server.
payload Marshalled buffer.

closure The closure object previously given
in the bind call.

244 VisiBroker for C++ API Reference Guide

virtual void postinvoke(CORBA::Object_ptr target,
const IOP::ServiceContextList& Service_contexts,
CORBA_MarshallInBuffet& payload,
CORBA::Environment_ptr env, VISClosure& closure);

This method is invoked after a request completes correctly or by throwing
an exception. It is called after the ServantLocator has been invoked.
Should an interceptor in the chain throw an exception, that interceptor also
calls exceptionoccurred()and all remaining interceptors in the chain call
exception()instead of calling postinvoke().

The CORBA::Environment parameter is changed to reflect this exception,
even when a two-way call had already written an exception in that
argument.

virtual void exception_occurred(CORBA::Object_ptr
target, CORBA::Environment_ptr env, VISClosure&
closure);

This method is invoked by the ORB when an exception is thrown before the
invocation. All exceptions thrown after the invocation are gathered in the
environment parameter of the postinvoke method.

ClientRequestInterceptorManager

class Interceptor::ClientRequestInterceptorManager :
public InterceptorManager, public VISPseudoInterface

This is the class that holds the chain of ClientRequestInterceptors for
the current object.

A ClientRequestInterceptorManager should be used inside of the
BindInterceptor::bind_succeeded() method within the scope set by
the InteceptorManagerControl passed as an argument to
bind_succeeded().

Include file
Include the interceptor_c.hh when you use this class.

Parameter Description
target The client object which is being bound to the server.

service_context The client object which is being bound to the server.
Service context length is 0 for one-way calls and during
exception.

payload Marshalled buffer.

env Contains information on the exception that was raised.

closure The closure object previously given in the bind call.

Parameter Description
target The client object which is being

bound to the server.
env Contains information on the

exception that was raised.
closure The closure object previously given

in the bind call.

VisiBroker for C++ API Reference Guide 245

ClientRequestInterceptorManager methods

virtual void add (ClientRequestInterceptor_ptr
interceptor);

This method may be invoked to add a ClientRequestInterceptor to the
local chain.

virtual void remove (ClientRequestInterceptor_ptr
interceptor);

This method removes a ClientRequestInterceptorManager.

POALifeCycle Interceptor

class InterceptorManager::POALifeCycletInterceptor
public VISPseudoInterface

The POALifeCycleInterceptor is a global interceptor which is invoked
every time a POA is created or destroyed. All other server side interceptors
may be installed either as global interceptors or for specific POAs. You
install the POALifeCycleInterceptor through the
POALifeCycleInterceptorManager interface. Go to
“POALifeCycleInterceptorManager” for more information. The
POALifeCycleInterceptor is called during POA creation and destruction.

Include file
Include the PortableServerExt_c.hh file when you use this class.

POALifeCycleInterceptor methods

virtual void create(PortableServer::POA_ptr poa,
CORBA::PolicyList& policies IOP::IORValue*&
iorTemplate,
interceptor::InterceptorManagerControl_ptr poaAdmin);

This method is invoked when a new POA is created either explicitly through
a call to create_POA or via AdapterActivator. With AdapterActivator,
the interceptor is called only after the unknown_adapter method
successfully returns from the AdapterActivator. The create method is
passed as a reference to the recently created POA and as a reference to that
POA instance's POAInterceptorManager.

virtual void destroy(PortalServer::POA_ptr poa);

This method is called before a POA is destroyed and all of its objects have
been etherealized. It guarantees that destroy will be called on all

Parameter Description
poa The ID associated with the current POA being created.

policies The policies for the POA being created.

iorTemplate The IOR template is a full IOR value with the type_id not
set, and all GIOP::ProfileBodyValues will have incomplete
object keys.

poaAdmin The control for the POA being created. Go to
“InterceptorManagerControl” for more information.

246 VisiBroker for C++ API Reference Guide

interceptors before create will be called again for a POA with the same
name. If the destroy operation throws a system exception, the exception is
ignored, and the remaining interceptors are called.

POALifeCycleInterceptorManager

class InterceptorExt::POALifeCycleInterceptorManager
public interceptor::InterceptorManager, public
VISPseudoInterface

This class manages all POALifeCycle global interceptors. There is a single
instance of the POALifeCycleInterceptorManager defined in an ORB.

Then scope of this interface is global, per-ORB. This class is only active
during ORB_init() time.

Include file
Include the PortalServerExt_c.hh file when you use this class.

POALifeCycleInterceptorManager method

virtual void add(POALifeCycleInterceptor_ptr
interceptor);

This method may be invoked to add a POALifeCycleInterceptor to the
global chain of POALifeCycle interceptors.

ActiveObjectLifeCycleInterceptor

class
PortableServerExt::ActiveObjectLifeCycleInterceptor
public VISPseudoInterface

The ActiveObjectLifeCycleInterceptor interceptor is called when
objects are added and removed from the active object map. Only used
when POA has RETAIN policy. This class is a POA-scoped interceptor which
may be installed by a POALifeCycleInterceptor when the POA is
created.

Include file
Include the PortableServerExt_c.hh file when you use this class.

Parameter Description
poa Portable Object Adapter (POA)

being destroyed.

Parameter Description
interceptor The interceptor to be added.

VisiBroker for C++ API Reference Guide 247

ActiveObjectLifeCycleInterceptor methods

virtual void create(const PortableServer::ObjectId&
oid, PortableServer::ServantBase* servant,
PortableServer::POA_ptr adapter);

This method is invoked after an object has been added to the Active Object
Map, either through explicit or implicit activation, using either direct APIs or
a ServantActivator. The object reference and the POA of the new active
object are passed as parameters.

virtual void destroy(const PortableServer::ObjectId&
oid, PortableServer::ServantBase* servant,
PortableServer::POA_ptr adapter);

This method is called after an object has been deactivated and etherealized.
The object reference and the POA of the object are passed as parameters.

ActiveObjectLifeCycleInterceptorManager

class
PortableServerExt::ActiveObjectLifeCycleInterceptorMa
nager public interceptor::InterceptorManager, public
VISPseudoInterface

This is the class that manages all ActiveObjectLifeCycleInterceptors
registered in its scope. Each POA has one single
ActiveObjectLifeCycleInterceptorManager.

Include file
Include the PortableServerExt_c.hh file when you use this class.

ActiveObjectLifeCycleInterceptorManager
method

virtual void add(ActiveObjectLifeCycleInterceptor
interceptor_ptr interceptor);

This method may be invoked to add an
ActiveObjectLifeCycleInterceptor to the chain.

Parameter Description
oid Object ID for the object currently activated.

servant Associated servant

adapter The Portable Object Adapter (POA) being created or
destroyed.

Parameter Description
oid Object ID for the object currently activated

servant Associated servant

adapter The Portable Object Adapter (POA) being created or
destroyed.

248 VisiBroker for C++ API Reference Guide

ServerRequestInterceptor

class Interceptor::ServerRequestInterceptor public
VISPseudoInterface

The ServerRequestInterceptor class is a POA-scoped interceptor which
may be installed by a POALifeCycleInterceptor at POA creation time.
This class may be used to perform access control, to examine and insert
service contexts, and to change the reply status of a request.

Include file
Include the interceptor_c.hh file when you use this class.

ServerRequestInterceptor methods

virtual void preinvoke(CORBA::Object_ptr _target, const
char* operation,
const IOP::ServiceContextList& service_contexts,
CORBA::MarshalInBuffer& payload, VISClosure& closure)
raises(ForwardRequestException);

This method is invoked by the ORB on every request, before the request is
demarshaled. An exception thrown from this interceptor results in the
request being completed immediately. This method is called before any
ServantLocators are invoked. The result may be that the servant may not
be available while this method is running.

virtual void postinvoke_premarshal(CORBA::Object_ptr
target,IOP::ServiceContextList&
ServiceContextList,CORBA::Environment_ptr env,
VISClosure& closure);

This method is invoked after an upcall to the servant but before marshaling
the reply. An exception here is handled by interrupting the chain: the
request is not sent to the server and exceptionoccurred() is called on all
interceptors in the chain

Parameter Description
target The client object which is being bound to the server.

operation Identifies the name of the operation being invoked.

service_contexts Identifies the services assigned by the Orb. These
services are registered with the OMG.

payload Marshalled buffer.

closure May contain data saved by one interceptor method that
can be retrieved later by another interceptor method.

Parameter Description
target The client object which is being bound to the server.

ServiceContextList Identifies the services assigned by the Orb. These
services are registered with the OMG.

env Contains information on the exception that was raised.

closure May contain data saved by one interceptor method
that can be retrieved later by another interceptor
method.

VisiBroker for C++ API Reference Guide 249

virtual void postinvoke_postmarshal(CORBA::Object_ptr
_target,CORBA::MarshalOutBuffer& _payload,
VISClosure& _closure);

This method is invoked after marshaling the reply but before sending the
reply to the client. Exceptions thrown here are ignored. The entire chain is
guaranteed to be called.

virtual void exception_occurred(CORBA::Object_ptr
_target,CORBA::Environment_ptr _env, VISClosure&
_closure);

This method is invoked by the ORB when an exceptionoccurred
interceptor is called on all remaining interceptors in the chain after an
exception occurred in one of the prepare_reply interceptors. An exception
thrown during this call replaces the existing exception in the environment

ServerRequestInterceptorManager

class Interceptor::ServerRequestInterceptorManager
public InterceptorManager, public VISPseudoInterface

This is the class that manages all ServerRequestInterceptors registered
in its scope. Each POA has one single
ServerRequestInterceptorManager.

Include file
Include the interceptor_c.hh file when you use this class.

ServerRequestInterceptorManager method

virtual void add(ServerRequestInterceptor_ptr
interceptor);

Invoke this method to add a ServerRequestInterceptor to the chain.

Parameter Description
target The object to which that application was attempting to bind.

payload Marshalled buffer.

closure May contain data saved by one interceptor method that can
be retrieved later by another interceptor method.

Parameter Description
target The client object which is being bound to the server.

env Contains information on the exception that was raised.

closure May contain data saved by one interceptor method that can
be retrieved later by another interceptor method.

250 VisiBroker for C++ API Reference Guide

IORCreationInterceptor

class PortableServerExt::IORInterceptor public
VISPseudoInterface

The IORCreationInterceptor is a per-POA interceptor which may be
installed by a POALifeCycleInterceptor at POA creation time. The
interceptor may be used to modify IORs by adding additional profiles or
components. This class is typically used to support services such as
transactions or firewall.

This kind of interceptor is used to automatically change the IOR templates
on certain classes of POAs whose names and identities may not be known at
development time. This may be the case with services such as Transaction
and Firewall.

Note
To change all the IORs created by a POA, simply modify the IORTemplate
for that POA. The change will apply only to newly created IORs and not to
any existing ones.

Making radical changes to the IOR is not recommended.

Include file
Include the PortableServerExt_c.hh file when you use this class.

IORInterceptor method

virtual void create(PortableServer::POA poa,
IOP::IORValue*& ior);

The method is called whenever the POA needs to create an object
reference. It takes the POA and the IORValue for the reference as
arguments. The interceptor may modify the IORValue by adding additional
profiles or components, or changing the existing profiles or components.

IORCreationInterceptorManager

class PortableServerExt::IORCreationInterceptorManager
public interceptor::InterceptorManager, public
VISPseudoInterface

This is the class that is used to manage (add) IOR interceptors to the local
chain. Each POA has one single IORInterceptorManager.

Include file
Include the PortableServerExt_c.hh file when you use this class.

Parameter Description
poa The ID associated with the current

PAO being created.
ior The IOR for the server object to

which the client is binding.

VisiBroker for C++ API Reference Guide 251

IORCreationInterceptorManager method

virtual void add(IORCreationInterceptor_ptr
_interceptor);

This method may be invoked to add an IORInterceptor to the local chain.

VISClosure

struct VISClosure

This structure is used to store data so that it can be shared between
different invocations of interceptor methods. The data that is stored is un-
typed and can represent state information related to an operation request
or a bind or locate request. It is used in conjunction with the
VISClosureData class.

Include file
Include the vclosure.h file when you use this class.

VISClosure members
CORBA::ULong id

You can use this data member to uniquely identify this object if you are
using more than one VISClosure object.

void *data

This data member points to the un-typed data that may be stored or
accessed by an interceptor method.

VISClosureData *managedData

This data member points to the VISClosureData class that represents the
actual data. You may cast your managed data to this type.

VisExtendedClosure

class VISExtendedClosure : public VISClosure {
public:
interceptor::RequestInfo reqInfo;
CORBA::MarshalInBuffer_ptr payload;
};

This interface is a derived class of VISClosure and contains a
RequestInfo for read only attribute.

Code sample
This sample shows the RequestInfo IDL.

struct RequestInfo {
CORBA::Boolean response_expected;
CORBA::ULong request_id;

};

252 VisiBroker for C++ API Reference Guide

You can cast the VISClosure object passed to the
ServerRequestInterceptor and ClientRequestInterceptor to its
subclass, VISExtendedClosure. VISExtendedClosure can be used to
extract the RequestInfo, from which you can extract the request_id and
response_expected. The request_id is the unique id assigned to the
request. The response_expected flag indicates whether the request is a
one-way call.

CORBA::Boolean response_expected =
((VISExtendedClosure)closure).reqInfo.response_expected;

CORBA::ULong request_id =
((VISExtendedClosure)closure).reqInfo.request_id;

For more information, please see the example in examples/interceptor/
client_server.

VISClosureData

class VISClosureData

This class represents managed data that can be shared between different
invocations of interceptor methods.

VISClosureData methods

virtual void _VisClosureData();

This is the default destructor.

virtual void _release();

Releases this object and decrements the reference count. When the
reference count reaches 0, the object is deleted.

ChainUntypedObjectWrapperFactory

class
VISObjectWrapper::ChainUntypedObjectWrapperFactory:
public UntypedObjectWrapperFactory

This interface is used by a client or server application to add or remove an
UntypedObjectWrapperFactory object. An
UntypedObjectWrapperFactory is used to create an
UntypedObjectWrapper for each object a client application binds to or for
each object implementation created by a server application.

See “Using object wrappers” in the VisiBroker C++ Developer's Guide
for more information about how to use the object wrappers.

Include file
Include the vobjwrap.h file when you use this class.

VisiBroker for C++ API Reference Guide 253

ChainUntypedObjectWrapperFactory methods

void add(UntypedObjectWrapperFactory_ptr
factory,Location loc);

This method adds the specified un-typed object wrapper factory for a client
application, server application, or collocated application.

If your application is acting as both a client application and a server
application, that is, a collocated application, you can install an un-typed
object wrapper factory. If you do so, the wrapper's methods are invoked for
both invocations on bound objects and operation requests received by
object implementations. In other words, they are invoked on both the client
and server portions of the application.

Note
On the client side, un-typed object wrapper factories must be defined
before any objects are bound. On the server side, un-typed object wrapper
factories must be defined before an invocation for an object implementation
is received.

void remove(UntypedObjectWrapperFactory_ptr factory,
Location loc);

This method removes the specified un-typed object wrapper factory from
the specified location.

If your application is acting as both a client and a server, you can remove
the object wrapper factories for either the client side objects, server side
implementations, or both.

Note
Removing one or more object wrapper factories from a client does not affect
objects of that class which are already bound by the client. Only
subsequently bound objects will be affected.

Removing object wrapper factories from a server does not affect object
implementations that have already serviced requests. Only subsequently
created object implementations will be affected.

Parameter Description
factory A pointer to the factory to be registered.

loc The location of the factory being added, which should be
one of the following values:
VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

Parameter Description
factory A pointer to the factory to be registered.

loc The location of the factory being removed; one of the
following values: VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

254 VisiBroker for C++ API Reference Guide

static CORBA::ULong count(Location loc);

This static method returns the number of un-typed object wrapper factories
installed for the specified location.

UntypedObjectWrapper

class VISObjectWrapper::UntypedObjectWrapper : public
VISResource

You use this class to derive and implement an un-typed object wrapper for a
client application, a server application, or collocated application. When you
derive an un-typed object wrapper from this class, you define a
pre_method method that is invoked before a request is issued by a client
application or before it is processed by an object implementation on the
server side. You also define a post_method method that will be invoked
after an operation request is processed by an object implementation on the
server side or after a reply has been received by a client application.

You must also derive a factory class that will create your un-typed wrapper
objects. Derive it from the UntypedObjectWrapperFactory class,
described in “UntypedObjectWrapper”.

Refer to the VisiBroker C++ Developer's Guide for more information
about how to use the object wrappers.

Parameter Description
loc The location of the factories:

VISObjectWrapper::Client
VISObjectWrapper::Server
VISObjectWrapper::Both

VisiBroker for C++ API Reference Guide 255

Quality of Service interfaces
and classes
This section describes the VisiBroker for C++ implementation of the Quality
of Service APIs. See “Core interfaces and classes” for information about
creating policies.

CORBA::PolicyManager

class CORBA::PolicyManager

This class is used to set and access policy overrides at the VisiBroker ORB
level. Policies defined at the VisiBroker ORB level override any system
defaults. The instance belonging to the manager thread is accessible by
using resolve_initial_reference("PolicyManager")and narrowing
down to PolicyManager.

IDL definition
module CORBA {
 interface PolicyManager {

PolicyList get_policy_overrides(in PolicyTypeSeq ts);
 void set_policy_overrides(in PolicyList policies,

in SetOverrideType set_add)
 raises (InvalidPolicies);
 };
};

Include file
Include the file corba.h when you use this class.

Methods

CORBA_PolicyList* get_policy_overrides (PolicyTypeSeq
ts);

This method returns a policy list containing the policies of the requested
policy types. If the specified sequence is empty (that is, if the length of the
list is zero), all policies at this scope are returned. If none of the requested
policy types is set at the target PolicyManager, an empty sequence is
returned.

void set_policy_overrides (const CORBA_PolicyList&
policies, CORBA::SetOverrideType set_add)

This method updates the current set of policies with the requested list of
policy overrides. To remove all overrides from a PolicyManager, invoke
set_policy_overrides with an empty sequence of policies and a mode of
SET_OVERRIDE.

Parameter Description
ts A sequence containing the requested policy types.

256 VisiBroker for C++ API Reference Guide

Only certain policies that pertain to the invocation of an operation at the
client end can be overridden using this operation. An attempt to override
any other policy results in the raising of the CORBA::NO_PERMISSION
exception. If the request would put the set of overriding policies for the
target PolicyManager in an inconsistent state, no policies are changed or
added, and the exception InvalidPolicies is raised. There is no
evaluation of compatibility with policies set within other PolicyManagers.

CORBA::PolicyCurrent

class CORBA::PolicyCurrent

This class provides access to policies overridden at the thread level and is
defined with operations for querying and applying quality of service values
to a thread. Policies defined at the thread level override any system defaults
or values set at the VisiBroker ORB level but not those at the Object level.
The instance belonging to the current thread is accessible by using
resolve_initial_reference("PolicyCurrent") and narrowing down
to PolicyCurrent.

IDL definition
interface PolicyCurrent : PolicyManager, Current {
};

Include file
Include the file corba.h when you use this class.

CORBA::Object

class CORBA::Object

The VisiBroker Edition implementation of the Quality of Service API allows
policies to be assigned to objects, threads, and VisiBroker ORBs. Policies
assigned to Objects override all other policies.

IDL definition
#pragma prefix "omg.org"
module CORBA {
 interface Object {
 Policy get_client_policy(in PolicyType type);
 Policy get_policy(in PolicyType type);
 PolicyList get_policy_overrides(in PolicyTypeSeq
types);
 Object set_policy_overrides(in PolicyList
policies,in SetOverrideType

Parameter Description
policies A sequence of references to Policy objects.

set_add Indicates whether these policies should be added
(ADD_OVERRIDE) to any other overrides that
already exist in the PolicyManager or added to a
clean PolicyManager free of any other overrides
(SET_OVERRIDE).

VisiBroker for C++ API Reference Guide 257

 set_add)
 raises (InvalidPolicies);
 boolean validate_connection(out PolicyList
inconsistent_policies);
 };
};

Include file
Include the file corba.h when you use this class.

Methods

CORBA::Policy_ptr get_client_policy(CORBA::PolicyType
type);

Returns the effective overriding Policy for the object reference. The effective
override is obtained by first checking for an override of the specified
PolicyType at the Object scope, then at the Current scope, and finally at
the VisiBroker ORB scope. If no override is present for the requested
PolicyType, the system-dependent default value for that PolicyType is
used. Portable applications are expected to set the desired "defaults" at the
VisiBroker ORB scope since default Policy values are not specified.

CORBA::Policy_ptr get_policy(CORBA::PolicyType type);

Returns the effective Policy for the object reference. The effective Policy is
the one that would be used if a request were made. This Policy is
determined first by obtaining the effective override for the PolicyType as
returned by get_client_policy.

The effective override is then compared with the Policy as specified in the
IOR. The effective Policy is the intersection of the values allowed by the
effective override and the IOR-specified Policy. If the intersection is empty,
the system exception INV_POLICY is raised. Otherwise, a Policy with a
value legally within the intersection is returned as the effective Policy. The
absence of a Policy value in the IOR implies that any legal value may be
used. To ensure the accuracy of the returned effective Policy, invoke
non_existent or validate_connection on an object reference prior to
get_policy. If get_policy is invoked prior to the object reference being
bound, the returned effective Policy is implementation-dependent. In that
situation, a compliant implementation may do any of the following: raise
the exception CORBA::BAD_INV_ORDER, return some value for that
PolicyType which may be subject to change once a binding is performed,
or attempt a binding and then return the effective Policy. Note that if the
RebindPolicy has a value of TRANSPARENT, the effective Policy may
change from invocation to invocation due to transparent rebinding.

Note
In VisiBroker, this method gets the Policy assigned to an Object, thread or
the VisiBroker ORB.

CORBA::Object_ptr set_policy_overrides(const
CORBA_PolicyList& _policies, CORBA::SetOverrideType
_set_add);

This method works as does the PolicyManager method of the same name.
However, this method updates the current set of policies of an Object,
thread or the VisiBroker ORB with the requested list of Policy overrides. In

258 VisiBroker for C++ API Reference Guide

addition, this method returns a CORBA::Object whereas other methods of
the same name return void.

CORBA::Boolean validate_connection(CORBA_PolicyList&
inconsistent_policies);

Returns the value TRUE if the current effective policies for the Object will
allow an invocation to be made. If the object reference is not yet bound, a
binding will occur as part of this operation. If the object reference is already
bound, but current policy overrides have changed or for any other reason
the binding is no longer valid, a rebind will be attempted regardless of the
setting of any RebindPolicy override. The validate_connection
operation is the only way to force such a rebind when implicit rebinds are
disallowed by the current effective RebindPolicy. The attempt to bind or
rebind may involve processing GIOP LocateRequests by the VisiBroker
ORB.

This method returns the value FALSE if the current effective policies would
cause an invocation to raise the system exception INV_POLICY. If the
current effective policies are incompatible, the out parameter
inconsistent_policies contains those policies causing the
incompatibility. This returned list of policies is not guaranteed to be
exhaustive. If the binding fails due to some reason unrelated to policy
overrides, the appropriate system exception is raised.

Messaging::RebindPolicy

class Messaging::RebindPolicy

The VisiBroker implementation of RebindPolicy is a complete
implementation of RebindPolicy as defined in the Messaging Specification
with enhancements to support failover.

The RebindPolicy of the VisiBroker ORB determines how it handles GIOP
location-forward messages and object failures. The VisiBroker ORB handles
fail-over/rebind by looking at the effective policy at the CORBA::Object
instance.

The OMG implementation, derived from CORBA::Policy, determines
whether the VisiBroker ORB may transparently rebind once it is successfully
bound to a target server. The extended implementation determines whether
the VisiBroker ORB may transparently failover once it is successfully bound
to a target Object, thread, or VisiBroker ORB.

IDL definition
#pragma prefix "omg.org"
module Messaging {
 typedef short RebindMode;
 const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
 local interface RebindPolicy CORBA::Policy {
 readonly attribute RebindMode rebind_mode;
 };
};

Include file
Include the file corba.h when you use this class.

VisiBroker for C++ API Reference Guide 259

Policy values

Note
Policies are enforced only after a successful bind.

The OMG Policy values that can be set as the Rebind Policy are:

The VisiBroker-specific values that can be set as the Rebind Policy are:

QoSExt::DeferBind Policy

class QoSExt::DeferRebindPolicy

By default, the VisiBroker ORB connects to the (remote) object when it
receives a bind() or a string_to_object call.

If set to TRUE, this policy changes this behavior; it causes the VisiBroker
ORB to delay contacting the Object until the first invocation.

Policy Value Description
TRANSPARENT This policy allows the VisiBroker ORB to silently handle

object-forwarding and necessary reconnection when
making a remote request. This is the least restrictive
OMG policy value.

NO_REBIND This policy allows the VisiBroker ORB to silently handle
reopening of closed connections while making a remote
request, but prevents any transparent object-
forwarding that would cause a change in the client-side
effective QoS policies.

NO_RECONNECT This policy prevents the VisiBroker ORB from silently
handling object-forwards or the reopening of closed
connections. This is the most restrictive OMG policy
value.

Policy Value Description
VB_TRANSPARENT This policy extends TRANSPARENT behavior to failover

conditions in the object, the thread and the VisiBroker
ORB. This is the default policy. If this policy is set, if a
remote invocation fails because the server object goes
down, then the VisiBroker ORB tries to reconnect to
another server using the osagent. The VisiBroker ORB
masks the communication failure and does not throw an
exception to the client.

VB_NOTIFY_REBIND VB_NOTIFY_REBIND behaves as does
VB_TRANSPARENT but throws an exception when the
communication failure is detected. It will try to
transparently reconnect to another object if the
invocation is re-attempted.

VB_NO_REBIND VB_NO_REBIND does no failover. It only allows the
client VisiBroker ORB to reopen a closed GIOP re-
connection to the same server; it does not allow object
forwarding of any kind.

260 VisiBroker for C++ API Reference Guide

IDL definition
#pragma prefix "inprise.com"
module QoSExt {
 interface DeferBindPolicy :CORBA::Policy {
 readonly attribute boolean value;
 };
};

Include file
Include the file corba.h when you use this class.

QoSExt::RelativeConnectionTimeoutPolicy

class QoSExt::RelativeConnectionTimoutPolicy

The RelativeConnectionTimeoutPolicy indicates a timeout after which
attempts to connect to an object using one of the available endpoints is
aborted. The policy value of unsigned longlong type specifies the timeout in
100s of nanoseconds. It is applied to every endpoint that the VisiBroker
ORB tries to connect to. Therefore, if multiple connection attempts are
made, the elapsed time will be a multiple of the configured timeout. The
default value of 0 sets the timeout value to that of the operating system
default timeout.

Note
This Policy is not enforced for in-process communications.

IDL definition
module QoSExt {
 const CORBA::PolicyType RELATIVE_CONN_TIMEOUT_POLICY_TYPE = 0x56495304;
 local interface RelativeConnectionTimeoutPolicy :CORBA::Policy {
 readonly attribute TimeBase::TimeT relative_expiry;
 };
};

Include file
Include the file corba.h when you use this class.

Messaging::RelativeRequestTimeoutPolicy

class Messaging::RelativeRequestTimeoutPolicy

The RelativeRequestTimeoutPolicy specifies the maximum time that a
client is to block waiting to send an operation request. If the request times
out, CORBA::TIMEOUT exception is raised.

VisiBroker for C++ API Reference Guide 261

IDL definition
module Messaging{
const CORBA::PolicyType RELATIVE_REQ_TIMEOUT_POLICY_TYPE = 31;
local interface RelativeRequestTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};
};

Include file
Include the file corba.h when you use this class.

Messaging::RelativeRoundtripTimeoutPolicy

class Messaging::RelativeRoundtripTimeoutPolicy

The RelativeRoundtripTimeoutPolicy specifies the relative amount of
time for which a Request or its corresponding Reply may be delivered. If a
response has not yet been delivered after this amount of time, the Request
is canceled. Also, if a Request had already been delivered and a Reply is
returned from the target, the Reply is discarded after this amount of time.
This policy applies to both synchronous and asynchronous invocations.
Assuming the request completes within the specified timeout, the Reply will
never be discarded due to timeout. The timeout value is specified in 100s of
nanoseconds.This policy is also effective in the initial establishment of a
connection.

IDL definition
module Messaging{
const CORBA::PolicyType RELATIVE_RT_TIMEOUT_POLICY_TYPE = 32;
local interface RelativeRoundtripTimeoutPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT relative_expiry;

};
};

Include file
Include the file corba.h when you use this class.

Messaging::SyncScopePolicy

class Messaging::SyncScopePolicy

The SyncScopePolicy defines the level of synchronization for a request
with respect to the target. Values of type SyncScope are used in
conjunction with a SyncScopePolicy to control the behavior of one-way
operations.

The default SyncScopePolicy is SYNC_WITH_TRANSPORT.

262 VisiBroker for C++ API Reference Guide

IDL definition
module Messaging{
const CORBA::PolicyType SYNC_SCOPE_POLICY_TYPE = 24;
const SyncScope SYNC_NONE = 0;
const SyncScope SYNC_WITH_TRANSPORT = 1;
const SyncScope SYNC_WITH_SERVER = 2;
const SyncScope SYNC_WITH_TARGET = 3;
local interface SyncScopePolicy : CORBA::Policy {
readonly attribute SyncScope synchronization;

};
};

Include file
Include the file corba.h when you use this class.

VisiBroker for C++ API Reference Guide 263

IOP and IIOP interfaces and
classes
This section describes the VisiBroker for C++ implementation of the key
General Inter-ORB Protocol interfaces and other structures defined by the
CORBA specification. For a complete description of these interfaces, refer to
the OMG CORBA/IIOP Specification.

IIOP::ProfileBody

struct ProfileBody

This structure contains information about the protocol supported by an
object.

module IIOP {
 . . .
 struct ProfileBody {
 GIOP::Version iiop_version;
 string host;
 unsigned short port;
 sequence<octet> object_key;
 sequence<IOP::TaggedComponent> components;
 };
};

Include file
The IOP_c.hh file should be included when you use this structure.

ProfileBody members
GIPOP::Version iiop_version

The version of IIOP supported.

CORBA::String_var host

The name of the host where the server hosting the object is running.

CORBA::UShort port

The port number to use for establishing a connection to the server hosting
the object.

CORBA::OctetSequence object_key

Object keys are stored in a vendor-specific format and are generated when
an IOR is created.

IIOP::MultiComponentProfile components

A sequence of TaggedComponents which contain information about the
protocols that are supported.

264 VisiBroker for C++ API Reference Guide

IOP::IOR

struct IOR

This structure represents an Interoperable Object Reference and is used to
provide important information about object references. Your client
application can create a stringified IOR by invoking the
ORB::object_to_string method.

Include file
The IOP_c.hh file should be included when you use this structure.

IOR members
CORBA::String_var type_id

This data member describes the type of object reference that is represented
by this IOR.

TaggedProfileSeq profiles

This data member represents a sequence of one or more TaggedProfile
structures which contain information about the protocols that are
supported.

IOP::TaggedProfile

struct TaggedProfile

This structure represents a particular protocol that is supported by an
Interoperable Object Reference (IOR).

Include file
The IOP_c.hh file should be included when you use this structure.

TaggedProfile members
ProfileID tag

The contents of the profile data. Its value should be one of the following:

CORBA_OctetSequence profile_data

This data member encapsulates all the protocol information needed to
invoke an operation on an IOR.

Value Description
TAG_INTERNET_IOP Indicates the protocol is standard IIOP.
TAG_MULTIPLE_COMPONENTS Indicates the profile data contains a list of

VisiBroker ORB services available using the
protocol.

TAG_VB_LOCATOR Indicates that the IOR is an interim, pseudo-
object that is used until the real IOR is
received by the osagent.

TAG_VSGN_LIOP Indicates the protocol is IOP over a local IPC
mechanism.

VisiBroker for C++ API Reference Guide 265

266 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 267

Marshal buffer interfaces
and classes
This section describes the buffer class used for marshaling data to a buffer
when creating an operation request or a reply message. It also describes
the buffer class used for extracting data from a received operation request
or reply message.

CORBA::MarshalInBuffer

class CORBA::MarshalInBuffer : public VISistream

This class represents a stream buffer that allows IDL types to be read from
a buffer. Interceptor methods that you implement may used this class. Go
to “Portable Interceptor interfaces and classes for C++” for more
information on the interceptor interfaces.

The CORBA::MarshalInBuffer class is used on the client side to extract
the data associated with a reply message. It is used on the server side to
extract the data associated with an operation request. This class provides a
wide range of methods for retrieving various types of data from the buffer.

This class also provides several static methods for testing and manipulating
CORBA::MarshalInBuffer pointers.

A CORBA::MarshalInBuffer_var class is also offered. It provides a
wrapper that automatically manages the contained object.

Include file
The mbuf.h file should be included when you use this class. This file gets
included in corba.h. So, you don't have to include mbuf.h separately.

CORBA::MarshalInBuffer constructors/
destructors

CORBA::MarshalInBuffer(char *read_buffer, CORBA::ULong
length, CORBA::Boolean release_flag=0, CORBA::ULong
start_offset=0, CORBA::Boolean byte_order =
CORBA::ByteOrder);

This is the default constructor.

Parameter Description
read_buffer The buffer where the marshaled data will actually

be stored.
length The maximum number of bytes that may be stored

in read_buffer.
release_flag If set to TRUE, the memory associated with

read_buffer is freed when this object is
destroyed. The default value is FALSE.

268 VisiBroker for C++ API Reference Guide

virtual ~CORBA::MarshalInBuffer();

This is the default destructor. The buffer memory associated with this object
is released if the release_flag is set to TRUE. The release_flag may be
set when the object is created or by invoking the release_flag method,
described in “void release_flag(CORBA::Boolean val);”.

CORBA::MarshalInBuffer methods

char *buffer() const;

Returns a pointer to the buffer associated with this object.

void byte_order(CORBA::Boolean val) const;

Sets the byte ordering for this message buffer.

CORBA::Boolean byte_order() const;

Returns TRUE if the buffer uses little-endian byte ordering. FALSE is
returned if big-endian byte ordering is used.

CORBA::ULong curoff() const;

Returns the current offset within the buffer associated with this object.

virtual VISistream& get(char& data);
virtual VISistream& get(unsigned char& data);

These methods allow you to retrieve a single character from the buffer at
the current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just retrieved.

virtual VISistream& get(<data_type> data, unsigned
size);

These methods allow you to retrieve a sequence of data from the buffer at
the current location. There is a separate method for each of the listed target
data types.

start_offset The starting offset wherein data is written in the
read_buffer. The default value is 0.

byte_order Set this to TRUE to indicate that little-endian byte
ordering is being used. Set to FALSE to indicate
that big-endian byte ordering is being used.

Parameter Description
val Set this to TRUE to indicate that little-endian byte

ordering is being used. Set to FALSE to indicate that
big-endian byte ordering is being used.

Parameter Description
data The location where the retrieved char or unsigned

char is to be stored.

Parameter Description

VisiBroker for C++ API Reference Guide 269

This method returns a pointe to the location within the buffer immediately
following the end of the data that was just retrieved.

virtual VISistream& getCString(char* data, unsigned
maxlen);

This method allows you to retrieve a character string from the buffer at the
current location. It returns a pointer to the location within the buffer
immediately following the end of the data that was just retrieved.

virtual int is_available(unsigned long size);

Returns 1 if the specified size is less than or equal to the size of the buffer
associated with this object.

virtual CORBA::ULong length() const;

Returns the total number of bytes in this object's buffer.

virtual void new_encapsulation() const;

Resets the starting offset within the buffer to 0.

void release_flag(CORBA::Boolean val);

Enables or disables the automatic freeing of buffer memory when this object
is destroyed.

Parameter Description
data The location where the retrieved data is to be

stored.
The supported target data types are:
char* float*

unsigned char* double*

short* long double*

unsigned short* VISLongLong*

int* VISULongLong*

unsigned int* wchar_t*

long*

unsigned long*

size The number of the specified data types to be
retrieved.

Parameter Description
data The location where the retrieved character string is

to be stored.
maxlen The maximum number of characters to be

retrieved.

Parameter Description
size Number of bytes that need to fit within this buffer.

Parameter Description
val If val is set to TRUE, the buffer memory for this

object will be freed when this object is destroyed. If
val is set to FALSE, the buffer will not be freed
when this object is destroyed.

270 VisiBroker for C++ API Reference Guide

CORBA::Boolean release_flag() const;

Returns TRUE if the automatic freeing of this object's buffer memory is
enabled, otherwise FALSE is returned.

void reset();

Resets the starting offset, current offset and seek position to zero.

void rewind();

Resets the seek position to zero.

CORBA::ULong seekpos(CORBA::ULong pos);

Sets the current offset to the value contained in pos. If pos specifies an
offset that is greater than the size of the buffer, a CORBA::BAD_PARAM
exception is raised.

static CORBA::MarshalInBuffer
*_duplicate(CORBA::MarshalInBuffer_ptr ptr);

Returns a duplicate pointer to the object pointed to by ptr and increments
this object's reference count.

static CORBA::MarshalInBuffer *_nil();

Returns a NULL pointer of type CORBA::MarshalInBuffer.

static void _release(CORBA::MarshalInBuffer_ptr ptr);

Reduces the reference count of the object pointed to by ptr. When the
reference count reaches 0, the object is destroyed. If the object's
release_flag was set to TRUE when the object was constructed, the buffer
associated with the object is freed.

CORBA::MarshalInBuffer operators

virtual VISistream&operator>>(<data_type> data);

This stream operator allows you retrieve a sequence of data of the specified
source data_type at the current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just written.

Parameter Description
data The data to be written to the buffer.

The supported source data types are:
char*& long&

char& unsigned long&

unsigned char& float&

short& double&

unsigned short& long double&

int& wchar_t*&

unsigned int& wchar_t&

VisiBroker for C++ API Reference Guide 271

CORBA::MarshalOutBuffer

class CORBA::MarshalOutBuffer : public VISostream

This class represents a stream buffer that allows IDL types to be written to
a buffer and may be used by interceptor methods that you implement. Go
to “VisiBroker Interceptor and object wrapper interfaces and classes for
C++”, for more information on the interceptor interfaces.

The CORBA::MarshalOutBuffer class is used on the client side to marshal
the data associated with an operation request. It is used on the server side
to marshal the data associated with a reply message. This class provides a
wide range of methods for adding various types of data to the buffer or for
retrieving what was written from the buffer.

This class provides several static methods for testing and manipulating
CORBA::MarshalOutBuffer pointers.

A CORBA::MarshalOutBuffer_var class is also offered. It provides a
wrapper that automatically manages the contained object.

Include file
The mbuf.h file should be included when you use this class. This file gets
included in corba.h. So, you don't have to separately include mbuf.h.

CORBA::MarshalOutBuffer constructors/
destructors

CORBA::MarshalOutBuffer(CORBA::ULong initial_size =
255, CORBA::Boolean release_flag = 0, CORBA::ULong
start_offset = 0);

Creates a marshalOutBuffer of size initial_size. The
MarshalOutBuffers are capable of resizing themselves during a put
operation. When there is not enough space in the buffer to hold all the data
written to it, the size of the buffer doubles.

CORBA::MarshalOutBuffer(char *read_buffer, CORBA::ULong
len, CORBA::Boolean release_flag=0, CORBA::ULong
start_offset =);

Creates an object with the specified buffer, buffer length and release flag
value.

Parameter Description
initial_size The initial size of the buffer associated with this object. The

default size is 255 bytes.
release_flag If set to TRUE, the memory associated with read_buffer is

freed when this object is destroyed. The default value is
FALSE.

start_offset Set the starting offset within the buffer. Defaults to 0, that is
starting from the very beginning of the buffer.

Parameter Description
read_buffer The buffer where the marshaled data will actually be stored.

length The maximum number of bytes that may be stored in
read_buffer.

272 VisiBroker for C++ API Reference Guide

virtual ~CORBA::MarshalOutBuffer();

This is the default destructor. The buffer memory associated with this object
is released if the release_flag is set to TRUE. The release_flag may be
set when the object is created or by invoking the release_flag method,
described in “CORBA::Boolean release_flag() const;”.

CORBA::MarshalOutBuffer methods

char *buffer() const;

Returns a pointer to the buffer associated with this object.

CORBA::ULong curoff() const;

Returns the current offset within the buffer associated with this object.

virtual CORBA::ULong length() const;

Returns the total number of bytes in this object's buffer.

virtual void new_encapsulation() const;

Resets the starting offset within the buffer to zero.

virtual VISostream& put(char data);

Adds a single character to the buffer at the current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just added.

virtual VISostream& put(const <data_type> data,
unsigned size);

These methods allow you to store a sequence of data in the buffer at the
current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just added.

release_flag If set to TRUE, the memory associated with read_buffer
is freed when this object is destroyed. The default value is
FALSE.

start_offset Set the starting offset within the buffer. Defaults to 0, that is
starting from the very beginning of the buffer.

Parameter Description
data The char to be stored.

Parameter Description
data The data is to be stored.

The supported source data types are:
char* float*

unsigned char* double*

short* long double*

unsigned short* VISLongLong*

int* VISULongLong*

Parameter Description

VisiBroker for C++ API Reference Guide 273

virtual VISostream& putCString(const char* data);

This method allows you to store a character string into the buffer at the
current location. It returns a pointer to the location within the buffer
immediately following the end of the data that was just added.

void release_flag(CORBA::Boolean val);

Enables or disables the automatic freeing of buffer memory when this object
is destroyed.

CORBA::Boolean release_flag() const;

Returns TRUE if the automatic freeing of this object's buffer memory is
enabled, otherwise returns FALSE.

void reset();

Resets the starting offset, current offset and seek position to zero.

void rewind();

Resets the seek position to zero.

CORBA::ULong seekpos(CORBA::ULong pos);

Sets the current offset to the value contained in pos. If pos specifies an
offset that is greater than the size of the buffer, a CORBA::BAD_PARAM
exception is raised.

static CORBA::MarshalOutBuffer
*_duplicate(CORBA::MarshalOutBuffer_ptr ptr);

Returns a duplicate pointer to this object pointed to by ptr and increments
this object's reference count.

static CORBA::MarshalOutBuffer *_nil();

Returns a NULL pointer of type CORBA::MarshalOutBuffer.

static void _release(CORBA::MarshalOutBuffer_ptr ptr);

Reduces the reference count of the object pointed to by ptr. If the
reference count is then zero, the object is destroyed. If the object's
release_flag was set to TRUE when it was constructed, the buffer
associated with the object is freed.

unsigned int* wchar_t*

long*

unsigned long*

size The number of the specified data types to be stored.

Parameter Description
data The character string to be stored.

Parameter Description
val If val is set to TRUE, the buffer memory for this object will be

freed when this object is destroyed. If val is set to FALSE, the
buffer will not be freed when this object is destroyed

Parameter Description

274 VisiBroker for C++ API Reference Guide

CORBA::MarshalOutBuffer operators

virtual VISostream& operator<<(<data_type> data);

This stream operator allows you to add data of the specified data_type to
the buffer at the current location.

This method returns a pointer to the location within the buffer immediately
following the end of the data that was just written.

Parameter Description
data The data to be obtained to the buffer.

The supported data types are:
const char* float

char double

unsigned char long double

short VISLongLong

unsigned short VISULongLong

int wchar_t*

unsigned int wchar_t

long

unsigned long

VisiBroker for C++ API Reference Guide 275

Location service interfaces
and classes
This section describes the interfaces you can use to locate object instances
on a network of Smart Agents. For more information on the Location
Service, see “Using the Location Service” in the VisiBroker for C++
Developer's Guide.

Agent

class Agent : public CORBA::Object

This class provides methods that enable you to locate all instances of a
particular object on a network of Smart Agents. The methods offered by this
class are divided into two categories: those that query a Smart Agent for
data about objects and those that deal with triggers.

Your client application can obtain object information based on an interface
repository ID alone or in combination with an instance name.

Triggers allow your client application to be notified of changes in the
availability of one or more object instances.

IDL definition
interface Agent {
 HostnameSeq all_agent_locations()
 raises (Fail);
 RepositoryIdSeq all_repository_ids()
 raises (Fail);
 ObjSeqSeq all_available()
 raises (Fail);
 ObjSeq all_instances (in string repository_id)
 raises (Fail);
 ObjSeq all_replica (in string repository_id, in string
instance_name)
 raises (Fail);
 DescSeqSeq all_available_descs()
 raises (Fail);
 DescSeq all_instances_descs (in string repository_id)
 raises (Fail);
 DescSeq all_replica_descs (in string repository_id,

in string instance_name)
 raises (Fail);
 void reg_trigger(in TriggerDesc desc, in
TriggerHandler handler)
 raises (Fail);
 void unreg_trigger(in TriggerDesc desc, in
TriggerHandler handler)
 raises (Fail);
 attribute boolean willRefreshOADs;
};

276 VisiBroker for C++ API Reference Guide

Include file
You should include the locate_c.hh file when you use this class.

Agent methods

ObjLocation::HostnameSeq_ptr all_agent_locations();

Returns a sequence of host names representing the hosts on which osagent
processes are currently executing.

See also
“<type>Seq”

This method throws the following exceptions:

ObjLocation::ObjSeqSeq all_available();

Returns a sequence of object references for all objects currently registered
with some Smart Agent on the network.

See also
“<type>Seq”

This method throws the following exceptions:

ObjLocation::DescSeqSeq_ptr all_available_descs();

Returns descriptions for all objects currently registered with a Smart Agent
on the network. The description information returned is organized by
repository id.

See also
“<type>Seq”

This method throws the following exceptions:

ObjLocation::ObjSeq_ptr all_instances(const char
*repository_id);

Returns a sequence of object references to all instances with the specified
repository_id.

Exception Description
Fail The FailReason values that may be presented

include:NO_AGENT_AVAILABLE, AGENT_ERROR.
For more information on the Fail class, see
“Fail”.

Exception Description
Fail The FailReason values that may be presented

include: NO_AGENT_AVAILABLE, AGENT_ERROR.
For more information on the Fail class, see “Fail”.

Exception Description
Fail The FailReason values that may be presented

include: NO_AGENT_AVAILABLE, AGENT_ERROR.
For more information on the Fail class, see “Fail”.

VisiBroker for C++ API Reference Guide 277

See also
“<type>Seq”

This method throws the following exceptions:

ObjLocation::DescSeq_ptr all_instances_descs(const char
*repository_id);

Returns description information for all object instances with the specified
repository_id.

See also
“<type>Seq”

This method throws the following exceptions:

ObjLocation::ObjSeq_ptr all_replica(const char
*repository_id, const char *instance_name);

Returns a sequence of object references for objects with the specified
repository_id and instance_name.

See also
“<type>Seq”

This method throws the following exceptions:

Parameter Description
repository_id The repository ID of the object references to be

retrieved.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented. For more
information on the Fail class, see “Fail”.

Parameter Description
repository_id The repository ID of the object descriptions to be

retrieved.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented. For more
information on the Fail class, see “Fail”.

Parameter Description
repository_id The repository ID of the object references to be

retrieved.
instance_name The instance name of the object references to be

returned.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented. For more
information on the Fail class, see “Fail”.

278 VisiBroker for C++ API Reference Guide

ObjLocation::DescSeq_ptr all_replica_descs(const char
*repository_id, const char *instance_name);

Returns a sequence of description information for all object instances with
the specified repository_id and instance_name.

See also
“<type>Seq”

This method throws the following exceptions:

CORBA::StringSequence* all_repository_ids();

This method retrieves all interfaces known to any osagent. This method
throws the following exception:

void reg_trigger(const ObjLocation::TriggerDesc& desc,
ObjLocation::TriggerHandler_ptr hdlr);

Registers the trigger handler hdlr for object instances that match the
description information specified in desc.

Note
A TriggerHandler is invoked every time an object that satisfies the
trigger's description becomes available. If you are only interested in
learning when the first instance of the object becomes available, you should
use the unreg_trigger method to remove the trigger after the first
notification is received.

Parameter Description
repository_id The repository ID of the object descriptions to be

retrieved.
instance_name The instance name of the object descriptions to be

retrieved.

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented. For more
information on the Fail class, see “Fail”.

Exception Description
Fail The FailReason values that may be presented

include NO_AGENT_AVAILABLE, AGENT_ERROR.
For more information on the Fail class, see
“Fail”.

Parameter Description
desc The object instance description information, which

can contain combinations of the following
information: repository ID, instance
name, hostname. You can provide more or less
information to narrow or widen the object
instances to be monitored.

hdlr The trigger handler object being registered.

VisiBroker for C++ API Reference Guide 279

This method throws the following exceptions:

void unreg_trigger(const ObjLocation::TriggerDesc&
desc, ObjLocation::TriggerHandler_ptr hdlr);

Unregisters the trigger handler hdlr for object instances that match the
description information specified in desc.

This method throws the following exceptions:

CORBA::Boolean willRefreshOADs();

Returns TRUE if the set of Object Activation Daemon is updated each time a
method offered by this class is invoked, otherwise returns FALSE. If the
cache is not refreshed on each invocation, the following conditions may
occur:

• All objects are still reported, but their descriptor's activable flag may be
incorrect.

• Any attempt to verify the existence of an object registered with an OAD
that has been started since the last refresh of the OAD cache causes
those objects to be activated by the OAD.

void willRefreshOADs(CORBA::Boolean val);

This class maintains a set of Object Activation Daemons. This method
enables or disables the automatic refreshing of the OADs contained in this
set.

Desc

struct Desc

This structure contains information you use to describe the characteristics
of an object. You pass this structure as an argument to several of the
Location Service methods described in the chapter. The Desc structure, or a
sequence of them, is returned by some of the Location Service methods.

See also
“<type>Seq”

Exception Description
Fail Any of the FailReason values, other than

NO_SUCH_TRIGGER, may be presented. For more
information on the Fail class, see “Fail”.

Parameter Description
desc The object description information.

hdlr The trigger handler object being unregistered.

Exception Description
Fail The only FailReason value possible is

NO_SUCH_TRIGGER. For more information on the
Fail class, see “Fail”.

Parameter Description
val If TRUE, the OAD set will be refreshed whenever a

method offered by this class is invoked.

280 VisiBroker for C++ API Reference Guide

IDL definition
module ObjLocation {
 struct Desc {
 Object ref;
 IIOP::ProfileBody iiop_locator;
 string repository_id;
 string instance_name;
 boolean activable;
 string agent_hostname;
 };
. . .
};

Desc members
Object ref

A reference to the object being described.

IIOP::ProfileBody iiop_locator

Represents profile data for the object, described in “IIOP::ProfileBody”.

CORBA::String_var repository_id

The object's repository identifier.

CORBA::String_var instance_name

The object's instance name.

CORBA::Boolean activable

Set to TRUE to indicate that this object is registered with the Object
Activation Daemon. It is set to FALSE to indicate that the object was started
manually and is registered with the osagent.

CORBA::String_var agent_hostname

The name of the host running the Smart Agent with which this object is
registered.

Fail

class Fail : public CORBA::UserException

This exception class may be thrown by the Agent class to indicate various
errors. The data member FailReason is used to indicate the nature of the
failure.

Fail members
FailReason reason

Set to one of the following values to indicate the nature of the failure:

 enum FailReason {
 NO_AGENT_AVAILABLE,
 INVALID_REPOSITORY_ID,
 INVALID_OBJECT_NAME,
 NO_SUCH_TRIGGER,
 AGENT_ERROR
 };

VisiBroker for C++ API Reference Guide 281

TriggerDesc

struct TriggerDesc

This structure contains information you use to describe the characteristics
of one or more objects for which you wish to register a TriggerHandler,
described in “TriggerHandler”.

The host_name and instance_name members may be set to NULL to
monitor the widest possible set of objects. The more information specified,
the smaller the set of objects is.

IDL definition
module ObjLocation {
 . . .
 struct TriggerDesc {
 string repository_id;
 string instance_name;
 string host_name;
 };
 . . .
};

TriggerDesc members
ORBA::String_var repository_id

The repository identifiers of the objects to be monitored by the
TriggerHandler. May be set to NULL to include all possible repository
identifiers.

CORBA::String_var instance_name

The instance name of the object to be monitored by the TriggerHandler.
May be set to NULL to include all possible instance names.

CORBA::String_var host_name;

The host name where the object or objects monitored by the
TriggerHandler are located. May be set to NULL to include all hosts in the
network.

TriggerHandler
You use this base class to derive your own callback object to be invoked
every time an object becomes available or unavailable. You specify the
criteria for the object or objects in which you are interested. You register
your TriggerHandler object using the Agent::reg_trigger method,
described in “TriggerHandler”.

You must provide implementations for the impl_is_ready and
impl_is_down methods.

IDL definition
interface TriggerHandler {
 void impl_is_ready(in Desc desc);
 void impl_is_down(in Desc desc);
};

282 VisiBroker for C++ API Reference Guide

Include file
You should include the locate_c.hh file when you use this class.

TriggerHandler methods

virtual void impl_is_ready(const Desc& desc);

This method is invoked by the Location Service when an object instance
matching the criteria specified in desc becomes accessible.

virtual void impl_is_down(const Desc& desc);

This method is invoked by the Location Service when an object instance
matching the criteria specified in desc is no longer accessible.

<type>Seq
This is a generalized class description for the following sequence classes
used by the Location Service:

Each class represents a particular sequence of <type>. The Location
Service returns lists of information to your client application in the form of
sequences which are mapped to one of these classes.

Each class offers operators for indexing items in the sequence just as you
would a C++ array. Each class also offers methods for setting and obtaining
the length of the array.

The code sample below shows the correct way to index a HostnameSeq
returned from the Agent::all_agent_locations method.

. . .
ObjLocation::HostnameSeq_var hostnames(myAgent-
>all_agent_locations());
for (CORBA::ULong i=0; i < hostnames->length(); i++) {
 cout << "Agent host #" << i+1 << ": " << hostnames[i] <<
endl;
}
. . .

See also
“<type>SeqSeq”

Parameter Description
desc The object description information.

Parameter Description
desc The object description information.

Class Description
DescSeq A sequence of Desc structures.

HostnameSeq A sequence of host names.

ObjSeq A sequence of object references.

RepositoryIdSeq A sequence of repository identifiers.

VisiBroker for C++ API Reference Guide 283

<type>Seq methods

<type>& operator[](CORBA::ULong index) const;

Returns a reference to the element in the sequence identified by index.

Caution
You must use a CORBA::ULong type for the index. Using an int type may
lead to unpredictable results.

This method throws the following exception:

CORBA::ULong length() const;

Returns the number of elements in the sequence.

void length(CORBA::ULong len);

Sets the maximum length of the sequence to the value contained in len.

<type>SeqSeq
This is a generalized class description for the following classes used by the
Location Service:

Each class represents a particular sequence of <type>Seq. Some Location
Service methods return lists of information to your client application in the
form of sequences of sequences which are mapped to one of these classes.

Each class offers operators for indexing items in the sequence just as you
would a C++ array. The class also offer methods for setting and obtaining
the length of the array.

See also
“<type>Seq”

Parameter Description
index The zero-based index of the element to be

returned.

Exception Description
CORBA::BAD_PARAM The index specified is less than zero or greater

that the size of the sequence.

Parameter Description
len The new length for the sequence.

Class Description
DescSeqSeq A sequence of DescSeq objects.

ObjSeqSeq A sequence of ObjSeq objects.

284 VisiBroker for C++ API Reference Guide

<type>SeqSeq methods

<type>Seq& operator[](CORBA::ULong index) const;

Returns a reference to the element in the sequence identified by index. The
reference is to a one dimensional sequence, described in “<type>Seq”

Caution
You must use a CORBA::ULong type for the index. Using an int type may
lead to unpredictable results.

This method throws the following exceptions:

CORBA::ULong length() const;

Returns the number of elements in the sequence.

void length(CORBA::ULong len);

Sets the maximum length of the sequence to the value contained in len.

Parameter Description
index The zero-based index of the element to be

returned.

Exception Description
CORBA::BAD_PARAM The index specified is less than zero or greater

that the size of the sequence.

Parameter Description
len The new length for the sequence.

VisiBroker for C++ API Reference Guide 285

Initialization interfaces and
classes
This section describes the interfaces and classes that are provided for
statically initializing VisiBroker ORB services such as interceptors.

VISInit

class VISInit

This abstract base class provides for the static initialization of service
classes after the VisiBroker ORB and BOA have been initialized. By deriving
your service class from VISInit and declaring it statically, you ensure that
your service class instance will be properly initialized.

The VisiBroker ORB invokes the VISInit::ORB_init and
VISInit::BOA_init whenever the application calls CORBA::ORB_init or
BOA_init methods. By providing your own implementations of these
methods, you may add any needed initialization that must be performed for
your service.

Include file
Include the vinit.h file when you use this class.

VISInit constructors/destructors

VISInit();

This is the default constructor.

VISInit(CORBA::Long init_priority);

This constructor creates a VISInit-derived object with the specified
priority, which determines when it will be initialized relative to other
VISInit-derived objects.

Internal VisiBroker classes which need to be initialized before user-defined
classes have a negative priority value. The lowest priority value currently
used by VisiBroker internal classes is -10 to 10.

Note
You should set a priority value less than -10 if your class must be initialized
before the VisiBroker internal classes.

If no priority value is specified, the default value is 0, which means that the
class will be initialized after the internal VisiBroker classes.

Parameter Description
init_priority The initialization priority for this object. A negative

priority value causes this class to be initialized
earlier. A positive priority value causes this class to
be initialized later.

286 VisiBroker for C++ API Reference Guide

virtual ~VISInit();

This is the default destructor.

VISInit methods

virtual void ORB_init(int& argc, char * const *argv,
CORBA::ORB_ptr orb);

This method will be called during VisiBroker ORB initialization. Your
implementation should provide for the initialization of the client-side
interceptor factory that you wish to use.

virtual void ORB_initialized(CORBA::ORB_ptr orb);

This method will be called after the VisiBroker ORB is initialized. Your
implementation should provide for the initialization of the client-side
interceptor factory that you wish to use.

virtual void BOA_init(int& argc, char * const *argv,
CORBA::BOA_ptr boa);

This method will be called when the BOA is initialized. Your implementation
should provide for the initialization of the server-side interceptor factory
that you wish to use.

virtual void ORB_shutdown()

This method will be called when the VisiBroker ORB is shut down.

Parameter Description
argc The count of arguments.
argv An array of argument pointers.
orb The VisiBroker ORB being initialized.

Parameter Description
orb The VisiBroker ORB being initialized.

Parameter Description
argc The count of arguments.
argv An array of argument pointers.
boa The BOA being initialized.

VisiBroker for C++ API Reference Guide 287

Real-Time CORBA interfaces
and classes
This section describes the Real-Time CORBA interfaces and classes
supported by VisiBroker for C++.

Note
Before using these interfaces, read “Real-Time CORBA Extensions” in the
VisiBroker for C++ Developer's Guide for descriptions and usage
information on the supported extensions.

Introduction
Real-Time CORBA provides a set of APIs that support the development of
predictable CORBA-based systems, through the control of the number and
priority of threads involved in the execution of CORBA invocations.

The majority of the Real-Time CORBA API is specified in IDL, and is mapped
to C++ according to the rules of the CORBA C++ language mapping. The
Real-Time CORBA IDL is scoped within module RTCORBA, and hence the
C++ class names are all prefixed RTCORBA::.

The following Real-Time CORBA interfaces and classes are described in the
sections that follow:

• RTCORBA::Current

• RTCORBA::Mutex

• RTCORBA::NativePriority

• RTCORBA::Priority

• RTCORBA::PriorityMapping

• RTCORBA::PriorityModel

• RTCORBA::PriorityModelPolicy

• RTCORBA::RTORB

• RTCORBA::ThreadpoolId

• RTCORBA::ThreadpoolPolicy

Include file
To use any of the Real-Time CORBA features described in this chapter, the
application should include the file rtcorba.h, which is one of the include
files supplied with VisiBroker for C++.

288 VisiBroker for C++ API Reference Guide

RTCORBA::Current

class RTCORBA::Current : public virtual CORBA::Current,
public virtual CORBA::LocalObject
typedef RTCORBA::Current* Current_ptr
class RTCORBA::Current_var

The class RTCORBA::Current provides methods that allow a Real-Time
CORBA Priority value to be associated with the current thread of execution,
and the reading of the Real-Time CORBA Priority value presently associated
with the current thread.

When a Real-Time CORBA Priority value is associated with the current
thread, that value is immediately used to set the Native Priority of the
underlying thread. The Native Priority value to apply to the thread is
obtained by means of the currently installed Priority Mapping.

Where the Client Propagated Priority Model is in use, the Priority associated
with a thread also determines the priority of CORBA invocations made from
that thread. For details, see “Real-Time CORBA Priority Models” in the
VisiBroker for C++ Developer's Guide.

RTCORBA::Current is defined in IDL, as a locality constrained interface.
Hence applications handle RTCORBA::Current by means of CORBA
LocalObject References, using the C++ classes RTCORBA::Current_ptr
and RTCORBA::Current_var.

See “RTCORBA::Priority” for more information.

RTCORBA::Current Creation and Destruction
RTCORBA::Current is a special interface. Applications need not be
concerned with which instance of it they are dealing. A reference to
RTCORBA::Current is obtained through the
resolve_initial_references method of RTCORBA::RTORB, and is
released in the normal way when it is no longer required. For details see
“Real-Time CORBA Current” in the VisiBroker for C++ Developer's
Guide.

IDL definition
//Locality Constrained Object
local interface Current : CORBA::Current {
attribute Priority base_priority;
};

RTCORBA::Current methods

void base_priority(Priority _val);

Associates the RTCORBA::Priority value _val with the current thread
of execution.

Priority base_priority();

Gets the RTCORBA::Priority value associated with the current thread of
execution.

Parameter Description
_val The Priority value to associate with the thread.

VisiBroker for C++ API Reference Guide 289

RTCORBA::Mutex

class RTCORBA::Mutex : public virtual CORBA::
LocalObject

typedef RTCORBA::Mutex* RTCORBA::Mutex_ptr
class RTCORBA::Mutex_var
class TimeBase {
typedef unsigned long long TimeT;
};

The interface RTCORBA::Mutex provides applications with a mutex
synchronization primitive that is guaranteed to have the same priority
inheritance properties as mutexes used internally by VisiBroker to protect
ORB resources. For details, see “Real-Time CORBA Mutex API” in the
VisiBroker for C++ Developer's Guide.

RTCORBA::Mutex is defined in IDL, as a locality constrained interface.
Hence applications handle RTCORBA::Mutex instances by means of CORBA
LocalObject References, using the C++ classes RTCORBA::Mutex_ptr and
RTCORBA::Mutex_var.

See “RTCORBA::RTORB” for more information.

Mutex Creation and Destruction
A new RTCORBA::Mutex is obtained using the create_mutex operation of
the RTCORBA::RTORB interface. The new RTCORBA::Mutex is created in an
unlocked state.

When the RTCORBA::Mutex is no longer needed, it is destroyed using the
destroy_mutex operation of RTCORBA::RTORB. See “RTCORBA::RTORB”
for details.

Note that if the RTCORBA::Mutex_var type is used in place of the
RTCORBA::Mutex_ptr type, the reference is automatically released when
the _var instance goes out of scope, but the RTCORBA::Mutex instance it
refers to is not automatically destroyed. The RTCORBA::Mutex instance
must still be destroyed with a call to destroy_mutex.

IDL definition
// Locality Constrained Object
local interface Mutex {
void lock();
void unlock();
boolean try_lock (in TimeBase::TimeT max_wait);
};
local interface RTORB {
ƒ
Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);
ƒ
};
// defined in TimeBase.idl
module TimeBase {
typedef unsigned long long TimeT;
};

290 VisiBroker for C++ API Reference Guide

RTCORBA::Mutex Methods

void lock();

Locks the RTCORBA::Mutex. When the RTCORBA::Mutex object is in the
unlocked state, the first thread to call the lock() operation causes the
Mutex object to change to the locked state. Subsequent threads that call
the lock() operation while the Mutex object is still in the locked state will
block until the owner thread unlocks it.

void unlock();

Unlocks the locked RTCORBA::Mutex.

CORBA::Boolean try_lock(const TimeBase::TimeT _max_wait
);

Attempts to lock the RTCORBA::Mutex, waiting for a maximum of
_max_wait amount of time. Returns true if the lock is successfully taken
within the time, or false if it could not be taken before the time expired.

RTCORBA::NativePriority

typedef CORBA::Short RTCORBA::NativePriority

The type RTCORBA::NativePriority is used to represent priorities in the
priority scheme of the particular Operating System that the Real-Time ORB
is running on. Real-Time CORBA applications only use
RTCORBA::NativePriority values in special circumstances:

• When defining a Priority Mapping. For details, see
“RTCORBA::PriorityMapping”.

• When interacting directly with the Operating System, or with some other
non-CORBA subsystem, that works in terms of Native Priorities. This
should still be done by means of the installed Priority Mapping. For
details, see “Using Native Priorities in VisiBroker Application Code” in the
VisiBroker for C++ Developer's Guide.

Normally, within a Real-Time CORBA application, priorities are expressed in
terms of RTCORBA::Priority values.

IDL definition
typedef short NativePriority;

RTCORBA::Priority

typedef CORBA::Short RTCORBA::Priority
static const Priority RTCORBA::minPriority; // 0
static const Priority RTCORBA::maxPriority; // 32767

The type RTCORBA::Priority should be used to represent priority values
in a Real-Time CORBA application. These values are mapped on to the
Native Priority scheme of the particular Operating System that the
application is running on by the currently installed Priority Mapping. For a

Parameter Description
_max_wait The maximum amount of time to wait for the lock, in 100-

nanosecond ticks. A value of 0 means do not wait for the lock.

VisiBroker for C++ API Reference Guide 291

detailed discussion of Real-Time CORBA Priority, see “Real-Time CORBA
Priority” in the VisiBroker for C++ Developer's Guide.

The only time a Real-Time CORBA application should use Native Priority
values is when interacting directly with the Operating System or some other
non-CORBA subsystem. Even then, this should still be done using the
installed Priority Mapping. For details see 'Using Native Priorities in
VisiBroker Application Code' in the VisiBroker for C++ Developer's
Guide.

RTCORBA::Priority values are in the range 0 to 32767. However, it is not
expected that this full range of priorities will be used in a Real-Time CORBA
system. Instead, the application system designer should decide on a
suitable range of priorities for that system, and implement a Priority
Mapping that only allows priority values in that range. For many
applications the default valid range of 0 to 31 is acceptable, but there might
still be reasons to override the default Priority Mapping. See
“RTCORBA::PriorityMapping”for details.

IDL definition
typedef short Priority;
static const Priority minPriority; // 0
static const Priority maxPriority; // 32767

RTCORBA::PriorityMapping

class RTCORBA::PriorityMapping

The RTCORBA::PriorityMapping class facilitates the mapping of
RTCORBA::Priority values to and from the Native Priority scheme of the
Operating System the Real-Time ORB is running on. The ORB calls out to a
Priority Mapping object whenever it needs to map a RTCORBA::Priority
value to a RTCORBA::NativePriority value or vice versa.

A Real-Time CORBA application should describe its priorities in terms of
RTCORBA::Priority values. However, the application might need to make
explicit use of the installed Priority Mapping, in order to interact directly
with the Operating System or some other non-CORBA subsystem. For
details see “Using Native Priorities in VisiBroker Application Code” in the
VisiBroker for C++ Developer's Guide.

The range of RTCORBA::Priority values supported by a Priority Mapping
should always start from zero. The Real-Time ORB expects
RTCORBA::Priority zero to be valid. Also, this convention makes
integration of different Real-Time CORBA systems on the same node easier.

PriorityMapping Creation and Destruction
It is not necessary to create instances of a Priority Mapping in the code of a
normal Real-Time CORBA application. The available Priority Mapping is
automatically used by the ORB, and can be accessed by the application if
necessary.

Exactly one Priority Mapping is 'installed' at any one time. A 'default' Priority
Mapping is provided, which is installed by default. This Default Priority
Mapping can be overridden by installing an application-implemented Priority
Mapping object. The installation process is described in the section
“Replacing the Default Priority Mapping” in the VisiBroker for C++
Developer's Guide.

292 VisiBroker for C++ API Reference Guide

IDL definition
// 'native' IDL type
native PriorityMapping;

The RTCORBA::PriorityMapping IDL type is defined as a 'native' IDL
type. This means that its mapping to different programming languages is
defined on a per-language basis. The C++ class representing
RTCORBA::PriorityMapping has the following declaration:

class PriorityMapping {
public:
virtual CORBA::Boolean to_native(
RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority)=0;
virtual CORBA::Boolean to_CORBA(
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority)=0;
virtual RTCORBA::Priority max_priority() = 0;
PriorityMapping();
virtual ~PriorityMapping() {}
static RTCORBA::PriorityMapping * instance();
};

The purpose of each method is explained in the next section,
“PriorityMapping Methods”.

PriorityMapping Methods

static RTCORBA::PriorityMapping * instance();

This static method, implemented by VisiBroker for C++, can be used by
Real-Time CORBA applications to access the currently installed Priority
Mapping. For details see “Using Native Priorities in VisiBroker Application
Code” in the VisiBroker for C++ Developer's Guide.

virtual RTCORBA::Priority max_priority() = 0;

This method returns the maximum Real-Time CORBA Priority value that is
valid using this Priority Mapping. For example, if the installed Priority
Mapping maps Real-Time CORBA Priorities in the range 0 to 31, the value
31 will be returned every time this method is called.

This method must be implemented when implementing a new Priority
Mapping.

virtual CORBA::Boolean to_CORBA (
RTCORBA::NativePriority native_priority,
RTCORBA::Priority &corba_priority) = 0;

This method maps a given Native Priority value, native_priority, to a
Real-Time CORBA Priority value. If the Native Priority value is in the range
supported by this Priority Mapping, the resultant Real-Time CORBA Priority
value is stored in corba_priority, and a true value is returned. Otherwise
corba_priority is not changed, and a false is returned.

VisiBroker for C++ API Reference Guide 293

This method must be implemented when implementing a new Priority
Mapping.

virtual CORBA::Boolean to_native (
RTCORBA::Priority corba_priority,
RTCORBA::NativePriority &native_priority) = 0;

This method maps a given Real-Time CORBA Priority value,
corba_priority, to a Native Priority value. If the Real-Time CORBA
Priority value is in the range supported by this Priority Mapping, the
resultant Native Priority value is stored in native_priority, and a true
value is returned. Otherwise native_priority is not changed, and a false
value is returned.

This method must be implemented when implementing a new Priority
Mapping.

RTCORBA::PriorityModel

enum RTCORBA::PriorityModel {
CLIENT_PROPAGATED,
SERVER_DECLARED
};

This enumeration specifies the two Real-Time CORBA Priority Models: Client
Propagated Priority Model and Server Declared Priority Model. These are
described in the section “Real-Time CORBA Priority Models” in the
VisiBroker for C++ Developer's Guide.

These enumeration values are used as values for a parameter to the
create_priority_model_policy method of RTCORBA::RTORB. See
“RTCORBA::PriorityModelPolicy” for details.

Parameter Description
native_priority The Native Priority value to be mapped to a Real-Time CORBA

Priority.
corba_priority The variable to assign the mapped Real-Time CORBA Priority

value to.

Parameter Description
corba_priority The CORBA Priority value to be mapped to a Native Priority.
native_priority The variable to assign the mapped Native Priority value to.

294 VisiBroker for C++ API Reference Guide

RTCORBA::PriorityModelPolicy

class RTCORBA::PriorityModelPolicy : public virtual
CORBA::Policy, public virtual CORBA::LocalObject

An instance of this Real-Time Policy type is created by calling the
create_priority_model_policy method of RTCORBA::RTORB. The Policy
instance can then be used to configure a Real-Time POA at the time of its
creation, by passing it into the create_POA method, as a member of the
Policy List parameter.

See “RTCORBA::RTORB” and “RTCORBA::PriorityModel” for more
information.

IDL definition
local interface PriorityModelPolicy : CORBA::Policy {
readonly attribute PriorityModel priority_model;
readonly attribute Priority server_priority;
};

RTCORBA::RTORB

class RTCORBA::RTORB : public virtual
CORBA::LocalObject

typedef RTCORBA::RTORB* RTCORBA::RTORB_ptr
class RTCORBA::RTORB_var

The interface RTCORBA::RTORB provides methods for the management of
Real-Time CORBA Threadpools and Mutexes, and to create instances of
Real-Time CORBA Policies.

RTCORBA::RTORB is defined in IDL, as a locality constrained interface.
Hence applications handle RTCORBA::RTORB by means of CORBA
LocalObject References, using the C++ classes RTCORBA::RTORB_ptr and
RTCORBA::RTORB_var.

Note
As stated in the VisiBroker for C++ Developer's Guide, to support Real-
Time CORBA Extensions the VisiBroker for C++ ORB has to operate in a
special 'real-time compatible' mode, the behavior and semantics of which
differ from the regular mode of operation. Since obtaining an “RTORB”
reference automatically puts the ORB in this special mode, you should
obtain an “RTORB” reference as early as possible in your application code to
avoid any possible inconsistency in behavior.

See “RTCORBA::Mutex”, “RTCORBA::Priority”, “RTCORBA::ThreadpoolId”,
and “RTCORBA::ThreadpoolPolicy”. For details on the use of Real-Time
CORBA Threadpools, see “Threadpools” in the VisiBroker for C++
Developer's Guide.

VisiBroker for C++ API Reference Guide 295

RTORB Creation and Destruction
The Real-Time ORB does not need to be explicitly initialized—it is initialized
implicitly as part of the regular CORBA::ORB_init call.

To use the Real-Time ORB operations, the application must have a
reference to the Real-Time ORB instance. This reference can be obtained
any time after the call to ORB_init, and is obtained through the
resolve_initial_references operation on CORBA::ORB, with the object
ID string “RTORB” as the parameter. For details, see “Real-Time CORBA
ORB” in the VisiBroker for C++ Developer's Guide.

IDL definition
// locality constrained interface
local interface RTORB {
Mutex create_mutex();
void destroy_mutex(in Mutex the_mutex);

exception InvalidThreadpool {};

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool(in ThreadpoolId threadpool)
raises (InvalidThreadpool);

void threadpool_idle_time(in ThreadpoolId threadpool,
in unsigned long seconds)
raises (InvalidThreadpool);

PriorityModelPolicy create_priority_model_policy(
in PriorityModel priority_model,
in Priority server_priority);

ThreadpoolPolicy create_threadpool_policy(
in ThreadpoolId threadpool);
};

RTORB Methods

Mutex_ptr create_mutex();

Creates a new Real-Time CORBA Mutex and returns a reference to it.

void destroy_mutex(Mutex_ptr _the_mutex);

Destroys a Real-Time CORBA Mutex.

Parameter Description
_the_mutex Reference of the mutex to destroy.

296 VisiBroker for C++ API Reference Guide

ThreadpoolId create_threadpool(
CORBA::ULong _stacksize,
CORBA::ULong _static_threads,
CORBA::ULong _dynamic_threads,
Priority _default_priority,
CORBA::Boolean _allow_request_buffering = 0,
CORBA::ULong _max_buffered_requests = 0,
CORBA::ULong _max_request_buffer_size = 0);

Creates a new Real-Time CORBA Threadpool with the specified
configuration, and returns a RTCORBA::ThreadpoolId for it.

void destroy_threadpool(ThreadpoolId _threadpool);

Destroys a Real-Time CORBA Threadpool. The Threadpool must not be in
use by any Object Adapter, or the operation will fail, and a CORBA system
exception is raised.

void threadpool_idle_time(
ThreadpoolId _threadpool,
CORBA::ULong _seconds);

Sets the time, in seconds, that dynamically allocated threads remain idle
before they are garbage collected. Configured on a per-Threadpool basis.
The default is to garbage collect dynamically allocated threads after 300
seconds.

This method is a proprietary VisiBroker extension.

Parameter Description
_stacksize Stacksize, in bytes, for each thread in the Threadpool.
_static_threads Number of threads to create at the time of Threadpool

creation. This value can be zero, as long as _dynamic_threads
is non-zero.

_dynamic_threads Number of extra threads that can be created, if all the
statically created threads are in use and more threads are
required. This value can be zero (so that no more threads can
be dynamically created), as long as _static_threads is non-
zero.

_allow_request_buffering Boolean flag to enable request buffering when all threads are
in use. Not supported by VisiBroker for C++. The value of this
parameter is ignored.

_max_buffered_requests Maximum number of requests to buffer when all threads are in
use. Not supported by VisiBroker for C++. The value of this
parameter is ignored.

_max_request_buffer_size Maximum amount of data to buffer, in bytes, when all threads
are in use. Not supported by VisiBroker for C++. The value of
this parameter is ignored.

Parameter Description
_threadpool The ThreadpoolId of the Threadpool to destroy.

Parameter Description
_threadpool The ThreadpoolId of the Threadpool to set the idle time for.
_seconds The maximum number of seconds that a dynamically allocated

thread can be idle in this Threadpool before it is destroyed.
Statically allocated threads are not destroyed.

VisiBroker for C++ API Reference Guide 297

PriorityModelPolicy create_priority_model_policy(
in PriorityModel _priority_model,
in Priority _server_priority);

Creates an instance of the RTCORBA::PriorityModelPolicy policy
object, for use in configuring one or more Real-Time POAs. See
“RTCORBA::PriorityModel” and “RTCORBA::PriorityModelPolicy”.

ThreadpoolPolicy create_threadpool_policy(
in ThreadpoolId _threadpool);

Creates an instance of the RTCORBA::ThreadpoolPolicy policy object, for
use in configuring one or more Real-Time POAs.

RTCORBA::ThreadpoolId

typedef CORBA::ULong RTCORBA::ThreadpoolId

Values of the type RTCORBA::ThreadpoolId are used to identify Real-
Time CORBA Thread-pools. A value of this type is returned from the
create_threadpool method of RTCORBA::RTORB.

The ID can be used to initialize an instance of a Threadpool Policy, which in
turn can be passed in to a call to create_POA, as a member of the
PolicyList parameter, to configure a Real-Time POA. For details, see
“RTCORBA::RTORB”, “RTCORBA::ThreadpoolPolicy”, and the section
“Association of an Object Adapter with a Threadpool” in the VisiBroker for
C++ Developer's Guide.

RTCORBA::ThreadpoolPolicy

class RTCORBA::ThreadpoolPolicy : public virtual
CORBA::Policy, public virtual CORBA::LocalObject

An instance of this Real-Time Policy type is created by calling the
create_threadpool_policy method of RTCORBA::RTORB. The Policy
instance can then be used to configure a Real-Time POA at the time of its
creation, by passing it into the create_POA method, as a member of the
Policy List parameter. See “RTCORBA::RTORB”, “RTCORBA::ThreadpoolId”,
and the section “Association of an Object Adapter with a Threadpool” in the
VisiBroker for C++ Developer's Guide for more information.

IDL definition
local interface ThreadpoolPolicy : CORBA::Policy {
readonly attribute ThreadpoolId threadpool;
};

Parameter Description
_priority_model Either RTCORBA::SERVER_DECLARED for the Server Declared

Priority Model, or RTCORBA::CLIENT_PROPAGATED for the Client
Priority Propagation Model.

_server_priority The maximum number of seconds that a dynamically allocated
thread can be idle in this Threadpool before it is destroyed.
Statically allocated threads are not destroyed.

Parameter Description
_threadpool The ThreadpoolId of the Threadpool to associate POA with.

298 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 299

Pluggable Transport
Interface classes
This chapter describes the classes of the Pluggable Transport Interface
provided by VisiBroker for C++. For information on how to implement
support for a transport protocol via the VisiBroker Pluggable Transport
Interface, see the chapter “VisiBroker Pluggable Transport Interface” in the
VisiBroker for C++ Developer's Guide.

VSPTransConnection
This class is the abstract base class for a connection class that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol. Each instance of the derived class will represent a single
connection between a server and a client. VisiBroker will request instances
of this class be created (via the corresponding factory class, see “virtual
CORBA::Boolean waitNextMessage(CORBA::ULong _timeout) = 0;”) on
both the client and server side of the ORB, whenever a new connection is
required.

Include file
The vptrans.h file should be included to use this class.

VISPTransConnection methods

virtual void close() = 0;

To be implemented by the derived connection class. This method closes the
connection in an orderly fashion. This method must be able to close the
connection from either the client- or the server-side of a connection.

virtual void connect(CORBA::ULongLong _timeout) = 0;

To be implemented by the derived connection class. This method will be
called by the client-side ORB, and must communicate with the remote
peer’s ‘Listener’ instance to setup a new connection on the server-side. The
function does not return any error code, but should throw exceptions if any
transport layer errors occur. Any exception may be thrown, including a
CORBA User Exception, as the exception will be thrown back to the client
CORBA application. CORBA::TRANSIENT is one possible exception that could
be thrown.

The timeout value is in specified in milliseconds. A value of 0 means no
timeout (block forever), and this is the default value, which is used unless
the timeout is set through the VisiBroker QoS policy system. If the transport
does not support timeouts on connect, it still can be used successfully. In
this case the connect call must always block until the connection is
established or has failed.

Parameter Description
_timeout Timeout value to use, in milliseconds. 0 indicates no timeout

(block forever).

300 VisiBroker for C++ API Reference Guide

virtual void flush() = 0;

To be implemented by the derived connection class. If this transport buffers
data, this method should immediately send all data buffered for output, and
block until the data is sent. Otherwise, there is nothing to be done and it
can return immediately.

virtual IOP::ProfileValue_ptr getPeerProfile() = 0;

To be implemented by the derived connection class. This method should
return a copy of the Profile describing the peer endpoint used in this
connection. The copy must be created on the heap and the caller is
responsible for releasing the used memory. The Profile does not describe
the actual connection for this instance, but the Profile of the ‘Listener’
endpoint used during the ‘connect’ call.

virtual CORBA::Long id() = 0;

To be implemented by the derived connection class. This method must
return a unique number for each connection instance. The ID only needs to
be unique for this transport. It is used to lookup/locate a connection
instance during request dispatching for this transport.

virtual CORBA::Boolean isBridgeSignalling() = 0;

To be implemented by the derived connection class. This method is used to
indicate to the ORB which worker thread ‘cooling’ strategy is to be used. If
the method returns 0 (FALSE), it means that the protocol plug-in itself is
going to handle the re-reading of the connection after a request has been
read. This is only possible if the plug-in is capable of doing a blocking read
with timeout on the protocol endpoint. If it cannot or chooses not to, this
method should return 1 (TRUE), and the transport bridge will notify the
thread if another request becomes available or the when the timeout is
reached. Note that thread cooling only occurs if a cooling time is configured
for that protocol instance.

virtual CORBA::Boolean isConnected() = 0;

To be implemented by the derived connection class. This method should
return 1 (TRUE), if the remote peer is still connected. If the connection was
closed by the peer or any error condition exists that prevents the use of this
connection, it must return 0 (FALSE).

virtual CORBA::Boolean isDataAvailable() = 0;

To be implemented by the derived connection class. This method should
return 1 (TRUE), if data is ready to be read from the connection. Otherwise,
it should return 0 (FALSE).

virtual CORBA::Boolean no_callback() = 0;

To be implemented by the derived connection class. This method indicates
whether a connection of this transport can be used to reverse the client/
server setup and call back to a servant in the client code. It should return 0
(FALSE) if it can not, which will cause the ORB to create a new connection
for this kind of call, or 1 (TRUE) if it can.

This feature is provided to support Bi-Directional IIOP, that was introduced
in GIOP-1.2. See the CORBA specification for details.

VisiBroker for C++ API Reference Guide 301

virtual void read(CORBA::Boolean _isFirst,
CORBA::Boolean _isLast, char* _data, CORBA::ULong
_offset, CORBA::ULong _length, CORBA::ULongLong
_timeout)= 0;

To be implemented by the derived connection class. This method reads data
from the connection. It does not return any error code, but must signal
transport related errors by throwing exceptions. The arguments describe a
byte array with a given length that needs to be filled. This function must
either fill the complete byte array successfully, timeout, or throw an
exception.

The timeout parameter’s value defaults to 0 unless the user sets it through
the VisiBroker QoS policies. A value of 0 indicates no timeout, and hence
that the read should block forever waiting for data. Therefore, if this
transport does not support timeouts on read/write, it still can be used
successfully. In this case the read call must always block until all data has
arrived.

virtual void setupProfile(const char* prefix,
VISPTransProfileBase_ptr peer) = 0;

To be implemented by the derived connection class. This method is used to
tell a newly created client-side connection object what peer it should try to
connect to in later steps (when connect() is called.) The given
VISPTransProfileBase_ptr base class should be cast to the Profile class
type of the particular transport and all member data in the connection
should be initialized from that instance. A prefix string is also passed, for
property lookup, in case additional property parameters need to be read.

virtual CORBA::Boolean waitNextMessage(CORBA::ULong
_timeout) = 0;

To be implemented by the derived connection class. This method should
block the calling thread until either data has arrived on this connection or
the given timeout (in milliseconds) has expired. It should return 1 (TRUE) if
data is available, or 0 (FALSE) if not. Note that a value of 0 for the
_timeout parameter should never occur (as in this case the ORB should

Parameter Description
_isFirst TRUE if this is the first time data is being read from the connection.
_isLast TRUE if this is the last time data is being read from the connection.
_data Byte array to read data into.
_offset Offset into the array at which to start storing the read data.
_length The number of bytes of data to be read.
_timeout Timeout value to use, in milliseconds. 0 indicates no timeout (block

forever)

Parameter Description
prefix String prefix of the form “vbroker.se.<SE_name>.scm.<SCM_name>”

that the method can use to read any protocol-specific VisiBroker
properties that may have been set to configure this instance.

peer Profile for the Listening endpoint that this connection will connect
to. Given as an instance of this protocol’s Profile class, passed as a
pointer to the base VISPTransProfile class.

302 VisiBroker for C++ API Reference Guide

not call this method). Therefore receiving this value should be handled as
an error, perhaps by logging an error message.

virtual void write(CORBA::Boolean _isFirst,
CORBA::Boolean _isLast, char* _data, CORBA::ULong
_offset, CORBA::ULong _length, CORBA::ULongLong
_timeout) = 0;

To be implemented by the derived connection class. This method sends data
through the connection to the remote peer. It does not return any error
code, but must signal transport related errors by throwing exceptions. The
arguments describe a byte array with a given length that needs to be sent.
This function must either send the complete byte array successfully,
timeout, or throw an exception. The timeout parameter’s value defaults to 0
unless the user sets it through the VisiBroker QoS policies. A value of 0
indicates no timeout, and hence that the write should block forever waiting
for data. Therefore, if this transport does not support timeouts on read/
write, it still can be used successfully. In this case the write call must always
block until all data has arrived.

VISPTransConnectionFactory
This class is the abstract base class for a connection factory class that must
be implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol. A singleton instance of the derived class is registered with
VisiBroker, via the “VISPTransRegistrar” class. The ORB calls the connection
factory object to create instances of the connection class of the associated
transport. The connection class is the corresponding class derived from
class “VSPTransConnection”.

Include file
The vptrans.h file should be included to use this class.

VISPTransConnectionFactory methods

VISPTransConnection_ptr create(const char* prefix) = 0;

To be implemented by the derived connection factory class. This method
creates a new instance of the corresponding connection class and returns

Parameter Description
_timeout Maximum amount of time to wait for a message (in seconds). 0

means wait forever.

Parameter Description
_isFirst TRUE if this is the first time data is being sent through the

connection.
_isLast TRUE if this is the last time data is being sent through the

connection.
_data Byte array of data that needs to be sent.
_offset Offset from the array into which to start storing the read data.
_length The number of bytes of data to be sent.
_timeout Timeout value to use, in milliseconds. 0 indicates no timeout (block

forever)

VisiBroker for C++ API Reference Guide 303

the pointer to it cast to the base class type. The caller is responsible for the
destruction of the instance when it is no longer required.

VISPTransListener
This class is the abstract base class for a listener factory that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol. Instances of the derived class are created each time a Server
Engine is created that includes Server Connection Managers (‘SCMs’) that
specify the particular transport protocol. One instance is created per SCM
instance that specifies the protocol. The listener instances are used by the
server-side ORB to wait for incoming connections and requests from clients.
New connections and requests on existing connections are signaled by the
listener to the ORB via the Pluggable Transport Interface’s Bridge class (see
“VISPTransBridge”). When a request is received on an existing connection,
the connection goes through a ‘Dispatch Cycle’. The Dispatch Cycle starts
when the connection delivers data to the transport layer. In this initial state,
the arrival of this data must be signaled to the ORB via the Bridge and then
the Listener ignores the connection until the Dispatch process is completed
(in the mean time, the connection is said to be in the ‘dispatch state’). The
connection is returned to the initial state when the ORB makes a call to the
Listener’s completedData() method. During the dispatch state the ORB
will read directly from the connection until all requests are exhausted,
avoiding any overhead incurred by the Bridge-Listener communication. In
most cases, the transport layer uses blocking calls that wait for new
connections. In order to handle this situation, the Listener should be made a
subclass of the class VISThread and start a separate thread of execution
that can be blocked without holding up the whole ORB.

Include file
The vptrans.h file should be included to use this class.

VISPTransListener methods

virtual void completedData(CORBA::Long id) = 0;

To be implemented by the derived listener class. This method is called when
the ORB has completed reading a request from the connection with the
given id and wants the Listener once again to signal any new incoming
requests on that connection (via the Bridge).

virtual void destroy() = 0;

To be implemented by the derived listener class. This method instructs the
Listener instance to tear down its endpoint and close all related active
connections.

Parameter Description
prefix String prefix of the form “vbroker.se.<SE_name>.scm.<SCM_name>”

that the method can use to read any protocol-specific VisiBroker
properties that may have been set to configure the connection
factory.

Parameter Description
id Id of the connection that may once again be listened on.

304 VisiBroker for C++ API Reference Guide

virtual IOP::ProfileValue_ptr getListenerProfile() = 0;

To be implemented by the derived listener class. This method should return
the Profile describing the Listener instance’s endpoint on this transport. The
returned Profile should be a copy on the heap and the caller (the ORB) takes
over memory management of it.

virtual CORBA::Boolean isDataAvailable(CORBA::Long id)
= 0;

To be implemented by the derived connection factory class. This method
should return 1 (TRUE), if the connection with the given Id has data ready
to be read. Returns 0 (FALSE) otherwise. Normally the call should just be
forwarded to the transport layer to find out.

virtual void setBridge(VISPTransBridge* up) = 0;

To be implemented by the derived listener class. This method establishes
the ‘link’ to the Pluggable Transport Bridge instance to be used by this
Listener instance. The pointer it passes to the Listener should be stored to
allow ‘upcalls’ to be made into ORB when necessary.

VISPTransListenerFactory
This class is the abstract base class for a listener factory class that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol. A singleton instance of the derived class is registered with
VisiBroker, via the VISPTransRegistrar class. The ORB calls this object to
create instances of the listener class of the associated transport. The
listener class is the corresponding class derived from class
VISPTransListener, as described in “VISPTransListener”.

Include file
The vptrans.h file should be included to use this class.

VISPTransListenerFactory methods

VISPTransListener_ptr create(const char* propPrefix) =
0;

To be implemented by the derived listener factory class. This method
creates a new instance of the corresponding listener class and returns the

Parameter Description
id Id of the connection that should be queried to see if data is

available.

Parameter Description
up Pointer to the Pluggable Transport Bridge instance that the Listener

instance should use to communicate with the ORB.

VisiBroker for C++ API Reference Guide 305

pointer to it cast to the base class type. The caller (the ORB) is responsible
for the destruction of the instance when it is no longer required.

VISPTransProfileBase

class VISPTransProfileBase : public
GIOP::ProfileBodyValue, public
CORBA_DefaultValueRefCountBase

This class is the abstract base class for a Profile class that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol. This class provides the functionality to convert between a
transport specific endpoint description and an CORBA IOP based IOR that
can be exchanged with other CORBA implementations. It is also used during
the process of binding a client to a server, by passing a ProfileValue to a
‘parsing’ function that has to return TRUE or FALSE, to determine whether a
particular IOR is usable for this transport or not. An instance of the derived
Profile class is frequently passed to functions via a pointer to its base class
type. In order to support safe runtime downcasting with any C++ compiler,
a ‘_downcast’ function must be provided that can test if the cast is legal or
not.

Include file
The vptrans.h file should be included to use this class.

VISPTransProfileBase methods

static GIOP::ObjectKey* convert(const
PortableServer::ObjectId& seq);

Converts octet sequence representation of an Object Key into the in-
memory representation.

void object_key(GIOP::ObjectKey_ptr k);

Set the Object Key for this Profile instance.

Parameter Description
propPrefix String prefix of the form “vbroker.se.<SE_name>.scm.<SCM_name>”

that the method can use to read any protocol-specific VisiBroker
properties that may have been set to configure the listener
instance or the particular listener instance that is being created.
Note that the factory can pass the prefix into the constructor of the
listener instance it is creating, to allow it to read properties itself.
This would require the derived listener class to have a constructor
that takes the prefix as a parameter.

Parameter Description
seq Octet sequence version of Object Key, to be converted into in-

memory representation.

Parameter Description
k Object Key.

306 VisiBroker for C++ API Reference Guide

GIOP::ObjectKey_var object_key() const;

Get the Object Key for this Profile instance.

void version(const GIOP::Version& v);

Set the GIOP version for this Profile.

GIOP::Version& version();

Get the GIOP version of this Profile.

const GIOP::Version& version() const;

Get the GIOP version of this Profile.

static const VISValueInfo& _info();

Get the VisiBroker ValueInfo for this Profile type.

VISPTransProfileBase members

static const VISValueInfo& _stat_info;

Stores the VisiBroker ValueInfo for this particular Profile type.

VISPTransProfileBase base class methods

IOP::ProfileValue_ptr copy()

To be implemented by the derived listener factory class. This method should
make an exact copy on the free store and return a pointer to it. It is good
coding practice to use the copy constructor inside of this function.

CORBA::Boolean matchesTemplate(IOP::ProfileValue_ptr
body);

To be implemented by the derived Profile class. This method should return 1
(TRUE) if there is an IOR in the given data, that can be used to connect
through this transport. Otherwise return 0 (FALSE).

IOP::ProfileId tag()

To be implemented by the derived Profile class. This method should return
the unique tag value for this Profile.

IOP::TaggedProfile* toTaggedProfile();

To be implemented by the derived Profile class. This method should return a
tagged (stringified) Profile instance created with the values read from this
instance’s member data.

Parameter Description
v GIOP Version.

Parameter Description
body Profile to be checked, to see if it can be used by this transport.

VisiBroker for C++ API Reference Guide 307

static VISPTransProfileBase*
_downcast(CORBA::ValueBase* vbptr);

To be implemented by the derived Profile class. Function to downcast a base
class pointer to an instance of this Profile class.

virtual void* _safe_downcast(const VISValueInfo &info)
const;

To be implemented by the derived listener factory class. Virtual method
called by ORB during downcast, to check type info data.

VISPTransProfileFactory
This class is the abstract base class for a Profile factory class that must be
implemented for each transport protocol that is to be plugged in to
VisiBroker, to allow VisiBroker to work with that particular transport
protocol. A singleton instance of the derived class is registered with
VisiBroker, via the VISPTransRegistrar class. The ORB calls this object to
create instances of the Profile class of the associated transport. The Profile
class is the corresponding class derived from class
VISPTransProfileBase, as described in “VISPTransProfileBase”.

Include file
The vptrans.h file should be included to use this class.

VISPTransProfileFactory methods

IOP::ProfileValue_ptr create(const IOP::TaggedProfile&
profile)

Read the tagged IOR and create a Profile describing a Listener endpoint.

CORBA::ULong hash(VISPTransProfileBase_ptr prof);

Support the optimized storage of profiles in a hashed lookup table by
calculating a hash number for the given instance. Return 0 if you do not
provide hash values.

IOP::ProfileId getTag();

Return the unique Profile Id tag for the type of Profile created by this
factory.

Parameter Description
vbptr Profile instance passed as base Value type pointer.

Parameter Description
info VisiBroker Value Info for this Profile type.

Parameter Description
profile CDR encoded IOR to be read.

Parameter Description
prof Profile instance to produce hash value for.

308 VisiBroker for C++ API Reference Guide

VISPTransBridge
This class provides a generic interface between the transport classes and
the ORB. It provides methods to signal various events occurring in the
transport layer.

Include file
The vptrans.h file should be included to use this class.

VISPTransBridge methods

CORBA::Boolean addInput(VISPTransConnection_ptr con);

Send a connection request to the ORB through the bridge, by passing a
pointer to the Connection instance representing the Listener endpoint. The
returned flag signals whether the ORB has accepted the new connection
(returns 1 (TRUE)) or refused it (returns 0 (FALSE)). The latter might
happen due to resource constraints or due to a restriction on connections
(set up through the property system).

void signalDataAvailable(CORBA::Long conId);

Passes the connection id to the ORB of a connection that just got new data
from the transport layer. This will start the dispatch cycle for incoming
requests.

void closedByPeer(CORBA::Long conId);

Tell the ORB that the connection with the given id was closed by the remote
peer.

Members Description
con Connection object representing the Listener endpoint you wish to

connect to.

Members Description
conId Connection Id of connection you want to indicate data is available

on.

Members Description
conId Connection Id of the connection you want to indicate was closed by

the remote peer.

VisiBroker for C++ API Reference Guide 309

VISPTransRegistrar
This class must be used to register a new transport with the ORB. The
protocol name string given during registration is used as identifier of this
transport and must be unique in the scope of that ORB. It is also used as a
prefix in the name string of properties related to this transport.

Include file
The vptrans.h file should be included to use this class.

VISPTransRegistrar methods

static void addTransport(const char* protocolName,
VISPTransConnectionFactory* connFac,
VISPTransListenerFactory* listFac,
VISPTransProfileFactory* profFac);

Register the protocol name string and the three Factory instances used to
create specific classes for this transport. This method is static and can
therefore be called at any time during the initialization of the ORB.

Members Description
protocolName Name to be used to identify this transport protocol.
connFac Pointer to singleton instance of the connection factory.
listFac Pointer to singleton instance of the listener factory.
profFac Pointer to singleton instance of the profile factory.

310 VisiBroker for C++ API Reference Guide

VisiBroker for C++ API Reference Guide 311

VisiBroker for C++ Logging
This chapter describes the classes that support VisiBroker for C++ logging.

VISDLoggerMgr
This class is a bootstrap class into the functionality provided by the logging
library vdlog.

Include file
Include the vdlog.h file when you use this class.

VISDLoggerMgr methods

static VISDLoggerMgr_ptr instance();

Static function to access a singleton instance of VISDLoggerMgr.

CORBA::Boolean global_log_enabled();

Returns true if the global log switch is enabled, else false.

void global_log_enabled(CORBA::Boolean b);

Setter method for the global log level switch.

VISDLogLevel::Level global_log_level();

Returns the current global log level (verbosity) setting on the log manager.

void global_log_level(VISDLogLevel::Level l);

Setter for the global log level on the log manager.

VISDLogger_ptr get_default_logger();

Returns the default logger. If not created, creates and returns. The name of
the returned logger is “default”.

Parameter Description
b Boolean value to enable or disable the global log level switch.

Parameter Description
l Global verbosity setting.

312 VisiBroker for C++ API Reference Guide

VISDLogger_ptr get_logger(const char* name,
VISDAppender_ptr* apps = NULL, CORBA::Short num_apps
= 0);

Creates (if not created) and returns a logger with the given name.

void register_app_factory(VISDAppenderFactory* fac);

API for custom appender factories to register themselves with the logger
framework. Factory will be added to a dictionary of appender factories
indexed by its name. If a factory is not registered with the framework, then
an instance of its type cannot be created.

VISDAppender_ptr create_app(const char* logger_name,
VISDConfig::LogAppenderConfig_ptr p);

API to create an appender for the logger specified by its name using the
configuration information pointed.

void register_lyt_factory(VISDLayoutFactory* fact);

API for custom layout factories to register themselves with the logger
framework.

VISDLayout_ptr create_lyt(const char* logger_name,
VISDConfig::LogAppenderConfig_ptr p);

API to create a layout instance.

VISDLogger
Class providing the logging interface.

Include file
Include the vdlog.h file when you use this class.

Parameter Description
name Input name of the logger.
apps Pointer to an array of appender pointers indicating an initial

list of appenders for the logger.
num_apps Number of appenders in the array of appender pointer.

Parameter Description
fac Appender factory to be registered.

Parameter Description
logger_name Name of the logger for which the appender instance is to be

created.
p Pointer to the logger appender instance configuration.

Parameter Description
fact Pointer to the implemented layout factory to be registered.

Parameter Description
logger_name Name of the logger in which the appender instance is

associated which needs to use the layout.
p Pointer to the logger appender instance configuration.

VisiBroker for C++ API Reference Guide 313

VISDLogger methods

const char* name() const;

Returns the name of the logger object.

void log(VISDLogLevel::Level level, const char*
component, const char* message, const char
*sourcefile = NULL, CORBA::ULong linenum = 0, const
void *bindata = NULL, size_t binsize = 0)

API to log messages.

VISDAppenderFactory
Interface for appender factory implementations to implement. The logger
framework calls on this interface for appender instance creation.

Include file
Include the vdlog.h file when you use this class.

VISDAppenderFactory methods

virtual const char* type_name() = 0;

This method is invoked by the logger framework when it needs to know the
type of the factory. For example, when a factory registers itself with the
logger manager, this API is called to get the type name. The type name
identifies the type of destination to which its appenders will forward the
logger. Type names “stdout”, “rolling” and others as mentioned in the
developer guide are restricted from usage. Should return back a unique
type name for the appender type.

Parameter Description
level Log level of the logged message.
component Source name from where the message is being logged.

The source name is the logical module name that can
be useful during filtering.

message Logged message data.
sourcefile Source file name from where the message is being logged.
linenum Source file line number from where the message is being

logged.
bindata Binary data pointer.
binsize Size of any binary data.

314 VisiBroker for C++ API Reference Guide

virtual VISDAppender_ptr create(const char*
logger_name, VISDConfig::LogAppenderConfig_ptr p) =
0;

This method is invoked by the logger framework when it needs to create an
instance of the appender supported by this factory. The return value should
be an instance of desired appender.

virtual void destroy(VISDAppender_ptr p) = 0;

This method is invoked by the logger framework when it is done with using
the appender instance. The API is supposed to remove all resources
dedicated to the appender instance when it was created.

VISDAppender

class VISDAppender : public VISResource

Interface providing the appender interface. The logger object uses this
interface to log to specific destinations.

Include file
Include the vdlog.h file when you use this class.

VISDAppender methods

virtual VISDAppenderFactory* factory() = 0;

Should return the associated factory object which created this appender
instance.

virtual CORBA::Boolean append(const VISDLogRecord&
record) = 0;

API used by the logger to forward the log message to a specific destination.
The log record abstracts the complete log message. On successful
completion of forwarding, the API should return TRUE.

virtual CORBA::Boolean ORB_initialized(void* orb_ptr) =
0;

This is a notification from the ORB that it has initialized. If an appender is
going to use any of the ORB functionality, then it needs to wait for this
notification and return back TRUE. Otherwise, it should return back FALSE.

Parameter Description
logger_name Name of the logger with which the appender instance is to be

associated.
p Pointer to the logger’s appender instance configuration.

Parameter Description
p Pointer to the appender instance that is to be

destroyed.

Parameter Description
record The log record to be appended to the destination.

VisiBroker for C++ API Reference Guide 315

After this notification, the appender can start using any of the ORB
interfaces.

virtual void ORB_shutdown() = 0;

This is a notification from the ORB that it is shutting down. If the appender
is using any ORB functionality, then it needs to stop using that after this
notification.

VISDLayoutFactory
Interface for layout factory implementations to implement. The logger
framework calls on this interface for layout instance creation.

Include file
Include the vdlog.h file when you use this class.

VISDLayoutFactory methods

virtual const char* type_name() = 0;

Returns the type name of the layout that this factory will create.

virtual VISDLayout_ptr create(const char* logger_name,
VISDConfig::LogAppenderConfig_ptr p) = 0;

Should creates a layout instance. This API is called by the logger framework
when an instance of the layout is desired.

virtual void destroy(VISDLayout_ptr layout) = 0;

Framework calls this API when it is done with usage of the layout and needs
to factory to destroy the instance.

VISDLayout

class VISDLayout : public VISResource

Interface which all layout instances should implement. Appenders which
desire to format the log message before outputting to the desired
destination will make use of this interface.

Parameter Description
orb_ptr Reference to the ORB.

Parameter Description
logger_name Name of the logger whose associated appender

instance needs this layout instance.
p Pointer to the logger's appender instance

configuration.

Parameter Description
layout Pointer to the layout instance that needs to be

destroyed.

316 VisiBroker for C++ API Reference Guide

Include file
Include the vdlog.h file when you use this class.

VISDLayout methods

virtual VISDLayoutFactory* factory() = 0;

Should return the factory of the layout instance that created it.

virtual void format(const VISDLogRecord& record, char*
buf, CORBA::ULong buf_size, CORBA::String_var&
other_buf) = 0;

API that is called by the appender instances for formatting the log record.
The appender allocates buffer and sends the buffer into this API and expects
the layout to format the message and set in this buffer. However, if the
layout wants more memory than that has been sent to it by the appender,
then it can itself allocate memory and make use of other_buf.

VISDConfig
Namespace class for configuration structures.

Include file
Include the vdlog.h file when you use this class.

LogAppenderConfig structure

struct LogAppenderConfig {
CORBA::String_var appender_name;
CORBA::String_var appender_type;
CORBA::String_var layout_type;
};
typedef LogAppenderConfig* LogAppenderConfig_ptr;

This structure contains a single appender instance configuration on a
logger. This is filled and passed to the factory interfaces by the logger
framework after reading from the configurations.

Parameter Description
record Log record containing the log message.
buf Memory buffer sent by the appender onto which the layout

can set the formatted message.
buf_size Size of the memory buffer sent in by the appender.
other_buffer If the layout needs more memory than that sent by the

appender, then it can allocate memory into this buffer and
set the formatted text into it.

Parameter Description
appender_name Name of the appender instance configured on the

logger.

VisiBroker for C++ API Reference Guide 317

VISDLogRecord
Class abstracting a log message. Apart from the actual log message, it also
captures various other states such as thread id, timestamp parameter, and
others.

Include file
Include the vdlog.h file when you use this class.

VISDLogRecord methods

Timestamp get_timestamp() const;

Returns the timestamp of the log record.

CORBA::ULong get_seq_number() const;

Returns a sequence number if many log records are logged at the same
time interval.

CORBA::ULong get_process_id() const;

Returns the process id.

CORBA::ULong get_thread_id() const;

Returns the thread id of the thread that logged this message.

const char* get_thread_name() const;

If the thread is named, then it returns the thread name.

const char* get_logger_name() const;

Returns the logger object's name.

VISDLogLevel::Level get_log_level() const;

Returns the verbosity of the logged message.

const char* get_component_name() const;

Returns the source name of the source that logged the message.

const char* get_filename() const;

Returns the name of the file that logged the message.

CORBA::ULong get_line_number() const;

Returns the line number in the file from where the log message is
emanating.

appender_type The type name of the appender instance. This implies which
appender factory needs to be used.

layout_type The type name of the layout instance desired. Again this
implies which layout factory should be used to obtain layout
instance.

Parameter Description

318 VisiBroker for C++ API Reference Guide

const char* get_message() const;

This is the actual logged message.

const unsigned char* get_bindata() const;

Returns any binary data that is piggybacking on the log record.

size_t get_binsize() const;

Returns the size of the binary data.

VISDLogLevel
Class enclosing the verbosity enumeration Level.

Include file
Include the vdlog.h file when you use this class.

Level enumeration
enum Level {
OFF_ = 1000,
EMERG_ = 800,
EXCEP_ = 800,
FATAL_ = 800,
ALERT_ = 700,
CRIT_ = 600,
ERROR_ = 500,
WARN_ = 400,
NOTICE_ = 300,
INFO_ = 200,
DEBUG_ = 100,
ALL_ = 0,
DEFAULT_ = -1

};

VisiBroker for C++ API Reference Guide 319

Symbols
_POA class 6
tie class 6
_var class 6
... ellipsis 2
symbols

square brackets 2
| vertical bar 2

A
accessing

system exceptions 62
the interface repository 106
user exceptions 62

ActiveObjectLifeCycleInterceptor
class 246

ActiveObjectLifeCycleInterceptorManager
class 247

Adapter activators 7
AdaptorActivator

methods 7
Agent

methods 276
agent class 275
AliasDef 81

class 81
methods 81

all_repository_ids 276
Any 49, 65

class 49
extraction operators 50
initialization operators 50
methods 49

arguments
-ORBid 233
-ORBServerId 233

ArrayDef 81
class 81
methods 81

AttributeDef 82
class 82

AttributeDescription 83
class 83

AttributeMode 83
class 83

B
BAD_INV_ORDER

ClientRequestInfo 211
Current methods 217
ORBInitInfo 225
ServerRequestInfo 232

BAD_PARAM
ClientRequestInfo 211
IORInfo 220

Basic Object Adaptor (see BOA) 9
bind options

connection_timeout 8
defer_bind 8
enable_rebind 8
max_bind_retries 8

receive_timeout 8
send_timeout 8

Binding 132
class 132

binding clients to objects 17
Binding structure 132
BindingIterator

class 132
methods 133

BindingList
class 132

BindingList sequence 132
BindInterceptor 241
BindInterceptorManager

class 242
BindOptions 7

struct 7
BOA 9

include file 117, 119, 122, 123
methods 9
VisiBroker extensions 13

brackets 2

C
C++ language exceptions 62
ChainUntypedObjectWrapperFactory 252

class 252
class

POA 6
tie 6
_var 6
ActiveObjectLifeCycleInterceptor 246
ActiveObjectLifeCycleInterceptorManag
er 247

agent 275
AliasDef 81
Any 49, 65
ArrayDef 81
AttributeDef 82
AttributeDescription 83
AttributeMode 83
BindingBindingList 132
BindingIterator 132
BindingList 132
BindInterceptor 241
BindInterceptorManager 242
BOA 9
ChainUntypedObjectWrapperFactory 25

2
ClientInterceptor 243
ClientRequestIncterceptorManager 244
ClientRequestInfo 210
ClientRequestInterceptor 212
Codec 214
CodecFactory 216
CompletionStatus 13
ConstantDef 84
ConstantDescription 84
Contained 85, 87, 100, 102
Container 87, 100
Context 14

Index

 320 Vis iBroker for C++ API Reference Guide

ContextList 51
CORBA::Object 256
CORBA::PolicyCurrent 256
CORBA::PolicyManager 255
Current 217
DuplicateName 225
DynamicImplementation 53
DynAny 53
DynAnyFactory 57
DynArray 57
DynEnum 58
DynSequence 59
DynStruct 60
DynUnion 61
EnumDef 93
Environment 62
Exception 17, 45, 47
ExceptionDef 94
ExceptionList 63, 218
ExtendedNamingContextFactory 135
Fail 280
FixedDef 95
FormatMismatch 215
ForwardRequest 219
IDLType 97, 100
Interceptor 219
InterceptorManager 240
InterceptorManagerControl 240
interface_name 5
InterfaceDef 97
InvalidName 225
InvalidTypeForEncoding 215
IORCreationInterceptor 250
IORInfo 220
IORInfoExt 222
IORInterceptor 222
IRObject 100
MarshalInBuffer 267, 271
MarshalOutBuffer 267, 271
Messaging::RebindPolicy 258
ModuleDef 101
ModuleDescription 101
NamedValue 65
NamingContext 125
NamingContextExt 130
NamingContextFactory 133
NativeDef 101
NVList 14, 65, 66
Object 17
ObjectStatus 122
ObjectStatusList 122
ObjectWrapper 5
OperationDef 102
ORB 22
ORBInitializer 224
ORBInitInfo 225
ParameterList 228
POA 29
POALifeCycleInterceptor 245
POALifeCycleInterceptorManager 246
PolicyFactory 228
PrimitiveDef 105

QoSExt::DeferBindPolicy 259
Repository 106
Request 69, 73, 76
RequestInfo 229
RTCORBA

PriorityMapping 291
RTCORBA::Current 288
RTCORBA::Mutex 289
RTCORBA::NativePriority 290
RTCORBA::Priority 290
RTCORBA::PriorityModel 293
RTCORBA::PriorityModelPolicy 294
RTCORBA::RTORB 294
RTCORBA::ThreadpoolId 297
RTCORBA::ThreadpoolPolicy 297
Seq 282
SeqSeq 283
SequenceDef 108
ServantActivator 42
ServantLocator 44
ServantManager 45
ServerRequestInfo 232
ServerRequestInterceptor 235, 248
ServerRequestInterceptorManager 249
StringDef 109, 111
StructDef 109
SystemException 45, 47
TriggerHandler 281
TypedefDef 110
TypeMismatch 215
UnionDef 111
UnknownEncoding 216
UntypedObjectWrapper 254
ValueBoxDef 112
ValueDef 112
VISClientInterceptor 245, 246, 247, 248,

249, 250
VISClosure 251
VISClosureData 252
VISDAppender 314
VISDAppenderFactory 313
VISDConfig 316
VISDLayout 315
VISDLayoutFactory 315
VISDLogger 312
VISDLoggerMgr 311
VISDLogLevel 318
VISDLogRecord 317
VISInit 285
VISPTransBridge 308
VISPTransConnectionFactory 302
VISPTransListener 303
VISPTransListenerFactory 304
VISPTransProfileBase 305
VISPTransProfileFactory 307
VISPTransRegistrar 309
VSPTransConnection 299
WstringDef 115

classes 209
ClientInterceptor 243
ClientRequestInfo

VisiBroker for C++ API Reference Guide 321

BAD_INV_ORDER 211
BAD_PARAM 211
class 210
exceptions 211
INV_POLICY 211
methods 211

ClientRequestInterceptor
class 212
exceptions 213
ForwardRequest 213
methods 213

ClientRequestInterceptorManager
class 244

Codec
class 214
exceptions 215
FormatMismatch 215
InvalidTypeForEncoding 215
members 215
methods 215

Codec encoding
struct 218

CodecFactory
class 216
exceptions 216
UnknownEncoding 216

commands
conventions 2

COMPLETED_MAYBE 14
COMPLETED_NO 14
COMPLETED_YES 14
CompletionStatus 13
ConstantDef 84

class 84
ConstantDescription

class 84
ConsumerAdmin

interface 137
method 137

Contained 85, 100, 102
methods 85

Container 87, 100
methods 87

containment hierarchy 87
Context 14

class 14
include file 14
methods 14

Context_var class 14
ContextList

class 51
CORBA

BOA
methods 9

Current
class 16, 217
methods 16, 217

Current methods
BAD_INV_ORDER 217
exceptions 217
InvalidSlot 217

D
deactivating

object implementations 9
DeferBindPolicy

class 259
defining

an ORB object's interface 97
DefinitionKind 92

enum 92
delegation implementations 6
deriving

Interface Repository objects 85
Desc

structure 279
documentation

.pdf format 3
accessing Help Topics 1
platform conventions used in 2
type conventions used in 2
updates on the web 3

DuplicateName
class 225
ORBInitInfo 225

dynamic interfaces 49
DynamicImplementation 53

class 53
methods 53

DynAny 53
class 53
methods 54
usage restrictions 54

DynAnyFactory
class 57

DynArray 57
class 57
methods 57
usage restrictions 57

DynEnum 58
class 58
methods 58
usage restrictions 58, 61

DynSequence 59
class 59
methods 60
usage restrictions 59

DynStruct 60
class 60
methods 60
usage restrictions 60

DynUnion 61
class 61
methods 61

E
encoding

members 218
struct 218
supported 218

enum
DefinitionKind 92
OperationMode 104

 322 Vis iBroker for C++ API Reference Guide

ParameterMode 105
PrimitiveKind 106

EnumDef 93
class 93

enumeration
AttributeMode 83
DefinitionKind 92
OperationMode 104
ParameterMode 105
PrimitiveKind 106
TCKind 75

Environment 62
methods 63

event handlers
interfaces 125, 137

EventChannel
interface 137
methods 138

EventChannelFactory
interface 138
methods 139

Exception 45, 47
class 17

ExceptionDef 94
ExceptionDescription 94

structure 94
ExceptionList

class 63, 218
exceptions

BAD_INV_ORDER 233
BAD_PARAM 229
CodecFactory 216
DuplicateName 225
FormatMismatch 215
ForwardRequest 219, 235
INV_POLICY 233
InvalidName 225
InvalidSlot 229, 233
InvalidTypeForEncoding 215
IORInfo 220
NO_RESOURCES 235
ORBInitInfo 225
TypeMismatch 215
UNKNOWN 233

extended methods
BOA 13

ExtendedNamingContextFactory
class 135
methods 135

F
Fail class 280
FixedDef

class 95
FormatMismatch

class 215
Codec 215

ForwardRequest
class 219
ClientRequestInterceptor 213
exceptions 219

FullInterfaceDescription 95
structure 95

FullValueDescription
structure 96

G
generated classes 5

sk 6
st 5
tie 6
_var 6

GLOBAL_SCOPE 9

H
Help Topics

accessing 1

I
IDL

OAD 117
IDLType 97, 100

include file 97
methods 97

IIOP structure
ProfileBody 263

ImplementationStatus struct 117
include file

BOA 117, 119, 122, 123
Context 14
IDLType 97

interception points
receive_exception 213
receive_other 213
receive_reply 213
receive_request 235
receive_request_service_contexts 235
send_exception 235
send_other 235
send_poll 213
send_reply 235
send_request 213

Interceptor
class 219
methods 219

interceptor_c.hh 249
InterceptorManager

class 240
InterceptorManagerControl

class 240
interceptors

client request 212
IOR 222
server request 235

Interface Repository
classes 81

interface_name class 5
InterfaceDef 97

methods 98
InterfaceDescription

structure 100
interfaces

VisiBroker for C++ API Reference Guide 323

ConsumerAdmin 137
EventChannel 137
EventChannelFactory 138
OAD 117
ProxyPullConsumer 139
ProxyPullSupplier 140
ProxyPushConsumer 140
ProxyPushSupplier 140
PullConsumer 141
PullSupplier 142
PushConsumer 141
PushSupplier 142
SupplierAdmin 143

Interoperable Object Reference (see
IOR) 264

INV_POLICY
ClientRequestInfo 211
IORInfo 220

InvalidName
class 225
ORBInitInfo 225

InvalidSlot
Current methods 217

InvalidTypeForEncoding
class 215
Codec 215

IOP structure::TaggedProfile 264
IOR 264
IORCreationInterceptor

class 250
IORInfo

BAD_PARAM 220
class 220, 222
exceptions 220
INV_POLICY 220
methods 220
validity 220

IORInfo class 220
IORInfoExt

class 222
methods 222

IORInterceptor
class 222
methods 223

IRObject (Interface Repository
object) 100

IRObject (Interface Repository objects)
methods 101

L
LOCAL_SCOPE 9
Location Service

agent 275
Fail 280
Seq 282
SeqSeq 283
TriggerDesc 281
TriggerHandle 281

M
manipulating object references 17

MarshalInBuffer
class 267, 271
methods 267, 270

MarshalOutBuffer
methods 271, 274

members
argument in Parameter 228
format in encoding 218
major_version in encoding 218
minor_version in encoding 218
mode in Parameter 228

memory management semantics 14
methods

adapter_id in ServerRequestInfo 233
adapter_manager_state_changed in
IORInterceptor 223

adapter_name in
ServerRequestInfo 233

adapter_state_changed in
IORInterceptor 223

adapter_template in IORInfo 220
add_client_request_interceptor in
ORBInitInfo 225

add_ior_component in IORInfo 220
add_ior_component_to_profile in
IORInfo 220

add_ior_interceptor in ORBInitInfo 225
add_reply_service_context in
ServerRequestInfo 233

add_request_service_context in
ClientRequestInfo 211

add_server_request_interceptor in
IORInfoExt 222

add_servert_request_interceptor in
ORBInitInfo 225

allocate_slot_id in ORBInitInfo 225
arguments in ORBInitInfo 225
arguments in RequestInfo 229
bind in NamingContext 126
bind_context in NamingContext 126
bind_new_context in
NamingContext 126

BOA 9
change_implementation in OAD 119
codec_factory in ORBInitInfo 225
components_established in
IORInterceptor 223

connect_push_supplier in
ProxyPushConsumer 140

Contained 85
Container 87
Context 14
contexts in RequestInfo 229
create in EventChannelFactory 139
create_by_name in
EventChannelFactory 139

create_codec in CodecFactory 216
create_policy in PolicyFactory 229
create_struct in Container 87
current_factory in IORInfo 220
decode in Codec 215
decode_value in Codec 215

 324 Vis iBroker for C++ API Reference Guide

destroy in EventChannel 138
destroy in EventChannelFactory 139
destroy in Interceptor 219
destroy in NamingContext 126
destroy_on_unregister in OAD 119
disconnect_pull_supplier 142
disconnect_push_consumer in
PullConsumer 141

disconnect_push_supplier in
PushSupplier 142

effective profile in
ClientRequestInfo 211

effective_target in
ClientRequestInfo 211

encode in Codec 215
encode_value in Codec 215
establish_components in
IORInterceptor 223

exceptions in RequestInfo 229
extraction methods in Any 55
for_suppliers in EventChannel 138
forward_reference in RequestInfo 229
full_poa_name in IORInfoExt 222
get_cluster_manager in
NamingContextFactory 134

get_effective_component in
ClientRequestInfo 211

get_effective_components in
ClientRequestInfo 211

get_effective_policy in IORInfo 220
get_implementation in OAD 119
get_reply_service_context in
RequestInfo 229

get_request_policy in
ClientRequestInfo 211

get_request_service_context in
RequestInfo 229

get_server_policy in
ServerRequestInfo 233

get_slot in Current 217
get_status in OAD 119
get_status_all in OAD 119
get_status_interface in OAD 119
getslot in RequestInfo 229
IDLType 97
insertion methods in Any 56
InterfaceDef 98
IRObject 101
list_all_roots in
NamingContextFactory 134

lookup_by_name in
EventChannelFactory 139

lookup_id in Repository 107
manager_id in IORInfo 220
name in Interceptor 219
NamedValue 65
new_context in NamingContext 126
NVList 66
object_id in ServerRequestInfo 233
obtain_pull_consumer in
SupplierAdmin 143

obtain_pull_supplier 137

obtain_push_consumer in
SupplierAdmin 143

obtain_push_supplier 137
operation in RequestInfo 229
operation_context in RequestInfo 229
OperationDef 102
ORB 22
orb_id in ORBInitInfo 225
orb_id in ServerRequestInfo 233
POA 29
POAManager 39
post_init in ORBInitializer 224
pre_init in ORBInitializer 224
Principal 41
pull in PullSupplier 142
rebind in NamingContext 126
rebind_context in NamingContext 126
receive_exception in
ClientRequestInterceptor 213

receive_other in
ClientRequestInterceptor 213

receive_reply in
ClientRequestInterceptor 213

receive_request in
ServerRequestInterceptor 235

receive_request_service_contexts in
ServerRequestInterceptor 235

received_exception in
ClientRequestInfo 211

received_exception_id in
ClientRequestInfo 211

reg_implementation in OAD 119
register_initial_reference in
ORBInitInfo 225

register_policy_factory in
ORBInitInfo 225

remove_state_contexts in
NamingContextFactory 134

reply_status in RequestInfo 229
Repository 107
Request 70
request_id in RequestInfo 229
resolve in NamingContext 126
resolve_initial_references in
ORBInitInfo 225

response_expected in RequestInfo 229
result in RequestInfo 229
root_context in
ExtendedNamingContextFactory 135

send_exception in
ServerRequestInterceptor 235

send_other in
ServerRequestInterceptor 235

send_poll in
ClientRequestInterceptor 213

send_reply in
ServerRequestInterceptor 235

send_request in
ClientRequestInterceptor 213

sending_exception in
ServerRequestInfo 233

ServantActivator 42

VisiBroker for C++ API Reference Guide 325

ServantBase 43
ServantLocator 44
server_id in ServerRequestInfo 233
ServerRequest 73
set_slot in Current 217
set_slot in ServerRequestInfo 233
state in IORInfo 220
sync_scpoe in RequestInfo 229
SystemException 46, 48
target in ClientRequestInfo 211
target_is_a in ServerRequestInfo 233
target_most_derived_interface in
ServerRequestInfo 233

try_pull in PullSupplier 142
unbind in NamingContext 126
unreg_implementation in OAD 119
unreg_interface in OAD 119
unregister_all in OAD 119

ModuleDef 101
class 101

ModuleDescription 101
structure 101

multi-threaded applications 62

N
NamedValue 65, 66

methods 65
NamingContext

class 125
methods 126

NamingContextExt
class 130
methods 130

NamingContextFactory
class 133
methods 134

Native Messaging C++
DuplicatedRequestTag class 207
PollingGroupIsEmpty class 207
property struct 205

native messaging C++
RequestAgent class 201

Native Messaging for C++
interfaces and classes 201
OctetSeq class 206
Property fields 205
Property IDL definition 205
PropertySeq class 205
REPLY_NOT_AVAILABLE constant 204
REPLY_NOT_AVAILABLE IDL
definition 205

ReplyRecipient class 204
ReplyRecipient methods 204
RequestAgent IDL definition 201
RequestAgent methods 202
RequestDesc fields 203
RequestDesc IDL definition 203
RequestDesc struct 203
RequestNotExist class 207
RequestTag typedef 206
RequestTagSeq class 206

typedef Cookie 206
NativeDef

class 101
NVList 65, 66

methods 66

O
OAD

IDL 117
OAD interface 117
Object 17

class with QoS 256
methods 17
VisiBroker extensions 20

Object Activation Daemon
OAD interface 117

Object Request Broker. See ORB 22
ObjectStatus 122
ObjectStatusList

class 122
online Help Topics

accessing 1
OP_NORMAL 104
OP_ONEWAY 104
OperationDef 102

methods 102
OperationDescription

structure 104
OperationMode 104

enum 104
NORMAL 104
ONEWAY 104

ORB 22
class 22
extensions to CORBA 28
methods 22

ORBInitializer
class 224
methods 224

ORBInitInfo
BAD_INV_ORDER 225
class 225
DuplicateName 225
exceptions 225
InvalidName 225
members 225
methods 225

P
Parameter

struct 228
Parameter struct 228
ParameterDescription 105

structure 105
ParameterList

class 228
ParameterMode 105

enum 105
PDF documentation 3
PICurrent

see also Current 217

 326 Vis iBroker for C++ API Reference Guide

POA
adapter activators 7
class 29
core classes 7
core interfaces 7
creating child POAs 7
methods 29

POALifeCycleInterceptor
class 245

POALifeCycleInterceptorManager
class 246

POAManager 38
methods 39

PolicyCurrent
class 256

PolicyFactory
class 228

PolicyManager
class 255

Portable Interceptors
interfaces 209

portable interceptors
ClientRequestInfo 210
POA scoped server request
interceptor 222

PortableServer

AdapterActivator 7
PortableServer_c.hh 247
PortableServer::Current 16

methods 16
PortableServerExt_c.hh 246, 250
PortalServerExt_c.hh 246
PrimitiveDef 105

class 105
PrimitiveKind 106

enum 106
Principal 41

methods 41
ProfileBody 263
programming interface

agent 275
AliasDef 81
Any 49, 65
ArrayDef 81
AttributeDef 82
BindInterceptor 241
BindOptions 7
BOA 9
ChainUntypedObjectWrapperFactory 25

2
ClientInterceptor 243
CompletionStatus 13
ConstantDef 84
Contained 85, 100, 102
Container 87, 100
Context 14
DynamicImplementation 53
DynAny 53
DynArray 57
DynEnum 58
DynSequence 59

DynStruct 60
DynUnion 61
EnumDef 93
Environment 62
Exception 17, 45, 47
ExceptionDef 94
Fail 280
IDLType 97, 100
InterfaceDef 97
IRObject 100
MarshalInBuffer 271
MarshalOutBuffer 267, 271
ModuleDef 101
ModuleDescription 101
NamedValue 65
NVList 65, 66
Object 17
OperationDef 102
ORB 22
PrimitiveDef 105
Principal 41
Repository 106
Request 69, 73, 76
Seq 282
SeqSeq 283
SequenceDef 108
StringDef 109
StructDef 109
SystemException 45, 47
TriggerHandler 281
TypedefDef 110
UnionDef 111
UntypedObjectWrapper 254
VISClientInterceptor 245, 246, 247, 248,

249, 250
VISInit 285
WstringDef 115

ProxyPullConsumer
interface 139

ProxyPullSupplier
interface 140

ProxyPushConsumer
interface 140

ProxyPushSupplier
interface 140

PullConsumer
interface 141

PullSupplier
interface 142
methods 142

PushConsumer
interface 141

PushSupplier
interface 142

Q
QoS

Quality of Service 255
Quality of Service

QoS 255
querying

VisiBroker for C++ API Reference Guide 327

an object's state 17

R
RebindPolicy

class 258
RefCountServantBase

methods 41
reporting

standard system errors 45
system exceptions 62
user exceptions 62

Repository 106
methods 107

Request 69, 73, 76
methods 70

request interceptors
client 212
server 235

RequestInfo
class 229
methods 229

returning
an object's Typecode 97

RTCORBA::Current 288
RTCORBA::Mutex 289
RTCORBA::NativePriority 290
RTCORBA::Priority 290
RTCORBA::PriorityMapping 291
RTCORBA::PriorityModel 293
RTCORBA::PriorityModelPolicy 294
RTCORBA::RTORB 294
RTCORBA::ThreadpoolId 297
RTCORBA::ThreadpoolPolicy 297

S
Seq

methods 282
SeqSeq

methods 284
SequenceDef 108

class 108
ServantActivator

class 42
methods 42

ServantBase
methods 43

ServantLocator
class 44
methods 44

ServantManager
class 45

Server Manager
container interface 145
container methods for C++ 145
storage interface 149

ServerRequest
methods 73

ServerRequestInfo
BAD_INV_ORDER 232
class 232
exceptions 232

methods 233
ServerRequestInterceptor

class 235, 248
methods 235

ServerRequestInterceptorManager
class 249

setting
an object's state 17

skeletons 6
square brackets 2
StringDef 109

class 109, 111
struct

Codec encoding 218
Parameter 228
UnionMember 111

struct BindOptions 7
struct Parameter 228
StructDef 109

class 109
StructMember

structure 110
structure

AttributeDescription 83
BindOptions 7
Desc 279
ExceptionDescription 94
FullInterfaceDescription 95
FullValueDescription 96
InterfaceDescription 100
IOR 264
ModuleDescription 101
OperationDescription 104
ParameterDescription 105
StructMember 110
TriggerDesc 281
TypeDescription 110
UnionMember 111
ValueDescription 114
VersionSpec 111

structure ExceptionDescription 94
structure ParameterDescription 105
stubs 5
SupplierAdmin

interface 143
symbols

ellipsis ... 2
vertical bar | 2

system exception classes 17
SystemException 45, 47

class 45
defined 46, 48
methods 46, 48

T
TaggedProfile 264
TCKind 75

descriptions 75
TPool 13
TriggerDesc 281
TriggerHandler

 328 Vis iBroker for C++ API Reference Guide

methods 282
TriggerHandler class 281
TSession 13
TypeCode

constructors 76
methods 76

TypedefDef 110
class 110

TypeDescription 110
TypeMismatch

class 215

U
UnionDef 111
UnionMember 111

structure 111
UnknownEncoding

class 216
CodecFactory 216

UntypedObjectWrapper 254
class 254

user exception classes 17

V
ValueBoxDef

class 112
ValueDef

class 112
ValueDescription

structure 114
Var classes 6
vdlog library 311
VersionSpec 111
vinit.h 285
VISClientInterceptor 245, 246, 247, 248, 249,

250
VISClosure

class 251
VISClosureData

class 252
VISDAppender 314
VISDAppenderFactory 313
VISDConfig 316
VISDLayout 315
VISDLayoutFactory 315
VISDLogger 312
VISDLoggerMgr 311
VISDLogLevel 318
VISDLogRecord 317
VisiBroker interceptors

interceptor managers 239
InterceptorManager class 240
IOR templates 240

VISInit 285
methods 285, 286

VISPTransBridge 308
VISPTransConnectionFactory 302
VISPTransListener 303
VISPTransListenerFactory 304
VISPTransProfileBase 305
VISPTransProfileFactory 307

VISPTransRegistrar 309
vobjwrap.h 252
VSPTransConnection 299

W
WstringDef 115

class 115

	Contents
	Introduction to VisiBroker
	Accessing VisiBroker online help topics in the standalone Help Viewer
	Accessing VisiBroker online help topics from within a VisiBroker GUI tool
	Documentation conventions
	Platform conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Generated interfaces and classes
	Generated interfaces and classes overview
	<Interface_name>
	<Interface_name>ObjectWrapper

	POA<class_name>
	tie<class_name>
	<class_name>_var

	Core interfaces and classes
	PortableServer::AdapterActivator
	IDL Definition
	PortableServer::AdapterActivator methods

	BindOptions
	Include file
	BindOptions members

	BOA
	Include file
	CORBA::BOA methods
	Deprecated methods
	VisiBroker extensions to CORBA::BOA

	CompletionStatus
	IDL Definition
	CompletionStatus members

	Context
	Include file
	Context methods

	PortableServer::Current
	IDL Definition
	PortableServer::Current methods

	Exception
	Include file

	Object
	Include file
	CORBA::Object methods
	VisiBroker extensions to CORBA::Object

	ORB
	Include file
	CORBA::ORB methods
	VisiBroker extensions to CORBA::ORB

	PortableServer::POA
	PortableServer::POA methods

	PortableServer::POAManager
	Include file
	PortableServer::POAManager methods

	Principal
	Include file
	Principal methods

	PortableServer::RefCountServantBase
	Include file
	PortableServer::RefCountServantBase methods

	PortableServer::ServantActivator
	Include file
	PortableServer::ServantActivator methods

	PortableServer::ServantBase
	Include file
	PortableServer::ServantBase methods

	PortableServer::ServantLocator
	Include file
	PortableServer::ServantLocator methods

	PortableServer::ServantManager
	Include file

	SystemException
	Include file
	SystemException methods

	UserException
	Include file
	UserException methods
	UserException derived classes

	Dynamic interfaces and classes
	Any
	Include file
	Any methods
	Insertion operators
	Extraction operators

	ContextList
	ContextList methods

	DynamicImplementation
	DynamicImplementation methods

	DynAny
	Include file
	Important usage restrictions
	DynAny methods
	Extraction methods
	Insertion methods

	DynAnyFactory
	DynAnyFactory methods

	DynArray
	Important usage restrictions
	DynArray methods

	DynEnum
	Important usage restrictions
	DynEnum methods

	DynSequence
	Important usage restrictions
	DynSequence methods

	DynStruct
	Important usage restrictions
	DynStruct methods

	DynUnion
	Important usage restrictions
	DynUnion methods

	Environment
	Include file
	Environment methods

	ExceptionList
	ExceptionList methods

	NamedValue
	Include file
	NamedValue methods

	NVList
	Include file
	NVList methods

	Request
	Include file
	Request methods

	ServerRequest
	Include file
	ServerRequest methods

	TCKind
	TypeCode
	Include file
	TypeCode constructors
	TypeCode methods

	Interface repository interfaces and classes (C++)
	AliasDef
	AliasDef methods

	ArrayDef
	ArrayDef methods

	AttributeDef
	AttributeDef methods

	AttributeDescription
	AttributeDescription members

	AttributeMode
	AttributeMode values

	ConstantDef
	ConstantDef methods

	ConstantDescription
	ConstantDescription members

	Contained
	Include file
	Contained methods

	Container
	Include file
	Container methods

	DefinitionKind
	DefinitionKind values

	Description
	Description members

	EnumDef
	EnumDef methods

	ExceptionDef
	ExceptionDef methods

	ExceptionDescription
	ExceptionDescription members

	FixedDef
	Methods

	FullInterfaceDescription
	FullInterfaceDescription members

	FullValueDescription
	Variables

	IDLType
	Include file
	IDLType methods

	InterfaceDef
	Include file
	InterfaceDef methods

	InterfaceDescription
	InterfaceDescription members

	IRObject
	Include file
	IRObject methods

	ModuleDef
	ModuleDescription
	ModuleDescription members

	NativeDef
	OperationDef
	Include file
	OperationDef methods

	OperationDescription
	OperationDescription members

	OperationMode
	OperationMode values

	ParameterDescription
	ParameterDescription members

	ParameterMode
	ParameterMode values

	PrimitiveDef
	PrimitiveDef methods

	PrimitiveKind
	PrimitiveKind values

	Repository
	Include file
	Repository methods

	SequenceDef
	SequenceDef methods

	StringDef
	StringDef methods

	StructDef
	StructDef methods

	StructMember
	StructMember methods

	TypedefDef
	TypeDescription
	TypeDescription members

	UnionDef
	UnionDef methods

	UnionMember
	UnionMember members

	ValueBoxDef
	Methods

	ValueDef
	Methods

	ValueDescription
	Values

	WstringDef
	WStringDef methods

	Activation interfaces and classes
	ImplementationStatus
	Include file
	ImplementationStatus members

	OAD
	Include file
	OAD methods

	ObjectStatus
	Include file
	ObjectStatus members

	ObjectStatusList
	Include file
	ObjectStatusList methods

	Naming Service interfaces and classes (C++)
	NamingContext
	Include file
	Code sample
	NamingContext methods

	NamingContextExt
	Include file
	Code sample
	NamingContextExt methods

	Binding and BindingList
	Include file
	Code sample

	BindingIterator
	Include file
	Code sample
	BindingIterator methods

	NamingContextFactory
	Include file
	Code sample
	Methods

	ExtendedNamingContextFactory
	Include file
	Code sample
	Methods

	Event service interfaces and classes
	ConsumerAdmin
	IDL definition
	ConsumerAdmin methods

	EventChannel
	IDL definition
	Methods

	EventChannelFactory
	IDL definition
	EventChannelFactory methods

	ProxyPullConsumer
	IDL definition

	ProxyPushConsumer
	IDL definition

	ProxyPullSupplier
	IDL definition

	ProxyPushSupplier
	IDL definition

	PullConsumer
	IDL definition

	PushConsumer
	IDL definition

	PullSupplier
	IDL definition
	PullSupplier methods

	PushSupplier
	IDL definition

	SupplierAdmin
	IDL definition

	Server Manager Interfaces and Classes
	The Container Interface
	Include file
	The Container Interface
	Methods related to property manipulation and queries
	Methods related to operations
	Methods related to children containers
	Methods related to storage

	The Storage Interface
	Include file
	Storage Interface Methods for C++

	Transaction Service interfaces and classes
	CosTransactions and VISTransactions modules
	Looking at the CosTransactions module
	Data types
	Structures
	Exceptions

	Looking at the VISTransactions module

	Current interface
	Choosing a Current interface
	Obtaining a Current object reference
	Using the Current object reference
	Is your VisiTransact Transaction Service instance available?
	Checked behavior
	Current methods
	Status value definitions

	TransactionalObject interface
	TransactionFactory interface
	TransactionFactory methods

	Control interface
	Terminator interface
	Terminator methods

	Coordinator interface
	Coordinator methods

	RecoveryCoordinator interface
	RecoveryCoordinator methods

	Resource interface
	Resource methods

	Synchronization interface
	Synchronization methods

	VISTransactionService class
	VISTransactionService methods

	Commands and arguments
	Overview of VisiTransact commands
	vbconsolew
	ots
	vshutdown

	Command-line arguments for applications
	Passing command-line arguments to ORB_init() using argc and argv
	Arguments for applications that originate transactions
	Arguments for applications with an embedded VisiTransact Transaction Service instance

	Error codes
	VisiTransact Transaction Manager common error codes
	VisiTransact Transaction Service error codes
	VisiTransact transaction log error codes

	Native Messaging Interfaces and Classes for C++
	RequestAgent
	Include File
	IDL definition
	RequestAgent Methods
	create_request
	poll
	destroy_request

	RequestDesc
	Include File
	IDL Definition
	RequestDesc Fields

	ReplyRecipient
	Include File
	ReplyRecipient methods
	reply_available

	REPLY_NOT_AVAILABLE
	Include File
	IDL definition

	Property
	Include File
	IDL definition
	Property Fields

	PropertySeq
	Include File

	OctetSeq
	Include File

	RequestTag
	Include File

	RequestTagSeq
	Include File

	Cookie
	Include File

	DuplicatedRequestTag
	Include File

	PollingGroupIsEmpty
	Include File

	RequestNotExist
	Include File

	Portable Interceptor interfaces and classes for C++
	About Interceptors
	ClientRequestInfo
	Include file
	ClientRequestInfo methods

	ClientRequestInterceptor
	Include file
	ClientRequestInterceptor methods

	Codec
	Include file
	Codec Member Classes
	Codec Methods

	CodecFactory
	Include file
	CodecFactory Member
	CodecFactory Method

	Current
	Include file
	Current Methods

	Encoding
	Include file
	Members

	ExceptionList
	Include file

	ForwardRequest
	Include file

	Interceptor
	Include file
	Interceptor methods

	IORInfo
	Include file
	IORInfo Methods

	IORInfoExt
	Include file
	IORInfoExt Methods

	IORInterceptor
	Include file
	IORInterceptor Methods

	ORBInitializer
	Include file
	ORBInitializer Methods

	ORBInitInfo
	Include file
	ORBInitInfo Member Classes
	ORBInitInfo Methods

	Parameter
	Include file
	Members

	ParameterList
	Include file

	PolicyFactory
	Include file
	PolicyFactory Method

	RequestInfo
	Include file
	RequestInfo methods

	ServerRequestInfo
	Include file
	ServerRequestInfo methods

	ServerRequestInterceptor
	Include file
	ServerRequestInterceptor methods

	VisiBroker Interceptor and object wrapper interfaces and classes for C++
	Introduction
	InterceptorManagers
	IOR templates
	InterceptorManager
	InterceptorManagerControl
	Include file
	InterceptorManagerInterceptor method

	BindInterceptor
	Include file
	BindInterceptor methods

	BindInterceptorManager
	Include file
	BindInterceptorManager method

	ClientRequestInterceptor
	Include file
	ClientRequestInterceptor methods

	ClientRequestInterceptorManager
	Include file
	ClientRequestInterceptorManager methods

	POALifeCycle Interceptor
	Include file
	POALifeCycleInterceptor methods

	POALifeCycleInterceptorManager
	Include file
	POALifeCycleInterceptorManager method

	ActiveObjectLifeCycleInterceptor
	Include file
	ActiveObjectLifeCycleInterceptor methods
	ActiveObjectLifeCycleInterceptorManager
	Include file
	ActiveObjectLifeCycleInterceptorManager method

	ServerRequestInterceptor
	Include file
	ServerRequestInterceptor methods

	ServerRequestInterceptorManager
	Include file
	ServerRequestInterceptorManager method

	IORCreationInterceptor
	Include file
	IORInterceptor method

	IORCreationInterceptorManager
	Include file
	IORCreationInterceptorManager method

	VISClosure
	Include file
	VISClosure members

	VisExtendedClosure
	Code sample

	VISClosureData
	VISClosureData methods

	ChainUntypedObjectWrapperFactory
	Include file
	ChainUntypedObjectWrapperFactory methods

	UntypedObjectWrapper

	Quality of Service interfaces and classes
	CORBA::PolicyManager
	IDL definition
	Include file
	Methods

	CORBA::PolicyCurrent
	IDL definition
	Include file

	CORBA::Object
	IDL definition
	Include file
	Methods

	Messaging::RebindPolicy
	IDL definition
	Include file
	Policy values

	QoSExt::DeferBind Policy
	IDL definition
	Include file

	QoSExt::RelativeConnectionTimeoutPolicy
	IDL definition
	Include file

	Messaging::RelativeRequestTimeoutPolicy
	IDL definition
	Include file

	Messaging::RelativeRoundtripTimeoutPolicy
	IDL definition
	Include file

	Messaging::SyncScopePolicy
	IDL definition
	Include file

	IOP and IIOP interfaces and classes
	IIOP::ProfileBody
	Include file
	ProfileBody members

	IOP::IOR
	Include file
	IOR members

	IOP::TaggedProfile
	Include file
	TaggedProfile members

	Marshal buffer interfaces and classes
	CORBA::MarshalInBuffer
	Include file
	CORBA::MarshalInBuffer constructors/ destructors
	CORBA::MarshalInBuffer methods
	CORBA::MarshalInBuffer operators

	CORBA::MarshalOutBuffer
	Include file
	CORBA::MarshalOutBuffer constructors/ destructors
	CORBA::MarshalOutBuffer methods
	CORBA::MarshalOutBuffer operators

	Location service interfaces and classes
	Agent
	IDL definition
	Include file
	Agent methods

	Desc
	IDL definition
	Desc members

	Fail
	Fail members

	TriggerDesc
	IDL definition
	TriggerDesc members

	TriggerHandler
	IDL definition
	Include file
	TriggerHandler methods

	<type>Seq
	<type>Seq methods

	<type>SeqSeq
	<type>SeqSeq methods

	Initialization interfaces and classes
	VISInit
	Include file
	VISInit constructors/destructors
	VISInit methods

	Real-Time CORBA interfaces and classes
	Introduction
	Include file

	RTCORBA::Current
	RTCORBA::Current Creation and Destruction
	IDL definition

	RTCORBA::Current methods

	RTCORBA::Mutex
	Mutex Creation and Destruction
	IDL definition

	RTCORBA::Mutex Methods

	RTCORBA::NativePriority
	IDL definition

	RTCORBA::Priority
	IDL definition

	RTCORBA::PriorityMapping
	PriorityMapping Creation and Destruction
	IDL definition

	PriorityMapping Methods

	RTCORBA::PriorityModel
	RTCORBA::PriorityModelPolicy
	IDL definition

	RTCORBA::RTORB
	RTORB Creation and Destruction
	IDL definition

	RTORB Methods

	RTCORBA::ThreadpoolId
	RTCORBA::ThreadpoolPolicy
	IDL definition

	Pluggable Transport Interface classes
	VSPTransConnection
	Include file
	VISPTransConnection methods

	VISPTransConnectionFactory
	Include file
	VISPTransConnectionFactory methods

	VISPTransListener
	Include file
	VISPTransListener methods

	VISPTransListenerFactory
	Include file
	VISPTransListenerFactory methods

	VISPTransProfileBase
	Include file
	VISPTransProfileBase methods
	VISPTransProfileBase members
	VISPTransProfileBase base class methods

	VISPTransProfileFactory
	Include file
	VISPTransProfileFactory methods

	VISPTransBridge
	Include file
	VISPTransBridge methods

	VISPTransRegistrar
	Include file
	VISPTransRegistrar methods

	VisiBroker for C++ Logging
	VISDLoggerMgr
	Include file
	VISDLoggerMgr methods

	VISDLogger
	Include file
	VISDLogger methods

	VISDAppenderFactory
	Include file
	VISDAppenderFactory methods

	VISDAppender
	Include file
	VISDAppender methods

	VISDLayoutFactory
	Include file
	VISDLayoutFactory methods

	VISDLayout
	Include file
	VISDLayout methods

	VISDConfig
	Include file
	LogAppenderConfig structure

	VISDLogRecord
	Include file
	VISDLogRecord methods

	VISDLogLevel
	Include file
	Level enumeration

	Index

