
Upgrading to
Visual COBOL 2.0 for Eclipse

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © 2011-2012 Micro Focus. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Visual COBOL are trademarks or registered
trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2012-05-21

ii

Contents

Upgrading to Visual COBOL 2.0 for Eclipse .. 4
Licensing Changes ..4
Resolving Conflicts Between Reserved Keywords and Data Item Names 4
Recompile All Source Code .. 6
Upgrading from ACUCOBOL-GT .. 6

Compiling Your ACUCOBOL-GT Applications in Visual COBOL6
Accessing Vision Indexed Files from Visual COBOL ... 7
Library Routines ... 8
Supported Features ..8
Restrictions and Unsupported Features ...9

Upgrading from Earlier Micro Focus Products .. 9
Summary of Differences ...10
Compiling and Building Differences ... 14
Run-time System Differences ...16
Restrictions and Unsupported Features ...17
Run-Time Technology Differences ...19
Editing and Debugging Differences ..20
Tips: Eclipse IDE Equivalents to IDE Features in Net Express21

Upgrading from RM/COBOL® ... 23
Appendix ... 24

Native COBOL Compared with Managed COBOL ...24
Customer Feedback ..24

Contents | 3

Upgrading to Visual COBOL 2.0 for Eclipse
This guide provides information on upgrading applications from earlier Micro Focus COBOL development
systems to Visual COBOL for Eclipse. It highlights the differences between the old and new products, and
offers solutions on how to keep your application working in the same way as before. The guide also
introduces the new concepts and features of the Integrated Development Environment.

Note:

• This documentation uses the name Visual COBOL to refer to Visual COBOL for Visual Studio and
Visual COBOL for Eclipse. The full product names are used only when it is necessary to
differentiate between the two products.

Benefits of Upgrading

You get a number of important benefits by upgrading to Visual COBOL from earlier Micro Focus
development systems or other COBOL systems, such as RM/COBOL and extend® (ACUCOBOL-GT).

Visual COBOL uses a proven industry Integrated Development Environment that supports thousands of
clients for developing and deploying critical business applications. Visual COBOL enables unified,
collaborative, and cost-effective development through rich, industry-standard tooling and at the same time
it helps minimize skills shortages, expands market reach and accelerates time-to-delivery to meet today’s
agile business requirements.

Visual COBOL helps improve developer productivity and application quality, helps reach new markets and
audiences, and makes COBOL equivalent to all other contemporary languages.

With the capabilities of the new IDE, you can reach new platforms with little or no change and deploy
applications faster across 50 platforms including NET, Azure, and JVM.

Licensing Changes
For a number of years Micro Focus used the Micro Focus License Management System on Windows and
Micro Focus License System Administration on UNIX for Net Express and Server Express.

Micro Focus now uses a standard industry technology for license management, Sentinel RMS from
SafeNet. New product releases use Sentinel RMS, as do updates to existing products.

For more on licensing, see Licensing in the Visual COBOL help.

Resolving Conflicts Between Reserved Keywords and
Data Item Names

Micro Focus continues to expand the list of reserved COBOL words by adding new keywords to it as part
of new levels of the COBOL language. Each Micro Focus release corresponds to a particular level. You
can use the MFLEVEL Compiler directive to enable Micro Focus-specific reserved words in your code and
change the behavior of certain features to be compatible with a specific level of the language.

If you use Visual COBOL to compile applications created with an older Micro Focus product, and these
applications use data names that are now reserved keywords in Visual COBOL, you receive a COBOL
syntax error COBCH0666 ("Reserved word used as data name or unknown data description qualifier"). To
work around this issue and continue using some of the reserved words as data names in your source code,
you can either:

• use the REMOVE Compiler directive to remove individual keywords from the reserved words list

4 | Upgrading to Visual COBOL 2.0 for Eclipse

• set the MFLEVEL Compiler directive to a lower level which corresponds to the level your applications
are at (see the information about MFLEVEL of some Micro Focus products further down this section).
This removes all reserved keywords which have been added for levels above that level from the
reserved words list.

You can set both directives from the command line, in your source code, or in the Additional Directives
field in the project's COBOL properties.

Setting directives from the command line

To use REMOVE from aVisual COBOL command line, type the following:

cobol myprogram.cbl remove(title) ;

The command above removes TITLE as a keyword from the language so you can use it as an identifier in
a COBOL program.

To use the set of reserved words that was used for Net Express v5.1 WrapPack 5, use this command line:

cobol myprogram.cbl mflevel"15" ;

Setting directives in the source code

To set either one of the directives in your source code, type the following starting with $ in the indication
area of your COBOL program:

$set remove "ReservedWord"

Or:

$set mflevel"nn"

Setting directives in the IDE

To set either one of the directives in the project's properties:

1. In the IDE, click Project > Properties > Micro Focus COBOL > Project Settings > COBOL.
2. Type MFLEVEL"nn" or REMOVE "ReservedWord" in the Additional directives field.
3. Click Apply and then OK.

MFLEVEL of some Micro Focus product releases and reserved words added for them

These are the keywords that have been added to the reserved words list for some of the more recent Micro
Focus products:

• Visual COBOL R4 (MFLEVEL"16"):

ATTRIBUTES
ENCODING
NAMESPACE
NAMESPACE-
VALIDATING
XML-
XML-SCHEMA

• Net Express and Server Express versions 6.0 WrapPack 2 and 5.1 WrapPack 5 (MFLEVEL "15"):

DATA-POINTER
OBJECT-REFERENCE

• Net Express 6.0 and Server Express 6.0 (MFLEVEL "14"):

BIT
BOOLEAN
GROUP-USAGE

Upgrading to Visual COBOL 2.0 for Eclipse | 5

For more information on the MFLEVEL Compiler directive and the keywords used by the different product
versions, read the following topics in the product Help:

General Reference > COBOL Language Reference > Part 4: Appendices > Reserved Words
General Reference > Compiler Directives > Compiler Directives Alphabetic List > MF, MFLEVEL

Recompile All Source Code
Application executables that were compiled using Net Express, Server Express, RM/COBOL or extend®

(ACUCOBOL-GT) must be recompiled from the sources using Visual COBOL.

If you do not recompile, you may receive an error. The exact error depends on the operating system you
are running. The error might be similar to this, on UNIX:

ld.so.1: rts32: fatal: libcobrts.so.2: open failed: No such file or directory
Killed

You can recompile from the IDE or the command line.

Upgrading from ACUCOBOL-GT
There are conceptual and behavioral differences between Visual COBOL and ACUCOBOL-GT, part of the
Micro Focus extend® product family, and these differences can affect the way you upgrade existing
applications to Visual COBOL.

Note: At the time of publishing this guide, Visual COBOL is not fully compatible with ACUCOBOL-GT.
We recommend native code deployment only.

Micro Focus will continue to improve the compatibility between the two products with the future
releases of Visual COBOL.

Compiling Your ACUCOBOL-GT Applications in Visual
COBOL
You can use the standard Visual COBOL tools and the Visual COBOL command line to compile and debug
ACUCOBOL-GT applications to the runnable formats that Visual COBOL supports.

Enabling compatibility with ACUCOBOL-GT in Visual COBOL

Compatibility with ACUCOBOL-GT's language extensions and data files is not turned on by default in
Visual COBOL so you must compile your code with the ACU Compiler directive. You can set this directive
in your source code directly, through the project properties, or at the command line.

To set the ACU directive in your source code, type the following at the beginning of your program with the
$ in the indicator area, :

$set ACU

If you use the Visual COBOL command prompt, you can compile as follows:

cobol myprogram.cbl acu obj();

If you use the IDE to edit and build the code, you must set the ACU directive in the project properties
before you compile:

1. In the IDE, click Project > Properties > Micro Focus COBOL > Project Settings > COBOL.
2. Type ACU in the Additional directives field.
3. Click Apply and then OK.

6 | Upgrading to Visual COBOL 2.0 for Eclipse

Specifying ACUCOBOL-GT Compiler Options

The COBOL Compiler in Visual COBOL supports many of the Compiler options available with the
ACUCOBOL-GT (ACU) Compiler. To set these options, you need to compile with the ACUOPT directive
(which automatically sets the ACU directive). For example:

cobol myprogram.cbl acuopt(-Dd31 -Gd) obj();

You can also use the ccbl.exe utility, an interface to the Micro Focus Compiler that accepts the same
options and parameters as the ACU Compiler, to compile your code. It automatically sets the ACU
directive.

ccbl produces .int by default:

ccbl myprogram.cbl

To compile to .gnt, you need to compile with the native code option, -n:

ccbl -n myprogram.cbl

For more details, see Compatibility with ACUCOBOL-GT in the Visual COBOL Help.

Accessing Vision Indexed Files from Visual COBOL
You can access Vision Files directly from native COBOL.

Accessing Vision files from native COBOL

There are two ways to provide access to Vision files in native COBOL:

• Compile your applications with the CALLFH"ACUFH" Compiler directive set and then link acufh.lib
to the application. This enables you to use Vision files only.

• Use FHREDIR, the dynamic redirection capability of the File Handler. This enables you to mix Vision
and Micro Focus data files.

To compile from a COBOL command environment with CALLFH"ACUFH" and link to acufh.lib to your
native application, execute:

cobol myprogram.cbl callfh(acufh) obj();

cblink myprogram.obj acufh.lib

To use the IDE to link acufh.lib to your native application:

1. In the IDE, click Project > Properties > Micro Focus COBOL > Build Configurations > Link >
Additional Link Files.

2. Browse to the location of the acufh.lib file and add it to your project:

• On a 32-bit system, the default location is C:\Program Files\Micro Focus\Vision 2.0\lib
\acufh.lib

• On a 64-bit system, when building a 32-bit executable, include C:\Program Files
(x86)\Micro Focus\Vision 2.0\lib\acufh.lib

• On a 64-bit system, when building a 64-bit executable, include C:\Program Files
(x86)\Micro Focus\Vision 2.0\lib64\acufh.lib

Note:

• If you do not link acufh.lib to the application, you receive an error - Unresolved external
symbol _ACUFH.

• If you compile your applications from the command line to .int code, you do not have to link to the
acufh.lib library – the run-time system finds it automatically.

Upgrading to Visual COBOL 2.0 for Eclipse | 7

Accessing Vision files from managed COBOL

In Visual COBOL, support for Vision data files is only available for native COBOL applications. You cannot
access them directly in managed code. Support for Vision files in managed COBOL is planned for future
releases of Visual COBOL.

We recommend the following solutions, in order of preference:

• Convert your Vision data files to Micro Focus data files. To do this, use the data migration tool,
ACU2MFDataMigration.exe, which is available in the folder where the product samples are installed.

• Create a COBOL application which builds to a native .dll to access the files directly, and then call
the .dll from your managed code.

After converting a Vision data file to work with managed code, you may find that the managed code file
handler is much slower than the native one. If so, set up the managed file handler so that it uses Fileshare
instead of the external file handler.

Library Routines
To use the ACUCOBOL-GT standard library routines in Visual COBOL, you need to compile your
applications with the ACU Compiler directive which enables ACUCOBOL-GT compatibility in Visual
COBOL.

The following standard library routines are available, but for native COBOL only:

C$CALLEDBY
C$CALLERR
C$CHDIR
C$MAKEDIR
C$MEMCPY
C$MYFILE
C$NARG
C$PARAMSIZE
C$RERR
M$ALLOC
M$FREE
M$COPY
M$FILL
M$GET
M$PUT
WIN$VERSION

For more information on each library routine, see ACUCOBOL-GT Library Routines in the product Help.

Supported Features
The following ACUCOBOL-GT functionality is supported in Visual COBOL:

• ACU4GL - this is now known as Micro Focus Database Connectors™

• Vision, ACUCOBOL-GT's native indexed file system, is supported. This enables you to use your
existing data files. The Vision-related utilities acusort.exe, logutl32.exe, vio32.exe and vutil32.exe, are
supported.

• Micro Focus XDBC™

8 | Upgrading to Visual COBOL 2.0 for Eclipse

Restrictions and Unsupported Features
The following is not an exhaustive list of the restrictions of using ACUCOBOL-GT in Visual COBOL. In
most cases, if your code includes ACUCOBOL-GT features not supported by Visual COBOL, you will
receive a Compiler error.

• The ACUCOBOL-GT multi-threading model is not supported.
• The ACUCOBOL-GT configuration file and configuration variables are not supported. Visual COBOL

uses different configuration files and variables. You need to review your existing ACUCOBOL-GT
configuration to determine which settings are relevant for use with Visual COBOL and which settings
have Visual COBOL equivalents. Any variables associated with Vision files, for example, can be set in a
configuration file (or set in the environment, either from the command line or within the COBOL
program). Some ACU configuration variables are not necessary or applicable in Micro Focus COBOL
(for example, PERFORM_STACK), and the functionality of others is covered by the Micro Focus
compile and run-time options (for example, A_CHECKDIV). See the product Help for more information.

• The ACUCOBOL-GT Thin Client technology is not supported.
• The Graphical Technology (GT) is not supported.
• Visual COBOL and extend® differ in their support for some of the Screen Description phrases. In Visual

COBOL, the following phrases of the Screen Description entry are not supported and should be
removed from your programs:

AFTER
BEFORE
EXCEPTION

• Moving ACUCOBOL-GT applications to managed COBOL is not supported yet. Managed COBOL does
not support:

• the ACU numeric sign encoding schemes - sign(ascii), sign(ebcdic), sign(acu), sign(mbp), sign(ncr),
sign(realia) and sign(vax)

• some ACU data types such as comp-3, comp-6, comp-4
• size error checking
• truncation

• ACUFH does not currently support assigning files to pipes - for example:

select test-file assign to "-P %TMP% cmd /c dir *.* > %TMP%"

select test-file assign to "-P ls *"

To work around this issue:

1. Create a subprogram which does not use a CALLFH"ACUFH" statement and which handles the
required pipes. The syntax for assigning file to pipes is different in the Visual COBOL File Handler:

select test-file assign to "<cmd /c dir *.*

select test-file assign to "<ls *"

2. Call the subprogram from the program using CALLFH"ACUFH".

For more information, read Programming > File Handling > File Handling Guide > Filenames > Setting
Up Pipes in the product Help.

Upgrading from Earlier Micro Focus Products
You can upgrade COBOL applications that were developed in Net Expressand Server Express to Visual
COBOL. The majority of the existing applications will continue to run in Visual COBOL without the need to
change their code.

Upgrading to Visual COBOL 2.0 for Eclipse | 9

This guide lists the differences between Net Express, Server Express and Visual COBOL in the following
areas:

Compiling and
building

Having created a project in Visual COBOL, you can either use the IDE or the
command line to build.

Run-time systems There are some differences between the run-time systems supplied with Visual
COBOL and those supplied with Net Express and Server Express. This, however,
will not affect your existing applications and they will continue to run under Visual
COBOL - you only need to recompile the applications from the source code with
Visual COBOL.

Run-time system
technologies

Some technologies behave differently and require some upgrade work.

Restrictions and
unsupported
features

Some features of Net Express and Server Express are not available in Visual
COBOL. However, there are alternative techniques for many of these features.

Editing and
debugging

Much of the Net Express and Server Express functionality for editing and
debugging is available in Visual COBOL, but sometimes with a different name and
with a slightly different behavior. In addition there are some new features such as
background parsing, which highlights errors as you type and code completion
techniques that provide easy access to language elements, enabling you to select
and insert them simply.

Eclipse integration Visual COBOL is integrated with the Eclipse IDE. The development environment
provides all the functionality to manage projects and debug applications.

COBOL applications previously built in Net Express or Server Express can be
developed and run within the Eclipse IDE.

Summary of Differences
The majority of the applications created with Net Express or Server Express will continue to work in Visual
COBOL without any changes. However, there are some differences between these development systems
you should consider when you upgrade to Visual COBOL.

Compiling and Building Differences

There are several aspects of compiling and building applications that behave differently in Visual COBOL.
You might need to change the project properties and update some of the Compiler directives and settings
that you previously used.

Output File Formats on
page 14

The preferred executable file formats with Visual COBOL are .dll, .so and .exe.
The .int and .gnt file formats are still supported by the Compiler and the
debugger but cannot be created directly by the IDE.

Compiler Directives on
page 14

When you upgrade your source code to Visual COBOL some Compiler
directives that were specifically designed for 16-bit systems now produce an
error on compilation because they are no longer relevant. You should remove
them from your code and directives files before you compile.

Linking on page 15 The static run-time system and the single-threaded run-time system on
Windows are no longer required and they are not shipped with Visual COBOL.
Applications built with Visual COBOL are now linked to the shared or dynamic
run-time systems. On UNIX, you can link to the single-threaded or multi-
threaded shared or dynamic run-time system.

10 | Upgrading to Visual COBOL 2.0 for Eclipse

Called Programs and
Dependencies on page
15

At run time, called programs are found in the same way as before. However,
there are some new ways to set COBPATH and copy files into a common
folder.

File Handler on page
16

The File Handler .obj files are not available in Visual COBOL. Visual COBOL
uses the File handler packaged in the mffh.dll file instead.

Makefile Conversion
on page 16

You cannot use existing makefiles from Visual COBOL for Eclipse, although
where they invoke commands supported by Visual COBOL they will continue to
work as before.

OpenESQL Assistant The OpenESQL Assistant data source names (DSNs) in Visual COBOL must
be configured as ODBC or ADO.NET DSNs.

SQL Compiler
Directive Options on
page 16

When you upgrade your SQL appplications to Visual COBOL, some
applications could require additional SQL compiler directive options to avoid
compiler errors.

XML PARSE Statement
on page 16

In Net Express, the default setting for the XMLPARSE Compiler directive is
COMPAT, which causes the XML PARSE statement to return information and
events for IBM Enterprise COBOL Version 3. In Visual COBOL, the default is
XMLPARSE(XMLSS), which returns information and events for IBM Enterprise
COBOL Version 4.

Run-Time System Differences

There are some differences between the run-time systems supplied with Visual COBOL and those supplied
with Net Express, Server Express and Mainframe Express. These, however, do not affect your existing
applications if you recompile them from the source code in Visual COBOL.

OpenESQL on page 16 Visual COBOL sets the BEHAVIOR SQL Compiler directive option to
MAINFRAME by default to provide optimal performance. To revert to the
default behavior exhibited in Net Express, set the BEHAVIOR directive to
UNOPTIMIZED.

Single-Threaded Run-Time
System on page 16

The single-threaded run-time system is not available in Visual COBOL on
Windows. Instead, both single-threaded and multi-threaded applications
run using the multi-threaded run-time system. This has no effect on your
existing applications. On UNIX, the single-threaded run-time system is
available, so that applications can link with third-party code.

Static-Linked Run-Time
System on page 16

The static-linked run-time system is not available in Visual COBOL.
Instead, you now link native code to the shared or dynamic run-time
system. This has no effect on your existing applications.

Setting the Environment
on UNIX on page 17

You use the cobsetenv script to set your COBOL environment on UNIX.

Visual COBOL Co-existing
with Earlier Micro Focus
Products on page 17

Some additional configuration is required to ensure Visual COBOL and Net
Express or Studio Enterprise Edition work properly when installed on the
same machine.

Restrictions and Unsupported Features

Some features in earlier Micro Focus products are not available in Visual COBOL. However there are
alternative techniques for many of these features.

Character-Mode Dialog
System on page 17

Support for creating character-based user interfaces for applications that
run in character environments is available for Visual COBOL if you install
the Character-Mode Dialog System AddPack, distributed for free through
the Micro Focus SupportLine Web site.

Upgrading to Visual COBOL 2.0 for Eclipse | 11

http://supportline.microfocus.com

COBOL Services as Java
and Web Services on page
17

COBOL services, such as Java interfaces and Web Services, created with
the Interface Mapping Toolkit in Net Express or Server Express run only
under Enterprise Server within Micro Focus Server. They do not run under
COBOL Server.

CSBIND on page 17 CSBIND is a service package in Net Express, Server Express and
Application Server that supports client/server COBOL applications. It is
not available in Visual COBOL.

DBMS Preprocessors on
page 17

Earlier Micro Focus products supported DBMS preprocessor versions that
are not supported in Visual COBOL. For a list of currently supported
DBMS preprocessors, see the Database Access Support with Native
COBOL topic.

Dialog System on page 17 Dialog System applications are not supported in Eclipse but you can
upgrade the non-GUI components of an application to Eclipse, and then
recreate the GUI components using the GUI tools in Eclipse.

Enterprise Server on page
17

Enterprise Server and Server for SOA provide an execution environment
for COBOL services and COBOL application programs, including
mainframe support for CICS, JCL, and IMS. They are not available in
Visual COBOL or COBOL Server.

Form Designer on page
18

Form Designer is the Net Express tool for creating user interfaces for
CGI-based Internet and intranet applications. Form Designer and the
HTML page wizard are not available in Visual COBOL.

FSView on page 18 FSView is a utility for administering Fileshare servers. The FSView GUI is
not supported in Visual COBOL.

GNT Analyzer on page 18 GNT Analyzer is not available in Visual COBOL. It has been replaced by
Test Coverage.

Host Compatibility Option
(HCO) on page 18

Host Compatibility Option (HCO) is not supported in Visual COBOL.

Interface Mapping Toolkit
on page 18

The Interface Mapping Toolkit is not supported in Visual COBOL.

INTLEVEL Support on page
18

The INTLEVEL directive is rejected by the Compiler in Visual COBOL.

J2EE Application Servers
on page 18

J2EE Application Servers are not supported by Visual COBOL.

NSAPI on page 18 There is no support for NSAPI in Visual COBOL.

Online Help System on
page 18

Net Express provided the Online Help System for creating online help
from character-based applications, and displaying it on screen. It is not
available in Visual COBOL and the Online Help System information file
type (.HNF) is not supported.

OO Class and Method
Wizards on page 18

The OO Class and Methods wizards are not available in Visual COBOL.
However, the run-time components for the base and COM OO class
libraries are available.

OpenESQL on page 18 In both Net Express and Studio Enterprise Edition, support is provided for
Oracle OCI in OpenESQL. Visual COBOL does not support Oracle OCI in
OpenESQL.

OpenESQL Assistant on
page 18

The OpenESQL Assistant is not available in Visual COBOL for Eclipse.

12 | Upgrading to Visual COBOL 2.0 for Eclipse

Secure Sockets Layer (SSL)
on page 18

Secure Sockets Layer (SSL) is a standard mechanism for sending and
receiving electronic communications in encrypted form. It is not currently
supported in Visual COBOL.

Solo Web Server on page
19

The Solo Web server in Net Express enabled you to debug CGI-based
Internet applications on the same machine you used to develop them. It is
not available in Visual COBOL.

SQL Option for DB2 on
page 19

SQL Option for DB2, also known as XDB, is not supported in Visual
COBOL.

Type Library Assistant on
page 19

Type Library Assistant is not included in Visual COBOL but the run-time
components for the COM and the OO COBOL libraries are still available.

TX Series The IBM TX Series product used to interface with Websphere in Net
Express is not supported in Visual COBOL.

UNIX Publish on page 19 The UNIX Publish feature is superseded by the remote development
functionality in Visual COBOL for Eclipse. You use Visual COBOL
Development Hub, a remote development server to host your source code
and you use the Eclipse IDE on your local machine as the development
interface.

Run-Time Technology Differences

Some technologies behave differently in Visual COBOL and this might affect how you upgrade existing
applications.

COM Interop on page
19

The tools to help create COM objects are not supplied with Visual COBOL.
However, the COM run-time components are supplied, so that COM is supported
and your applications can interoperate with existing COM objects.

File Handling on
page 19

The way you integrate your own security modules into Fileshare has changed.
Also, the FILEMAXSIZE setting is different for Visual COBOL and for Net
Express and Server Express .

Java and COBOL on
page 20

The cobsje script is not available in Visual COBOL for Eclipse on UNIX. Visual
COBOL uses the COBOL run-time system to load JVM based on LIBPATH,
LD_LIBRARY_PATH, SHLIB_PATH, JAVA_HOME etc.

Test Coverage on
page 20

Visual COBOL supports Test Coverage from the command line only.

Editing and Debugging Differences

Much of the edit and debug functionality in Net Expressand Server Express is available in Visual COBOL,
but some of it has a different name or slightly different behavior. In addition there are some new features
such as background parsing.

Data Tools on page
20

The Net Express Data Tools are available as an AddPack for Visual COBOL
for Eclipse on Windows, but not on UNIX.

Debugging Native
Object-Oriented
COBOL on page 20

In Net Express you can examine an object while debugging OO COBOL and
display the class that defined the object and also other objects derived from
that class. In Visual COBOL, you can also view the class information of native
OO COBOL but not while debugging.

Mixed Language
Debugging on page
20

With Net Express you can debug mixed language applications. Visual COBOL
does not fully support mixed language debugging of native code.

Upgrading to Visual COBOL 2.0 for Eclipse | 13

Program Breakpoints
on page 21

Program breakpoints are breakpoints that stop execution each time a specified
program or entry point within the program is called. They are supported in
Visual COBOL.

Remote Debugging on
page 21

The Net Express animserv utility used for debugging programs remotely has
been replaced by cobdebugremote (Windows) or cobdebugremote32
(UNIX) (or cobdebugremote64 when debugging 64-bit processes) in Visual
COBOL.

Source Pool View on
page 21

The source pool view in Net Express showed all source files available in the
project directory, regardless of whether or not they are used in the current build
type. This view is not available in Visual COBOL.

Compiling and Building Differences
There are several aspects of compiling and building applications that behave differently in Visual COBOL.
You might need to change the project properties and update some of the Compiler directives and settings
that you previously used.

Output File Formats

Preferred file formats - .exe and .dll

The preferred executable file formats with Visual COBOL are .dll, .so and .exe. The .int and .gnt file
formats are still supported by the Compiler and the debugger but cannot be created directly by the IDE.

Building to multiple output files

Each project compiles into a single file (.dll, .so or .exe), or to multiple files of the same file type with one
output file for each source file.

Instead of an .lbr file, which contained a collection of .int and .gnt files on Windows, you now use a .dll as
the container for application components.

Your application can consist of multiple projects, each one building a single output file, with the projects
linked together so that they can access each other.

1. Click File > New > Other.
2. Expand General and click File.
3. Enter the name to use for the linked resource. You can enter an alias.
4. Click Advanced.
5. Select Link to file in the file system and browse to the file to link to. You can also click Variables and

define a path variable, so that you can link to files using a relative path.

Compiler Directives
When you upgrade your source code to Visual COBOL some Compiler directives that were specifically
designed for 16-bit systems now produce an error on compilation because they are no longer relevant.

The following Compiler directives are no longer relevant and we recommend that you remove them from
your code and directives files before you compile:

01SHUFFLE
64KPARA
64KSECT
AUXOPT
CHIP
DATALIT

FIXING
FLAG-CHIP
MASM
MODEL
OPTSIZE
OPTSPEED

REGPARM
SEGCROSS
SEGSIZE
SIGNCOMPARE
SMALLDD
TABLESEGCROSS

14 | Upgrading to Visual COBOL 2.0 for Eclipse

EANIM
EXPANDDATA

PARAS
PROTMODE

TRICKLECHECK

Linking
The static run-time system and the single-threaded run-time system on Windows are no longer required
and they are not shipped with Visual COBOL. Applications built with Visual COBOL are now linked to the
shared or dynamic run-time systems. On UNIX, you can link to the single-threaded or multi-threaded
shared or dynamic run-time system.

Linking from the command line

You can link applications from the Visual COBOL command prompt with the cbllink or cblnames
commands. For example, to produce an .exe file, use:

cbllink myprogram.cbl

To compile and link your code to produce a .dll file, use:

cbllink -d myprogram.cbl

With these commands, the single-threaded and static-linking options are automatically mapped onto the
multi-threaded and shared run-time systems respectively.

For more see Command Line Reference in the product help.

Linking from the IDE

To specify what to link:

1. Click Project > Properties.
2. Expand Micro Focus COBOL > Build Configurations.
3. Click Link and specify your link settings.

Called Programs and Dependencies
At run time, called programs are found in the same way as before. However, there are some new ways to
set COBPATH and copy files into a common folder.

To build the called programs

When you build the called programs into a .dll or .so file, you can set a property to output the built file into
the same folder as the main application executable. To do this the called programs and the application
main program must be in the same project. To set this:

1. Create a project that contains the programs that are called.
2. In the project properties, expand Micro Focus COBOL > Build Configurations and click COBOL.
3. In Target Settings, select Single Native Library File.
4. Set the Output Path to the subfolder where the main application executable is output.
5. If you want to debug the .dll file together with the application, click Override COBOL project settings

and check Compile for debugging.
6. Build the project.

To set the COBPATH environment variable

Add the COBPATH environment variable to the run-time configuration, as follows:

1. In the properties of the calling application project, expand Micro Focus COBOL > Run-time
Configuration > Environment Variables.

2. Add the COBPATH variable and specify the full path to your called files.

Upgrading to Visual COBOL 2.0 for Eclipse | 15

File Handler
The File Handler .obj files are not available in Visual COBOL. Visual COBOL uses the File handler
packaged in the mffh.dll file instead.

If the application you are upgrading from Net Express used the File Handler .obj files, when you link your
application in Visual COBOL the linker will emit a warning. The application will continue to operate as
before provided that you supply the mffh.dll file with it.

Makefile Conversion
You cannot use existing makefiles from Visual COBOL for Eclipse, although where they invoke commands
supported by Visual COBOL they will continue to work as before.

It is not possible to use or convert existing makefiles and Visual Studio MSBuild files.

SQL Compiler Directive Options
If you get errors in Visual COBOL when compiling an object application that was created in Net Express or
Studio Enterprise Edition, recompile specifying the GEN-CLASS-VAR SQL Compiler directive option in
addition to other appropriate options.

XML PARSE Statement
In Net Express, the default setting for the XMLPARSE Compiler directive is COMPAT, which causes the
XML PARSE statement to return information and events for IBM Enterprise COBOL Version 3. In Visual
COBOL, the default is XMLPARSE(XMLSS), which returns information and events for IBM Enterprise
COBOL Version 4.

To emulate the Net Express behavior in Visual COBOL, specify the XMLPARSE(COMPAT) Compiler
directive option.

For a summary of the differences in event information between XMLPARSE(XMLSS) and
XMLPARSE(COMPAT), see the Special Registers topic in your Visual COBOL documentation.

Run-time System Differences
There are some differences between the run-time systems supplied with Visual COBOL and those supplied
with Net Express, Server Express and Mainframe Express. These, however, do not affect your existing
applications if you recompile them from the source code in Visual COBOL.

The changes in the run-time system are described in the following sections.

OpenESQL
Visual COBOL sets the BEHAVIOR SQL Compiler directive option to MAINFRAME by default to provide
optimal performance. To revert to the default behavior exhibited in Net Express, set the BEHAVIOR
directive to UNOPTIMIZED.

Single-Threaded Run-Time System
The single-threaded run-time system is not available in Visual COBOL on Windows. Instead, both single-
threaded and multi-threaded applications run using the multi-threaded run-time system. This has no effect
on your existing applications. On UNIX, the single-threaded run-time system is available, so that
applications can link with third-party code.

Static-Linked Run-Time System
The static-linked run-time system is not available in Visual COBOL. Instead, you now link native code to
the shared or dynamic run-time system. This has no effect on your existing applications.

See Linking Native COBOL Code in the product Help.

16 | Upgrading to Visual COBOL 2.0 for Eclipse

Setting the Environment on UNIX
Before you start developing applications with Visual COBOL for Eclipse on UNIX you need to set the
environment. We recommend that you use the cobsetenv script to do this:

. /opt/microfocus/VisualCOBOL/bin/cobsetenv

Visual COBOL Co-existing with Earlier Micro Focus Products
If you have Visual COBOL and Net Express or Studio Enterprise Edition installed on the same machine,
you sometimes receive a run-time system error if either the COBCONFIG or COBCONFIG_ environment
variable is set when you run aVisual COBOL application the configuration file it refers to contains entries
that are not valid for Visual COBOL.

To work around this issue, ensure that Visual COBOL is not running and then modify the configuration file
by doing one of the following:

• If the invalid tunable is not needed by another application, remove it from the run-time configuration file.
• Add the following as the first line in the configuration file:

set cobconfig_error_report=false

• Unset COBCONFIG (or COBCONFIG_) or set it to another configuration file that does not contain the
invalid tunable for the particular session you are running in.

Restrictions and Unsupported Features
Some features in earlier Micro Focus products are not available in Visual COBOL. However there are
alternative techniques for many of these features.

Character-Mode Dialog System
Support for creating character-based user interfaces for applications that run in character environments is
available for Visual COBOL if you install the Character-Mode Dialog System AddPack, distributed for free
through the Micro Focus SupportLine Web site.

COBOL Services as Java and Web Services
COBOL services, such as Java interfaces and Web Services, created with the Interface Mapping Toolkit in
Net Express or Server Express run only under Enterprise Server within Micro Focus Server. They do not
run under COBOL Server.

CSBIND
CSBIND is a service package in Net Express, Server Express and Application Server that supports client/
server COBOL applications. It is not available in Visual COBOL.

DBMS Preprocessors
Earlier Micro Focus products supported DBMS preprocessor versions that are not supported in Visual
COBOL. For a list of currently supported DBMS preprocessors, see the Database Access Support with
Native COBOL topic.

Dialog System
Dialog System applications are not supported in Eclipse but you can upgrade the non-GUI components of
an application to Eclipse, and then recreate the GUI components using the GUI tools in Eclipse.

Enterprise Server
Enterprise Server and Server for SOA provide an execution environment for COBOL services and COBOL
application programs, including mainframe support for CICS, JCL, and IMS. They are not available in
Visual COBOL or COBOL Server.

Upgrading to Visual COBOL 2.0 for Eclipse | 17

http://supportline.microfocus.com

Form Designer
Form Designer is the Net Express tool for creating user interfaces for CGI-based Internet and intranet
applications. Form Designer and the HTML page wizard are not available in Visual COBOL.

In Visual COBOL for Eclipse, you can install one of the available plug-ins to replicate these features.

FSView
FSView is a utility for administering Fileshare servers. The FSView GUI is not supported in Visual COBOL.

Visual COBOL provides all the FSView functions through the command-line utility fsview. For more
information see File Handling Reference > FSView > FSVIEW Command Line in the product Help.

GNT Analyzer
GNT Analyzer is not available in Visual COBOL. It has been replaced by Test Coverage.

Host Compatibility Option (HCO)
Host Compatibility Option (HCO) is not supported in Visual COBOL.

Interface Mapping Toolkit
The Interface Mapping Toolkit is not supported in Visual COBOL.

INTLEVEL Support
The INTLEVEL directive is rejected by the Compiler in Visual COBOL.

An INTLEVEL of 1, 2, or 3 is no longer supported and causes compilation errors. Other values are
reserved for internal use and should not be used.

J2EE Application Servers
J2EE Application Servers are not supported by Visual COBOL.

NSAPI
There is no support for NSAPI in Visual COBOL.

Online Help System
Net Express provided the Online Help System for creating online help from character-based applications,
and displaying it on screen. It is not available in Visual COBOL and the Online Help System information file
type (.HNF) is not supported.

OO Class and Method Wizards
The OO Class and Methods wizards are not available in Visual COBOL. However, the run-time
components for the base and COM OO class libraries are available.

OpenESQL
In both Net Express and Studio Enterprise Edition, support is provided for Oracle OCI in OpenESQL.
Visual COBOL does not support Oracle OCI in OpenESQL.

OpenESQL Assistant

Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is a standard mechanism for sending and receiving electronic
communications in encrypted form. It is not currently supported in Visual COBOL.

18 | Upgrading to Visual COBOL 2.0 for Eclipse

Solo Web Server
The Solo Web server in Net Express enabled you to debug CGI-based Internet applications on the same
machine you used to develop them. It is not available in Visual COBOL.

In Visual COBOL, you need to use Apache2 or IIS servers for the CGI programs you create.

SQL Option for DB2
SQL Option for DB2, also known as XDB, is not supported in Visual COBOL.

Type Library Assistant
Type Library Assistant is not included in Visual COBOL but the run-time components for the COM and the
OO COBOL libraries are still available.

TX Series
The IBM TX Series product used to interface with Websphere in Net Express is not supported in Visual
COBOL.

UNIX Publish
The UNIX Publish feature is superseded by the remote development functionality in Visual COBOL for
Eclipse. You use Visual COBOL Development Hub, a remote development server to host your source code
and you use the Eclipse IDE on your local machine as the development interface.

With Visual COBOL, you store and develop your applications on a remote UNIX machine. You use a
Windows or Linux-based Eclipse client to connect to the remote machine and you compile and debug the
source code directly on it. Use Eclipse features such as the COBOL and Remote Systems Explorer
perspectives within the IDE to background check syntax as well as build and debug your COBOL
programs. As in other Micro Focus products, you use COBOL-specific projects to aid your everyday
development activities within the IDE. This provides familiar functionality for editing, compiling, and
debugging, complete with comprehensive COBOL Help.

For details, see Using Eclipse for Remote COBOL Development in the product Help.

Run-Time Technology Differences
Some technologies behave differently in Visual COBOL and this might affect how you upgrade existing
applications.

COM Interop
The tools to help create COM objects are not supplied with Visual COBOL. However, the COM run-time
components are supplied, so that COM is supported and your applications can interoperate with existing
COM objects.

Documentation about COM Interoperability is available on the Micro Focus SupportLine Web site as part of
the Net Express 5.1 documentation. See Programming > COM and COBOL in your product
documentation.

File Handling
The way you integrate your own security modules into Fileshare has changed. Also, the FILEMAXSIZE
setting is different for Visual COBOL and for Net Express and Server Express .

Using security modules

The way you integrate your own security modules (fhrdrpwd, fsseclog and fssecopn) into Fileshare
has changed.

In Visual COBOL, you no longer relink Fileshare but you need to supply your own separate files, which
are .dll files on Windows or shared objects on UNIX. For more information, see Writing Your Own

Upgrading to Visual COBOL 2.0 for Eclipse | 19

http://supportline.microfocus.com

FHRdrPwd Module, File Access Validation Module and Logon Validation Module in the File Handling
section of your product Help.

To use fsseclog and fssecopn, you need to link one or both of them into a cobfssecurity.dll or a
shared object and place on the search path. Fileshare will issue a message indicating that it has loaded
user security modules.

On UNIX, you no longer use fsclose to call Fileshare Manager. You need to use cobfsclose instead.

Sharing data files between applications built in Visual COBOL and others built using Net Express
or Server Express

If you have applications that access the same data files, all those applications should be built with the
same FILEMAXSIZE setting. However, applications built with Visual COBOL use a default setting of
FILEMAXSIZE=8 while those built in Net Express or Server Express use FILEMAXSIZE=4.

In Visual COBOL you need to set the FILEMAXSIZE setting in the file handler configuration file
(EXTFH.CFG). This ensures Net Express, Server Express, and Visual COBOL are all using the same
setting and that programs running under the Net Express or Server Express run-time systems do not
access the same files as programs running under the Visual COBOL run-time system.

Btrieve

Btrieve is the file handling system from Pervasive Software Inc. It is not supported in Visual COBOL.

Java and COBOL
The cobsje script is not available in Visual COBOL for Eclipse on UNIX. Visual COBOL uses the COBOL
run-time system to load JVM based on LIBPATH, LD_LIBRARY_PATH, SHLIB_PATH, JAVA_HOME etc.

Test Coverage
Visual COBOL supports Test Coverage from the command line only.

Test Coverage replaces GNT Analyzer, which was available in Server Express.

Editing and Debugging Differences
Much of the edit and debug functionality in Net Expressand Server Express is available in Visual COBOL,
but some of it has a different name or slightly different behavior. In addition there are some new features
such as background parsing.

Data Tools
The Net Express Data Tools are available as an AddPack for Visual COBOL for Eclipse on Windows, but
not on UNIX.

The Micro Focus Data File Tools AddPack includes the Data File Converter, Data File Editor, and Record
Layout Editor.

You can download the Micro Focus Data File Tools AddPack from the Micro Focus SupportLine site.

Debugging Native Object-Oriented COBOL
In Net Express you can examine an object while debugging OO COBOL and display the class that defined
the object and also other objects derived from that class. In Visual COBOL, you can also view the class
information of native OO COBOL but not while debugging.

Mixed Language Debugging
With Net Express you can debug mixed language applications. Visual COBOL does not fully support mixed
language debugging of native code.

To debug applications that contain programs in different languages, you need to debug the native COBOL
and the non-COBOL code separately.

20 | Upgrading to Visual COBOL 2.0 for Eclipse

http://supportline.microfocus.com

In Visual COBOL, you can debug mixed native COBOL and Java, however it involves a complicated setup.
Mixed-language debugging of native COBOL and C is not supported.

Program Breakpoints
Program breakpoints are breakpoints that stop execution each time a specified program or entry point
within the program is called. They are supported in Visual COBOL.

Remote Debugging
The Net Express animserv utility used for debugging programs remotely has been replaced by
cobdebugremote (Windows) or cobdebugremote32 (UNIX) (or cobdebugremote64 when debugging
64-bit processes) in Visual COBOL.

To debug locally-developed programs on a remote machine you must start cobdebugremote (Windows)
or cobdebugremote32 (UNIX) (or cobdebugremote64 when debugging 64-bit processes) before
communication can be established. See the Visual COBOL help for more information on cobdebugremote.

To debug remotely-developed programs on a remote machine:

• If you have developed a COBOL remote project on a machine using a local Eclipse installation and a
remote UNIX machine running Micro Focus Visual COBOL Development Hub, you use debug
configurations in the same way as locally-developed projects. However you do not need to start the
cobdebugremote (Windows) or cobdebugremote32 (UNIX) process (or cobdebugremote64 for a
64-bit process) or identify a port for it to listen on, merely select the remote project in the debug
configuration.

• To enable remote debugging using a COBOL Application debug configuration, you need to have an X
window implementation installed and running, so that the output of a remote application running on a
UNIX machine can be viewed on your local machine. You do not need X window for other debug
configuration types.

Source Pool View
The source pool view in Net Express showed all source files available in the project directory, regardless of
whether or not they are used in the current build type. This view is not available in Visual COBOL.

Tips: Eclipse IDE Equivalents to IDE Features in Net
Express
The following table shows Net Express IDE features and their corresponding equivalents and locations in
Eclipse.

Functionality In Net Express In Visual COBOL for Eclipse

Project Control

Project filename *.APP .cobolProj in Project directory

Add file to project All files in the project directory and its
subdirectories are automatically part
of the project. You can exclude
programs or subdirectories from a
build using the Build Action option
on the context menu.

Copybook path By default, all directories within a
project and their subdirectories are
included in the initial copybook
path.To make changes, click Project
> Project Properties > Micro Focus

Upgrading to Visual COBOL 2.0 for Eclipse | 21

Functionality In Net Express In Visual COBOL for Eclipse

COBOL > Build Path and select the
Copybook Paths tab.

Build settings for the project:

• COBOL
• Preprocessor
• Additional Directive

Right-click the project name and
select Properties, (or click Project >
Properties from the main menu).

Execution environment settings:

• General
• COBOL

The execution environment is
COBOL Server.

Debug settings:

• DateWarp
• Stored Procedures

DateWarp is present in the debug
launch configurations.

Editing

Suggest Word/Content Assist CTRL+G CTRL+Space

Locate F12 (or context menu Locate) F3 (or context menu Goto Definition)

COBOL Find CTRL+Shift+F12 (or context menu
COBOL Find)

CTRL+Shift+G (or context menu
Find References)

Compress
Tool bar compress (or context
menu Compress)

Double-click on an item to jump to the
line in the program.

Bookmark CTRL+F2 Click Edit > Add Bookmark.

Compiling

Single file Compile
CTRL+F7 (or click check mark)

Right-click a program name and
select Single File Compile.

Note: This applies to native
code only.

Build

F7 (or click build)

By default, Eclipse automatically
builds projects to keep them up to
date. You can also build on request.
To turn off the automatic build, click
Project > Build Automatically.

Build All ALT+B A Cleaning a project forces a rebuild.
To access this, click Project > Clean.

Debugging

Start Debugging Alt+D A Choose Debug or F11 Before
launching the session, create an
appropriate debug launch
configuration.

Stop Debugging Shift+F5 CTRL+F2 (or context menu
Terminate)

Restart Debugging Ctrl+Shift+F5 From the executable in the debug
stack view, right-click and select
Relauch from the context menu.

Run F5 CTRL+F11

22 | Upgrading to Visual COBOL 2.0 for Eclipse

Functionality In Net Express In Visual COBOL for Eclipse

Step
F11 (or click step)

F5

Step All Ctrl+F5
Resume on the debug toolbar.

Run Thru

F6 (or Step Over)

Run Return

F7 (or Step Return)

Run to Cursor Shift+F10 (or context menu) CTRL+R (or context menu Run to

Line)

Skip to Cursor CTRL+Shift+F10 ALT+F12, R (or Reset Execution

Point)

Skip Statement No equivalent. Use ALT+F12, R (or

Reset Execution Point)

Skip Return No equivalent. Use ALT+F12, R (or

Reset Execution Point)

Examine ' data item' Shift+F9 The Variables View automatically
shows variable values on the current
and previous lines.

Breakpoint set F9 Double click in the left margin to
toggle a breakpoint.

Conditional Breakpoint From the Breakpoints View, select a
breakpoint and edit the properties.

Break on Data Change Via list view To set a WatchPoint, double-click in
the margin of line containing a WS
item, or set it from the Outline View
context menu.

Upgrading from RM/COBOL®

There are a number of settings in Visual COBOL that are designed specifically to ensure that your existing
RM/COBOL source code can compile and run in Visual COBOL.

The Visual COBOL help includes information about how to enable compatibility with RM/COBOL in Visual
COBOL and convert your existing RM/COBOL applications. For more information, read Compatibility with
RM/COBOL in the Programming section of the help.

In addition, please note the following:

• If you compile an RM/COBOL application in Visual COBOL with the RM dialect, you must explicitly use
the standard COBOL calling convention to any programs that are not compiled for RM compatibility.
This affects calls to CBL_ or CGIX routines, but the RM C$ routines already use the RM calling
convention.

Upgrading to Visual COBOL 2.0 for Eclipse | 23

Appendix

Native COBOL Compared with Managed COBOL
Native COBOL and managed COBOL differ in how they compile and how the run-time management
services, such as security, threading and memory management are provided.

Managed COBOL for JVM compiles to Java bytecode, and native COBOL compiles to machine code. This
means that native COBOL has to be compiled for the operating system on which it is going to run, whereas
compiled managed COBOL can run on any platform.

For JVM managed code, the management services are provided by JVM. For native COBOL, the
management services are available in the operating system, and your code has to call the appropriate
services depending on the operating system. The management services are:

• The Java Runtime Environment (JRE).
• The Java API, which provides a large library of building blocks to simplify many application

programming tasks. It provides APIs for everything from dates and times to thread management. These
features are less useful for procedural COBOL programs, but once you have migrated them to
managed code, you can use them to add new features.

• Seamless interoperation of COBOL programs with programs in other managed languages.
• The ability to write object-oriented COBOL.

Building Native and Managed COBOL Applications

You use the IDE to develop, compile and debug your applications, for both native and managed code. You
can write new COBOL code or you can recompile existing COBOL as managed or native code, potentially
without any code changes.

You can deploy and further debug the application under the run-time system provided by COBOL Server.
JVM COBOL applications are deployed to the platform running the JVM.

Customer Feedback
We welcome your feedback regarding Micro Focus documentation.

Submit feedback regarding this Help

Click the above link to email your comments to Micro Focus.

24 | Upgrading to Visual COBOL 2.0 for Eclipse

mailto:DocsTeam@microfocus.com?subject=Upgrading to Visual COBOL for Eclipse Documentation Feedback

	Contents
	Upgrading to Visual COBOL 2.0 for Eclipse
	Licensing Changes
	Resolving Conflicts Between Reserved Keywords and Data Item Names
	Recompile All Source Code
	Upgrading from ACUCOBOL-GT
	Compiling Your ACUCOBOL-GT Applications in Visual COBOL
	Accessing Vision Indexed Files from Visual COBOL
	Library Routines
	Supported Features
	Restrictions and Unsupported Features

	Upgrading from Earlier Micro Focus Products
	Summary of Differences
	Compiling and Building Differences
	Output File Formats
	Compiler Directives
	Linking
	Called Programs and Dependencies
	File Handler
	Makefile Conversion
	SQL Compiler Directive Options
	XML PARSE Statement

	Run-time System Differences
	OpenESQL
	Single-Threaded Run-Time System
	Static-Linked Run-Time System
	Setting the Environment on UNIX
	Visual COBOL Co-existing with Earlier Micro Focus Products

	Restrictions and Unsupported Features
	Character-Mode Dialog System
	COBOL Services as Java and Web Services
	CSBIND
	DBMS Preprocessors
	Dialog System
	Enterprise Server
	Form Designer
	FSView
	GNT Analyzer
	Host Compatibility Option (HCO)
	Interface Mapping Toolkit
	INTLEVEL Support
	J2EE Application Servers
	NSAPI
	Online Help System
	OO Class and Method Wizards
	OpenESQL
	OpenESQL Assistant
	Secure Sockets Layer (SSL)
	Solo Web Server
	SQL Option for DB2
	Type Library Assistant
	TX Series
	UNIX Publish

	Run-Time Technology Differences
	COM Interop
	File Handling
	Java and COBOL
	Test Coverage

	Editing and Debugging Differences
	Data Tools
	Debugging Native Object-Oriented COBOL
	Mixed Language Debugging
	Program Breakpoints
	Remote Debugging
	Source Pool View

	Tips: Eclipse IDE Equivalents to IDE Features in Net Express

	Upgrading from RM/COBOL®
	Appendix
	Native COBOL Compared with Managed COBOL

	Customer Feedback

