
Step-by-step: the path
from COBOL to mobile
Creating an Air Miles Calculator
demo in Visual COBOL

START

THE MOVE TO MOBILE STARTS HERE
A step-by-step guide to developing mobile apps using Visual COBOL

If you think mobile is beyond the capabilities of COBOL technology, think again – it’s easy to
embrace mobile technology with Visual COBOL using this simple step-by-step guide.

As developers, we have to act fast to keep up with end user demands, one being the growth
in mobile use, and the corresponding demand for mobile access to applications. With Visual
COBOL, delivering great mobile apps doesn’t have to be complicated. Follow this guide,
download the sample code provided, and see how you can develop a new mobile application
based on your existing COBOL code.

We’ve documented the process
to show you just how easy it can be.

Get started now
See the step-by-step guide

STEP-BY-STEP GUIDE

Mobile is now a must-have

It wasn’t so long ago that mobile support
was considered a ‘nice-to-have’ option
for your application. Today, mobile is fast
becoming a must-have for applications.
Simply leaving it out of your next product
release may not be something you can
afford to do.

So where do you begin? It needn’t be a
daunting prospect – your existing COBOL
applications contain vast amounts of
functionality that you can expose as services
for a mobile application. There’s no need to
develop a complete new set of capabilities –
just use what already works well as the basis
of your new mobile application.

The toughest job is deciding which parts of
your current application you want to give
a mobile facelift. It’s best to consider the
overall application experience as it stands
today, and look for functionality that will be
of most value to a mobile user. That might
be a reporting function, a booking system
– whatever is most useful and works well
within a typical mobile interface. Do start
simply: a small but useful piece of code
can be used to build a pattern for future
expansion.

1. ��Decide what you
need to mobilize

1 of 3

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9Step 1

The first step in getting from COBOL to mobile is deciding which
parts of your current app you want to give a mobile facelift. Here’s
a simple COBOL program to get us started. It uses an indexed data
file for persistent storage.

1. �Decide what you
need to mobilize

STEP-BY-STEP GUIDE

2 of 3

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9Step 1

And all the business logic is contained within
the procedure division.

1. �Decide what you
need to mobilize

STEP-BY-STEP GUIDE

3 of 3

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9Step 1

2. ��Decide if it’s an
HTML5 or native
application

The pros and cons

There are several ways you can create
a mobile application: two of the most
common are writing a native app for the
device (such as an iPhone app), or creating
an HTML5 application that can be accessed
using the device’s web browser. There are
pros and cons to either approach. Usually,
native apps offer a richer user experience
on the device, but while an HTML5 app
might not be able to offer quite the same
look and feel as a native app, it makes up
for it in portability – HTML5 applications can

be accessed from a wide variety of different
devices allowing you to deliver a mobile
user experience across multiple devices,
much faster.

In our demo, we’re going to use HTML5 to
target multiple mobile devices. Since we’re
using web services to access the server-
side COBOL applications, you can reuse the
same web services to write a native app if
you choose to.

STEP-BY-STEP GUIDE

1 of 1

Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9Step 1 Step 2

3. �Identify the
COBOL code

Bring your application
functionality together

Once you’ve decided on the key functions,
isolate this code from the rest of the main
application. You might need to strip away
code to achieve this, especially if there is
an existing user interface in place. Now is
also a good time to identify any application
dependencies since these must be
available too (or deleted out of the code
if not required).

Your goal is to arrive at a callable API that
provides access to discrete functions for your
mobile application. Your existing application
may already have this API architecture in
place, in which case you won’t need to worry
about this. Otherwise, look to bring your
application functionality together under a
single program or series of programs that can
be called directly to provide the results.

Remember, web services are generally
stateless architectures – so you should treat
every invocation as the initial program call
and initialize elements, such as data items
and opening files, as you need them. SOA
approaches like REST pass state between
client and server within the HTTP request,
allowing you to pick up from where you last
left off for any given user request. You can
also take care of these aspects later on from
the comfort of an IDE.

You may also be wondering how to keep
data and data files separate from another
user request. Visual COBOL actually
provides call containers (we call them run
units) which run your procedural COBOL
programs in isolation from the same set of
programs that may be supporting another
user’s request.

STEP-BY-STEP GUIDE

1 of 3

Step 4 Step 5 Step 6 Step 7 Step 8 Step 9Step 1 Step 2 Step 3

3. �Identify the
COBOL code

You need to identify the core COBOL business logic which
represents the underlying functional capability you wish to make
accessible to mobile user – then isolate this business logic from the
rest of the main COBOL application.

STEP-BY-STEP GUIDE

2 of 3

Step 4 Step 5 Step 6 Step 7 Step 8 Step 9Step 1 Step 2 Step 3

This is a formula that calculates two points on the earth’s
surface. The data file used by the program contains a list of
airports and their locations. So it can tell you how far apart
one airport is from another.

3. �Identify the
COBOL code

STEP-BY-STEP GUIDE

3 of 3

Step 4 Step 5 Step 6 Step 7 Step 8 Step 9Step 1 Step 2 Step 3

4. �Select the right tools
for your architecture

Java or .NET based
infrastructure

The next stage is thinking about the
architecture of your application and the tools
you’ll need to do the job. First you need to
decide whether to base the application on
a Java or .NET based infrastructure (you may
already have an in-house standard defined).
Either way, Visual COBOL enables you to
compile your COBOL API directly to Java byte
code or Microsoft Intermediate Language
so it can run directly inside either the Java
Virtual Machine or the .NET CLR.

This means you can draw on tools in
JVM and .NET to enhance your mobile
application – here is what you’ll need:

A web server or application
server

The mobile client will be sending HTTP
requests to the COBOL system and these
need to be processed and returned as HTML
web pages for the client’s mobile browser.
If you’re a Java-based company and already
have a Java App Server available, use the
Java App Server, or consider an open source
solution such as Tomcat. [Link to: http://
tomcat.apache.org] If your architecture
preference is .NET you’ll need Microsoft

IIS installed. If you don’t have IIS installed,
Visual Studio includes a limited version you
can use to get started.

Portability

By choosing to build an HTML5 application,
the challenge of portability moves from the
device into the browser. While HTML5 offers
good coverage, we still need to think about
JavaScript for web programming. Fortunately,
it’s a problem the software industry has
addressed – there are now plenty of portable
JavaScript libraries you can use. In this
example, we’re utilizing a popular framework
called jQuery. The jQuery Mobile extensions
will provide us not only with a portable
JavaScript library, but also a rich, touch-
responsive user experience for the end users.

AJAX & JSON

The HTML5 application will need to
communicate with a server-side COBOL
service which we’ll enable using web
services. Web service requests are achieved
using Asynchronous JavaScript and XML (or
AJAX for short). The content of the request
will be transmitted using JavaScript Object
Notation (or JSON for short). APIs for both of
these capabilities are available within the
jQuery framework.

STEP-BY-STEP GUIDE

1 of 1

Step 5 Step 6 Step 7 Step 8 Step 9Step 1 Step 2 Step 3 Step 4

5. �Fire up your
IDE of choice

Now you can take advantage of the new features .NET and JVM
offer. This is Microsoft’s Visual Studio IDE which is used by
millions of developers worldwide – and you can use it for COBOL
development too. Alternatively, you can choose Eclipse as your IDE.

You can expect efficient development features like IntelliSense
or Content Assist, error markers, fast navigation and a wealth of
other tools customized for COBOL development – all inside what
has become the industry standard for software development on
Windows, Unix and Linux.

STEP-BY-STEP GUIDE

1 of 3

Step 6 Step 7 Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5

You can see the Editor is specifically designed for COBOL
development, with syntax colorization, the ability to jump
to locations in the code base using a mouse click, and
dozens of other features which bring COBOL development
into the modern age.

5. �Fire up your
IDE of choice

STEP-BY-STEP GUIDE

2 of 3

Step 6 Step 7 Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5

The IDE also prompts you with coding suggestions that help
you write code faster and with greater accuracy.

5. �Fire up your
IDE of choice

STEP-BY-STEP GUIDE

3 of 3

Step 6 Step 7 Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5

6. �Compile the code
in your IDE

Using the COBOL application code you previously identified
to provide the API, you can now create a project in the IDE,
and compile your code for .NET using Visual Studio or JVM
in Eclipse. In most cases, your procedural COBOL code can
compile quite simply without any changes.

STEP-BY-STEP GUIDE

1 of 4

Step 7 Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Our application uses a primitive character-based user
interface, which is very common for COBOL systems. It
will be revamped later in this process. By typing in LHR for
Heathrow and SFO for San Francisco, the program calculates
the distance between these two airports.

6. �Compile the code
in your IDE

STEP-BY-STEP GUIDE

2 of 4

Step 7 Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Now we want to tidy up the interface and access the
application from a mobile device. To do that you would
usually have to write a new program in C+ or VB for .NET
or Java for JVM. But even though our program is written
in COBOL, we can compile it for .NET just by changing a
compiler directive to ilgen – which generates Microsoft
Intermediate Language. So we now have a .NET assembly
which we can run and check.

6. �Compile the code
in your IDE

STEP-BY-STEP GUIDE

3 of 4

Step 7 Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

You can do the same for Java too, just by changing a
compiler directive to jvmgen which generates a Java
class which we can run using JVM. So Micro Focus COBOL
compiler technology allows deployment to .NET or JVM
platforms, without any rewrite to the original COBOL code.

6. �Compile the code
in your IDE

STEP-BY-STEP GUIDE

4 of 4

Step 7 Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

7. �Create the
airport application
user interface

This project in Visual Studio includes our airport program.
The user interface will be built using HTML5. Both Eclipse and
Visual Studio provide HTML design tools to help you build your
application UI. There are several alternatives to the standard
designers available that allow you to build a UI based on a
specific device form factor (the form factor of a mobile refers to
its size, shape, input mechanism, screen resolution, colour palette
and much more). The decision is yours as to which developer
toolset you choose – once you have decided you need to export
the HTML into your Eclipse or Visual Studio project.

STEP-BY-STEP GUIDE

1 of 3

Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

This is another project in Visual Studio which contains a C#
program and HTML5. This uses the COBOL program to provide
all the backend functionality. The HTML 5 pages also use a
JavaScript library (jQuery) to create a web app that runs in a
browser and gives access to the application from mobile devices
that support HTML5.

7. �Create the
airport application
user interface

STEP-BY-STEP GUIDE

2 of 3

Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

This is the completed interface with two new entry fields.
As you type into them, the C# web service is being called
by the browser to retrieve the list of matching airport
codes. Since we know longitude and latitude, we can also
provide a map of the two points.

7. �Create the
airport application
user interface

STEP-BY-STEP GUIDE

3 of 3

Step 8 Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

8. �Create a simple
COBOL web service
and deploy

Create a simple COBOL
web service

It’s now time to build the web service
itself. This is a thin layer of code that will
receive an incoming request and invoke
the COBOL program to perform the real
business processing. You can use Java or a
.NET language such as C# to implement the
web service API. Calling the COBOL code
from Java or C# is easy now that COBOL
is compiled using the same basic building

blocks as used in other languages. It’s easy
to integrate the two together – but you’ll
need to think about multi-user access.

COBOL programs are still procedural code, so
we need to make sure that they can handle
simultaneous access by many users at once.
Fortunately, there’s no need to re-architect
your code, you can use the run unit container
support within Visual COBOL to isolate one
user web service call from another.

STEP-BY-STEP GUIDE

1 of 2

Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

The C# code provides a simple web service that allows the
browser running on the device to dynamically update the page
with data from the COBOL program running on the web server.

To deploy, you connect the user interface with the web service
using AJAX calls. Whenever the user clicks a button or types a
character into an input field, AJAX calls are being sent from the
client to the server-side COBOL program to populate the UI with
results received from the COBOL application.

8. �Create a simple
COBOL web service
and deploy

STEP-BY-STEP GUIDE

2 of 2

Step 9Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

When it’s time to debug the application, a breakpoint can
be set in the IDE and you can step through the code from
C# into the backend COBOL program.

9. �Test the
mobile app

WHAT NEXT?

Watch the video showing how we built the app

Get started! Take a free Visual COBOL trial
and download the application code

STEP-BY-STEP GUIDE

1 of 1

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9

http://youtu.be/n0Snh1RJDHE
http://www.microfocus.com/mobileapp

