
Position Paper

Configuration Considerations
for NetIQ Secure API Manager
NetIQ Access Manager customers now have the opportunity
to extend their coverage to APIs. This position paper offers
configuration considerations for those assessing how
NetIQ Secure API Manager may benefit their environment.

Table of Contents
Configuration Considerations for NetIQ Secure API Manager .1
Inter-Application Interaction Moves to the Network .1
API Broker for Speed and Security . 3
Deployment Observations . 6
Conclusion . 16
About NetIQ by OpenText . 16

1

Configuration Considerations for NetIQ Secure API Manager

Configuration
Considerations for NetIQ
Secure API Manager
As microservices continues to expand its footprint across the
enterprise, the need for a new approach to speed and security
becomes more imperative . NetIQ Secure API Manager extends the
power of NetIQ Access Manager to APIs .

The way enterprise applications are designed, developed, delivered, and maintained
is rapidly evolving as the methods used to deliver extreme-scale, public-facing internet
applications are adopted by enterprise architects . A number of terms are used to describe
these methods, such as “Micro Services,” “Service Mesh,” and “Services-Based Architecture .”
They all refer to an architecture that has the following basic properties:

• Modularity: Functionality is implemented as discrete components that have well-defined
interfaces that allow for each type of component to be managed independently of other
component types .

• Composability: Components can be easily combined in new ways as additional business
functionality is required . Reusability and flexibility are inherent in the design of the
components .

• Scalability: Components are designed and managed so that additional instances of a
component can be deployed as needed .

Inter-Application Interaction Moves to the Network
All the possible details of this type of architecture is beyond the scope of this paper,
so we will describe a very simple example application that illustrates some of the challenges
involved and how NetIQ Secure API Manager by OpenText can be used to overcome these
challenges . Let’s start by further defining what a component is and describing some of
the common categories of components .

A “component” is a self-contained process or element of business logic that could be
running on virtually any platform or runtime . It is very common for new components to be
implemented within a container or “serverless” framework . But, especially in the Enterprise
environment, components are often built by exposing functionality from existing systems
or by reusing existing services .

“Micro Services,”
“Service Mesh,” and
“Services-Based
Architecture” all refer
to an architecture
that has the following
basic properties:
•  Modularity
•  Composability
•  Scalability

Configuration Considerations for NetIQ Secure API Manager

2

An “application” in this context is the collection of all the components required to deliver
the business functionality to the end user . From their perspective . it might seem like a single,
monolithic entity, but in reality it is composed of a number of components . Each component
could be part of multiple applications . For example, a component that enables you to look
up the current price of a company’s stock could be reused in many applications . This type of
application is sometimes called a composite application, since it is composed of independent,
discrete components .

The key component for a composite application is the “front-end client,” or user interface .
This can be a web application, a mobile app, or even a platform-specific client . Because the
bulk of the application’s functionality and business logic is implemented by the back-end
service components, this front-end client can be made remarkably simple . This simplicity
makes maintenance of the front-end client easier .

The term “service” or “microservice” describes a component that is small, independent,
and loosely coupled with other components . It performs a well-defined task and provides
services through a documented and managed API . Most microservices are accessed over
standard HTTP(S) network protocols . Because they are small and independent, they can be
implemented and managed in ways that aren’t practical in traditional monolithic applications .
Each microservice can be modified and scaled independently of other components of the
application . The acronym “API” (Application Programming Interface) is often used as a
generic reference to these services .

Mobile App or
Reactive/

Angular App

Microservice

Front-End
Client

Microservice Microservice

External
Service

Legacy
Service

Identity
Service

Legacy
Service

Figure 1. The use of purpose-built applications that interact directly with information sources create an access and
security nightmare .

The term “service” or
“microservice” describes
a component that is
small, independent,
and loosely coupled
with other components.
It performs a well-
defined task and
provides services
through a documented
and managed API.

3

Configuration Considerations for NetIQ Secure API Manager

One way to implement a service-based application would be to simply create a front-end
client (either a reactive web app or a mobile app) that makes calls directly to the services
needed by the application . In the example on the previous page, the application utilizes
legacy components, micro-services, and an externally provided service . It also uses an
Identity Service to authenticate users and provide information about them .

While this approach can certainly work, it has a number of issues:

1 . Each service might utilize a totally different API technology: some could be SOAP,
while others might be REST .

2 . Each of the services likely has its own authentication and authorization implementation,
so the front-end application would need to handle the complexity of authenticating with
each one .

3 . When the front-end client is the only point where the called services are all tied together,
it becomes very difficult to effectively monitor the performance of each application and
trace and diagnose issues .

4 . Dealing with all this complexity in the front-end client means that developing, testing,
and maintaining it becomes exponentially more difficult . Each time there is change
anywhere, the client would need to be updated .

These issues, and many others related to this type of implementation, will prevent you from
fully benefiting from a services-based architecture .

API Broker for Speed and Security
There are a number of approaches for resolving these issues and for reducing the complexity
of the front-end client . The primary solution is to add an API management gateway, or broker
component . The gateway will be used to:

• Consolidate calls to the back-end services .

• Take care of the differences in service implementation technologies .

• Enhance the ability to centrally monitor, troubleshoot, and secure the application .

One way to implement a
service-based application
would be to simply
create a front-end client
(either a reactive web
app or a mobile app)
that makes calls directly
to the services needed
by the application.

Configuration Considerations for NetIQ Secure API Manager

4

API Portal
(Publish/Store)

APIs

Browser

Developer

Mobile

Services

Identity Access
Management
Infrastructure

End User

API Management

API Gateway

NetIQ Secure API Manager (API Manager) by OpenText is an API management appliance that is
integrated with NetIQ Access Manager by OpenText to provide API management capabilities
that take full advantage of the robust authentication and authorization capabilities provided
by NetIQ Access Manager . The same infrastructure that is used to protect your existing web
applications can now be extended to protect APIs . Your existing federated authentication
can also be utilized . And with NetIQ Advanced Authentication by OpenText, you have the
capability to use strong, multi-factor authentication with your service-based applications .

Figure 2. Boilerplate configuration of NetIQ Secure API Manager

NetIQ Secure API
Manager (API Manager)
is an API management
appliance that is
integrated with NetIQ
Access Manager by
OpenText to provide
API management
capabilities that take
full advantage of the
robust authentication
and authorization
capabilities provided by
NetIQ Access Manager.

5

Configuration Considerations for NetIQ Secure API Manager

NetIQ Secure
API Manager

NetIQ Access
Manager

API Management
API Store
Rate Limiting
Protocol Translation
Orchestration/External Plugins
API Analytics

Security
Key Management
API Scopes
Signature Validation
Throttling
Alerting (To Audit/SIEM)

Publisher
Design and Prototyping
Publishing and Versioning
App Management
Grouping and Policies
Import and Discovery
Testing and Validation

Federation

Access Policy

Single Sign-On

Microservices

SaaS Apps

IoT Devices

Step-Up
Authentication

Enterprise
API-Based Apps

Legacy REST/SOAP
Services

Risk-Based Access

NetIQ Advanced
Authentication

Federation

Access Policy

Single Sign-On

Step-Up
Authentication

Risk-Based Access

Protected Services

NetIQ Secure API Manager consists of two major functional areas:

• The API Gateway provides the runtime functionality to processes service requests .
It enforces security, manages and limits API usage, and transforms requests and responses
to and from the back-end services . As it does this, it collects data for monitoring and for
analytics of API usage .

• The Lifecycle Manager is where APIs are implemented and managed . The Lifecycle
Manager handles the publication of new services, controls updates to existing services,
and, importantly, enables you to manage API retirement . Lifecycle Manager also collects
extensive data for monitoring and analytics .

Figure 3. Components of NetIQ Access Management for APIs

The two major functional
areas of NetIQ Secure
API Manager are:
•  API Gateway
•  Lifecycle Manager

Configuration Considerations for NetIQ Secure API Manager

6

API Gateway

Lifecycle
Manager

Applications Services

NetIQ Access
Manager

Application 1

Application 2

Application 3

Service 1

Service 2

Service 3

API
Database

Analytics
Database

API Store

Administrator

Security Usage

Analytics APIs

Throttling

API Publisher

Tra�c
Manager

API
Definitions

API
Authentications

Throttling
Events

API
Statistics

Figure 4. Functional breakout of NetIQ Secure API Manager

Deployment Observations
The example we will utilize is a Call Center application that enables the call center worker
to see a consolidated summary of information about a caller account . The information is
retrieved from services provided by NetIQ Identity Manager by OpenText, ServiceNow, and a
custom microservice that retrieves information from a legacy database . The application also
enables the worker to send an SMS message to the user, using the Twilio SMS service .

Notice that there is no separate application server dedicated to this application . The web
application is served as completely static content that can be served from any web platform
or even deployed locally . All of the display and business logic is built into the services and
the front-end client . Because of the “serverless” design, this application is easily scaled by
adding additional gateway and service nodes . The design also provides extremely flexible
options for fault tolerance and disaster recovery .

Notice that there is no
separate application
server dedicated
to this application.
The web application is
served as completely
static content that can
be served from any
web platform or even
deployed locally.
All of the display and
business logic is built
into the services and
the front-end client.

7

Configuration Considerations for NetIQ Secure API Manager

External Services

Twilio SMS
Service

ServiceNow
Service

Internal Services

NetIQ Identity
Manager Service

Custom
Microservice

Angular Web
Application

Front-End
Client

NetIQ Access
Manager

NetIQ Secure
API Manager

Security for our application is centrally enforced by NetIQ Secure API Manager . When the
front-end client loads, it makes service calls that have been configured to require authentication .
Secure API Manager redirects the user to NetIQ Access Manager, using the OAuth/OpenID
Connect protocol <callout or link to OpenID connect info>, where the user is authenticated .
Once authenticated, a token is returned to the client application and can be used for all future
service calls . How the user is authenticated is controlled by policies configured within NetIQ
Access Manager . We could use a simple user ID and password, multi-factor authentication,
or even federated authentication . The authentication method can also be made dynamic,
using the Risk-Based Authentication capabilities of NetIQ Access Manager . This integration
with NetIQ Access Manager is a key benefit to using NetIQ Secure API Manager .

There is no code required in the front-end client for user authentication, and neither
the front-end client nor the API Manager need ever have access to the user’s credentials .
All the complexity of user authentication and account management is centralized to NetIQ
Access Manager . This modular design simplifies application implementation, enhances
security, eliminates redundant silos of authentication, and drastically improves maintainability .

Now that we know how users are authenticated, let’s look at how authorization can be
enforced . If we want only call center supervisors to be able to send SMS messages, we can
configure NetIQ Secure API Manager to require a specific OAuth scope .

Figure 5. Call Center example

Secure API Manager
redirects the user to
NetIQ Access Manager,
using the OAuth/OpenID
Connect protocol
<callout or link to OpenID
connect info>, where the
user is authenticated.
Once authenticated,
a token is returned to
the client application
and can be used for all
future service calls.

Configuration Considerations for NetIQ Secure API Manager

8

The roles and scopes are defined in NetIQ Access Manager and then read by NetIQ Secure
API Manager . The NetIQ Secure API Manager administrator can then map each scope,
from which we can then configure a NetIQ Access Manager role policy to provide this scope .
For example, the policy could return a scope of “AllowSMS” when the user’s title is “Call Center
Supervisor .” This scope would be communicated to NetIQ Secure API Manager during
authentication and only users who possess that scope would be allowed to make the service
call to Twilio, which would send the SMS message . NetIQ Access Manager policies are
extremely powerful and flexible, making authorization within our application flexible as well .
NetIQ Secure API Manager takes full advantage of the powerful authorization policy engine
of NetIQ Access Manager .

NOTE: If you have multiple API endpoints, you can use one scope to control access to all of
the API endpoints. You would create a different scope for an API endpoint if you wanted a
different set of users to be able to access a specific API endpoint. Otherwise, it is a one-to-
one relationship between the API and the NetIQ Access Manager scope.

The flowchart below shows how NetIQ Secure API Manager evaluates authorization based
on the token scope values and the user’s NetIQ Access Manager roles . The user will only get
access if the needed scope was requested during authentication, was received in the token,
and then only if the user has the role associated to the scope .

NetIQ Secure API Manager
Gateway presents the access
token to the Token Validator.

The token validator obtains the
scope and roles associated with
the target API or API endpoint.

The token validator obtains the
roles that were associated with
the scope in the API definition.

Does the
access token
contain
the required
scopes?

Does the user
have all the
required
roles?

The token validator obtains
the scopes that are defined
in the access token.

The token validator obtains the
user’s roles from NetIQ Access
Manager using the access token.

Allow access if the checks of
the scope and roles match the
information in the access token.

No

Yes Yes

No

NetIQ Secure
API Manager

Gateway

Token
Validator

Defined
NetIQ
Access
Manager
Scopes

API
Definition

NetIQ
Access
Manager
Scope

API
Definition

NetIQ
Access
Manager
Scope

Deny the
client
access to
the API.

Deny the
client
access to
the API.

User

Roles

NetIQ Access
Manager

Identity Store

Client requests access to an
API and the request includes
the access token.

Apps

ServicesEnd User

Figure 6. Token scope

If you have multiple API
endpoints, you can use
one scope to control
access to all of the API
endpoints. You would
create a different scope
for an API endpoint if
you wanted a different
set of users to be able
to access a specific API
endpoint. Otherwise,
it is a one-to-one
relationship between
the API and the NetIQ
Access Manager scope.

9

Configuration Considerations for NetIQ Secure API Manager

The back-end service call to Twilio to send an SMS message requires authentication .
Doing this authentication from the front-end client application directly would require the
client code to have access to credentials for the organization’s Twilio service account .
NetIQ Secure API Manager offers us a better solution . The service call from the client to the
NetIQ Secure API Manager gateway is authenticated using OAuth/OpenID Connect to NetIQ
Access Manager, as described above . Then NetIQ Secure API Manager makes the back-end
service call to Twilio using the Twilio credentials that are configured only on the gateway .
NetIQ Secure API Manager transforms the request on-the-fly to provide the correct credentials
to the external service . A similar process is used for calling each of the other back-end
services, as each one might use a different authentication protocol or credentials . The ability
to centrally and securely manage this complexity is a key benefit of NetIQ Secure API Manager .

Another benefit to being able to transform a service request at the NetIQ Secure API
Manager gateway is that differences in the implementation technology of back-end services
can be hidden from the client . If, for example, the back-end service is implemented as a SOAP
service, NetIQ Secure API Manager can transform it into a REST service for the front-end client .
Now, the client has no need to have SOAP capability of its own . Once again, handling this
complexity using NetIQ Secure API Manager has simplified the implementation of the front-
end client and accelerated application development .

NOTE: In most cases, you can use either REST or SOAP to achieve the same outcome
(and both are infinitely scalable), with some differences in how you would configure it.
REST is the most common way organizations expose their API to the public, because SOAP
has components of application logic in addition to the data. Converting your SOAP calls to a
REST interface through NetIQ Secure API Manager increases your protection against attacks.

Figure 7. Adding NetIQ Secure API Manager protection to secure an API

In most cases, you can
use either REST or SOAP
to achieve the same
outcome (and both
are infinitely scalable),
with some differences
in how you would
configure it. REST is
the most common
way organizations
expose their API to
the public, because
SOAP has components
of application logic in
addition to the data.
Converting your SOAP
calls to a REST interface
through NetIQ Secure
API Manager increases
your protection
against attacks.

Configuration Considerations for NetIQ Secure API Manager

10

NetIQ Secure API Manager can limit the rate at which applications can call services . The rate
can be limited per application and a total transaction volume per API can also be enforced .
This can be used to prevent resources from being overutilized or it can be used to offer
differentiated levels of service . NetIQ Secure API Manager can also be configured to control
the flow of service calls to the back-end services . This can be used to smooth out utilization
so that back-end services are not overwhelmed and users experience smooth performance .
Caching of information from back-end services is also possible if the data in the response is
somewhat static .

Figure 8. Throttle API access to match your environment design

Building Out Our Test Environment
NetIQ Secure API Manager can be deployed as a single appliance for testing and
development . However, for production deployment, it is recommended that NetIQ Secure
API Manager components be deployed on separate appliances . At a minimum, the Database
Service should be deployed separately . An enterprise deployment where each component is
deployed separately is shown in the diagram on the following page In this example, even the
analytics component has its own appliance instance .

Such a deployment makes sense for a highly utilized system, but many deployments do not
require that level of resources . For the example application, we are going to assume that the
number of concurrent sessions will not exceed 400 and that the request rate will be less than
400 requests per second .

NetIQ Secure API
Manager can also be
configured to control the
flow of service calls to
the back-end services.
This can be used to
smooth out utilization so
that back-end services
are not overwhelmed
and users experience
smooth performance.

11

Configuration Considerations for NetIQ Secure API Manager

Access
Manager

Database

Lifecycle
Manager

External
Applications
and Services

L4 Switch
for API Gateway

External API
Developers

Internal
Applications
and Services

L4 Switch
for Identity
Provider

L4 Switch
for Analytics

L4 Switch
for Lifecycle

Manager

Internal API
Developers

NetIQ Secure
API Manager

Administrators

Analytics

API Gateway

Internet Internal NetworkDMZ

It is still a good idea to run the Database Service on its own appliance, so we will do that in
our example . This means that we will need a minimum of two appliances before we build
any redundancy into the system . There is a requirement for the application to be highly
available, so we will implement load balancing to multiple appliances, each running the
Lifecycle Manager and the Analytics components . These components support clustering and
failover . Cluster implementation requires that the load balancers be configured with session
persistence so that requests from the same client are routed to the same node, unless that
becomes unavailable . The nodes must also share a Network File System (NFS) mount so that
common deployed content and configuration is available to all nodes . We will use a highly
available NFS appliance to provide fault tolerance for the mounted file system . The Database
Service does not support clustering, so we will use VMware High Availability to ensure that
the service is always available . We will also periodically back up the database so that it can
be easily restored in case of disaster .

Figure 9. Components of a deployment

There is a requirement
for the application to
be highly available,
so we will implement
load balancing to multiple
appliances, each running
the Lifecycle Manager and
the Analytics components.
These components
support clustering
and failover.

Configuration Considerations for NetIQ Secure API Manager

12

The diagram below shows the deployed appliance and network configuration . One goal of
the selected design was to minimize the number of appliances required . Additional nodes
could be deployed to support high loads and we could choose to further segregate the
components if needed . The selected design should provide sufficient performance and
security for most implementations . We have chosen to illustrate an enterprise-based
deployment, but a cloud deployment is also possible . Please contact OpenText™ for
information about cloud deployment .

Front-End
Client

L4 Switch
for Identity
Provider

L4 Switch for
Lifecycle Manager,

API Gateway,
and Analytics

Internet Internal NetworkDMZ

Note that access to analytics
and management UI is limited

to internal IP addresses

NetIQ Secure
API Manager

Internal
Services

Appliance 1
Database
Service

Appliance

Enterprise
Backup

VM High
Availability

Fault
Tolerant NFS

Appliance

Appliance 2

NetIQ Access
Manager

ID Provider 1

ID Provider 2

Figure 10. Boilerplate network configuration

Another key benefit of
using the NetIQ Secure
API Manager gateway is
that it provides an easy
way to centrally collect
information about API
usage and performance.

13

Configuration Considerations for NetIQ Secure API Manager

Analytics and Monitoring
Another key benefit of using the NetIQ Secure API Manager gateway is that it provides an
easy way to centrally collect information about API usage and performance . NetIQ Secure API
Manager provides a number of built-in analytics functions to present this information to both
administrators and line-of-business users .

Figure 11.

NetIQ Secure API
Manager provides
a number of built-in
analytics functions
to present this
information to both
administrators and
line-of-business users.

Configuration Considerations for NetIQ Secure API Manager

14

Of course, the raw data is also available so that you can implement your own analytics,
if needed . The example below shows a graph of API utilization, enabling you to easily track
which APIs are consuming system resources .

Figure 12.

Tthe raw data is
also available so that
you can implement
your own analytics,
if needed.

15

Configuration Considerations for NetIQ Secure API Manager

NetIQ Secure API Manager also collects system performance data, enabling you to effectively
monitor and manage your system . Detailed information is captured about system resource
utilization and API performance . The example below shows a summary view of the system
performance .

Figure 13.

NetIQ Secure API
Manager also collects
system performance
data, enabling you to
effectively monitor and
manage your system.
Detailed information is
captured about system
resource utilization and
API performance.

Configuration Considerations for NetIQ Secure API Manager

16

Conclusion
NetIQ Secure API Manager extends your access and authentication environment to include
secure API delivery for all your secure integration needs . As organizations increasingly look
for new ways to leverage their digital assets to expand their business into more efficient
models, this simple example application has demonstrated how you can secure your
microservices-based applications . NetIQ Secure API Manager provides the control and central
point of administration needed to provide API manageability and improved implementation
time . It also offers a higher level of API security compared to traditional hardening practices .
Its seamless integration with NetIQ Access Manager makes NetIQ Secure API Manager the
obvious choice for existing customers to extend their access management architecture .

About NetIQ by OpenText
OpenText has completed the purchase of Micro Focus, including CyberRes . Our combined
expertise expands our security offerings to help customers protect sensitive information by
automating privilege and access control to ensure appropriate access to applications, data,
and resources . NetIQ Identity and Access Management is part of OpenText Cybersecurity,
which provides comprehensive security solutions for companies and partners of all sizes .

NetIQ Secure API
Manager provides the
control and central point
of administration needed
to provide API manage-
ability and improved
implementation time

Connect with Us
www .opentext .com

OpenText Cybersecurity provides comprehensive security solutions for companies and partners of all sizes . From prevention, detection and response to recovery, investigation and compliance,
our unified end-to-end platform helps customers build cyber resilience via a holistic security portfolio . Powered by actionable insights from our real-time and contextual threat intelligence,
OpenText Cybersecurity customers benefit from high efficacy products, a compliant experience and simplified security to help manage business risk .

762-000019-003 | O | 11/23 | © 2023 Open Text

https://www.opentext.com
https://www.linkedin.com/showcase/9022/
https://twitter.com/OpenTextSec

Accessibility Report

		Filename:

		7620019-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 2

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Skipped		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

