
Position Paper

Creating a Secure Software
Supply Chain You Can Trust
Be confident in everything that goes into the applications you
deliver to your customers and users by evolving the security of
your software supply chain. Protect the integrity of your software
and SDLC with precise identification, matching, and results from
proprietary research data on custom code and third-party risks.

Table of Contents
Introduction .1
The Problem with Supply Chains .1
A Multi-Prong Approach to Cyber Resilience Is Necessary . 3
Fitting the Parts Together . 4
Defending the Software Supply Chain . 5
Producing Secure Software . 6
Conclusion . 7

1

Creating a Secure Software Supply Chain You Can Trust

Introduction
In December 2021, researchers disclosed a critical vulnerability in Apache Log4J 2, a popular
library for logging errors and run-time information . Unlike vulnerabilities in applications,
however, the Log4J flaw affected software whose developers did not explicitly include the
component in their application . Research by Google at the time found more than 35,800
codebases, or artifacts, on the popular Maven repository affected by the vulnerability—
more than 8%, compared to a median of 0 .1% for the average advisory . In addition, the average
Log4J import occurred five dependencies down, meaning the component included a library
that included a library that included a library that included a library that used Log4J 2 .1

Such vulnerabilities—and the attacks that follow—are not uncommon . Approximately two
years earlier, Russian nation-state actors compromised the development and deployment
pipeline of network-management software provider SolarWinds, creating a backdoor in
a software update that some 18,000 customers—including US government agencies—
downloaded . The intelligence agency behind the hack used the foothold in those networks
to compromise at least 250 networks at high-value targets .2

The two attacks represent two facets of the software supply-chain security of which
developers need to be aware: Vulnerabilities in—or malicious attacks on—the components
used to build applications, and attacks against the software and service providers that have
privileged access to clients’ information . Developers who use components without auditing
their security run the risk of creating vulnerabilities in their own software and propagating
attacks through the ecosystem .

Ensuring that software and services used by enterprises are free from known vulnerabilities
requires a multi-prong strategy to lock down the myriad of processes and software
components that make up your software supply chains . Companies need to trust the
components and libraries used to create their own applications, track the provenance
of code through the supply chain, understand their suppliers’ security processes,
and conduct regular behavioral analysis on running software to make sure that the
code is not behaving maliciously .

The Problem with Supply Chains
Software supply-chain attacks have taken off in the past five years . Over the four years to
June 2019, software-composition analysis firm Sonatype documented 216 software supply-
chain attacks . The following year, the number of attacks topped 900, and the year after that,
the number of attacks jumped 650% to more than 12,000 .3

1 . https://security.googleblog.
com/2021/12/understanding-
impact-of-apache-log4j.html

2 . www.nytimes.com/2021/
01/02/us/politics/russian-
hacking-government.html

3 . www.sonatype.com/
resources/state-of-the-
software-supply-chain-2021

Over the four years to
June 2019, software-
composition analysis
firm Sonatype
documented 216
software supply-chain
attacks. The following
year, the number of
attacks topped 900,
and the year after
that, the number of
attacks jumped 650%
to more than 12,000.

https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://security.googleblog.com/2021/12/understanding-impact-of-apache-log4j.html
https://www.nytimes.com/2021/01/02/us/politics/russian-hacking-government.html
https://www.nytimes.com/2021/01/02/us/politics/russian-hacking-government.html
https://www.nytimes.com/2021/01/02/us/politics/russian-hacking-government.html
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021

Creating a Secure Software Supply Chain You Can Trust

2

In February 2021, a security researcher used typos in the names of common software
components and packages to demonstrate that mistyped library names in software can lead
to compromises .4 The researcher succeeded in spreading his code to more than 35 different
companies, including Microsoft and Apple, using three different languages in what he termed
a “dependency confusion” attack and others referred to as “namespace confusion .” By the
next month, more than 10,000 copycats were found on the Node Package Manager (NPM)
ecosystem, according to Sonatype, and Microsoft released a whitepaper on how to head off
the attack .5

In another supply-chain attack, a ransomware group used three vulnerabilities in Kaseya’s
Virtual System Administrator (VSA) servers to compromise a number of managed service
providers and then used that access to infect downstream clients with ransomware . The attack
showed the capability of software supply-chain compromises to become a force multiplier:
While fewer than 60 MSP customers had been exploited by the three-vulnerability exploit
chain, up to 1,500 companies who subscribed to those MSPs services were compromised .6

Two Prongs of Software Supply-Chain Attacks
A software supply chain can be long and complex . The chain extends from applications down
to open-source—or community-provided—components . The components can then include
additional layers of open-source components .

Overall, attacks on the software supply-chain fall into three broad categories: Compromising
the development pipeline, exploiting the software operations pipeline, and vulnerabilities in a
subcomponents or dependencies . An example of an attack against the development pipeline
includes dependency-confusion, where the attacker targets the software used by developers,
while development pipeline attacks include Keseya and Codecov . Finally, vulnerabilities in
dependencies and sub-components include Log4J and Spring4Shell .

And no matter where the vulnerabilities enter the software supply chain, maintainers and
companies are slow to realize the security issues . Malicious packages introduced to the
software supply chain were available for an average of 209 days before someone publicly
reported the vulnerability .7 Meanwhile, software developers tended to move slowly as well,
taking 205 days to deploy mitigations for vulnerabilities in their own software in 2021,
up from 197 days in 2020 .8 (Lets talk about our numbers) .

The result is that software supply-chain vulnerabilities are hard to detect for developers of
the packages and slow to be deployed by maintainers and downstream users, making them
an ideal vector for attackers and a difficult area of security for defenders .

4 . https://medium.com/@
alex.birsan/dependency-
confusion-4a5d60fec610

5 . https://azure.microsoft.
com/en-us/resources/3-
ways-to-mitigate-risk-using-
private-package-feeds/

6 . www.darkreading.com/
vulnerabilities---threats/
attacks-on-kaseya-servers-
led-to-ransomware-in-less-
than-2-hours/d/d-id/1341496

7 . https://arxiv.org/pdf/2005.
09535.pdf (pg . 11)

8 . www.zdnet.com/article/
average-time-to-fix-
critical-cybersecurity-
vulnerabilities-is-205-
days-report/

A software supply chain
can be long and complex.
The chain extends
from applications
down to open-source—
or community-provided—
components. The
components can then
include additional
layers of open-source
components.

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://azure.microsoft.com/en-us/resources/3-ways-to-mitigate-risk-using-private-package-feeds/
https://azure.microsoft.com/en-us/resources/3-ways-to-mitigate-risk-using-private-package-feeds/
https://azure.microsoft.com/en-us/resources/3-ways-to-mitigate-risk-using-private-package-feeds/
https://azure.microsoft.com/en-us/resources/3-ways-to-mitigate-risk-using-private-package-feeds/
https://www.darkreading.com/vulnerabilities---threats/attacks-on-kaseya-servers-led-to-ransomware-in-less-than-2-hours/d/d-id/1341496
https://www.darkreading.com/vulnerabilities---threats/attacks-on-kaseya-servers-led-to-ransomware-in-less-than-2-hours/d/d-id/1341496
https://www.darkreading.com/vulnerabilities---threats/attacks-on-kaseya-servers-led-to-ransomware-in-less-than-2-hours/d/d-id/1341496
https://www.darkreading.com/vulnerabilities---threats/attacks-on-kaseya-servers-led-to-ransomware-in-less-than-2-hours/d/d-id/1341496
https://www.darkreading.com/vulnerabilities---threats/attacks-on-kaseya-servers-led-to-ransomware-in-less-than-2-hours/d/d-id/1341496
https://arxiv.org/pdf/2005.09535.pdf
https://arxiv.org/pdf/2005.09535.pdf
https://www.zdnet.com/article/average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days-report/
https://www.zdnet.com/article/average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days-report/
https://www.zdnet.com/article/average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days-report/
https://www.zdnet.com/article/average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days-report/
https://www.zdnet.com/article/average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days-report/

3

Creating a Secure Software Supply Chain You Can Trust

A Backstabber’s Knife Collection
A seminal paper, Backstabber’s Knife Collection: A Review of Open Source Software
Supply Chain Attacks, written by a team of European researchers collected 174 packages
used in supply-chain attacks against open-source software between November 2015
and November 2019 . The researchers found that each software ecosystem—the Python
Package Index (PyPI), the Node Package Manager (NPM), and RubyGems—all had
malicious code inserted into the supply chain . However, malicious modifications to PyPI
components tended to be slower to be detected, while RubyGems tended to be quicker .
In addition, malicious RubyGems tended to execute their payload during the runtime
phase, while PyPI modifications tended to execute their malicious code during the
installation phase . NPM packages split fairly evenly between the two tactics .

A Multi-Prong Approach to
Cyber Resilience Is Necessary
Most companies have targeted different pieces of the software supply chain, focusing on
software security, vendor security, or monitoring their applications for malicious activity .

The need for securing the software supply chain is no longer an option . In May 2021,
the Biden administration announced Executive Order on Improving the Nation’s Cybersecurity
(14028),9 which calls for removing barriers to information sharing (Section 2) and enhancing
ways to improve supply-chain security (Section 4) . Among the improvements, companies must
work with the National Institute of Standards and Technology (NIST) and other government
agencies to create a plan . Already, NIST has released a draft document10 that calls for Software
Bill of Materials (SBOMs) and enhanced security assessments of vendors . The effort will likely
spread beyond the US, as global companies will have to meet the requirements to do
business with the government agencies .

Securing Your Supply Chain Requires a Multi-Prong Approach
Just as the software supply chain is an interrelated combination of complex systems, the effort
to secure the entire ecosystem requires a multi-disciplinary approach . Companies should
bring together teams from software development, operations, legal, human resources, and
business to create a holistic approach to producing resilient software .

1 .  Not just technology, but people and process
A single—or even a group of technologies—will not solve any company’s software
supply chain problems . An employee culture of embracing cybersecurity along with
documented—and constantly updated—processes are both required for the foundation of
a secure software supply chain .

 9 .  www.whitehouse.gov/
briefing-room/presidential-
actions/2021/05/12/
executive-order-on-
improving-the-nations-
cybersecurity/

10 .   www.nist.gov/itl/executive-
order-14028-improving-
nations-cybersecurity/
software-security-supply-
chains-software-1

Just as the software
supply chain is an
interrelated combination
of complex systems,
the effort to secure
the entire ecosystem
requires a multi-
disciplinary approach.
Companies should bring
together teams
from software
development,
operations, legal, human
resources, and business
to create a holistic
approach to producing
resilient software.

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://paperswithcode.com/dataset/backstabbers-knife-collection
https://paperswithcode.com/dataset/backstabbers-knife-collection

Creating a Secure Software Supply Chain You Can Trust

4

2 .  Protect the software development pipeline
While a secure development lifecycle (SDLC) is a start, companies should go beyond a
pipeline designed to catch inadvertent vulnerabilities toward a resilient approach that
is designed to catch changes by untrusted actors and code that behaves in anomalous
ways . NIST published a document to guide developers in auditing their software—
the Recommended Minimum Standards for Vendor or Developer Verification (Testing)
of Software—which aims to help firms secure software used by US federal agencies .

3 .  Produce high-quality software
Companies need to make sure that vulnerabilities are quickly detected before software
is deployed and that patches applied in a timely manner . Static scanners, dynamic
tests on staging servers, and interactive application security testing can all help catch
vulnerabilities before they debut in publicly released software . Currently, only about half of
development teams use software composition analysis (SCA) tools and static application
security testing tools (SAST), while fewer—about four in ten—firms use infrastructure-as-
code (IaC) or web application scanners .11

4 .  Respond quickly to vulnerabilities
Even with overlapping checks and balances, vulnerabilities will get deployed to products
and services . In those cases, companies should have a process in place to quickly identify,
confirm, and remediate vulnerabilities .

Fitting the Parts Together
To support a security of the software supply chain, the technology components need to work
together . OpenText™ Cybersecurity has a portfolio of products that are tightly integrated and
address the different facets of supply-chain security:

• Fortify by OpenText™—A set of tools for securing custom, open source and third party
software using SAST and DAST for secret scanning to detect hard coded supply chain
credentials, protect the pipeline with CI/CD as code, identifying 3rd party client side JS in
web apps and more

• Debricked—This machine learning-powered tool helps development teams use open
source in a smart, efficient and secure way . Through automation and clever, customizable
policy setups Debricked helps your organization take a proactive, rather than reactive,
approach to open source vulnerabilities, license compliance and project health .

• NetIQ by OpenText™—The NetIQ Risk Service by OpenText protects against high-risk
authentication and application access requests by initiating strong or multi-factor
authentication when risk scores indicate that a higher level of identity verification is
needed . This can be an added layer of defense .

• Voltage by OpenText™—Discovers, analyzes, and secures sensitive data across hybrid
multi-cloud IT, protects data privacy, and helps businesses satisfy compliance requirements .

11 .  Snyk State of Open Source
Security Report, p . 21 .

To support a security
of the software supply
chain, the technology
components need
to work together.
Cybersecurity has a
portfolio of products
that are tightly
integrated and address
the different facets of
supply-chain security.

https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/recommended-minimum-standards-vendor-or
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/recommended-minimum-standards-vendor-or
https://www.microfocus.com/en-us/cyberres/application-security
https://debricked.com/
https://www.microfocus.com/en-us/cyberres/identity-access-management
https://www.microfocus.com/en-us/cyberres/data-privacy-protection

5

Creating a Secure Software Supply Chain You Can Trust

• ArcSight by OpenText™—AI powered Security Information and Event Management (SIEM)
platform that iaccelerates effective detection and response to known and unknown threats .

• Security analytics, AI & ML—Automation is critical to be able to keep up with attackers,
so Cybersecurity has incorporated machine automation and learning technologies into
its products . ArcSight Intelligence by OpenText™, for example, identifies and prioritizes
anomalies through user entity and behavior analytics UEBA) that may uncover threats,
such as data exfiltration and attacks on DevOps accounts .

Defending the Software Supply Chain
Current software development could not exist with the open-source ecosystem . Almost all
software (98%) tested by security firms makes use of open-source components, with an
average of three-quarters of every codebase consisting of open-source code . This widely
available ecosystem has also attracted software developers from all parts of the world and
from non-technical careers .

The result is an ecosystem that is a necessary foundation for competitive software
development, but at the same time, is prone to defects, errors and vulnerabilities . For that
reason, companies need to not only worry about their own software development pipeline
but external sources of code as well .

Hardening the Fault Points in the Supply Chain
A critical step for organizations to avoid incorporating flawed or compromised code into
their own products is the ability to spot anomalies in open-source components and projects .
In many cases, open-source maintainers do not have the time nor funding to enforce a
secure development lifecycle on their project . Spotting warning signs—such a long time to
remediate issues—can help companies to decide whether using code from such a project
is worth the risk .

Watch Out for the Easiest Attacks
At present, the most common attempted attack is dependency confusion . The ease with
which attackers can create malicious project to take advantage of typing errors has lead
to thousands—if not tens of thousands—of software project specifically created to fool
developers . While the attack has a very low success rate, like phishing and spam, it only
takes one user at a company to give attackers a beachhead from which to compromise
other systems . In addition, online tutorials can be used as a way to propagate the names of
malicious dependencies, taking advantage of novice developers .

Spotting warning
signs—such a long time
to remediate issues—
can help companies to
decide whether using
code from such a project
is worth the risk.

https://www.microfocus.com/en-us/cyberres/secops

Creating a Secure Software Supply Chain You Can Trust

6

Focus On—Detecting Anomalies in the Software Ecosystem
Debricked tracks information about open-source projects to score the projects on their
security as well as give developers a measure of the project’s popularity . Other metrics that
can be used as a guide to the stability of a particular project include a score for the contributors .

Producing Secure Software
Knowing the current types of attacks targeting the software supply chain can inform security
improvements for the development and deployment of software, but security needs to be
well integrated into the process to avoid creating bottlenecks in the creation of applications
and new features . Some simple process changes can have outsized security impacts while
maintaining developer momentum .

Provide Developers the Information They Need
The shift-left movement has placed more responsibility for software security on developers,
but the focus on security should be implemented in a way as to minimize any disruption to
development . Security information and guidance, for example, should be presented as early
as possible to both alert the developer to poor security patterns and defects that create
vulnerabilities, but also as a way to train developers to recognize such coding patterns
in the future .

This extends to the supply chain as well . Security metrics should be presented whenever
developers import libraries or include components, so they have information about the
security and stability of open-source components and don’t import vulnerable components
into their software, essentially propagating exploitable code . In addition, the company’s
overall policy on component characteristics should be available through a dashboard to
provide opinionated conclusions on the projects behind the code .

Remediation: Helping Enterprises Get the Control Back
Open-source components being shared among different applications need to be remediated
as soon as possible . There are different strategies followed by enterprises to remediate and
cover the exposure of these identified vulnerabilities .

1 .  Upgrade Component(s): In most cases, reducing the risk will involve deploying an upgrade
recommended by the tool itself . However, Upgradation can be tricky sometimes since
it requires the business-critical system to be halted for a given time window . So think of
removing the Vulnerable component that is not actually being used

2 .  Patch Component(s): In some cases, Developers will go ahead and fix the vulnerability
by forking the Open-Source component master branch and creating a new release
path for the revised and secured component which can be moved to white-list and
approved software, the best practice is to perform SAST on the code now owned by the
development team .

Knowing the current
types of attacks targeting
the software supply
chain can inform security
improvements for
the development and
deployment of software,
but security needs to be
well integrated into the
process to avoid creating
bottlenecks in the
creation of applications
and new features.

7

Creating a Secure Software Supply Chain You Can Trust

3 .  Disable the vulnerable process or function: this might be the easiest way to reduce the
risk but if the vulnerable component does not impact the business functionality, it can also
be disabled .

Block Known Malicious Attacks, White List Approved Software
The shift-left movement has placed more responsibility for software security on developers,
but the focus on security should be implemented in a way as to minimize any disruption to
development . Security information and guidance, for example, should be presented as early
as possible to both alert the developer to poor security patterns and defects that create
vulnerabilities, but also as a way to train developers to recognize such coding patterns
in the future .

Conclusion
Software supply chains form a complex ecosystem that allow companies to innovate
quickly by using common components . The strength of the ecosystem, however, can also
be a weakness if attackers are able to compromise the open-source projects, the resulting
components, or the vendors on which companies rely for their software and services .

Software development teams should use information about open-source projects to determine
how well they follow software security best practices, monitor the projects for anomalies
that could indicate a compromise, and analyze any imported code for vulnerabilities and
potentially malicious changes .

Next Steps
Companies should:

• form a process to generate whitelist request(s) by the application teams and approval for
the new component(s) by the security teams .

• form an interdisciplinary team to set policy for using external software in a way that allows
innovation but reduces security risk,

• educate themselves on software supply chain risk,

• identify all open-source components used in current software projects to create software
bills of materials (SBOMs),

• determine whether those software projects and components meet the current policy
using metrics, and

• monitor for software changes that could indicate the source has been compromised .

• security advocate awareness towards the approved or whitelist components

Learn more at
www.microfocus.com/en-us/cyberres/use-cases/securing-the-software-supply-chain

Turning Data into
Security Information
It is not enough to
track the provenance
of a particular software
component and the
trustworthiness of the
contributors behind the
software. Companies
need a way to detect
changes in the code
of which the project
maintainers may not
be aware and changes
in runtime behavior
that may indicate
maliciousness. Fortify
gives companies the
capability to analyze
static code for defects
and vulnerabilities, as
well as test runtime
behavior dynamically.

https://www.youtube.com/watch?v=o40dLkqoB1U
https://debricked.com/select/
https://www.microfocus.com/en-us/cyberres/use-cases/securing-the-software-supply-chain

Connect with Us
www .opentext .com

OpenText Cybersecurity provides comprehensive security solutions for companies and partners of all sizes . From prevention, detection and response to recovery, investigation and compliance,
our unified end-to-end platform helps customers build cyber resilience via a holistic security portfolio . Powered by actionable insights from our real-time and contextual threat intelligence,
OpenText Cybersecurity customers benefit from high efficacy products, a compliant experience and simplified security to help manage business risk .

762-000078-003 | O | 11/23 | © 2023 Open Text

https://www.opentext.com
https://www.linkedin.com/showcase/9022/
https://twitter.com/OpenTextSec

Accessibility Report

		Filename:

		7620078-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 3

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed manually		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

