
Flash Point Paper

Ensure Application
Performance
Amid Chaos

Introduction to Chaos Testing
Chaos testing is a subset of Chaos Engineering
devoted to testing. Chaos Engineering is the
discipline of experimenting with a system to
build confidence in the system’s capability to
withstand turbulent conditions in production.
By ensuring the system can withstand chaotic
fluctuations in its state you can be confident
in its ability to handle unexpected real-world
issues. This could include things like infra-
structure, network, or power failures at various
points in the system.

It’s hard to imagine a software development
team that doesn’t do any testing. Whether unit,
integration, functional, performance, security
or even manual—software testing is widely
accepted as a best practice in the software

development lifecycle (SDLC). Usually, compa-
nies plan and create test exercises ahead of
time. They often involve applying frequent test
cases to expected events. However, the bugs
and vulnerabilities that set the stage for major
system failure, exploitation, or intrusion result
from unexpected events.

The primary difference between ordinary test-
ing and chaos testing is the scale and the re-
sults. Chaos testing tries to ensure that even in
the event of chaos, our software systems keep
functioning and watching client requests, even
if entire parts of the system crash.

This article walks you through chaos testing,
how it works, and why and how you should
use it.

Questions to Ask Yourself
About Chaos Testing:

 ■ What is chaos testing?

 ■ What is the difference between chaos
testing and chaos engineering?

 ■ What kind of challenges can be
solved by chaos testing?

 ■ What are some examples of real-
world applications that use chaos
engineering today?

 ■ Can you simulate chaos attacks on
your systems?

 ■ Are there any tools available today
that embrace chaos testing?

https://www.microfocus.com/en-us/products/uft-one/overview
https://www.microfocus.com/en-us/portfolio/performance-engineering/overview
https://www.microfocus.com/en-us/cyberres/application-security

Flash Point Paper
Ensure Application Performance Amid Chaos

2

How Chaos Testing Works
Chaos testing involves the simulation or in-
jection of unusual events into the system.
We should do this proactively—before these
events have a chance to cause unsched-
uled downtimes or other impacts on the user
experience.

Chaos testing works by hammering applica-
tions with unusual use cases, such as sending
malformed inputs to a web app, overloading an
app with traffic, or deliberately trying to trigger
common vulnerabilities and exposures (CVEs)
or well-known attacks like SQL injection.

Typically, we want to define key performance
indicators (KPIs) to track the system’s steady
state in production. So, we define an accept-
able blast radius before actively trying to break
or disrupt the test target, so as not to cause a
decline in user experience.

KPIs do differ, but typically the goals are to re-
duce the rate of failures caused by changes,
reduce time spent putting out fires, and limit
the duration of any downtime. As you might
imagine, an effective monitoring system is im-
portant in these tests. For example, does the
monitoring system alert key personnel before,
during, and after threshold breaches? How
about incident logs? Are they generated in
real-time, are they tamper-proof, and do they
catch all issues?

We might want to confirm that automated
mitigation, such as horizontal and vertical
scaling, works correctly in our CI/CD pipeline.
Are more Virtual Machines (VMs) or containers
spun up when there are increasing concurrent
requests? Is more computing power applied
to a VM in the event of a heightened and pro-
longed processing complexity? What happens
when system clocks in financial workloads are

deliberately unsynchronized—does the sys-
tem stop? Is the customer erroneously debited
or credited? Are transaction receipts delivered
late or not at all?

This sort of testing gives greater insight into
the interventions or upgrades that could
strengthen the system.

Why Use Chaos Testing?
Try as we might, we cannot predict every
production mishap. From an infrastructure
misconfiguration, a single-line error from a
developer, a slow microservice that impacts
system-wide latency, or even simple human
error—if something has the potential to go
wrong, then it probably will. that is why we test,
but why specifically use chaos testing?

It Improves the Resilience of the System
One reason to use chaos testing is that it helps
to determine resilience in production by delib-
erately experimenting with uncommon failures
to see if the system’s failback and failover
mechanisms in place work. Typically, testing in-
volves checking every issue your team usually
encounters, excluding the unexpected. Chaos
testing fills that hole and uses the information
from your experiments to strengthen your sys-
tem against such failures.

It Reduces System Downtime
Chaos engineering helps you to understand
system behavior during the event of a failure
and helps to uncover the path to recovery of
sub-systems. This means that you can swiftly
figure out and possibly avoid or mitigate major

3www.microfocus.com/opentext

IT failures thereby reducing the loss of valuable
production time, paying huge sums in dam-
ages, or impacting investor confidence.

You Get to Know the Weaknesses
of the System
Chaos testing is important because it gen-
erates new knowledge about the system’s
behaviors, properties, and performance. A
distributed system usually tends to have more
failure points due to its complexity and large-
scale nature. Chaos testing tries to discover
those failure points and identify what happens
in the case of resource or object unavailabil-
ity. In cases where you are hesitant to try new
technologies because of reliability concerns,
chaos testing is important because it identi-
fies weak points and measures actual system
behavior in real-time under the conditions in
which you’re interested.

Your Team Is Better Prepared
For employers, an accidental benefit of chaos
testing is that it reflects team incident re-
sponse preparedness. The testing exercise is
an opportunity to address process gaps and
how emergency approvals work when needed,
appraise technical knowledge and soft skills
under pressure, and find out if you should re-
train. This is especially important when your or-
ganization comes under statutory regulatory
assessment for certification or endorsement.

It Improves Customer Satisfaction
A final benefit of chaos testing is that it pre-
vents service disruption by early identification
of potential outages, which in turn improves the
user experience.

How to Start Chaos Testing
The first step for successful chaos testing is
to acknowledge that you need it. Regardless

of the ability and foresight of your team, there
are going to be unexpected issues arise with
your system. Chaos testing is important for
strengthening the resiliency of your system
and giving you the confidence to know that
whatever happens, your system responds well.
Once your team understands the importance
of Chaos testing, here’s how you start.

You could start by using open source tools like
Chaos Monkey or ChaosBlade. Chaos Monkey
only has the shutdown attack and a spinnaker
and MySQL requirement. It works by send-
ing a shutdown request to any random virtual
machine (VM) in your architecture at any point
within a set time. Before the attack launches,
you might want to check whether there’s an
ongoing outage. To do this, you must write a
custom Go script. This tool has severe lim-
its for modern-day testing, which is why it is
not popular.

In contrast, Chaos Blade provides multiple
attack types—including resource consump-
tion, packet loss, and more—for testing bare-
metal, containers, and Kubernetes workloads.
It also supports fault injection at the application
level for C++, Java, and NodeJS applications.
Examples of these types of faults are delayed
code execution, arbitrary code insertion, and
memory value modification. Sadly, it is not GUI-
supported, the documentation is in Chinese, it
requires coding knowledge, and the learning
curve is steep.

The most prolific single chaos testing tool
currently available is Gremlin. It features a wide
range of attack vectors that you can apply to
VM, containers, and Kubernetes workloads
at resource, state, and network strata over
an intuitive GUI. For example, you can choose
to simulate a state test for VM by selecting

preferred options on a web form, like killing
a system process, changing system time, or
doing an abrupt shutdown of the VM. Other
tests for VM involve throttling resources like
memory, CPU, and disk space, adding latency
to matching traffic, or blocking access to DNS
servers at the network layer.

The best way to properly test your system is
to integrate chaos testing into your existing
test suite. While chaos testing is great, it is
only useful as a tool in your testing tool belt.
Consider the recent integration of Gremlin
to the OpenText™ LoadRunner Professional
performance testing tool for example—it al-
lows you to connect your Gremlin account via
API keys to LoadRunner Professional and run
Gremlin in-app. This allows you to add chaos
testing to an already solid testing approach.

LoadRunner Professional is meant for use on-
premises for local teams. It works by simu lating
Virtual Users (Vusers) which generate load
by making application requests to your test
 target. The target must receive and acknowl-
edge a response within a set timeframe to pass
the performance test. If your team is globally
distributed on-premises or is migrated to the
cloud, the OpenText™ LoadRunner Enterprise
and the OpenText™ LoadRunner Cloud, re-
spectively, are best suited for your needs.

Some examples of test targets on the
LoadRunner family of performance testing
tools are ERP apps like Oracle E-business or
SAP, mobile, web, web 2.0, protocols like DNS,
SMTP, FTP; Database (ODBC), and remote ac-
cess (RDP, Citrix)—but there are many more.

Conclusion
The essence of chaos testing is to strengthen
system resilience. It’s not meant to re-
place the testing you already do—instead, it

https://www.microfocus.com/opentext
https://www.gremlin.com/chaos-monkey/?ref=blog
https://chaosblade.io/
https://spinnaker.io/
https://www.gremlin.com/
https://community.microfocus.com/adtd/b/sws-alm/posts/chaos-engineering-within-performance-engineering
https://www.microfocus.com/en-us/products/loadrunner-professional/overview
https://www.microfocus.com/en-us/products/loadrunner-enterprise/overview
https://www.microfocus.com/en-us/products/loadrunner-cloud/overview

complements your existing testing tools by
finding bugs and vulnerabilities that companies
usually miss.

 ■ Increase service resiliency and ability to
react to failures.

 ■ Apply chaos principles continuously.
 ■ Create and organize a central chaos

engineering team.
 ■ Follow best practices for chaos testing.

If you’re ready to start chaos testing, consider
LoadRunner Professional, which integrates
Gremlin for all your performance and chaos
testing needs.

Learn more at
www.microfocus.com/en-us/products/
loadrunner-professional/overview
www.microfocus.com/opentext

Connect with Us
OpenText CEO Mark Barre nechea’s blog

284-000014-001 | O | 06/23 | © 2023 Open Text

https://www.microfocus.com/en-us/products/loadrunner-professional/overview
https://www.microfocus.com/en-us/products/loadrunner-professional/overview
https://www.microfocus.com/en-us/products/loadrunner-professional/overview
https://www.microfocus.com
https://blogs.opentext.com/category/ceo-blog/
https://twitter.com/OpenText
https://www.linkedin.com/company/opentext

Accessibility Report

		Filename:

		2840014-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 1

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed manually		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

