
 Flash Point Paper

 The Future of Dev in a
Disconnected World
The Future of Dev in a
Disconnected World
The nature of software development has
changed over recent years. With DevOps, CI/
CD, Agile development, multithreading applica-
tion development, and remote teams, software
development has achieved greater delivery
 velocity. But quick delivery is only one part of
the puzzle.

Useful applications require high-quality soft-
ware that solves business problems. Modules
that are delivered quickly but require rework
defeat the purpose of DevOps. Organizations
need to not only implement new tools and
techniques to reach maximum value, but also
to ensure everyone has access to the same
information.

The Shift from “Job Done”
to “Value Realized”
Strategic alignment is more important than
ever. Since work is accomplished by teams
of developers, often in separate locations, the
challenge of keeping everyone on the same
page is even more critical. Everyone needs to
row in the same direction and to the same beat.

Most DevOps tooling focuses on what work
needs to be done but not on why it is being
done. When software teams don’t understand
why they are doing a task, or how their work
integrates with that of other team members,
they may not focus on the right thing at the
right time. Even more importantly, they may de-
velop software that, while functionally correct,
only solves a subset of the business needs it
was supposed to satisfy.

Consider a payment application. The intent is
to obtain payment for the product and have the
customer receive what they intended to order.
Suppose the developer chooses to create a
simple payment screen without allowing the
customer to review the order. In that case, the
code may satisfy the functional objective of
allowing payment while not satisfying the cus-
tomer’s actual need to verify their order and
make a payment on a single screen. When cus-
tomers don’t have a final opportunity to catch
and correct potential mistakes in their orders, it
can lead to returns and increased costs.

Keeping dev teams up to date on the whys of
each project requires creating and maintain-
ing visibility to objectives and key performance
indicators (KPIs), including how they align with
the overall strategy. Dashboards that show
progress on module goals and business goals
help teams focus on what is essential and en-
sure they deliver business value.

Agility is also key to DevOp’s effectiveness.
Change is a constant in today’s business
 environment. Development tools that keep
pace with that change and keep teams in
the loop are essential. When team members
communicate for developers to incorporate
changes as early as possible in the develop-
ment lifecycle, it minimizes the cost of making
these changes and improves the overall qual-
ity of the finished product. Development alone
does not incur the cost of changes. The cost
also increases with delay in achieving the soft-
ware’s business value.

How to Shift from “Job Done”
to “Value Realized”:

 ■ Not everyone will be working on the
same thing at the same time, or even
within the same tools. Make sure
everyone is aligned with a clear vision
on what you’re aiming to accomplish.

 ■ Keep cross-functional teams on the
same page with a way collaborate
and communicate effectively.
This collaboration must be visible,
accessible, and consistently available
to all members of the team.

 ■ Emphasize quality from end-to-
end with clear quality metrics and
determine how you’ll test to ensure
these measures are met during the
development lifecycle.

Flash Point Paper
The Future of Dev in a Disconnected World

2

Focus on Integrating and Automating
While it has always been essential to keep IT and
business teams on the same page, the mod-
ern development environment has increased
its importance. More detail on what the busi-
ness requires and more coordination with and
across teams is necessary. Cross-functional
teams go a long way to creating higher quality
software products, but only when they collabo-
rate and communicate effectively.

This collaboration must be visible, accessible,
and consistently available to all members of
the team. Important information and updates
must be seen by everyone, rather than buried
in a blizzard of email, text messages, or meet-
ing notes.

Collaboration demands a single source of the
truth that brings information together without
consuming excess time, manual duplication,
and data entry. It must be easy for team mem-
bers to find the information they need.

Development teams use a variety of tools to
accomplish their goals. This is especially true
in teams that are geographically separated
and brought together for a particular project.
Development teams can bring their own tool-
sets as long as they eventually integrate. This
situation means that developers must inte-
grate goals, progress, and project dependen-
cies in order to eliminate bottlenecks and see
the whole picture.

High-level portfolio management tools such as
OpenText™ Project and Portfolio Man age ment
can integrate out-of-the-box with Agile tools,
including OpenText™ ALM Octane, OpenText™
Agile Manager, CA Rally, Jira, VersionOne, and
other popular tools. These features integrate
without disrupting what the development
teams are already doing. The integration au-
tomatically provides visibility into all business
goals, resource allocations, value drivers, and

project portfolios across the entire organiza-
tion, without the overhead of manually re-en-
tering information to keep multiple systems in
sync. The key is integrating the information flow
between development and business without
slowing down either one.

In the wake of the COVID-19 pandemic, more
teams are discovering how to work together
without being in the same physical space.
Messaging and teleconferences have replaced
walking across the office to chat. Teams each
find their own ways to use technology to work
together, determining their own processes and
tools for collaboration. Automating the integra-
tion of those tools is key to flexible intra-team
collaboration. Providing this flexibility is more
than just allowing work from home. It’s about
allowing your team to use the tools they want
without sacrificing visibility or having discon-
nected and outdated information.

Incorporating Testing and Quality
Throughout the Application
Development Lifecycle
Testing and quality are important through-
out the application development lifecycle.
Ensuring that the product meets its require-
ments is not just testing whether the software
conforms to technical specifications. Quality
brings in the functional aspect of the software.
Does it conform to expected measures of busi-
ness functionality?

Measuring quality starts with developing qual-
ity metrics and testing whether these mea-
sures are met during the development lifecycle.
Quality metrics are a necessary part of quality
management. They take the customers’ needs
and translate them into measures to be applied
to the software function and performance.
Applying these measures as checkpoints dur-
ing development, not merely at the end, can im-
prove software quality and avoid costly rework.

To help understand how to emphasize quality
throughout the development process, consider:

 ■ Shift-left quality testing: building quality into
the software from the initial design stage.

 ■ Shift-right quality testing: monitoring
software in production to catch quality
issues impacting customers.

Shifting left refers to bringing quality as far back
as possible in the initial design phase. Software
development shouldn’t begin with the state-
ment, “You start coding. I’ll go find out what
the business wants.” Quality begins with col-
laboration of all key teams and stakeholders in
the development effort. The shift-left approach
should apply to the development process as
a whole, and not occur as a signal event. It
shouldn’t be the sole responsibility of quality
assurance (QA) testers.

Shifting right refers to improving the software
after release to the customer. While shift-left
testing fixes problems detected by quality re-
views in the development process, shift-right
testing looks to remediate unknown or un-
knowable issues once the software is placed
in the users’ hands. These are issues like:

 ■ Will the user be locked out of their home if
their Wi-Fi or power goes out?

 ■ Does a device’s software have security
vulnerabilities when connected to other
devices on the network?

Simply put, shift-right testing determines how
well software performs when exposed to real-
world combinations of environmental factors.

Collaboration and communication between
all key participants in the software lifecycle is
essential. Different perspectives reduce the
number of unknowns and make the software
more robust, effectively catering to a variety
of situations.

Standardizing tools and processes is a nec-
essary part of the development process. This

https://www.microfocus.com/products/alm-octane/overview

includes being able to capture, analyze, and
preserve information during the product life-
cycle. Developers, especially those working
remotely, must be able to learn about issues
impacting development. Tools need to channel
information to the appropriate people to avoid
losing actionable information in the communi-
cations stream.

Automating development and quality pro-
cesses prevents mistakes that would cause
rework and remediation expenses. Tools that
automate information capture and use keep
everyone focused on the right goals and help
eliminate the “I didn’t see that email” problem.

Conclusion
Dev teams are increasingly disconnected
physically. The COVID-19 pandemic didn’t
create the trend toward work from home and
distributed teams but it certainly accelerated
this trend. Good tooling and processes have
always been necessary to keep teams aligned
with the business and its goals, but they have

become more critical with development and
business teams working remotely.

To make sure products not only meet their
technical specifications but also their real-
world functional goals, teams must have strong
communication processes and robust quality
testing. Teams and their tools should never
be isolated or disconnected. Everyone work-
ing on a product must be kept up to date on
its functionalities and the value it’s meant to
provide—not to mention inevitable changes
along the way. Then, the right product can be
delivered quickly and successfully.

Learn more about PPM and ALM Octane and
how they work together to enable businesses
to automate and manage their development
process from top to bottom and end to end.

Learn more at
www.microfocus.com/devops
www.microfocus.com/opentext

Providing flexibility is more than just allowing work from
home. It’s about allowing your team to use the tools

they want without sacrificing visibility or having
disconnected and outdated information.

Connect with Us
OpenText CEO Mark Barre nechea’s blog

284-000013-001 | O | 06/23 | © 2023 Open Text

https://www.microfocus.com/en-us/products/ppm-it-project-portfolio-management/overview
https://www.microfocus.com/en-us/products/alm-octane/overview
https://www.microfocus.com/devops
https://www.microfocus.com
https://blogs.opentext.com/category/ceo-blog/
https://twitter.com/OpenText
https://www.linkedin.com/company/opentext

Accessibility Report

		Filename:

		2840013-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 1

		Passed manually: 1

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

