
Guide

Fortify WebInspect  
Automation Workflows
Fortify WebInspect automation workflows use build automation tools  
to manage the dynamic scanning ecosystem, including QA testing  
and cloud deployments. 
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Automation Allows Tests to Be Run  
Simultaneously and at Scale
One of the goals of Securing DevOps (DevSecOps) is to build security testing into the 
development process. Integrating automated security testing makes it simpler for developers, 
QA staff, and security teams to work in sync across silos. Security testing can be part of the 
testing stack with similar frequency and integration as unit, integration, compatibility,  
and performance testing. 

Dynamic analysis (DAST), combined with static analysis (SAST), 
provides more thorough coverage, but automating dynamic is more 
complex. You can either build your own tech stack, or borrow a 
framework. This guide helps you accelerate your automation by using 
existing test automation scripts/frameworks that other enterprises 
have already created as part of their DevOps practices. 

Automating Fortify WebInspect by OpenText into existing DevOps 
systems and processes allows security tests to be run simultaneously 
and at scale. 

Disclaimer: This information is provided as part of a community effort 
to share approaches to automation. The information is provided as  
a guidance and is not an endorsement for any particular solution. 
There may be no Fortify QA and Support for content within this page. 

Fortify WebInspect Automation—General Workflow
Automation workflows use a build automation tool that manages the 
scanning ecosystem via the following steps:

A.	� Security team sets up the security scanning steps as a “security 
task” that is called after a build and after app deployment, via the 
build automation tool.

B.	� Development teams submit code changes to the build automation 
tool and after the set operational period, the security task is 
triggered after the build and app deployment is complete.

C.	� On completion of the security task, the automation tool is set up  
to either pass or fail the build job based on the security risk 
defined by the security team.

D.	� The security vulnerability findings are captured in Fortify Software 
Security Center (SSC) by OpenText, from where they can be 
optionally moved to bug repositories via the integrations available 
on Fortify SCC. 

Maven Plugin for Fortify WebInspect
1) Instantiate a Fortify WebInspect proxy, 2) route the traffic from 
integration tests, 3) save the proxy traffic as a workflow macro 
(and shut down the proxy), 4) configure a new scan, and 5) run 
the scan. 
•	 https://github.com/rsenden/fortify-integration-maven- 

webinspect/tree/webinspect-maven-plugin-2.1

https://github.com/rsenden/fortify-integration-maven-webinspect/tree/webinspect-maven-plugin-2.1
https://github.com/rsenden/fortify-integration-maven-webinspect/tree/webinspect-maven-plugin-2.1
https://github.com/rsenden/fortify-integration-maven-webinspect/tree/webinspect-maven-plugin-2.1


3

Fortify WebInspect Automation Workflows

Basic Security Task—Fortify WebInspect
1.	� Health check the Fortify WebInspect sensor to ensure the scanner 

is available to schedule a scan.

2.	� Call the Fortify WebInspect REST API/ or command line to initiate 
a scan. This involves passing the necessary URL, settings file and 
login information.

3.	� Polling the sensor to check the status of scan and trigger the next 
steps on scan completion.

4.	� On scan completion, export findings as an FPR to a server 
containing Fortify Client and upload to Fortify SCC via the  
Fortify Client. 

Figure 1. Basic Security Task—Fortify WebInspect

WebBreaker
Target solves Dynamic Application Security Test Orchestration 
(DASTO) with WebBreaker tool on GitHub. This open-source 
project utilizes WebInspect to provide greater agility and 
flexibility to deliver improved integration into the SDLC pipeline, 
Git workflows, etc.
•	 https://github.com/target/webbreaker

https://github.com/target/webbreaker
https://github.com/target/webbreaker
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Figure 2. Basic Security Task—Fortify ScanCentrall DAST

Basic Security Task—Fortify ScanCentral DAST
Fortify ScanCentral DAST by OpenText enables orchestration  
and automation of dynamic security scans at a new level.  
Fortify ScanCentral DAST enables the operation of hundreds or  
even thousands of scans efficiently. We now have a platform that 
existing Fortify WebInspect Enterprise customers can migrate to,  
as well as interoperate with Fortify ScanCentral SAST by OpenText. 
The ability to scan multiple applications at once with Fortify 
ScanCentral further keeps security from being a bottleneck and 
impacting the velocity of development.

Proxy and QA Automation
Automation can utilize artifacts generated during QA functional  
tests (for example Selenium scripts to automate WI scans).  
The advantage of this approach is:

A.	� The functional testing often involves a sequence of actions that  
have a business logic associated with them, whereas it is impossible 
to model from a blind Fortify WebInspect automatic crawl.

B.	� The possibility to utilize the login sequence used during the 
functional testing and not create a separate Fortify WebInspect 
Login Macro. This involves configuring settings to exclude the 
login page from WI crawl or audit, and also that a logout doesn’t 
occur during security scan.
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Figure 3. QA Security Task—Fortify WebInspect

QA Security Task—Fortify WebInspect
Add these steps to the Basic Security Task—Fortify WebInspect:

1.	� Spinning up a WI proxy via REST API and replaying the captured  
QA artifact to generate a traffic file. The traffic file is then saved  
as a WebMacro.

2.	� Using Command line/ REST API to modify default settings file.  
The settings file is overridden ] a Workflow macro saved from the 
traffic file in step 1.

Useful Links for Automation
1.	 �FoD BugTrackerUtility. Fully automated command-line utility 

for batch submission of Fortify SCC and Fortify on Demand 
vulnerabilities to various external systems. 
•	 https://github.com/fod-dev/FoDBugTrackerUtility/tree/

processrunner-bugtracker-root-3.2

2.	 �Fortify WebInspect APIs
•	 http://<hostname:port>/webinspect/swagger/ui/index#/

3.	 �Maven repository for Fortify-related artifacts
•	 https://github.com/rsenden/FortifyMavenRepo

https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
http://<hostname:port>/webinspect/swagger/ui/index#/
https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
https://github.com/rsenden/FortifyMavenRepo


6

Fortify WebInspect Automation Workflows

Figure 4. QA Security Task—Fortify ScanCentral DAST

QA Security Task—Fortify ScanCentral DAST
1.	� Same additional steps as for WI. For customers who don’t have 

access to WI desktop to spin up a proxy, download a license-free  
instance of a proxy available at the Fortify product line Marketplace. 

2.	� After creating a settings file, the process of initiating a scan 
involves additional steps found in the Creating Scan Guide. 
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Automation in the Cloud
Another use case is automation in the cloud by deploying the sensors 
for WI, and dynamically scaling the sensor installation around the 
scale of application security testing under process.

1.	� Security team accesses the scan request pipeline and determines 
scaling/descaling of N Sensors. Assign licenses based on this 
requirement. 

2.	� Security teams use the general workflow described in the general 
workflow and then loop through steps 1 and 2.

Figure 5. Cloud Security task—Scaling for Fortify WebInspect sensors

Cloud Security Task—Scaling for 
Fortify WebInspect Sensors
1.	� A Fortify WebInspect installation MSI is stored in cloud storage and 

ready for deployment. [call location: cloud_memory]

2.	� Security team calls the cloud API to create a windows instance  
and uses the command line of the instance (C_Instance) to do a 
headless installation of Fortify WebInspect sensor from location:  
cloud_memory. 

3.	� Necessary settings and macro files are deployed over the 
instance.

4.	� A scan is triggered in the command line (C_Instance) using  
the REST APIs of Fortify WebInspect in that instance.

5.	� On scan completion, export findings as an FPR to a server 
containing Fortify Client and upload to Fortify SCC via the  
Fortify Client. 
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Figure 6. Cloud Secuirty Task—Scaling for Fortify ScanCentral DAST Sensors

Cloud Security Task—Scaling for  
Fortify WebInspect Enterprise Sensors
Fortify ScanCentral DAST is a scalable architecture that enables 
Horizontally Scaling through multiple containerized versions of Fortify 
WebInspect (known as Sensors) that can parallel process JavaScript, 
DOM Rendering, and other activities. Horizontally Scaling enables 
dramatically reduced scan times without permanently dedicating 

resources. As a result, Fortify ScanCentral DAST can scan very large 
applications in a fraction of the time, which enables integration 
into CI/CD pipelines and shifting left. Fortify SCC can be used for 
onboarding an application, scheduling scans, and setting limits on 
scan parameters. All of this is done through a Dockerized deployment, 
enabling you to have multiple sensors.

Learn more about dynamic application 
security testing software.
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