
Guide

Fortify WebInspect
Automation Workflows
Fortify WebInspect automation workflows use build automation tools
to manage the dynamic scanning ecosystem, including QA testing
and cloud deployments.

2

Fortify WebInspect Automation Workflows

Automation Allows Tests to Be Run
Simultaneously and at Scale
One of the goals of Securing DevOps (DevSecOps) is to build security testing into the
development process. Integrating automated security testing makes it simpler for developers,
QA staff, and security teams to work in sync across silos. Security testing can be part of the
testing stack with similar frequency and integration as unit, integration, compatibility,
and performance testing.

Dynamic analysis (DAST), combined with static analysis (SAST),
provides more thorough coverage, but automating dynamic is more
complex. You can either build your own tech stack, or borrow a
framework. This guide helps you accelerate your automation by using
existing test automation scripts/frameworks that other enterprises
have already created as part of their DevOps practices.

Automating Fortify WebInspect by OpenText into existing DevOps
systems and processes allows security tests to be run simultaneously
and at scale.

Disclaimer: This information is provided as part of a community effort
to share approaches to automation. The information is provided as
a guidance and is not an endorsement for any particular solution.
There may be no Fortify QA and Support for content within this page.

Fortify WebInspect Automation—General Workflow
Automation workflows use a build automation tool that manages the
scanning ecosystem via the following steps:

A.	� Security team sets up the security scanning steps as a “security
task” that is called after a build and after app deployment, via the
build automation tool.

B.	� Development teams submit code changes to the build automation
tool and after the set operational period, the security task is
triggered after the build and app deployment is complete.

C.	� On completion of the security task, the automation tool is set up
to either pass or fail the build job based on the security risk
defined by the security team.

D.	� The security vulnerability findings are captured in Fortify Software
Security Center (SSC) by OpenText, from where they can be
optionally moved to bug repositories via the integrations available
on Fortify SCC.

Maven Plugin for Fortify WebInspect
1) Instantiate a Fortify WebInspect proxy, 2) route the traffic from
integration tests, 3) save the proxy traffic as a workflow macro
(and shut down the proxy), 4) configure a new scan, and 5) run
the scan.
•	 https://github.com/rsenden/fortify-integration-maven-

webinspect/tree/webinspect-maven-plugin-2.1

https://github.com/rsenden/fortify-integration-maven-webinspect/tree/webinspect-maven-plugin-2.1
https://github.com/rsenden/fortify-integration-maven-webinspect/tree/webinspect-maven-plugin-2.1
https://github.com/rsenden/fortify-integration-maven-webinspect/tree/webinspect-maven-plugin-2.1

3

Fortify WebInspect Automation Workflows

Basic Security Task—Fortify WebInspect
1.	� Health check the Fortify WebInspect sensor to ensure the scanner

is available to schedule a scan.

2.	� Call the Fortify WebInspect REST API/ or command line to initiate
a scan. This involves passing the necessary URL, settings file and
login information.

3.	� Polling the sensor to check the status of scan and trigger the next
steps on scan completion.

4.	� On scan completion, export findings as an FPR to a server
containing Fortify Client and upload to Fortify SCC via the
Fortify Client.

Figure 1. Basic Security Task—Fortify WebInspect

WebBreaker
Target solves Dynamic Application Security Test Orchestration
(DASTO) with WebBreaker tool on GitHub. This open-source
project utilizes WebInspect to provide greater agility and
flexibility to deliver improved integration into the SDLC pipeline,
Git workflows, etc.
•	 https://github.com/target/webbreaker

https://github.com/target/webbreaker
https://github.com/target/webbreaker

4

Fortify WebInspect Automation Workflows

Customer Application
Landscape Release Cycle CI/CD Pipeline Cyclic

Counters for a Week
Enterprise DAST
via ScanCentral

< 50

< 100

< 500

1000+

Humongous

Controller

Small Compute Pool

Sensor N Sensor N

Medium Compute Pool

Sensor N Sensor N

Large Compute Pool

Sensor N Sensor N

Planned

Unplanned

Periodic

Ad-Hoc Fixes

Delayed

Proprietary Apps

COTS Apps

Legacy Apps

Homegrown Apps

Vendor Apps

Figure 2. Basic Security Task—Fortify ScanCentrall DAST

Basic Security Task—Fortify ScanCentral DAST
Fortify ScanCentral DAST by OpenText enables orchestration
and automation of dynamic security scans at a new level.
Fortify ScanCentral DAST enables the operation of hundreds or
even thousands of scans efficiently. We now have a platform that
existing Fortify WebInspect Enterprise customers can migrate to,
as well as interoperate with Fortify ScanCentral SAST by OpenText.
The ability to scan multiple applications at once with Fortify
ScanCentral further keeps security from being a bottleneck and
impacting the velocity of development.

Proxy and QA Automation
Automation can utilize artifacts generated during QA functional
tests (for example Selenium scripts to automate WI scans).
The advantage of this approach is:

A.	� The functional testing often involves a sequence of actions that
have a business logic associated with them, whereas it is impossible
to model from a blind Fortify WebInspect automatic crawl.

B.	� The possibility to utilize the login sequence used during the
functional testing and not create a separate Fortify WebInspect
Login Macro. This involves configuring settings to exclude the
login page from WI crawl or audit, and also that a logout doesn’t
occur during security scan.

5

Fortify WebInspect Automation Workflows

Figure 3. QA Security Task—Fortify WebInspect

QA Security Task—Fortify WebInspect
Add these steps to the Basic Security Task—Fortify WebInspect:

1.	� Spinning up a WI proxy via REST API and replaying the captured
QA artifact to generate a traffic file. The traffic file is then saved
as a WebMacro.

2.	� Using Command line/ REST API to modify default settings file.
The settings file is overridden] a Workflow macro saved from the
traffic file in step 1.

Useful Links for Automation
1.	 �FoD BugTrackerUtility. Fully automated command-line utility

for batch submission of Fortify SCC and Fortify on Demand
vulnerabilities to various external systems.
•	 https://github.com/fod-dev/FoDBugTrackerUtility/tree/

processrunner-bugtracker-root-3.2

2.	 �Fortify WebInspect APIs
•	 http://<hostname:port>/webinspect/swagger/ui/index#/

3.	 �Maven repository for Fortify-related artifacts
•	 https://github.com/rsenden/FortifyMavenRepo

https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
http://<hostname:port>/webinspect/swagger/ui/index#/
https://github.com/fod-dev/FoDBugTrackerUtility/tree/processrunner-bugtracker-root-3.2
https://github.com/rsenden/FortifyMavenRepo

6

Fortify WebInspect Automation Workflows

Figure 4. QA Security Task—Fortify ScanCentral DAST

QA Security Task—Fortify ScanCentral DAST
1.	� Same additional steps as for WI. For customers who don’t have

access to WI desktop to spin up a proxy, download a license-free
instance of a proxy available at the Fortify product line Marketplace.

2.	� After creating a settings file, the process of initiating a scan
involves additional steps found in the Creating Scan Guide.

7

Fortify WebInspect Automation Workflows

Automation in the Cloud
Another use case is automation in the cloud by deploying the sensors
for WI, and dynamically scaling the sensor installation around the
scale of application security testing under process.

1.	� Security team accesses the scan request pipeline and determines
scaling/descaling of N Sensors. Assign licenses based on this
requirement.

2.	� Security teams use the general workflow described in the general
workflow and then loop through steps 1 and 2.

Figure 5. Cloud Security task—Scaling for Fortify WebInspect sensors

Cloud Security Task—Scaling for
Fortify WebInspect Sensors
1.	� A Fortify WebInspect installation MSI is stored in cloud storage and

ready for deployment. [call location: cloud_memory]

2.	� Security team calls the cloud API to create a windows instance
and uses the command line of the instance (C_Instance) to do a
headless installation of Fortify WebInspect sensor from location:
cloud_memory.

3.	� Necessary settings and macro files are deployed over the
instance.

4.	� A scan is triggered in the command line (C_Instance) using
the REST APIs of Fortify WebInspect in that instance.

5.	� On scan completion, export findings as an FPR to a server
containing Fortify Client and upload to Fortify SCC via the
Fortify Client.

Fortify WebInspect Sensor

Fortify
WebInspect
Container

Fortify
WebInspect

InstalledFortify ScanCentral DAST Docker Containers

GLOBAL
SERVICE

LIM API

Fortify Software
Security Center Fortify Software

Security Center DB

Fortify ScanCentral
DAST DB

Figure 6. Cloud Secuirty Task—Scaling for Fortify ScanCentral DAST Sensors

Cloud Security Task—Scaling for
Fortify WebInspect Enterprise Sensors
Fortify ScanCentral DAST is a scalable architecture that enables
Horizontally Scaling through multiple containerized versions of Fortify
WebInspect (known as Sensors) that can parallel process JavaScript,
DOM Rendering, and other activities. Horizontally Scaling enables
dramatically reduced scan times without permanently dedicating

resources. As a result, Fortify ScanCentral DAST can scan very large
applications in a fraction of the time, which enables integration
into CI/CD pipelines and shifting left. Fortify SCC can be used for
onboarding an application, scheduling scans, and setting limits on
scan parameters. All of this is done through a Dockerized deployment,
enabling you to have multiple sensors.

Learn more about dynamic application
security testing software.

Connect with Us
www.opentext.com

OpenText Cybersecurity provides comprehensive security solutions for companies and partners of all sizes. From prevention, detection and response to recovery, investigation and compliance,
our unified end-to-end platform helps customers build cyber resilience via a holistic security portfolio. Powered by actionable insights from our real-time and contextual threat intelligence,
OpenText Cybersecurity customers benefit from high efficacy products, a compliant experience and simplified security to help manage business risk.

764-000002-004 | O | 11/23 | © 2023 Open Text

https://www.microfocus.com/en-us/cyberres/application-security/webinspect
https://www.opentext.com
https://www.linkedin.com/showcase/9022/
https://twitter.com/OpenTextSec

Accessibility Report

		Filename:

		7640002-en.pdf

		Report created by:

		Sar Dugan

		Organization:

		

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

