
ADM Market Insight:
Leveraging Shift-Left Testing
in Performance Engineering

DEFECT DETECTION_

DEFECT PREVENTION_

2

Introduction

As organizations adopt post-
pandemic business models, they
are also racing to play “catch up”
with ongoing digital transformation
initiatives. As a result, performance
engineering teams are expected
to release software faster, meet
enhanced performance requirements,
and deliver a superior customer
experience.

The widespread adoption of Agile
and DevOps methodologies has also
led to dramatic changes in software
development and testing. By
adopting shift-left testing practices,
developers and testers collaborate
earlier in the software development
lifecycle (SDLC) with a keen focus
on defect prevention versus defect
detection.

https://www.microfocus.com/en-us/portfolio/performance-engineering/overview
https://www.microfocus.com/en-us/portfolio/performance-engineering/overview

3

Shift-left testing bridges the gap between development and testing teams—
allowing for seamless collaboration among teams, tools, and processes through
continuous feedback loops. In other words, QA and performance engineers
aren’t solely responsible for software quality and user experience. A shift-left
approach involves every team working together to:

+	 Maintain	high	levels	of	performance	that	enhance	the	customer	
experience, keeping up with the pace of business.

+	 Manage	end-to-end	performance.

The Case for
Shift-Left Testing
Traditionally, performance testing
has been the final step in the SDLC—
often completed during the User
Acceptance phase, or even later.
But waiting to identify bugs, defects,
and other issues often delayed
releases. In some cases, the
software would be scrapped
altogether due to the time and
cost involved in fixing defects.

By adopting shift-left testing,
software developers and testers
collaborate throughout the SDLC.
Testers understand the software
requirements, design, architecture,
and functionality from the very
beginning. Because testing is part of
the development process, all team
members work together to identify
and resolve issues faster and earlier,
reducing the time and cost involved. Why Shift-Left Testing in Performance Engineering?

Benefits of Shift-Left Testing
Shifting left introduces testing earlier
in the software development process.
This practice results in more efficient,
comprehensive testing while also improving
software quality and customer satisfaction:

4

Six Shift-Left Testing Facts
Keep the following in mind while developing your strategy:

 + Improved solution design—Teams often have a sharper
focus on quality when testing starts earlier. Having additional
stakeholders responsible for QA can also lead to fresh
perspectives and potentially new design alternatives.

 + Earlier bug detection—In shift-left testing, potential glitches
and performance issues are identified sooner and can be
addressed more efficiently instead of as an afterthought
“once the critical stuff gets done.”

 + Time and resource savings—Shift-left testing empowers
teams to identify and address any defects early, reducing the
cost of fixing them.

 + Faster time to market—When teams detect bugs and other
performance issues earlier, they can fix them faster. Quickly
resolving these problems can accelerate time to market and
significantly reduce the time between releases.

1.
Collaboration is essential.
Shift-left testing requires
involving team members
from diverse disciplines at
every stage of the SDLC. This
approach shifts focus from
defect detection to defect
prevention.

2.
Shift-left testing expands
testers’ roles in the SDLC.
They work proactively with
the team to plan and build
an effective testing strategy
that accounts for the long-
term vision of the product.

3.
A shift-left approach allows
testers to test the software
design first and through the
customer experience lens.

4.
Testing throughout the SDLC
empowers developers to take
more ownership of their code
and the final deliverable.

5.
It empowers testers to adopt
test-driven development
(TDD)	and	behavioural-driven	
development. These practices
help prevent the induction of
defects into the software.

6.
Shift-left testing also works
well with the Agile Testing
Manifesto. This approach
supports Agile Scrum
teams, which include testers
and other stakeholders
in regular stand-up calls,
review meetings, and other
communication forums.
Scrums provide testers with
a detailed analysis of the
software and rapid feedback
to prevent defects from being
grounded into the software.

https://www.growingagile.co.za/2015/04/the-testing-manifesto/
https://www.growingagile.co.za/2015/04/the-testing-manifesto/

5

Shift-Left Testing and the Agile Manifesto
Shift-left testing supports the Agile Testing Manifesto.
It encourages teams to focus on:

 + Testing throughout versus testing at the end.
 + Preventing bugs versus finding bugs.
 + Testing understanding versus checking functionality.
 + Building the best system versus breaking the system.
 + Extending responsibility for quality to the team—

not just testers.

Time and Resource Savings
The cost to fix an error found after product release
was four to five times as much as one uncovered
during design, and up to 100 times more than one
identified in the maintenance phase.

 + The Systems Sciences Institute at IBM

https://www.growingagile.co.za/2015/04/the-testing-manifesto/

6

Harmonize Your Shift-Left Goals
The more teams shift left, the more they can confidently
produce high-quality software at speed and at scale. The
challenge is that it has increasingly expanded testing
demands. With performance engineering, developers are
responsible for ensuring that applications are tested for
performance, eliminating the need for teams to go back and
refactor an entire application.

While shifting left requires cultural and organizational
change, using tools that automate or streamline shift-left
initiatives can facilitate adoption. To harmonize efforts,
you need to choose techniques and tools that fit existing
workflows, integrate with preferred tools, and automate as
much as possible.

OpenText’s primary solutions have an
analogous developer-centric solution
that natively integrates with common
IDEs and with their counterparts.
These solutions facilitate shift-left
testing without increasing workloads
to accelerate adoption:

 + UFT Developer: Easily create
tests for continuous testing and
integration.

 + LoadRunner solutions: Natively
run scripts and reuse assets in
all LoadRunner family solutions.
Developers can script, model
scenarios, run performance tests,
and quickly analyze the results
without leaving their familiar
development ecosystem.

 + PulseUno and Fortify: Inspect
code as changes are checked in,
the relevant security validations
occur, and vulnerabilities are
identified and fixed before release.

 + ALM Octane: Provide a central hub
that includes integrated backlog,
defect, and DevOps pipeline
management.

In addition, OpenText performance
engineering solutions offer a
proactive, continuous testing
discipline that delivers four key
advantages:

 + Balance and prioritize
responsibilities across developers,
testers, and performance
engineers.

 + Broaden integration of
performance into the CI/CD
process.

 + Monitor performance from build to
production.

 + Continuously analyze and
efficiently collaborate across
teams.

Learn how the LoadRunner family of
performance engineering solutions
can help your teams shift left to
deliver better software quality and an
optimal customer experience.

Learn More

https://www.microfocus.com/en-us/portfolio/performance-engineering/overview

© 2023 Open Text

	Button 30:
	Button 23:
	Page 2:
	Page 5:
	Page 7:

	Button 24:
	Page 2:
	Page 5:

	Button 15:
	Page 3:
	Page 6:

	Button 16:
	Page 3:
	Page 6:

	Button 25:
	Page 4:

	Button 26:
	Page 4:

