
///
///

COBOL
AT 60

**
**
**
**

The Legend Continues / / / / / / / / / / / / / / / /
/

COBOL AT 60: THE LEGEND CONTINUES 1

Introduction

The perpetual drive for technological evolution can produce less-than-essential

results, gimmickry rather than genuine innovation. We can all think of previously

must-have technology that has been Darwin-ed out of our lives. In contrast, bona fide

game-changers not only endure, but continue to evolve in of themselves. Google is

21 years old, and it has moved on from putting the “hasta la vista” into AltaVista, into

a multitentacled, life-organizing digital being. Now 25, Amazon left peddling cheap

paperbacks online behind to become the world’s largest e-commerce and cloud

computing platform.

But despite these timelines, and the brutal, ephemeral

world of technology, their constant reinvention

means that no one thinks of Google or Amazon as

old. So what does that make COBOL and IBM CICS,

60 and 50 respectively? For COBOL, it’s tempting

to point to NASA launch codes, again, to prove

ongoing roadworthiness. But as we’ve discovered,

for technology, the past is another country and a

sentiment-free zone. To endure, tech must remain

relevant. So, rather than reflect on a solid, largely

unrivalled track record, I want to look forward and

explore what the future looks like for COBOL.

COBOL AT 60: THE LEGEND CONTINUES 2

Digital Disruption

1.	 Vanson Bourne, jabtechus.com/hello-world/

The technical innovators’ work surrounds us. They are

building API and microservice capabilities, developing new

language choices like Python, R, Ruby and JavaScript.

Entrepreneurs are trialing blockchain, digital currencies and

DLT for finances. New use cases are being tested using

artificial intelligence (AI) and robots to automate everything.

But new doesn’t mean progress for all. Organizations

are facing unprecedented competitive pressure, and the

evidence is there. Only 12% of the Fortune 500 from this

decade had survived on that list since the 1950s. Adapt or

perish. Back to Darwin. It really is as simple as that.

Like ripples in a pond, disruptive change radiates out,

affecting everything. IT systems are not immune, but

some, regardless of circumstance, must not fail. They are

too important, strategically or financially, to be swapped

out, cut loose and replaced by something else. The

portents are not good. Based on a 2014 survey of 3,300

IT decision makers from mid-size to enterprise-size

businesses in 24 countries for EMC, Vanson Bourne found

that data loss and downtime cost enterprises more than

$1.7 trillion in the last 12 months.1

Such business-critical systems are often written using

business-centric, more established technologies. The

platforms might be mainframes or other robust servers,

whether Linux, UNIX, Windows or the cloud. The data

layer either reliable, rapid flat-file structures like VSAM

or industrial strength databases like Db2. Transaction

monitors? CICS, IMS. The application language? Never

really any debate. COBOL: reliable, ubiquitous, trusted, oft-

misunderstood, yet fantastically successful. And in 2019,

with 85% of all applications regarded as “strategic,” COBOL

quietly goes about its business of adding to 60 years of

active service within the IT industry.

So while the waves of change threaten to swamp some,

core business systems written in COBOL continue to

provide the functionality many organizations rely on. But

what about what’s next? Ticking over isn’t moving forward.

And as we’ve established, risk-averse enterprises view their

applications as too important to waste and too valuable

to fail. The good news is that the bedrock can also be a

springboard. These systems are extremely well-placed to

launch low-risk innovation. So pragmatic IT leaders are

delivering new user experiences, business facilities and

88%

$1.7
TRILLION

FIRMS IN THE 1955
FORTUNE 500 THAT

ARE GONE (AS OF 2014)
—American Enterprise

Institute

COST OF DATA LOSS
AND DOWNTIME TO

ENTERPRISES IN THE
LAST 12 MONTHS

—Vanson Bourne

http://jabtechus.com/hello-world/
https://www.codingame.com/blog/best-programming-language-learn-2019/
https://www.codingame.com/blog/best-programming-language-learn-2019/
https://www.techworm.net/2018/02/popular-programming-languages-2018-according-tiobe-pypl.html
https://en.wikipedia.org/wiki/Distributed_ledger
http://www.aei.org/publication/fortune-500-firms-in-1955-vs-2014-89-are-gone-and-were-all-better-off-because-of-that-dynamic-creative-destruction/
https://www.microfocus.com/media/infographic/the_future_of_cobol_applications_2017_survey_highlights.pdf

COBOL AT 60: THE LEGEND CONTINUES 3

competitive differentiation by innovating, enhancing and

integrating core systems with contemporary technology.

With so much change needed so quickly, there is no time

nor need to throw away what’s already providing value.

Using technology that works–COBOL applications–as the

innovation baseline guarantees the future relevance of this

time-proof language for years to come. And that’s a view

shared by those who continue to use it.

The Only Constant Is Change
The ripples of technology change offer near-limitless

opportunity for IT innovators able to ride the wave of

powerful tooling, platforms and technology. Such as?

The drive toward an API economy, using microservices,

deploying into containers, running on serverless

environments, collaborating in open frameworks using

DevOps to deploy new facilities that offer enhanced user

experiences and solve real business challenges, using

ostensibly new technology.

Let’s consider some scenarios faced in IT teams. It’s a

wish list of “we want to”:

�� Unlock the business functionality embedded with a

COBOL system to reuse it as a component, service,

object, microservice or whatever

�� Change our underlying data model but not the core

applications

�� Provide a more user-friendly customer experience to

an existing application

�� Integrate new third-party applications with our core

business systems

�� Deploy some business applications in the cloud

These disparate requirements represent innovation in

the context of current core business systems, building in

new capability from a position of established strength, of

power, rather than razed earth. In each case, the COBOL

application is being redeployed or reused, according to the

technical use case. The tooling is there, it merely requires

the awareness and the right approach. You might call it a

modernization strategy (I certainly would).

COBOL AT 60: THE LEGEND CONTINUES 4

COBOL’s Credentials
COBOL once had few competitors, and “portability” just

meant supporting the only computing option at the

time: a handful of what became known as mainframe

computers. This modest beginning sparked a revolution

that has launched a thousand technological advances and

IT choices for users. Examples? Consider the following

random list.

�� Data stores: IMS-DB, VSAM, QSAM, Db2, ISAM, IDMS,

Adabas, Datacomm

�� Monitors/messaging: CICS, IMS TM, MQ, WebSphere

�� Languages: C, C#, Java, Visual Basic

�� Chipsets: Intel, mainframe, IBM Power Systems

�� OSes: z/OS, VSE, AIX, OS/2, MS-DOS, Windows, Linux,

Linux on IBM Z

�� Managed code environments: .NET, JVM

�� Cloud environments: Azure, AWS, IBM Z

�� Containers and virtual environments: VMWare, Docker,

Kubernetes

�� Contemporary application language constructs:

microservices, API, object orientation, SOA,

web services

Back to timelines. Plotting COBOL’s history of integration

is a roll-call of cutting-edge technology, where digital

innovation has added to established COBOL investments.

But it’s a different world now, where new technologies

must integrate with core COBOL back-end systems.

It’s time to collect a dividend. In many cases, it means

integrating mainframe-based core business systems

into an increasingly-connected world. There will be

questions around future innovation, integration and

continued investment. But COBOL has had to deal with this

scrutiny for more than half a century now. It always has

the answers.

Plotting COBOL’s history of
integration is a roll-call of
cutting-edge technology, where
digital innovation has added to
established COBOL investments.

COBOL AT 60: THE LEGEND CONTINUES 5

Ready for the Next 60 Years?
We mentioned Google, and a quick search on COBOL

namechecks comprehensive descriptions from Wikipedia,

Bill Klein, and profiles of pioneers including Jean Sammet

and Grace Hopper. But as we said, its rich legacy can be

viewed by some in the IT industry in 2019 as a handicap.

Old isn’t good. So COBOL’s readiness to embrace future

decades is more relevant than the past.

The COBOL label, first documented in September 1959,

describes a language specification that aimed to enable

the noncomputer literate to communicate more effectively

with computers, to meet the growing need for an “open-

ended, problem-oriented and machine-independent

computing language … capable of accepting change … that

[uses] simple English” computing services in government

and industry. Under the stewardship of Hopper, the first

incarnation, COBOL-60, took shape within a year.

Innovation
Computer languages must speak the vernacular of the

changing IT landscape. So the COBOL vendor community

invests tens of millions of dollars every year to ensure

it remains contemporary. These investments support

contemporary technology and integration with other

language applications such as Java, C++ & C#.

As well as being fluent in mainframe, Linux, UNIX and

Windows, past COBOL applications can pick up the lingua

franca by simply being recompiled to run in the cloud,

.NET and JVM. A few simple steps can deploy a COBOL

application into a Docker container.

In addition, the growing use of SOA and web services,

and the range of technology elements, such as XML,

WSDL, SOAP, JSON/REST, HTML, ensure application

integration and connectivity across the enterprise. And this

is integration with a big “I” because business innovation

depends on the ability for new, digital systems to hook

into the critical processing facilities and data within

So why has COBOL endured so well?

For any technology to thrive and survive, history suggests it

needs five core attributes. Few would argue–and 60 years

of evidence confirms–that COBOL ticks all the boxes.

1. Innovation 	 3. Portability

2. Longevity	 4. Built for business

5. Readability

https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Jean_E._Sammet
https://blog.microfocus.com/amazing-grace-hopper/

COBOL AT 60: THE LEGEND CONTINUES 6

long-established COBOL apps. Proof (if more proof was

needed) of COBOL’s ability to evolve and support the

growing codependence of contemporary digital technology

to older applications.

COBOL continues to evolve to take advantage of emerging

technology; the COBOL language standard was updated in

1974, 1985, 2002 and 2013. As future standards emerge,

the language will evolve.

The COBOL software vendor community, including IBM

and Micro Focus, played its part both by participating in the

standards body, and also being one of the key pioneers of

the new standard from a compliance perspective. It also

re-affirmed its commitment to its clients, and the language,

by establishing the backwards compatibility policy: Any

COBOL program, anywhere, which conforms to the

standard(s), will compile with the latest COBOL product.

Longevity
New application development is rarely from scratch. More

frequently, client-focused innovation is about delivering

business applications through new channels. The

business logic in COBOL systems has been hard-won and

expensively assembled. Business sense dictates it must

also be extensively mined.

�� Reusability: COBOL’s highly readily understood nature

is why it permeates the enterprise. Why constantly

re-invent the wheel when you’re already moving

forward?

�� Accessibility: Alternative development languages can

rapidly access COBOL value using native semantics

and data types

�� Compatibility: The backwards compatibility policy

helps to keep applications current and provide a

low-risk environment for systems development, a

stark contrast to other technology options where

the code has to be rewritten after every compiler

release change.

Such important factors spawned a meteoric growth in the

usage of the language for commerce. Some estimates

put the amount of COBOL code in production in the

hundreds of billions. This volume of code and level of

investment–especially given the importance of some of the

business functions it provides–creates a lasting heritage

and longevity.

Some estimates put the amount
of COBOL code in production
in the hundreds of billions.

COBOL AT 60: THE LEGEND CONTINUES 7

Portability
Choice defines the IT industry. There are multiple

answers to any question, different resolutions to every

challenge. This is especially true for platforms. Most

large organizations are characterized by disparate,

heterogeneous hybrid IT environments: mainframes, server

farms, mobile devices and every point in between.

So software vendors must make their applications

available on more platforms. Clients choose a vendor’s

application primarily for its functionality, but will also

consider many other factors, from the practical to the

corporate and strategic. They include the breadth of

platforms supported, relative ownership costs, user

requirements, skills profiles and supply-chain policy.

There’s a lot to consider, from planning to consumption.

Developers working with contemporary COBOL technology

can analyze, develop, debug, test and deploy their

applications across every platform their clients use.

Integrated development environments provide instant

edit/debug cycles and feature-rich tooling. Crucially, all

this good stuff is running the same portable code as new

industry-leading frameworks such as .NET and Eclipse,

containers and cloud. Of course, as a business-focused

language, COBOL can deploy across the leading enterprise

platforms. Java, supposedly the language of portability,

falls short of COBOL’s breadth.

Programming languages aren’t valuable in of themselves.

They depend on the ability of the coders to align application

with business need. To contribute to the business, the

language must combine a state-of-the-art environment

for building robust apps, including contemporary features

(Intellisense, rapid code/debug, UI builder) and be built on

the latest frameworks (Visual Studio and Eclipse).

As a business-focused
language, COBOL can deploy
across the leading enterprise
platforms. Java, supposedly

the language of portability, falls
short of COBOL’s breadth.

COBOL AT 60: THE LEGEND CONTINUES 8

Built for Business
Successful core enterprise systems share

certain characteristics. They have strong, reliable

IT infrastructures that offer validity, strong data

manipulation, accuracy, speed and accessibility.

In short, something fit for business needs,

and designed with scale in mind. Consider the

following attributes.

�� COBOL’s type-rich language enables data

to be described accurately, with explicit

scope and limits to meet corporate coding

standards and industry-specific compliance

requirements

�� COBOL’s ubiquity ensures consistency and

accuracy across the organization and third

parties, including partners

�� It delivers arithmetic accuracy up to 38

digits–more than any other language. It’s no

coincidence many of the world’s financial

powerhouses rely on COBOL.

�� Speed of application execution is a key

criterion for core business applications.

They need horsepower to deliver both

computational speed and batch support.

COBOL applications can be optimized,

thanks to innovations from IBM and Micro

Focus, for specific hardware and platforms,

increasing performance and throughput.

�� COBOL is renowned for its data handling,

providing capabilities to deliver stronger

data manipulation:

•	 Faster data access than any RDBMS,

and support of data files of a variety of

formats (RDBMS, Indexed, Sequential,

Relative)

•	 Data manipulation and reporting built in

to the language with the SORT capability.

Uniquely, users can SORT and filter within

COBOL without additional tools or steps—

much faster than having to handle this

outside the language.

COBOL’S BUSINESS
ATTRIBUTES

TYPE-RICH LANGUAGE

UBIQUITY

ARITHMETIC ACCURACY

OPTIMIZABLE FOR SPEED

POWERFUL DATA HANDLING

QUICKLY LEARNED

COBOL AT 60: THE LEGEND CONTINUES 9

Readability

2.	 Mike Gilpin, analyst at Forrester research, https://www.silicon.co.uk/e-regulation/cobol-heavily-used-50-years-on-1873.

COBOL is easily understood and quickly learned, unlike

many programming languages where code is hard to

understand, even for those with the skills to write it. COBOL

is structured in terms of its layout, and uses active English-

derived constructs (“add” is ADD, “equals” is EQUALS)

that tell the reader at a glance what the code is trying to

achieve. This offers tremendous benefits:

1.	 As anyone can write it, it becomes possible to create

low-cost high-availability resource pools to construct

applications and because anyone can read it, there

are significant downstream benefits, too. IT can tap

into a theoretically unlimited resource pool to work

on COBOL systems, and there’s no barrier to entry for

future COBOL programming skills–a major bonus, in

terms of strategic planning and investment.

2.	 If anyone can read it, anyone can maintain it. A second

generation of programmers can code in COBOL

applications they haven’t originally written. Java

and C# teams can review the COBOL back end to

their new front-end code, using the same integrated

development environment (IDE). Nondevelopers can

follow the flow where necessary, QA staff can assist

with code walkthroughs and debugging work, and

so on.

3.	 COBOL’s high legibility avoids the major common pitfall

where coders simply rewrite something they don’t

understand in a language they do. COBOL typically

passes the comprehension test. As explained a decade

ago by a Forrester analyst2, “COBOL is one of the few

languages written in the last 50 years that’s readable

and understandable,” a view shared by others. “It’s not

just a write-only language,” says Michael Coughlan of

University of Limerick. “You can come back years later

and understand the code.”

COBOL AT 60: THE LEGEND CONTINUES 10

START YOUR JOURNEY

Contact Micro�Focus to build your
future application strategy today

REQUEST A
VALUE PROFILE MEETING

microfocus.com

Copyright 2019 Micro Focus. All Rights Reserved.

Conclusion

3.	 See share.org

If a year is a long time in technology, then six decades

of service in the IT world is a phenomenal achievement.

COBOL pre-dates CICS, UNIX, Linux, Windows, Java,

the internet, the personal computer and even the IBM

mainframe.

In every SHARE event3, the “IDE shootout” plays out in front

of packed rooms. Three or four major mainframe COBOL

product vendors showcase the latest innovations and tools

to defeat the collective enemy, the “old way of building

mainframe applications.” The exercise symbolizes ongoing

investment and commitment from the vendors and wider

mainframe community in COBOL.

COBOL has endured and evolved because it was designed

for business then, and adapted to meet its needs now. As

phones and cars metaphorically demonstrate, great ideas

can evolve and adapt. Smart technology does the same.

Of course, for those who believe in such things, this was all

foretold. Indeed, the COBOL language has given us a clear

clue all along. As valid syntax might read—

// EVALUATE COBOL-VALUE

// WHEN 60 CONTINUE

https://www.microfocus.com/campaign/download/the-value-profile-service
https://www.microfocus.com/
https://www.share.org/

