dNetia

Access Manager 5.0
SDK Guide

March 2021

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

© Copyright 2021 Micro Focus or one of its affiliates.

https://www.microfocus.com/about/legal/

Contents

About this Book and the Library

1 Getting Started

11

1.2

Development OVEIVIEW. . .. v vttt e e e ettt et e

1.1.1 SDK COMPONENtS . ..ottt e e
Selecting an Integrated Development Environment......................

2 Identity Server Authentication API

2.1
2.2

2.3

2.4

2.5

2.6

Prerequisites for Creating a Custom AuthenticationClass.................
Understanding the AuthenticationClass............ o i,
2.2.1 Authentication Class Componentsoiiiiirninen..
2.2.2 How the Authentication Class Operates.,
Creating an Authentication Class i,
2.3.1 Project Requirements.t e
2.3.2 doAuthenticate Method. i
2.3.3 AuthenticationMethods i
2.3.4 reCAPTCHAMethodst
2.3.5 ClassPropertyMethods.,
2.3.6 StatusMethods. ...t e
2.3.7 UserInformation Methods oo,
2.3.8 CallbackAuthentication Method
2.3.9 OtherMethods.ottt i
Authentication Class Example.t i e e
2.4.1 Extending the Base AuthenticationClass.......................
2.4.2 Implementing the doAuthenticate Method
2.4.3 PromptingforCredentials
2.4.4 VerifyingCredentials i,
2.4.5 PasswordClass ExampleCodeo,
2.4.6 Accessing a Principal Object from an Authentication Method

Localizing the Prompts in Your AuthenticationClass
251 Creating a Properties File........ ... o,
2.5.2 CreatingaResource Classccuiiiininennnennann.
2.5.3 Creating or ModifyingaJSPPage,
Deploying Your AuthenticationClass

3 LDAP Server Plug-In

3.1
3.2
33
3.4
3.5

PrereqUISItES . ot e e
Creatingthe LDAP Plug-In. i i e
eDirectory Plug-In e e
Installing and Configuring the LDAPPlug-In iiion...
Troubleshooting.t e

Contents

4

4 The Policy Extension API 39

Contents

4.1 Getting Started. . ..o e e 39
41.1 PrEreqUISITES . o vttt e e 39
4.1.2 Types of Policy EXtENSIONSt it i e e e e 40
413 How the Policy Engine Interacts with an Extension 40
4.2 Common Elements and Tasksot e 43
4.2.1 Implementing Common Elements. e 44
4.2.2 Initializing the Factory Objectt e e 45
4.2.3 Retrieving Information from Identity Server UserStore ion... 46
4.2.4 Implementing the Extension Interface i 47
4.3 Creating an EXtension i i e e e e e 52
43.1 Creating a Context Data EXtensionttt ens 53
4.3.2 Creating a Condition EXtension i i e e e 57
433 Creating an Action Extension. e 59
4.4 Installing and Configuring an EXtENSION. . ..o v ittt e i et e 61
441 Installing the Extension on AdministrationConsole 62
442 Distributing a Policy Extension to Access ManagerDevicescovuvennenn... 63
443 Distributing the Extension to Customersttt 64
4.5 SaMPIE COUBS. . ottt et e e e 64
4.5.1 Data Extension for External Attribute Source Policy, 65
4.5.2 Template Policy EXtENSIONSottt e e e 65
453 LDAPGroup DataElement. ...t e 66
454 PassWOrdCIass. . o .ottt e 66
Custom Rule in Risk-based Authentication 67
5.1 PrereqUISIEES . ..ot e 67
5.2 Understandingthe Rule Class.ttt e e et et e e et e e e 67
5.3 Creatinga Custom RUIE Classottt e e e e e e e e e 68
5.4 Understanding the Custom Rule Class Example i i 70
5.5 Deploying Your Custom Rule Class ottt e e et et e et e 74
5.6 Understanding Custom Attributes in History SQL Databaseo iiiin.. 75
5.6.1 Custom Rule example. e e 76
5.7 Custom Geolocation Data Provider Integration i, 76
5.7.1 PrEreqUISITES . o vttt e e e 76
5.7.2 Understanding the Geo Location Providerinterface............................... 77
5.7.3 Creating a Custom Geolocation Provider Class, 77
5.7.4 Custom Geolocation Provider Class Example. 78
5.7.5 Deploying Your Custom Geolocation Provider Classcovuiiniiennn... 78

About this Book and the Library

This document explains how to incorporate various security management features of NetlQ Access
Manager with your proprietary applications. Unlike many software development kits (SDK) that rely
on application programming interfaces to expose application functionality, this component primarily
leverages how Access Manager extends existing Liberty Alliance, OASIS, SAML, and other
specifications in defining and exchanging user identities.

This document will be updated as new functionality is released for developers to enhance the
capabilities of Access Manager with your own applications and Web services.

Intended Audience

The audience for this documentation includes advanced network security software engineers and
experienced network administrators who understand the Liberty Alliance, Java* development, and
secure networking issues to enforce the security requirements the Liberty Alliance.

Specifically, you should have advanced understanding of Internet protocols such as:

+ Extensible Markup Language (XML)

+ Simple Object Access Protocol (SOAP)

+ Security Assertion Markup Language (SAML)

+ Public Key Infrastructure (PKI) digital signature concepts and Internet security
+ Secure Socket Layer/Transport Layer Security (SSL/TSL)

+ Hypertext Transfer Protocol (HTTP and HTTPS)

+ Uniform Resource Identifiers (URI)

+ Domain Name System (DNS)

+ Web Services Description Language (WSDL)

Other Information in the Library

You can access other information resources in the library at the following locations:

+ Access Manager Product Documentation (https://www.microfocus.com/documentation/
access-manager/index.html)

+ Access Manager Developer Resources (https://www.microfocus.com/documentation/access-
manager/developer-documentation-5.0/)

NOTE: Contact namsdk@microfocus.com for any query related to Access Manager SDK.

About this Book and the Library 5

https://www.microfocus.com/documentation/access-manager/index.html
https://www.microfocus.com/documentation/access-manager/developer-documentation-5.0/

6

About this Book and the Library

1.1

Getting Started

NetlQ Access Manager provides a component-based framework for building secure federated
identity network applications based on Liberty Alliance project standards. This framework is
designed to help developers make a rapid transition into Liberty’s architecture.

The Liberty components enable the convenience of single sign-on and secure business-to-employee,
business-to-customer, and business-to-business relationships across a variety of applications within
a trusted Web services model. All components are standards-based and designed for maximum
interoperability.

In this Chapter

+ Development Overview

¢ Selecting an Integrated Development Environment

Development Overview

This SDK describes how to design a flexible and expandable access management system to enable
your applications to interact with the identity management capabilities of Access Manager, including
federation, provisioning, and the secure delivery of identity information (user name and password,
and X.509 certificates) to client-based applications.

The SDK is designed for those who want to develop new applications or integrate existing
applications with the standards-based security architecture of Access Manager. It allows NetlQ
partners and third-party developers to do the following:
+ Leverage the identity management and policy capabilities of the product.
+ Provide access to various product features, including:
¢ Liberty-based federated identity
+ Secure credential exchange
+ User provisioning services
+ Authentication and authorization methods and policies

+ SAML assertion generation and processing

NOTE: To coordinate the development of Liberty-enabled access management applications within
the NetlQ industry framework, contact namsdk@microfocus.com.

Getting Started

7

1.1.1 SDK Components

The Access Manager developer components are included in the Access Manager Developer Kit
(https://www.microfocus.com/documentation/access-manager/developer-documentation-5.0/
samplecodes/main.html).

However, the complete Access Manager package, including the install, is not included in the SDK. For
complete current product information, see the NetlQ Access Manager Product Site.

The SDK does not include the JAR files required from the product to compile your extension. You
need access to an Access Manager installation to obtain these files.

1.2 Selecting an Integrated Development Environment

The Java applications can be developed on a number of open source IDEs, such as Eclipse* and
NetBeans*.

8 Getting Started

https://www.microfocus.com/documentation/access-manager/developer-documentation-5.0/samplecodes/main.html
https://www.microfocus.com/en-us/products/netiq-access-manager/

2.1

2.2

2.2.1

Identity Server Authentication API

This section provides details about how to create a custom authentication class for Identity Server.
The API presented here allows developers to leverage their own authentication mechanisms within
the Access Manager architecture.

+ Section 2.1, “Prerequisites for Creating a Custom Authentication Class,” on page 9

+ Section 2.2, “Understanding the Authentication Class,” on page 9

+ Section 2.3, “Creating an Authentication Class,” on page 11

+ Section 2.4, “Authentication Class Example,” on page 20

¢ Section 2.5, “Localizing the Prompts in Your Authentication Class,” on page 26

+ Section 2.6, “Deploying Your Authentication Class,” on page 29

Prerequisites for Creating a Custom Authentication
Class

+ Access Manager is installed.

+ Your development environment requires the same installation as outlined in the NetlQ Access
Manager 5.0 Installation and Upgrade Guide.

+ Download ni dp. j ar and NAMConmon. j ar from the / opt / novel | / nani i dp/ webapps/
ni dp/ VEEB- | NF/ | i b directory and add these to your development project.

For information about how to download a file, see Downloading Files from a Server in the NetlQ

Access Manager 5.0 Administration Guide.

For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

Understanding the Authentication Class

¢ Section 2.2.1, “Authentication Class Components,” on page 9

+ Section 2.2.2, “How the Authentication Class Operates,” on page 10

Authentication Class Components

Identity Server is the central authentication and identity access point for all services performed by
Access Manager. Identity Server supports numerous ways for users to authenticate. These include
name/password, RADIUS token-based authentication, and X.509 digital certificates.

For more information about Identity Server and its relation to other Access Manager components,
see “Creating Authentication Classes” in the NetlQ Access Manager 5.0 Administration Guide.

Identity Server Authentication API

9

https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/
https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/
https://www.microfocus.com/documentation/access-manager/5.0/admin/authclasseslist.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/download-server-file.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

10

2.2.2

The configuration and interaction of the following entities defines how authentication takes place
within Identity Server:

+ User Stores: The LDAP directory that stores the user credentials. Access Manager can be
configured to use the following directories: eDirectory™, Active Directory*, or Sun One*. Users
set up their user stores when creating ldentity Server configuration.

+ Authentication Classes: The code (a Java class) that implements a particular authentication
type (name/password, RADIUS, and X.509) or means of obtaining credentials. This is what you
create with this API.

+ Authentication Methods: Pairs an authentication class with one or more user stores, primarily
to identify authenticated users. Authentication methods also can be designed to identify
entities other than end users.

+ Authentication Contracts: The basic unit of authentication within Identity Server. Contracts are
identified by a unique uniform resource identifier (URI) that can be used by Access Gateways
and agents to protect resources. Contracts are comprised of one or more authentication
methods used to uniquely identify a user.

Figure 2-1 Local Authentication Components

User Stores Class Method Contract

How the Authentication Class Operates

Figure 2-2 illustrates an example of how an authentication class is used to authenticate to an Identity
Server. It uses a single user store located on an LDAP server to verify name and password credentials.

Figure 2-2 How the Authentication Class Handles a User Request.

_ User Identity User
(Principal) senver Stare

=055 —o—}

1. A userinitializes an authentication request from a browser.

2. The request causes the default authentication class to execute. This class defines what
credentials are required for authentication, and it returns a response prompting the user for the
required credentials (that is, username, password, x509 certificate, etc.). The user enters the
credentials.

3. The class obtains the credentials, then passes them to the user store for verification and
validation.

4. If credentials are valid, the user store returns the user’s DN (or other information specified by
the method) and allows user access. If the information is not valid, access is denied.

The authentication API also enables you to implement more complex authentication using X.509
certificates, data generated by token devices, biometric data, or other data you specify. In such
instances, you must specify the outside resources that contain the credential stores that are
configured to validate the required user credentials.

Identity Server Authentication API

2.3

2.3.1

2.3.2

Creating an Authentication Class

Identity Server architecture provides a programming interface that allows you to create a custom
authentication class that can be plugged in to the Access Manager system. Custom authentication
classes can define additional ways of obtaining and validating end-user credentials. You use the
Access Manager Administration Console to identify your custom classes and specify any needed
initialization properties. Custom classes must be configured to be in the class path of Identity Server.

The following sections explain project requirements and methods for creating a custom class:

+ Section 2.3.1, “Project Requirements,” on page 11

+ Section 2.3.2, “doAuthenticate Method,” on page 11

¢ Section 2.3.3, “Authentication Methods,” on page 12

+ Section 2.3.4, “reCAPTCHA Methods,” on page 13

+ Section 2.3.5, “Class Property Methods,” on page 14

+ Section 2.3.6, “Status Methods,” on page 17

¢ Section 2.3.7, “User Information Methods,” on page 18

+ Section 2.3.8, “CallbackAuthentication Method,” on page 20
+ Section 2.3.9, “Other Methods,” on page 20

For the Javadoc associated with these methods, see LocalAuthenticationClass.

Project Requirements

The project used to create the custom class must include nidp.jar shipped with Access Manager.

doAuthenticate Method

A customized authentication class must extend the abstract class

com novel | . ni dp. aut henti cation. | ocal . Local Aut henti cati ond ass, which is found
in ni dp. j ar. The base class contains a single required constructor. Your custom class must
implement one of two methods, either doAuthenticate(), which is preferred, or authenticate(),
which was used in previous releases of this SDK.

The doAuthenticate() method is new in Access Manager 3.0 SP3. Previous releases used the
authenticate() method. The older method is still supported, but new classes created for SP3 and
later should use the doAuthenticate() method because it performs additional Novell SecretStore®
checks. SecretStore now supports a security flag that locks the SecretStore when secrets are
modified. The doAuthenticate() method performs checks to determine the state of the SecretStore.
If it is locked, it prompts the user to supply the passphrase that can be used to unlock the
SecretStore. If you use the older authenticate() method and the SecretStore is locked, no indication
of this state is returned. The SecretStore remains locked, and Access Manager cannot retrieve the
secrets for policies or applications that require them.

Identity Server calls the doAuthenticate() method during its interaction with the class. Multiple calls
to authenticate often are made to collect the necessary authentication credentials. The method
returns a value indicating any of the following authentication states:

Identity Server Authentication API 11

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/default-files.html#nidpjar

12

Constant Description

HANDLED_REQUEST The request has been handled and a response provided.
Further processing or information is needed to complete
authentication. Typically, this value is returned when a page is
returned to query for credentials.

SHOW_JSP Further information is needed to complete authentication.
Typically, this value is returned when a page is returned to
query for credentials.

NOT_AUTHENTICATED The authentication failed.

AUTHENTICATED The authentication succeeded in identifying a single
NIDPPrincipal object (user).

CANCEL The authentication process was canceled. This typically
occurs only during authentication after a request from a
service provider.

PWD_EXPIRING Although authentication is successful, a user’s password is
about to expire. This condition causes a redirection to the
expired password servlet if one is defined on the
authentication contract.

PWD_EXPIRED Authentication is unsuccessful, because the user’s password
is expired. This condition causes a redirection to the expired
password servlet if one is defined on the authentication
contract.

When the doAuthenticate() method succeeds, it needs to return AUTHENTICATED. It can succeed
only when it obtains a single NIDPPrincipal object from a user store using the credentials obtained to
verify the principal. After credentials are obtained, each user store is searched to locate a user
identified by the credentials. Each user store is searched until one of the follow conditions is met:

+ Successful authentication: Indicates that a single user/object is located.

+ Unsuccessful authentication with an error: Indicates that more than one user/object is
located.

2.3.3 Authentication Methods

When implementing the doAuthenticate method(), you can use the following methods to retrieve
and manage authentication credentials:

Method Description

authenticateWithPassword() Takes a user ID and password as its arguments. The method succeed:s if
a user with the given ID and password is located.

See authenticateWithPassword

Identity Server Authentication API

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#authenticateWithPassword(java.lang.String, java.lang.String)

234

Method

Description

authenticateWithQuery()

findPrincipals()

findPrincipalsByQuery()

getCredentials()

addCredential()

addLDAPCredentials()

clearCredentials()

Takes a string in the form of an LDAP query and a password as its as its
arguments. It succeeds if the query result locates a single user with the
associated password.

See authenticateWithQuery

Locates the users in a directory that match the specified user ID. The
method does not do any password verification. It returns an array of
NIDPPrincipal objects that result from the search.

See findPrincipals

Locates the users in a directory that match the specified LDAP query.
The method does not do any password verification. It returns an array of
NIDPPrincipal objects that match the query.

See findPrincipalsByQuery

Gets the list of credentials used to authenticate the user or principal.
Identity Server uses this method to obtain the credentials verified by an
authentication class for possible later use with an Identity Injection
policy. An authentication class does not typically call this method.

See getCredentials

Adds a credential used for authentication to a user or principal. This
method is called by a class so that Identity Server can call the
getCredentials() method.

See addCredential

Adds an LDAP credential, other than the password, to a user or
principal.

See addLDAPCredentials
Clears the credentials of the user or principal.

See clearCredentials

reCAPTCHA Methods

To override the class properties, use the following properties at the Method Properties level. These
must be set at the Method pages on the Properties page as custom properties. This is done because
no modifications are done to the Method Properties to add convenient ways to set the captcha
variables for the method. The interface changes are done only at the Authentication Class level.

Method

Description

recaptchaEnable

recaptchaThreshold

“true” or “false” if reCAPTCHA is enabled

“0” indicates always show the reCAPTCHA on the login page, “2”
indicates that the failed login count must be 2 or more times before the
reCAPTCHA displays

Identity Server Authentication API 13

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#authenticateWithQuery(java.lang.String, java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#findPrincipals(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#findPrincipalsByQuery(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getCredentials()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#addCredential(WSCQToken, XMLBase)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#addLDAPCredentials()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#clearCredentials()

14

2.3.5

Method Description

recaptchaSiteKey The Google reCAPTCHA Site Key

recaptchaSecretKey The Google reCAPTCHA Secret Key

Class Property Methods

Typically, classes have properties assigned to them. The installed Identity Server authentication
classes have associated properties. Because these classes and their properties are known,
Administration Console displays configuration pages for their required properties. For information
about these properties, see “Creating Authentication Classes” in the NetlQ Access Manager 5.0
Administration Guide.

When you deploy your class, Administration Console has a generic page that allows an administrator
to configure property key name and value pairs. When you create a class, you need to create a key
name and value pair for each configuration item for which you want input from the administrator.
For example, if you want to allow the administrator to use a different JSP page in the login form, you
can create a key name of JSP with an expected value of filename. You would use the getProperty()
method to obtain the value of the JSP key name. If the method returns null, you would have your
code use your default JSP page. You need to document any key names that you create and the type
of value that it requires, and make this information available to the administrator.

The class property methods return all values as strings. However, you can manipulate the string
value as required by your code. For example, if your key name requires a number and the
administrator configures the key name with a letter value, you need to decide how to handle such an
error (continue and use a default value or throw an exception). As a minimum, the error should be
logged, so that the administrator can discover the cause of the configuration problem.

The following methods are available for retrieving information about configuration properties:

Method Description

getProperty() Obtains specific properties needed by an authentication class. Property values
are specified when configuring the authentication class in Administration
Console.
See getProperty

getBooleanProperty() Returns a Boolean value for the specified property and sets a default value if the

value cannot be found.

See getBooleanProperty

getType() Identifies one of the authentication types known to Identity Server. The value
returned by this method is used primarily when a service provider initiates an
authentication request by asking for a specific authentication type.

When such a request is made, a check of all executed contracts is made. If a
contract has executed a method by using a class that defines the particular type,
the authentication succeeds. See Supported Authentication Class Types for a list
of supported types.

See getType

Identity Server Authentication API

https://www.microfocus.com/documentation/access-manager/5.0/admin/authclasseslist.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getProperty(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getBooleanProperty(java.lang.String, boolean)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getType()

Method

Description

getProvisionURL()

Gets the URL to call to provision a user and returns the redirect URL for user
provisioning, or Null if it is not available.

See getProvisionURL

getReturnURL()

Returns the URL to which a user interaction should post data, or Null if it is not
available.

See getReturnUrl

mustPersist()

Indicates whether the class must persist for interaction with the user during the
entire authentication session. If this is the case, returns True. For more
information about persistence, see “Class Persistence” on page 16.

See mustPersist

isFirstinstance()

Determines if this authentication class instance is the first instance after the
system was started or was reconfigured. Returns True if it is the first instance.

See isFirstinstance

isCancelAppropriate()

Determines if the option to cancel an authentication is appropriate for this
instance.

See isCancelAppropriate

isDefinesUser()

Determines if the authentication class instance needs to identify a user. If so,
returns True.

For more information, see the Identifies User option in see Creating
Authentication Methods in the Access Manager 5.0 Administration Guide.

See also isDefinesUser.

isUserldentification()

Determines if this authentication class instance is the result of an assertion being
returned to an unauthenticated session. The request for authentication is the
result of an assertion from an identity provider, and it is necessary to identify the
user for the purpose of completing the federation process.

See isUserldentification.

isFirstCallAfterPrevMet
hod()

Defines the sequence of the authentication process after a method is called and
determines if this authentication class instance is the result of an assertion being
returned to an unauthenticated session.

This is useful to determine if an authentication class begins execution
immediately after the successful completion of another class. This enables a
class to know if credentials were actually used by the previous class.

See isFirstCallAfterPrevMethod.

isPendingAuthnRequest
()

Determines whether there is a pending authentication request from a Service
Provider. Returns True if there is a pending request, otherwise, returns False.

See isPendingAuthnRequest.

getAuthnRequest()

Gets the request that might have caused this authentication class to be invoked.

See getAuthnRequest

Identity Server Authentication API 15

https://www.microfocus.com/documentation/access-manager/5.0/admin/configureauthmethod.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/configureauthmethod.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isDefinesUser()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getProvisionURL()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getReturnURL()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#mustPersist()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isFirstInstance()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isCancelAppropriate()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isUserIdentification()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isFirstCallAfterPrevMethod()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isPendingAuthnRequest()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getAuthnRequest()

2.3.5.1

2.3.5.2

Supported Authentication Class Types

When you create an authentication class, you must specify an authentication type. An
authentication type is required, because some service providers request contracts, not by URI, but
by authentication type. Identity Server can reply to such a request with all the contracts that fit the

requested authentication type.

Identity Server supports the following types of authentication classes:

Constant

Description

AuthnConstants.BASIC

Specifies a basic authentication over HTTP. It uses the login
page of a browser to prompt a user for name and password.

AuthnConstants.PASSWORD

Specifies a form-based authentication using a name and
password over HTTP.

AuthnConstants.PROTECTED_BASIC

Specifies a basic authentication over HTTPS. It uses the login
page of the browser to prompt the user for a name and a
password.

AuthnConstants.PROTECTED_PASSWORD

Specifies a form-based authentication using a name and
password over HTTPS.

AuthnConstants. X509

Specifies authentication using an X.509 certificate.

AuthnConstants. TOKEN

Specifies a token-based authentication type.

AuthnConstants.SMARTCARD

Specifies a smart-card-based authentication method.

AuthnConstants.SMARTCARDPKI

Specifies a multi-authentication method using a smart card.

AuthnConstants.OTHER

Default. Used for all other types not defined above.

Class Persistence

Persistence of a class is session based. A session is created when a user is prompted to provide
credentials for a contract. Each method of a contract gets executed in the order defined in the

contract. When a method executes, it creates an instance of the class. The class can persist between
requests for credentials if necessary. If keeping state is not required by the class, then it does not
need to persist. By default, classes persist. If this is not the desired behavior, use the mustPersist()
method to return False.

If the class is configured to persist, the instance of the class persists as long as the doAuthenticate()
or authenticate() method of the class returns HANDLED _REQUEST. When this method returns any
other value, the instance of the class is removed. For a list of possible return values, see

Section 2.3.2, “doAuthenticate Method,” on page 11.

16 Identity Server Authentication API

2.3.6 Status Methods

The following methods allow you to set status information about the authentication instance, to

retrieve status information about the instance, to set and get error messages, and to log messages.

Method

Description

setFailure()

Sets a failure state for the current authentication instance.

See setFailure

isFailure() Indicates whether or not the authentication failed. Returns True if
authentication failed, otherwise, returns False.
See isFailure

setUserErrorMsg() Sets the error message to be displayed to an end user.
See setUserErrorMsg

getUserErrorMsg() Gets the error message that will be displayed to the end user.
See getUserErrorMsg

getLogMsg() Gets the message for the associated error ID. This method is used
primarily by Identity Server to obtain the credentials verified by an
authentication class.
See getlLogMsg

setErrorMsg() Sets the error message to be seen by the end user, as well as the error
message to be put into the log file.
See setErrorMsg.
See “Authentication Error Messages” on page 17.

setErrorMsg() Sets the error message to be seen by the end user, as well as the error

message with a parameter to be put into the log file.
See setErrorMsg.

See “Authentication Error Messages” on page 17.

2.3.6.1 Authentication Error Messages

The following error messages have been defined for the LocalAuthenticationClass and are returned:

Value

Error Message Description

LOG_INCORRECT_PASSWORD

The password entered does not match any of those authorized in the
specified user stores.

LOG_INTRUDER_DETECTION

(eDirectory) The user account is locked because of intruder detection.

LOG_RESTRICTED_ACCOUNT

(eDirectory only) This account has restricted access and the user is
attempting to access it during a time period when the account has
been configured to deny access.

Identity Server Authentication API

17

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setFailure()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#isFailure()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setUserErrorMsg(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getUserErroMsg()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getLogMsg()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setErrorMsg(java.lang.String, java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setErrorMsg(java.lang.String, java.lang.String, java.lang.String)

Value Error Message Description

LOG_DISABLED_ACCOUNT The account requested is disabled.
LOG_BAD_CONNECTION The authentication channel is unable to communicate the user
request.

2.3.7 User Information Methods

18

The following methods allow you to set the identity of who has been authenticated and to set values
for any associated attributes. If the instance is persistent, you can retrieve this same information.
User authorities are the LDAP servers that Identity Server has been configured to use for verifying
authentication credentials. The principal user authority is the LDAP server that was used to verify
the user’s credentials.

Method Description

getPrincipal() Gets the principal authenticated by this class. This value is Null if the
authentication class is set to not define a user or if the authentication fails.
This method is used primarily by Identity Server to obtain the credentials
verified by an authentication class.

See getPrincipal

getPrincipalAttributes() Gets the attributes for the principal that has been authenticated.

See getPrincipalAttributes

getPrincipalUserAuthority(| Gets the user authority for the identified principal, assuming that m_Principal
) has been set.

See getPrincipalUserAuthority

getUserAuthorityCount() Gets the number of searchable user authorities.

See getUserAuthorityCount

getUserAuthority() Gets a specific user authority. The getUserAuthorityCount() method returns
the index range.

See getUserAuthority

setPrincipal() Sets the principal to be authenticated by this class.

See setPrincipal

setPrincipalAttributes() Sets attributes for a principal that has been authenticated.

See setPrincipalAttributes

Identity Server Authentication API

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getPrincipal()
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getPrincipalAttributes%28java.lang.String%5b%5d%29
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getPrincipalUserAuthority%28%29
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getUserAuthorityCount%28%29
http://developer.novell.com/documentation/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#getUserAuthority%28int%29
http://developer.novell.com/documentation/nacm/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setPrincipal%28NIDPPrincipal%29
http://developer.novell.com/documentation/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#setPrincipalAttributes%28java.lang.String%5b%5d,%20java.lang.String%5b%5d%29

Method

Description

setSessionProperties()

Sets user session properties that can be used later by other custom
authentication classes and risk-based authentication rules.

With the following code snippet, you can set session properties by using
custom authentication class:

/'l Create a new HashMap

HashMap<String, Cbject> map = new HashMap<Stri ng,
Qoj ect >() ;

map. put (" Narme", "I nuput Nanme");
map. put ("External Enai | ", "email @nuil.conl);
/I Call the APl to set the Map

set Sessi onProperties(nap);

getSessionProperties()

Gets user session properties that were previously set by other custom
authentication classes.

With the following code snippet, you can set session properties by using
custom authentication class:

/I Create a new HashMap

HashMap<String, Cbject> map = new HashMap<Stri ng,
Qbj ect >() ;

/] Cet the session properties from session
map = get Sessi onProperties();

String email = (String)mp. get("Exernal Email");

getPrincipalAttributesFrom
PreferredLDAPReplica()

Gets the attributes for the authenticated Principal, from the last used User
Store replica for a particular user session.

Use this method when there is a need to read attributes soon after the same
were written to the User Store. This will avoid any errors that may occur in
case the attributes have not been synchronized across all replicas yet.

setPrincipalAttributesinPre
ferredLDAPReplica()

Sets the attributes for the authenticated Principal, in the last used User Store
replica for a particular user session.

Use this method to avoid any errors that may occur in case the attributes
have not been synchronized across all replicas yet.

Identity Server Authentication API 19

2.3.8 CallbackAuthentication Method

To use a custom authentication class in the WS-Trust/STS/OAuth Resource Owner credential
authentication, implement the

com novel | . ni dp. aut henti cation. | ocal . Cal | backAut henti cati on interface in the
authentication class.

To perform the STS/OAuth Resource Owner credential authentication, you need to implement the
cbAut hent i cat e method in the authentication class.

For a sample implementation of cbAut hent i cat e, see PasswordClass Example Code.

2.3.9 Other Methods

The following tables lists other useful methods:

Method Description

showError() Causes an error JSP to be executed to display an error message.

See showError

showlJSP() Forwards execution to a specific JSP.

See showJSP

escapeName() Escapes characters typed by the user.

See escapeName

initializeRequest() Initializes the authentication class with the current request/response.

Normally, this method is called only by Identity Server when it
initializes the authentication class with the current request/response.

See initializeRequest.

2.4 Authentication Class Example

This section demonstrates how a password authentication class might be implemented by using the
PasswordClass. All authentication classes are derived from the LocalAuthenticationClass, so you
need to understand the key methods within it:

+ Section 2.4.1, “Extending the Base Authentication Class,” on page 21

+ Section 2.4.2, “Implementing the doAuthenticate Method,” on page 21

+ Section 2.4.3, “Prompting for Credentials,” on page 21

+ Section 2.4.4, “Verifying Credentials,” on page 21

¢ Section 2.4.5, “PasswordClass Example Code,” on page 22

+ Section 2.4.6, “Accessing a Principal Object from an Authentication Method,” on page 26

20 Identity Server Authentication API

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#showError(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#showJSP(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#escapeName(java.lang.String)
http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nidp/authentication/local/LocalAuthenticationClass.html#initializeRequest(HttpServletRequest, HttpServletResponse, NIDPSession, boolean, java.lang.String)
http://developer.novell.com/documentation/samplecode/nacm32_sample/

24.1

24.2

2.4.3

244

Extending the Base Authentication Class

Authentication classes extend the base class LocalAuthenticationClass as shown on lines 11 and 12
of PasswordClass Example Code. The LocalAuthenticationClass has a single constructor that must be
called as shown in lines 20 - 23. Identity Server uses this constructor to pass the necessary properties
and user store information defined in Administration Console to the class.

The LocalAuthenticationClass defines a single abstract method, doAuthenticate(), which must be
implemented by new classes. During user authentication, Identity Server creates an instance of an
authentication class and calls the authenticate() method, which in turn calls the doAuthenticate()
method. By default, the class instance remains persistent, allowing the state to be preserved
between requests/responses while credentials are obtained. If persistence is not needed, the
mustPersist() method can be overloaded to return False so new instances of the class are created
upon each call to the authenticate() method.

Implementing the doAuthenticate Method

Lines 43 - 65 in the PasswordClass Example Code show how the doAuthenticate() method is used.
Return values from this method indicate to Identity Server that the class has succeeded or failed to
authenticate a user or that additional user credentials are required and must be obtained.

The call to the isFirstCallAfterPrevMethod() method on line 49 determines if the call to the class is
following a successful authentication by another class executed by a method. If that is the case, any
credentials provided for the previous class most likely are not valid for this class and should not be
tested for (line 52). In this example, the handlePostedData() method is called to obtain and validate a
username and password entered by a user.

Prompting for Credentials

When lines are encountered in the PasswordClass Example Code, it has been determined that a page
needs to be returned through the execution of a JSP to enable credentials to be prompted for and
returned. Tests are made to determine if provisioning should be enabled, and if a Cancel button and
federated providers should be displayed. The return value of HANDLED_REQUEST or SHOW_JSP
indicates that the class has responded to the request and requires more information to proceed.

Verifying Credentials

The handlePostedData() method does much of the important work of this example (lines 74 - 114 in
the PasswordClass Example Code). Lines 81 - 100 attempt to obtain the credentials.

Line 86 provides an example of obtaining a class property configured by an administrator. In this
case, a query can be defined by the administrator that can be used to look up a user instead of using
the username and password. If the query is used, the authenticateWithQuery method is called at
line 88. If a query is not available, the authenticateWithPassword() method is called at line 98.

If the credentials correctly identify the user, the value AUTHENTICATED is returned. If they fail to
identify the user, NOT_AUTHENTICATED is returned.

When eDirectory is the user store and a password has either expired or is expiring, the return values
PWD_EXPIRED and PWD_EXPIRING can be returned respectively. See lines 102 - 108.

Identity Server Authentication API 21

Line 111 demonstrates how an attribute is used to set an error message that is displayed to the user
by calling the method getUserErrorMsg().

24.5 PasswordClass Example Code

package com novel | . ni dp. aut henti cation. | ocal ;

i mport java.io.l OException;
inport java.util.Arraylist;
inport java.util.Properties;

i mport javax.security. auth. call back. Cal | back;

i nport javax.security.auth. cal | back. Cal | backHandl er;

i mport javax.security. auth. cal | back. Unsupport edCal | backExcepti on;
i mport javax.servlet.http. HtpServl et Request;

i nport javax.servlet.http. HtpServl et Response;

i mport org.eclipse.higgins.sts.api.lSecuritylnformation;
i mport org.eclipse. higgins.sts.api.|UsernameToken;

i nport com novel | . ni dp. Nl DPConst ant s;

i nport com novel | . ni dp. Nl DPExcept i on;

i mport com novel | . ni dp. Nl DPPri nci pal ;

i mport com novel | . ni dp. Nl DPSessi on;

i nport com novel | . ni dp. Nl DPSessi onDat a;

i mport com novel | . ni dp. aut henti cati on. Aut hnConst ant s;

i mport com novel | . ni dp. conmon. aut hority. Passwor dExpi r edExcept i on;
i nport com novel | . ni dp. conmon. aut hori ty. Passwor dExpi ri ngExcepti on;
i mport com novel | . ni dp. common. aut hority. User Aut hority;

i nport com novel | . ni dp. conmon. prot ocol . Aut hnRequest ;

i nport com novel |l . nidp.liberty.wsc.cache. WCCacheEntry;

i nport com novel | . ni dp. | oggi ng. Nl DPLog;

i nport com novel | . ni dp. sant . SAMLAut hvet hods;

i nport com novel | .security.sso. SecretStore;

i mport com sun. xm . wss. i npl.cal | back. User nameCal | back;

public class PasswordC ass extends Local Aut henticationd ass inpl enments
STSAut henti cati onC ass, Cal | backAut hentication {
private String mError;

/1 for NRL
Local Aut henti cati onCl ass basicC ass = nul | ;

*

/
Constructor for formbased authentication

@ar am pr ops

Properties associated with the inplenenting class
@ar am uSt or es

Li st of ordered user stores to authenticate against

R

*

*/
publ i c Passwordd ass(Properties props, Arraylist<UserAuthority> uStores) {
super (props, ustores);

/1 for NRL
if (mLECP)
basi cC ass = new Basi cCl ass(props, uStores);
}
/**

* Get the authentication type this class inplenments

*

* @eturn returns the authentication type represented by this class
*/
public String getType() {

22 Identity Server Authentication API

return Aut hnConst ant s. PASSWORD;
}

public void initializeRequest(HttpServletRequest request, HttpServletResponse
response, NI DPSession session, N DPSessionData data, boolean followi ng, String url)
{
super.initializeRequest(request, response, session, data, follow ng, url);
if (basicdass != null)
basi cC ass.initializeRequest(request, response, session, data,
follow ng, url);

/**

* Perform formbased authentication. This nethod gets called on each
* response during authentication process

*

* @eturn returns the status of the authentication process which is one of
* AUTHENTI CATED, NOT_AUTHENTI CATED, CANCELLED, HANDLED REQUEST,

* PWD_EXPI RING, PWD_EXPI RED

*/

protected int doAuthenticate() {
/1 If thisis the first time the class is called foll ow ng anot her
/1 met hod
// we want to display the formthat will get the credentials. This
/1 et hod
/1 prevents a previous formfromproviding data to the next formif any
/| parameter names end up being the sane
if ('isFirstCall AfterPrevMethod()) {
/1 This wasnt first tine nethod was called, so see if data can be
/I processed
int status = handl ePost edDat a();
if (status != NOT_AUTHENTI CATED)
return status;

}

String jsp = getProperty(AuthnConstants. PROPERTY_JSP);
if (jsp ==null || jsp.length() == 0)
jsp = NI DPConstants.JSP_LOGQ N,

m_PageToShow = new PageToShow(j sp);
m PageToShow. addAt t ri but e(Nl DPConst ant s. ATTR URL, (get ReturnURL() != null?
get Ret urnURL(): m Request . get Request URL().toString()));
if (getAuthnRequest() !'= null && getAuthnRequest().getTarget() != null)
m PageToShow. addAttribute("target”, getAuthnRequest().getTarget());

String username = m Request. get Paranet er (Nl DPConst ant s. PARM USERI D) ;
if (usernanme != null) // user name is already present
m_PageToShow. addAt t ri but e(" username", usernane);
/1 They failed logging in, check if Captcha is required
/1 1's CAPTCHA real ly required, if it is, include reCaptchaSiteKey
if (isCaptchaRequired())
m_PageToShow. addAt t ri but e(Nl DPConst ant s. ATTR_RECAPTCHA S| TEKEY, get Propert y(Aut hnCo
nst ant s. PROPERTY_RECAPTCHA SI TEKEY));//this attribute will trigger Captcha to
di spl ay.
/1 If we are displaying in the credential w ndow and the error has not
/'l been displayed yet, go ahead and show it. This can happened when
/'l the wong credentials as posted froma third party site
String option = m Request. get Paraneter ("option");
if (option !'=null && option.equal s("credential") & mError !'= null) {
m_PageToShow. addAt t ri but e(Nl DPConst ants. ATTR_ LOG N_ERROR, m Error);
mError = null;

}
return SHOW JSP;

Identity Server Authentication API 23

24

protected int doAuthenticateNRL() {
/*
* Presently NRL always gets the credentials passed in the Basic header
* over Liberty LECP So, invoking basic class todo the processing
*/
int status = basicd ass. doAut henticate();
if (basicCass.getPrincipal () '=null) {
this.setPrincipal (basicd ass. getPrincipal ()
this.m Credentials = basicd ass. get Credenti
} else {
this. mExpiredPrincipal = basicd ass. get Expi redPrinci pal ();
this.setErrorMg(basi cC ass. get UserErrorMsg(), basicd ass. get Loghsg());
setFailure();
t hi s. m Passwor dExcepti on = basi cd ass. get Passwor dExcepti on();

)
al's();

}

return status;

}
/**

* Get and process the data that is posted fromthe form

*

* @eturn returns the status of the authentication process which is one of

* AUTHENTI CATED, NOT_AUTHENTI CATED, CANCELLED, HANDLED REQUEST,
* PWD_EXPI RING PWD_EXPI RED
*]

private int handl ePostedData() {
/1 Look for a nane and password
String id = m Request. get Paranet er (Nl DPConst ant s. PARM _USERI D) ;
String password = m Request. get Par aret er (Nl DPConst ant s. PARM _PASSWORD) ;
/'l Check if the recaptcha-response is needed or valid
[/l this will return true if captcha is not required or false if captcha is
requi red and the recaptcha-response is not valid
/] if captchais invalid, FAIL the login, don't even check usernane/ password
if
(!verifyRecapt cha(m Request . get Par aret er (Aut hnConst ant s. RECAPTCHA RESPONSE)))
{

set Error Msg(Nl DPMai nResDesc. LOG N_FAI LED,
NI DPMai nResDesc. RECAPTCHA _NOT_OPTI ONAL, nul 1) ;

m Error = get UserErrorMsg();

return NOT_AUTHENTI CATED,

}
set Userl d(id);

/Il Check to see if admin has setup for a custom query
String | dapQuery = checkFor Query();

try {
/1 using admn defined attributes for query
if (ldapQuery !'= null) {
if (authenticateWthQery(ldapQuery, password))
return AUTHENTI CATED,

}

/1 1f using default of name and password
el se {
if (id==null || id.length() == 0)
return NOT_AUTHENTI CATED,

if (authenticateWthPassword(id, password))
return AUTHENTI CATED,

}
} catch (Passwor dExpiringException pe) {

return PWD_EXPI RI NG
} catch (PasswordExpi redException pe) {

Identity Server Authentication API

return PWD_EXPI RED;
}

m Error = getUserErrorMg();
return NOT_AUTHENTI CATED,;

}

public NI DPPrincipal handl eSTSAut hentication(l Securitylnformation
securitylnformation) {
| User naneToken user naneToken = (| User naneToken)
securityl nformation. getFirst(IlUsernameToken. cl ass);

if (null != usernameToken) {

try {
i f (authenticateWthPassword(usernaneToken. get User nane(),

user naneToken. get Password()))
return getPrincipal ();
} catch (PasswordExpiringException pe) {
return getPrincipal ();
} catch (PasswordExpiredException pe) {

}
return null;
}
@verride

public NI DPPrincipal cbAuthenticate(CallbackHandl er cbHandl er) {
Passwor dVal i dati onCal | back pwdCal | back = new Passwor dVal i dati onCal | back();
Cal | back[] cal | backs = new Cal | back[] { pwdCal | back };

NI DPPri nci pal principal = null;
try {
cbHandl er. handl e(cal | backs);
if (pwdCal |l back. get Username() != null) {

String query = getProperty(AuthnConstants. PROPERTY_QUERY) ;
String | dapQuery = null;

bool ean status = fal se;

if (query !'= null)

| dapQuery = get LDAPQueryStri ng(query, pwdCal | back. get User nanme()) ;
if (authenticateWthQuery(ldapQuery, pwdCal | back. get Password()))
status = true;

}
el se if (authenticateWthPassword(pwdCal | back. get User nanme(),

pwdCal | back. get Password()))
status = true;

if (status == true) {
principal = getPrincipal();
princi pal . set Aut hMet hod(SAMLAut hMet hods. PASSWORD) ;
return principal;

}

} catch (1CException e) {
/1 TODO Aut o-generated catch bl ock
e.printStackTrace();

} catch (UnsupportedCal |l backException e) {

Identity Server Authentication API

25

26

2.4.6

2.5

2.5.1

i f (NI DPLog. i sLoggabl eWsTr ust Fi ne())
NI DPLog. | ogWBTr ust Fi ne("The cal | er doesn't support password
cal | back: " + e.getMessage());
} catch (Passwor dExpiredException e) {
// TODO Aut o-generated catch bl ock
e.printStackTrace();
} catch (PasswordExpiringException e) {
principal = getPrincipal();
princi pal . set Aut hMet hod(SAMLAut hMet hods. PASSWORD) ;
return principal;

return null;

Accessing a Principal Object from an Authentication Method

For a custom class, the following is an example of how to read the principal object from a previous
authentication method:

NI DPPri nci pal principal = (N DPPrincipal)mProperties.get("Principal");
if (principal == null)
if (mSession.isAuthenticated() && (m Sessi on. get Subj ect ().getPrincipal () != null

))
princi pal = m Sessi on. get Subj ect (). getPrincipal ();

Use this code in the doAut hent i cat e() method.

Localizing the Prompts in Your Authentication Class

You need to create a JSP page for displaying the login prompts. When doing so, you might want to
allow the prompts to be displayed in multiple languages.

To enable the text so that it can be displayed in multiple languages, you need to do the following:

+ Section 2.5.1, “Creating a Properties File,” on page 26
+ Section 2.5.2, “Creating a Resource Class,” on page 27

+ Section 2.5.3, “Creating or Modifying a JSP Page,” on page 28

Creating a Properties File

You need to create a list of the strings to be displayed when prompting users for login credentials
and reacting to their input. You need to create a string constant for each string and place the string
constant and string in a properties file. The following properties file contains some sample string
constants for a few of the prompts that your JSP page might need.

LOA N=Logi n

USERNAME_PROMPT=User nane:

CONTACT_ADM NI STRATOR_PROVPT=Cont act your system adm ni strator.
SAMPLE_AUTH_FAI LED MsG=Aut henti cation Fail ed.

CONTI NUE_PROWPT=Cont i nue

CONTI NUE_TI TLE=Cont i nue

LOG N_ERROR _PROVPT=Aut henti cation Error.

Identity Server Authentication API

2.5.2

The name for this properties file needs to end with the Java defined constants for each language. For
the English version for use in the United States, the file would end with en_US. properti es, for
example, Sanmpl eResour ces_en_US. properti es. The base portion of the name (in this example,
Sanpl eResour ces) stays the same for all languages.

You need to create such a file, with the appropriately translated strings and name, for each language
you want to support.

Creating a Resource Class

You need to extend the com novel | . ni dp. resour ce. Nl DPResDesc class with a resource class
that knows how to call your properties files and retrieve the strings. The following sample code
extends the Nl DPResDesc class with a class called Sanpl eResDesc, defines the base name for the
properties file (Sanpl eResour ces), and defines a string constant for each string in the properties
file.

#igpHHHHi#tneed a package name | i ne ###HHHHHHHHHHHHHHHHHHH]
i nport com novel | . ni dp. resour ce. Nl DPResDesc;

public class Sanpl eResDesc extends N DPResDesc
{
private static final String SAMPLE BUNDLE BASENAME =
" Sanpl eResour ces";
private static final String KEYS PREFIX = "";

/1 Names of |ocalized strings and nessages
public static final String LOGN = "LOd N';
public static final String USERNAME PROWPT = "USERNAME PROWPT";
public static final String CONTACT_ADM NI STRATOR PROWVPT =
" CONTACT_ADM NI STRATOR_PROWPT" ;
public static final String SAMPLE_AUTH FAI LED NSG =
" SAMPLE_AUTH FAI LED MSG';
public static final String CONTI NUE_PROVPT = " CONTI NUE_PROWPT";
public static final String CONTINUE_TITLE = " CONTI NUE_TI TLE";
public static final String LOd N_ERROR PROWT = "LOGd N_ERROR_PROWPT";

private static Sanpl eResDesc m.instance = null;

private Sanpl eResDesc()

{

super (SAMPLE_BUNDLE_BASENAME, KEYS_PREFI X) ;
}
public static Sanpl eResDesc getl nstance()
{

if (null == m.instance)

{

m i nstance = new Sanpl eResDesc(); |

}

return m.instance;
}

Identity Server Authentication API 27

2.5.3 Creating or Modifying a JSP Page

The JSP page generates the prompts for user credentials by calling your extended resource class to
retrieve the strings. The following snippet of a JSP page gets the local language code, and then calls
the extended resource class (SampleResDesc) to display the string for the string constant
USERNAME_PROMPT.

'<‘%@ page i nport="com novell.nidp.*" %
<% page i nport="com novell.nidp.resource.*" %

<%
Local e | ocal e = request. getLocal e();
String strlLanguageCode = | ocal e. get Language();
String strlLanguageCodelLower case = strlLanguageCode. t oLower Case();
NI DPResour ce sanpl eResource = NI DPResour ceManager . get | nst ance()
. get (Sanpl eResDesc. get I nstance(), locale);
%

<! DOCTYPE HTM. PUBLIC "-//WBC// DTD HTM. 4.01 Transitional//<%strLanguageCode%" >
<htm | ang="<%str LanguageCode%" >

<t abl e>
<tr>
<t d>
<l abel style="wi dth: 100px"><% sanpl eResour ce.
get St ri ng(Sanpl eResDesc. USERNAME_PROVPT) %</ | abel >
</td>
<td wi dth="100% >
<input id="M/_User |ID' type="text" class="smalltext"
nane="M/_User I D' size="30"> &bsp;
<i nput al t="<%sanpl eResour ce. get Stri ng0
(Sanpl eResDesc. LOd N) %"
bor der="0" nanme="1| ogi nButton"
src="<%r equest . get Cont ext Pat h() %/ i mages/
<% st r LanguageCodelLower case%/
bt nl ogi n_<%st r LanguageCodeLower case%. gi f "
type="i mage" val ue="Logi n"
onclick="nmySubmt()">

For your authentication class, this JSP snippet needs to be extended to include the prompts for the
other authentication credentials your class requires. As you add prompts to the JSP page, these
constants need to be added to your resource class and properties files.

The name of this JSP page needs to correspond to the page you call in your authentication class. See
lines 109 - 111 in the sample class (Section 2.4.5, “PasswordClass Example Code,” on page 22).

When you create the jar file for your authentication class, the properties files and the Java resource
file need to be included. The JSP page for your authentication class needs to be added to the / opt /
novel | / ni ds/ i b/ webapp/j sp directory of Identity Server. For information about how to add a
file, see Adding Configurations to a Cluster in the NetlQ Access Manager 5.0 Administration Guide.

28 Identity Server Authentication API

https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

2.6 Deploying Your Authentication Class

1 Create a jar file for your authentication class and any associated classes.

2 Add the jar file to the / opt / novel | / nam i dp/ webapps/ ni dp/ VEB- | NF/ | i b directory
using Advanced File Configurator.

For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

3 (Conditional) If you created a custom JSP page for your authentication class, add it to the
/opt/novel | / nids/|ib/webapp/|jsp directory of Identity Server using Advanced File
Configurator.

4 Click Devices > Identity Servers > Edit > Local > Classes > New.

5 Specify the following details:
Display name: Specify a name that Administration Console can use to identity this class.
Java class: Select Other. This allows you to specify the path name of your Java class.
Java class path: Specify the name of your Java class.

6 Click Next, and specify any needed properties of your class.

This is dependent upon your class. You need to specify properties only if your class requires
them.

This information is sent to your class in the pr ops parameter when your class is called.
7 Click Finish.
8 To configure a method for your class, click Methods > New, and select your class in Class.

When you configure a method, you specify which user stores can be used for authentication.
This information is returned to your class in the uSt or es parameter when your class is called.

For more information, see Creating Authentication Methods in the NetlQ Access Manager 5.0
Administration Guide.

9 Click Finish.

10 To configure a contract for your class, click Contracts > New, and move your class to be a value in
the Methods list.

For more information, see Creating Authentication Contracts in the NetlQ Access Manager 5.0
Administration Guide.

11 (Optional) Default contracts can be specified for each authentication type that might be
required by a service provider. These contracts are executed when a request for a specific
authentication type comes from a service provider.

For more information, seeSupported Authentication Class Types and “Specifying Authentication
Defaults” in the Access Manager 5.0 Administration Guide.

12 Click Finish > OK.
13 Restart Identity Server.
14 On Identity Servers page, click Update.

15 Update any associated devices that are using this Identity Server configuration.

Identity Server Authentication API 29

https://www.microfocus.com/documentation/access-manager/5.0/admin/configureauthmethod.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/localcontract.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/authdefaults.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/authdefaults.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

30 Identity Server Authentication API

3.1

3.2

LDAP Server Plug-In

An LDAP Server plug-in module is a Java class that allows an unsupported LDAP server to be used
with Access Manager. The three supported LDAP servers are eDirectory™, Active Directory, and Sun
ONE. Any other directory types require an LDAP Server plug-in.

+ Section 3.1, “Prerequisites,” on page 31

*

Section 3.2, “Creating the LDAP Plug-In,” on page 31

*

Section 3.3, “eDirectory Plug-In,” on page 33

*

Section 3.4, “Installing and Configuring the LDAP Plug-In,” on page 37

*

Section 3.5, “Troubleshooting,” on page 38

Prerequisites

To develop an LDAP server plug-in:

O Meet all system requirements of Identity Servers and Access Gateways. See the NetlQ Access
Manager 5.0 Installation and Upgrade Guide.

3 Install and configure all components of Access Manager. For installation and configuration
information, see the NetlQ Access Manager 5.0 Installation and Upgrade Guide and “Setting Up
a Basic Access Manager Configuration” in the Access Manager 5.0 Administration Guide.

O Have an integrated Java development environment.

O Download NAMCommon. j ar from the / opt/ novel | / nan i dp/ webapps/ ni dp/ VEEB- | NF/
| i b directory and add it to your development project.
For information about how to download a file, see Downloading Files from a Server in the NetlQ
Access Manager 5.0 Administration Guide.
For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

Creating the LDAP Plug-In

The project used to create the plug-in must include the NAMConmon. | ar file shipped with Access
Manager.

To create an LDAP Server plug-in, you need to create a public class that extends the abstract the
com novel | . nam conmon. | dap. j ndi . LDAPSt or ePl ugi n class.

In your public class, you need to implement the following methods:

Method Description

getDirectoryName() Needs to return the name you want displayed for your directory type.
For eDirectory, this method returns “Novell eDirectory” for this string.

LDAP Server Plug-In 31

https://www.microfocus.com/documentation/access-manager/5.0/admin/default-files.html#namcommon-jar
https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/download-server-file.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/b1wuvux.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/b1wuvux.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

32

Method

Description

getGUIDAttributeName()

Needs to return the name of the globally unique ID attribute that
uniquely identifies all objects in this type of directory. For eDirectory,
this is the GUID attribute.

getMemberAttributeName()

Needs to return the name of the attribute that is used to identity an
object as a member of a group. For eDirectory, this is the member
attribute.

getUserClassName()

Needs to return the name of the class that is used to create users. For
eDirectory, this is the User class.

getUserNameNamingAttrName(

)

Needs to return the name of the attribute that is used to name users.
For eDirectory, this in the cn attribute.

preUserAccountCreation()

Needs to return an attributes object that contains an array of attributes,
with each member contain the name of an attribute and its value. This
attributes object needs to contain all the attributes that are required to
create a user in the LDAP directory. This usually consists of the name of
the object class, the naming attribute, and a password. For eDirectory,
this also includes the sn attribute.

The following methods can be implemented, and might be required for your LDAP directory:

Method

Description

postUserAccountCreation()

Modifies a user’s attributes after the user has been created. Some LDAP
directories do not let you set a password until after the user account has
been created. The method contains a strCorrelationld parameter that
you can use to match the user with the user in the
preUserAccountCreation() method.

onCreateConnection()

Allows the plug-in to check the connection creation parameters and
modify them, if needed. This method is called just before a connection is
created with the LDAP directory.

onCreateConnectionException()

Allows you to customize the exception that is thrown when the process
to create an LDAP connection fails and throws an authentication
exception.

This method is overloaded and requires an AuthenticationException
parameter.

onCreateConnectionException()

Allows you to customize the exception that is thrown when the process
to create an LDAP connection fails and throws a connection exception.

This method is overloaded and requires an
OperationNotSupportedException parameter.

LDAP Server Plug-In

Method Description

getFailedLoginCountAttributeNa | Allows you to enable the reCAPTCHA feature.

me
0 When the reCAPTCHA feature is enabled, the login page shows the

Google reCAPTCHA box, so that the user trying to log in can confirm |
am not a robot.

The reCAPTCHA box does not appear unless the failed login count
exceeds a specific number.

This method returns the name of the attribute that is used to retrieve
the bad password count or login intruder attempts. This method returns
l ogi nl ntruderAttenpts for eDirectory andbadPwdCount
for Active Directory.

If you are upgrading from Access Manager 4.2.x or earlier, add the following lines to the LDAP plug-in
to avoid errors:

/**

* Returns the schema name of the Failed Login Attenpts attribute for this
directory type. This is the attribute that indicates the attribute name for the
Failed Login Count. For exanple, for eDirectory, this nethod might return
"loginlntruderAttenpts'.

*

* @eturn The schema nanme of the Failed Login Attenpts attribute.
*/
public abstract String getFail edLogi nCountAttri buteName();
/**
public String getFail edLogi nCount Attri but eNane() {
return "<nane of the attribute>"
}

For Active Directory, replace <nane of the attribute>with badPwdCount . For eDirectory,
replace <nane of the attribute> withl ogi nl ntruderAttenpts.

For details about the LDAPStorePlugin class and methods, see the Javadoc API Reference.

For an example plug-in that extends the LDAPStorePlugin class and implements the required
methods and some of the optional methods, see Section 3.3, “eDirectory Plug-In,” on page 33.

eDirectory Plug-In

The following code is from the eDirectory plug-in:
package com novel | . nam conmon. | dap. j ndi ;

i mport javax.nam ng. Aut henti cati onExcepti on;

i mport javax.nam ng. Oper at i onNot Support edExcepti on;
i nport javax.nam ng.directory.Attributes;

i mport javax.nam ng.directory. Basi cAttri butes;

i mport javax.nam ng. | dap. Ext endedRequest ;

i nport javax.nam ng. | dap. Ext endedResponse;

i nport com novel | . nam common. | dap. j ndi . ext . Get Ef f ect i veRi ght sRequest ;
i nport com novel | . nam conmon. | dap. j ndi . ext . Get Ef f ecti veRi ght sResponse;
i mport com novel | . nam common. | dap. j ndi . ext. NdsAttri but eRi ghts;

i nport com novel | . nam common. | dap. j ndi . ext. NdsEnt r yRi ght s;

i nport com novel | . nam conmon. | dap. j ndi . ext . NdsRi ght s;

LDAP Server Plug-In 33

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/com/novell/nam/common/ldap/jndi/LDAPStorePlugin.html

public class LDAPStorePl ugi nEDi r extends LDAPSt orePl ugin

@verride
public String getDirectoryNane()
{
return "Novell eDirectory";
}
@verride
public String get GUI DAttri but eName()
{
return "GQU D';
}
@verride
public String get MenberAttri buteName()
{
return "nenber";
}
@verride
public String getUserd assNane()
{
return "User";
}
@verride
public String getUserNam ngAttrName()
{
return "cn";
}
@verride

public String getFail edLogi nCount Attri but eNanme()

return "l oginlntruderAttenpts";

}

public Attributes preUserAccountCreation(String strCorrelationld, String nane,
String password, String context)

Attributes attrs = new BasicAttributes();

attrs. put (JNDI Const ants. LDAP_ATTR_OBJECTCLASS, " User");
attrs. put (JNDI Const ants. LDAP_ATTR _CN, nane) ;

attrs. put (JNDI Const ants. LDAP_ATTR_SN, "NAM Gener at ed") ;
attrs. put ("user Password", password);

return attrs;

}

public void onCreateConnecti onException(Authenticati onException ae)
throws JNDI Exception
{
/1 Check the return nessage to see if we can interpret it.

String strDetails = ae.get Message();
/1 Look for "Incorrect Password"
int ildxLdapErrorCode = strDetails.indexCh(" 49 ");
int il dxNDSErrorCode = strDetails.indexOr("(-669)");
if ((-1!'=ildxLdapErrorCode) && (-1 != il dxNDSError Code))

if (ildxLdapErrorCode < il dxNDSError Code)
{ /'l The user typed in an incorrect password

throw new JNDI Excepti onl ncorrect Passwor d(ae,
ae. get Local i zedMessage());

}
/1 Look for Expired Password

34 LDAP Server Plug-In

i | dxLdapError Code = strDetails.indexCh(" 49 ");
i | dXNDSError Code = strDetails.indexO (" (-222)");
if ((-1!'=ildxLdapErrorCode) && (-1 != il dxNDSError Code))

i f (ildxLdapErrorCode < il dxNDSError Code)
{ /1 The password for this user account has expired.

t hrow new JNDI Excepti onExpi redPasswor d(ae, ae. getLocal i zedMessage());

}

}

public void onCreat eConnecti onExcepti on(Oper ati onNot Support edExcepti on onse)
t hrows JNDI Exception

/'l Check the return message to see if we can interpret it.
String strDetails = onse. get Message();
/1 Look for "lIncorrect Password"
int ildxLdapErrorCode = strDetails.indexCF(" 53 ");
if (ildxLdapErrorCode != -1)

int ildxNDSErrorCode = strDetails.indexOr("(-220)");

/'l Check for account disabled (or a restriction has disabled the
account)
if (il1dxNDSErrorCode != -1 &% ildxLdapErrorCode < il dxNDSErr or Code)
t hrow new JNDI Excepti onDi sabl edAccount (onse,
onse. get Local i zedMessage());

/1 Check for intruder detection disabl ement
i | dXNDSEr r or Code = strDetails.indexO("(-218)");
if (il1dxNDSErrorCode != -1 &% ildxLdapErrorCode < il dxNDSErr or Code)
t hrow new JNDI Excepti onRestri ct edAccount (onse,
onse. get Local i zedMessage()) ;

/1 Check for intruder detection disabl erment
i | dXNDSEr r or Code = strDetails.indexOF("(-197)");
if (il1dxNDSErrorCode != -1 &% il dxLdapErrorCode < il dxNDSErr or Code)
t hrow new JNDI Excepti onl nt ruder Det ecti on(onse,
onse. get Local i zedMessage());

}
}
publ i c bool ean supportsEffectiveRi ghtsRetrieval ()

return true;

}

publi ¢ Ext endedRequest get EntryEffectiveRi ght sExt endedRequest (String obj ect DN,
String trusteeDN)
{

return new Get Ef fecti veRi ght sRequest (obj ect DN, trusteeDN);
}

public int getEntryEffectiveRi ghts(ExtendedResponse response)
{

if (response instanceof GetEffectiveR ghtsResponse)

NdsRi ghts rights = ((CetEffectiveRi ght sResponse)response). get Ri ghts();
return rights.getRights();
}

return O;

}

publi c ExtendedRequest getAttributeEffectiveR ghtsExtendedRequest (String
obj ectDN, String trusteeDN)
{

LDAP Server Plug-In

35

return new GCet Ef fecti veRi ght sRequest (obj ect DN, trusteeDN,
NdsRi ghts. ALL_ATTRI BUTES_RI GHTS) ;

}
public int getAttributeEffectiveRi ghts(ExtendedResponse response)
{
if (response instanceof GetEffectiveR ghtsResponse)
NdsRi ghts rights = ((CGetEf fectiveRi ght sResponse)response). get Ri ghts();
return rights.getRights();
return O;
}
publ i c bool ean hasEntrySupervi sorRights(int iEntryRi ghts)
{
return new NdsEntryRi ght s(i EntryRi ghts). hasSupervisor();
}
publ i ¢ bool ean hasEntryBrowseRi ghts(int iEntryRi ghts)
{
return new NdsEntryRi ghts(i EntryRi ghts). hasBrowse();
}
publ i c bool ean hasEntryRenameRi ghts(int iEntryRi ghts)
{
return new NdsEntryRi ghts(i EntryRi ghts). hasRenanme();
}
publi c bool ean hasEntryDel et eRi ghts(int i EntryRi ghts)
{
return new NdsEntryR ghts(i EntryRi ghts). hasDelete();
}
publ i ¢ bool ean hasEntryAddRi ghts(int iEntryR ghts)
{
return new NdsEntryRi ghts(i EntryRi ghts). hasAdd();
}
publ i c bool ean hasAttri but eConpareRi ghts(int i AttributeRi ghts)
{

return new NdsAttri buteRi ghts(NdsRi ghts. ALL_ATTRI BUTES_RI GHTS,
i AttributeRi ghts).hasConpare();

public bool ean hasAttri buteReadRi ghts(int iAttributeRi ghts)

{
return new NdsAttri buteRi ghts(NdsRi ghts. ALL_ATTRI BUTES_RI GHTS,

i AttributeRi ghts).hasRead();
}

public bool ean hasAttributeWiteRi ghts(int i AttributeRi ghts)

{
return new NdsAttri buteRi ghts(NdsRi ghts. ALL_ATTRI BUTES_RI GHTS,

i AttributeRights).hasWite();
}

public bool ean hasAttributeSel fRights(int iAttributeRi ghts)

{
return new NdsAttri but eRi ghts(NdsRi ghts. ALL_ATTRI BUTES_RI GHTS,

i AttributeRights).hasSel f();
}

publ i c bool ean hasAttri buteSupervisorRights(int iAttributeRi ghts)

{
return new NdsAttri buteRi ghts(NdsRi ghts. ALL_ATTRI BUTES_RI GHTS,

36 LDAP Server Plug-In

3.4

i AttributeRi ghts).hasSupervisor();
}

publ i c bool ean hasObj ect SearchRi ghts(int i EntryRights, int i AttributeRi ghts)

NdsEntryRi ghts entryRi ghts = new NdsEntryRi ght s(i EntryRi ghts);
NdsAttri buteRi ghts attributeRights = new
NdsAttri but eRi ght s(NdsRi ghts. ALL_ATTRI BUTES RI GHTS, i AttributeR ghts);
if (entryRights. hasSupervisor())
{ /] Supervisor entry rights are sufficient for doing a user search
return true;

}
if (entryRights.hasBrowse())
{ /] Browse entry rights plus supervisor/conpare attribute rights are
sufficient for doing a user search
if (attributeRights.hasSupervisor() || attributeRi ghts.hasConpare())

return true;

}

return false;

}
}

Installing and Configuring the LDAP Plug-In

After you have created your plug-in, configure Access Manager to use it.

1 Add the plug-in class file to Identity Server to the following directory using Advanced File
Configurator under the correct directory structure as per the class package:
+ If you want to use a LDAP-plugin class file: / opt/ novel | / nam i dp/ webapps/ ni dp/
VEEB- | NF/ ¢l asses
+ If you want to use a LDAP-plugin class in a jar file: / opt/ novel | / nani i dp/ webapps/
ni dp/ VEB-INF/ 1i b
If your class package name is com.acme.ldap.plugin, you need to create the com acne, | dap,
and pl ugi n directories.

For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

2 To associate an LDAP Server plug-in with the Custom1, Custom2, or Custom3 directory type,
modify the Identity Server web. xn file.

2a Open the web.xml file.

For information about how to modify a file, see Modifying Configurations in the NetlQ
Access Manager 5.0 Administration Guide.

2b Add an entry for the ladpStorePlugins context parameter. Your entry should look similar to
the following to associate the com.acme.plugin.Sample1Plugin with the Custom1 directory
type.
<cont ext - par an»
<par am nane>| dapSt or ePl ugi ns</ par am nane>

<par am val ue>cust onll: com acne. | dap. pl ugi n. Sanpl e1Pl ugi n</ par am val ue>
</ cont ext - par an®

You can add up to three values using the
cust oml: cl assnane; cust on?: cl assnane; cust onB: cl assnane format.

LDAP Server Plug-In 37

https://www.microfocus.com/documentation/access-manager/5.0/admin/default-files.html#t4dwgv07lkzs
https://www.microfocus.com/documentation/access-manager/5.0/admin/mod-config-file.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

38

3.5

3 In Administration Console, configure Identity Server to use the new directory type for a user
store.

3a Click Access Manager > Identity Servers > Edit > Local.
3b Either select the name of a user store or click New.
3c For the Directory type, select the custom string you have configured in Step 2.
3d Complete one of the following:
+ For a new user store, configure the other required values, then click Finish.

+ For a modified user store, modify the other options to fit the new directory type, then
click OK.

3e Update Identity Server.

4 (Optional) To verify that the new directory type is functioning correctly, log in to the user portal
by using the credentials of a user in the user store.

If you encounter any errors, see Section 3.5, “Troubleshooting,” on page 38.

Troubleshooting

If problems with LDAP Server plug-ins are detected, the following error messages are issued during
Access Manager initialization. To log these messages to the cat al i na. out file, set the application
component file logger to the warning level or higher.

+ “300105029: Cannot load LDAP Store Plugin class: {0}. Error: {1}.” on page 38

+ “300105030=Cannot instantiate LDAP Store Plugin class: {0}. Error: {1}.” on page 38

+ “300105031=An unknown or unsupported user store directory type {0} was found for the user
store named {1}. Defaulting to eDirectory!” on page 38

300105029: Cannot load LDAP Store Plugin class: {0}. Error: {1}.
Cause: The java.lang.Class.forName() method failed to load the LDAP Store Plugin class.

Action: Verify that a valid Java class file is available in Access Manager's class path for the referenced
plug-in class file. Check the modifications you made to the web.xml file (see Step 2 on page 37).

300105030=Cannot instantiate LDAP Store Plugin class: {0}. Error: {1}.
Cause: The java.lang.Class.newlnstance() method failed to instantiate the LDAP Store Plug-in class.

Action: Verify that a valid Java class file is available in Access Manager's class path for the referenced
plug-in class file. Also, ensure that the LDAP Store Plug-in has a zero parameter constructor.

300105031=An unknown or unsupported user store directory type {0} was found for
the user store named {1}. Defaulting to eDirectory!

Cause: A user store was configured with an unrecognized directory type. The configuration was
manually modified to include an invalid directory type specifier or the configuration has been
corrupted.

Action: Examine the supplied error detail and take applicable actions. If the directory type is wrong,
reconfigure the user store with the correct directory type. If the configuration is corrupted, delete
the user store configuration, then re-create it.

LDAP Server Plug-In

4.1

4.1.1

The Policy Extension API

The policy extension API allows you to enhance the Access Manager policy engine so that an
external module can perform the following types of tasks:
+ Evaluate a condition and return results that Access Manager can use to determine enforcement.

+ Provide data from an external source that Access Manager can use to evaluate a condition or to
inject into an HTTP header.

+ Provide actions that are performed when the policy conditions evaluate to True.

This section describes the basic characteristics of a policy extension, how to create the possible
types of extensions, ands how to install and use the extension in an Access Manager policy.

+ Section 4.1, “Getting Started,” on page 39

¢ Section 4.2, “Common Elements and Tasks,” on page 43

*

Section 4.3, “Creating an Extension,” on page 52

*

Section 4.4, “Installing and Configuring an Extension,” on page 61

*

Section 4.5, “Sample Codes,” on page 64

Getting Started

+ Section 4.1.1, “Prerequisites,” on page 39
+ Section 4.1.2, “Types of Policy Extensions,” on page 40

+ Section 4.1.3, “How the Policy Engine Interacts with an Extension,” on page 40

Prerequisites

3 Install and configure all components of Access Manager. For installation and configuration
information, see the NetlQ Access Manager 5.0 Installation and Upgrade Guide and “Setting Up
a Basic Access Manager Configuration” in the Access Manager 5.0 Administration Guide.

O A basic understanding of Access Gateway Authorization and Access Gateway Identity Injection
policies. See “Access Manager Policies” in the Access Manager 5.0 Administration Guide.

O Anintegrated Java development environment.

O Download nxpe. j ar from the/ opt/ novel | / nan i dp/ webapps/ ni dp/ VEB- I NF/ |i b
directory (for roles) or / opt / novel | / nam mag/ webapps/ nesp/ WEB- I NF/ | i b (for other
policies) of your Identity Server and add these to your development project.

For information about how to download a file, see Downloading Files from a Server in the NetlQ
Access Manager 5.0 Administration Guide.

For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

The Policy Extension API 39

https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/b1dmtq0n.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/download-server-file.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/b1wuvux.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/b1wuvux.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

40

4.1.2

4.1.3

Types of Policy Extensions

You can use the policy extension API to create the following types of policy extensions:

+ Action: This type of extension allows a new action to be added to the policy. When the policy is

evaluated and the conditions evaluate to true, the extension is called so that it can execute its
action. The action can be a permit, deny, or obligation. Actions extensions are used in Access
Gateway Authorization policies.

For example, when a user is denied access to an Access Gateway resource, the extension
generates a dynamic page that is displayed to the user and updates a database with the details
of the attempted access.

Condition: This type of extension allows a new condition to be added to the policy. When the
policy is evaluated, the extension is called to evaluate the condition and is responsible for
returning a True, False, or Error value for the condition. Condition extensions are used in Access
Gateway Authorization policies and Identity Server Role policies.

For example, the Acme company requires historical sales records to be available via the
corporate Intranet. Access to the records is granted according to regular procedures set up by
the accounting department. The accounting department manages the access rights in a
database that supports SQL. In order for Access Manager to take advantage of the access
granting process already in place in the accounting department, a condition extension is created
that queries the accounting access rights database and returns true, false, or error.

Data: This type of extension retrieves data from an external source that can then be injected
into a policy and used as input for evaluating a condition or an action. Data extensions can be
used in Access Gateway Authorization policies, Access Gateway |dentity Injection policies,
Identity Server Role policies, External Attribute Source policies.

For example, suppose a policy needs to use the role assignments made in an Oracle* database
to determine whether a user is assigned an Access Manager role. The data extension could
retrieve the role assignments from the database and return them in a string object that could
be used by Access Manager in evaluating the condition for the Role policy.

How the Policy Engine Interacts with an Extension

When the policy engine processes a policy, the first step is to configure the policy. The following
elements can be marked as external elements in the policy:

+ Conditions
+ Data elements
+ Actions

When the policy engine configures a policy, it calls the extension if it encounters an external
element. The engine expects the extension to return an extension type-specific object, unless an
exception occurs. The object contains the data that the extension needs for processing, and the
object is returned to the policy engine with the required data to continue processing the policy.

For specific details, see the following sections:

+ Section 4.1.3.1, “How the Policy Engine Interacts with a Condition Extension,” on page 41
+ Section 4.1.3.2, “How the Policy Engine Interacts with a Data Extension,” on page 41

+ Section 4.1.3.3, “How the Policy Engine Interacts with an Action Extension,” on page 42

The Policy Extension API

4.1.3.1

4.1.3.2

How the Policy Engine Interacts with a Condition Extension

When the policy engine processes a policy and encounters a condition marked as an extension, it
instantiates an object that must comply with the NxpeConditionFactory interface. It then calls the
getinstance method and expects an NxpeCondition object from the extension unless NxpeException
is thrown by the NxpeConditionFactory object.

This process is illustrated in the following code snippet:
public interface NxpeConditionFactory

NxpeCondi ti on getl nstance()
t hrows NxpeExcepti on;
} /* NxpeConditionFactory */

The policy engine then calls the NxpeCondition.initialize method and sends an NxpeParameterList
object for configuration parameters. Configuration parameters are used to initialize the
NxpeCondition object. The extension needs these parameters for evaluating the condition. Values
for these parameters are retrieved at evaluation from the NxpelnformationContext object that is
sent by the policy engine.

The initialize method is called before any other method, followed by a method that sets an ID for the
condition.

The following code snippet illustrates this process:

public interface NxpeCondition
{

void initialize(
NxpePar anet er Li st configurationVal ues)
t hrows NxpeExcepti on;

NxpeResul t eval uat e(
Nxpel nf or nat i onCont ext i nf or mat i onCont ext ,
NxpeResponseCont ext r esponseCont ext)
throws NxpeExcepti on;

voi d setlnterfacel d(
String interfaceld)
t hrows NxpeExcepti on;

How the Policy Engine Interacts with a Data Extension

When the policy engine is processing a policy and encounters a data element marked as an
extension, the engine instantiates an object that must comply with the
NxpeContextDataElementFactory interface. The engine then calls the getinstance() method, passing
the name, enumerativeValue, and parameter as arguments, and expects the extension to return an
NxpeContextDataElement object unless the NxpeContextDataElementFactory object throws an
NxpeException. The following code snippet illustrates this process:

public interface NxpeContext Dat aEl ement Fact ory

NxpeCont ext Dat aEl enent get | nst ance(

String nane,
int enuner at i veVal ue,
String par anet er)

t hrows NxpeExcepti on;

} /* NxpeCont ext Dat aEl ement Factory */

The Policy Extension API 41

4.1.3.3

During the next part of the configuration phase, the policy engine calls the
NxpeContextDataElement.initialize() method, passing an NxpeParameterList object with
configureParameters. The configureParameters are used to initialize the NxpeContextDataElement
object and are the parameters required during policy evaluation. It is expected that the values for
these configureParameters are retrieved from the NxpelnformationContext object passed by the
policy engine.

The following code snippet illustrates this process:

public interface NxpeContext Dat aEl enment
{

void initialize(
NxpePar anet er Li st configurationVal ues)
t hrows NxpeException;

String get Nane();
int getEnunerativeVal ue();
String getParaneter();

Qbj ect get Val ue(
Nxpel nf or mat i onCont ext i nf or mat i onCont ext ,
NxpeResponseCont ext responseCont ext)
t hrows NxpeException;

} /* NxpeCont ext Dat aEl enent */

The policy engine calls the NxpeContextDataElement.intialize() method to initialize a component in
preparation for policy evaluation. Derived classes are required to implement this method. This
method is guaranteed to be called before any other method is called, because it is part of object
construction.

The configurationValues parameter contains a list of the configuration data required by the external
ContextDataElement handler. If the context data element wants to preserve configuration data, it
must maintain a reference to the configuration value parameters.

How the Policy Engine Interacts with an Action Extension

When the policy engine is processing a policy and encounters an action marked as an extension, the
engine instantiates an object that must comply with the NxpeActionFactory interface. The engine
then calls the getinstance() method, and expects the extension to return an NxpeAction object
unless the NxpeActionFactory object throws an NxpeException.

This process is illustrated in the following code snippet:

public interface NxpeActionFactory

{
NxpeAction getlnstance()

t hrows NxpeExcepti on;
} /* NxpeActionFactory */

During the next part of the configuration phase, the policy engine calls the NxpeAction.initialize()
method, passing an NxpeParameterList object with the configureParameters. The
configureParameters are used to initialize the NxpeAction object. The configureParameters are
those parameters needed during NxpePolicy.evaluate(). It is expected that the values for these
configureParameters are retrieved from the NxpelnformationContext passed by the policy engine.

42 The Policy Extension API

4.2

The following code snippet illustrates this process:

public interface NxpeAction

{
void initialize(
NxpePar anet er Li st configurationVal ues)
throws NxpeExcepti on;

The NxpeParameterList is a list of configuration data required by the external action extension. If the
action extension wants to preserve configuration data, the extension must maintain a reference to
the configuration value parameters.

The second method called is the setinterfaceld method, which sets up a value for trace evaluation.
The interfaceld parameter sets a unique sting value for the action. The following code snippet
illustrates this last step in the NxpeAction interface.

voi d setlnterfacel d(
String interfaceld)
throws NxpeExcepti on;

} /* NxpeAction */
The policy engine calls the doAction method to initiate the action. It has the following parameters:

+ The informationCtx parameter contains the policy enforcement Point information context to
query for values

+ The responseCtx is a reflection object for communicating detailed response information back to
the application. This is additional information and does not replace the need to place an action
completion status in the return value from this call.

This method returns an NxpeResult, which contains an error code, permit, deny, or obligation.
Derived classes are require to override this method to implement the supported action.

The following code snippet illustrates this process:

NxpeResul t doActi on(
Nxpel nf or nat i onContext infornationCtx,
NxpeResponseCont ext responseC x)
throws NxpeExcepti on;

Common Elements and Tasks

As you develop your extension, the extension needs to perform the following tasks:

+ Section 4.2.1, “Implementing Common Elements,” on page 44
+ Section 4.2.2, “Initializing the Factory Object,” on page 45
+ Section 4.2.3, “Retrieving Information from Identity Server User Store,” on page 46

+ Section 4.2.4, “Implementing the Extension Interface,” on page 47

For information about the Extension APl interfaces and class, see the Javadoc API Reference.

The Policy Extension API 43

http://www.novell.com/documentation/developer/nacm32/nacm_enu/api/

4.2.1

42.1.1

Implementing Common Elements

Each extension type has two interfaces:

+ A factory interface that contains the method for initializing an extension object with data from
the engine that the extension can use to retrieve data from an external source or to evaluate a
condition or an action.

+ An extension interface that contains the methods that need to be implemented for the specific
type of extension. For example, the NxpeCondition interface contains the method for
evaluating the condition and returning True, False, or Error.

All extensions need to implement both interfaces for the extension type and use the NxpeResult
class for return codes and the NxpeException class for exceptions.

Return Codes in the NxpeResult Class

The NxpeResult class allows an extension to return the following values:

Return Code Extension Type Description
Cancel Reserved
ConditionFalse Condition The compared values do not match, so the condition evaluation

resolved to False.

ConditionTrue Condition The compared values match, so the condition evaluation
resolved to True.

ConditionUnknown Condition The values could not be compared, so the results are unknown.
This is comparable to the Result on Condition Error option when
creating a policy.

Deny Action A deny action was applied.

ErrorBadData Context Data The data cannot be parsed. This result can be returned with the
NxpeException class.

ErrorCodeComponent Reserved.

ErrorConfiglnitialization All The initialize method for the extension encountered an error.
This result can be returned with the NxpeException class.

ErrorDataUnavailable Context Data The requested data is not available. This result can be returned
with the NxpeException class.

ErrorlllegalArgument All The informationContext object contains an unknown parameter.
This result can be returned with the NxpeException class.

ErrorlllegalState Reserved

ErrorinterfaceUnavailable All The extension has not implemented one of the required
methods in the interface. This result can be returned with the
NxpeException class.

ErrorNoMemory Reserved

GeneralFailure All Unknown error. This result can be returned with the
NxpeException class.

44 The Policy Extension API

4.2.1.2

4.2.2

Return Code Extension Type Description

NoAction Reserved for use by the policy engine.
Obligation Action An obligation action was performed.
Pending Reserved.

Permit Action A permit action was performed.
Success Reserved for use by the policy engine.

Constructors in the NxpeException Class

You can use a constructor that throws exceptions with the following information:

*

*

No information

With a string message

With a string message and a cause

With a result from the NxpeResult class. See Return Codes in the NxpeResult Class.
With a cause and a result from the NxpeResult class

With a string message and a result from the NxpeResult class

With a string message, a cause, and a result from the NxpeResult class

Initializing the Factory Object

All extension types need to implement the factory interface for the extension type and initialize an
object specific to its type. The policy engine uses this object to send the parameter information
about the user making the request to the extension. The extension uses this object to return its
results to the policy engine.

The following code sample illustrates how to implement the factory interface. It uses the
NxpeContextDataElementFactory to create an LDAPGroupDataElement object.

~NOoO O~ WNE

package Cont ext Dat aEl enent ;

nport com novel | . nxpe. NxpeCont ext Dat aEl errent ;
nport com novel | . nxpe. NxpeCont ext Dat aEl enent Fact ory;
nport com novel | . nxpe. NxpeExcepti on;

public final class LDAPG oupDat aEl enent Factory i npl enents
NxpeCont ext Dat aEl enent Fact ory

{

publ i ¢ LDAPG oupbDat aEl enent Fact or y()
{

}
publ i ¢ NxpeCont ext Dat aEl enent get | nst ance(
String strNane,
i nt i EnunerativeVal ue,
String strParaneter)
throws NxpeException
{

return (new LDAPG oupDat aEl enent (strNane, i EnunerativeVal ue,

strParaneter)

)
18

19 } /* LDAPG oupbDat aEl enent Factory */

The Policy Extension API

45

46

4.2.3

The package line needs to be replaced with the package line for your extension.

All extensions need the three import lines for the factory interface. The first two import lines vary
with the type of extension you are creating, but you need to import the factory interface and the
extension interface.

Lines 7 through 19 implement the factory interface that creates an LDAPGroupDataElement object.

The other factory interfaces are very similar and are as easy to implement.

Retrieving Information from Identity Server User Store

All extensions need to access an external data store and retrieve information from it. You must know
the type of data that your extension will retrieve, and then design how you are going to retrieve it.

If the extension needs to establish a connection to the external data store and log in to retrieve
information, consider using one of the following methods:

+ The extension can use the credentials that authenticated the user to Identity Server to log in as
a user in the external data store. This method assumes that the user has the same credentials in
Identity Server user store and the external data store.

+ You can create an LDAP attribute in Identity Server user store and store an X.509 certificate that
you can use to access the external data store.

+ You can create configuration parameters that allow the administrator of Administration Console
to enter a username and password for accessing the external data store. The password is
entered in clear text in Administration Console, so this is not a secure method. To minimize the
security risk, you can create a special user in the external data store whose rights are restricted
to retrieving only the information required by the extension. If the retrieved information is not
sensitive, this simple solution might not present a security risk.

When you create configuration parameters, you need to provide documentation for the
administrator who installs the extension. Each configuration parameter requires a name, an ID, and a
mapping to a data item. You need to document these for the administrator.

The name and ID you create to fit your programing requirements. These must be mapped to a data
item available for the extension type.

NOTE: The data items are returned as strings or as string arrays if they are multivalued.

Your external data store and the methods available for accessing its data determine whether any of
the data items are useful in making the connection to the external data store.

For the data items specific to an extension type, see the following:

+ “Available Configuration Parameters for a Data Context Extension” on page 54
+ “Available Configuration Parameters for a Condition Extension” on page 58

+ “Available Configuration Parameters for an Action Extension” on page 60

The Policy Extension API

4.2.4 Implementing the Extension Interface

All extensions need to perform the following tasks.

+ Task 1: Specifying the Required Import Files

+ Task 2: Defining the Configuration Parameters

+ Task 3: Retrieving Configuration Parameters before Policy Evaluation
¢ Task 4: Implementing the Extension Methods

+ Task 5: Retrieving Configuration Parameters at Policy Evaluation

¢ Task 6: Connecting with the External Data Source

¢ Task 7: Returning from an Extension

¢ Task 8: Error Handling

+ Task 9: Performing Extension-Specific Tasks

4.2.4.1 Task 1: Specifying the Required Import Files

All extensions need a package line and the following import lines. The package line for the sample
needs to be replaced with the package line for your extension. The first import line needs to be
modified to import the interface for the extension type you are creating. The other import lines are
standard for all extensions.

package Cont ext Dat aEl enent ;

i mport com novel | . nxpe. NxpeCont ext Dat aEl enment ;
i mport com novel | . nxpe. NxpeExcept i on;

i nport com novel | . nxpe. Nxpel nf or nati onCont ext ;
i mport com novel | . nxpe. NxpePar anet er ;

i mport com novel | . nxpe. NxpePar anet er Li st ;

i nport com novel | . nxpe. NxpeResponseCont ext ;

i mport com novel | . nxpe. NxpeResul t;

The NxpeExpection class contains the defined constructors for throwing exceptions. For more
information, see “Constructors in the NxpeException Class” on page 45.

The NxpelnformationContext class contains methods that allow you to gather information about
extension evaluation.

The NxpeParameter class contains methods that allow you to retrieve information about a specific
configuration parameter.

The NxpeParamaterList class contains methods that allow you to retrieve information about the
configuration parameters you have defined for the extension.

The NxpeResponseContext class contains methods that allow you to configure the information that
is sent with the results, such as logging or trace entry.

The NxpeResult class contains the methods and constants to set the return value for the extension.
For more information, see “Return Codes in the NxpeResult Class” on page 44.

The Policy Extension API 47

4.2.4.2

4.2.4.3

Task 2: Defining the Configuration Parameters

If your extension requires configuration parameters, you need to define them. The following code
snippet contains the parameters for the LDAP group extension. These are the name and ID values
that are configured on the Extension Details page (Policies > Extensions > [Extension Name]).

private static final String USER STORE NAME = "User Store";
private static final int EV_USER STORE = 11,

private static final String AUTHENTI CATI ON_NAVE = "Aut henti cation";
private static final int EV_AUTHENTI CATION = 211;
private static final String DEFAULT_AUTHENTI CATION = "sinpl e";

private static final String D RECTORY_TYPE NAME = "Directory Type";
private static final int EV_D RECTORY_TYPE = 222;
private static final String DEFAULT_DI RECTORY_TYPE = "unknown";

private static final String PROVIDER URL_NAME = "User Store Replica";
private static final int EV_PROVIDER URL = 31;
private static final String DEFAULT_PROVI DER _URL = "|dap://| ocal host:389";

private static final String LDAP_USER DN NAVE = "LDAP User DN';
private static final int EV_LDAP_USER DN = 41,

private static final String SECURI TY_PRI NCl PAL_NAMVE = "Security Principal";
private static final int EV_SECUR TY_PRI NCl PAL = 51;

private static final String SECURI TY_CREDENTI ALS NAME = "Security Credential s";
private static final int EV_SECUR TY_CREDENTI ALS = 52;

private static final String SEARCH CONTEXT _NAME = "Search Context";
private static final int EV_SEARCH CONTEXT = 61,

private static final String DEBUG NAME = " Debug";
private static final int EV_DEBUG = 91,

Not all of the parameters need to be defined in Administration Console. If you want the
administrator to decide the value that is mapped to the parameter, then you need to document the
parameter and let the administrator select the mapping.

This is also a good place to define any other static constants your extension needs.

Task 3: Retrieving Configuration Parameters before Policy Evaluation

If your extension needs to be aware of some parameter values before it is called during policy
evaluation, you can retrieve the values during the initialize method. Each extension interface
(NxpeAction, NxpeCondition, NxpeContextDataElement) has an initialize method that contains a
configurationValues object. The following code snippet illustrates the LDAP group extension defined
for this method. The setDebug line shows how to obtain the current value for the debug parameter.

48 The Policy Extension API

4.24.4

public void initialize(
NxpePar anet er Li st confi gurationVal ues)
throws NxpeException

thi s.configurationValues = configurationVal ues;
set Debug(confi gurati onVal ues);

strProvi der URL = DEFAULT_PROVI DER_URL;
strAut henticati on = DEFAULT AUTHENTI CATI ON;
strDirectoryType = DEFAULT_DI RECTORY_TYPE;

StringBuffer sblLdapFilter = new StringBuffer(128);

/1 setup filter

sblLdapFi | ter.append(" (]| (objectd ass=");
sbLdapFi | ter. append(CLS_GROUP) ;

sblLdapFi | ter. append(") (obj ectd ass=");
sbLdapFi | t er. append(CLS_GROUPOFNAMES) ;
sbLdapFi | ter. append(") (obj ect d ass=");
sbLdapFi | t er. append(CLS_GROUPOFUNI QUENANMES) ;
sbLdapFil ter.append("))");

strLdapFilter = new String(sbLdapFilter);
/'l setup search controls

searchControls = new SearchControl s();
searchControl s.setTinmeLimt(0);
searchControl s. set Ret urni ngoj Fl ag(true);

sear chControl s. set Sear chScope(Sear chCont r ol s. SUBTREE_SCOPE) ;
searchControl s. set ReturningAttributes(new String[] { ATTR.CN });

Task 4: Implementing the Extension Methods

Besides having an initialize method, each extension interface has a few other methods that need to
be implemented. The NxpeContextDataElement interface has the get methods. The following code
snippet illustrates how the LDAP Group extension implements three of these methods.

public int getEnunerativeVal ue()
return (i EnunerativeVal ue);
i)ubl ic String getName()
{ return (strNane);
i)ubl ic String getParaneter()

return (strParaneter);

NxpeContextDataElement introduces a new element with additional methods. Using these methods,
you can set the duration for which the data returned from the extension interface is cached by
Access Manager.

The Policy Extension API 49

4.24.5

public int getValidForSeconds()
{
return -1;

}
public int getValidForSeconds ()
{

return O;
}
public int getValidForSeconds ()
{

return n;

}

getValidForSeconds informs the policy engine about how often data needs to be queried. Specify 0
as the return value to query data for each request. Specify -1 as the return value to cache the data.
Substitute n with the number of seconds to indicate validity of the data.

The fourth method (the getValue method) is described in the next section. See “Task 5: Retrieving
Configuration Parameters at Policy Evaluation” on page 50.

Task 5: Retrieving Configuration Parameters at Policy Evaluation

All extension interfaces have a method for retrieving configuration parameters at policy evaluation.
The NxpeCondition interface has an evaluate method with an informationContext object. The
NxpeAction interface has a doAction method with a informationCxt object. The
NxpeContextDataElement interface has a getValue method with an informationContext object. The
informationContext object contains information about the user and the user’s request that you
need. You populate this object with the parameters that you need to evaluate the policy, and the
policy engine supplies the values.

The following code snippet illustrates how the LDAP Group extension retrieves parameter values:

public synchroni zed Object get Val ue(
Nxpel nf or mat i onCont ext i nf or mat i onCont ext ,
NxpeResponseCont ext responseCont ext)
throws NxpeException

LdapCont ext | dapContext = null;

String strUserStore = getUser Store(infornati onContext);

String strProviderURL = get Provider URL(i nformationContext);
String strAuthentication = getAuthentication(informationContext);
String strDirectoryType = getDirectoryType(infornati onContext);

String strLDAPUser DN = get LDAPUser DN(i nf or mat i onCont ext) ;
String strDN = get SecurityPrincipal (i nformati onContext);

if (strLDAPUser DN == null)
{
}

String strPassword = get SecurityCredential s(informationContext);
String strSearchContext = get SearchContext (i nformationCont ext);

strLDAPUser DN = strDN;

Notice that this code snippet does not have an ending parenthesis. All the main work of the
extension is done in this method. The next two tasks (Task 6: Connecting with the External Data
Source and Task 7: Returning from an Extension) are performed within the getValue method.

50 The Policy Extension API

4.2.4.6

4.2.4.7

Task 6: Connecting with the External Data Source

How you connect to the external data source in your extension is specific to the type of data source
you are using. The following code snippet from the LDAP Group extension file illustrates how to
connect to an LDAP user store:

try
HashSet <Stri ng> groupDNs = new HashSet <String>();
| dapCont ext = newi ni ti al LdapCont ext (strDN, strPassword);

Nam ngEnunerati on neG oups = | dapCont ext . sear ch(str Sear chCont ext,
strLdapMenberFilter, searchControls);

This piece of code is very specific to LDAP.

Task 7: Returning from an Extension

The following code snippet from the LDAP Group extension illustrates the tasks you need to
complete as you return the results of your extension action/evaluation to the policy engine:

whil e (neG oups. hashMore())
{

Attribute cn;
SearchResult srGoup = (SearchResult) neG oups. next();
String strG oupDN = srG oup. get Nanel nNanespace() ;

gr oupDNs. add(st r G oupDN);
i f (debug)
{

System out . print| n("LDAPG oupDat aEl ement: \"" + strG oupDN +

String[] strGoupDNs = new String[groupDNs. size()];

gr oupDNs. t 0Array(strG oupDNs) ;
return (strG oupDNs);

This code searches through the LDAP search results, retrieves the DN of any group found, adds it to
the array, then returns the array.

This task is specific to the purpose of the extension. If the purpose of the extension is to evaluate a
condition and determine whether the user matches the condition, the code for this task should
show the extension obtaining the user’s value for the condition, comparing that value to the
expected value, then return True for a match, False for a mismatch, and Error if extension cannot
perform the evaluation.

The Policy Extension API 51

4.2.4.8 Task 8: Error Handling

Each extension must handle potential error conditions. The following snippet illustrate how the
LDAP Group extension handles potential errors:

cat ch (Nam ngException e)
i f (debug)
{ e.printStackTrace();
%hrow (new NxpeExcepti on(NxpeResul t. Error Dat aUnavai | abl e, e));
%i nal |y
if (ldapContext != null)
{ try
| dapCont ext . cl ose();
]t;atch (Nam ngException e)
{ i f (debug)

System out. println(e. get Message());

4.2.4.9 Task 9: Performing Extension-Specific Tasks

After your extension has implemented all the required interface methods, the rest of the code
implements what the extension requires to perform its purpose. Everything that follows the

comment in the LDAPG oupDat aEl enent . j ava file shows how the LDAP Group extension
performs its required tasks. For example, you can see how the extension retrieves parameter
information from the policy engine, such as the user’s DN, security credentials, and user store
information. With this information the extension interacts with the LDAP user store and retrieves
the groups the user belongs to.

4.3 Creating an Extension

You can create the following types of extensions:

¢ Section 4.3.1, “Creating a Context Data Extension,” on page 53
+ Section 4.3.2, “Creating a Condition Extension,” on page 57

+ Section 4.3.3, “Creating an Action Extension,” on page 59

52 The Policy Extension API

43.1

43.1.1

Creating a Context Data Extension

A context data extension can be used for a Role policy, an Authorization policy, an Identity Injection
policy, or an External Attribute Source policy. When the extension is used for an Authorization policy,
it can only be used to evaluate a condition. When it is used for a Role policy, it can be designed to do
the following:

+ A condition to determine whether the user meets the requirements for a role assignment

+ An action for activating roles based on the values returned by the extension.

When the extension is used for an Identity Injection policy, it injects data into the Authentication
header, the custom header, or the query string.

The following sections describe the interfaces, methods, and configuration parameters available for
a context data extension:

¢ Section 4.3.1.1, “Context Data Interfaces and Methods,” on page 53

+ Section 4.3.1.2, “Available Configuration Parameters for a Data Context Extension,” on page 54
For sample code for this type of extension, see the LDAPG oupDat aEl erment . j ava and
LDAPG oupDat aEl enent Fact ory. j ava file.
Context Data Interfaces and Methods

When creating a context data element extension, you need to implement the following interfaces
and methods:

Interface Method Purpose
NxpeContextDataElementFactory Contains the method required to create a context data element
object.
getinstance Creates the NxpeContextDataElement object.
NxpeContextDataElement Contains methods required to create a context data element that

can be used for injection, for activating roles, or in a condition.

initialize Called by policy engine and therefore must be implemented. It
initializes the element and sends configuration values you have
requested to your extension. These parameters contain valid
information only if the parameters contain information
independent of the request that triggers policy evaluation.

The data in the configurationValues parameter is valid only during
the lifetime of the initialize method. If your extension needs to
preserve this configuration data, you must maintain a reference.

The get methods in this interface allow you to retrieve information
about the parameters when the policy is being evaluated.

getEnumerativeValue Returns -1. Reserved for future releases.
getName Retrieves the name of the data element of the policy.

getParameter Retrieves the string value of the parameter of the policy.

The Policy Extension API 53

Interface Method Purpose

getValue Called by the policy engine when a request triggers a policy
evaluation. The informationContext object contains parameter
values that you need from the policy engine for the evaluation.

When you configure a condition in a policy, you select a condition and a value. The condition sets up
the left operand for the comparison and the value sets up the right operand for the comparison.

4.3.1.2 Available Configuration Parameters for a Data Context Extension

You can use any of the data items listed in the Table 4.1 to create configuration parameters to
retrieve information about the request and the user making the request. Select the parameters that
are useful for your extension. Many of the available data items might not be useful for your
implementation.

+ Table 4-1, “Configuration Parameters for a Role Policy,” on page 54

+ Table 4-2, “Configuration Parameters for an Identity Injection Policy,” on page 55

+ Table 4-3, “Configuration Parameters for an Authorization Policy,” on page 55

+ Table 4-4, “Configuration Parameters for an External Attribute Source Policy,” on page 56

Table 4-1 Configuration Parameters for a Role Policy

Data Item Returns

Authentication IDP The name of Identity Server that authenticated the user.
Authenticating Contact The URI of the contract that the user used for authentication.
Authentication Method The name of the method the user used for authentication.

Authentication Type The type of authentication the user used, such as Name Password, Secure
Name Password, x509, Smart Card, Smart Card PKI, and Token.

Credential Profile The credentials the user used for authentication, such as LDAP Credentials
(CN, DN, and password), X509 Credentials (with certificate subject, with
certificate issuer, with public certificate, and with serial number), and SAML
Credentials.

If a custom contract is created that uses other credentials for authentication,
these credentials are not available within the credential profile.

LDAP Group The DNs of any LDAP groups the user belongs to. If it is multi-valued, this item
returns a string array.

LDAP OU The DNs of any OUs that are part of the user’s DN. If it is multi-valued, this
item returns a string array.

LDAP Attribute The value or values stored in the specified LDAP attribute. If it is multi-valued,
this item returns a string array.

Liberty User Profile The value or values stored in the specified Liberty User Profile attribute.

Roles from Identity The names of the Roles assigned to the user by Identity Server when the user

Provider authenticated. If it is multi-valued, this item returns a string array.

54 The Policy Extension API

Data Item

Returns

User Store
User Store Replica

String Constant

The name of the user store that authenticated the user.
The URL of the replica that authenticated the user.

The static value the administrator has been instructed to enter.

Table 4-2 Configuration Parameters for an Identity Injection Policy

Data ltem

Returns

Authenticating Contact
Client IP

Credential Profile

LDAP Attribute

Liberty User Profile
Proxy Session Cookie
Roles

Shared Secret

String Constant

The URI of the contract that the user used for authentication.
The IP address of the user.

Credentials the user used for authentication, such as LDAP Credentials (CN,
DN, and password), X509 Credentials (with certificate subject, with certificate
issuer, with public certificate, and with serial number), and SAML Credentials.

If a custom contract has been created that uses other credentials for

authentication, these credentials aren’t available within the credential profile.

The value or values stored in the specified LDAP attribute. If it is multi-valued,
this item returns a string array.

The value or values stored in the specified Liberty User Profile attribute.
The session cookie associated with the user.

The roles that have been assigned to the user

The value of the specified shared secret.

The static value the administrator has been instructed to enter.

Table 4-3 Configuration Parameters for an Authorization Policy

Data Item

Returns

Authentication Contract

Client IP

Credential Profile

Current Date

Day of Week

Current Day of Month
Current Time of Day

HTTP Request Method

The URI of the contract used for authentication or the URI of the specified
contract.

The IP address of the user.

The credentials of the user. You can ask for LDAP credentials (username, DN,
and password), X.509 credentials (public certificate subject, public certificate
issuer, public certificate, serial number), or the SAML assertion.

The date when the request was sent.

The day when the request was sent.

The day of the month when the request was sent.
The time of day when the request was sent.

The HTTP method in the request.

The Policy Extension API

55

Data Item

Returns

LDAP Attribute
LDAP OU

Liberty User Profile
Roles

URL

URL Scheme

URL Host

URL Path

URL File Name
URL File Extension
X-Forwarded-For IP

String Constant

The value of the specified LDAP attribute.

The value of any OUs in the user’s DN.

The value of the specified Liberty attribute.

The roles that have been assigned to the user.

The URL of the current request.

The HTTP scheme (HTTP or HTTPS) of the current request.
The hostname specified in the URL of the current request.
The path specified in the URL of the current request.

The filename specified in the URL of the current request.

The file extension specified in the URL of the current request.
The value in the X-Forwarded-For header in the current request.

The static value the administrator has been instructed to enter.

Table 4-4 Configuration Parameters for an External Attribute Source Policy

Data Item

Returns

Authentication IDP

Authenticating Contact

Authentication Method

Authentication Type

Credential Profile

LDAP Group

LDAP OU

LDAP Attribute

Liberty User Profile

Roles from Identity
Provider

User Store

The name of Identity Server that authenticated the user.
The URI of the contract that the user used for authentication.
The name of the method the user used for authentication.

The type of authentication the user used, such as Name Password, Secure
Name Password, x509, Smart Card, Smart Card PKI, and Token.

Credentials the user used for authentication, such as LDAP Credentials (CN,
DN, and password), X509 (with certificate subject, with certificate issuer,
with public certificate, and with serial number), and SAML Credentials.

If a custom contract uses other credentials for authentication, these
credentials are not available within the credential profile.

DNs of any LDAP groups the user belongs to. If it is multi-valued, this item
returns a string array.

DNs of any OUs that are part of the user’s DN. If it is multi-valued, this item
returns a string array.

The values stored in the specified LDAP attribute. If it is multi-valued, this
item returns a string array.

The values stored in the specified Liberty User Profile attribute.

The names of the Roles assigned to the user by Identity Server when the
user authenticated. If it is multi-valued, this item returns a string array.

The name of the user store that authenticated the user.

The Policy Extension API

Data Item

Returns

User Store Replica

String Constant

The URL of the replica that authenticated the user.

The static value the administrator has been instructed to enter.

4.3.2 Creating a Condition Extension

A condition extension can be used in a Role policy or an Authorization policy. In both types of policy,
the policy engine provides the extension with some data about the user and the request. The
extension retrieves additional data from an external source, then evaluates the condition. The
extension returns True, False, or Error to the policy engine.

The following sections describe the interfaces, methods, and configuration parameters available for

a condition extension.

+ Section 4.3.2.1, “Interfaces and Methods for a Condition Extension,” on page 57

+ Section 4.3.2.2, “Available Configuration Parameters for a Condition Extension,” on page 58

4.3.2.1 Interfaces and Methods for a Condition Extension

When creating a condition extension, you need to implement the following interfaces and methods:

Interface Method

Purpose

NxpeConditionFactory
getinstance
NxpeCondition

initialize

evaluate

setInterfaceld

Contains the method required to create a condition object.
Creates the NxpeCondition object.
Contains the methods required to evaluate the condition for a policy.

Called by policy engine and therefore must be implemented. It initializes
the element and passes to your extension any configuration values you
have requested. These parameters contain valid information only if the
parameters contain information independent of the request that triggers
policy evaluation.

The data in the configurationValues parameter is valid only during the
lifetime of the initialize method. If your extension needs to preserve this
configuration data, you must maintain a reference.

Called by the policy engine when the condition extension needs to be
evaluated for a policy. The informationContext parameter contains the
parameter information the extension needs from the policy engine to
evaluate the condition. The responseContext parameter contains the
results of the extension’s evaluation of the condition.

Sets the unique string value for the condition. This value is used for
tracing evaluation.

The Policy Extension API

57

4.3.2.2 Available Configuration Parameters for a Condition Extension
You can use the configuration parameters to gather information about the user. You can then use
this information when evaluating your condition and use it to determine whether the condition
should return True or False. The available configuration parameters depend upon whether it is a
condition for a Role policy or a condition for a Authorization policy. Select the parameters that are
useful for your extension. Many of the available data items might not be useful for your
implementation.
+ Table 4-5, “Configuration Parameters for a Role Condition,” on page 58
+ Table 4-6, “Configuration Parameters for an Authorization Condition,” on page 59
Table 4-5 Configuration Parameters for a Role Condition
Data Item Returns
Authentication IDP The name of Identity Server that authenticated the user.
Authenticating Contact The URI of the contract that the user used for authentication.
Authentication Method The name of the method the user used for authentication.
Authentication Type The type of authentication the user used, such as Name Password,
Secure Name Password, x509, Smart Card, Smart Card PKI, and Token.
Credential Profile The credentials the user used for authentication, such as LDAP
Credentials (CN, DN, and password), X509 Credentials (with certificate
subject, with certificate issuer, with public certificate, and with serial
number), and SAML Credentials.
If a custom contract has been created that uses other credentials for
authentication, these credentials are not available within the credential
profile.
LDAP Group The DNs of any LDAP groups the user belongs to. If it is multi-valued, this
item returns a string array.
LDAP OU The DNs of any OUs that are part of the user’s DN. If it is multi-valued,
this item returns a string array.
LDAP Attribute The value or values stored in the specified LDAP attribute. If it is multi-
valued, this item returns a string array.
Liberty User Profile The value or values stored in the specified Liberty User Profile attribute.
Roles from Identity Provider The names of the Roles assigned to the user by Identity Server when the
user authenticated. If it is multi-valued, this item returns a string array.
User Store The name of the user store that authenticated the user.
User Store Replica The URL of the replica that authenticated the user.
String Constant The static value the administrator has been instructed to enter.
58 The Policy Extension API

Table 4-6 Configuration Parameters for an Authorization Condition

Data Item

Returns

Authentication Contract

Client IP

Credential Profile

Current Date

Day of Week

Current Day of Month
Current Time of Day
Destination IP

HTTP Request Method
LDAP Attribute

LDAP OU

Liberty User Profile
Roles

URL

URL Scheme

URL Host

URL Path

URL File Name

URL File Extension
X-Forwarded-For IP

String Constant

The URI of the contract used for authentication or the URI of the specified
contract.

The IP address of the user.

The credentials of the user. You can ask for LDAP credentials (username, dn,
and password), X.509 credentials (public certificate subject, public certificate
issuer, public certificate, serial number), or the SAML assertion.

The date when the request was sent.

The day when the request was sent.

The day of the month when the request was sent.

The time of day when the request was sent.

The destination IP address of the request.

The HTTP method in the request.

The value of the specified LDAP attribute.

The value of any OUs in the user’s DN.

The value of the specified Liberty attribute.

The roles that have been assigned to the user.

The URL of the current request.

The HTTP scheme (HTTP or HTTPS) of the current request.
The hostname specified in the URL of the current request.
The path specified in the URL of the current request.

The filename specified in the URL of the current request.

The file extension specified in the URL of the current request.
The value in the X-Forwarded-For header in the current request.

The static value the administrator has been instructed to enter.

4.3.3 Creating an Action Extension

There are the three types of actions: deny, permit, and obligation. The following sections describe
the interfaces, methods, and configuration parameters available for an action extension.

+ Section 4.3.3.1, “Action Interfaces and Methods,” on page 60

+ Section 4.3.3.2, “Actions,” on page 60

+ Section 4.3.3.3, “Available Configuration Parameters for an Action Extension,” on page 60

The Policy Extension API 59

4.3.3.1

4.3.3.2

4.3.3.3

Action Interfaces and Methods

When creating an action extension, you need to implement the following interfaces and methods:

Interface Method Purpose

NxpeActionFactory Contains the methods required to create an action object.
getlnstance Creates the NxpeAction object.

NxpeAction Contains the methods required to implement a deny, permit, or

obligation action.

Initialize Called by the policy engine and therefore must be implemented. It
initializes the element and passes to your extension any configuration
values you have requested. These parameters contain valid information
only if the parameters contain information independent of the request
that triggers policy evaluation.

The data in the configurationValues parameter is valid only during the
lifetime of the initialize method. If your extension needs to preserve this
configuration data, you must maintain a reference.

doAction Called by the policy engine when the action extension needs to be
evaluated for a policy. The informationCtx parameter contains the
parameter information the extension needs from the policy engine to
evaluate the condition. The responseCtx parameter contains the results
of the action.

setinterfaceld Sets the unique string value for the action. This value is used for tracing
the action during policy evaluation.

Actions

A policy rule can have multiple obligation actions but only one terminating action of either permit or
deny. A permit or deny action needs to return either success or failure to the policy engine. An
obligation action can return either success or failure; the policy engine just needs the
acknowledgment that the obligation extension has performed its action.

An extension that implements an obligation action can use the doAction method to enter a log or
audit event in another system or send an email message.

An extension that implements a deny or permit action can use the doAction method to ask another
database or policy to evaluate a condition and then return the results of that evaluation to the
Access Manager policy engine.

Available Configuration Parameters for an Action Extension

You can use any of the data items in the list to retrieve information about the user and the user’s
request to create a configuration parameter. Your extension can then use this information in
determining the type of action to take. Select the parameters that are useful for your extension.
Many of the available data items might not be useful for your implementation.

60 The Policy Extension API

4.4

Data Item

Returns

Authentication Contract

Client IP

Credential Profile

Current Date

Day of Week

Current Day of Month
Current Time of Day
HTTP Request Method
LDAP Attribute

LDAP OU

Liberty User Profile
Roles

URL

URL Scheme

URL Host

URL Path

URL File Name

URL File Extension
X-Forwarded-For IP

String Constant

The URI of the contract used for authentication or the URI of the specified contract.
The IP address of the user.

The credentials of the user. You can ask for LDAP credentials (username, dn, and
password), X.509 credentials (public certificate subject, public certificate issuer,
public certificate, serial number), or the SAML assertion.

The date when the request was sent.

The day when the request was sent.

The day of the month when the request was sent.

The time of day when the request was sent.

The HTTP method in the request.

The value of the specified LDAP attribute.

The value of any OUs in the user’s DN.

The value of the specified Liberty attribute.

The roles that have been assigned to the user.

The URL of the current request.

The HTTP scheme (HTTP or HTTPS) of the current request.
The hostname specified in the URL of the current request.
The path specified in the URL of the current request.

The filename specified in the URL of the current request.

The file extension specified in the URL of the current request.
The value in the X-Forwarded-For header in the current request.

The static value the administrator has been instructed to enter.

Installing and Configuring an Extension

After you have created your extension, you need to install it, configure it, and distribute it.

+ Section 4.4.1, “Installing the Extension on Administration Console,” on page 62

+ Section 4.4.2, “Distributing a Policy Extension to Access Manager Devices,” on page 63

+ Section 4.4.3, “Distributing the Extension to Customers,” on page 64

The Policy Extension API 61

62

4.4.1 Installing the Extension on Administration Console

To install an extension, you need to have access to the JAR file and know the following information
about the extension or extensions contained within the file.

What you need to create A display name for the extension.

What you need to know

A description for the extension.

The policy type of the extension, which defines the policy type it can be used with.
You should know whether it is an extension for an Access Gateway Authorization
policy, an Access Gateway ldentity Injection policy, or an Identity Server Role

policy.

The name of the Java class that is used by the extension. Each data type usually
uses a different Java factory class.

The filename of the extension.

The type of data the extension manipulates.

Authorization Policy: Can be used to return:

+ An action of deny, permit, or obligation.
+ A condition that the extension evaluates and returns either true or false.

+ A data element that the extension retrieves and the policy can use for
evaluating a condition.

Identity Injection Policy: A data extension that retrieves data for injecting into a
header.

Identity Role Policy: Can be used to return:

+ A condition that the extension evaluates and returns either true or false

+ A data element that the extension retrieves, which can be used in evaluating
a condition or used to assign roles

External Attribute Source Policy: You can use it to:

+ Get attributes from the external sources.

+ Create shared secrets. This shared secret then can be used in configuring
other policies or can be used by Identity Servers in their attribute sets.

The names, IDs, and mapping type of any configuration parameters. Configuration
parameters allow the policy engine to pass data to the extension, which the
extension can then use to retrieve data or as part of its evaluation.

If the file contains more than one extension, create a configuration for each extension in the file.

1 Copy the JAR file to a location that you can browse to from Administration Console.

2 In Administration Console, click Policies > Extensions.

3 To upload the file, click Upload > Browse, select the file, then click Open.

4 (Conditional) If you want this JAR file to overwrite an existing version of the file, select
Overwrite existing *.jar file.

5 Click OK.

The Policy Extension API

The file is uploaded to Administration Console, but nothing is visible on the Extensions page
until you create a configuration.

6 To create an extension configuration, click New, then fill in the following fields:
Name: Specify a display name for the extension.
Description: (Optional) Specify the purpose of the extension and how it should be used.
Policy Type: Select the type of extension you have uploaded.
Type: Select the data type of the extension.

Class Name: Specify the name of the class that creates the extension, for example
com.acme.policy.action.successActionFactory.

File Name: Select the JAR file that contains the Java class that implements the extension and its
corresponding factory. This should be the file you uploaded in Step 3.

7 Click OK.

8 (Conditional) If the extension requires data from Access Manager, click the name of the
extension.

9 In the Configuration Parameters section, click New, specify a name and ID, then click OK.
The developer of the extension must supply the name and ID that the extension requires.
10 In the Mapping column, select the required data type.

The developer of the extension must supply the data type that is required. If the data type is a
data string, then the developer needs to explain the type of information you need to supply in
the text field.

11 (Conditional) If the extension requires more than one data item, repeat Step 9 and Step 10.
12 Click OK.
The extension is now available for the policy type it was created for.

13 (Conditional) If the class can be used for multiple policy types, you need to create an extension
configuration for each policy type.

For example, if an extension can be used for both an Identity Injection policy and a Role policy,
you need to create an entry for both. The File Name option should contain the same value, but
the other options should contain unique values.

14 Continue with Distributing a Policy Extension to Access Manager Devices.

4.4.2 Distributing a Policy Extension to Access Manager Devices

To distribute the policy extension to the devices that need it:

1 Create a Role, Identity Injection, or Authorization policy that uses the extension.
2 Assign the policy to a device:

+ For a Role policy, enable it for an Identity Server.

+ For an Authorization policy, assign it to a protected resource.

+ For an Identity Injection policy, assign it to a protected resource.

IMPORTANT: Do not update the device at this time. The JAR files must be distributed before
you update the device.

The Policy Extension API 63

4.4.3

64

4.5

3 Distribute the JAR files:
3a Click Policies > Extensions.
3b Select the extension, then click Distribute JARs.
3c Restart services on the devices listed for reboot.
Identity Server:/etc/init.d/ novel | -idp restart
Access Gateway: /etc/init.d/ novell-mag restart

4 (Conditional) If the extension is for an Authorization policy or an Identity Injection policy,
update Access Gateway.

5 (Conditional) If the extension is for a Role policy, update Identity Server.

Distributing the Extension to Customers

You can distribute the extension as either a JAR file or as a ZIP file. If the extension contains multiple
types of extensions or contains multiple configuration parameters, you might want to consider
distributing the extension as a ZIP file.

Import your JAR file and configure it as described in Installing the Extension on Administration
Console. After it has been configured, you can export it as a ZIP file. Your users can then import the
ZIP file, and each extension type you have created is imported with its configuration parameters. In
the documentation you create for the extension, document any parameter the user needs to modify
after the import.

To export an extension:

1 In Administration Console, click Policies > Extensions.
2 Select all the extensions that are part of your JAR file.

If you have more than one JAR file, you can select the extensions that belong to it and include
them in the same export.

3 Click Export, specify a name for the file, then click OK.

4 Follow your browser prompts to save the file to disk.

Sample Codes

You can find the sample codes for the following extensions in the NetlQ Access Manager SDK Sample
Code page.

+ Section 4.5.1, “Data Extension for External Attribute Source Policy,” on page 65

+ Section 4.5.2, “Template Policy Extensions,” on page 65

+ Section 4.5.3, “LDAP Group Data Element,” on page 66

+ Section 4.5.4, “PasswordClass,” on page 66

The Policy Extension API

https://www.microfocus.com/documentation/access-manager/developer-documentation-5.0/samplecodes/main.html
https://www.microfocus.com/documentation/access-manager/developer-documentation-5.0/samplecodes/main.html

4.5.1 Data Extension for External Attribute Source Policy

This example demonstrates how an External Attribute Source policy retrieves information from
external sources. It provides details about:

+ How to configure and install the External Attribute Source Data policy extension in
Administration Console.
+ Implementation details of the extension factory and extension classes.

+ How to use the information retrieved from the External Attribute Source policies as shared
secret. It also explains how to use that shared secret to configure other policies or use them in
Identity Servers to retrieve attributes from external sources.

The policy extension example includes NameAt t ri but eFr omMai | | DFact ory. j ava and
NaneAttri but eFromvai | | D. j ava.

4.5.2 Template Policy Extensions

This includes the following two types:

+ Template Condition Policy
+ Template Data Policy

+ Template Action Policy

4.5.2.1 Template Condition Policy

You can use this example as a template to implement a policy extension of type Condi t i on that is
com.novell.nxpe.NxpeCondition. This example provides a basic framework that can be used as a
starting point for creating data policy (com.novell.nxpe.NxpeContextDataElement.) extensions. It
provides details about:

+ How to configure and install a Condi t i on policy extension in Administration Console.

+ Implementation details of the extension factory and extension classes.

The policy extension example includes Pol i cyCondi ti onExt nFact oryTenpl at e. j ava and
Pol i cyCondi ti onExt nTenpl ate. j ava.

4.5.2.2 Template Data Policy

You can use this example as a template to implement a policy extension of type Dat a that is
com.novell.nxpe.NxpeContextDataElement. This example provides a basic framework that can be
used as a starting point for creating such policy extensions. It provides details about:

+ How to configure and install the Data policy extension in Administration Console.

+ Implementation details of the extension factory and extension classes.

The policy extension example includes Pol i cyDat aExt nFact or yTenpl at e. j ava and
Pol i cyDat aExt nTenpl at e. j ava.

The Policy Extension API 65

4.5.2.3

66

4.5.3

4.5.4

Template Action Policy

You can use this example as a template to implement a policy extension of type Act i on that is
com.novell.nxpe.NxpeContextActionElement. The action policy extension are of the following types:
Permit, Deny, and Obligation. This example provides a basic framework that can be used as a
starting point for creating such policy extensions. It provides details about:

+ How to configure and install the Action policy extension - Permit, Deny, and Obligation, in
Administration Console.

+ Implementation details of the extension factory and extension classes.
The policy extension example includes:

+ PolicyActionExtnDenyFactoryTemplate.java
+ PolicyActionExtnDenyTemplate.java
+ PolicyActionExtnPermitFactoryTemplate.java

+ PolicyActionExtnPermitTemplate.java

LDAP Group Data Element

This example illustrates how a policy extension can use external data sources to obtain information.
This policy extension connects to the required LDAP repository, runs a search on it, and returns the
results. An Identity Injection policy is created in this example that uses this policy extension.

The policy extension example includes LDAPG oupDat aEl erent . j ava and
LDAPG oupDat aEl enent Fact ory. j ava.

PasswordClass

This authentication class extends the base class LocalAuthenticationClass and performs a form based
authentication. The policy extension example includes passwor dCl ass. j ava.

For more information, see Section 2.4, “Authentication Class Example,” on page 20 and Section 2.6,
“Deploying Your Authentication Class,” on page 29.

The Policy Extension API

5.1

5.2

Custom Rule in Risk-based Authentication

This section explains how to create a custom rule class for risk-based authentication. The API
explained here allows developers to use their own risk-based custom rule mechanisms within the
risk-based authentication architecture.

In this Chapter

+ Prerequisites

¢ Understanding the Rule Class

¢ Creating a Custom Rule Class

+ Understanding the Custom Rule Class Example

+ Deploying Your Custom Rule Class

+ Understanding Custom Attributes in History SQL Database

+ Custom Geolocation Data Provider Integration

Prerequisites

+ The latest version of Access Manager is installed. See NetlQ Access Manager 5.0 Installation and
Upgrade Guide.

+ Download nidp.jar, NAMCommon.jar, and risk-*.jar files from / opt / novel | / nam i dp/
webapps/ ni dp/ VEB- | NF/ | i b? by using Advanced File Configurator and add these to your
development project.

For information about how to download a file, see Downloading Files from a Server in the NetlQ
Access Manager 5.0 Administration Guide.

For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

Understanding the Rule Class

Risk evaluation is done using a set of rules. You can configure the in-built rules that are provided in
the product. If you have a requirement that is not achievable using these rules, then you can write
your own custom rule.

Risk Engine evaluates all configured rules one-by-one, and evaluates the Risk Score with Risk Level
for the connecting user.

Risk Engine collects all activity details of the connecting user and sends these to the rules for
evaluation. These include IP address of the connecting client, HTTP headers, Cookies, User
attributes, user historical data, and so forth.

Custom Rule in Risk-based Authentication 67

https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/download-server-file.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

68

5.3

Rule 1

Activity Details

v
!

Rule 2

N

o

—

H

Risk Level

Rigk Engine

The Risk Engine architecture provides a programming interface that allows you to create a custom
rule class. This rule can be configured like any other rule for Risk Engine. Whenever the Risk Engine
evaluates this rule, corresponding risk core is added when the rule (condition) fails.

Creating a Custom Rule Class

You can extend the com novel | . nam ni dp. ri sk. core. rul es. Rul e class to create a custom
rule class. This class is available inri sk- servi ce- sdk. j ar. This class must override the abstract
method called eval uat e() in the custom class. This method must contain the business logic for the
custom rule and this method must return t r ue if the rule condition is met. Else, the method must

return f al se.

Class Details of com novel | . nam ni dp. ri sk. core. rul es. Rul e:

Authentication Methods

Description

eval uat e()

Takes HTTPContext, LocationContext, DeviceContext, UserContext, and
ResponseObiject as its arguments. Example of using these classes are
provided in the code below.

Returns true if the rule evaluation is successful. If failed, false is returned
and risk score is considered for this rule.

i sHi st ori cal Dat aEnab
| ed()

Returns true if historical data is enabled for the rule

get Name()

Returns the name of the Rule inString

getPriority()

Returns the priority of the rule in integer.

i sExceptionRul e()

Returns true if this rule is a Privileged Rule.

i sRul eEnabl ed()

Returns true if this rule is enabled

Custom Rule in Risk-based Authentication

Authentication Methods

Description

i SNATed()

Returns true if Nat setting is enabled for this server

set Type()

Takes String or List as argument. This is used as part of the constructor to
inform the Risk Engine to get the type of History data this Rule needs

cl ear Type()

Clears the Types set so far

get Type()

Returns the List of Types set by this Rule

i sHi st oryEnabl ed()

Same asi sHi st ori cal Dat aEnabl ed()

get Bool ean()

Takes name of the property in String as argument and returns its boolean
value. These are Rule properties set as part of the configuration.

get Property()

Takes name of the Property in String and returns the value that is
configured for this Rule in String

get Long()

Takes name of the property in String as argument and returns its long
value. These are Rule properties set as part of the configuration.

get I nteger ()

Takes name of the property in String as argument and returns its int value.
These are Rule properties set as part of the configuration.

getdientlP()

Takes HTTPContext & LocationContext as arguments and returns IP of the
connecting client in String

i sServer NATed()

Same as i SNATed()

i sNegat eResul t ()

Returns true if negate results options is enabled for the rule

get Ret ur nVal ue()

Evaluated result is passed to it and this applies isNegateResult on it

get Ri skScore()

Returns the risk score assigned to this rule in int

SaveOnSuccessf ul Aut h

0

Return true in your custom rule class, if you want to set a cookie back to
the browser. You will need to write a small piece of code to set the cookie
value. Example of this will be provided in this document.

get Requi redAttribute

s()

Override this method in your class. This must return Array of String of user
attributes that is required for your rule to evaluate the risk.

Class Details of com novel | . nam ni dp. ri sk. cont ext. HTTPCont ext :

Authentication Methods

Description

get M HTTPHeader s()

Returns the name/value map of http headers of the connecting client.

get Cooki eVal ue()

Returns the cookie value in string. Takes the cookie name as argument in string.

Class Details of com novel | . nam ni dp. ri sk. cont ext. Locati onCont ext :

Authentication Methods

Description

Get i ent| PAddress()

Returns the client IP from the Http Request object

Class Details of com novel | . nam ni dp. ri sk. cont ext . User Cont ext :

Custom Rule in Risk-based Authentication

69

Authentication Methods Description

get User Logi nTi neSt am | Returns the long value of Clients login time. Its same value as returned by
p() Cal endar. getl nstance().getTinelnM I 1is()

get () Returns Object for the provided name. This could be Attribute of the user
that was requested using get Requi r edAt tri but es() or could be the
History Record requested through set Type() of Rule class. Examples of
this method will be part of Custom Rule example codes.

You can use the user session properties, which are set by a custom authentication class, as part of
custom risk authentication rules. HTTPContext that is sent to the rule evaluation contains this
information.

With the following code snippet, you can get the previously set session values by using a custom risk
rule class:

Inside evaluate method,

public bool ean eval uat e(HTTPCont ext htt pContext, LocationContext | Context,
Devi ceCont ext dCont ext, User Context uContext, ResponseChject rspChject)

{

String email = (String)httpContext.getSessi onContext().get("Exernal Email");
/1 Continue eval uation.

}

5.4 Understanding the Custom Rule Class Example

The following example explains how to create a custom rule class:

i mport java.util.Baseb64;
i mport java.util. Map;
inport java.util.Properties;
i mport com novel | . nam ni dp. ri sk. cont ext. Devi ceCont ext ;
i nport com novel | . nam ni dp. ri sk. cont ext. HTTPCont ext ;
i mport com novel | . nam ni dp. ri sk. cont ext. Locat i onCont ext ;
i mport com novel | . nam ni dp. ri sk. cont ext . User Cont ext ;
i nport com novel | . nam ni dp. risk.core.rules. Rul e;
i nport com novel | . nam ni dp. risk.util.ResponseQbj ect;
public class CustonRul eTnpl extends Rul e {
/**

* @aram confi gProps

* All the configuration will be passed to the constructor.

*

* Pass the type of user historical data you want.

*

*/
public CustonRul eTnpl (Properties configProps) {super(configProps);
/*

* Check all the properties that is configured
*/
print Properties(configProps);
if (isH storical DataEnabl ed())
{

Il Enter all the user attributes that you need fromthe history database. Generally
you woul d need one or two val ues.
set Type(Hi storical AttributeEntries.|P.name());

70 Custom Rule in Risk-based Authentication

/*
* The follow ng commented code shows how to get other historical data from
dat abase.

set Type(Historical AttributeEntries. LASTLOGGEDI NTI ME. narne()) ;
* set Type(Hi storical AttributeEntries.CITY. name())
* set Type(Hi storical AttributeEntries. COUNTRY. nane());
* set Type(Hi storical AttributeEntries. REG ON nane());
* set Type(Hi storical AttributeEntries. Rl SKSCORE. nane());
* set Type(Hi storical AttributeEntries. LOG NRESULT. nane());
* set Type(Historical AttributeEntries. Rl SKCATEGORY. nane());
* set Type(Hi storical AttributeEntries. Rl SKSCORE. nane());
* set Type(Historical AttributeEntri es. REG ONCODE. nane());
* set Type(Historical AttributeEntries. METROCODE. nane())
* set Type(Hi storical AttributeEntries. POSTCODE. nane())

*

* O you could even set it using an array List

* clearType(); // Oear the previously set rule type val ues
ArrayLi st<String> historyAttributes = newArrayLi st<String>();
hi storyAttributes.add (Hi storical AttributeEntries.|P.nane());

hi storyAttributes.add (Hi storical AttributeEntries. LASTLOGGEDI NTI ME. nane());
set Type(historyAttributes);

E

/
}
private void print Propert i es(Properties configProps) {
Systemout.println("Configured properties are: -");
for (Entry<oject, Qoject> e: configProps.entrySet())
Systemout. println(" Nane ;" + e. getKey() + "Value : " + e.getValue());

}

/* (non-Javadoc)
* @ee
com novel | . nam ni dp. ri sk. core. rul es. Rul e#eval uat e(com novel | . nam ni dp. ri sk. cont ext
. HTTPCont ext ,
com novel | . nam ni dp. ri sk. cont ext. Locati onCont ext,
com novel | . nam ni dp. ri sk. cont ext . Devi ceCont ext,
com novel | . nam ni dp. ri sk. cont ext. User Cont ext,
com novel | . nam ni dp. risk.util.Responsej ect)

This method evaluates the rule and is called in the order of the priority.

Par anet er s
Htt pContext- Contains all the request http header infornation
Locat i onCont ext - Contains infornmation about the client location (I1P)
Devi ceCont ext - Cont ai ns devi ce information
User Cont ext - Contains user information that includes user attributes, roles,
and historical login data of the user.
* ResponseCbj ect- Can be used for setting cookies, headers and user attributes
on conpletion of the risk cal cul ation.
*

L I T .

* Return Val ues
* true- on successful evaluation of the rule.
* false- if failed to evaluate the rule. In this case, configured risk score is
consi der ed.

*

* This method will have 3 sections
* 1) Pre-evaluation: To get all the parameters of the user login
* 2)Eval uate the rule: Apply the use case to the evaluation using the parameters
* 3)Post-evaluation: - Set result, cookie and history parameters if needed
*/
@verride
publi c bool ean eval uat e(HTTPCont ext htt pCont ext, Locati onCont ext

| Cont ext, Devi ceCont ext dCont ext, User Cont ext uContext,
ResponseCbj ect rspChject) {

Custom Rule in Risk-based Authentication 71

72

bool ean returnVal ue = fal se;
if (isRuleEnabled())
{

[* ####E Pre- Eval uati on Secti on ######HHHHHHHHRHHHHE |
get HTTPHeader | nf or mat i on(htt pCont ext) ;

get Cooki el nformati on(httpContext, "JSESSIONID');

get Locat i onPar anet er (| Cont ext) ;

get User Cont ext (uCont ext);

[* s Eval uati on Sect i on #####HHHHIHIH I |

/*
* Change the return val ue according |ogic of the eval uation
*/
if (true)
returnVal ue = true;

| > HHHHHHTHTHTHTHTHTHHH Post - Eval uati on Sect i on ####HHHHHHHHHHHHHHHT |
/*
* Execute the post evaluation nmethod to consider other configuration |like negate
resul t
*/
Il rspbject.setUserAttr(H storical AttributeEntries.|P.name(), clientlP);

return getReturnVal ue(returnVval ue);

return true;

}

/*
* Get all the user context/attributes
*/
private void get User Cont ext (User Cont ext uContext) {
/1 TODO Aut o- generated method stub
get User Attri but e(uCont ext);
get User Rol es(uCont ext) ;
get Hi stori cal Dat a(uCont ext);

}
/*
* Get the historical data of the user fromthe configured database
*/
private void getHistorical Dat a(User Context uContext) {
/1 It will get all the passed transaction for the user in the past.
/1 1f the transaction you looking for is not found, that mean it has failed for
that log in.
Hi storyRecord records =
(Hi storyRecord)uContext.get(Hi storical AttributeEntries.|P.name());
if (records !'= null)
{
Systemout.printIn("Printing past entries fromthe History, in this exanple
its the P used by the user");
for(hject o : records. getValue())
Systemout.printIn("< " + (String)o + "
>n");

}
}
/*
* Get the user's current role information
*/
private void get User Rol es(User Cont ext uContext) {
String[] values = (String[])
uCont ext . get (User Profil e. Const ants. ROLES. nane());
Systemout, println("Roles of the user are ");
for (String role : val ues)
Systemout,printin(" " + role + ",");

}
/*

Custom Rule in Risk-based Authentication

* Get the user's ldap attributes.
*
* NOTE: To get attributes here, you nust return the name of the attributes, you
need, using nethod get RequiredAttributes();

*/
private void getUserAttribute(UserContext uContext) {

/1 Value will be null if attribute nanme is not set as part of
get Requi redAttributes()

String mail = (String) uContext.get("mail");

String carlicense = (String) uContext.get("carlicense");

Systemout.printIn("Mil attribute of the user is " + nail + ",
and the carlicense is " + carlicense);

/*

* This method should return the name of the user ldap attributes required during
eval uation of the rule. You can configure those in the customrule properties and
can pass the val ue here.

*/
@verride
public String[] getRequiredAttributes() {
/1 TCODO Aut o- generated nethod stub
String[] attributes = new String[2];
attributes[0] = "mail";
attributes[1] = "carlicense";
return attributes;
/*

* CGet the location paraneter of the user
*
*/
private void getlLocationParaneter(Locati onContext | Context) {
String clientlP = | Context.getdientl PAddress();
Systemout,printin("Client Ip address for this request is =" + clientlP);
Properties props = new Properties();
Provi der provider;

try {
provi der = Geolocati onFactory. get Provi der

Ri skEngi ne. get I nstance(). get Cor eProps(). get Property("geol ocati on. provider"),
nul I, props);
GeolLocBean geolLoc = provider.readGeolLocl nfo(l net Address
.getByNane(clientl P));

Systemout.printIn("Country =" + geoloc.getCountry());
Systemout.println("Country code = " + geoloc. get CountryCode());
Systemout.printin("Cty =" + geoLoc.getCity());

} catch (GeoLocException | UnknownHost Excepti on
e) {
/1 TODO Aut o- generated catch bl ock
Systemout.println("Geo |location configuration exception
" + e.getlLocal i zedMessage());
e.printStackTrace();

}
/*
* CGet a specific cookie out of headers
*/
private voi d get Cooki el nformati on(HTTPCont ext htt pCont ext,
String cooki eNane) {
String cooki eVal ue = httpCont ext. get Cooki eVal ue(cooki eNane) ;
System out, println("Cooki e Name = " + cooki eNane + "
Value =" + cooki eVal ue);

Custom Rule in Risk-based Authentication 73

74

* Get all http Context information.
* Contains all http headers that is part of the request, including cookies.

private void get HTTPHeader | nf or mat i on(HTTPCont ext htt pCont ext) {
Map<String, String> headers = httpContext.get M HTTPHeader s() ;
Iterator itr = headers.entrySet().iterator();

for (Map.Entry< String, String> entry : headers.entrySet()

Systemout, println("Header Name = " + entry. getKey()
' Value = " + entry.getValue());

5.5 Deploying Your Custom Rule Class

1. Create a jar file for your custom rule class and any associated classes.
2. Add the jar file to/ opt / novel | / nam i dp/ webapps/ r ba- cor e/ VEB- | NF/ | i b by using

Advanced File Configurator.

For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

. In Administration Console, click Policies> Risk Configuration > Rules > New.

Rule name: Specify a name that Administration Console can use to identity this custom rule

Rule Definitions: Select the 'custom rule' to configure the custom rule

. Specify the following details:

Custom class Name: Specify the name of your Java class

Check User History: Select this option if you are using the user's history data in you custom class
Negate Result: Select this option to reverse the output of the rule condition

Class Property: Specify parameters and values which will be sent to the custom class at runtime.
Property Name: Name of the parameter.

Value: Value of the parameter.

Custom Rule in Risk-based Authentication

https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

Rule Name: mycustomrule

—Rule Definitions

Rulel - Custom Rule pejlete

Custom Class Name: com.company.nam.MyCustomRule L]

¥ Check user history 1]

[Megate Result L]

Class Properties

Add Property

Property Mame: EMAIL_ID Value: xooe@company.com [x]

Select Rule Type to Add

5. Click Next and specify the risk score for the rule.

Rule Group: Select the group name.

Risk Score: Specify the risk score for the custom rule.
Privileged Rule: Select if the custom rule is a privileged rule.
Click Finish > OK.

Restart Identity Server.

On the Identity Servers page, click Update.

© ©® N O

Update any associated devices that are using this Identity Server configuration.

5.6 Understanding Custom Attributes in History SQL
Database

The Risk module enables you to save historical data of the user login to the external database.
Custom rule examples explain how to read the existing parameters from an historical database. To
create a new attribute in the database for your custom rules, perform the following steps:

1. Create the custom tables as follows:

CREATE TABLE netiqg_risk.extra

id VARCHAR(32) NOT NULL,
customstring_entryl VARCHAR2(100) ,
custom.int_entry2 | NTEGER,
custom char _entry3 CHAR(1)

CONSTRAINT fk_extra_id FORElI GN KEY (id) REFERENCES netiqg_risk.usr(id)
)

2. Specify the of the table as 'extra’'.

3. The column name (attribute) should start with 'custom’ followed by the data type of the
column, like cust om <dat at ype>_<nane of the attribute>

Custom Rule in Risk-based Authentication 75

76

For example, cust om stri ng_userl ogi nti me
4. Ensure that the attribute name matches with the database column name.

Access Manager supports the following data types for custom attributes:
* String
¢ Int
¢ Char

Boolean

+ Date

*

5.6.1 Custom Rule example

As part of your customer class constructor, set the type of the history you are looking for.
/1CGet the last login time of the user

set Type(Hi storical AttributeEntri es. LASTLOGGEDI NTI ME. nane()) ;
/] CGet the customstring user login time of the user

set Type("customstring_userlogintime");
As part of the evaluate() method, you can access these custom values as follows:
Hi storyRecord records =

(Hi storyRecord)uCont ext. get ("custom string_userlogintine");
String value = (String)records. getVal ue().get(0);

At the end of the evaluate() method, you can set the value of the custom attribute as follows:
(Responsebj ect) rspObj ect. set User Attr ("customstring_userlogintinme","12:02:01");

Post evaluation of the risk, this will be set to the extra table on the SQL database.

5.7 Custom Geolocation Data Provider Integration

This section describes how to integrate the custom geolocation data provider. The API presented
here allows you to integrate the custom geolocation data provider with risk-based authentication.

+ Section 5.7.1, “Prerequisites,” on page 76

+ Section 5.7.2, “Understanding the Geo Location Provider interface,” on page 77

*

Section 5.7.3, “Creating a Custom Geolocation Provider Class,” on page 77

*

Section 5.7.4, “Custom Geolocation Provider Class Example,” on page 78

*

Section 5.7.5, “Deploying Your Custom Geolocation Provider Class,” on page 78

5.7.1 Prerequisites

+ The latest version of Access Manager is installed.

+ Your development environment requires the same installation as outlined in the NetlQ Access
Manager 5.0 Installation and Upgrade Guide.

+ Download nidp.jar, NAMCommon.jar and risk-*.jar and third-party Geo Location data provider
jar files from / opt / novel | / nani i dp/ webapps/ r ba- cor e/ WEB- | NF/ | i b and add these
files to your development project by using Advanced File Configurator.

Custom Rule in Risk-based Authentication

https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/install_upgrade/bookinfo.html

5.7.2

5.7.3

5.7.3.1

5.7.3.2

For information about how to download a file, see Downloading Files from a Server in the NetlQ
Access Manager 5.0 Administration Guide.

For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

Understanding the Geo Location Provider interface

Method Description

init() Takes Properties as its arguments. This properties object contains the parameters
which are passed through the Admin Console for this Custom class. The method used
to initialize the Geo Location Provider Class.

readGeoloclInfo() Takes InetAddress as its arguments. Returns the Geo Location information as
Geolocation Bean.

Creating a Custom Geolocation Provider Class

You can create the custom geolocation provider class as follows:

¢ Implementing Provider Interface

+ Extending Abstract Provider Class

Implementing Provider Interface

i mport com novel | . nam ni dp. ri sk. core. geol oc. Provi der;
public interface Provider {
public void init(Properties props);
publ i c GeoLocBean readGeolLocl nfo(| net Address | PAddress) throws

GeoLocExcepti on;
}

You can create the Custom Provider class by implementing this interface. Override the i nit () and
readGeoLocl nf o() methods.

Extending Abstract Provider Class

i mport com novel | . nam ni dp. ri sk. core. geol oc. Abst ract Provi der;
public abstract class AbstractProvider inplenments Provider {

abstract public GeoLocBean readGeoLocl nfo(l net Address | PAddress)
throws GeoLocExcepti on;

public AbstractProvider(Properties props){
init(props);

}

}
You can create a custom provider class by extending the AbstractProvider class. Override the above
init() and readGeolocInfo() abstract methods.

Custom Rule in Risk-based Authentication 77

https://www.microfocus.com/documentation/access-manager/5.0/admin/download-server-file.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

78

5.7.4

5.7.5

Custom Geolocation Provider Class Example

i mport com novel | . nam ni dp. ri sk. core. geol oc. Abst ract Provi der;
i mport com novel | . nam ni dp. ri sk. core. geol oc. excepti on. GeoLocExcepti on;
i mport com novel | . nam ni dp. ri sk. core. geol oc. nodel . GeoLocBean,;

public class M/CustonGeoProvi der extends AbstractProvider {

publ i c MyCust onGeoProvi der (Properties props) {
super (props);

}

/1 The argunent 'props' contains the configuration paraneters which are provided in
the adm n console forthis custom cl ass.

@wverride

public void init(Properties props) {

}
/1 This method should return the geo | ocation infornation
@verride
publ i c GeoLocBean readGeolLocl nfo(l net Address | PAddr ess)
throws GeolLocException {

/'l read the geol ocation information fromany external provider using web service
calls or any sources

return null;

}

Deploying Your Custom Geolocation Provider Class

1. Create a jar file for your custom geolocation provider class and any associated classes.

2. Add jar files to the / opt / novel | / nani i dp/ webapps/ rba- core/ VEB- | NF/ | i b directory
by using Advanced File Configurator.

For information about how to add a file, see Adding Configurations to a Cluster in the NetlQ
Access Manager 5.0 Administration Guide.

3. In Administration Console, click policies> Risk Configuration > Geolocation.

4. Select Custom Provider from the list and specify the following details:

Provider Name: A name that Administration Console can use to identity this custom provider.
Java Class Path: The path name of your custom Geo Provider Java class.

Class Property: The parameters and values which will be passed to the custom class at runtime.
Property Name: The name of the parameter.

Value: The value of the parameter.

Click OK.

Restart Identity Server.

On the Identity Servers page, click Update.

© N o U

Update any associated devices that are using this Identity Server configuration.

Custom Rule in Risk-based Authentication

https://www.microfocus.com/documentation/access-manager/5.0/admin/add-config-cluster.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html
https://www.microfocus.com/documentation/access-manager/5.0/admin/bookinfo.html

	Access Manager 5.0 SDK Guide
	About this Book and the Library
	Intended Audience
	Other Information in the Library

	1 Getting Started
	1.1 Development Overview
	1.1.1 SDK Components

	1.2 Selecting an Integrated Development Environment

	2 Identity Server Authentication API
	2.1 Prerequisites for Creating a Custom Authentication Class
	2.2 Understanding the Authentication Class
	2.2.1 Authentication Class Components
	2.2.2 How the Authentication Class Operates

	2.3 Creating an Authentication Class
	2.3.1 Project Requirements
	2.3.2 doAuthenticate Method
	2.3.3 Authentication Methods
	2.3.4 reCAPTCHA Methods
	2.3.5 Class Property Methods
	2.3.6 Status Methods
	2.3.7 User Information Methods
	2.3.8 CallbackAuthentication Method
	2.3.9 Other Methods

	2.4 Authentication Class Example
	2.4.1 Extending the Base Authentication Class
	2.4.2 Implementing the doAuthenticate Method
	2.4.3 Prompting for Credentials
	2.4.4 Verifying Credentials
	2.4.5 PasswordClass Example Code
	2.4.6 Accessing a Principal Object from an Authentication Method

	2.5 Localizing the Prompts in Your Authentication Class
	2.5.1 Creating a Properties File
	2.5.2 Creating a Resource Class
	2.5.3 Creating or Modifying a JSP Page

	2.6 Deploying Your Authentication Class

	3 LDAP Server Plug-In
	3.1 Prerequisites
	3.2 Creating the LDAP Plug-In
	3.3 eDirectory Plug-In
	3.4 Installing and Configuring the LDAP Plug-In
	3.5 Troubleshooting

	4 The Policy Extension API
	4.1 Getting Started
	4.1.1 Prerequisites
	4.1.2 Types of Policy Extensions
	4.1.3 How the Policy Engine Interacts with an Extension

	4.2 Common Elements and Tasks
	4.2.1 Implementing Common Elements
	4.2.2 Initializing the Factory Object
	4.2.3 Retrieving Information from Identity Server User Store
	4.2.4 Implementing the Extension Interface

	4.3 Creating an Extension
	4.3.1 Creating a Context Data Extension
	4.3.2 Creating a Condition Extension
	4.3.3 Creating an Action Extension

	4.4 Installing and Configuring an Extension
	4.4.1 Installing the Extension on Administration Console
	4.4.2 Distributing a Policy Extension to Access Manager Devices
	4.4.3 Distributing the Extension to Customers

	4.5 Sample Codes
	4.5.1 Data Extension for External Attribute Source Policy
	4.5.2 Template Policy Extensions
	4.5.3 LDAP Group Data Element
	4.5.4 PasswordClass

	5 Custom Rule in Risk-based Authentication
	5.1 Prerequisites
	5.2 Understanding the Rule Class
	5.3 Creating a Custom Rule Class
	5.4 Understanding the Custom Rule Class Example
	5.5 Deploying Your Custom Rule Class
	5.6 Understanding Custom Attributes in History SQL Database
	5.6.1 Custom Rule example

	5.7 Custom Geolocation Data Provider Integration
	5.7.1 Prerequisites
	5.7.2 Understanding the Geo Location Provider interface
	5.7.3 Creating a Custom Geolocation Provider Class
	5.7.4 Custom Geolocation Provider Class Example
	5.7.5 Deploying Your Custom Geolocation Provider Class

