Understanding the Novell
SecretStore 3.2 APIs

Feature Article

| | NOVELL APPNOTES @

Novell

Cameron Mashayekhi
Senior Software Engineer
Novell, Inc.
cameron@novell.com

Novell SecretStore has undergone a major upgrade in version 3.2, with numerous
modifications to its client APIs, supported transport protocols, and client and
server platforms. This AppNote presents an overview of the improvements and
modifications made to these APIs. It is a follow-up to “A Technical Overview of
Novell SecretStore 3.2” in the May 2003 issue of AppNotes (available online at
http://developer.novell.com/research/appnotes/2003/may/03/).

Contents:

* Introduction

* Major Improvements to SecretStore APIs
¢ Understanding the SecretStore APIs

e Operational APIs for Connectors

e Management APIs for Utilities

* Understanding the Shared Secret APIs

» Shared Secret APIs

» Shared Secret APIs

Secure Identity Management (SIM), SecretStore, single
sign-on, authentication, network security

Products Novell SecretStore 3.2

Audience network application developers

intermediate

Prerequisite Skills familiarity with user authentication mechanisms

Operating System NetWare 5 and above
NDK

Sample Code no

June 2003

()
()
-
O
=z
| -
(]
Q.
S
]
>
(]
(]

Introduction

As an infrastructural component of the Secure Identity Management (SIM)
provisioning architecture, Novell’s SecretStore service is designed to securely
store sensitive data such as user IDs, passwords, biometrics, and other login
credentials. This type of data is commonly called secrets. Once the data is safely
stored in eDirectory, single sign-on services such as Novell SecureLogin, Novell
iChain, and Novell Portal Services, as well as third-party applications, can access
and use these credentials on behalf of the authenticated user. SecretStore also
protects the methods of storing, accessing, and retrieving these secrets.

Novell SecretStore has undergone a major upgrade in version 3.2, with numerous
modifications to its client APIs, client and server platforms, and supported
transport protocols. Among other things, SecretStore 3.2 has been enhanced to
support LDAP cross-platform access based on Secure Sockets Layer (SSL) to
make the service available on all eDirectory-supported client and server
platforms.

This AppNote presents an overview of the new SecretStore programming
interfaces, or APIs, in version 3.2.

Major Improvements to SecretStore APIs

This section presents an overview of the major improvements made to the
SecretStore APIs in version 3.2.

Improved Transport and OS Platform Access

The SecretStore NDK APIs now allow the applications to choose NCP or LDAP
access to eDirectory without the need for transport-specific APIs. As before, the
NCP protocol is only available on Windows clients and requires that Novell’s
Client 32 be present on the workstation. However, the SecretStore LDAP client
can be installed on either the server or the workstation without requiring Novell
Client 32.

n
)
whd
o
z
|
)
a
9
v
>
v
o

Improved APl Performance

The performance of the new SecretStore interfaces has been improved to provide
faster access to the data in the user’s SecretStore. Older versions of the
SecretStore client APIs were designed to be stateless; each API had to set up and
tear down the connection to the SecretStore server. This approach supported
regular connectors and was based on connectors’ simple “per API” access to
SecretStore.

www.novell.com/appnotes

2

As the paradigm of accessing SecretStore shifted from regular connectors to
universal connectors, it became necessary to support stateful sessions. The new
SecretStore API architecture supports the establishment of a session by allowing
for initialization of the session through a call to NSSSGetServicelnformation, and
reusing the initialized state data in the context across other API calls. In the new
APIs, every call is able to tear down the connection and end a session upon
request after the work is done. (The new APIs still support stateless operations if
no session is established ahead of time by the connector via the context.) The use
of the initialized context across calls provides for better overall performance when
using the new SecretStore APIs.

New Shared Secret Format

In previous implementations, both regular and universal connectors created
overlapping secrets for the same applications over a period of time. The presence
of multiple secrets for the common applications in the user’s SecretStore has led
to the problem of synchronization between the applications. This problem can be
summarized in the situation when one of these connectors modifies the user’s
credential in the target application and, as a result, the other connectors lose their
ability to perform single sign-on for the user when they are invoked, and
subsequently go out of sync. This leads to the complicated circumstance in which
the other connectors require user intervention to synchronize with the changes
made to credentials in the target application.

In addition to the need for solving the synchronization problem, creating multiple
secrets for common applications in SecretStore causes an increase in the number
of secrets in every store. This can affect performance and efficiency of access, in
addition to causing an unnecessary increase in storage capacity requirements.

To solve these problems, a set of APIs based on the SecretStore APIs has been
implemented as a shim layer to provide the ability for applications to process and
interpret secret data that conforms to the SharedSecret specification originally
used by Novell SecureLogin. Connectors conforming to this set of specifications
in the SharedSecret APIs will be able to create secrets in the user’s SecretStore
that can be shared between regular and universal connectors.

()
()
-
O
=z
| -
(]
Q.
S
]
>
(]
(]

Understanding the SecretStore APIs

This section discusses the specifications of the new SecretStore APIs. To help
developers use these tools more effectively, Novell provides sample code in the
Novell Developers Kit (NDK). The SecretStore NDK, sample code, and
documentation is available on the Novell Developers Web site at
http.//developer.novell.com/ndk.

June 2003

SecretStore Implementation

Novell SecretStore is a collection of hidden attributes on an object (User object by
default) in eDirectory. These attributes are implemented through eDirectory
schema extensions, and they are encrypted on the server via Novell International
Cryptographic Infrastructure (NICI) servies.

» The single-valued Key attribute holds the cryptographic data and is the
repository for stores-related statistical information.

» The multi-valued Secrets attribute holds encrypted secrets identified by secret
IDs and is the repository for the secrets’ statistical information (time stamps
and so on).

Hidden attributes, by definition, are not accessible from client operating systems
through eDirectory interfaces and utilities. These attributes can only be accessed
by SecretStore interfaces that apply strict access control and security measures to
their access, transport, and disclosure.

In addition to these hidden and encrypted attributes, which protect the data against
attacks directed to the physical server, SecretStore provides an optional Enhanced
Protection (EP) mode to defend against administrative attacks which cause the
user’s SecretStore to be locked. Enhanced Protection also provides for secure
unlocking of the EP locks either through owner control or via an action involving
two separate administrators. In this two-administrator scheme, the eDirectory
password is reset by a network administrator, but SecretStore can only be
unlocked by a separate SecretStore Administrator. To provide full control over
this high-security feature, audit information is recorded after each administrative
unlocking of Novell SecretStore in EP mode.

n
)
whd
o
z
|
)
a
9
v
>
v
o

SecretStore Management Utilities

The following utilities are provided for configuring and managing users’
SecretStores.

* SSManager is a Windows-based utility that allows users to manage their
Novell SecretStores.

» SSStatus is a Windows-based “light” version of SSManager that allows users
to turn on Enhanced Protection, set the Master Password, and unlock their
SecretStore when necessary.

* ConsoleOne, with the appropriate snap-ins installed, is the all-purpose
administrative utility for managing users’ SecretStores, in addition to
configuring and deploying the service in an eDirectory environment.

SecretStore API Architecture
Here is a summary of the overall architecture of the new SecretStore APIs.

» They are cross-platform APIs that work on any platform supported by
eDirectory (NetWare, Windows, Solaris, AIX, Linux).

www.novell.com/appnotes

4

They are cross-transport APls that support either NCP (only on Windows
clients) or LDAP (all eDirectory platforms).

They are cross-language APIs that can be accessed through any Java or C++
compatible programming language.

There are two categories of operational APIs for writing connectors:

* Raw Novell SecretStore APIs
e SharedSecret APIs

In addition, there is a set of Raw Management APIs for writing utilities.

Here are some points to remember about the raw operational APIs:

They are available across different platforms and can transmit data to and
from SecretStore over encrypted transports.

They can start and end “stateless” SecretStore sessions that are based on a
single operation.

They can start and end “stateful” SecretStore sessions that expand over
multiple operations, if necessary.

They can find services for the users on administratively-designated servers
across the eDirectory tree using the SecretStore client’s service location
feature.

They provide Enhanced Protection (EP) against possible administrative
attacks.

They provide two-administrator recovery from EP locking of the SecretStore.

Here is some general information about the SecretStore APIs:

All of the Novell SecretStore APIs are capable of obtaining a context
internally in NCP mode and operate by setting up a session and tearing it
down at the end of that call.

Each of the SecretStore APIs is capable of accepting a context (LDAP or
NCP) from the caller that has been created outside the SecretStore client or
inside it with a prior call to NSSSGetServicelnformation.

All of the Novell SecretStore APIs default to set the target object’s
SecretStore Distinguished Name (DN) to be the same as the caller DN, unless
specified otherwise by the calling application.

For a caller DN to be different than the SecretStore’s target object DN, it is
required for the caller DN to have administrative rights over the SecretStore's
target object DN or to be defined as SecretStore administrator through
configuration.

In LDAP mode, the caller DN and the SecretStore target object DN should
comply with LDAP form.

Each of the SecretStore C APIs is capable of unbinding or destroying the
context upon request.

June 2003

()
()
-
O
=z
| -
(]
Q.
S
]
>
(]
(]

Operational APIs for Connectors

The following is a list of sample code files that can be downloaded from the
Novell Developer Web site referenced above as a demonstration and guidelines
on the use of the SecretStore APIs:

» sstst.c is the source code for the SSTST.EXE sample program that
demonstrates the use these APIs over the NCP transport.

» [stst.c is the source code for the LSTST.EXE sample program that
demonstrates the use of these APIs over the LDAP transport.

* nbstst.c is the source code for the NBSTST.EXE sample program that
demonstrates the use of these APIs over LDAP when the bind is made by the
application outside SecretStore and the context passed by the application is
used to access the store.

A complete collection of SecretStore-related sample code is available as part of
the SecretStore component of the NDK. All of the API prototypes, flags,
structures, and error codes are defined in the nsscl.h file.

Here is a brief explanation of each of the SecretStore operational APIs.

NSSSGetServicelnformation

This API allows for binding/unbinding over LDAP, or creating and destroying
NDS contexts over NCP, to a target SecretStore server. It returns the following
statistical information regarding a user’s SecretStore:

e Number of Secrets

* Cryptographic Algorithm ID

n
)
whd
o
z
|
)
a
9
v
>
v
o

* Cryptographic Strength of the server
* Target server

* Caller’s DN

» Target SecretStore’s DN

* Master Password hint

* DN of the last SecretStore administrator that unlocked the SecretStore

In addition to the user (owner), the administrator is allowed to perform this
operation on the user’s SecretStore (except for the return of the Master
Password hint).

www.novell.com/appnotes

6

NSSSWriteSecret

This API allows for populating SecretStore with secrets identified by uniquely-
supplied secret IDs. It also allows for creating new secrets (with the optional
ability to overwrite existing secrets), checking for secret ID collision, and creating
the secret for the first time by using special flags.

Creating the first secret in a user’s Novell SecretStore will cause the creation of
the Key and Secret hidden attribute pair for that user.

In addition to the user (owner), the administrator is allowed to perform this
operation on the user’s Novell SecretStore.

NSSSReadSecret

This API allows for reading a secret identified by the supplied secret ID. It also
allows for repair and synchronization of the SecretStore upon request by using a
special flag. The first read operation after a write will initiate a background
synchronization and repair of the SecretStore.

This API returns secret-related statistical information such as creation time stamp,
last modified time stamp, and last accessed time stamp, in addition to the secret
value. If the SecretStore configuration allows for the Last Access Time Stamp
option (which is optional due to the performance penalty involved), then that time
stamp is returned on the read.

If Enhanced Protection is turned on, every read on an EP-flagged secret will cause
a check to see if there has been an administrative eDirectory password change. If
so, the user’s Novell SecretStore is locked.

()
()
-
O
=z
| -
(]
Q.
S
]
>
(]
(]

Only the owner is allowed to perform this operation on his or her SecretStore.

NSSSRemoveSecret

This API allows for removing a secret identified by the supplied secret ID.
Removing the last secret in the user’s SecretStore will result in complete removal
of the SecretStore from the object (removal of the Key and Secrets attribute pair).

This API returns secret-related statistical information such as creation time stamp,
last modified time stamp, and last accessed time stamp, in addition to the secret
value. If the SecretStore configuration allows for the Last Access Time Stamp
option (which is optional due to the performance penalty involved), then that time
stamp is returned on the read.

In addition to the user (owner), the administrator is allowed to perform this
operation on the user’s SecretStore.

June 2003

Management APIs for Utilities

Here is a brief explanation of each of the SecretStore management APIs used for
writing utilities.
NSSSEnumerateSecretiDs

This API allows for getting a list of the secret IDs for secrets stored in the user’s
SecretStore.

In addition to the administrator, the user is allowed to perform this operation on
his or her Novell SecretStore.

NSSSSetMasterPassword

This API allows the owner to set a Master Password and related hint on his or her
SecretStore for the first time, if setting of Master Passwords is allowed through
configuration on the server. The Master Password is used for unlocking the
SecretStore and should be set prior to Novell SecretStore getting locked.

Only the owner is allowed to perform this operation on his or her SecretStore.

NSSSUnlockSecrets

This API allows for the removal of the lock from a user’s locked Novell
SecretStore using one of the following three methods:

* By deleting all of the locked secrets
* By providing the last eDirectory password set by the user

* By using the Master Password is one was set prior to locking

n
)
whd
o
z
|
)
a
9
v
>
v
o

In addition to the user (owner), a designated and configured SecretStore
Administrator can unlock the user’s SecretStore. If the two-administrator
password reset scheme is not being used, the owner must use one of the methods
listed above to unlock his or her SecretStore.

NSSSRemoveSecretStore

This API allows for the complete removal of the Novell SecretStore from the
target object.

In addition to the administrator, the user is allowed to perform this operation on
his or her Novell SecretStore.

www.novell.com/appnotes

8

Understanding the Shared Secret APlIs

The Shared Secret APIs leverage the SecretStore APIs described earlier. They are
used for storing secret data in a “shared secret” format. The intent of these APIs is
to provide access to the SecretStore so that the single sign-on information in a
user’s SecretStore can be shared between different connectors. To make this
possible, the connectors (regular or universal) should conform to the Shared
Secret specification, which defines the Shared Secret format as the means by
which connectors may share login credentials.

Terminology

The following is a list of terms and their definitions with respect to the Shared
Secret specification.

* Secret: An addressable data member of a user’s SecretStore that contains
authentication data. Referenced by a SecretID, a secret may contain up to
60 KB of data, though in practice most are much smaller. Secrets are securely
encrypted using NICI and the tree and user keys. They are accessible only to
the authenticated NDS/eDirectory user via secure calls to the SecretStore
server.

» SecretID: An identifier or name by which a data member of SecretStore is
referenced. These names are used when reading and writing secrets. They are
limited in length to 255 displayable characters encoded in UNICODE.

» Application: A Windows program, Web application, or mainframe host
application for which login information is being stored.

* Credential Set: Data used to authenticate a user to a desktop, Web, or host
application. Typically comprised of a username and password, a credential set
can also include a PIN, e-mail address, domain or database name, certificate,
or other information as required by the application. A credential set is also
referred to as Login Credentials or Details.

()
()
-
O
=z
| -
(]
Q.
S
]
>
(]
(]

* Login Details: The user-friendly name exposed in the user interface and
documentation to represent one or more credential sets associated with a
given application login.

Shared Secret Format

A shared secret is a regular secret that follows a set of rules that allow it to be read
by all connectors that conform to this specification. A shared secret is made up of
a type, a name, and a set of key/value pairs. The type and name of a shared secret
combine to form the shared secret’s identifier (secretID); the set of key/value pairs
make up the data.

Note: The Shared Secret specification identifies certain characters as being reserved.
These characters must be escaped when used outside of their context. The
reserved characters are listed later in this AppNote.

June 2003

SecretID Format. The following format should be used for the SecretIDs to
comply with the Shared Secret format:

<type>:<name>

where <type> identifies the type of shared secret (either “SS_App” for
Application secrets or “SS_CredSet” for Credential Set secrets), and <name>
identifies the name of the shared secret.

The colon (:) serves as a delimiter and should not be escaped. All reserved
characters used in either the type or name must be escaped. When combined, the
type, colon, and name string cannot exceed 255 displayable characters in length.

Data Format. Shared Secret data is made up of key/value pairs in the following
format:

<key><delimiter><value><linefeed>...<key><delimiter><value><linefeed><null>

where <key> identifies a key, <delimiter> is the equals character (=) in most cases
(otherwise the colon character), <value> identifies a value, <linefeed> is the
linefeed character, and <null> is the null terminator that must always appear at the
end of the data.

Linefeed characters separate the pairs from each other. All of the pairs combined
cannot exceed 60 KB in size. Keys should be treated as case-ignore strings,
whereas the values are case-sensitive. A null terminator must follow the last pair
to signal the end of the sequence. The null terminator must be present even when
no entry exists. Duplicate keys are not allowed; however, duplicate values are
permitted and should be discarded by connectors if they are encountered during
parsing operations. The data must be in 16-bit Little Endian Unicode, including
the null terminator. All reserved characters used in the key or value must be
escaped.

n
)
whd
o
z
|
)
a
9
v
>
v
o

In processing, care must be taken to modify only those key/value pairs on which
the connector is directly dependent. For example, suppose you have two
connectors that are dependent on the same shared secret, but one uses a Password
key whereas the other requires a PIN key. In such a case, each application should
add its own key without modifying any of the other keys that may exist but are not
required for its operations.

Reserved Characters. Here is the list of characters that are reserved in the
Shared Secret specification:

* Backslash (\)

+ Colon(:)

* Equalssign (=)
* Linefeed (0x0A(

www.novell.com/appnotes

10

* Null terminator (0x00)

Reserved characters that are used outside of their context must be escaped by
preceding them with a backslash (\) character. Note that the linefeed and null
characters cannot be used within a character string.

Shared Secret Types
Two types of shared secrets currently exist. They are:

* Application shared secrets, which contain information associating and linking
applications with credentials, as well as application-specific data

* Credential Set shared secrets, which contain login credential informaiton
used for one or more applications

When used together, these types of shared secrets can enable several applications
to use the same set of credentials, or enable one application to have more than one
set of credentials. This effectively means that, depending on the connector’s
choosing, there can be a many-to-many relationship between the two types. As
indicated in the example earlier, different connectors might, as allowed by the
target application, require different credentials for authenticating the users
(Password, smart card, PIN, and so on). This gives rise to the need for a
many-to-many grouping of these secrets.

Application Shared Secrets. Application shared secrets are used to represent
Windows applications, Web applications, or mainframe/host applications.
Application SecretlDs follow the format outlined previously with a type value of
“SS_App”. The application ID should be able to identify the application in a
unique fashion. As a rule, it should use the appropriate format as shown in the
following table:

()
()
-
O
=z
| -
(]
Q.
S
]
>
(]
(]

Windows application program_name.exe

Web application unique URL

Mainframe/host application host application name

Application data contains application-specific information that is necessary to
authenticate the user to the application, but that is not considered a credential.
Examples include the Control ID for a password field in a Windows application,
or the name of a password field in a Web form. Users do not normally need to
enter such information to authenticate; it is inherent in the application. This
application-specific data is in the key/value pair format with an equals character
as the delimiter. The choice of what keys to use is left up to the connector.

June 2003

11—

Application data also contains pointers to the credential sets with which the
application is associated. These pointers follow the key/value pair format as
follows:

SS CredSet:<credsetname>

where <credsetname> is the name of the credential set that is associated with the
application.

Note that the key must be “SS_CredSet” and that the colon character serves as the
delimiter for credential set pointers. An exception to the data format for these
pointers is that, when the key is “SS_CredSet”, duplicates are permitted so that
applications may be associated with more than one credential set.

Credential Set Shared Secrets. Credential Set shared secrets are used to contain
login credentials needed to authenticate a user to a Windows application, Web
site, or mainframe/host application. They may be shared between multiple
applications of the same or different type, primarily when the authentication
database or mechanism behind such applications is the same. Examples include
NDS authentication to the same object in a tree, or Windows and Web interfaces
to the same application such as GroupWise. By sharing credential sets, a password
saved or changed in one application automatically applies to other applications
that share the same authentication database and secret data at the target.

Credential Set SecretIDs follow the format outlined previously with a type value
of “SS_CredSet”. The administrator or user normally determines the name of a
credential set. The name should be such that it helps to associate shared
credentials with the appropriate applications. An example of a shared secret
identifier is:

n
)
whd
o
z
|
)
a
9
v
>
v
o

SS CredSet:Groupwise

Credential data contains information that users provide to authenticate to an
application. Examples include their username and their password. This data is in
the key/value pair format, with an equals character (=) as the delimiter. The
choice of what keys to use is left up to connector. However, connectors must
agree with each other on this in order to share single sign-on information. Thus,
where possible, the following known keys should be used:

e Username
e Password
e Other

An example of a shared secret value is:

Password=zuma<linefeed>Username=jdoe<null>

www.novell.com/appnotes

12

Shared Secret APIs

These APIs are built on top of the raw SecretStore APIs so they inherently comply
with the SecretStore specifications. Connectors can use these APIs to create
Shared Secret (SHS) compliant secret IDs and secrets.

As with the SecretStore raw APIs, a complete collection of Shared Secret sample
code files is available on Novell’s Developer Web site as a component of the
Novell NDK. The following sample code files can be downloaded and used as
template that completely demonstrates the use of SecretStore APIs:

* sshitst.c is the source code for the SSHTST.EXE program that demonstrates
the use of the shared Secret APIs over the NCP transport.

» Ishtst.c is the source code for the LSHTXT.EXE program that demonstrates
the use of the shared Secret APIs over LDAP.

All of the API prototypes, flags, structures, and error codes are defined in the
ssshs.h file.

Operational APIs

The Shared Secret Operational APIs operate on SecretStore and require that the
context to the SecretStore be set up using regular SecretStore APIs prior to the use
of these APIs. These calls use SecretIDs that comply with SHS format.

* NSSSReadSharedSecret allows for a secret in the SHS format to be read out of
the SecretStore and assigned to a handle previously created with a Create
Handle call to be used by these calls.

* NSSSWriteSharedSecret allows for a secret in the SHS format that is
previously assigned to a handle to be written to the SecretStore.

()
()
-
O
=z
| -
(]
Q.
S
]
>
(]
(]

* NSSSRemoveSharedSecret allows for a secret in the SHS format to be
removed from the SecretStore. The SecretlD is assigned to a previously
initialized handle.

These operational APIs are created and formed using the Processing APIs listed
below.
Processing APIs

Here are the Processing APIs that operate on the secret buffers returned by the
Shared Secret Operational APIs.

* NSSSCreateSHSHandle allows for the creation of a handle for an SHS buffer
for the first time to populate and process an SHS format compliant secret that
will be formed as a list of components.

* NSSSDestroySHSHandle allows for the destruction of an SHS secret buffer
signified by a handle in memory after the completion of the target operations.

June 2003

13 ——

n
)
whd
o
z
|
)
a
9
v
>
v
o

14

* NSSSGetNextSHSEntry allows for moving through the SHS buffer
components (key/value pairs) of the Shared Secret signified by the handle.

* NSSSAddSHSEntry allows for inserting a component (key/value pair) into the
Shared Secret buffer signified by the handle at the current position of the
Shared Secret.

* NSSSRemoveSHSEntry allows for removing a component (key/value pair)
from the Shared Secret buffer signified by the handle passed in at the current
position of the Shared Secret.

Note: As described earlier, Shared Secret components are on key/value paired
structures formed as a list that are used by the Processing APIs. Operational APIs
can consume SHS buffers (list of components) signified by a handle and convert
them to and from raw secret format for raw read and write operations to and
from SecretStore.

Sequence of Shared Application or Credential Set Secret Operations

To help you get an idea of what is involved in using the Shared Secret APIs, here
is the sequence of events that occur when reading, writing, and removing a shared
Application or Credential Set secret.

Keep in mind the following points about the connector:

* For each thread in a connector operating on shared secrets, a call to
NSSSCreateSHSHandle is needed that returns a handle which is used for
passing to subsequent calls.

» All of these calls require a SecretStore context handle that has previously
been initialized through calls to NSSSGetServicelnformation.

» All of these calls require the handle as a well as a user-populated
SS SH _SECRET ID T structure containing the shared secret type, name,
and length to be passed to them.

» All of these calls create a SecretID according to the SecretID format using
either “SS_App” or “SS_CredSet” as the prefix.

Read Operation. Here are the steps involved in a read operation:

1. NSSSReadSharedSecret converts the shared SecretID to the SecretStore
format and makes a call to NSSSReadSecret to retrieve secret data from
SecretStore.

2. The secret data is parsed according to the Shared Secret format using the
parsing library. This is done through internal sequential calls made to add
entries of key/value pairs into the list associated with the handle. This call
contains the handle as well as pointers to internally-allocated key and value
buffers.

www.novell.com/appnotes

Write Operation. Here are the steps involved in a write operation:

1.

Remove Operation. Here are the steps involved in a remove operation:

1.

The connector makes sequential calls to NSSSAddSHSEntry to add entries of
key or value data into the list associated with the handle. This call contains
pointers to the user-allocated key and value buffers.

A connector’s call to NSSSWriteSharedSecret requires a handle as well as a
connector-populated SS SH SECRET ID T structure containing the shared
secret type, name, and length. This call converts the shared SecretID to the
SecretStore format and makes a call to NSSSWriteSecret to write secret data
to SecretStore.

Internally, NSSSWriteSharedSecret makes sequential internal calls to retrieve
data from the list associated with the handle and populates an internal buffer.

The internal buffer is parsed according to the Shared Secret format using the
parsing library, and the resultant data is passed into the Secret buffer for
passage to the SecretStore NSSSWriteSecret API. Then the API call is made.

Before concluding the write operation, the connector makes a call to
NSSSDestroySHSHandle to free the list associated with the handle for each
shared secret thread of execution.

The connector makes a call to NSSSRemoveSharedSecret and passes it a
pre-populated SS_ SH SECRET _ID_T structure containing the shared secret
type, name, and length.

Internally, the Secret Identifier is parsed according to the Shared Secret
format for handling of delimited characters.

()
()
-
O
=z
| -
(]
Q.
S
]
>
(]
(]

Also internally, a call to NSSSRemoveSecret is made and the SecretID
formed in SecretStore format is passed into the API to remove the target
secret from SecretStore.

Accessing and Modifying a Shared Secret. Here is the sequence involved when
a connector accesses and modifies a shared Application buffer or Credential Set

secret.

1. The connector makes sequential calls to NSSSGetNextSHSEntry to operate
on the list associated with the handle.

2. The connector can then make calls to NSSSAddSHSEntry to add data to the
list associated with the handle.

3. The connector can also make calls to NSSSRemoveSHSEntry to remove data
from the list associated with the handle.

4. The connector can then utilize the data for application-specific purposes.

June 2003

15 ——

n
)
whd
o
z
|
)
a
9
v
>
v
o

Conclusion

www.novel

16

Novell SecretStore provides a secure, eDirectory-based infrastructure for
applications and services to store and access user authentication secrets.
Applications and services are enabled to utilize this service either as regular
connectors or through the use of universal connectors. SecretStore is designed to
provide a secure solution for customers who want to take advantage its single
sign-on capabilities.

For Additional Information

For the latest information on deploying Novell SecretStore on your network, refer
to the installation and configuration manuals supplied on the product CD.

As of this writing, Novell SecretStore 3.2 code and documentation are available as
an early access release at http.//developer.novell.com/ndk.

The following AppNotes and Developer Notes may also be of interest:

* “A Technical Overview of Novell SecretStore 3.2”
http.//developer.novell.com/research/appnotes/2003/may/03/

* “Understanding Novell’s Single Sign-On”
http.//developer.novell.com/research/appnotes/2000/february/02/

+ “SecretStore: Novell Single Sign-on Version 1.1”
http.//developer.novell.com/research/devnotes/2000/april/02/d000402. htm

* “SecretStore Single Sign-on”
http.//developer.novell.com/research/devnotes/1999/november/05/

For other AppNotes on security-related topics, refer to the Novell Research Web
site at http.//www.novell.com/appnotes.

Copyright © 2003 by Novell, Inc. All rights reserved.

No part of this document may be reproduced or transmitted
in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose
without the express written permission of Novell.

All product names mentioned are trademarks of
their respective companies or distributors.

l.com/appnotes

	Understanding the Novell SecretStore 3.2 APIs
	Introduction
	Major Improvements to SecretStore APIs
	Improved Transport and OS Platform Access
	Improved API Performance
	New Shared Secret Format

	Understanding the SecretStore APIs
	SecretStore Implementation
	SecretStore Management Utilities
	SecretStore API Architecture

	Operational APIs for Connectors
	NSSSGetServiceInformation
	NSSSWriteSecret
	NSSSReadSecret
	NSSSRemoveSecret

	Management APIs for Utilities
	NSSSEnumerateSecretIDs
	NSSSSetMasterPassword
	NSSSUnlockSecrets
	NSSSRemoveSecretStore

	Understanding the Shared Secret APIs
	Terminology
	Shared Secret Format
	Shared Secret Types

	Shared Secret APIs
	Operational APIs
	Processing APIs
	Sequence of Shared Application or Credential Set Secret Operations

	Conclusion
	For Additional Information

