
Novell®

novdocx (en) 11 July 2008

AUTHORIZED DOCUMENTATION
NDK: iManager 2.7 Developer Kit
www.novell.com

Developer Kit

January 13, 2009
iManager 2.7 Developer Kit

novdocx (en) 11 July 2008
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to the International Trade Services (http://www.novell.com/company/policies/trade_services) for more
information on exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary
export approvals.

Copyright © 2009 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/company/policies/trade_services
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

novdocx (en) 11 July 2008
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

novdocx (en) 11 July 2008

Contents

novdocx (en) 11 July 2008
About This Guide 9

1 Getting Started 11
1.1 Requirements. 11
1.2 Installing the SDK. 11
1.3 Using the iManager SDK . 12

1.3.1 Prerequisites . 12
1.3.2 Starting iManager . 13
1.3.3 Setting Up Role-Based Services . 14

1.4 Building the Sample Plug-Ins . 15

2 Concepts 17
2.1 How iManager Works. 17

2.1.1 Tasks . 17
2.1.2 Property Books and Pages . 18
2.1.3 Architecture . 18

2.2 The iManager Directory Structure . 19
2.3 Role-Based Services . 20
2.4 Module ID. 21
2.5 Connection Modes . 22
2.6 iManager Plug-ins . 22

3 Creating Tasks 23
3.1 Overview . 23
3.2 Creating a Task: An Example . 23

3.2.1 Creating the Java Class. 24
3.2.2 Creating the UI. 26
3.2.3 Creating the Registration File . 28
3.2.4 Localizing the Task . 29
3.2.5 Deploying the Task . 30

3.3 Tips for Creating Task Java Classes . 30
3.3.1 Encoding Data . 32

3.4 Tips for Creating JSPs . 32
3.4.1 Encoding Data Using Tag Libraries . 33
3.4.2 Encoding Data Using Java Methods . 33

3.5 Creating Registration Files. 35
3.5.1 Using the Create XML Install File Task . 37

3.6 Specifying Conditions for Task Execution . 37
3.7 Launching Tasks and Delegating to Tasks . 38

3.7.1 The Launch Service and Launch Actions . 38
3.7.2 Life Cycles of Launched and Delegate Tasks . 39
3.7.3 Accessing Launching and Delegation Features Programmatically 39
3.7.4 Launching and Delegation Methods in GadgetInstance . 40
3.7.5 Task Delegation Example . 40
3.7.6 Closing the Window of a Launched Task . 41
3.7.7 More Examples . 41

3.8 Task Chaining . 41
Contents 5

6 NDK: i

novdocx (en) 11 July 2008
3.8.1 Setting Objects in the Initial Task . 42
3.8.2 Getting Objects in the Chained Task . 42
3.8.3 Defining the Chained Task in a Registration File. 42

3.9 Extending the Object Management Tasks . 43
3.9.1 Registering an Object Type for the Create Object Task . 43
3.9.2 Extending the Delete, Move, and Rename Tasks . 44
3.9.3 Disallowing Operation of an Object Management Task on an Object Type 45

3.10 Enabling a Task for the Object View . 45
3.10.1 Register a Task to Work with Specific Object Types . 46
3.10.2 Retrieve Objects from iManager . 47

3.11 Using the AdminNamespace . 48

4 Creating Property Books and Pages 49
4.1 Creating a Property Book. 49

4.1.1 Create the Java Class . 49
4.1.2 Create the Property Book Pages . 49
4.1.3 Create the XML Registration File. 50

4.2 Creating a Property Book Page . 50
4.2.1 Create the Java Class . 50
4.2.2 Create the JSP . 51
4.2.3 Create the XML Registration File. 52

5 Using the Plug-In Studio 53
5.1 The Plug-In Studio User Interface . 53
5.2 Creating a Custom Plug-In . 54

5.2.1 Adding Drop Down List Values Dynamically . 55
5.3 Control Parameters . 56
5.4 What the Plug-In Studio Creates . 57
5.5 Customizing Plug-Ins Created with the Plug-In Studio. 57

5.5.1 Dynamically Updating Drop-down Lists . 58

6 Using the iManager Widgets 61
6.1 The Object Selector Widget . 61

6.1.1 Include Files. 62
6.1.2 Parameter Variables . 63
6.1.3 Advanced Selection XML Syntax. 65
6.1.4 Dynamically Enabling and Disabling the Object Selector . 65
6.1.5 Pre-Processing and Post-Processing Routines (preOS and postOS) 65
6.1.6 Making the Root Selectable. 66
6.1.7 Making Public and This Selectable . 66
6.1.8 Filtering on All Container Types. 66
6.1.9 Filtering on Containers that Are Partitions . 66
6.1.10 Object Selector Support in the iManager Tag Library . 66
6.1.11 A JSP Tag Library Example: Delete User . 68
6.1.12 Troubleshooting . 68

6.2 The Advanced Selection Widget . 69
6.2.1 How to Call the AS Widget . 70
6.2.2 Include Files. 70
6.2.3 Parameter Variables . 70
6.2.4 A JSP Example: Delete Users . 71
6.2.5 Setting the Options at Runtime Using JavaScript . 73
6.2.6 Implementing AdvSelTypeInfoCallback . 74
6.2.7 The Resulting XML Selection Criteria . 75
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
6.3 The MVStringEditor Widget . 75
6.3.1 How to Use the MVStringEditor Widget . 76
6.3.2 Modes . 77
6.3.3 Parameters . 77
6.3.4 JavaScript API . 78
6.3.5 Examples . 79

6.4 The Date/Time Widget . 79

7 Creating a Plug-In 81
7.1 Overview . 81

7.1.1 Plug-In File Structure . 81
7.1.2 Deleting Files by Using Command-Line Files After Plug-In Installation. 83
7.1.3 Plug-In Directory Objects and Attributes . 83
7.1.4 Plug-in Update and Uninstallation . 83
7.1.5 Plug-In Installers . 84

7.2 Creating a Manifest File . 84
7.3 Plug-In Information Through XML . 86
7.4 Creating a Plug-In Installer. 88
7.5 Installing Plug-ins to an Existing iManager . 89

7.5.1 Installing a Plug-In Programmatically . 89
7.5.2 Installing a Plug-In Manually . 90

7.6 Precompiling JSPs for Tomcat 5 . 90
7.6.1 Tomcat 5 Compiled Java Class File Location . 91
7.6.2 Precompiling JSP Pages with Ant . 91

7.7 Testing a Plug-In . 93
7.7.1 Installation Testing. 93
7.7.2 Plug-In Studio Testing . 96
7.7.3 Individual Task Testing . 96
7.7.4 Object View Testing. 97
7.7.5 Generic Operation Testing. 97

8 Installing iManager with Your Application 99
8.1 Windows. 99
8.2 Linux (SUSE and Red Hat) . 100
8.3 Installer.properties File. 100

9 Logging Debug Messages 103

10 Customizing iManager for Schema Extensions 105
10.1 Providing an Image for a New Object Class . 105
10.2 Providing Translated Names for New Object Classes and Attributes 105
10.3 Providing a Creator for a New Object Class. 106
10.4 Handling Deletion, Moving, and Renaming of a New Object Class . 106
10.5 Providing Pages for the Modify Object Property Book . 106
10.6 Providing Tasks to Interact with a New Object Class. 106

11 Creating an iPrint Gateway Plug-In 109
11.1 Introduction to iPrint . 109
11.2 Getting Started . 110
11.3 Using the Sample Gateway Plug-In . 111
Contents 7

8 NDK: i

novdocx (en) 11 July 2008
11.4 Creating Gateway Plug-In Java Class Files . 111
11.5 Creating Gateway Plug-In JSP Files . 112
11.6 Creating Gateway Plug-In Registration Files . 112

12 Reference 113
12.1 iManager API Documentation . 113
12.2 XML Schema for Installation and Registration Files. 113
12.3 Role-Based Services Directory Objects . 113

12.3.1 rbsCollection . 113
12.3.2 rbsRole . 114
12.3.3 rbsModule . 114
12.3.4 rbsTask . 114
12.3.5 rbsBook . 114
12.3.6 rbsScope . 115

12.4 eDirectory Access Service XML Formats for eDirectory Attribute Syntax Definitions 115

A iManager Security Issues 121
A.1 Secure LDAP Certificates . 121
A.2 Self-Signed Certificates . 122
A.3 iManager Authorized Users and Groups . 123
A.4 Preventing Username Discovery . 123
A.5 Tomcat Settings . 124
A.6 Encrypted Attributes. 124
A.7 Secure Connections. 124

B Revision History 127
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
About This Guide

iManager is a Web-based application you can use to easily build network management services that
are accessible by Web browsers, PDAs, phones, and other devices.

This document explains how to use the iManager 2.7 Developer Kit (SDK) to create plug-ins for
iManager. The SDK provides tools to develop and test iManager plug-ins. It includes iManager
libraries, sample plug-ins, documentation, and a servlet container that is configured for testing
iManager 2.7 plug-ins on your workstation. This SDK is designed to provide a standalone iManager
plug-in development environment.

This guide contains the following sections:

“Getting Started” on page 11
“Concepts” on page 17
“Creating Tasks” on page 23
“Creating Property Books and Pages” on page 49
“Using the Plug-In Studio” on page 53
“Using the iManager Widgets” on page 61
“Creating a Plug-In” on page 81
“Installing iManager with Your Application” on page 99
“Logging Debug Messages” on page 103
“Customizing iManager for Schema Extensions” on page 105
“Creating an iPrint Gateway Plug-In” on page 109
“Reference” on page 113

Audience

This guide is intended for Java developers interested in creating plug-ins for iManager 2.7 and later.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comment feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see the iManager NDK page (http://developer.novell.com/
ndk/imgrsdk.htm).

Additional Documentation

For the developer support postings for the iManager 2.7 SDK, see the related Developer Support
Forum (http://developer.novell.com/ndk/devforums.htm).
About This Guide 9

http://developer.novell.com/ndk/imgrsdk.htm
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm

10 NDK: i

novdocx (en) 11 July 2008
For the most recent version of this guide, see the iManager Developer Kit (http://
developer.novell.com/ndk/doc/imgrsdk/imgr_enu/data/bktitle.html).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.
Manager 2.7 Developer Kit

http://developer.novell.com/ndk/doc/imgrsdk/imgr_enu/data/bktitle.html

1
novdocx (en) 11 July 2008
1Getting Started

This section covers the following topics to help you get started with the iManager 2.7 Developer Kit
(SDK):

Section 1.1, “Requirements,” on page 11
Section 1.2, “Installing the SDK,” on page 11
Section 1.3, “Using the iManager SDK,” on page 12
Section 1.4, “Building the Sample Plug-Ins,” on page 15

1.1 Requirements
To use this SDK, you must have the following installed on your workstation:

Sun* Microsystems Java* SE Development Kit (JDK*) version 1.5.0, update 11, or later (http:/
/java.sun.com/javase/downloads/index_jdk5.jsp)
Microsoft* Internet Explorer 6 SP1 or later, 7.0
Firefox* 1.5.x, 2.x, or 3.x
Novell® JClient
The SDK includes the JClient runtime library for Windows*.
Novell International Cryptographic Infrastructure (NICI) version 2.7.3
The SDK includes the NICI installation files for Windows and Linux*.

You should have access to a server running the following:

Novell eDirectoryTM

You should have at least a basic understanding of the following technologies:

Java
XML
Java Server Pages (JSPs)
HTML

1.2 Installing the SDK
The SDK is part of the Novell Developer Kit (NDK), and you can download it from the iManager
SDK Web site (https://twiki.innerweb.novell.com/bin/view/IDApps/
IManager27IDE#Setting_up_the_iManager_SDK_envi). The SDK consists of binaries, sample
code, and documentation components, which you can download in a single ZIP-compressed archive
file or as separate ZIP files. You can also view the documentation on the NDK site.
Getting Started 11

http://java.sun.com/javase/downloads/index_jdk5.jsp
https://twiki.innerweb.novell.com/bin/view/IDApps/IManager27IDE#Setting_up_the_iManager_SDK_envi
https://twiki.innerweb.novell.com/bin/view/IDApps/IManager27IDE#Setting_up_the_iManager_SDK_envi

12 NDK: i

novdocx (en) 11 July 2008
To install an SDK component, use an unzip utility to decompress the contents of the ZIP file to a
directory of your choice. The proper organization of the SDK files on your hard drive is essential for
the SDK to work properly; therefore, when you unzip the files, make sure that you select the options
that will append the path of each file, as stored in the archive, to the output directory. On Linux,
make sure that you also preserve permissions.

The directory where you install the SDK files is referred to as SDK_HOME in this documentation.

1.3 Using the iManager SDK
To test and debug your plug-ins, you need access to a server running iManager. The SDK provides a
Tomcat* servlet container and locally executed version of iManager, known as iManager
Workstation, configured at sdk_home/tomcat/webapps/nps.

The following sections discuss how to use the SDK:

Section 1.3.1, “Prerequisites,” on page 12
Section 1.3.2, “Starting iManager,” on page 13
Section 1.3.3, “Setting Up Role-Based Services,” on page 14

1.3.1 Prerequisites
There are some tasks you need to complete before launching the iManager SDK on a workstation
that will run the developer version of iManager. Although the tasks are the same, they are performed
differently depending on the operating system you are using:

“Linux” on page 12
“Windows” on page 13

Linux

Do the following to start iManager on Linux:

Set the JAVA_HOME Environment Variable: Before starting iManager, make sure that a
JAVA_HOME environment variable is set to the installation directory of the JDK. Use the echo
command to display the value of JAVA_HOME:

echo $JAVA_HOME

If you need to set JAVA_HOME, use the export command to specify the location of the JDK on your
system. For example:

export JAVA_HOME=/usr/java/jdk1.5.0

Set Up NICI: You must install NICI before you can run iManager. Use the rpm command to
determine whether NICI is installed:

rpm -q nici

If NICI is installed, the rpm command displays the package version. If it is not installed, rpm
displays the message package nici not installed.

To install NICI on Linux, use the rpm command as the root user:
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
rpm -Uvh SDK_HOME/NICI/nici.i386.rpm

Windows

Do the following to start iManager on Windows:

Set the JAVA_HOME Environment Variable: Before starting iManager, make sure that a
JAVA_HOME environment variable is set to the installation directory of the JDK. Check the value of
JAVA_HOME in Control Panel > System > Envrionment Variables. If necessary, set JAVA_HOME to
the location of the JDK on your system. For example:

JAVA_HOME=C:\Program Files\Java\jdk1.5.0_11

Set Up NICI: You must install NICI before you can run iManager. If you do not have NICI
installed, the NICI installation file is launched automatically the first time you start iManager.

1.3.2 Starting iManager
To start iManager Workstation, use the script file located in SDK_HOME\imgrsdk:

Linux: ./startSDK.sh

Windows: startSDK.bat

This loads the Tomcat servlet container and launches iManager Workstation.

The first thing you see is a login page where you enter a user name, password, and tree. In the tree
field, enter the name of the tree or the IP address of a server in the tree that you want to manage.

NOTE: If you don’t specify context as part of the username (for example, admin.waltham.novell),
iManager performs a contextless lookup to locate the specified user.

Figure 1-1 The iManager Login page.
Getting Started 13

14 NDK: i

novdocx (en) 11 July 2008
After you log in, you see the iManager main page. The pane at the top of the page is the banner area.
The pane on the lower left side of the main page is the navigation area. It contains a list of all of the
roles and tasks available to you. The pane on the lower right side of the page is the content area. It
contains information and instructions, and, when a task is selected, it contains the user interface for
the task.

Figure 1-2 The iManager main page.

For information about navigating the iManager interface, see the iManager 2.7 Administration
Guide (http://www.novell.com/documentation/imanager27/imanager_admin_27/data/
ahvlqb4.html).

NOTE: Closing iManager automatically unloads Tomcat as part of the shutdown process. No
further action is necessary.

1.3.3 Setting Up Role-Based Services
Before you can use a task that requires Role-Based Services (RBS), such as the Plug-In Studio (see
“Using the Plug-In Studio” on page 53), you must configure RBS. For more information about RBS,
see Section 2.3, “Role-Based Services,” on page 20.

You can develop and test plug-ins without setting up RBS by using the Unrestricted Access
connection mode. However, this lets users view all roles and tasks even if they do not have rights to
use them.

You must set up RBS if you want to use the Plug-In Studio. For more information about connection
modes, see Section 2.5, “Connection Modes,” on page 22.
Manager 2.7 Developer Kit

http://www.novell.com/documentation/imanager27/imanager_admin_27/data/ahvlqb4.html
http://www.novell.com/documentation/imanager27/imanager_admin_27/data/ahvlqb4.html

novdocx (en) 11 July 2008
To configure RBS:

1 Create a new Collection.
1a From the Configure view, select Role-Based Services > RBS Configuration to open the

RBS Configuration page in the Content frame.
1b In the RBS Configuration page, select New > Collection.
1c In the Create Collection page, specify a name and a container for the new collection, then

click OK.
2 Install RBS modules into the new collection.

Each RBS module contains roles and tasks that you can assign to users. The RBS
Configuration page lists the number of modules available for the collection you just created.
2a In the Not-Installed column, select the number next to the collection you just created.
2b In the Collection page, select iManager Base Content and any other modules you want to

install, then click Install.

WARNING: Only select modules with versions 2.7.0 or later. Older modules might
install but they will not work correctly with the SDK.

2c When the module installation completes, click OK.
3 Assign users to roles.

Before users can perform tasks, they must be assigned to the appropriate role. Each role object
has a list of members to which you can assign objects in order to grant users access to the tasks
associated with the role.
3a In the RBS Configuration page, select the collection you created in Step 1.
3b In the Collection page, select a role to which you want to add users, then click Actions >

Member Associations.
3c In the Name field, specify the objects that you want to assign to the role.

Click the Browse button search for the objects you want to add to the member list.
Supported objects include users, groups, organizations, organizational units, and domains.

3d In the Scope field, specify the directory container in which the specified objects can
perform the tasks associated with the role. Click the Browse button to search for the
container you want to specify as the member scope.

3e Click Add to add the designated objects to the member list.
3f Click OK to save your changes, then click OK to return to the Collection page.

After adding members to a role, you should be able to log in as a role member and see the role and
its associated tasks in the iManager navigation frame.

1.4 Building the Sample Plug-Ins
The SDK includes several sample plug-ins and an Apache* Ant build environment for building
them.

NOTE: To build the sample plug-ins on any platform, you must have the JAVA_HOME
environment variable set, as described in “Prerequisites” on page 12.
Getting Started 15

16 NDK: i

novdocx (en) 11 July 2008
To build the sample plug-ins, use the build script appropriate to your platform. The build scripts are
located at SDK_HOME/imgrsdk/samples:

Linux: ./build.sh

Windows: build.bat
Manager 2.7 Developer Kit

2
novdocx (en) 11 July 2008
2Concepts

This section explains the following iManager development concepts:

Section 2.1, “How iManager Works,” on page 17
Section 2.2, “The iManager Directory Structure,” on page 19
Section 2.3, “Role-Based Services,” on page 20
Section 2.4, “Module ID,” on page 21
Section 2.5, “Connection Modes,” on page 22
Section 2.6, “iManager Plug-ins,” on page 22

2.1 How iManager Works
iManager is based on the J2EE servlet specification and runs on the Tomcat* servlet container.
iManager itself is a framework for extensions called plug-ins. Tasks, property books, and property
book pages are types of plug-ins.

2.1.1 Tasks
Plug-ins that perform a distinct management function, such as creating a user or setting a password,
are called tasks. iManager organizes tasks by role in the Navigation frame.

Figure 2-1 Tasks in the iManager UI
Concepts 17

18 NDK: i

novdocx (en) 11 July 2008
In Figure 2-1, the Set Password task is selected, and the task’s UI displays in the Content frame.

Tasks consist of Java class files, Java Server Pages (JSPs), registration files, and resource files that
are placed in the appropriate directories within the document root directory of the Novell Portal
Services (NPS) Web Application servlet. For more information about the iManager directory
structure, see Section 2.2, “The iManager Directory Structure,” on page 19.

2.1.2 Property Books and Pages
A property book displays a group of pages that allow a user to view or modify the properties of an
object or set of objects of the same type. Each page of the book has a tab that the user can click to
switch to that page.

For example, a property book that modifies the attributes of User objects might have a page that
allows an administrator to specify a user's login script. Another page might allow an administrator to
change a user's e-mail address and telephone number.

Property books can be assigned to roles and appear in the list of tasks for a role.

Property book pages are similar to tasks. However, they are for displaying and modifying attributes
in a single view. For more complex, wizard-like UI, you should create a task.

Like tasks, property book pages consist of Java class files, JSPs, registration files, and resource files
that are placed in the appropriate directories within the document root directory of the NPS Web
Application servlet. For more information about the iManager directory structure, see Section 2.2,
“The iManager Directory Structure,” on page 19.

2.1.3 Architecture
The following figure illustrates the iManager architecture.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
Figure 2-2 The iManager 2.7 architecture

iManager tasks can use the Role-Based Services (RBS) technology product, which is part of
iManager. You can use RBS to base the availability of your tasks on the user's role in an
organization. For more information about RBS, see Section 2.3, “Role-Based Services,” on page 20.

For detailed instructions on how to create iManager plug-ins, see Chapter 3, “Creating Tasks,” on
page 23.

2.2 The iManager Directory Structure
iManager files are placed in the appropriate directories within the NPS Web Application servlet
document root directory. NPS follows the Java Servlet 2.3 Specification defined by JSR 53 of the
Java Community Process (http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html). The
Java Servlet Specification prescribes a general directory structure for Web applications implemented
as Java servlets. If you are not familiar with this directory structure, we recommend that you study
Chapter 9 of the Java Servlet 2.3 Specification.

The following table describes the directories in the document root of the NPS Web Application,
which is SDK_HOME\tomcat\webapps\nps. Everything in the nps directory is directly
accessible to client devices, with the exception of the WEB-INF subdirectory and its contents.

Table 2-1 Directories of the NPS Web application

Directory Description

portal\modules Module files, such as JSPs and registration files. Each subdirectory represents
a module and is named with the module ID. For information about module IDs,
see Section 2.4, “Module ID,” on page 21.

Client
Device

Task
(com.novell.emframe.dev.Task)

Task Code (Java)

JSPs

Other Plug-Ins
(Creator, Deletor, etc.)

Plug-In Code (Java)

JSPs

iManager Container Gadget

Servlet Container

Other
Resource

eDirectory

Core
Portal

Classes

Web
Server

Request
-HTTP Get
-HTTP Post
-Multipart/Form

Response

Task
(com.novell.emframe.dev.Task)

Task Code (Java)

JSPs

NPS Web Application
Concepts 19

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

20 NDK: i

novdocx (en) 11 July 2008
2.3 Role-Based Services
Role Based Services (RBS) is a set of extensions to the eDirectory schema. RBS defines several
object classes and attributes that provide a mechanism for administrators to grant a user access to
management tasks based on the user's role in the organization. This gives users access to only those
tasks that the users need to perform. RBS grants only the rights necessary to perform assigned tasks.

Furthermore, users are associated with roles in a specified scope—a container in the tree in which
the user has the requisite permissions to perform a task. A role requires this ternary association of
role, members, and scope to be complete. The following figure illustrates the relationship of roles,
members, and scopes.

portal\modules\module
name\applets

Applets that are used by plug-ins.

portal\modules\module
name\css

Cascading style sheets that are used to create the user interface of plug-ins.

portal\modules\module
name\errors

Error messages that are displayed to the user when iManager encounters an
error.

portal\modules\module
name\help

Plug-in help files. This directory contains a subdirectory named with the ISO
language code for each language for which help files exist.

portal\modules\module
name\images

Images used by plug-ins and the iManager framework. This directory contains
a subdirectory named with the ISO language code for each language for which
image files exist.

portal\modules\module
name\install

Registration files for plug-ins that are registered in eDirectory for role-based
usage.

portal\modules\module
name\javascripts

JavaScript* files that can be inserted into JSPs.

portal\modules\module
name\plugins

Registration files for plug-ins that are for global, non-role-based usage.

portal\modules\module
name\skins

Plug-in UI pages and JSPs. A skin modifies the look and feel of the plug-in.
There is a subdirectory for each skin supported by the plug-in, and each skin
directory contains a subdirectory for each device supported by the plug-in.
Must have, at a minimum, a default skin directory, and each skin must have a
default device directory, each named “default.”

WEB-INF Configuration and application files. The content of this directory is accessible
only by the Web application.

WEB-INF\bin Binary files required by iManager.

WEB-INF\classes Plug-in Java class files that are not in Java archive (JAR) files. The classes in
this directory are automatically added to the classpath.

WEB-INF\lib JAR files required by plug-ins and the iManager framework. If you archive your
plug-in Java class files into a JAR file, you should copy that JAR file to this
directory. The JAR files in this directory are automatically added to the
iManager classpath.

WEB-INF\logs Log files generated by iManager.

Directory Description
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
Figure 2-3 The relationship of roles, members, and scope.

An RBS role object creates an association between users and tasks. An administrator grants a user
access to a task by making the user a member of the role to which the task is assigned.

A user can be assigned to a role in the following ways:

Directly
Through group and dynamic group assignments. If a user is a member of a group or a dynamic
group that is assigned to a role, then the user has access to the role.
Through organizational role assignments. If a user is an occupant of a organizational role that is
assigned a role, then the user has access to the role.
Through container assignment. A user object has access to all of the roles that its parent
container is assigned. This could also include other containers up to the root of the tree.

A user can be associated with a role multiple times, each with a different scope.

For information about RBS directory objects, see Section 12.3, “Role-Based Services Directory
Objects,” on page 113.

2.4 Module ID
Because iManager has an extendable architecture, its directories must be organized in a way that
enables iManager to locate and distinguish the files, tasks, and session keys of plug-ins. This is
accomplished through use of modules. You should group related plug-ins and other files into
modules, and give each module a unique ID. The module ID is used to group module files within the
webapps/nps/portal/modules directory. It is also used as a prefix to task IDs, and as a
prefix to session keys.

Core iManager modules include framework (fw), base, and dev. The fw module contains the core
iManager framework content and should not be modified by plug-in developers. The base module
contains the base eDirectory administration content provided by Novell. The dev module contains
shared “widgets” that can be used by developers to easily add features and common user interface
elements.

Member Scope

Role
Concepts 21

22 NDK: i

novdocx (en) 11 July 2008
2.5 Connection Modes
When you connect to iManager, you are connected in one of the modes described in the following
table:

Table 2-2 iManager connection modes

2.6 iManager Plug-ins
Because of changes to class structure and organization, plug-ins for previous versions of iManager
must be recompiled to work with iManager 2.7. The iManager 2.7 Web site contains all currently
available plug-ins, and is regularly updated with additional plug-ins as they become available.

WARNING: Do not install older plug-ins from a local drive into iManager 2.7. While the plug-in
might install, it will not run and can be very difficult to remove.

Mode Description

Unrestricted All roles and tasks that are in the file system on the Web server are displayed to all
users regardless of whether the user has sufficient rights to use them. This is the
mode used when the iManager SDK is first run.

Assigned Users see only the roles to which they have been assigned. To enable connections in
this mode, you must configure set up RBS, and assign users to roles. For
information, see “Setting Up Role-Based Services” on page 14.

Collection Owner Users see the roles and tasks that are installed into any collections of which they are
the owner. To enable connections in this mode, you must follow the same procedure
as for Assigned mode.
Manager 2.7 Developer Kit

3
novdocx (en) 11 July 2008
3Creating Tasks

This section explains how to create task plug-ins. It covers the following topics:

Section 3.1, “Overview,” on page 23
Section 3.2, “Creating a Task: An Example,” on page 23
Section 3.3, “Tips for Creating Task Java Classes,” on page 30
Section 3.4, “Tips for Creating JSPs,” on page 32
Section 3.5, “Creating Registration Files,” on page 35
Section 3.6, “Specifying Conditions for Task Execution,” on page 37
Section 3.7, “Launching Tasks and Delegating to Tasks,” on page 38
Section 3.8, “Task Chaining,” on page 41
Section 3.9, “Extending the Object Management Tasks,” on page 43
Section 3.10, “Enabling a Task for the Object View,” on page 45
Section 3.11, “Using the AdminNamespace,” on page 48

3.1 Overview
Developing a task plug-in involves the following general steps, which are explained in more detail
later in this section:

1 Create a Java class that extends com.novell.emframe.dev.Task.
2 Override the execute(TaskContext context, Properties resultStrings) method.
3 Compile your Java class.
4 Create JSPs for the UI. If the task has more than one state, you must provide a JSP for each

state unless the JSP is flexible enough to adapt to each state.
5 Create a registration file to register your task with iManager.
6 Copy the Java class files, JSPs, and the registration file to the appropriate directories within the

iManager directory structure.
7 Start iManager and test your task.

3.2 Creating a Task: An Example
To show how to create a task plug-in, we will use the BasicTaskExample sample task that is
included in the iManager 2.7 SDK. The source files for the sample plug-ins are in SDK_HOME/
samples/src. For information on how to build the sample plug-ins, see Section 1.4, “Building
the Sample Plug-Ins,” on page 15.

This section contains information on the following:

Section 3.2.1, “Creating the Java Class,” on page 24
Section 3.2.2, “Creating the UI,” on page 26
Section 3.2.3, “Creating the Registration File,” on page 28
Creating Tasks 23

24 NDK: i

novdocx (en) 11 July 2008
Section 3.2.4, “Localizing the Task,” on page 29
Section 3.2.5, “Deploying the Task,” on page 30

3.2.1 Creating the Java Class
To create a Java class for your task, extend the com.novell.emframe.dev.Task class and override its
execute(TaskContext context, Properties resultStrings) method. The BasicTaskExampleTask.java
sample task shows how to do this:

package com.company.plugins;

import com.novell.emframe.dev.*;
import java.util.Properties;

public class BasicTaskExampleTask extends Task
{
 public boolean execute(TaskContext context, Properties resultStrings)
 {
 setUIPage("sdk/BasicTaskExampleTemplate.jsp");
 return true;
 }
}

The execute method calls the inherited setUIPage(String UIPage) method to tell iManager
which JSP to load in the content area of the iManager UI. You can add conditional statements to
specify different JSPs for different task states. Tasks might have states that correspond with steps in
the flow of the UI. For example, suppose a task has an initial page that asks for the name of an object
that is to be created. After entering a name and clicking a Create button, users proceed to the next
step in which they are presented with either a confirmation message or a message indicating that an
error occurred. A Cancel button causes the task to end without creating the object.

The execute method should

Check the value of the nextState parameter from the HTTP request, if the task has more than
one state.
Perform any processing required for the current state.
Set the next JSP by calling setUIPage(String UIPage).

The following example shows how you might modify the BasicTaskExampleTask.java file so that it
can handle two states:

package com.company.plugins;

import com.novell.emframe.dev.*;
import java.util.Properties;
import javax.servlet.http.HttpServletRequest;

public class BasicTaskExampleTask extends Task
{
 private HttpServletRequest req = null;

 public boolean execute(TaskContext context, Properties resultStrings)
 {
 req = context.getRequest();
 String nextState = req.getParameter(eMFrameConsts.NEXTSTATE);
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
 if (nextState.equalsIgnoreCase(eMFrameConsts.INITIALSTATE))
 {
 setUIPage("sdk/BasicTaskExampleTemplate.jsp");
 }
 else if(nextState.equalsIgnoreCase("state2"))
 {
 req.setAttribute("paramName","paramValue");
 setUIPage("sdk/BasicTaskExampleTemplate2.jsp");
 }
 return true;
 }
}

In the preceding example, the eMFrameConsts.NEXTSTATE parameter is set to the current state of
the task. If the task is in its initial state, the initial JSP is set. If the task is in state 2, the JSP for state
2 is set. Note that the initial JSP must specify the next state of the task. This is typically done using a
hidden input field named nextState:

<INPUT type="hidden" name="nextState" value="state2">

Use the methods of the HttpServletRequest class, such as getAttribute(String name) or
getParameter(String name), to retrieve data from the JSP, as shown in the preceding example. To
send data to the JSP, use HttpServletRequest.setAttribute(String name, Object o).

The preceding examples do little more than display a UI. To add the business logic required by your
task, you might add methods to your class or create other classes. The following example adds a
doSomething method to the BasicTaskExampleTask sample task:

package com.company.plugins;

import com.novell.emframe.dev.*;
import java.util.Properties;
import javax.servlet.http.HttpServletRequest;

public class BasicTaskExampleTask extends Task
{
 private HttpServletRequest req = null;

 public boolean execute(TaskContext context, Properties resultStrings)
 {
 req = context.getRequest();
 String nextState = req.getParameter(eMFrameConsts.NEXTSTATE);

 if (nextState.equalsIgnoreCase(eMFrameConsts.INITIALSTATE))
 {
 setUIPage("sdk/BasicTaskExampleTemplate.jsp");
 }
 else if(nextState.equalsIgnoreCase("state2"))
 {
 String value = doSomething();
 req.setAttribute("paramName",value);
 setUIPage("sdk/BasicTaskExampleTemplate2.jsp");
 }
 return true;
 }

 private String doSomething()
Creating Tasks 25

26 NDK: i

novdocx (en) 11 July 2008
 {
 String result = "paramValue";
 return result;
 }
}

3.2.2 Creating the UI
To create the UI for a task, create one or more JSPs. Use the JSPs to display forms, instructions, and
the results of the processing performed by your task. Avoid putting the business logic of your task in
the JSP. The SDK_HOME/samples/web/portal/modules/sdk/skins/default/
devices/default/BasicTaskExampleTemplate.jsp file shows the JSP for the
BasicTaskExample sample task:

<%@ page pageEncoding="utf-8" contentType="text/html;charset=utf-8" %>

<%@ taglib uri="/WEB-INF/iman.tld" prefix="iman" %>
<%@ taglib uri="/WEB-INF/c.tld" prefix="c" %>
<%@ taglib uri="/WEB-INF/x.tld" prefix="x" %>

<iman:stringtable bundle="DevResources"/>
<iman:stringtable bundle="FwResources"/>

<HTML>
<HEAD>
 <TITLE><iman:string key="ProductName"/></TITLE>
 <LINK rel="stylesheet" href="<c:out value="${ContextPath}" />/portal/modules/
dev/css/hf_style.css">
 <iman:eMFrameScripts/>
</HEAD>

<BODY>
 <iman:taskHeader title="Basic Task Example"/>
 This task simply exposes the minimum code needed to create an iManager task,
specifically: Java code, JSP template, XML install file, and a Properties file for
string management.

 The code for this task can be found in the "BasicTaskExample" folder found in the
iManager SDK.

 <iman:bar/>
 <iman:button key="OK" type="input"/>
 <iman:cancelBtn/>
</BODY>
</HTML>

This example does nothing more than display text. It uses the iman tag library to insert common UI
elements: a header, a horizontal rule, an OK button, and a Cancel button.

The following example shows how you might modify BasicTaskExampleTemplate.jsp to enable the
BasicTaskExample task to handle two states:
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
<%@ page pageEncoding="utf-8" contentType="text/html;charset=utf-8" %>

<%@ taglib uri="/WEB-INF/iman.tld" prefix="iman" %>
<%@ taglib uri="/WEB-INF/c.tld" prefix="c" %>
<%@ taglib uri="/WEB-INF/x.tld" prefix="x" %>

<iman:stringtable bundle="DevResources"/>
<iman:stringtable bundle="FwResources"/>

<HTML>
<HEAD>
 <TITLE><iman:string key="ProductName"/></TITLE>
 <LINK rel="stylesheet" href="<c:out value="${ContextPath}" />/portal/modules/
dev/css/hf_style.css">
 <iman:eMFrameScripts/>
</HEAD>

<BODY>
 <iman:taskHeader title="Basic Task Example - State 1"/>
 This is the UI for the first state of the task.

 <form name="next" method="post" action="webacc?Autoparse=true"
enctype="multipart/form-data">
 <INPUT type="hidden" name="error" value="dev.GenErr">
 <INPUT type="hidden" name="User.context" value="<c:out value="${User.context}"
/>">
 <INPUT type="hidden" name="taskId" value="sdk.BasicTaskExampleTask">
 <INPUT type="hidden" name="nextState" value="state2">
 <iman:bar/>
 <iman:button key="Next" type="input"/>
 <iman:cancelBtn/>
 </form>
</BODY>
</HTML>

This version encloses Next and Cancel buttons in a form element, and it uses hidden input fields to
pass data back to the task Java class. The nextState field identifies the next state of the task. The Java
class uses the value of the nextState parameter to determine which state it is in so it can display the
JSP for the current state.

The following example is the JSP for the second state of the task, which displays the data passed to
it from the Java class:

<%@ page pageEncoding="utf-8" contentType="text/html;charset=utf-8" %>

<%@ taglib uri="/WEB-INF/iman.tld" prefix="iman" %>
<%@ taglib uri="/WEB-INF/c.tld" prefix="c" %>
<%@ taglib uri="/WEB-INF/x.tld" prefix="x" %>

<iman:stringtable bundle="DevResources"/>
<iman:stringtable bundle="FwResources"/>

<HTML>
<HEAD>
 <TITLE><iman:string key="ProductName"/></TITLE>
 <LINK rel="stylesheet" href="<c:out value="${ContextPath}" />/portal/modules/
dev/css/hf_style.css">
 <iman:eMFrameScripts/>
Creating Tasks 27

28 NDK: i

novdocx (en) 11 July 2008
</HEAD>

<BODY>
 <iman:taskHeader title="Basic Task Example - State 2"/>
 This is the UI for the second state of the task.

 Param: <c:out value="${paramName}"/>

 <iman:bar/>
 <iman:button key="OK" type="input"/>
</BODY>
</HTML>

The JSP for the second state uses the c tag library to print the value of the paramName parameter.

3.2.3 Creating the Registration File
Tasks and other plug-ins must be registered with iManager. You register a plug-in by creating an
XML file that describes the plug-in and placing the file in the appropriate directory. A single
registration file can contain descriptions for multiple tasks. The registration file for the sample plug-
ins is SDK_HOME/samples/web/portal/modules/sdk/install/
iManagerCodeExamplesInstall.xml:

<install>
 <module>
 <id>sdk</id>
 <version>2.0.1</version>
 <required-version>2.7.0</required-version>
 <resource-properties-file>com.company.plugins.iManagerCodeExamplesResources</
resource-properties-file>
 <display-name-key>iManagerCodeExamples.InstallDisplayName</display-name-key>
 <description-key>iManagerCodeExamples.Description</description-key>
 </module>
 <role>
 <id>iManager Code Examples</id>
 <version>2.0.0</version>
 <display-name-key>iManagerCodeExamples.RoleDisplayName</display-name-key>
 <resource-properties-file>com.company.plugins.iManagerCodeExamplesResources</
resource-properties-file>
 </role>
 <task>
 <id>sdk.BasicTask</id>
 <version>2.0.0</version>
 <required-version>2.7.0</required-version>
 <class-name>java:com.company.plugins.BasicTaskExampleTask</class-name>
 <display-name-key>BasicTaskExample.TaskDisplayName</display-name-key>
 <description-key>BasicTaskExample.Description</description-key>
 <resource-properties-file>com.company.plugins.iManagerCodeExamplesResources</
resource-properties-file>
 <role-assignment>iManager Code Examples</role-assignment>
 </task>

 . . . (Other tasks removed)

</install>
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
This registration file defines a module, a role, and the sample tasks. The definitions use the <id> tag
to specify the ID of the module, role, and tasks. The task definitions use the ID of the role
(“iManager Code Examples”) as the value of the <role-assignment> tag to specify that the tasks are
assigned to the role:

<role-assignment>iManager Code Examples</role-assignment>

The task ID should use the module ID as a prefix to its ID. For the BasicTaskExample task, the ID
is:

<id>sdk.BasicTask</id>

The module ID is the name of the directory under SDK_HOME/tomcat/webapps/nps/
portal/modules where iManager expects to find files for plug-ins that are part of the module.
For more information about modules, see Section 2.4, “Module ID,” on page 21.

The definition of the BasicTaskExample task includes several other tags besides ID. The <id>,
<version>, <required-version>, and <class-name> tags are required. The <version> tag is used to
specify the task version. The <required-version> tag specifies the version of iManager that the task
requires. The <class-name> tag identifies the Java class for the task.

For more information about registration files, see Section 3.5, “Creating Registration Files,” on
page 35. For more information about the available elements for registration files, see Section 12.2,
“XML Schema for Installation and Registration Files,” on page 113.

3.2.4 Localizing the Task
To localize your task, you need to

Create properties files that contain translated strings.
Specify the name of the default properties file in the task registration file.

The registration file for BasicTaskExample includes a <resource-properties-file> element, which
identifies a properties file that contains strings used by the task:

<resource-properties-file>com.company.plugins.iManagerCodeExamplesResources</
resource-properties-file>

Multiple plug-ins can share a properties file and the strings it contains. The SDK_HOME/
samples/resources/com/company/plugins/
iManagerCodeExamplesResources.properties file contains strings for most of the
SDK sample plug-ins. The strings in the properties file are in the default language for the task,
organized in key-value pairs. For example,
iManagerCodeExamplesResources.properties contains the following entry:

BasicTaskExample.TaskDisplayName=Basic Task Example

You can insert this string in your JSP by referencing the key:

<iman:string key="BasicTaskExample.TaskDisplayName"/>

In fact, iManager uses the <display-name-key> and <description-key> elements of registration files
to retrieve the task display name and description:
Creating Tasks 29

30 NDK: i

novdocx (en) 11 July 2008
<display-name-key>BasicTaskExample.TaskDisplayName</display-name-key>
<description-key>BasicTaskExample.Description</description-key>

To retrieve localized strings, you must create a properties file for each language you want to support,
including English. The keys are not translated, but the values change for each language. For each
translated properties file, name it by appending an underscore and the language code to the name of
the default properties file before the .properties extension. For example, a Spanish version of
iManagerCodeExamplesResources.properties would be named
iManagerCodeExamplesResources_es.properties.

iManager automatically selects the string value from the appropriate properties file, based on the
language settings of the browser.

For a complete example, see the StringLocalizationExample sample task included in the SDK.

3.2.5 Deploying the Task
To deploy a task, you must copy the task files to several locations in the iManager directory
structure, depending on the file type, as explained in the following table:

Table 3-1 iManager task file locations

The sample tasks included in the SDK are deployed automatically when you use the build script
included with the SDK.

3.3 Tips for Creating Task Java Classes
Be careful when using static variables. Static variables are shared across all sessions, so every
logged-in user will use them. If you want to save information that can be shared by multiple tasks,
use the authentication context. Authentication context attributes can be set using the
setAuthAttribute() method, and retrieved using the getAuthAttribute() method on
the task context. The task context can be retrieved from the HttpServletRequest() with the
getContext() method. You can also store information in local variables on the task.

When using authentication context attributes, preappend your key with your module ID to avoid
overwriting keys of other plug-ins. For example:

request.getContext().setAuthAttribute("acme.CurrentCount", "5");

File Type Location

Java class and
properties files

If your class and properties files are in a JAR file, copy the JAR file to webapps/nps/
WEB-INF/lib; otherwise, copy them to webapps/nps/WEB-INF/classes.

JSPs Copy JSPs to webapps/nps/portal/modules/module_id/skins/skin_name/devices/
device_name.

Registration files Copy <install> registration files to webapps/nps/portal/modules/module_id/install.
Copy <plugin> registration files to webapps/nps/portal/modules/module_id/plugins.

Other files If you have other files, such as UI pages, JavaScript, and images, copy them to
subdirectories of webapps/nps/portal/modules/module_id. Follow the pattern used by
the modules that ship with iManager.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
When building a string with variables included, use the message formatting methods instead of
concatenating. There is functionality in Java and JavaScript to do this correctly. In JavaScript use
formatMessage(), found in eMFrameScripts. In Java use eMFrameUtils.formatMessage().

If you want certain tasks to be performed whenever there is a switch-over from one running task to
another, or if you want to do cleanup when your task is released for garbage collection, override the
release() method of the task that is currently running.

When catching Exceptions, use eMFrameUtils.setErrorMessage(Throwable t, TaskContext context)
to report them to the user. Currently, many plug-ins catch an exception, pull out the message, then
return it to the user. This may work in some cases, but generally is not enough information. Instead,
catch the exception, pass it to setErrorMessage(t, context), and return false. GenErr must be the error
template for this to work properly. This shows one of two things: If it is an SPIException it shows
the NDS Error message with a link to get more details about the error. If it is another type of
exception, it shows a general error message with a details link to show the exception class, the
exception message, and a stack trace. This is preferable to showing just the error message because,
for Java exceptions, this often does not make sense without the other information. For pages,
throwing new PageException(t) provides similar functionality.

If your plug-in manages classes and attributes in eDirectory that are not part of the base schema,
provide a graphic and translated names for these classes and attributes. To provide a graphic that
shows up in the object selector, place a GIF file in the SDK_HOME/tomcat/webapps/nps/portal/
modules/moduleID/images/dir directory. The GIF file must have the same name as the object class
with all non-alphanumeric characters converted to underscores. For example, the graphic for the
NDPS:Printer object is SDK_HOME/tomcat/webapps/nps/portal/modules/dev/images/dir/
NDPS_Server_Domain.gif.

To provide translated names, create an XML file in the plug-ins directory that specifies what
resource bundle and what attributes and classes it translates, then put values in that resource bundle
for those translations. The keys for the translated class and attributes should use underscores instead
of non-alphanumeric characters and should begin with ObjectType or Attribute.

Example XML file:

<dir-translator>
<resource-properties-file>FwResources</resource-properties-file>
<object-type-name>AFP Server</object-type-name>
<object-type-name>Alias</object-type-name>
<object-type-name>NLS:Product Container</object-type-name>
 <object-type-name>NLS:License Certificate</object-type-name>
 <object-type-name>NLS:License Server</object-type-name>
 <attribute-name>L</attribute-name>
 <attribute-name>CN</attribute-name>
<attribute-name>Full Name</attribute-name>
<attribute-name>Surname</attribute-name>
</dir-translator>

Example resource file:
Creating Tasks 31

32 NDK: i

novdocx (en) 11 July 2008
ObjectType.AFP_Server=AFP Server
ObjectType.Alias=Alias
ObjectType.NLS_Product_Container=License Product Container
ObjectType.NLS_License_Certificate=License Certificate
ObjectType.NLS_License_Server=License Service Provider
Attribute.L=Location
Attribute.CN=Common name
Attribute.Full_Name=Full name
Attribute.Surname=Surname

If your plug-in manages classes and attributes in eDirectory that are not part of the base schema,
plug in to the iManager creator, deletor, move, and rename tasks. These allow you to plug in to the
general create, delete, move and rename tasks and also allow you to make tasks that just create,
delete, move or rename your specific object or set of objects. If you do not plug in this way, users
cannot create your objects from the general create object task. For delete, rename, and move, it gives
you the ability to do additional operations when the general tasks are used on your type of object.
See Section 3.9, “Extending the Object Management Tasks,” on page 43.

3.3.1 Encoding Data
You need not decode parameters that are fetched from the HttpServletRequest object using the
getParameter method. This is true without regard to the source of the parameter, whether using
<href>, <action>, or <input> tags. The com.novell.emframe.dev.eMFrameUtils class provides
urlEncode, urlDecode, toDisplay, and toScript methods, but we discourage encoding the data in your
Java class unless there is no other way. You should perform all encoding in your JSP, as explained in
Section 3.4.1, “Encoding Data Using Tag Libraries,” on page 33.

3.4 Tips for Creating JSPs
When specifying merge and error UI Pages and other files on the file system, be sure to use the
proper case so that your tasks can run on platforms that are case sensitive.

The MVStringEditor widget should be used in most cases where multiple strings or DNs are
being edited. It works for browser and simple UI Pages. It has modes for showing on a single line
and as a list box. It automatically shows the search when editing a DN list. It allows the user to type
values for adding instead of forcing the user to search in DN mode. For more information, see
Section 6.3, “The MVStringEditor Widget,” on page 75.

To use bold text for part of a message when using GenConf and GenErr, use the
eMFrameUtils.setMessage() method that takes the plainText and boldText
parameters. For the plainText String, use {0} for the position of the bold text.

We suggest that all JSPs include the <iman:eMFrameScripts /> tag from the iManager tag library at
the top to make future changes more compatible. This file contains methods for encoding and
decoding as well as other miscellaneous utility methods. It also includes method for packing an
array of strings into one string to be sent across the wire and then unpacking them. The
com.novell.emframe.dev.eMFrameUtils class contains pack and unpack methods you
can use in your Java code.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
3.4.1 Encoding Data Using Tag Libraries
Typically, a JSP retrieves, displays, sends, and otherwise deals with data, which often contains
characters that are incompatible with the languages and protocols that are part of the iManager
architecture. To avoid errors, you need to make sure that data is correctly converted or escaped. It is
usually best to perform all data manipulation in the JSP and none in your Java code, thereby
separating the display and use of the data from your business logic.

Novell recommends using tag libraries for accessing data in your JSPs. Tags such as c:out and
x:out perform XML encoding automatically. So when you are displaying data in a table or on a
page, the encoding is taken care of for you. For example:

<c:out value="${myData}" />

Encoding Data in URLs

When you insert data into a URL (for example, in an href), it must be properly encoded. To do
this, turn off XML-encoding and use the iman:urlEncode tag to encode it. For example:

<a href="frameservice?myData=<iman:urlEncode><c:out value="${myData}"
escapeXml="false" /></iman:urlEncode>"

Encoding Data in JavaScript

When you insert data into a JavaScript context, it must be properly encoded. To do this, turn off
XML-encoding and use the iman:toScript tag to encode it. This automatically escapes
backslashes, quotes, new lines, etc.

<script>
 var a = "<iman:toScript ><c:out value="${myData}" escapeXml="false"/></
iman:toScript>";
</script>

3.4.2 Encoding Data Using Java Methods
Novell discourages using Java code to encode data in your Java classes or JSPs. However, if
circumstances require you to use Java methods to encode data, it is possible, although significantly
more complex, than using tag libraries.

The com.novell.emframe.dev.eMFrameUtils class contains methods for translating
data. These methods are described in the following table:

Table 3-2 com.novell.emframe.dev.eMFrameUtils class data translation methods

Utility Method Description

toTag(String) Translates strings for inclusion in the tag portions of your HTML code.
Characters that are part of the HTML syntax are translated to entities
like < so that they do not confuse the HTML parser.

urlEncode(String)
urlEncode(String, String)
urlEncode(String, PluginContext)

Translates query parameters on the URL links for transmission
across the network. Spaces are translated to plus signs (+), and other
characters are translated into three-character sequences like “%xx.”
Creating Tasks 33

34 NDK: i

novdocx (en) 11 July 2008
Encoding in JSP or HTML Code

The following table shows HTML attributes and other parts of an JSP/HTML document where
dynamic data is often inserted. For each of these, the table shows the utility method that should be
used to encode the data and example. In the examples, the data is represented by a String-type
variable named var.

The following elements do not need to be encoded:

taskId
image names
UI page names
template names

Table 3-3 JSP/HTML document components that accept dynamic data

toDisplay(String) Translates strings that are displayed to the user. New line characters
are converted to
, multiple spaces are converted to , and
characters that are part of the HTML syntax are translated to entities
like < so that they do not confuse the HTML parser.

toScript(String) Escapes quotes, apostrophes, and backslashes in strings that are
placed in JavaScript code. The toScript routine places a backslash in
front of these characters.

xmlEncode(String) Escapes characters that are part of the XML syntax. These
characters are translated to entities like < so that they will work
properly with XML parsers.

HTML Method Example

action=”” urlEncode() <%= eMFrameUtils.urlEncode(var) %>

alt=”” toTag() <%= eMFrameUtils.toTag(var) %>

href=”” urlEncode() <%= eMFrameUtils.urlEncode(var) %>

onClick=”” toTag() <%= eMFrameUtils.toTag(var) %>

onClick=”javascript:” toTag(toScript()) <%= eMFrameUtils.toTag(eMFrameUtils.toScript(var)) %>

onLoad=”” toTag() <%= eMFrameUtils.toTag(var) %>

onLoad=”javascript:” toTag(toScript)) <%= eMFrameUtils.toTag(eMFrameUtils.toScript(var)) %>

src=”URL” urlEncode() <%= eMFrameUtils.urlEncode(var) %>

src=”directory path” toTag() <%= eMFrameUtils.toTag(var) %>

value=”” tag toTag() <%= eMFrameUtils.toTag(var) %>

window.location=url toScript() <%= eMFrameUtils.urlEncode(var) %>

javascript var=”” toScript() <%= eMFrameUtils.toScript(var) %>

Strings in HTML body toDisplay() <%= eMFrameUtils.toDisplay(var) %>

Utility Method Description
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
Encoding for JavaScript (Non-JSP)

If a string is included in a URL, it must be encoded before it is transmitted to the server. This causes
special characters like commas, colons, quotation marks, plus signs, and spaces, which have special
significance to the URL parser, to be encoded into a three-character string, such as %2B, that has no
significance to the URL parser.

Some browsers cannot handle spaces in parameters, so you must encode parameters that include
only spaces as well as strings that include the other special characters. All <href> and <action> data
is automatically unencoded when it reaches the server. To encode for JavaScript, include
eMFrameScripts in your header and call the urlEncode() method. Use the iman tag library to include
eMFrameScripts:

<%@ taglib uri="/WEB-INF/iman.tld" prefix="iman" %>
<HEAD>
 . . .
 <iman:eMFrameScripts/>
</HEAD>

eMFrameScripts also includes urlDecode, toDisplay(), and toScript() functions.

Do not use the standard JavaScript escape and unescape methods. They do not work when using
UTF-8.

Posting Data Through <input> Fields

Information passed back and forth between the client and web server by way of form <input> fields
(whether hidden or not) do not need to be URL encoded before transmission to the server because
they are not automatically decoded on arrival at the web server. Only action, href, window.location,
and src="url" tags need to be URL encoded.

Using JavaScript in href Tags

Different browsers are not consistent in the way they handle URL encoded strings when they are
passed to JavaScript routines. Internet Explorer completely decodes strings before sending them to
the JavaScript routine. Netscape does nothing with the strings. To avoid using browser-specific
code, do not use the following syntax:

<a href="javascript:<functionName>('<%= Utils.urlEncode(var) %>')" >

Use the following syntax instead:

<a href="#" onClick="javascript:<functionName>('<%=
Utils.toTag(Utils.toScript(var)) %>');return false">

Using href="#" instructs the browser to not go anywhere when the link is accessed. The onClick
processing is then used to decide what to do when the link is clicked.

3.5 Creating Registration Files
Tasks and other plug-ins must be registered with iManager to be available to users. You register a
plug-in by creating an XML file that describes the plug-in and placing the file in the appropriate
directory. iManager provides a task for simplifying the creation of registration files. For more
information see Section 3.5.1, “Using the Create XML Install File Task,” on page 37.
Creating Tasks 35

36 NDK: i

novdocx (en) 11 July 2008
A plug-in can be registered in one of two places: eDirectory or the file system. Plug-ins registered in
eDirectory can take advantage of Role-Based Services to limit access to the plug-in tasks to those
users who are assigned to the appropriate role. These types of plug-ins must be installed using the
iManager Configuration Wizard. The registration files for these plug-ins require the <install> tag as
the root element. They are stored in SDK_HOME/tomcat/webapps/nps/portal/
modules/moduleID/install. These plug-ins usually contain only roles and tasks.

Plug-ins that are registered in the file system are available to anyone. They appear as property book
pages in the ModifyObject task of the Object Management role. These global plug-ins are detected
by iManager when it starts up, and they do not need to be installed. The registration files for file
system plug-ins require the <plugin> tag as the root element. These files are stored in SDK_HOME/
tomcat/webapps/nps/portal/modules/moduleID/plugins.

NOTE: If you have not set up RBS, you access all plug-ins in Unrestricted Access mode, which
allows you to view all roles and tasks even if you do not have sufficient rights to use them. You must
set up RBS if you want to use the Plug-In Studio. For instructions, see “Setting Up Role-Based
Services” on page 14. For more information about connection modes, see Section 2.5, “Connection
Modes,” on page 22.

The following example is part of an install file for a plug-in that is registered in eDirectory:

<install>
 <module>
 <id>base</id>
 <version>1.0</version>
 <required-version>2.7.0</required-version>
 <resource-properties-file>BaseResources</resource-properties-file>
 <description-key>EDirModuleDescription</description-key>
 </module>
 <role>
 <id>eDirectory Administration</id>
 <version>1.0</version>
 <display-name-key>eDirectoryAdministrationDisplayName</display-name-key>
 <resource-properties-file>BaseResources</resource-properties-file>
 </role>
 <task>
 <id>base.CloneObjects</id>
 <version>1.0</version>
 <required-version>2.7.0</required-version>
 <type>snapinTask</type>
 <class-name>com.novell.imanage.base.CloneObjectTask</class-name>
 <merge-template>base.CloneObject</merge-template>
 <display-name-key>CloneObjectTaskDisplayName</display-name-key>
 <description-key>CloneObjectsDescription</description-key>
 <error-template>dev.GenConf</error-template>
 <resource-properties-file>BaseResources</resource-properties-file>
 <role-assignment>eDirectory Administration</role-assignment>
 <rights-assignment>
 <attribute-name>[Entry Rights]</attribute-name>
 <privilege>Browse</privilege>
 <privilege>Write</privilege>
 </rights-assignment>
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
 </task>
.
.
.
</install>

The following is an example of an install file for a global plug-in:

<plugins>
 <task>
 <id>dev.Book</id>
 <class-name>com.novell.emframe.dev.Book</class-name>
 </task>
 <task>
 <id>dev.Page</id>
 <class-name>com.novell.emframe.dev.Page</class-name>
 </task>
 <task>
 <id>dev.Empty</id>
 <class-name>com.novell.emframe.dev.EmptyTask</class-name>
 </task>
</plugins>

For more information about the available elements for registration files, see Section 12.2, “XML
Schema for Installation and Registration Files,” on page 113.

3.5.1 Using the Create XML Install File Task
The iManager Base Content plug-in provides a task that simplifies the creation of plug-in
registration files. It collects information about your plug-in, creates a registration file, and enables
you to install the plug-in in the current tree. It can create new registration files or update existing
files.

To access the Create XML Install File task:

1 Log in to iManager.
2 Click the Developer icon .
3 Click iManager Development > Create XML Install File.
4 Follow the Wizard steps. For help during the task creation process, click Help . When you

have saved the registration file, click Next.
5 If you want to install the plug-in that you have just defined into the current tree, specify the

collection into which the plug-in will be installed, then click Install.
6 Click Finish to complete the wizard.

3.6 Specifying Conditions for Task Execution
The Task class can allow conditional execution of the task using the
shouldRun(HttpServletRequest, String) method inherited from
BaseGadgetInstance.
Creating Tasks 37

38 NDK: i

novdocx (en) 11 July 2008
To check conditions to determine whether the task should run, overwrite the shouldRun method.
Be sure to call super.shouldRun() to let the system check device types. The shouldRun
method is a static method, which means that it can be run before your task is instantiated, only when
the class is loaded. The following is the declaration for shouldRun:

static public void shouldRun(HttpServletRequest req, String sServiceName)
 throws Exception

3.7 Launching Tasks and Delegating to Tasks
An iManager task can launch another task in a separate window or delegate its area to another task.
A task launched in a new window can close when the task returns. A delegate task takes over the
area of the delegating task until the delegate task returns control to the delegating task, the parent,
the fw.HomePage task, or any other task. For most situations, you will use task delegation.

3.7.1 The Launch Service and Launch Actions
The Launch service is a public service you can call to access the launch and delegation features from
a URL. In the URL, you specify one of the following actions:

“Launch” on page 38
“Delegate” on page 38
“ReturnFromLaunch” on page 38
“ReturnFromDelegate” on page 39

Launch

This action causes a task to appear in a new window. It has the following syntax:

nps/servlet/portalservlet?NPService=LaunchService
&NPAction=Launch
&launch=serviceNameToLaunch
&launcher=serviceIdOfLauncher&lifecycle={New | Reuse | Reset | Existing |
Recreate}

Delegate

This action causes another task to take over the area of the task. It has the following syntax:

nps/servlet/portalservlet?NPService=LaunchService
&NPAction=Delegate
&delegate=serviceNameToLaunch
&launcher=serviceIdOfLauncher&lifecycle={New | Reuse | Reset | Existing |
Recreate}

ReturnFromLaunch

This action causes a launched task to return. It has the following syntax:

nps/servlet/portalservlet?NPService=LaunchService
&NPAction=ReturnFromLaunch
&returnID=serviceNameOfLaunchedService
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
ReturnFromDelegate

This action causes a delegate task to restore its area to a designated task. It has the following syntax:

nps/servlet/portalservlet?NPService=LaunchService
&NPAction=ReturnFromDelegate
&returnID=serviceNameOfDelegateService

3.7.2 Life Cycles of Launched and Delegate Tasks
The Launch and Delegate actions require that you specify the life cycle of the launched or delegate
task in the URL using the lifecycle parameter. The lifecycle parameter determines how the task
instance is instantiated and freed. The following table describes the possible values of lifecycle:

Table 3-4 Possible lifecycle values

3.7.3 Accessing Launching and Delegation Features
Programmatically
The com.novell.nps.gadgetManager.GadgetManager class provides the following
methods for programmatic access to the launching and delegation features:

launchGadget

public static GadgetInstance launchGadget(GadgetInstance launcher, PortalSession
session, HttpServletRequest req, String launchServiceName, int delegationType)
throws PortalException

delegateToGadget

public static GadgetInstance delegateToGadget(GadgetInstance delegator,
PortalSession session, HttpServletRequest req, String delegateServiceName, int
delegationType) throws PortalException

Value Description Code Name Code
Value

New Creates a new instance with the name of
the service appended to a four-digit
random number.

LIFECYCLE_TYPE_NEW 1

Reuse Like New, but uses a pool to reuse the
tasks. (Must support Reset to use the
pool.)

LIFECYCLE_TYPE_REUSE 2

Reset Uses the name of the service but calls
Reset on the task. (Must support Reset to
use this.)

LIFECYCLE_TYPE_RESET 3

Existing Uses the existing instance in its current
state.

LIFECYCLE_TYPE_EXISTING 4

Recreate Creates a new instance, and any existing
instance is freed for garbage collection.

LIFECYCLE_TYPE_RECREATE 5
Creating Tasks 39

40 NDK: i

novdocx (en) 11 July 2008
returnToLauncher

public static void returnToLauncher(GadgetInstance secondary, Object results,
PortalSession session)

returnToDelegator

public static void returnToDelegator(GadgetInstance secondary, Object results,
PortalSession session)

3.7.4 Launching and Delegation Methods in GadgetInstance
The com.novell.emframe.dev.Task class implements the following methods of
com.novell.nps.gadgetManager.GadgetInstance that support task launching and delegation by
developers:

Methods Related to Launching or Delegating:

processSecondaryGadgetResults

Methods Related to Being Launched:

returnToPrimary

Life Cycle-Related Methods:

reset
release
getLifecycleType

3.7.5 Task Delegation Example
The JSP responsible for populating the Roles and Tasks frame uses task delegation. The task links
set the target to the Content frame and cause the framework to delegate to the selected task and make
the launcher the fw.HomePage task. The fw.HomePage task is not the task that delegates. Another
task—the one responsible for populating the Roles and Tasks frame—is the delegating task.
However, this task—the Roles and Tasks task—is setting up the delegation between the selected task
and the fw.HomePage task.

For example, the Create User task has the following anchor tag:

<a target="Content"
href="frameservice?NPService=fw.LaunchService&NPAction=Delegate&delegate=base.Crea
teUser&launcher=fw.HomePage&lifecycle=Recreate">CreateUser

Notice that this URL does not refer to the Roles and Tasks task. This is perfectly legal. Any task can
launch any other task and designate any other task as the launcher.

Let's examine the elements of the URL specified in the anchor tag more closely:

NPService=fw.LaunchService

To launch or delegate, everything must go through fw.LaunchService. (NPService= is similar to
taskId=, as used in previous versions of iManager.)
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
NPAction=Delegate

The value of NPAction can be either Delegate or Launch.

delegate=base.CreateUser

This parameter specifies the task you want to run. If NPAction=Launch, then you would use
launch=base.CreateUser instead to specify the task to run in the new window.

launcher=fw.HomePage

With either NPAction=Delegate or NPAction=Launch, this parameter specifies which task is the
parent task. When the delegate or launched task returns, control switches to the parent.

lifecycle=Recreate

The lifecycle parameter specifies how to create or find an existing instance of the task. For
launching, it is usually best to use Recreate. The possible values are listed in Section 3.7.2, “Life
Cycles of Launched and Delegate Tasks,” on page 39.

3.7.6 Closing the Window of a Launched Task
If you want your task started in a new window, and you want the window closed when the task
returns, make fw.LaunchService the launcher. fw.LaunchService has code that closes the window if
it is the parent. For example:

<a target="_blank"
href="frameservice?NPService=fw.LaunchService&NPAction=Launch&launch=Task1&launche
r=fw.LaunchService&lifecycle=Recreate">Task2

If you do not make fw.LaunchService the launcher, the launching task is responsible for closing the
window. This might be desirable if the launching task needs to get results back from the launched
task before closing the window itself or delegating to some other task.

3.7.7 More Examples
For another example of task delegation and launching, see the
SDK_HOME\tomcat\webapps\nps\portal\modules\debug\skins\default\dev
ices\default\TaskLaunchingDemo.jsp file.

3.8 Task Chaining
You can create a task that automatically executes upon completion of another task—a process called
task chaining. Task chaining can help you avoid duplicating work when you have a task that already
accomplishes part of what you need your task to do. You can chain a task that does the remaining
work to an existing task. For example, suppose you need a task that creates a user and assigns the
user to an organizational unit. iManager includes the Create User task for creating users. You can
create a task that assigns a user to an organizational unit and chain it to the Creat User task.

To chain tasks you need to

Add code to the initial task to pass objects to the chained task.
Creating Tasks 41

42 NDK: i

novdocx (en) 11 July 2008
Add code to the chained task to get objects from the initial task.
Include an entry for the chained task in a registration file using the <chained-task> element.

3.8.1 Setting Objects in the Initial Task
To pass objects from the initial task, you need to call
com.novell.nps.gadgetManager.JobData.put(Object key, Object value) or
com.novell.nps.gadgetManager.JobData.setObjectNames(String[] names) in the first task in the
chain. For example:

import com.novell.nps.gadgetManager.JobData;

JobData data = JobData.getJobData(this);
if (null != data)
{
 data.put(ANYKey, anyValue);
}

The Create User task provided by iManager is already enabled for serving as the initial task in a task
chain. The name of the User object created is set using the following code:

JobData data = JobData.getJobData(this);
if (null != data)
{
 data.setObjectNames(new String[]{targetOE.getFullName()});
}

3.8.2 Getting Objects in the Chained Task
To get an object reference from the initial task, call
com.novell.nps.gadgetManager.JobData.getJobData(GadgetInstance gadget):

JobData data = JobData.getJobData(this);
if (null != data)
{
 String [] objNames = data.getObjectNames();
}

3.8.3 Defining the Chained Task in a Registration File
Use the <chained-task> element to define the chained task in a registration file:

<plugin>
 <chained-task>
 <id>moduleId.ChainedTaskId</id>
 <chaining-initial-task-id>base.CreateUser</chaining-initial-task-id>
 <order>300</order>
 ... (Everything else your task needs, just like a normal task,
 <class-name>, <display-name>, etc.)
 </chained-task>
</plugin>
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
The <chained-task> element is identical to the <task> element, except that it allows for an additional
child element, <chaining-initial-task-id>, which is the element you use to specify the task that the
chained task will follow. The <order> element specifies the order of appearance of tasks in a role.

3.9 Extending the Object Management Tasks
The iManager Base Content module provides a role called eDirectory Administration. If you are
assigned to the role, you have access to tasks that allow you to create, delete, move, and rename
eDirectory objects. These tasks are generic: they work on almost any type of object and they operate
on each object in the same way. However, you can extend these tasks to customize the management
action for certain types of objects. For example, you could create a task that deletes groups only,
keeps a log of deletions, and sends a notice when the task is used to delete a group. You can also
disallow deletion of certain types of objects.

The object management tasks that you can extend are:

Create Object (com.novell.emframe.dev.CreateObjectTask)
Delete Object (com.novell.emframe.dev.Deletor)
Move Object (com.novell.emframe.dev.Move)
Rename Object (com.novell.emframe.dev.Rename)

3.9.1 Registering an Object Type for the Create Object Task
The Create Object task only creates objects of types that are registered with iManager for the creator
task. This is different from the behavior of the Delete, Move, and Rename tasks, which operate on
all objects unless you specify otherwise (see Section 3.9.2, “Extending the Delete, Move, and
Rename Tasks,” on page 44).

iManager provides a generic creator task, com.novell.emframe.fw.GenericCreator. The generic
creator task shows the user the default fields for the mandatory attributes of the object type that the
user has chosen to create. If you need to enable the create object task for a class that is not registered,
and all you need to do is collect information for the mandatory attributes, you can enable your class
by simply adding an <object-creator> section to the SDK_HOME/tomcat/webapps/nps/
portal/fw/plugins/creator.xml file using com.novell.emframe.fw.GenericCreator as
the value of the <class-name> element, as shown in the following example:

<object-creator>
 <id>dbm.CreateServer</id>
 <version>1.0</version>
 <required-version>2.7</required-version>
 <class-name>com.novell.emframe.fw.GenericCreator</class-name>
 <object-type-name>Database Server</object-type-name>
</object-creator>

If the generic creator doesn't work for you, create a task that creates objects the way you need it to
work then specify the class as the value of the <class-name> element in SDK_HOME/tomcat/
webapps/nps/portal/fw/plugins/creator.xml. This causes the creator to launch
your task instead of the generic creator. For example:
Creating Tasks 43

44 NDK: i

novdocx (en) 11 July 2008
<object-creator>
 <id>dbm.CreateServer</id>
 <version>1.0</version>
 <required-version>2.7.0</required-version>
 <class-name>com.company.imanager.CreateServer</class-name>
 <object-type-name>Database Server</object-type-name>
</object-creator>

3.9.2 Extending the Delete, Move, and Rename Tasks
1 Create a Java class that extends the class of the task you want to use.

For example, if you want to use the Delete Object task, your class must extend
com.novell.emframe.dev.Deletor.

2 In your class, implement the doDelete(ObjectEntry, TaskContext), the doRename(ObjectEntry,
String, TaskContext), or the doMove(ObjectEntry, ObjectEntry, TaskContext) method to
perform the desired action. In the appropriate method, either complete the operation and return
or throw a PluginException constructed with the header and body of the message to display to
the user.

NOTE: The doXXX() method names may be overloaded, so make sure that you pass in the
correct set of arguments in order to get the result you are expecting.

3 Register your plug-in with iManager by adding an <object-deletor>, <object-move>, or
<object-rename> section to the XML file in SDK_HOME/tomcat/webapps/nps/
portal/modules/fw/plugins that corresponds to the task to which you are plugging in.
Use the <object-type-name> element to designate object types that your task works with, and
use the <class-name> element to specify the class name of your Java class. For example, the
following <object-deletor> section registers a deletor plug-in when added to deletor.xml:

<object-deletor>
 <id>dbm.DeleteServer</id>
 <version>1.0</version>
 <required-version>2.7.0</required-version>
 <object-type-name>Database Server</object-type-name>
 <class-name>com.company.imanager.DeleteServer</class-name>
</object-deletor>

The following XML registers a move plug-in when added to move.xml:

<object-move>
 <id>dbm.MoveServer</id>
 <version>1.0</version>
 <required-version>2.7.0</required-version>
 <object-type-name>Move Server</object-type-name>
 <class-name>com.company.imanager.MoveServer</class-name>
</object-move>

4 Create a registration file for the plug-in. Specify the base task class (for example,
DeleteObjectTask) and the object type you are working with.

5 To veto performance of the action on an object type, throw an exception in the doXXX() method
with the message to be displayed to the user when the user tries to act on that object type.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
3.9.3 Disallowing Operation of an Object Management Task on
an Object Type
You can extend the Create, Delete, Move, or Rename tasks to disallow, or “veto,” the operation of an
object management task on objects of a particular type. However, iManager provides classes that
perform a basic veto on the Create, Delete, Move, and Rename tasks. You can register an object type
using one of these veto classes to disallow operation of the task on that object type. For example, the
following section in deletor.xml disallow deletion of the Database Server type:

<object-deletor>
 <id>dbm.DeleteServer</id>
 <version>1.0</version>
 <required-version>2.7.0</required-version>
 <object-type-name>Database Server</object-type-name>
 <class-name>com.novell.emframe.dev.VetoDeletor</class-name>
</object-deletor>

The veto classes are as follows:

com.novell.emframe.dev.VetoCreatorTask
com.novell.emframe.dev.VetoDeletor
com.novell.emframe.dev.VetoMove
com.novell.emframe.dev.VetoRename

If the veto plug-ins provided with iManager do not suit your needs, you can create your own. For
example, you might want to create a plug-in that sends a notice to an administrator when a user
attempts to delete objects of a certain type.

To veto the creator task, create a custom task that extends Task and register it as explained in
Section 3.9.1, “Registering an Object Type for the Create Object Task,” on page 43. The task should
implement the execute method and return false after displaying an error message.

To veto the deletor, move, or rename tasks, extend the task for the action you want to veto (Delete,
Move, or Rename) and register the task, as explained in Section 3.9.2, “Extending the Delete, Move,
and Rename Tasks,” on page 44. In the doXXX() method, throw a PluginException with the message
to be displayed to the user when the user tries to act on the object type for which your class is
registered.

3.10 Enabling a Task for the Object View
The Object view provides tools so users can manage by first selecting one or more objects, then
selecting the task to perform. When you select objects in the Object view, iManager provides a way
to view the list of available tasks for that object.To do this, tasks must be able to accept object names
programmatically, rather than through the UI; inform the iManager framework on which object
types it can work; and specify whether they can accept more than one object at a time.

To configure your tasks to work properly with the Object view requires the following:

Section 3.10.1, “Register a Task to Work with Specific Object Types,” on page 46
Section 3.10.2, “Retrieve Objects from iManager,” on page 47
Creating Tasks 45

46 NDK: i

novdocx (en) 11 July 2008
3.10.1 Register a Task to Work with Specific Object Types
To specify the object types on which your task can operate, add the names of the object classes to the
task registration file using the <object-type-name> element, as shown in the following example:

<task>
 <id>base.ClearIntruderLockout</id>
 <version>2.0.0.0</version>
 <required-version>2.7.0</required-version>
 <type>snapinTask</type>
 <class-name>java:com.novell.emframe.base.ClearLockoutTask</class-name>
 <merge-template>base.ClrLock</merge-template>
 <error-template>dev.GenFatal</error-template>
 <description>This task clears the intruder lockout flag</description>
 <resource-properties-file>BaseResources</resource-properties-file>
 <display-name-key>ClearLockoutTaskDisplayName</display-name-key>
 <object-type-name>User</object-type-name>
 <rights-assignment>
 <attribute-name>Locked By Intruder</attribute-name>
 <privilege>Supervisor</privilege>
 </rights-assignment>
 <rights-assignment>
 <attribute-name>Login Intruder Attempts</attribute-name>
 <privilege>Supervisor</privilege>
 </rights-assignment>
 <role-assignment>Help Desk Management</role-assignment>
 <gadget-assignable>false</gadget-assignable>
 <frame-type>Full</frame-type>
</task>

In this example, the <object-type-name>User</object-type-name> line enables the
task for User objects. All eDirectory classes and auxiliary classes are valid values. The special types,
[root], [containers], and [leafs] are also valid types. Specifying [root] enables a task to operate on the
root of the tree, specifying [containers] enables a task to operate on all container-type objects, and
specifying [leafs] enables a task to operate on all leaf-type objects.

If your task operates on multiple object types, use multiple <object-type-name> elements in the task
registration file. For example:

<task>
 . . .
 <object-type-name>User</object-type-name>
 <object-type-name>Group</object-type-name>
 . . .
</task>

If your task can modify multiple objects at the same time, specify that the task is enabled for
multiple-object operations (moo) using the <url-param> element. For example:

<task>
 . . .
 <url-param>
 <param-key>mooEnabled</param-key>
 <param-value>true</param-value>
 </url-param>
 . . .
</task>
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
3.10.2 Retrieve Objects from iManager
In the Object view, users can select one or more objects. The selected objects are passed to the task
as a packed string in the targetNames parameter.

Single Object Selection

If your task works on only a single object, use the
com.novell.emframe.dev.eMFrameUtils.getSingleTarget method to get the
name of the selected object from iManager. If the object was not selected in the Object view,
getSingleTarget returns an empty string.

Typically the first screen of a task allows the user to specify the object on which the task should
operate. If the object name is the only information collected on the first screen, you should skip the
first screen, as shown in the following example:

public boolean execute(TaskContext context, Properties resultStrings)
{
 this.context=context;
 this.resultStrings=resultStrings;
 req=context.getHttpServletRequest();

 String nextState=req.getParameter(eMFrameConsts.NEXTSTATE);
 String targetName = eMFrameUtils.getSingleTarget(req);
 if(targetName.length() > 0)
 {
 nextState = "doClearLockout";
 }

 if(nextState.equalsIgnoreCase(eMFrameConsts.INITIALSTATE))
 {
 return showInitialForm();
 }
 else if(nextState.equalsIgnoreCase("doClearLockout"))
 {
 if(targetName.length() == 0)
 {
 targetName = req.getParameter("single");
 }
 if (doClearLockout(targetName))

 {

 setUIPage("dev/GenConf.jsp");

 return true;

 }

 else

 {

 setUIPage("dev/GenFatal.jsp");

 return true;
Creating Tasks 47

48 NDK: i

novdocx (en) 11 July 2008
 }

throw new RuntimeException("Task received invalid nextState:"+nextState);
}

In this example, the value returned by getSingleTarget (targetName) is used to determine whether
the object has already been selected by testing whether the length of the name is greater than zero. If
so, the nextState is set to “doClearLockout,” which clears the lockout for the specified object
without stopping at the first screen, where the object is specified. Because the object was selected in
the Object view, the first screen is unnecessary. If the Object view was not used
(targetName.length() == 0), the task displays the first screen, and the getParameter method returns
the object selected.

If the first screen collects information in addition to the object name, you should display the first
screen, but populate the object name field with the name of the object selected in the Object view.
For a task that operates on a single object at a time, you can accomplish this by calling the
getSingleTarget method within the JSP:

<INPUT type=text name="single"
value="<%= eMFrameUtils.toTag(eMFrameUtils.getSingleTarget(request)) %>" />

Multiple Object Selection

If your task operates on multiple objects, use the TargetObjects class to enumerate the selected
objects, as shown in the following example:

String targetNames = req.getParameter("targetNames");
TargetObjects targetObjects = new TargetObjects(targetNames, context);

if(targetObjects.isMultiple())
{
 ObjectEntryEnumeration enum = targetObjects.getObjectEntryEnumeration();
 // do work with multiple objects
}
else
{
 ObjectEntry oe = targetObjects.getObjectEntry();
 // do work for single object
}

3.11 Using the AdminNamespace
iManager uses the AdminNamespace to access Novell eDirectoryTM objects and objects in other
directories. The AdminNamespace API documentation is included in the Javadoc-generated
iManager Framework API documentation. See Section 12.1, “iManager API Documentation,” on
page 113.
Manager 2.7 Developer Kit

4
novdocx (en) 11 July 2008
4Creating Property Books and
Pages

A property book displays a group of pages that allows a user to view or modify the properties of an
object or set of objects of the same type. Each page of the book has a tab that the user can click to
switch to that page.

This section explains how to create property books and property book pages. It covers the following
topics:

Section 4.1, “Creating a Property Book,” on page 49
Section 4.2, “Creating a Property Book Page,” on page 50

4.1 Creating a Property Book
Property books are types of tasks used to display and modify the attributes of a single object or a set
of objects of the same type. Unlike tasks, where you decide what you want to do then follow a flow
of UI screens until the task is accomplished, with property books you pick an object, view its
attributes, and make changes to the attributes. The attribute data is displayed on pages. You can
navigate among the pages by clicking on the tabs along the top of the property book or selecting the
page in a list, depending on the type of device used to access iManager.

To create a property book, you need to:

Section 4.1.1, “Create the Java Class,” on page 49
Section 4.1.2, “Create the Property Book Pages,” on page 49
Section 4.1.3, “Create the XML Registration File,” on page 50

4.1.1 Create the Java Class
To create a custom property book, create a Java class that extends
com.novell.emframe.dev.PropertyBook.

NOTE: For property books that deal with eDirectory™ objects, use
com.novell.emframe.dev.DirPropertyBook instead of creating your own class.

4.1.2 Create the Property Book Pages
Unlike tasks, property books do not use JSPs directly to create their user interfaces. Instead, property
books display pages that are assigned to the property book. Pages are simple tasks with their own
Java code and JSPs for their user interfaces. Pages can run outside of a book. For instructions on
creating pages, see “Creating a Property Book Page” on page 50.
Creating Property Books and Pages 49

50 NDK: i

novdocx (en) 11 July 2008
4.1.3 Create the XML Registration File
Property books must be defined in an XML registration file. Store the registration file in a
\plugins directory inside your module. When iManager reads the registration file, it uses the
<book> entry to create an rbsBook object in eDirectory.

Property books must be defined in a registration file using the <book> element.

For example:

<book>
 <id>sdk.PropertyPageExample</id>
 <version>2.0.0</version>
 <required-version>2.7.0</required-version>
 <class-name>java:com.novell.emframe.dev.DirPropertyBook</class-name>
 <display-name-key>PropertyPageExample.BookDisplayName</display-name-key>
 <resource-properties-file>
 com.company.plugins.iManagerCodeExamplesResources
 </resource-properties-file>
 <object-type-name>User</object-type-name>
 <role-assignment>iManager Code Examples</role-assignment>
 <page-assignment>sdk.PPExampleTask1</page-assignment>
 <page-assignment>sdk.PPExampleTask2</page-assignment>
</book>

For complete descriptions of supported XML elements for the property book registration file, see
“XML Schema for Installation and Registration Files” on page 113.

4.2 Creating a Property Book Page
Property book pages are helpful for viewing and modifying attributes of an object. Unless you
specify otherwise, pages automatically appear in the Modify Object task when the object selected is
of the type that the page is designed to modify. Pages can also be accessed in a role-based way
similar to tasks.

To create a property book page, you need to:

Section 4.2.1, “Create the Java Class,” on page 50
Section 4.2.2, “Create the JSP,” on page 51
Section 4.2.3, “Create the XML Registration File,” on page 52

Once you have created a property book page, test it by running the Modify Object task (requires the
Ojbect Management plug-in) and select an object of the type your page can modify. Confirm that
your page is available.

4.2.1 Create the Java Class
Create a Java class that handles the business logic of the page. The class should extend
com.novell.emframe.dev.PropertyBookPage. Typically, you don’t need to create a
custom Java class unless your page must deal with nonstandard syntaxes, such as octet strings.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
NOTE: For pages that deal with eDirectory object attributes, use
com.novell.emframe.dev.DirPropertyBookPage instead of creating your own class.
This automatically uses the eDirectroy Access Service (EDAS) for reading and writing attributes to
eDirectory.

To create a custom Java class:

1 Create a class that extends DirPropertyBookPage.
2 Override the show(TaskContext context, java.util.Properties
resultStrings)method to get data from the target.

3 Override cache(PropertyPageContext context) to cache data posted from the
client.

4 If you are not using NSObject in the cache method, override the
commit(PropertyPageContext context) method to properly update back links and
write changes to the data source through an API other than the NDSNamespace.

IMPORTANT: To get a reference to an NSObject (for eDirectory) from any of the above-
mentioned methods (show, cache, commit), call one of the following, then read or write to the
resulting NSObject:

this.m_nsobj

NSObject target = this.getDirPropertyBook().getNSObject()

When the user clicks Apply, it calls the NSObject’s update method.

The iManager SDK provides an example of extending DirPropertyBookPage in
PropertyPageExampleTask1.java and PropertyPageExampleTask2.java, which
are available in the SDK at SDK_HOME/samples/src/com/company/plugins/.

4.2.2 Create the JSP
To create the UI for a page, you create a JSP. The process is nearly the same as creating the UI for a
task, except that for a page, you always create only one JSP. In a property book, related attributes are
usually grouped together on a page. Create a JSP that displays the values of the attributes. Use form
controls for attributes that you want to allow users to modify. Disable the controls when users don't
have rights to modify the attributes.

To create a property book page JSP:

1 Copy the PageTemplate.jsp file and save it as your new JSP (For example,
myPage.jsp.)
PageTemplate.jsp is in
SDK_HOME\tomcat\webapps\nps\portal\modules\dev\dkins\default\de
vices\browser.

2 Insert the necessary HTML controls after the comment <!-- REMIND: CONTENT GOES
HERE -->.

3 In the JavaScript isPageValid method, insert client-side validation that tests the values in
the controls and returns true if the values are valid.
Creating Property Books and Pages 51

52 NDK: i

novdocx (en) 11 July 2008
 For more information about creating JSPs, see “Creating the UI” on page 26 and “Tips for Creating
JSPs” on page 32.

4.2.3 Create the XML Registration File
Property book pages must be defined in an XML registration file. Store the registration file in a
\plugins directory inside your module. For example, Identity Manager stores its property book
registration files in tomcat\webapps\nps\portal\modules\dirxml\plugins.

The registration file uses <page> or <private-page> elements to organize tasks into pages. The
<page> and <private-page> elements have identical structures. Use the <private-page> element to
prevent the page from appearing as part of the Modify Object task; otherwise, use <page>.

For example:

<page>
 <id>core.UserId</id>
 <version>1.0</version>
 <required-version>2.7.0</required-version>
 <class-name>com.novell.emframe.dev.DirPropertyBookPage</class-name>
 <merge-template>ModifyUser_Info</merge-template>
 <help-file>base/TestHelp.html</help-file>

 <default-display-name>Information</default-display-name>
 <display-name-key></display-name-key>
 <resource-properties-file>com.novell.CoreTasksResourceBundle</ resource-
properties-file>

 <chapter>
 <id>core.general</id>
 <display-name-key>GeneralChapterName</display-name-key>
 <resource-properties-file >com.novell.ResourceBundle</resource-properties-
file>
 </chapter>

 <object-type-name>User</object-type-name>
 <description></description>

 <rights-assignment>
 <attribute-name>Given Name</attribute-name>
 <privilege>Supervisor</privilege>
 </rights-assignment>
 <rights-assignment>
 <attribute-name>Surname</attribute-name>
 <privilege>Supervisor</privilege>
 </rights-assignment>
</page>

For complete descriptions of supported XML elements for the property book page registration file,
see “XML Schema for Installation and Registration Files” on page 113.
Manager 2.7 Developer Kit

5
novdocx (en) 11 July 2008
5Using the Plug-In Studio

iManager includes the Plug-In Studio, which allows administrators to easily create iManager plug-
ins from within iManager, usually without writing any code. You can use the Plug-In Studio to
create the following types of eDirectory management plug-ins:

Property book pages
Tasks that create eDirectory objects
Tasks that delete eDirectory objects
Tasks that modify existing eDirectory objects

If you need to create a plug-in with capabilities that the Plug-In Studio cannot create, you can use the
Plug-In Studio to quickly create a basic plug-in that you can customize for your needs. For more
information, see “Customizing Plug-Ins Created with the Plug-In Studio” on page 57.

This section contains the following topics:

Section 5.1, “The Plug-In Studio User Interface,” on page 53
Section 5.2, “Creating a Custom Plug-In,” on page 54
Section 5.3, “Control Parameters,” on page 56
Section 5.4, “What the Plug-In Studio Creates,” on page 57
Section 5.5, “Customizing Plug-Ins Created with the Plug-In Studio,” on page 57

5.1 The Plug-In Studio User Interface
The Plug-In Studio contains the following UI elements:

Menu Bar. From the menu bar, you can preview the plug-in. You can also install the task. This
generates the files necessary and installs the current plug-in into eDirectory. It is then available
for immediate use. Exit closes the studio without saving the current plug-in.

WARNING: Changes you make to an object using the preview of your plug-in are saved to the
directory. If you need to test the plug-in beyond verifying the layout and testing the operation of
the controls, you should use the Plug-In Studio in a non-production environment.

Plug-In Fields. These are the fields you have added you your plug-in. If you are building a
Create task, then the mandatory attributes are already added for you. To the right of each field
are three buttons. The first button allows you to change the parameters of the field. The second
button allows you to change the type of control the field will be displayed with. The final
button allows you to remove the field. Mandatory attributes cannot be removed from Create
tasks.
Plug-In Properties. This section allows you to provide general information about the plug-in,
such as its name.
Using the Plug-In Studio 53

54 NDK: i

novdocx (en) 11 July 2008
Attributes. The attributes section shows all of the fields that you can add to the selected fields
section. Double-click a field to add it using the default control or click once and select a control
from the controls section.
Controls. For the attribute selected in the attributes section, the Plug-in Studio discovers all of
the controls that can be used to manage the attribute based on its syntax and attribute type. In
many cases you have multiple options. For example, the Allow Unlimited Credit attribute is a
Boolean syntax. The Plug-in Studio provides three controls for managing attributes of Boolean
syntax: check box, radio button, and select box.

5.2 Creating a Custom Plug-In
To create a plug-in using the Plug-In Studio:

1 Launch iManager and open the Configure view.
2 Select Role Based Services > Plug-In Studio.
3 In the Installed Custom Plug-ins page, click New.

To create a task or property book page based on an existing one, select the existing task or page,
then click Actions > Copy.

4 In the Choose Object Type and Platform page, provide the required information, then click
Next.
Available Classes: Select the type of object that you want to manage with your plug-in. The
list shows the classes that are available in the tree to which you are currently connected.
Target Device: Select the device type that your plug-in will target. Default is appropriate for
most situations where users access the plug-in with a Web browser. Select Browser to target
Web browsers that require a simplified layout.
Plug-in Type: Select the type of plug-in you want to create. You can select a property book
page or a task that either creates, modifies, or deletes objects of the selected class.
Add Aux Classes: Select to make auxiliary classes available in the Plug-In Studio. When
selected, you can specify the auxiliary classes that you want to use. To select multiple classes,
<Ctrl>-click.

5 In the Plug-in Studio page, complete the custom plug-in configuration.
The Plug-In Studio consists of four main areas:
Attributes: Provides a list of attributes the plug-in can modify. Double-click an attribute to add
it as a field in your plug-in. Each attribute has If you are creating a Create task, the Plug-In
Studio automatically adds fields for mandatory attributes.
Controls: Displays the controls that are available for the selected attribute.
Plug-in Fields: Displays the currently selected attribute controls for your plug-in. Click-and-
drag a control to change its position within the plug-in. Plug-in Studio provides three buttons
with each control so you can customize your plug-in as needed:

 View or Modify Parameters: Lets you configure the control’s properties to specify if it
is read-only, mandatory, etc.

 Change Control: Lets you change an attribute’s control type from the attribute’s list of
available controls.

 Delete: Removes the attribute control from the plug-in.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
Plug-in Properties: Specifies the properties of your custom plug-in, including the following:
Plug-in ID: Specifies a unique name for the plug-in. By default, this is the plug-ins
Display Name as well (in the Advanced Properties dialog box.) You can make the Display
Name of a task or page identical to that of an existing task or page by modifying the XML
registration file to use a display name from a resource bundle. For example: <display-
name-key>MyTaskDisplayName</display-name-key>.
RBS Collection: Specifies the RBS Collection into which the custom plug-in is installed.
Role: Specifies the RBS role with which the custom plug-in is associated.
Advanced: Lets you specify additional plug-in settings, including control labels and multi-
object editing.
Chapter: (Conditional) Specifies the chapter for a property book page.
Object Type: (Conditional) Specifies the types of objects a property book page can
modify.

6 Select Preview to test your plug-in.
When you have added fields and set the properties for your plug-in, you can test it by clicking
Preview. iManager displays a new browser window showing your plug-in as it will appear to
the user. Click Cancel to close the preview window.

WARNING: Changes you make to an object using the preview of your plug-in are saved to the
directory. If you need to test the plug-in beyond verifying the layout and testing the operation of
the controls, you should use the Plug-In Studio in a non-production environment.

7 Select Install to install the plug-in.
If you have specified all required properties and parameters, your custom plug-in is installed
into the directory and saved in /tomcat/webapps/nps/packages/custom.npm.

5.2.1 Adding Drop Down List Values Dynamically
Custom plug-ins, including those developed with Plug-in Studio, support dynamic creation of drop
down list options. The following example shows one way to accomplish this.

In your task, include Java code such as the following:

properties.put("Sch_ClassList.count", size);

for (int i=0; i<size; i++)

 {

 properties.put("Sch_ClassList.name." + i, str[0]);

 }

Then, in plug-in's JSP file, display the dynamic drop-down list as follows:

<td>

<select name="AvailableClasses" size=10 style="WIDTH: 340px" >

 <% c.set("i", "0");
Using the Plug-In Studio 55

56 NDK: i

novdocx (en) 11 July 2008
 while (c.lt(c.var("i"), c.var("Sch_ClassList.count")))

 { %>

 <option value="<%= c.var("Sch_ClassList.name."+c.var("i")) %>

 <% c.inc("i");

 } %>

</select>

</td>

Dynamic drop-down lists are also supported by MVSelectBox. In HTML, the MVSelectBox control
is rendered as a drop-down list using the select tag. Options are specified using the option tag. To
dynamically add options, modify the JSP created by the Plug-In Studio and use JSP scriptlets or tag
library actions to create options at runtime. The following example shows how an MVSelectBox
control designed to modify the employeeType attribute can be modified to add an additional option
if the user has a certain given name:

<SELECT name="_employeeType" style="width:<iman:string key="UI.textboxPixel"/>"
onChange="onMVSelectChange(’employeeType’, this)">

 <OPTION value="Individual Contributor" <x:if select="count($edasXml/edas/
employeeType/value[text()=’Individual Contributor’])">selected</x:if>>Individual
Contributor

 <OPTION value="Manager" <x:if select="count($edasXml/edas/employeeType/
value[text()=’Manager’])">selected</x:if>>Manager

 <x:if select="count($edasXml/edas/Given_Name/value[text()=’Jack’])"> <OPTION
value="CEO" <x:if select="count($edasXml/edas/employeeType/
value[text()=’CEO’])">selected</x:if>>CEO

 </x:if>

</SELECT>

The Plug-In Studio creates JSPs in webapps/nps/portal/modules/custom/skins/
default/devices/default.

5.3 Control Parameters
Most controls allow you to specify parameters to customize the control. Currently, most controls
support the read-only parameter, which is very useful when you want to build a task for displaying
information, without allowing the user to modify it. Choosing to make a field read-only both
disables the user interface and gives the users read access to the attributes (if you are using Role-
Based Services).

The values parameter is useful for limiting the possible values that can be entered. If your company
has three departments (research, marketing, and IS) you can build a plug-in for creating users that
allows user creation only in those containers.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
5.4 What the Plug-In Studio Creates
The Plug-In Studio creates:

A JSP file for the UI

The JSP file contains both HTML and Java tag library calls that are run on the server. This file
is created in SDK_HOME/tomcat/webapps/nps/portal/modules/custom/
skins/default/devices/default. A copy of the file is also added to the Custom.npm
file.

This file can be modified to make custom enhancements that are not possible through the Plug-
In Studio. For example, you could add an image that displays your company's logo. However, if
you later use the Modify Plug-In feature of the Plug-In Studio, you lose any manual
modification you have made to the JSP file.
A registration file
For property pages, an XML file is created and written to the SDK_HOME/tomcat/
webapps/nps/portal/modules/custom/plug-ins/plug-ins.xml file. This
contains information such as the page name and the object class it is used to manage. For tasks,
the registration file is installed into eDirectory, and the information is stored in an RBSTask
object. For both pages and tasks, a copy of the registration file is added to Custom.npm.
An updated Custom.npm file
The Custom.npm file is ZIP-compressed file that contains all of the custom plug-ins created
by the Plug-In Studio. This file is used for two purposes. First, it is used to automatically
synchronize plug-ins with other iManager servers in the same tree. Second, it moves the
custom plug-ins to another tree. For example, you can take this one file from a test environment
to a production environment and simply deploy the NPM and then run the Configure iManager
task. The Deploy and Configure tasks are found in the iManager Configure view.

5.5 Customizing Plug-Ins Created with the Plug-
In Studio
Sometimes you need a plug-in with more functionality than the Plug-In Studio can provide. In this
situation you can use the Plug-In Studio to build most of the user interface needed, then add
additional features by writing custom Java code.

The following code shows how to customize a task:

public class MyCustomTask extends eDirAccessService
{
 protected boolean preRead(TaskContext context, Properties resultStrings)
 {
 // do work here
 return true;
 }

 protected boolean postRead(TaskContext context, Properties resultStrings)
 {
 // do work here
 return true;
 }
Using the Plug-In Studio 57

58 NDK: i

novdocx (en) 11 July 2008
 protected boolean preWrite(TaskContext context, Properties resultStrings)
 {
 // do work here
 return true;
 }

 protected boolean postWrite(TaskContext context, Properties resultStrings)
 {
 // do work here
 return true;
 }
}

To customize a page, use the following example:

public MyCustomPage extends DirPropertyBookPage
{
 public void cache(PropertyPageContext context) throws PageException
 {
 // work here
 save(context, context.getResultStrings());
 // or work here
 }

 public void show(PropertyPageContext context) throws PageException
 {
 show(context, context.getResultStrings());
 }
}

After your Java code is compiled and placed in the classpath (in the classes directory or in the lib
directory in a JAR file), you must update the plug-in to point to your Java class instead of the default
one that the Plug-in Studio assigns. For a task, this is done by modifying the rbsTask object in
eDirectory. Change the entry point attribute to the fully qualified name of your class. For a property
page, edit the plug-in XML file in the custom/plug-ins directory. Change the entry-point element to
the fully qualified class name.

5.5.1 Dynamically Updating Drop-down Lists
It is possible to dynamically fill a drop-down list for plug-ins developed with Plug-in Studio, and
other custom plug-ins. However, it is not possible to do this for base content plug-ins. The following
example shows one way this can be done:

In your task, include Java code such as the following:

properties.put("Sch_ClassList.count", size);

for (int i=0; i<size; i++)

 {

 properties.put("Sch_ClassList.name." + i, str[0]);

 }

Then, in the JSP file you could display the dynamic drop-down list as follows:
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
<td>

<select name="AvailableClasses" size=10 style="WIDTH: 340px" >

 <% c.set("i", "0");

 while (c.lt(c.var("i"), c.var("Sch_ClassList.count")))

 { %>

 <option value="<%= c.var("Sch_ClassList.name."+c.var("i")) %>

 <% c.inc("i");

 } %>

</select>

</td>

The Plug-In Studio creates JSPs in webapps/nps/portal/modules/custom/skins/
default/devices/default.
Using the Plug-In Studio 59

60 NDK: i

novdocx (en) 11 July 2008
Manager 2.7 Developer Kit

6
novdocx (en) 11 July 2008
6Using the iManager Widgets

iManager provides many reusable controls and other UI elements that you can use to create the UI
for your plug-in. The UI elements, called widgets, include buttons, icons, and controls for selecting
objects and modifying attribute values. The code defining these items is found in *_inc.jsp files,
which are stored in subdirectories of the SDK_HOME/tomcat/webapps/nps/portal/
modules/dev/skins/default/devices directory, by device.

In addition, the SDK_HOME/tomcat/webapps/nps/portal/modules/dev/
javascripts directory contains libraries of useful JavaScript functions that you can utilize in
JSPs.

The widgets and JavaScript libraries enable you to quickly create a UI that looks and works like the
iManager base content.

We recommend that you study the iManager samples for ideas about how to use widgets and
JavaScript functions.

This section covers the following topics:

Section 6.1, “The Object Selector Widget,” on page 61
Section 6.2, “The Advanced Selection Widget,” on page 69
Section 6.3, “The MVStringEditor Widget,” on page 75
Section 6.4, “The Date/Time Widget,” on page 79

6.1 The Object Selector Widget
The Object Selector widget lets a user search or browse for an object in eDirectory, select the object,
and return the name of the object to the form field of the task user interface. It supports single or
multiple selections. Selected objects are returned as DN strings which are, by default, placed in the
control specified using the OS.Control variable. However, the task developer can have the result
strings returned to a JavaScript callback specified with the OS.CallBack variable, where they can be
manipulated as desired.

Implement the Object Selector widget using include files and several parameter variables.

The following figure shows the iManager Object Selector in simple browse mode.
Using the iManager Widgets 61

62 NDK: i

novdocx (en) 11 July 2008
Figure 6-1 iManager Object Selector in simple browse mode.

This section describes the following topics:

Section 6.1.1, “Include Files,” on page 62
Section 6.1.2, “Parameter Variables,” on page 63
Section 6.1.3, “Advanced Selection XML Syntax,” on page 65
Section 6.1.4, “Dynamically Enabling and Disabling the Object Selector,” on page 65
Section 6.1.5, “Pre-Processing and Post-Processing Routines (preOS and postOS),” on page 65
Section 6.1.6, “Making the Root Selectable,” on page 66
Section 6.1.7, “Making Public and This Selectable,” on page 66
Section 6.1.8, “Filtering on All Container Types,” on page 66
Section 6.1.9, “Filtering on Containers that Are Partitions,” on page 66
Section 6.1.10, “Object Selector Support in the iManager Tag Library,” on page 66
Section 6.1.11, “A JSP Tag Library Example: Delete User,” on page 68
Section 6.1.12, “Troubleshooting,” on page 68

6.1.1 Include Files
The following table describes the include files used to implement the Object Selector:
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
Table 6-1 Object selector include files

To use these files, include them in your task JSPs using the jsp:include action.

6.1.2 Parameter Variables
Use either OS_inc.jsp, OSBtn_inc.jsp, or OSLink_inc.jsp to insert a control that opens
the Object Selector when clicked. Each of these controls use the following parameters to determine
how the Object Selector operates:

Table 6-2 Object selector parameter variables

File Description

OSScripts_inc.jsp Contains the JavaScript used for implementing the OS widget. With a browser,
these scripts are stored in cached .js script files to minimize data transfer over
the wire.

OSFooter_inc.jsp Contains hidden variables used for implementing the selector functionality. Must
be included after the last </form> tag on the JSP page.

OS_inc.jsp Inserts an image that can be clicked to display the OS widget.

OSBtn_inc.jsp Inserts an HTML button that can be clicked to display the OS widget.

OSLink_inc.jsp Inserts an HTML hypertext link that can be clicked to display the OS widget.

Parameter Description

OS.Control (Required) The name of the field where the selected objects are returned.

OS.CallBack (Required) The name of a JavaScript routine where the returned values
and control name are returned for processing. The callback routine must
have the following parameter list format:
<callbackName>(<controlName>,<resultsArray>). The names of the
selected objects are returned in resultsArray.

OS.AdvancedSelection Whether the Object Selector appears with the advanced search visible.
False displays simple type-only filters. The default is false.

OS.AdvSelCriteria A string representing a comma-separated list of XML representations of
advanced selection filter criteria for ds-classes. (See Section 6.1.3,
“Advanced Selection XML Syntax,” on page 65 for the required syntax of
the XML criteria). If this parameter is present, the OS.AdvancedSelection
parameter is assumed to be true.

OS.AdvSelCriteriaCallback The name of a JavaScript routine that returns a string representing a
comma-separated list of XML representations of advanced selection filter
criteria for ds-classes. (See Section 6.1.3, “Advanced Selection XML
Syntax,” on page 65 for the required syntax of the XML criteria). This
routine must have the following parameter list format:
<callbackName>(<controlName>). If this parameter is present, the
OS.AdvancedSelection parameter is assumed to be true.

OS.AltText The hint or accessibility text displayed when the user moves the mouse
over the Object Selector icon. If not supplied, “Object Selector” is
displayed. Used with OS.inc.
Using the iManager Widgets 63

64 NDK: i

novdocx (en) 11 July 2008
OS.IconName The name of an icon to use for the selector button instead of the standard
icon. Used with OS.inc.

OS.InitialContext The name of a container where the search or browse begins The default is
the container from the last search, or [root].

OS.IsOSAllowed The name of a JavaScript routine that returns a Boolean true if the object
selector is to proceed or false if the object selector operation is to be
prevented. This routine is called before the object selector widget is
displayed and can be used to prevent its launch unless conditions (which
are checked in the routine) are met. For more information, see
“Dynamically Enabling and Disabling the Object Selector” on page 65.

OS.Mode The Object Selector mode. Set to Search to allow the user to search and
find objects in the tree with a search query. Set to Browse to allow the user
to walk the tree and manually select objects. The default is Browse.

OS.MultiSelect Whether the user can select more than one object. The default is false
(single select).

OS.NameFilter A string representing a search filter to be used to limit the number of items
returned to those objects whose name matches the filter requirements. The
* wildcard can be used in the name filter. The default is *.

OS.ResultsPerPage The number of results to show per page. The default depends on the
selection mode and device.

OS.SearchSubContainers Whether to allow the search operation to search for objects starting in the
specified container and all of its subcontainers. False limits the search to
the specified container only. The default is true.

OS.SearchOnStartup Whether to force an initial search operation to begin as soon as the Object
Selector appears, if it appears in search mode. OS.Mode=”search” must
also be set. This automatic search behavior occurs only when the object
selector starts up, never while switching between the search and browse
tabs. False prevents an automatic search, requiring the user to click the
Search button to start the search. The default is false.

OS.ShowSubClasses Whether the search returns objects of types derived from types that match
the type filter in addition to objects that match the base types. False causes
the search to not return objects derived from matching types. The default is
true.

OS.Text The text displayed on the HTML button or HTML link used to bring up the
object selector. Used with OSBtn.inc and OSLink.inc.

OS.TypeFilter A comma-separated list of object types to be returned. Specifying * returns
all object types.

OS.TypeFilterCallback The name of a JavaScript routine that returns a string containing a comma-
separated list of object types to be returned. Specifying * returns all object
types. The callback routine must have the following parameter list format:
<callbackName>(<controlName>)

OS.Windowed Whether the simple Object Selector appears in a separate window. If false,
the Object Selector appears in the same window as the task, which
requires that the task state be saved before the Object Selector runs and
be restored afterwards. This is problematic for complex tasks. Setting this
to true might solve these problems. The default is false.

Parameter Description
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
6.1.3 Advanced Selection XML Syntax
The XML syntax definition of an Advanced Selection criterion is:

<selection-criterion>
 <types>
 <id> ds-type1 </id>
 <id> ds-type2 </id>

 </types>
 <aux-types>
 <id> ds-auxtype1 </id>
 <id> ds-auxtype2 </id>

 </aux-types>
 <group>
 <row>
 <attribute> name </attribute>
 <operation> op </operation>
 <value> string </value>
 <row-op> and/or </row-op>
 </row>
 ...
 <group-op> and/or </group-op>
 </group>
 ...
</selection-criterion>

6.1.4 Dynamically Enabling and Disabling the Object Selector
The user activates the Object Selector by clicking on an icon, link, or button, depending on whether
you have used the OS.inc, OSLink.inc or OSBtn.inc files in your task. However, at times you might
want to disable the Object Selector until certain steps have been performed in the task. This is
accomplished using the IsOSAllowed() function (see OS.IsOSAllowed). You provide a JavaScript
function that determines, at runtime, when the Object Selector is allowed to run. Each time the user
clicks the Object Selector button, this function is called. You provide the logic to determine whether
the Object Selector operation is allowed at that time. If so, you return Boolean true, otherwise false.

6.1.5 Pre-Processing and Post-Processing Routines (preOS
and postOS)
It is often desirable for a task to perform some processing before the Object Selector executes or
after it returns the selected objects to the task. You can do this by implementing JavaScript routines,
preOS(controlName) and postOS(controlName) for your tasks.

If the Object Selector is enabled (see OS.IsOSAllowed), an attempt is made to call a JavaScript
routine called preOS(controlName), if it exists. This enables you to do any processing you need
before the Object Selector runs.

When the Object Selector finishes, the selected results are returned to either the specified control or
callback routine and then the postOS(controlName) function is called, if it exists. At this point, you
can do anything you want to clean up after the Object Selector in your task.
Using the iManager Widgets 65

66 NDK: i

novdocx (en) 11 July 2008
contolName is a string representing the HTML control that is associated with the Object Selector
using the OS.Control parameter.

6.1.6 Making the Root Selectable
It is often necessary to allow the user to select the root of the tree as a place to perform operations
(like create, delete, move, and modify). However, the root of the tree is not an object in DS, so you
cannot search or browse to it directly. If you want your users to be able to select the root of the tree
as a location to perform operations, simply specify [root] as the value of the OS.TypeFilter
parameter.

6.1.7 Making Public and This Selectable
eDirectory has two other pseudo-objects that can be made selectable: This and Public. To make
these selectable, specify [this] or [public] as the value of the OS.TypeFilter parameter.

6.1.8 Filtering on All Container Types
Sometimes you need to allow the user to select any container-type object in the directory, but it is
not always possible to know what all the container types in the directory are at the time you create
the task. The system administrator can extend the directory schema and create new container
objects.

To enable users to select any container object in the directory, specify [containers] as the value of the
OS.TypeFilter parameter. The Object Selector queries the directory to get a list of all containers in
the tree and dynamically populates the type filter with the available container types.

6.1.9 Filtering on Containers that Are Partitions
eDirectory represents partitions as an attribute of a container class and does not currently provide the
ability to find only containers that are partitions. However, to enable users to select only partition
container objects in the directory, specify [partitions] as the value of the OS.TypeFilter parameter.
All container objects are displayed, but only those that are partitions are selectable. If you want all
containers that are not partitions, specify [non-partitions].

6.1.10 Object Selector Support in the iManager Tag Library
iManager 2.7 provides a custom tag library to developers who prefer using tag libraries in their JSP
templates. Use these tags along with, or in place of, the auto-conversion tools the Conduit object
creates during the port from .http files to .jsp files.

IMPORTANT: An iManager Tag Library reference is available in iManager. To view it, open the
iManager Developer view, then select Developer Reference > iMan Tag Library Reference.

The following tags support the Object Selector:

<iman:eMFrameScripts/>

<iman:osScripts/>
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
<iman:os attrib1 . . . attribn/>

<iman:osFooter/>

The <iman:eMFrameScripts/> and <iman:osScripts/> tags define general data and
routines used by most iManager tasks and those required specifically for the Object Selector. They
must be included in the <head> section of the HTML task document.

The <iman:os attrib1 . . . attribn/> tag displays an Object Selector button in the
task. You can provide values for all of the defined Object Selector values through the attributes
listed in the following table:

Table 6-3 Object selector attributes

The <iman:osFooter/> tag creates the form through which all data is posted between the Object
Selector and the task that is using it. It must be placed at the bottom of the HTML before the </
body> tag.

Property Object Name JSP Tag Attribute Name

OS.Control control

OS.Callback callBack

OS.AltText altText

OS.AdvancedSelection advancedSelection

OS.AdvSelCriteria advSelCriteria

OS.AdvSelCriteriaCallback advSelCriteriaCallback

OS.CustomProcessing customProcessing

OS.IconName iconName

OS.InitialContext initialContext

OS.IsOSAllowed isOSAllowed

OS.Mode mode

OS.MultiSelect multiSelect

OS.NameFilter nameFilter

OS.ResultsPerPage resultsPerPage

OS.SearchSubContainers searchSubContainers

OS.SearchOnStartup searchOnStartup

OS.ShowSubClasses showSubClasses

OS.Text text

OS.TypeFilter typeFilter

OS.TypeFilterCallback typeFilterCallback

OS.Windowed windowed
Using the iManager Widgets 67

68 NDK: i

novdocx (en) 11 July 2008
6.1.11 A JSP Tag Library Example: Delete User

<%@ page pageEncoding="utf 8" contentType="text/html;charset=utf 8" %>
<%@ taglib uri="/WEB INF/iman.tld" prefix="iman" %>
<HEAD><TITLE>MyTask</TITLE>
<iman:eMFrameScripts/>
<iman:osScripts/>
<script>
 function capitalize(controlName, results)
 {
 var strResults = "";
 for (i=0; i<results.length(); i++)
 {
 if (i>0) { strResults += "+" }
 strResults += results[i].toUpperCase();
 }
 document.CreateUserForm.elements[controlName].value=strResults;
 }
 function readyToSearch() { return true }
</script>
</HEAD>
<BODY TEXT="#000000" bgcolor="#FFFFFF" onLoad="returnFromOS()">
<FORM name="DeleteUserForm" method=post action="webacc">
 <input type=hidden name="taskId" value="{VAR taskId}">
 <input type=hidden name="merge" value="dev,GenConf">
 <input type=hidden name="error" value="dev.GenErr">
 <input type=hidden name="nextState" value="doDeleteUser">

Delete User

 <NOBR>User name:</NOBR>

 <input type=text name="DeleteUserName" value="" size=35>
 <iman:os control="DeleteUserName"
 callBack="capitalize"
 nameFilter="a*"
 typeFilter="User"
 initialContext="Novell"
 mode="browse"
 multiSelect="true"
 altText="User to delete"
 iconName="dev/add.gif"
 searchSubContainers="false"
 searchOnStartup="true"
 isOSAllowed="readyToSearch" />

<input type=image name="Delete" alt="Delete" src="<path>/delete.gif"
border=0
</form>
<iman:osFooter/>
</BODY>

6.1.12 Troubleshooting
I select an object, but it is not returned to the edit box. What is wrong?

Make sure you have included the OSFooter_inc.jsp as the last line of the template before
the </body> tag. You can put it anywhere in the template where a form can be defined, but
it is easy to simply put it before the </body> tag. Never put it inside of <form></form>
tags.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
Make sure you entered the name of the OS.Control correctly. The value of this attribute
must match the corresponding HTML control name exactly. This check is case sensitive.
If you are using a callback routine, debug to see if the callback is being called and if the
two required parameters, controlName and resultArray, are being returned correctly.

I get a developer alert when running my task. Why?
You are probably using the obsolete OSHeader_inc.jsp file in your template. Remove it and use
the OSFooter_inc.jsp file as the last line in your template before the </body> tag.
My password and file <input> fields are not being saved in single-window mode. Why?
These fields are intentionally not saved for security reasons.
Returning a selected object on Simple pages causes unexpected errors or processing. Why?
The Simple implementation of the Object Selector assumes it can restore the state of your task
by reissuing the URL that brought up the page in the first place. This is almost always a safe
assumption. However, if the URL causes some preprocessing to occur that cannot safely be
repeated when the Object Selector is returning to your task, there is a problem.
There is nothing the Object Selector can do to prevent this problem. You must know that this
problem can occur and prevent it. When a result is being returned from Object Selector, the
following parameter is added to the original URL: OS.ReturningToAnchor="true". Your code
must detect this condition and prevent preprocessing that might cause an error to occur.

6.2 The Advanced Selection Widget
The Advanced Selection (AS) widget lets a user specify a set of advanced selection criteria for a
specified object type (class.) The result (output) is a string representing the XML description of the
criteria the user has entered. This criteria can be used by a namespace's getChildren process call
to specify which objects in the directory to return to the developer's task.

The input to the Advanced Selection widget is a string representing with the name of a directory
type (class). Optionally, a string representing a previous XML selection criteria can be supplied and
the widget will be initialized accordingly. (Useful when editing selection criteria).

The widget displays attributes for the specified directory type (class). When the user selects an
attribute, operators appropriate for the selected attribute are presented in a pull-down list. Further, a
list of possible criteria values might be displayed. The user selects an attribute, chooses a
comparison operation and supplies their desired criterion (or possibly selects the criterion from a list
of allowed values). These criteria can be grouped together into a logic group and multiple logic
groups can be defined.

You can supply a Java method to populate the widget's attribute list, operators/attribute, and possible
values/attribute. If you don't supply a method, iManager assumes that eDirectory is being accessed
and it uses a default method (NDSTypeInfoCallback.java) to retrieve this information.

This design implies that this widget is completely namespace independent. It can be used with
eDirectory, any LDAP namespace, or any future namespace.

This section includes the following topics:

Section 6.2.1, “How to Call the AS Widget,” on page 70
Section 6.2.2, “Include Files,” on page 70
Section 6.2.3, “Parameter Variables,” on page 70
Using the iManager Widgets 69

70 NDK: i

novdocx (en) 11 July 2008
Section 6.2.4, “A JSP Example: Delete Users,” on page 71
Section 6.2.5, “Setting the Options at Runtime Using JavaScript,” on page 73
Section 6.2.6, “Implementing AdvSelTypeInfoCallback,” on page 74
Section 6.2.7, “The Resulting XML Selection Criteria,” on page 75

6.2.1 How to Call the AS Widget
The Advanced Selection widget is statically implemented using include files and several parameter
variables. Static implementation means that the parameters cannot be changed at runtime because
they are merged into the HTML. However, there is still significant flexibility since you can statically
specify callback routines that execute at runtime to retrieve required input parameters and process
the XML output.

6.2.2 Include Files
The following table describes the include files used to implement the AS widget:

Table 6-4 AS widget include files

To use these files, include them in your task JSPs using the jsp:include action.

6.2.3 Parameter Variables
Use either AS.jsp, ASBtn.jsp, or ASLink.jsp to insert a control that displays the Advanced
Selection feature when clicked. Each of these controls use the following parameters to determine
how the feature operates:

Table 6-5 Advanced Selection control parameters

File Description

ASScripts_inc.jsp Contains the JavaScript used for implementing the AS widget. With a browser,
these scripts are stored in cached .js script files to minimize data transfer over
the wire.

AS_inc.jsp Inserts an image that can be clicked to display the AS widget.

ASBtn_inc.jsp Inserts an HTML button that can be clicked to display the AS widget.

ASLink_inc.jsp Inserts an HTML hypertext link that can be clicked to display the AS widget.

Parameter Description

AS.Types (Required) The name of the directory type (class) that advanced selection
criteria will be entered for. Specify either AS.Types or AS.TypesCallBack.

AS.TypesCallBack (Required) The name of a JavaScript routine that returns the name of the
directory type (class) that advanced selection will be entered for. This
routines has no parameters. Specify either AS.Types or AS.TypesCallBack.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
6.2.4 A JSP Example: Delete Users

<%@ page pageEncoding="utf-8" contentType="text/html;charset=utf-8" %>
<% <%@ taglib uri="/WEB-INF/iman.tld" prefix="iman" %>

<HEAD><TITLE>Delete Users</TITLE>
<iman:eMFrameScripts/>
<iman:asScripts/>

AS.Control (Required) The name of the HTML component where the selection criteria is
returned. Specify either AS.Control or AS.ControlCallBack.

AS.ControlCallBack (Required) The name of a JavaScript routine that processes the returned
XML criteria. The callback routine must have the following parameter list
format: <callbackName>(<controlName>,<typeName>,<XMLCriteria>). The
<controlName> can be used to know where to direct the process XML
criteria. The typeName identifies which directory type (class) the criteria is
for. The XML Criteria is a string representing the advanced selection criteria.
Specify either AS.Control or AS.ControlCallBack.

AS.InitialCriteria An XML criteria string representing an set of initial selection criteria that is
used to start the widget in a desired state. This is useful if you want to edit an
existing criteria or help the user by pre-entering known selection information.
Specify either AS.InitialCriteria or AS.InitialCriteriaCallBack.

AS.InitialCriteriaCallBack The name of a JavaScript routine that locates and returns an XML criteria
string representing an set of initial selection criteria that is used to start the
widget in a desired state. This routine must have the following parameter list
format: <callbackName>(<typeName>). The <typeName> is used to identify
which XML criteria is requested.

AS.TypeInfoCallBack A string representing the name of a Java implementation of the
AdvSelTypeInfoCallBack abstract class that can used to retrieve the
attribute/comparison operations/allowed values information in the form of a
AdvSelTypeInfo class. If this parameter is undefined or the empty string, it is
assumed that the eDirectory is being used and that all attributes of type
string, integer or boolean are to be displayed to the user in the widget. The
NDSTypeInfoCallBack.getInfo() method is called to retrieve this default
information.

AS.IsASAllowed The name of a JavaScript routine that returns a Boolean true if the advanced
selection widget is to proceed, or false if its execution is to be prevented
(disabled). This routine is called before the advanced selection widget is
displayed and can be used to prevent its launch until desired conditions
(which are checked in the routine) have been met.

AS.IconName The name of an icon to use for the Advanced Selection widget button
instead of the standard one. Used with AS.inc.

AS.AltText The hint or accessibility text to be displayed when the user moves the
mouse over the advanced selection icon/link/button. If the text is not defined,
“Advanced Selection” is displayed. Used with AS.inc, ASBtn.inc and
ASLink.inc.

AS.Text The text to be displayed on the HTML button or HTML link, which is used to
bring up the Advanced Selection widget. Used with ASBtn.inc and
ASLink.inc.

Parameter Description
Using the iManager Widgets 71

72 NDK: i

novdocx (en) 11 July 2008
<script>
 var deleteCriteria=null;
 function saveXML(controlName, type, xmlCriteria)
 {
 deleteCriteria[type] = xmlCriteria;
 document.DeleteUserForm.DeleteUsersCriteria.value = xmlCriteria;
 }
 function getXML(type)
 {
 var xml = deleteCriteria[type];
 if (xml!=null) return xml;
 else return "";
 }
 function readToSearch()
 {
 if (something) return true;
 else return false;
 }
</script>
</HEAD>

<BODY TEXT="#000000" bgcolor="#FFFFFF">
<FORM name="DeleteUserForm" method=post action="webacc">
 <input type=hidden name="taskId" value="{VAR taskId}">
 <input type=hidden name="merge" value="dev,GenConf">
 <input type=hidden name="error" value="dev.GenErr">
 <input type=hidden name="User.context" value="{VAR User.context}">
 <input type=hidden name="nextState" value="doDeleteUsers">

Delete Users

 <NOBR>Users to be deleted:</NOBR>

 <input type=text name="DeleteUsersCriteria" value="" size=35>

<iman:as control="DeleteUsersCriteria"
 controlCallBack="saveXML"
 types="User"
 initialCriteriaCallBack="getXML('User')"
 typeInfoCallBack="com.novell.emframe.zen.ZenDeleteUsersTypeInfo"
 altText="Describe users to be deleted"
 iconName="dev/delete.gif"
 isASAllowed="readyToSearch"/>

 <input type=image name="Delete" alt="Delete" src="<path>/delete.gif" border=0
</FORM>
</BODY>

The preceding example assumes:

saveXML is a JavaScript routine that processes the XML criteria.
getXML is a JavaScript routine that retrieves initial XML criteria.
ZenDeleteUsersTypeInfo is a Java class that implements the AdvSelTypeInfoCallback abstract
class and returns an AdvSelTypeInfo object containing the attribute/comparison operations/
selection values to be displayed.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
6.2.5 Setting the Options at Runtime Using JavaScript
You can call the doDynamicAS function from JavaScript to set the Advanced Selection widget
parameters at runtime. However, we recommend that you use the static include files when possible
to standardize the user experience. The following example shows how to use the doDynamicAS
function:

function doDynamicAS(userContext, AS)
{
 //make sure we have an entry for the required parameters
 if ((AS.types!=null || AS.typesCallBack) && //do we have a valid type or type
callback
 (AS.control!=null || AS.controlCallBack)) / /do we have a control or
control callback
 {
 //make sure we at least have default values for all parameters
 if (AS.types==null) AS.types="";
 if (AS.typesCallBack==null) AS.typesCallBack="";
 if (AS.control==null) AS.control="";
 if (AS.controlCallBack==null) AS.controlCallBack="";
 if (AS.initialCriteria==null) AS.initialCriteria="";
 if (AS.initialCriteriaCallBack==null) AS.initialCriteriaCallBack="";
 if (AS.isASAllowed==null) AS.isASAllowed="";
 if (AS.typeInfoCallBack==null) AS.typeInfoCallBack="";
 if (AS.validateSyntax==null) AS.validateSyntax="";

 //is window being sized dynamically?
 if (AS.windowWidth!=null) window.asWidth=AS.windowWidth;
 if (AS.windowHeight!=null) window.asHeight=AS.windowHeight;

 //are the widths of the input well being sized dynamically?
 if (AS.attributeWidth!=null) window.asAPercent=AS.attributeWidth;
 if (AS.operationWidth!=null) window.asOPercent=AS.operationWidth;
 if (AS.valueWidth!=null) window.asVPercent=AS.valueWidth;

 //call the private doAS routine
 doAS(userContext,
 AS.types,
 AS.typesCallBack,
 AS.control,
 AS.controlCallBack,
 AS.initialCriteria,
 AS.initialCriteriaCallBack,
 AS.isASAllowed,
 AS.typeInfoCallBack,
 AS.validateSyntax);
 }
}

NOTE: AS.validateSyntax is reserved for future use.

As you can see from this code, the following parameters can be changed dynamically at runtime
using this function. You must create a JavaScript object with these values. Note that the first
character following the “AS.” is lowercase to distinguish it from the corresponding static {SET}
variables.

AS.types
Using the iManager Widgets 73

74 NDK: i

novdocx (en) 11 July 2008
AS.typesCallBack
AS.control
AS.controlCallBack
AS.initialCriteria
AS.initialCriteriaCallBack
AS.isASAllowed
AS.typeInfoCallBack

You can change the window size dynamically by setting the following variables:

AS.windowWidth
AS.windowHeight

You can change the relative size percentages of the three primary entry wells as follows:

AS.attributeWidth
AS.operationWidth
AS.valueWidth

Implementing the user interface to bring up the widget is up to the task developer. We recommend
that you preserve the look and feel provided with the static include files to standardize the user's
GUI experience.

6.2.6 Implementing AdvSelTypeInfoCallback
The Advanced Selection widget is independent of namespace (eDirectory, ActiveDirectory, iPlanet,
LDAP, etc). It simply displays a list of strings representing attributes for a given type, a list of strings
representing comparison operators, and possibly a list of strings representing allowed values for a
particular attribute. It understands no syntax or semantics pertaining to these values.

Because the Advanced Selection widget knows nothing about any directory (their types, operations,
values, etc), this information must come from somewhere. You provide the information through the
AdvSelTypeInfoCallback Java class. If you are either not using eDirectory or do not want all the
eDirectory attributes for a particular type displayed, you must create a new class that extends the
AdvSelTypeInfoCallback abstract class and implement its getInfo() method. When called, this
method must return an AdvSelTypeInfo object containing this information. The AdvSelTypeInfo
class has the following two constructors. The first takes an array of strings representing the
comparison operations that are assumed if none are specified for a particular type (class). The
second is used if comparison operations are specifically defined for each type:

public AdvSelTypeInfo(String[] defaultOps)
public AdvSelTypeInfo()
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
After you have created an AdvSelTypeInfo object, you must call one of the following two
addAtrribute() methods for each type that you want to appear in the widget's [attribute] list. The first
is used to create an attribute with allowed values; the second is used if you want the user to be able
to type anything into the [value] entry well. If the ops parameter is null, the default operations are
assumed, if defined:

public void addAttribute(String name, String[] ops, String[] values)
public void addAttribute(String name, String[] ops)

After writing the AdvSelTypeInfoCallback class, compile it and placed it in a JAR that appears on
the Java classpath. Then by setting the AS.TypeInfoCallBack {SET} parameter (or the
AS.typeInfoCallBack dynamic parameter), it will be used to supply the necessary information at
runtime.

TIP: See the default eDirectory (NDS®) implementation in NDSTypeInfoCallBack.java for an
example of how to write an AdvSetTypeInfoCallback class. This class is assumed if no callback
class is specified or if the specified class cannot be found.

6.2.7 The Resulting XML Selection Criteria
The Advanced Selection widget returns the selection criteria that the user enters in the following
XML format:

<selection-criteria>
 <types> ds-type </types>
 <group>
 <row>
 <attribute> name </attribute>
 <operation> op </operation>
 <value> string </value>
 <row-op> and/or </row-op>
 </row>
 . . .
 <group-op> and/or </group-op>
 </group>
 . . .
</selection-criteria>

The string contains no whitespace (spaces, tabs, newlines, etc.) unless they are part of the attribute
names, comparison operations, or match criterion that the user enters.

6.3 The MVStringEditor Widget
The MVStringEditor (mved) widget provides an editor control that can store multiple values. It
provides the following benefits:

Allows single source for a multivalue string edit (mved) control
Customizes the control for the browser used
Automatically detects the browser and sets the appropriate mode
Allows the mode to be overridden
Using the iManager Widgets 75

76 NDK: i

novdocx (en) 11 July 2008
The mved supports the following Web browsers:

Firefox* 1.5.x and later
Internet Explorer 6 and later

6.3.1 How to Use the MVStringEditor Widget
1 Include the required mved JavaScript file.
2 Add the mved on the page.
3 Load values into the control.
4 Get values from the control.

For example:

01:<%@ page pageEncoding="utf-8" contentType="text/html;charset=utf-8" %>
02:<%@ taglib uri="/WEB-INF/iman.tld" prefix="iman" %>
03:<%@ taglib uri="/WEB-INF/c.tld" prefix="c" %>
04:

05:<HTML>
06:<HEAD>
07: <LINK rel="stylesheet" href="<c:out value="${ContextPath}" />/portal/
modules/dev/css/hf_style.css">
08: <iman:mvedScripts/>
09: <iman:eMFrameScripts/>
10:

11: <SCRIPT>
12: function onInit()
13: {
14: mvLoadFromPack("mved1", "<c:out value="${myData}"/>");
15: }
16:
17: function onExit()
18: {
19: document.form.mvedData.value = mvGetValuesAsPack("mved1");
20: }
21: </SCRIPT>
22:</HEAD>
23:
24:<BODY onLoad="onInit();">
25:<FORM name="form" method="post" action="webacc" onSubmit="return onExit();">
26: <iman:mved name="mved1" width="150"/>
27: <input type=”hidden” name=”mvedData”/>
28:</FORM>
29:</BODY>
30:</HTML>

Of particular interest in the above example are the following:

02: Includes iManager Tag Library
08: Includes javascripts methods required by MVStringEditor
14: Loads data into control
19: Retrieves data from control
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
26: Including control on page
27: Hidden input for posting data to server

To pass values to the control with Java:

String values = ...;

request.setAttribute("myItems", values);

To get values from the control with Java:

String pack = request.getParameter("mved1_packValues");

String[] items = eMFrameUtils.unpack(pack, taskContext);

6.3.2 Modes
When including the mved, you must decide on a mode. If you do not set a mode, it chooses a mode
for you based on the current device.

Table 6-6 MVStringEditor modes

6.3.3 Parameters

Table 6-7 MVStringEditor parameters

Mode Description

mvie Fancy mved for holding and editing multiple values; normal mved for Internet Explorer. This is
the default mode for the Browser device type.

mvsel In this mode, the mved is based on the HTML select control. It has two modes:

One line. This mode uses a smaller area. It is the default mode for the Simple device
type. The user sees only the first value until clicking the drop-down arrow.

Combobox. This mode uses a larger area. It is composed of a text entry area and an
expanded select box. It can be used with Browser or Simple device types when it is the
only control on the page.

Parameter Description

name Specifies a unique name identifier for the mved.

mode Specifies one of three mved modes (mvsel, mvie, or mvtxt). If you do not specify
a mode, the mved picks the mode best suited for the current device. This helps
when single-sourcing JSP files across multiple devices.

width Specifies the width of the control in pixels.

useRootedName Specifies complete object name including the tree name.

bgColor Specifies the color of the page around the control. The default is white. Use
standard hex HTML color codes to specify the background color.

readonly Boolean value that, when True, disables the control and dims the control text.
Using the iManager Widgets 77

78 NDK: i

novdocx (en) 11 July 2008
6.3.4 JavaScript API
The following JavaScript methods allow you to interact with the MVStringEditor:

mvLoadFromPack (String name, String packedString) The name parameter must be the same as
the MVStringEditor_name used for MVStringEditor_inc.

mvGetValuesAsPack (String name) : String (packed) The name parameter must be the same
name as the MVStringEditor_name used for MVStringEditor_inc. The return value is a packed
string, safe to be posted.

mvGetValuesAsXml (String name) : String (xml content) The name parameter must be the same
as the MVStringEditor_name used for MVStringEditor_inc. The return value is XML in string
format.

mvLoadFromXml (String name, String xml) The name parameter must be the same as the
MVStringEditor_name used for MVStringEditor_inc.

mvEnable (String name)

mvDisable (String name)

objectTypeName Specifies an Object Selector typeFilter ("User", "*", etc.)

enforceUnique Boolean value that, when True, forces all values in the list to be unique.

ignoreCase Boolean value that, when True, instructs the control to ignore case when
determining if a value is unique. For example, when ignoreCase is true, "ABC"
and "abc" cannot both be added to the list. This attribute is used only when
enforceUnique is True.

size Specifies the number of rows to display in the select box. This attribute is used
only when mode is mvsel.

numbersOnly Boolean value that, when True, instructs the control to only support numeric
values.

upperBound Instructs the control to support only numeric values less than the specified value.

lowerBound Instructs the control to support only numeric values greater than the specified
value.

minLength Instructs the control to support only string longer than the specified number of
characters.

maxLength Instructs the control to support only strings shorter than the specified number of
characters.

xml Specifies XML as a string to display to the user. The root node can be anything,
but it must have child nodes of name value.

history Displays a history button next to the OS value. This attribute is used only when
objectTypeName is True.

disableEdit Boolean value that, when True, disables the editing of control.

biggerBox Boolean value that, when True, gives bigger text box. Used in conjunction with
Size attribute which should be greater than 0.

Parameter Description
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
The JavaScript methods mvLoadFromPack and mvGetValuesAsPack interact with packed
Strings. An empty string is not a valid packed string. If you want an empty packed string, call
pack(new Array()). There are methods in eMFrameScripts (JavaScript) and eMFrameUtils
(Java) to pack and unpack these strings.

6.3.5 Examples
Following are some MVStringEditor examples::

Packed Strings

In JavaScript header:

oninit : mvLoadFromPack ("myControl", "<c:out value="${data}"/>");
onexit: document.form.data.value = mvGetValuesAsPack ("myControl")

In HTML body:

<iman:mved name=”myControl” ignoreCase=”true” enforceUnique=”true”/>

XML

In JavaScript header:

oninit: mvLoadFromXml("mycontrol", "<root><value>...</value></root>");
onexit: hiddenField = mvGetValuesAsXml("mycontrol");

In XML:

<root>
 <value>test1</value>
 <value>test2</value>
 <value>test3</value>
</root>

6.4 The Date/Time Widget
iManager includes a date/time widget that is implemented as a JSP tag library. To use the date/time
widget:

1 Include the following tag in the <head> section of your JSP:

<iman:calendarScripts/>

2 Include the following tag in the <body> section of your JSP where you want the widget to
appear:

<iman:calendar name="MyCal" onLoadCallback="onLoadCalendar"
returnCallback="returnFromCalendar"/>

To easily create a template that uses the date/time widget, use the Plug-in Studio to create a template
that modifies an attribute of time syntax.
Using the iManager Widgets 79

80 NDK: i

novdocx (en) 11 July 2008
Manager 2.7 Developer Kit

7
novdocx (en) 11 July 2008
7Creating a Plug-In

This section covers the following topics related to creating a plug-in:

Section 7.1, “Overview,” on page 81
Section 7.2, “Creating a Manifest File,” on page 84
Section 7.3, “Plug-In Information Through XML,” on page 86
Section 7.4, “Creating a Plug-In Installer,” on page 88
Section 7.5, “Installing Plug-ins to an Existing iManager,” on page 89
Section 7.6, “Precompiling JSPs for Tomcat 5,” on page 90
Section 7.7, “Testing a Plug-In,” on page 93

7.1 Overview
A plug-in typically provides all the management functionality that a particular product, or feature set
within a product, requires. It is assembled as a single file so you can quickly and easily add extend
iManager to support the required management functionality.

However, sometimes it makes sense to bundle multiple plug-ins together, as Novell does for
Novell® eDirectoryTM and Novell Identity ManagerTM. Plug-in bundling might make sense in the
following situations:

Make it easier to distribute all the plug-ins for a given product
Plug-ins have dependencies on other plug-ins or shared code

You can create plug-in files using the Jar program included in the JDK. Access and manipulate the
resulting .jar files using any tool that supports the ZIP archive format.

The following sections explain concepts related to plug-ins:

Section 7.1.1, “Plug-In File Structure,” on page 81
Section 7.1.2, “Deleting Files by Using Command-Line Files After Plug-In Installation,” on
page 83
Section 7.1.3, “Plug-In Directory Objects and Attributes,” on page 83
Section 7.1.4, “Plug-in Update and Uninstallation,” on page 83
Section 7.1.5, “Plug-In Installers,” on page 84

7.1.1 Plug-In File Structure
A plug-in is a Java archive (JAR) file named with an .npm extension. Like all JAR files, a plug-in
combines multiple files into one file and stores the relative path of each included file. The
combination of the file names and the path information form a directory hierarchy. iManager
imposes a directory hierarchy by requiring that some categories of files be placed within specific
directories in the plug-in.
Creating a Plug-In 81

82 NDK: i

novdocx (en) 11 July 2008
Most of the files that you would typically include in a plug-in, such as Java class files, JSPs,
registration files, resources, and a manifest file, must be organized into special directories according
to the file type or function. These directories are described in the following table:

Table 7-1 Plug-in directories

IMPORTANT: The case of the directory names and files is significant.

The structure of a plug-in that includes all of the special directories is represented in the following
figure.

Figure 7-1 Plug-in structure showing all special directories.

Any files that do not need to be placed in one of the special directories, such as files for background
services, can be included in a plug-in and organized in any way that meets your needs.

iManager 2.7.2 provides a framework for the plug-ins to extend the eDirectory schema during the
plug-in installation. So, if a plug-in wants to extend the eDirectory schema during its installation, it
has to follow a set of guidelines in its structure which are required by the schema extension
framework.

Plug-in should provide the definition of the schema it wants to extend in either a .LDIF (single
file) or a .SCH (single file) format.
The schema definition file should be placed under ModuleName.npm/currentwebapp/
schema/ folder of the npm.

After the successful installation of the plug-in, if there is a schema file in the expected location,
imanager extends the schema defined in the directory to which iManager is logged in during the
plug-in installation.

NOTE: The above description is for Section 7.5.2, “Installing a Plug-In Manually,” on page 90. For
instructions on extending the schema during programmatic plug-in installation, see Section 7.5.1,
“Installing a Plug-In Programmatically,” on page 89.

File or Directory Description

currentwebapp Contains files that are installed as part of the overall iManager Web application.
These files are copied to the webapps directory of the servlet container. For example,
tomcat/webapps/nps.

META-INF (Required) Contains the required manifest file (MANIFEST.MF) with configuration
information about the plug-in.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
7.1.2 Deleting Files by Using Command-Line Files After Plug-In
Installation
A few of iManager plug-ins bundle command-line files such as symboliclinks.txt and
permissions.txt in the currentwebcommand directory of the .npm file. Another type of
command-line file deletefiles.txt can now be bundled in the same directory which has a list
of files to be deleted. Any file that is in the <iManager_tomcat>/webapps/nps directory or
sub-directories can be deleted. So, the name of the files to be deleted should be relative to the /nps
folder. The files are deleted at the end of plug-in installation.

The following rules are specific to the deletefiles.txt file:

The filename is case-sensitive and must be in lower case.
One parameter per line - FILENAME, where FILENAME is the file to be deleted which is
relative to .../tomcat/webapps/nps folder.
While deleting a file, to remove any existing destination FILENAME, use the -f (force)
option.

A sample entry for Linux is as follows:

 Platform: linux

 WEB-INF/bin/linux/libJClient.so

 WEB-INF/debug.xsl

 portal/modules/fw/skins/default/devices/default/About.jsp

 portal/modules/fw/help/en/advselhelp.html

Limitations:

The names of only files can be specified. The file names should not contain any wild card
characters such as *, ?, and so on. If a directory name is specified, it is not deleted because the
directory would not be empty.
Sometimes on Windows, a few files are not deleted after the plug-in is installed. This is because
the files are locked by iManager (tomcat). These files should be manually deleted.

7.1.3 Plug-In Directory Objects and Attributes
iManager creates a bhModule object in the directory to represent a plug-in. This object is
registered with the portal object in the directory so that when a plug-in is installed, updated, or
deleted, iManager can replicate the NPM file changes to all iManager servers servicing the portal
object. The bhModule object can also store plug-in-specific configuration information and links to
other plug-ins that are bundled with the plug-in.

In addition, other objects have attributes that link them to a plug-in.

7.1.4 Plug-in Update and Uninstallation
When a plug-in is updated, plug-ins contained in the NPM file are also updated. iManager uses the
bhGadgets and bhModules attributes to identify the .npm and .npg files that correspond to
each plug-in.
Creating a Plug-In 83

84 NDK: i

novdocx (en) 11 July 2008
When a plug-in is uninstalled, all tasks within the plug-in are also uninstalled. As an option, the
administrator can uninstall individual plug-ins within a plug-in bundle.

The uninstallation of a plug-in causes plug-ins in the file system to be deleted. File system
dependency lists can be created during the uninstallation so that files that appear in other NPM
archives are not deleted.

7.1.5 Plug-In Installers
A plug-in installer enables plug-ins to perform installation and configuration tasks during the
installation of the portal. To learn how to create a plug-in installer, see Section 7.4, “Creating a Plug-
In Installer,” on page 88.

7.2 Creating a Manifest File
A manifest file contains plug-in configuration information such as the location of the plug-in install
class. Every plug-in must contain a manifest file, named MANIFEST.MF, in a directory named
META-INF. The format of the manifest file follows the JAR File Specification (http://java.sun.com/
j2se/1.4.1/docs/guide/jar/jar.html). A manifest file looks similar to the following:

Manifest-Version: 2.7
Implementation-Vendor: Novell, Inc.
Module-ID: iPrintX
Created-By: iPrint team
Implementation-Title: iPrint Linux Management
Implementation-Description: Allows management of iPrint services on Linux.
Main-Class: com.novell.admin.iPrint.iPrintLinuxInstaller
Min-iManager-Version: 2.7.0
Max-iManager-Version: 2.8.0
Implementation-Version: 2.7.0.20070625
Supported-OS:
NetWareServer;LinuxServer;WindowsServer;WindowsWorkstation;LinuxWorkstation

iManager reads the following entries in the MANIFEST.MF:

Table 7-2 MANIFEST.MF entries

Entry Description

Module-ID (Required) Specifies an identifier for the plug-in. All versions and releases of the
plug-in should specify the same Module-ID, which iManager uses to determine
if the plug-in replaces an existing plug-in. If Module-IDs differ, iManager does not
replace the previously installed plug-in.

Use the following guidelines when creating a Module-ID:

Should be lower-case with no spaces.

Should identify the product to which the plug-in is related

Should not include version numbers
Manager 2.7 Developer Kit

http://java.sun.com/j2se/1.4.1/docs/guide/jar/jar.html

novdocx (en) 11 July 2008
Implementation-
Title

(Required) Specifies a brief (48 characters or less) plug-in description that
displays in iManager’s plug-in list.

Use the following guidelines when creating an Implementation-Title:

Should be easily readable. Spaces are OK.

Should be descriptive enough so users know the product to which this plug-
in belongs

Indicate if the plug-in is platform-specific

Do not include product version numbers

Implementation-
Description

(Required) Provides a description of the plug-in. Use this entry to list any plug-in
dependencies.

Implementation-
Version

(Required) Specifies the plug-in version. The format is major.minor.revision.build,
where major, minor, revision, and build are integers (up to 8 digits). For example,
4.1.0.20070926.

Higher version numbers should indicate more recent versions. The relative age
of two plug-ins is determined by comparing the Implementation-Version entry of
the manifest file using the following algorithm:

1. If the integer value of major in one plug-in is greater than the integer value
of major in the other, then the one with the greater major value is more
recent. If they are equal, proceed to Step 2.

2. If the integer value of minor in one plug-in is greater than the integer value
of minor in the other, then the one with the greater minor value is more
recent. If they are equal, proceed to Step 3.

3. If the integer value of revision in one plug-in is greater than the integer value
of revision in another, then the one with the greater revision value is more
recent. If they are equal, the two plug-ins are the same version.

4. If the integer value of build in one plug-in is greater than the integer value of
build in another, then the one with the greater revision value is more recent.
If they are equal, the two plug-ins are the same version.

When a user attempts to install a plug-in, iManager checks the version number of
the currently installed plug-in. If the version of the plug-in being installed is equal
to or greater than the version of the current plug-in, the plug-in is installed. If the
plug-in version is smaller, the plug-in is not installed.

Min-iManager-
Version

(Required) Specifies the minimum version of iManager required to run this plug-
in.

Max-iManager-
Version

(Optional) Specifies the maximum version of iManager required to run this plug-
in.

Supported-OS (Optional) Specifies a semi-colon-delimited list of operating systems on which
this plug-in can install and run. Leave this list blank to install and run on all
operating systems.

Entry Description
Creating a Plug-In 85

86 NDK: i

novdocx (en) 11 July 2008
7.3 Plug-In Information Through XML
In the Available Novell Plug-in Modules page, under Novell Plug-in Modules, click the icon next
to the plug-in to display the plug-in information such as, supported platforms, recommended
versions, change logs, build number, and other miscellaneous information.

To get the icon for a plug-in:

1 Create an XML file similar to the following Sample XML file:
Sample XML:
<info>

<miscellaneous>blah blah</miscellaneous>

<recommended_versions>2.6 imanager</recommended_versions>

<supported_platforms>linux</supported_platforms>

<change_log>

<build_number>20061025</build_number>

<entry>

Fixed an issue where HP printers don't show up correctly.

</entry>

<entry>

Fixed a problem where the iPrint plugin would not uninstall.

</entry>

<entry>

Added the ability to import drivers in Atari 2600 format.

</entry>

</change_log>

<change_log>

<build_number>20060516</build_number>

<entry>Fixed the plugin so that it actually works</entry>

Main-Class (Optional) A standard entry, used by Java, that specifies a class to run if the plug-
in is run as a .jar file (executed in the following manner: java -jar
module_name.npm). If the main class implements PortalModuleInstaller
(and, optionally, PortalModuleUI), it is instantiated by the plug-in installation
code and called at key points during installation so you can perform plug-in-
specific operations.

For more information about plug-in installers, see Section 7.1.5, “Plug-In
Installers,” on page 84 and Section 7.4, “Creating a Plug-In Installer,” on page 88.
Required for all plug-ins with installer classes.

RBS-DiaplayName (Optional) Specifies a display name to show in the Configuration Wizard and
iManager’s list of installed plug-ins. If multiple plug-ins have the same RBS-
DisplayName, iManager installs them as a package.

Entry Description
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
<entry>

The plugin now interprets the :) as an actual smily face.

</entry>

</change_log>

<special_instruction>

This plugin is the same version that ships with OES SP9.56.

</special_instruction>

<special_instruction>

Before installing this plugin, you must stand on your head and
clap your hands 3 times while reciting the words to your
favorite nursery rhyme.

</special_instruction>

<dependencies> lots and lots of them!!</dependencies>

</info>

2 Specify the location (http://{serverip}/sample.xml) of the XML file that you have
created, in the iman_mod_desc.xml file which contains information of all the iManager
plug-ins.
The sample iman_mod_desc.xml file looks like:
<modules>

<module>

<moduleID>eDirectoryRepairAndLogfile</moduleID>

<title>eDirectory Repair and Logfile</title>

<filename>dsrepair.npm</filename>

<depends-on>FTPAdmin</depends-on>

<depends-on>NFSAdmin</depends-on>

<depends-on>FakeModule</depends-on>

<version>2.7.20070831</version>

<min-required-version>2.7.0</min-required-version>

<url type="zip">ftp://ftp.novell.com/outgoing/2.zip</url>

<info_url>http://164.99.166.23/artifacts/about.xml</info_url>

<description>

Contains repair and logfile eDirectory functionality

</description>

</module>

<module>

<moduleID>FTPAdmin</moduleID>

<title>FTP</title>

<filename>FTPAdmin.npm</filename>

<version>1.1.20070828</version>
Creating a Plug-In 87

88 NDK: i

novdocx (en) 11 July 2008
<depends-on>eDirectoryRepairAndLogfile</depends-on>

<min-required-version>2.7.0</min-required-version>

<url type="zip">ftp://ftp.novell.com/outgoing/2.zip</url>

<info_url>http://164.99.166.23/artifacts/about.xml</info_url>

<description>Allows management of FTP</description>

</module>

</modules>

7.4 Creating a Plug-In Installer
A plug-in installer enables plug-ins to perform installation and configuration tasks during part of the
installation of iManager.

An installer is a Java class that implements the
com.novell.nps.serviceProviders.PortalModuleInstaller interface. During
installation of the plug-in, the PortalModuleInstallManager class calls the methods in your
installer class that are prescribed by the PortalModuleInstaller interface.

The installer class must be added to the plug-in. The following figure shows the file structure of a
plug-in that contains an installer class.

Figure 7-2 File structure of a plug-in with an installer class

The following example shows a manifest file for a plug-in with an installer class:
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
Module-ID: AddrAdvertise
Implementation-Title: NCP Server Address Advertising
Implementation-Description: NCP Server Address Advertising Plugin
Implementation-Version: 1.0.0
Main-Class: com.mycompany.portalmodules.myInstaller
Depends-on: plugin1,plugin2 (Optional)

7.5 Installing Plug-ins to an Existing iManager
You can install an NPM into an existing iManager environment. However, the NPM you plan on
installing must be compatible with the version of iManager currently installed. You can determine
the currently installed version of iManager by calling
eMFrameUtils.getVersion(TaskContext context).

Alternatively, you can retrieve the current version of iManager from version.properties, as shown in
the following example:

public static Version getVersion(TaskContext context)

{ String versionStr =
eMFrameUtils.getLocalizedString("com.novell.emframe.version", "version", context);
return new Version(versionStr);}

You can install plug-in programmatically or manually. If you install plug-in manually, the process
varies depending on whether or not you have RBS configured. For more information about RBS, see
“Role-Based Services” on page 20.

To install a plug-in programmatically, see “Installing a Plug-In Programmatically” on page 89. To
install a plug-in manually, see “Installing a Plug-In Manually” on page 90.

7.5.1 Installing a Plug-In Programmatically
1 To programmatically install a plug-in into iManager, use one of the following calls:

ModuleManager.externalInstall(File sWebAppContextPath, File
npmFile, File fJspPath)

ModuleManager.externalInstall(File sWebAppContextPath, File
npmFile, File fJspPath, boolean silentInstall)

ModuleManager.externalInstall(File sWebAppContextPath, File
npmFile, File fJspPath, String LOGIN_DN, String HOST, String
PASSWORD)

ModuleManager.externalInstall(File sWebAppContextPath,File
npmFile,File fJspPath,boolean silentInstall,String
LOGIN_DN,String HOST,String PASSWORD)

2 Make sure that all the plug-ins are in the local directory because the command line installation
checks only the local directory for plug-ins. This completely resolves the dependencies.
Dependencies are identified through Depends-on element of the MANIFEST file from the
npm.
Creating a Plug-In 89

90 NDK: i

novdocx (en) 11 July 2008
If there are any unavailable dependent plug-ins, you are prompted.
3 After getting the set of dependent plug-ins, you are prompted to continue the installation of

main plug-in by installing all dependent plug-ins, install only the main plug-in, or terminate the
installation process. Select the desired option.

NOTE: To programmatically uninstall a plug-in from iManager, use the following call:

ModuleManager.externalUninstall(File sWebAppContextPath, String
npmFileName)

7.5.2 Installing a Plug-In Manually
1 Log in to iManager.
2 Click Configure > Plug-in Installation > Available Novell Plug-in Modules.

The Available Novell Plug-in Modules page is displayed.
3 Under Novell Plug-in Modules, click Add, browse for the appropriate NPM file, then click OK.
4 In the Available Novell Plug-in Modules page, select the NPM and click Install.
5 Restart Tomcat.

Tomcat takes some time to fully initialize. Wait a couple minutes before trying to log in to
iManager.

6 (Conditional) If RBS is configured, do the following:
6a Log in to iManager, then click the Configure button.
6b Select Role-Based Services > RBS Configuration.
6c To update an RBS module, select the number in the Out-of-Date column for the Collection

you want to update.
The list of outdated plug-ins is displayed.

6d Select the plug-in you want to update and then click Update at the top of the table.
6e Repeat steps 8c and 8d for the Not-Installed column of the RBS Configuration page.

7 Verify that the new Role appears in the Roles and Tasks page.
To add members to the new Role, select Role Based Services > Edit Member Association in the
navigation frame.

7.6 Precompiling JSPs for Tomcat 5
This section discusses the Tomcat 5 compiled JSP class file path changes and using Ant to
precompile JSP files.

Platform Restart Command

NetWare® 6.5 or later Enter tomcat5 stop. Wait at least a minute, then enter tomcat5 start
to start the service again.

Windows* Stop and start the Tomcat service.

Linux Enter /etc/init.d/novell-tomcat5 restart.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
To avoid the delay Tomcat takes to compile and load a JSP file in iManager you can precompile the
.jsp file into a Java class file. Deliver the precompiled Java class files with your plug-in and install
them to the appropriate Tomcat 5 directory.

7.6.1 Tomcat 5 Compiled Java Class File Location
The Tomcat 5 path for iManager plug-ins is TOMCAT_HOME/work/Catalina/localhost/
nps/org/apache. Previously, Tomcat 4 stored iManager plug-ins in TOMCAT_HOME/work/
Standalone/localhost/nps. For example:

Compiled DeleteClass.jsp path using Tomcat 4: TOMCAT_HOME/work/
Standalone/localhost/nps/portal/modules/base/skins/default/
devices/default/DeleteClass_jsp.class

Compiled DeleteClass.jsp path using Tomcat 5: TOMCAT_HOME/work/Catalina/
localhost/nps/org/apache/jsp/portal/modules/base/skins/
default_/devices/default_/DeleteClass_jsp.class

To determine the path for a specific JSP class file:

1 Log into iManager.
2 Select the task or page that includes the JSP file.

The first time you access page, Tomcat compiles the JSP into a .java file, then a .class
file.

3 Browse TOMCAT_HOME/work/Catalina/localhost/nps/org/apache/ for the
specific class file.
This is the path you would use when precompiling your JSP.

7.6.2 Precompiling JSP Pages with Ant
The iManager 2.7 build process uses Ant to precompile the JSP files. For information about using
Ant to precompile JSPs, see Web Application Compilation (http://tomcat.apache.org/tomcat-5.5-
doc/jasper-howto.html#Web%20Application%20Compilation) in The Apache Tomcat 5.5 Servlet/
JSP Container Jasper 2 JSP Engine How To.

Use the sample script found there to pass in the appropriate parameters for TOMCAT_HOME and
WEBAPP_PATH and precompile your JSP files. You can modify this script and include in to your
build process.

The following examples show an iManager Ant build script and build target. The compiled JSP class
files are copied to a working directory and then, later in the build process, zipped up in the .npm
file.

IMPORTANT: Because iManager 2.7 plug-ins need to run on NetWare and the 1.4 JDK, you
should compile your JSP files with the source and target set to version “1.4” as shown in the above
example. This will ensure that the precompiled files will work on all of the iManager 2.7 supported
platforms.
Creating a Plug-In 91

http://tomcat.apache.org/tomcat-5.5-doc/jasper-howto.html#Web%20Application%20Compilation

92 NDK: i

novdocx (en) 11 July 2008
iManager Ant build script named jspc:

<target name="jspc" depends=".setproperties">
 <taskdef classname="org.apache.jasper.JspC" name="jasper2" >
 <classpath id="jspc.classpath">
 <pathelement location="${java.home}/../lib/tools.jar"/>
 <fileset dir="${tomcat.home}/bin">
 <include name="*.jar"/>
 </fileset>
 <fileset dir="${tomcat.home}/server/lib">
 <include name="*.jar"/>
 </fileset>
 <fileset dir="${tomcat.home}/common/lib">
 <include name="*.jar"/>
 </fileset>
 </classpath>
 </taskdef>

 <jasper2
 webXml="${webapp.path}/WEB-INF/web.xml"
 validateXml="false"
 uriroot="${webapp.path}"
 webXmlFragment="${webapp.path}/WEB-INF/generated_web.xml"
 outputDir="${webapp.path}/WEB-INF/work/Catalina/localhost/${Product.Name}"/>
</target>

iManager Ant build target named compilejsps.

<target name="compilejsps" depends="jspc">
 <javac destdir="${webapp.path}/WEB-INF/classes"
 optimize="off"
 source="1.4"
 target="1.4"
 debug="on"
 failonerror="false"
 srcdir="${webapp.path}/WEB-INF/work/"
 excludes="**/*.smap">
 <classpath>
 <pathelement location="${webapp.path}/WEB-INF/classes/org"/>
 <fileset dir="${webapp.path}/WEB-INF/lib">
 <include name="*.jar"/>
 </fileset>
 <pathelement location="${tomcat.home}/common/classes"/>
 <fileset dir="${tomcat.home}/common/lib">
 <include name="*.jar"/>
 </fileset>
 <pathelement location="${tomcat.home}/shared/classes"/>
 <fileset dir="${tomcat.home}/shared/lib">
 <include name="*.jar"/>
 </fileset>
 <fileset dir="${tomcat.home}/bin">
 <include name="*.jar"/>
 </fileset>
 </classpath>
 <include name="**" />
 <exclude name="tags/**" />
 </javac>
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
 <copy preservelastmodified="yes" todir="${webapp.path}/WEB-INF/work/Catalina/
localhost/nps/org" >
 <fileset dir="${webapp.path}/WEB-INF/classes/org" />
 </copy>
</target>

7.7 Testing a Plug-In
Once you have created a new iManager plug-in, you should test the plug-in against the various
iManager features to make sure it functions properly. Often, plug-in developers focus only on
making the plug-in available through iManager’s navigation frame in the Roles and Tasks view
when there are other integration points that should be considered as well.

Consider testing your plug-in in the following ways to make sure it performs properly:

Section 7.7.1, “Installation Testing,” on page 93
Section 7.7.2, “Plug-In Studio Testing,” on page 96
Section 7.7.3, “Individual Task Testing,” on page 96
Section 7.7.4, “Object View Testing,” on page 97
Section 7.7.5, “Generic Operation Testing,” on page 97

7.7.1 Installation Testing
You should test your plug-in installation and upgrade capabilities both during the iManager
installation process, and after iManager is installed. Additionally, you should test installing your
plug-in by downloading it and by installing it from a local drive.

Furthermore, if you bundle multiple plug-ins together into a single .npm for delivery, make sure to
test the plug-in both as part of the parent installation (installing all plug-ins as a group), and as an
individual (installing a single plug-in from the group) installation if that option is available.

NOTE: Linux is a good testing platform because of its file name case-sensitivity. Windows and
NetWare do not use case-sensitive file names.

This section includes the following topics:

“Testing During the iManager Installation” on page 93
“Testing After the iManager Installation” on page 94
“Creating a Test Download.xml File” on page 94

Testing During the iManager Installation

To test your plug-in installation or upgrade as part of the iManager install, you should both install a
new iManager server, and upgrade an existing iManager server. As part of the install or upgrade
process, users can install plug-ins from Novell’s download site or from the local file system.
Creating a Plug-In 93

94 NDK: i

novdocx (en) 11 July 2008
To ensure your plug-in installs properly during a new iManager installation (not an upgrade), do the
following:

Test downloading and installing your plug-in. For more information, see “Creating a Test
Download.xml File” on page 94.
Install your plug-in from a local directory specified during the iManager installation routine.

To ensure your plug-in installs properly during an iManager upgrade (from iManager 2.6 to 2.7, for
example), do the following:

Test downloading and installing your plug-in. For more information, see “Creating a Test
Download.xml File” on page 94.
Test installing your plug-in from a local directory specified during the iManager installation
routine.
Test upgrading iManager with a previous version of your plug-in installed. If a new plug-in is
available on Novell’s download site during the iManager upgrade, it should be checked
automatically and notify the user that the plug-in update is available.
Test upgrading iManager without a previous version of your plug-in installed. Unless the
download.xml file specifies selected=true, your plug-in is not checked by default. For
example, <moduleID selected="true">pwdpolicy</moduleID>.

Testing After the iManager Installation

To test your plug-in installation or upgrade after installing iManager, use iManager Workstation.
This lets you shutdown and restart iManager as needed during the testing process. You can also
easily re-install iManager Workstation, if necessary.

Once you install iManager, you can install a plug-in three different ways. You should test your plug-
in using each of these installation scenarios:

Manually copy the plug-in to <TOMCAT_HOME>/webapps/nps/packages. This makes
the plug-in available from Plug-in Installation > Available Novell Plug-in Modules in the
Configure view. Make sure you refresh the page to see the new plug-in listing.
Select Add from the Plug-in Installation > Available Novell Plug-in Modules in the Configure
view. This uploads the plug-in to <TOMCAT_HOME>/webapps/nps/packages.
Download the plug-in (see the steps below on how to set this up for testing). For more
information, see “Creating a Test Download.xml File” on page 94.

Creating a Test Download.xml File

During the iManager installation, the installation routine displays a URL to an XML file on the
plug-in download page. Once you install iManager, you can modify the config.xml file to point
to a custom XML file for downloading plug-ins.

Once you create a custom download.xml, instruct iManager, or the iManager installation routine,
to use this file for downloading plug-ins by modifying the following setting in iManager’s
<TOMCAT_HOME>\webapps\nps\WEB-INF\config.xml. Restart Tomcat after making the
change.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
<setting>
 <name><![CDATA[ModuleDownloadDescriptorURL]]></name>
 <value><![CDATA[http://<IP_Address>/iManager_plugins/test.xml]]></value>
 <!--<value><![CDATA[file:///D:\builds\iManager\test\test.xml]]></value>-->
</setting>

The <value> tag can specify either an HTTP or file location. The default URL for downloading
iManager plug-ins is:

http://www.novell.com/products/consoles/imanager/iman_mod_desc.xml

NOTE: Once you create a custom download.xml file, test that it is syntactically correct by
opening it in a Web browser.

The download.xml looks similar to the following:

<modules>

<module>
 <moduleID>CaseSensitivePassword</moduleID>
 <filename>CSP.npm</filename>
 <version>2.5.20050908</version>
 <min-required-version>2.6</min-required-version>
 <url type="zip"><![CDATA[file:///
D:\builds\iManager\test\eDir_88_iMan26_Plugins.npm]]></url>
 <description>Case Sensitive Password Plugin</description>
</module>

<module>
 <moduleID>novell_imanager_plugins</moduleID>
 <filename>identity_manager_plugins.npm</filename>
 <version>10.0.20060302</version>
 <min-required-version>2.5</min-required-version>
 <url><![CDATA[file:///D:\builds\iManager\test\identity_manager_plugins.npm]]></
url>
 <description>Novell Identity Manager 3 Plugins</description>
</module>

<module>
 <moduleID selected="true">pwdpolicy</moduleID>
 <filename>pwdpolicy.npm</filename>
 <version>10.0.20060302</version>
 <min-required-version>2.5</min-required-version>
 <url type="zip"><![CDATA[file:///
D:\builds\iManager\test\identity_manager_plugins.npm]]></url>
 <description>Universal Password Management Plugin (requires IDM - Common
Utilities Plugin)</description>
</module>

<module>
 <moduleID selected="true">DirXMLCommon</moduleID>
 <filename>DirXMLCommon.npm</filename>
 <version>10.0.20060302</version>
 <min-required-version>2.5</min-required-version>
 <url type="zip"><![CDATA[file:///
D:\builds\iManager\test\identity_manager_plugins.npm]]></url>
 <description>IDM - Common Utilities Plugin (needed for Universal Password
Plugin)</description>
Creating a Plug-In 95

96 NDK: i

novdocx (en) 11 July 2008
</module>

<module>
 <moduleID>SecretStore</moduleID>
 <filename>secretstore.npm</filename>
 <version>10.0.20051209</version>
 <min-required-version>2.5</min-required-version>
 <url>http://137.65.135.100/secretstore.npm</url>
 <description>Secret Store Administration Plugin</description>
</module>

NOTE: The download.xml file includes a <url> tag with a conditional type definition. The
type definition is required for any plug-in that is part of a plug-in bundle, but that you want to be
able to install separately. It specifies the type of compression (zip or targz) used with the individual
plug-in files.

7.7.2 Plug-In Studio Testing
iManager’s Plug-in Studio lets you create additional tasks or property book pages (see Chapter 5,
“Using the Plug-In Studio,” on page 53.) Plug-in Studio is often used to create custom tasks or
property book pages that simplify or limit the set of task available in an existing plug-in, or combine
certain tasks from multiple plug-ins into a single interface. Because of this, newly created tasks or
property book pages can contain attributes from your plug-in or product.

To test your plug-in functionality with Plug-In Studio:

1 Launch iManager and make sure that RBS is installed (see “Setting Up Role-Based Services”
on page 14.)

2 From the Configure view, select Role Based Services > Plug-in Studio.
3 Click New to open the Create iManager Task Wizard.
4 Create a custom task that includes attributes from your plug-in.

For information about using Plug-in Studio, see “Creating a Custom Plug-In” on page 54.
5 Test the new Plug-in Studio task to make sure it can properly access attributes from your plug-

in.

7.7.3 Individual Task Testing
A plug-in can contain multiple roles with multiple tasks. Each task in a plug-in can set specific RBS
rights that allows the assigned user to perform the task. If you are assigned a role that contains more
than one task, your RBS rights for that role are the combined rights for all of the tasks associated
with the role.

Testing your plug-in only with default role and task assignments can mask rights issues with
individual tasks.

To test individual tasks within your plug-in:

1 Create a custom RBS role.
2 Assign one of your plug-ins individual tasks to the role.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
3 Assign the custom RBS role to a user that does not have any rights granted via trustee
assignments or through any other roles assignments.

4 Login as the user and verify that you can use the task without any rights issues.
 You can also check the rights RBS assigns to a task by opening the Configure view and
selecting RBS Reporting > Role Rights Assignments.

7.7.4 Object View Testing
The Object view lets you drill down to a specific eDirectory object first, then select the task you
want to perform. You should test your plug-in to make sure it functions properly when users access
plug-in tasks through the Object view.

In most cases, any task available from the Roles and Tasks view should be accessible from the
Object view. The name of the selected object should be passed to the task’s object name field (if this
is part of the tasks functionality.) Additionally, Object view supports a multi-select mode that you
should test with your plug-in. Some tasks don’t make sense in a multi-select scenario, so there might
be a smaller list of available tasks for your plug-in in that case.

7.7.5 Generic Operation Testing
The Directory Administration role contains the tasks used with any object type: Create Object, Copy
Object, Modify Object, Rename Object, Move Object, and Delete Object. Because of this, it is
possible for these generic tasks to interact with objects improperly. For example, a generic copy
operation copies all attributes of an existing object to a new object, even if some of those attributes
are instance-specific and not appropriate to copy.

Test the interaction of all object types specific to your plug-in against iManager’s generic task
operations to make sure the generic tasks don’t corrupt the objects or cause any other unwanted
issues.
Creating a Plug-In 97

98 NDK: i

novdocx (en) 11 July 2008
Manager 2.7 Developer Kit

8
novdocx (en) 11 July 2008
8Installing iManager with Your
Application

If you have developed an application that leverages iManager as its management platform, you
might want to include the installation of iManager as part of your application install process. This
section introduces the installer.properties file, and describes how to launch the iManager install from
within your application's installation routine.

This section includes the following topics:

Section 8.1, “Windows,” on page 99
Section 8.2, “Linux (SUSE and Red Hat),” on page 100
Section 8.3, “Installer.properties File,” on page 100

8.1 Windows
1. Obtain the latest platform-specific archive files for iManager install. These files are available

from the Novell Developer Support Web site (http://developer.novell.com/support/).
2. Include the iManager install archive as part of your product install. This can be done in

multiple ways. For example, as an expanded directory hierarchy on your CD; bundled with
your application installer for later extraction; or downloaded during the application install, then
extracted.

3. Expand the iManager install archive. If your application installer uses InstallAnywhere, the
archive can be expanded using the Expand Archive action, or from custom code using the
java.util.zip package. Other installers have similar APIs for expanding compressed archive
files.

4. Launch the iManager installer. The installer is located in
SDK_HOME\installs\PLATFORM directory, where PLATFORM can be either win or unix.

If you are using InstallAnywhere, the appropriate executable is launched using the Execute
Command action or from custom code using Runtime.exec() and Process class methods.
Add -i silent to the command line to run a silent install. You can also pass parameters
(such as the UI mode) to the iManager installer through an installer.properties file.
The installer.properties file must reside in the same directory as the iManager installer.
Set the $LAUNCH_BROWSER$ property to FALSE, either in installer.properties
or from the command line, if iManager should not launch a Web browser and display
gettingstarted.html at the end of the install process. For example:

-DLAUNCH_BROWSER=false

Operating System Install Executable

Windows iManagerInstall.exe, located in the \win folder
Installing iManager with Your Application 99

http://developer.novell.com/support/

100 NDK: i

novdocx (en) 11 July 2008
5. To include a plug-in for automatic installation after the iManager installation is complete,
simply place the necessary NPMs in the plug-in directory. By default, the plug-in directory is
SDK_HOME\installs\plugins directory. However, you can also specify a different
plug-in directory by setting the PLUGIN_DIRECTORY property, either in the
installer.properties file or from the command line.

6. Once you have completed the installation, edit or create the following configuration file, which
ensures that administrative rights are properly configured for use with eDirectory:

C:\Program Files\Novell\tomcat\webapps\nps\WEB-INF\configiman.properties

The configiman.properties file should specify the list of authorized users, in the
following form: user.context.treename=eDirectory. For example:

admin.lab.LAB_TREE=eDirectory

8.2 Linux (SUSE and Red Hat)
1. Obtain the latest platform-specific archive files for iManager install. These files are available

from the Novell Developer Support Web site (http://developer.novell.com/support/).
2. Include the iManager install archive as part of your product install. This can be done in

multiple ways, including as an expanded directory hierarchy on your CD; bundled with your
application installer for later extraction; or downloaded during the application install, then
extracted.
Alternatively, you can extract only those iManager RPMs needed by your application and
include those as part of your application installation. All iManager RPMs are in the packages
folder of the archive. The iManager RPM includes a dependency list for the required RPMs that
can help you determine whether an RPM is necessary for your particular situation. All plug-in
RPMs in the packages folder are installed.

NOTE: Using the RPMs to install iManager does not configure Tomcat. The Tomcat
server.xml file (located in /var/opt/novell/tomcat5/conf) must be modified. If
needed, you can also change port numbers.

3. Once you have completed the RPM installation, edit or create the following configuration file,
which ensures that administrative rights are properly configured for use with eDirectory:

/var/opt/novell/iManager/nps/WEB-INF/configiman.properties

The configiman.properties file should specify the list of authorized users, in the
following form: user.context.treename=eDir. For example:

admin.lab.LAB_TREE=eDir

8.3 Installer.properties File
After a successful installation, the iManager installer generates an installer.properties
configuration file with values based upon the questions asked during the install. You can use this file
as a template to create a custom installer.properties files for use when installing
iManager together with another application.

An installer.properties file looks something like the following. A comment describes the
file entries directly above it.
Manager 2.7 Developer Kit

http://developer.novell.com/support/

novdocx (en) 11 July 2008
CONFIGIMAN_DIRECTORY=none

#specifies the default directory tree (all lowercase)

CONFIGIMAN_USER_CONTEXT=none

#Specifies the authorized user of format, admin.novell

TOMCAT_HTTP=8080

#Specifies the HTTP tomcat port

TOMCAT_SSL=8443

#Specifies the tomcat SSL port

TOMCAT_JK=9009

#Specifies the Tomcat jk connector port
PLUGIN_INSTALL_MODE=BOTH

#Defines the plug-in installation method. Options are DISK, NET, SKIP, or BOTH.

PLUGIN_DIRECTORY=/home/user1/plugins

#Specifies the plug-in install directory. Only used when PLUGIN_INSTALL_MODE
equals DISK or BOTH.

PLUGIN_INSTALL_URL=http://www.novell.com/products/consoles/imanager/
iman_mod_desc_beta.xml

#Specifies the plug-in download URL. Leave blank to use the default URL.

PLUGIN_MODULE_ID_1=ark

PLUGIN_VERSION_1=3.1.1.20070315

#Specifies a plug-in ID and version that you want to install as part of the
iManager installation. These values come from the plug-in manifest file. Only used
when PLUGIN_INSTALL_MODE equals NET or BOTH.

PLUGIN_MODULE_ID_2=eDirectoryBackupAndRestore

PLUGIN_VERSION_2=2.7.20070410

#Specifies a plug-in ID and version that you want to install as part of the
iManager installation.

LAUNCH_BROWSER=false

#Enables/disables launching the gettingstarted.html when the iManager installation
completes

Once you have the installer.properties file configured to your satisfaction, use it to direct
the silent installation of iManager as part of your application installation routine.
Installing iManager with Your Application 101

102 NDK: i

novdocx (en) 11 July 2008
Manager 2.7 Developer Kit

9
novdocx (en) 11 July 2008
9Logging Debug Messages

The com.novell.emframe.dev.D (Debug) class provides a simple mechanism for plug-ins to log
debug messages to the screen, a file, or both. Writing the log occurs asynchronously. The log
methods simply queue the event and return immediately—the actual writing is done later by a
separate thread. Three levels of logging are supported: info, warning, and error. Only messages with
a priority level greater than or equal to the current level are logged. Those with a lower priority are
discarded.

The following table describes the properties used to control logging.

Table 9-1 com/novell.emframe.dev.D members

If messages are logged to a file, they are logged to a standard text file <iManager Home>/bin/
iManager.log as well as to an HTML file (webapps/nps/WEB-INF/logs/
debug.html).The HTML log is formatted as a single HTML <table> element with each log
message formatted as a single row in the table. The table remains unclosed (no closing </table> tag)
so that additional log messages can be added. Although the table and document remain unclosed, the
file can still be view with any web browser or text editor.

To view the HTML log from iManager, browse to the iManager Server > Configure iManager, and
select the Logging Events tab.

Property Description

void log(String) Overloaded. Logs a message.

String getLogFileName() Returns the name of the log file

boolean isDebugEnabled() Returns true if logging is enabled for INFO level

int getLoggingLevel() Returns the logging priority level

boolean getLoggingToFile() Returns true if logging to file is enabled

boolean getLoggingToErr() Returns true if logging to System.err is enabled

boolean getLoggingToOut() Returns true if logging to System.out is enabled

void setLoggingLevel(int) Sets the logging priority level

void setLoggingToFile(boolean) Enables/disabled logging to file

void setLoggingToErr(boolean) Enables/disables logging to System.err

void setLoggingToOut(boolean) Enables/disables logging to System.out
Logging Debug Messages 103

104 NDK: i

novdocx (en) 11 July 2008
Manager 2.7 Developer Kit

10
novdocx (en) 11 July 2008
10Customizing iManager for Schema
Extensions

If you are using iManager to manage a directory whose schema has been extended or you have
created a plug-in that extends the schema, there are a number of things you can do to improve the
way iManager works with the new objects and attributes. These things are covered in the following
sections:

Section 10.1, “Providing an Image for a New Object Class,” on page 105
Section 10.2, “Providing Translated Names for New Object Classes and Attributes,” on
page 105
Section 10.3, “Providing a Creator for a New Object Class,” on page 106
Section 10.4, “Handling Deletion, Moving, and Renaming of a New Object Class,” on
page 106
Section 10.5, “Providing Pages for the Modify Object Property Book,” on page 106
Section 10.6, “Providing Tasks to Interact with a New Object Class,” on page 106

10.1 Providing an Image for a New Object Class
To provide an image that shows up in the object selector and object view, place a GIF image file in
the portal/modules/dev/images/dir directory. The image should have the same name as the object
class with all non-alphanumeric characters converted to underscores. For example, the GIF for the
NDPS:Server Domain would be NDPS_Server_Domain.gif.

10.2 Providing Translated Names for New Object
Classes and Attributes

1 Create a Java resource bundle with the translations of the object class and attributes. Prefix
object class keys with ObjectType and attributes with Attribute. Replace non-alphanumeric
characters in the keys to underscores. For example:

ObjectType.AFP_Server=AFP Server
ObjectType.Alias=Alias
ObjectType.NLS_Product_Container=License Product Container
ObjectType.NLS_License_Certificate=License Certificate
ObjectType.NLS_License_Server=License Service Provider
Attribute.L=Location
Attribute.CN=Common name
Attribute.Full_Name=Full name
Attribute.Surname=Surname

2 Copy the resource bundle to SDK_HOME/tomcat/webapps/nps/WEB-INF/classes
or include the resource bundle in a JAR file and copy the JAR file to SDK_HOME/tomcat/
webapps/nps/WEB-INF/lib.

3 Create a plug-in XML file in the portal/modules/modulename/plugins directory
and add a <dir-translator> section. The following example shows the <dir-translator> section
that registers several object classes and attributes:
Customizing iManager for Schema Extensions 105

106 NDK: i

novdocx (en) 11 July 2008
<dir-translator>
 <resource-properties-file>
 com.novell.emframe.fw.FwResources
 </resource-properties-file>
 <object-type-name>AFP Server</object-type-name>
 <object-type-name>Alias</object-type-name>
 <object-type-name>NLS:Product Container</object-type-name>
 <object-type-name>NLS:License Certificate</object-type-name>
 <object-type-name>NLS:License Server</object-type-name>
 <attribute-name>L</attribute-name>
 <attribute-name>CN</attribute-name>
 <attribute-name>Full Name</attribute-name>
 <attribute-name>Surname</attribute-name>
</dir-translator>

10.3 Providing a Creator for a New Object Class
A user who is assigned to the eDirectoryTM Management role has access to the Create Object task.
The Create Object task only creates objects of types that are registered with iManager for the creator
task. If you want to enable creation of a new object class using the Create Object task, you can either
use the generic creator plug-in provided by iManager or create your own creator plug-in. For more
information, see Section 3.9, “Extending the Object Management Tasks,” on page 43.

10.4 Handling Deletion, Moving, and Renaming
of a New Object Class
A user who is assigned to the eDirectory Management role has access to the Delete Object, Move
Object, and Rename Object tasks. These tasks work on nearly all object classes, and they operate on
each object in the same way. If you want to handle the delete, move, or rename operation in a
different way for your new object class, you need to extend the corresponding generic deletor, move,
or rename plug-in provided by iManager as explained in Section 3.9, “Extending the Object
Management Tasks,” on page 43.

10.5 Providing Pages for the Modify Object
Property Book
A user who is assigned to the eDirectory Management role has access to the Modify Object task,
which displays a property book that is used to modify attributes of an object. You can provide
custom property book pages for modifying the attributes of your new object class. To do this, you
need to create Java code for your page, create a JSP for the user interface of the page, and create a
plugin XML file that describes the property book page. For more information, see Chapter 4,
“Creating Property Books and Pages,” on page 49.

10.6 Providing Tasks to Interact with a New
Object Class
If you have extended the schema with a new object class and attributes, you probably need to create
tasks to manage the object. For example, if you have created an object class that represents a vehicle
in a company's fleet, you might create a task for assigning the vehicle object to a user. Another task
might allow users to record the vehicle mileage. Another task might allow fleet management
department employees to record maintenance information.
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
For information about creating a task, see Chapter 3, “Creating Tasks,” on page 23.
Customizing iManager for Schema Extensions 107

108 NDK: i

novdocx (en) 11 July 2008
Manager 2.7 Developer Kit

11
novdocx (en) 11 July 2008
11Creating an iPrint Gateway Plug-In

This section discusses creating an iManager plug-in to manage an iPrint gateway, and includes the
following topics:

Section 11.1, “Introduction to iPrint,” on page 109
Section 11.2, “Getting Started,” on page 110
Section 11.3, “Using the Sample Gateway Plug-In,” on page 111
Section 11.4, “Creating Gateway Plug-In Java Class Files,” on page 111
Section 11.5, “Creating Gateway Plug-In JSP Files,” on page 112
Section 11.6, “Creating Gateway Plug-In Registration Files,” on page 112

11.1 Introduction to iPrint
iPrint is an innovative NetWare® feature that gives users access to remote printers over the Internet
using the Internet Printing Protocol (IPP). When iPrint is installed, printer and other related objects
are created in eDirectoryTM. These objects are managed using iManager and the iPrint module, which
also ship with NetWare.

The iPrint module defines an iPrint Management role, which has several associated tasks, including
Create Printer. Administrators use the Create Printer task to set up printers on the network. To
complete this task, administrators must select a gateway type from a list of available gateways.
Novell® provides the Novell LPR gateway, which always appears in this list.

Figure 11-1 The Create Printer task.
Creating an iPrint Gateway Plug-In 109

110 NDK: i

novdocx (en) 11 July 2008
Gateways allow iPrint clients to send jobs to printers that are not IPP-aware. Gateways translate
iPrint queries or commands to printer-specific language that the physical printer can use. This is
possible because gateways are configured to know the specific type (make and model) of printer
being used. Third-party gateways are developed by printer manufacturers to support printers
attached to the network. These gateways are developed to interact with specific proprietary printers
and can provide a wider array of information and offer options that are not available for the generic
Novell gateway.

This section explains how to create a task to provide for the configuration of third-party gateways.
You should be familiar with the concepts discussed elsewhere in this document concerning the
creation of iManager tasks before you proceed.

Gateway configuration plug-ins are not installed or registered with iManager as tasks are—they
“plug in” to the iPrint task. This is accomplished by creating plug-in registration files that use the
<gateway-config> tag and placing the files in special directories that are recognized by the iPrint
plug-in. Except for these differences, creating a gateway configuration plug-in is just like creating
an iManager task.

The following table lists the types of files used in gateway configuration plug-ins:

Table 11-1 Gateway configuration plug-in files

The gateway configuration plug-in file locations are the same as file locations for iManager tasks
with the exception that the JSP and registration files are in subdirectories named “gatecfg” within
the iPrint module directory hierarchy.

When you create a gateway configuration plug-in and copy the files to the appropriate directories,
the name of the gateway appears in the Gateway Type drop-down list of gateways in the Create
Printer task. Also, when the administrator selects the gateway and clicks the Next button, the plug-in
provides a user interface that queries for configuration information required by the gateway. This
user interface can gather information on a single screen or on several successive screens, if
necessary. Your plug-in then writes that information to eDirectory and completes other processing, if
needed.

11.2 Getting Started
The iManager 2.7 SDK contains the latest iPrint source and runtime components that are part of
iManager, along with a sample third-party gateway plug-in.

Follow these steps to prepare for creating iPrint gateway plug-ins:

1. If you haven't done so already, read Chapter 1, “Getting Started,” on page 11 for instructions on
how to get started using the iManager 2.7 SDK.

File type Location

Java class files tomcat\webapps\nps\WEB-INF\lib\jarfilename.jar

JSP files tomcat\webapps\nps\portal\modules\iPrint\skins\default\devices\default\gatecfg

Registration files tomcat\webapps\nps\portal\modules\iPrint\plugins\gatecfg

Resource files tomcat\webapps\nps\WEB-INF\lib\jarfilename.jar
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
2. Start iManager and log in.
3. If necessary, install the iPrint plug-in and assign your user object to the iPrint Management

role.

11.3 Using the Sample Gateway Plug-In
The SDK contains a sample gateway plug-in named CompanyXYZ. We recommend that you use
this sample as a template when you begin to write your own gateway plug-in. It is found in the
iPrintGateway directory under the SDK home directory. The plug-in consists of the following files:

GatewayTemplate.jsp. This is the JSP file that presents the user interface for gathering
gateway configuration information.
GatewayTemplate.java. This file contains the plug-in Java code that handles the logic
and attribute management of the gateway.
CompanyXYZ.xml. This is the plug-in registration file.
CompanyXYZResources.properties. This resource file contains strings used in the
plug-in template file.

Install the CompanyXYZ gateway plug-in by running
SDK_HOME\iPrintGateway\makebat.bat. This batch file compiles
GatewayTemplate.java, stores the resulting GatewayTemplate.class file in WEB-
INF\lib\CompanyXYZ.jar, and copies the remaining plug-in files to the appropriate
directories under the nps servlet document root directory.

To test the plug-in:

1 Start iManager and log in.
2 Click iPrint Management > Create Printer.
3 Fill in the Printer name, Container name, and Manager name fields.
4 In the Gateway type field, select CompanyXYZ.
5 Click Next.
6 Type a URL in the Printer URL field.
7 Click Next.

11.4 Creating Gateway Plug-In Java Class Files
Java classes for gateway plug-ins retrieve the parameters that were set in the user interface, as
displayed by the JSP file, then they save these parameters in eDirectory as printer agent object
attribute values. The GatewayTemplate.java file included with the CompanyXYZ plug-in provides
an excellent example of how to do this, and we recommend that you use this file as a starting point
for creating your own gateway plug-ins. This file illustrates the following points concerning
gateway plug-ins:

They must extend the com.novell.emframe.dev.Task class and implement the execute method
defined in that class.
They must import the com.novell.service.ndps package, as shown in the following example:

import com.novell.service.ndps.*;
Creating an iPrint Gateway Plug-In 111

112 NDK: i

novdocx (en) 11 July 2008
They should contain the following code, which retrieves the printer agent object that was stored
in the session:

Hashtable sessionCache = context.getSessionCache();
PrinterAgent newPa = (PrinterAgent)sessionCache.get("NDPS.newPrinterAgent");

The PrinterAgent.modifyAttrs method is used to set the attributes in the Managed Object
Database (MOD):

BasicAttributes attrSet;
attrSet = new BasicAttributes();
attrSet.put(Oid.NDPS_ATT_PDS_EXEC_AND_PARAMS.getString(),
 "NDPSGW IPP URL=" + printerURL);
newPa.modifyAttrs(DirContext.REPLACE_ATTRIBUTE, attrSet);

For further information about plug-in Java classes, see Section 3.2, “Creating a Task: An Example,”
on page 23 and Section 3.3, “Tips for Creating Task Java Classes,” on page 30.

11.5 Creating Gateway Plug-In JSP Files
The process for creating gateway plug-in JSP files is identical to the process used to create JSP files
for iManager tasks. This process is described in Section 3.2.2, “Creating the UI,” on page 26 and
Section 3.4, “Tips for Creating JSPs,” on page 32.

11.6 Creating Gateway Plug-In Registration Files
When you execute the Create Printer task, the Gateway type drop-down list contains a dynamic list
of gateway types. This list is created from the registration files that reside in the directory WEB-
INF\plugins\ndps\gatecfg. To make your gateway plug-in available in this list you need to
create a registration file for your plug-in and copy it to this directory.

Registration files for gateway plug-ins are similar to registration files for regular iManager plug-ins.
They consist of XML tags that define the plug-in. The following example shows the
CompanyXYZ.xml file that is included with the iManager 2.7 SDK:

<plugins>
 <gateway-config>
 <id>iPrint.gatecfg.CompanyXYZ</id>
 <version>1.0</version>
 <required-version>2.7.0</required-version>
 <register-gadget>true</register-gadget>
 <display-name-key>GateConfigNameKey</display-name-key>
 <resource-properties-file>CompanyXYZResources</resource-properties-file>
 <class-name>com.novell.imanage.iPrint.plugins.GatewayTemplate</class-name>
 <merge-template>iPrint.gatecfg.GatewayTemplate</merge-template>
 </gateway-config>
</plugins>

The outermost tag, <plugins>, is identical to that used for iManager plug-ins. The main difference is
that registration files for gateway plug-ins use the <gateway-config> tag to define a gateway rather
than <role>, <task>, or <book>. However, the remaining tags are identical to those used to define
tasks, and they serve the same purposes. For detailed information about these tags, see Section 3.5,
“Creating Registration Files,” on page 35.
Manager 2.7 Developer Kit

12
novdocx (en) 11 July 2008
12Reference

This section describes the template functions and their syntax, parameters, and return values, and
includes the following reference information:

Section 12.1, “iManager API Documentation,” on page 113
Section 12.2, “XML Schema for Installation and Registration Files,” on page 113
Section 12.3, “Role-Based Services Directory Objects,” on page 113
Section 12.4, “eDirectory Access Service XML Formats for eDirectory Attribute Syntax
Definitions,” on page 115

12.1 iManager API Documentation
Documentation for the iManager API is available as Javadoc-generated documentation:

iManager API (../api/index.html)

12.2 XML Schema for Installation and
Registration Files
The iManager installation and registration files are formatted in XML and must conform to the
iManager XML Schema (../schema/iMgrXMLSchema.html).

12.3 Role-Based Services Directory Objects
This section describes the following RBS objects:

Section 12.3.1, “rbsCollection,” on page 113
Section 12.3.2, “rbsRole,” on page 114
Section 12.3.3, “rbsModule,” on page 114
Section 12.3.4, “rbsTask,” on page 114
Section 12.3.5, “rbsBook,” on page 114
Section 12.3.6, “rbsScope,” on page 115

12.3.1 rbsCollection
rbsCollection objects are the topmost containers for all RBS objects. A tree can have any number of
rbsCollection objects. These objects have “owners,” which are users who have management rights
over the collection.

Containment:

Country
domain
Locality
Reference 113

../api/index.html
../schema/iMgrXMLSchema.html

114 NDK: i

novdocx (en) 11 July 2008
Organization
Organizational Unit

12.3.2 rbsRole
rbsRole objects are container objects that represent a role in an organization. Role “members” can be
Users, Groups, Organizations, or Organizational Units, and they are associated to a role in a specific
scope of the tree. The rbsTask and rbsBook objects are assigned to rbsRole objects.

Containment:

rbsCollection

12.3.3 rbsModule
rbsModule objects are container objects that hold rbsTask and rbsBook objects. They have a module
name attribute that should represent the name of the product that defines the tasks or books.

Containment:

rbsCollection

12.3.4 rbsTask
rbsTask objects are leaf objects that describe the behavior of a task. They have the following
characteristics:

1. An entry point for invoking the task
2. A parameters string for miscellaneous data needed to perform the task
3. A list of rights that are assigned to perform the task
4. A back link to all roles to which the task is assigned

Containment:

rbsModule

12.3.5 rbsBook
rbsBook objects are leaf objects that describe a book. They have the following characteristics:

1. An entry point for launching the book
2. A parameters string for miscellaneous data needed to display the book
3. A list of page attributes that are assigned rights for the book
4. A back link to all roles to which the book is assigned
5. A list of pages assigned to the book
6. A list of object class types that the book supports

Containment:

rbsModule
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
12.3.6 rbsScope
rbsScope objects are leaf objects used for ACL assignments (instead of making assignments for each
User object). They inherit from the Group class. User objects are assigned to an rbsScope object.
These objects have a reference to the scope of the tree that they are associated with. rbsScope
objects are dynamic, meaning that they are created, modified, and deleted on the fly. Do not modify
or delete these objects manually.

Containment:

rbsRole

12.4 eDirectory Access Service XML Formats for
eDirectory Attribute Syntax Definitions
The eDirectory Access Service (eDAS) reads and writes attribute values as strings in XML format.
This section lists the formats used for standard eDirectory syntax definitions. The first column lists
the eDirectory syntax definitions and the second column lists the corresponding eDAS XML format.

SYN_BACK_LINK <attribute_name>
 <value>
 <remote-id>{Long}</remote-id>
 <object-name>{String}</object-name>
 </value>
</attribute_name>

SYN_BOOLEAN <attribute_name>
 <value>{true|false}</value>
</attribute_name>

SYN_CE_STRING <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>

SYN_CI_LIST <attribute_name>
 <value>
 <item>{String}</item>
 .
 .
 .
 </value>
</attribute_name>

SYN_CI_STRING <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>
Reference 115

116 NDK: i

novdocx (en) 11 July 2008
SYN_CLASS_NAME <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>

SYN_COUNTER <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>

SYN_DIST_NAME <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>

SYN_EMAIL_ADDRE
SS

<attribute_name>
 <value>
 <type>{Long}</type>
 <address>{String}</address>
 </value>
 .
 .
 .
</attribute_name>

SYN_FAX_NUMBER <attribute_name>
 <value>
 <bits>{Long}</bits>
 <telephone-number>{String}</telephone-number>
 </value>
 .
 .
 .
</attribute_name>

SYN_HOLD <attribute_name>
 <value>
 <amount>{Int}</amount>
 <subject>{String}</subject>
 </value>
 .
 .
 .
</attribute_name>

SYN_INTEGER <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
SYN_INTERVAL <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>

SYN_NET_ADDRESS <attribute_name>
 <value>
 <address-type>{Long}</address-type>
 <address>{String}</address>
 <address-string>{String}</address-string>
 </value>
 .
 .
 .
</attribute_name>

SYN_NU_STRING <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>

SYN_OBJECT_ACL <attribute_name>
 <value>
 <privileges>{Long}</privileges>
 <protected-attr-name>{String}</protected-attr-name>
 <subject>{String}</subject>
 </value>
 .
 .
 .
</attribute_name>

SYN_OCTET_LIST <attribute_name>
 <value>
 <item>{String}</item>
 .
 .
 .
 </value>
</attribute_name>

SYN_OCTET_STRIN
G

<attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>
Reference 117

118 NDK: i

novdocx (en) 11 July 2008
SYN_PATH <attribute_name>
 <value>
 <type>{Long}</type>
 <volume>{String}</volume>
 <path>{String}</path>
 </value>
 .
 .
 .
</attribute_name>

SYN_PO_ADDRESS <attribute_name>
 <value>
 <item>{String}</item>
 .
 .
 .
 </value>
 .
 .
 .
</attribute_name>

SYN_PR_STRING <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>

SYN_REPLICA_POIN
TER

<attribute_name>
 <value>
 <replica-type>{Long}</replica-type>
 <replica-count>{Long}</replica-count>
 <replica-number>{Long}</replica-number>
 <server-name>{String}</server-name>
 <net-address-hint>
 <address-type>{Long}</address-type>
 <address>{String}</address>
 <address-string>{String}</address-string>
 </net-address-hint>
 </value>
 .
 .
 .
</attribute_name>

SYN_STREAM <attribute_name>
 <value>{String}</value>
</attribute_name>

SYN_TEL_NUMBER <attribute_name>
 <value>{String}</value>
 .
 .
 .
</attribute_name>
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
SYN_TIME <attribute_name>
 <value>{Time}</value>
 .
 .
 .
</attribute_name>

SYN_TIMESTAMP <attribute_name>
 <value>
 <seconds>{Int}</seconds>
 <replica>{Int}</replica>
 <event>{Int}</event>
 </value>
 . . .
</attribute_name>

SYN_TYPED_NAME <attribute_name>
 <value>
 <distinguished-name>{String}</distinguished-name>
 <level>{Long}</level>
 <interval>{Long}</interval>
 </value>
 .
 .
 .
</attribute_name>

SYN_UNKNOWN <attribute_name>
 <value>
 <attribute-name>{String}</attribute-name>
 <syntax-id>{Int}</syntax-id>
 <bytes>{String}</bytes>
 </value>
 .
 .
 .
</attribute_name>
Reference 119

120 NDK: i

novdocx (en) 11 July 2008
Manager 2.7 Developer Kit

A
novdocx (en) 11 July 2008
AiManager Security Issues

The iManager SDK is a development tool, and not intended for use in production environments.
However, as an iManager plug-in developer, you should be aware of iManager’s security
considerations when developing and testing iManager plug-ins to make sure you don’t introduce any
security vulnerabilities into your network environment.

This section provides information about potential security issues related to iManager, and includes
information about the following topics:

Section A.1, “Secure LDAP Certificates,” on page 121
Section A.2, “Self-Signed Certificates,” on page 122
Section A.3, “iManager Authorized Users and Groups,” on page 123
Section A.4, “Preventing Username Discovery,” on page 123
Section A.5, “Tomcat Settings,” on page 124
Section A.6, “Encrypted Attributes,” on page 124
Section A.7, “Secure Connections,” on page 124

A.1 Secure LDAP Certificates
iManager can create secure LDAP connections behind the scenes without any user intervention. If
the LDAP server’s SSL certificate is updated for any reason (for example, new Organizational CA),
iManager should automatically retrieve the new certificate using the authenticated connection and
import it into its own keystore database.

If this does not happen correctly, you must delete the private key store that iManager uses, in order
to force iManager and Tomcat to re-create the database and reacquire the certificate:

1 Shut down Tomcat.
2 Delete the TOMCAT_HOME\webapps\nps\WEB-INF\iMKS file.
3 Restart Tomcat.

4 Open iManager in a browser and log back in to the tree, to automatically reacquire the new
certificate and re-create the database store.

Alternately, you can also manually import the required certificate into Tomcat’s JVM default
keystore using the keytool certificate management utility available in the JDK*. When creating
secure SSL connections, iManager first tries the JVM default keystore, then uses the iManager
specific keystore database.

Platform Restart Command

NetWare® 6.5 or later Enter tomcat5 stop. Wait at least a minute, then enter tomcat5 start
to start the service again.

Windows* Stop and start the Tomcat service.

Linux Enter /etc/init.d/novell-tomcat5 restart.
iManager Security Issues 121

122 NDK: i

novdocx (en) 11 July 2008
After you have an eDirectoryTM certificate saved in DER format, you must import the trusted root
certificate into the iManager keystore. To do this, you need a JDK to use keytool. If a JRE was
installed with iManager, you must download a JDK to use the keytool.

NOTE: For information about creating a .der certificate file, see Exporting a Trusted Root or
Public Key Certificate (http://www.novell.com/documentation/crt32/crtadmin/data/a2ebopb.html)
in the Novell Certificate Server Admin Guide. You will want to export the trusted root certificate.

1 Open a command window.
2 Change to the \bin directory where you have installed the JDK.

For example, on a Windows system, you would enter the following command:

cd j2sdk1.5.0_11\bin

3 Import the certificate into the keystore with the keytool, executing the following keytool
commands (platform specific):

NetWare

keytool -import -alias [alias_name] -file [full_path]\trustedrootcert.der
-keystore sys:java\lib\security\cacerts

Windows

keytool -import -alias [alias_name] -file [full_path]\trustedrootcert.der
-keystore [full_path]\jre\lib\security\cacerts

Linux

keytool -import -alias [alias_name] -file [full_path]/trustedrootcert.der
-keystore [full_path]/jre/lib/security/cacerts

Replace alias_name with a unique name for this certificate and make sure you include the full
path to trustedrootcert.der and cacerts.
The last path in the command specifies the keystore location. This varies from system to
system because it is based on where iManager is installed. The default location for iManager on
a Windows server, for example, is C:\Program
Files\Novell\jre\lib\security\cacerts.

4 Enter changeit for the keystore password.
5 Click Yes to trust this certificate.

NOTE: This process must be repeated for each eDirectory tree you will be accessing with
iManager. If LDAP has been configured to use a certificate not signed by the tree’s Organizational
CA, you must import that certificate’s Trusted Root. This is necessary, for example, if LDAP is
configured to use a VeriSign*-signed certificate.

A.2 Self-Signed Certificates
iManager includes a temporary, self-signed certificate that you use when installing iManager on any
platform except NetWare. It has an expiration date of one year. For more information, see “Self-
Signed Certificates (http://www.novell.com/documentation/imanager27/imanager_install_27/data/
bu3uiv1.html)” in the iManager 2.7 Installation Guide.
Manager 2.7 Developer Kit

http://www.novell.com/documentation/crt32/crtadmin/data/a2ebopb.html
http://www.novell.com/documentation/crt32/crtadmin/data/a2ebopb.html
http://www.novell.com/documentation/imanager27/imanager_install_27/data/bu3uiv1.html
http://www.novell.com/documentation/imanager27/imanager_install_27/data/bu3uiv1.html

novdocx (en) 11 July 2008
A.3 iManager Authorized Users and Groups
Authorized Users and Groups are those that iManager permits to perform its various administrative
tasks. For more information about specifying and configuring Authorized Users and Groups, see
Authorized Users and Groups (http://www.novell.com/documentation/imanager27/
imanager_admin_272/index.html?page=/documentation/imanager27/imanager_admin_272/data/
b8qrh89.html) in the iManager 2.7.2 Administration Guide.

Authorized User and Group data is stored in the configiman.properties file which must be
secured to prevent unauthorized modification. To do this, modify the access controls for
configman.properties to restrict those users authorized to manually edit the file.

NOTE: Not specifying an Authorized User and Group, which prevents the
configiman.properties file from being created, or specifying an Authorized User of
AllUsers, allows any user to install iManager plug-ins and modify iManager server settings. This
is a security risk for server-based iManager environments.

A.4 Preventing Username Discovery
In some installations, the eDirectory server is protected behind a firewall, but the iManager server is
open to the outside world to allow management from home or on the road. Access to iManager is
controlled with Username, Password, and Treename fields on the login screen. In such installations,
it is often desirable to tighten security to avoid revealing any information about the system.

Standard iManager configurations pass through eDirectory messages related to invalid usernames
and passwords during iManager authentication. These messages can inadvertently provide too much
information to potential crackers. To avoid this, iManager 2.7 includes a configuration option to hide
the specific reason for login failure. When enabled, the following error messages are replaced with a
generic error message that reads: Login Failure. Invalid Username or Password.

Invalid Username (-601)
Incorrect password (-669)
Expired password or disabled account (-220)

To enable this setting, open the Configure view and select iManager Server > Configure iManager.
On the Authentication tab, select Hide specific reason for login failure. This sets
Authenticate.Form.HideLoginFailReason=true in iManager’s config.xml file.

Additionally, iManager 2.7 does not support the asterisk (*) character as a wildcard in the Username
field. This prevents unauthorized users from discovering valid usernames. It also prevents possible
denial-of-service attacks that attempt to overload the eDirectory server by continually attempting a
login using only the wildcard (*), which forces eDirectory to search for and return all matching
usernames.
iManager Security Issues 123

http://www.novell.com/documentation/imanager27/imanager_admin_272/index.html?page=/documentation/imanager27/imanager_admin_272/data/b8qrh89.html

124 NDK: i

novdocx (en) 11 July 2008
A.5 Tomcat Settings
Because iManager makes use of Tomcat Servlet Container, iManager administrators should be
aware of the encryption-related configuration options of those resources as part of their overall
security strategy. Of particular interest are cipher suites and trusted certificates, which directly
impact the quality of your wire-level encryption. Consider the following rules when configuring
your Tomcat environment:

Do not use SSL 2.0 cipher suites, which are outdated and not guaranteed to be secure.
Do not use the NULL cipher suite in a production environment.
Do not use any cipher suite classified as LOW or EXPORT quality, because these are less
secure.
Regularly review the list of trusted certificates, and limit the list of accepted Certificate
Authorities to only those you are actually using

More information for Tomcat is available at the Tomcat Documentation Web site (http://
tomcat.apache.org/tomcat-5.5-doc/index.html).

NOTE: Because of the way that iManager interprets and uses data, there are no known risks of
HTML-based attacks such as cross-site scripting.

A.6 Encrypted Attributes
iManager is able to securely read eDirectory 8.8 encrypted attributes. However, because of the way
it determines if an attribute is encrypted, iManager does not securely modify or delete these
encrypted attributes. The impact of this, which can result in some wire-level data exposure, can be
mitigated through normal network security practices such as the following:

Locating all iManager servers behind the firewall
Locating iManager servers physically near their associated eDirectory servers
Physically securing iManager and eDirectory servers
Requiring remote administrators to use a VPN to access iManager and eDirectory servers

A.7 Secure Connections
Although iManager leverages secure HTTP (SSL) for client communications, and secure LDAP
connections between iManager and eDirectory servers, iManager does not, with the exception of
reading encrypted attributes, utilize secure NCP connections for communications between iManager
servers and eDirectory servers.

This is also true for the NCP connection used by Mobile iManager. The impact of this, which can
result in some wire-level data exposure, can be mitigated through normal network security practices
such as the following:

Locating all iManager servers behind the firewall
Locating iManager servers physically near their associated eDirectory servers
Physically securing iManager and eDirectory servers
Requiring remote administrators to use a VPN to access iManager and eDirectory servers
Manager 2.7 Developer Kit

http://tomcat.apache.org/tomcat-5.5-doc/index.html

novdocx (en) 11 July 2008
NOTE: Regardless of the wire-level encryption being used, passwords are always encrypted and
protected as part of the iManager authentication process.
iManager Security Issues 125

126 NDK: i

novdocx (en) 11 July 2008
Manager 2.7 Developer Kit

B
novdocx (en) 11 July 2008
BRevision History

This section outlines all the changes that have been made to the iManager 2.7 Developer Kit
documentation (in reverse chronological order).

Date Description

January 13, 2009 Made minor edits and technical updates.

Updated the content in Section 1.1 to be consistent with iManager 2.7.2.

Updated the content in Section 3.3 to be consistent with iManager 2.7.2.

Updated the content in Section 6.3.3 to be consistent with iManager 2.7.2.

Updated the content in Section 7.1.1 to be consistent with iManager 2.7.2.

Added Section 7.3, “Plug-In Information Through XML,” on page 86 to be consistent
with iManager 2.7.1.

Updated the content in Section 7.5.1 to be consistent with iManager 2.7.2.

Updated the content in Appendix A.3 to be consistent with iManager 2.7.2.

October 17, 2007 Updated Chapter 3 content to be consistent with iManager 2.7.

Removed Section 3.6, “Specifying Supported Device Types”.

Updated Chapter 4 content to be consistent with iManager 2.7.

Updated Chapter 5 content to be consistent with iManager 2.7.

Updated Chapter 6 content to be consistent with iManager 2.7.

Removed Section 6.1.13, “A JSP Conduit Example: Delete User”.

Removed Section 6.2.2, “Include Files”.

Removed Section 6.2.3, “Parameter Variables”.

Updated Chapter 7 content to be consistent with iManager 2.7.

Added Section 7.6, “Precompiling JSPs for Tomcat 5,” on page 90.

Removed Chapter 11, “Migrating iManager 1.5 Plug-Ins to Version 2.x”.

Removed Chapter 12, “Migrating XSL to JSP Tasks”.

Minor edits and technical updates throughout book.

October 11, 2006 Updated Chapter 9, “Logging Debug Messages,” on page 103.

March 1, 2006 Made minor technical edits.

October 5, 2005 Transitioned to revised Novell documentation standards.

July 15, 2005 Updated Section 6.1.3, “Advanced Selection XML Syntax,” on page 65.
Revision History 127

128 NDK: i

novdocx (en) 11 July 2008
June 1, 2005 Made minor technical edits.

Added Section 5.5.1, “Dynamically Updating Drop-down Lists,” on page 58.

Removed outdated task development information, concerning mandatory methods,
from Chapter 11, “Migrating iManager 1.5 Plug-Ins to Version 2.x”.

March 21, 2005 Added Chapter 8, “Installing iManager with Your Application,” on page 99.

Added Section 7.5, “Installing Plug-ins to an Existing iManager,” on page 89

March 2, 2005 Made minor technical edits.

October 6, 2004 Added Section 3.10, “Enabling a Task for the Object View,” on page 45.

Renamed and added more detail and examples to Section 3.9, “Extending the Object
Management Tasks,” on page 43.

Added Chapter 10, “Customizing iManager for Schema Extensions,” on page 105.

Added Chapter 11, “Migrating XSL Tasks to JSP Tasks”.

Updated Section 6.1, “The Object Selector Widget,” on page 61.

Added Section 6.2, “The Advanced Selection Widget,” on page 69.

Added Section 6.3, “The MVStringEditor Widget,” on page 75.

Added Section 3.3.1, “Encoding Data,” on page 32 and Section 3.4.1, “Encoding Data
Using Tag Libraries,” on page 33.

Added Chapter 7, “Creating a Plug-In,” on page 81.

Removed the NDS Namespace Reference section from Chapter 12, “Reference,” on
page 113. This is superseded by the AdminNamespace, and the API documentation
is now integrated into the iManager Framework API documentation.

June 29, 2004 Added a warning about configuring iManager to a tree that hosts a previous version of
iManager to “Setting Up Role-Based Services” on page 14.

Made minor technical edits.

Date Description
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
June 9, 2004 Updated Section 1.1, “Requirements,” on page 11.

Renamed and reorganized “Prerequisites” on page 12.

Replaced references to the Gadget Runner with iManager or Tomcat.

Renamed the Starting iManager section to Accessing iManager.

Renamed the Setting Up iManager section to “Setting Up Role-Based Services” on
page 14 and created a single procedure.

Removed the Setting Up An IDE section in Getting Started.

Updated and reorganized Section 2.1, “How iManager Works,” on page 17.

Improved Section 2.3, “Role-Based Services,” on page 20 and Section 2.4, “Module
ID,” on page 21.

Removed the Tasks section.

Added the following: Chapter 3, “Creating Tasks,” on page 23, Chapter 4, “Creating
Property Books and Pages,” on page 49, Chapter 5, “Using the Plug-In Studio,” on
page 53, Chapter 6, “Using the iManager Widgets,” on page 61, Chapter 9, “Logging
Debug Messages,” on page 103, and Chapter 11, “Migrating iManager 1.5 Plug-Ins to
Version 2.x”.

Added Section 3.8, “Task Chaining,” on page 41.

Added reference information to Section 3.7, “Launching Tasks and Delegating to
Tasks,” on page 38.

Date Description
Revision History 129

130 NDK: i

novdocx (en) 11 July 2008
February 18,
2004

Updated and fixed typos in code sample in “A JSP Conduit Example: Delete User” on
page 69.

Updated Section 1.1, “Requirements,” on page 11. Changed the JDK, browser, and
NICI requirements.

Updated Section 1.2, “Installing the SDK,” on page 11.

Updated Section 1.3, “Using the iManager SDK,” on page 12, and included
instructions for using the SDK on Linux.

Moved the Enabling Connections in Assigned and Collection Owner Modes section
from Section 2.5, “Connection Modes,” on page 22.

Added Section 3.6, “Specifying Supported Device Types,” on page 37.

Added Section 3.6, “Specifying Conditions for Task Execution,” on page 37.

Added “Using the Plug-In Studio” on page 53 and removed the outdated section on
using the Create iManager Template task.

Changed the name of the Converting an iManager 1.5 Plug-In to a Task Gadget
section to Migrating iManager 1.5 Plug-Ins to Version 2.0.

Reorganized Migrating iManager 1.5 Plug-Ins to Version 2.0 by removing the Using
the Automated JSP Conversion Tool section, adding Migrating Tasks and Pages
Created Using the Create iManager Task, adding Migrating Other Plug-Ins, and
adding other needed information.

Added Section 6.4, “The Date/Time Widget,” on page 79.

Renamed the XML Installation and Registration File Element Definitions section to
Section 12.2, “XML Schema for Installation and Registration Files,” on page 113.
Removed the DTD and its element definitions and examples, and replaced them with
a link to the iManager XML Schema document.

October 8, 2003 Updated Section 1.1, “Requirements,” on page 11 to exclude JDK 1.4.2 because of
incompatibilities.

Updated Section 1.1, “Requirements,” on page 11 with the requirement that NICI be
installed when running the SDK on Windows.

In “Prerequisites” on page 12, changed references to gadgetRunner.bat to
startSDK.bat.

Added the XML Installation and Registration File Element Definitions section to
Chapter 12, “Reference,” on page 113.

Improved the quality of some graphics.

June 2003 Added Section 3.11, “Using the AdminNamespace,” on page 48 and added a link to
the NDS Namespace API documentation to Section 12.1, “iManager API
Documentation,” on page 113.

Added Section 3.7, “Launching Tasks and Delegating to Tasks,” on page 38.

Renamed the Registering a Plug-In section to Creating Registration Files (page 35)
and updated it.

Added Section 2.5, “Connection Modes,” on page 22.

Date Description
Manager 2.7 Developer Kit

novdocx (en) 11 July 2008
April 10, 2003 Updated Section 2.2, “The iManager Directory Structure,” on page 19.

Moved the "RBS Objects" section from Section 2.3, “Role-Based Services,” on
page 20 to Chapter 12, “Reference,” on page 113, and renamed it "Role Based
Services Directory Objects."

Added Chapter 11, “Creating an iPrint Gateway Plug-In,” on page 109.

Updated “Using the iManager Widgets” on page 61.

March 2003 Added to the NDK.

Date Description
Revision History 131

	NDK: iManager 2.7 Developer Kit
	About This Guide
	1 Getting Started
	1.1 Requirements
	1.2 Installing the SDK
	1.3 Using the iManager SDK
	1.3.1 Prerequisites
	1.3.2 Starting iManager
	1.3.3 Setting Up Role-Based Services

	1.4 Building the Sample Plug-Ins

	2 Concepts
	2.1 How iManager Works
	2.1.1 Tasks
	2.1.2 Property Books and Pages
	2.1.3 Architecture

	2.2 The iManager Directory Structure
	2.3 Role-Based Services
	2.4 Module ID
	2.5 Connection Modes
	2.6 iManager Plug-ins

	3 Creating Tasks
	3.1 Overview
	3.2 Creating a Task: An Example
	3.2.1 Creating the Java Class
	3.2.2 Creating the UI
	3.2.3 Creating the Registration File
	3.2.4 Localizing the Task
	3.2.5 Deploying the Task

	3.3 Tips for Creating Task Java Classes
	3.3.1 Encoding Data

	3.4 Tips for Creating JSPs
	3.4.1 Encoding Data Using Tag Libraries
	3.4.2 Encoding Data Using Java Methods

	3.5 Creating Registration Files
	3.5.1 Using the Create XML Install File Task

	3.6 Specifying Conditions for Task Execution
	3.7 Launching Tasks and Delegating to Tasks
	3.7.1 The Launch Service and Launch Actions
	3.7.2 Life Cycles of Launched and Delegate Tasks
	3.7.3 Accessing Launching and Delegation Features Programmatically
	3.7.4 Launching and Delegation Methods in GadgetInstance
	3.7.5 Task Delegation Example
	3.7.6 Closing the Window of a Launched Task
	3.7.7 More Examples

	3.8 Task Chaining
	3.8.1 Setting Objects in the Initial Task
	3.8.2 Getting Objects in the Chained Task
	3.8.3 Defining the Chained Task in a Registration File

	3.9 Extending the Object Management Tasks
	3.9.1 Registering an Object Type for the Create Object Task
	3.9.2 Extending the Delete, Move, and Rename Tasks
	3.9.3 Disallowing Operation of an Object Management Task on an Object Type

	3.10 Enabling a Task for the Object View
	3.10.1 Register a Task to Work with Specific Object Types
	3.10.2 Retrieve Objects from iManager

	3.11 Using the AdminNamespace

	4 Creating Property Books and Pages
	4.1 Creating a Property Book
	4.1.1 Create the Java Class
	4.1.2 Create the Property Book Pages
	4.1.3 Create the XML Registration File

	4.2 Creating a Property Book Page
	4.2.1 Create the Java Class
	4.2.2 Create the JSP
	4.2.3 Create the XML Registration File

	5 Using the Plug-In Studio
	5.1 The Plug-In Studio User Interface
	5.2 Creating a Custom Plug-In
	5.2.1 Adding Drop Down List Values Dynamically

	5.3 Control Parameters
	5.4 What the Plug-In Studio Creates
	5.5 Customizing Plug-Ins Created with the Plug- In Studio
	5.5.1 Dynamically Updating Drop-down Lists

	6 Using the iManager Widgets
	6.1 The Object Selector Widget
	6.1.1 Include Files
	6.1.2 Parameter Variables
	6.1.3 Advanced Selection XML Syntax
	6.1.4 Dynamically Enabling and Disabling the Object Selector
	6.1.5 Pre-Processing and Post-Processing Routines (preOS and postOS)
	6.1.6 Making the Root Selectable
	6.1.7 Making Public and This Selectable
	6.1.8 Filtering on All Container Types
	6.1.9 Filtering on Containers that Are Partitions
	6.1.10 Object Selector Support in the iManager Tag Library
	6.1.11 A JSP Tag Library Example: Delete User
	6.1.12 Troubleshooting

	6.2 The Advanced Selection Widget
	6.2.1 How to Call the AS Widget
	6.2.2 Include Files
	6.2.3 Parameter Variables
	6.2.4 A JSP Example: Delete Users
	6.2.5 Setting the Options at Runtime Using JavaScript
	6.2.6 Implementing AdvSelTypeInfoCallback
	6.2.7 The Resulting XML Selection Criteria

	6.3 The MVStringEditor Widget
	6.3.1 How to Use the MVStringEditor Widget
	6.3.2 Modes
	6.3.3 Parameters
	6.3.4 JavaScript API
	6.3.5 Examples

	6.4 The Date/Time Widget

	7 Creating a Plug-In
	7.1 Overview
	7.1.1 Plug-In File Structure
	7.1.2 Deleting Files by Using Command-Line Files After Plug-In Installation
	7.1.3 Plug-In Directory Objects and Attributes
	7.1.4 Plug-in Update and Uninstallation
	7.1.5 Plug-In Installers

	7.2 Creating a Manifest File
	7.3 Plug-In Information Through XML
	7.4 Creating a Plug-In Installer
	7.5 Installing Plug-ins to an Existing iManager
	7.5.1 Installing a Plug-In Programmatically
	7.5.2 Installing a Plug-In Manually

	7.6 Precompiling JSPs for Tomcat 5
	7.6.1 Tomcat 5 Compiled Java Class File Location
	7.6.2 Precompiling JSP Pages with Ant

	7.7 Testing a Plug-In
	7.7.1 Installation Testing
	7.7.2 Plug-In Studio Testing
	7.7.3 Individual Task Testing
	7.7.4 Object View Testing
	7.7.5 Generic Operation Testing

	8 Installing iManager with Your Application
	8.1 Windows
	8.2 Linux (SUSE and Red Hat)
	8.3 Installer.properties File

	9 Logging Debug Messages
	10 Customizing iManager for Schema Extensions
	10.1 Providing an Image for a New Object Class
	10.2 Providing Translated Names for New Object Classes and Attributes
	10.3 Providing a Creator for a New Object Class
	10.4 Handling Deletion, Moving, and Renaming of a New Object Class
	10.5 Providing Pages for the Modify Object Property Book
	10.6 Providing Tasks to Interact with a New Object Class

	11 Creating an iPrint Gateway Plug-In
	11.1 Introduction to iPrint
	11.2 Getting Started
	11.3 Using the Sample Gateway Plug-In
	11.4 Creating Gateway Plug-In Java Class Files
	11.5 Creating Gateway Plug-In JSP Files
	11.6 Creating Gateway Plug-In Registration Files

	12 Reference
	12.1 iManager API Documentation
	12.2 XML Schema for Installation and Registration Files
	12.3 Role-Based Services Directory Objects
	12.3.1 rbsCollection
	12.3.2 rbsRole
	12.3.3 rbsModule
	12.3.4 rbsTask
	12.3.5 rbsBook
	12.3.6 rbsScope

	12.4 eDirectory Access Service XML Formats for eDirectory Attribute Syntax Definitions

	A iManager Security Issues
	A.1 Secure LDAP Certificates
	A.2 Self-Signed Certificates
	A.3 iManager Authorized Users and Groups
	A.4 Preventing Username Discovery
	A.5 Tomcat Settings
	A.6 Encrypted Attributes
	A.7 Secure Connections

	B Revision History

