Novell
Developer Kit

www.novell.com

‘ NOVELL CERTIFICATE SERVER™
October 11, 2006 LIBRARY FOR C VERSION 2

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 1993-2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

http://www.novell.com/info/exports/

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide

1 Getting Started

1.1 NPKIDependencies e e e
1.2 Getting Started.
1.3 Retrieving API Version Information
1.4 Getting Server Information.

2 Tasks

2.1 Creating a Certificate Authority
2.2 Retrieving CA Certificates i
2.3 BackingUpthe CA
24 Restoringthe CA
2.5 CreatingUser Certificates i e
2.6 Importing a User Certificate.
2.7 Retrieving User Certificates.
2.8 Reading a User's Private Key Nicknames
29 ExportingaUser'sPrivate Key
2.10 Creating Server Certificates (Internal CA)
2.11 Storing Server Certificates (Internal CA)
2.12 Creating Server Certificates (External CA)
2.13 Storing Server Certificates (External CA)
2.14 Retrieving Server Certificates
2.15 Backing Up a Server Certificate.
2.16 Restoringa Server Certificate
217 Retrieving AServer's Private Key e
2.18 Creating a Certificate froma CSR
2.19 Retrieving IP and DNS Information
2.20 Creatinga Trusted Root Container e
221 Creatinga Trusted Root Object.
2.22 Verifying Certificates witha Trusted Root
2.23 Housekeeping Tasksttt

3 Functions

NPKICertificateList
NPKICerINfO e
NPKIChainCertInfo.
NPKICONNeCtTOIPAAAresS
NPKICreateCoNnteXt
NPKICreateOrganizationalCA e e e e
NPKICreateSASServiceObject. e
NPKICreateServerCertificate e e
NPKICreateTrustedROOL. e
NPKICreateTrustedRootContainer. e e

11

1"
11
11
11

13

13
14
14
14
14
15
15
16
16
16
17
17
18
18
18
18
18
19
19
19
20
20
20

6

NPKICreateUserCertificate e 42

NPKICSRINTO e 47
NPKIDeleteDSODJECt e 48
NPKIDeleteUserCertificate i e 49
NPKID S OGIN .ottt 51
NPKIDSLOGOUL . . .ottt e e 52
NPKIDSObJECEXISIS oo e 53
NPKIEXPOCAKEY e e e e 54
NPKIEXPOMSErverKeyo 56
NPKIEXpOrtUSErKeYo e 58
NPKIFindKeyGenServersForUser. o e e 60
NPKIFindServerCertificateNames. e 62
NPKIFindServersinContext e 63
NPKIFindOrganizationalCA. e 64
NPKIFindTrustedRootsInContext e 65
NPKIFindUserCertificates e e 66
NPKIFreeContexXt 69
NPKIGenerateCertificateFromCSR e 70
NPKIGetAlgorithmInfo. 73
NPKIGetCACertificateso 75
NPKIGetHandleToServerKey e e e e e 77
NPKIGetHandleToUserKey. oo e e e e e 79
NPKIGetHostServerDN 80
NPKIGetKMOCertificateName 81
NPKIGetSASServiceName e e 82
NPKIGetServerCertificates e 83
NPKIGetServerCertificateStatus e 85
NPKIGetServerDNSNamMe 87
NPKIGetServerinfo 88
NPKIGetServerlPAdAresso e 91
NPKIGetServerlPANADNSINTO 93
NPKIGetServerUTCTimeo e e e e e e e e 94
NPKIGetTrustedRootINnfo 95
NPKIGetWrappedServerKeyo 97
NPKIMPOrtCAKEY o e e e 98
NPKIIMportServerKeyo 100
NPKINICKNAME e 102
NPKIReadAIINiCkKNamMesS e 103
NPKIServerCertificateName 104
NPKISErverNames 105
NPKISetTreeName 106
NPKIStoreServerCertificates. e 107
NPKIStoreServerCertificatesFromCertificateList. 110
NPKIStoreUserCertificate e e 112
NPKIUserCertInfo 114
NPKIVerifyCertificateWithTrustedRoots 116
NPKIVersionInfo e e 118
Defines 119
4.1 Basic Constraints Extension. e 119
4.2 Date Flags 120

NDK: Novell Certificate Server Library for C Version 2

43
4.4
4.5

4.6
4.7
4.8
4.9
4.10

4.11
4.12

4.13

4.14

4.15

4.16

4.17

General Name Type Extensions
Key Usage EXtension
Novell Security Attributes Extension
451 Mutually Exclusive Flags.
452 Additional Flags.o
NPKI Context Definitions
NPKIGetServerCertificateStatus Defines.
NPKIEXpOrtCAKeY Flagso e
NPKIExportServerKey Flagso
NPKIGetServerinfo Definesand Flags
4.10.1 ServerInformation Flags.
4.10.2 Key Generation Algorithms Defines i
4.10.3 Signing Algorithms Defines
4.10.4 Key Pair Storage Defines
4.10.5 CAOperational Defines. i
NPKI_Version Values
NPKIx509 Certificate Invalidity Reasons
4121 flags. . o
NPKIX509 CRL HOId TypesS . . . it e e e e e e
4,131 Certificate Hold Flags i
Private Key Flags. e
4141 GeneralPrivate Key Flag i
4.14.2 Optional Private Key Flag
Public Key Flags
4.15.1 Certificate Authority PublicKey Flags o i
4.15.2 End Entity Certificate Creation PublicKey Flags
4.15.3 Optional Certificate Creation PublicKey Flags
4.15.4 Server Private Key and Certificate Flag
X509 EXIENSIONS. . ..o
4.16.1 General Purpose ExtensionFlags.
Subject Alternative Name Types (obsolete, 3/2005)

5 Structures

5.1
5.2

5.3

ASN1T Encoded EXtension o e
NPKI EXIENSION. . ..

5.2.1 General Purpose Extension Structure.
Subject Alternative Names Extension

6 NPKI Sample Code

A Revision History

133

133
134

134
134

137

139

8 NDK: Novell Certificate Server Library for C Version 2

About This Guide

Novell® Certificate Server™ Library for C Version 2 (NPKI) furnishes you with a directory-
centered, public key infrastructure (PKI) to create, manage, and access X.509 certificates. This API
is delivered entirely in the C programming language to provide broad cross-platform support for all
platforms that support Novell eDirectory™, including Solaris*, Linux*, and Windows* NT*/2000/
XP, NetWare™ and AIX*.

For more specific information about this API and how it relates to other Novell Certificate Server
APIs, see Novell Certificate Server APIs — Overview.

This guide contains the following sections:

* Section 1.1, “NPKI Dependencies,” on page 11
 Section 1.2, “Getting Started,” on page 11
 Chapter 1, “Getting Started,” on page 11

» Chapter 2, “Tasks,” on page 13

* Chapter 3, “Functions,” on page 21

* Chapter 4, “Defines,” on page 119

* Chapter 5, “Structures,” on page 133

* Chapter 6, “NPKI Sample Code,” on page 137

Additional Information

For more comprehensive background information about setting up, managing, and troubleshooting
this service, see the Novell Certificate Server Administration Guide (http://www.novell.com/
documentation/lg/crt221ad/index.html).

The new Certificate Server functionality runs only on the same platforms as eDirectory 8.7 (see
Novell eDirectory 8.7 System Requirements (http://www.novell.com/products/edirectory/
sysreqs.html)

For Certificate Server source code projects, visit Forge Project: Novell Certificate Server Libraries
for C (http://forge.novell.com/modules/xfmod/project/?ncslib) and Forge Project: Novell Certificate
Server Classes for Java (http://forge.novell.com/modules/xfmod/project/?ncsjava).

For Certificate Server sample code, see Novell Forge Files Novell Certificate Server Libraries for C
(../../../samplecode/ncslib_sample/index.htm).

For help with Certificate Server problems or questions, visit the Novell NCSLIB Support Forum
(http://developer-forums.novell.com/group/novell.devsup.ncslib/readerNoFrame.tpt/
@thread@first).

Documentation Updates

For the most recent version of this guide, see Novell Certificate Server Libraries for C (http://
developer.novell.com/ndk/ncslib.htm).

http://www.novell.com/documentation/lg/crt221ad/index.html
http://www.novell.com/products/edirectory/sysreqs.html
http://forge.novell.com/modules/xfmod/project/?ncslib
http://forge.novell.com/modules/xfmod/project/?ncslib
http://forge.novell.com/modules/xfmod/project/?ncsjava
http://forge.novell.com/modules/xfmod/project/?ncsjava
../../../samplecode/ncslib_sample/index.htm
http://developer-forums.novell.com/group/novell.devsup.ncslib/readerNoFrame.tpt/@thread@first
http://developer.novell.com/ndk/ncslib.htm

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

User Comments

We want to hear your comments and suggestions about this manual. To contact us, send e-mail to
ndk@novell.com.

10 NDK: Novell Certificate Server Library for C Version 2

Getting Started

For more conceptual information about Novell® Certificate Server™ Library for C Version 2
(NPKI), see Concepts in the Novell Certificate Server APIs Overview document.

1.1 NPKI Dependencies

See Novell eDirectory™ 8.7 System Requirements (http://www.novell.com/products/edirectory/
sysreqs.html).

1.2 Getting Started

Before calling any of the Novell Certificate Server functions, you must create a context, set the tree
name, and login and authenticate to the tree. Call these APIs in the following order:

1. NPKICreateContext (page 28)

2. NPKISetTreeName (page 106)

3. NPKIConnectTolPAddress (page 27)
4. NPKIDSLogin (page 51)

When these steps are completed, you need to finish up and clear the context by calling
NPKIFreeContext (page 69) (see Section 2.23, “Housekeeping Tasks,” on page 20).

For an example of how to use the login functions, see Loggingln (../../../samplecode/ncslib_sample/
LoggingIn.cpp.html).

1.3 Retrieving API Version Information

To obtain NPKIAPI version information, call NPKIVersionInfo (page 118). For a sample
implementation of this task, see Versionlnfo (../../../samplecode/ncslib_sample/
VersionInfo.cpp.html).

1.4 Getting Server Information

When creating certificates, you need to determine what key sizes, algorithms, and validity dates are
supported by the servers used in this process. Call NPKIGetServerInfo (page 88) to get this
information from each of the servers. For a sample implementation of this task, see GetServerInfo
(../../../samplecode/ncslib_sample/GetServerInfo.cpp.html).

Getting Started

1"

http://www.novell.com/products/edirectory/sysreqs.html
../../../samplecode/ncslib_sample/LoggingIn.cpp.html
../../../samplecode/ncslib_sample/VersionInfo.cpp.html
../../../samplecode/ncslib_sample/GetServerInfo.cpp.html

12 NDK: Novell Certificate Server Library for C Version 2

Tasks

Novell® Certificate Server™ Library for C Version 2 contains functions that allow you to create,
manage, and store user and server certificates. Examples of the tasks described in this section are
listed in Chapter 6, “NPKI Sample Code,” on page 137.

This section contains the following tasks:

Section 2.1, “Creating a Certificate Authority,” on page 13

Section 2.2, “Retrieving CA Certificates,” on page 14

Section 2.3, “Backing Up the CA,” on page 14

Section 2.4, “Restoring the CA,” on page 14

Section 2.5, “Creating User Certificates,” on page 14

Section 2.6, “Importing a User Certificate,” on page 15

Section 2.7, “Retrieving User Certificates,” on page 15

Section 2.8, “Reading a User's Private Key Nicknames,” on page 16
Section 2.9, “Exporting a User's Private Key,” on page 16

Section 2.10, “Creating Server Certificates (Internal CA),” on page 16
Section 2.11, “Storing Server Certificates (Internal CA),” on page 17
Section 2.12, “Creating Server Certificates (External CA),” on page 17
Section 2.13, “Storing Server Certificates (External CA),” on page 18
Section 2.14, “Retrieving Server Certificates,” on page 18

Section 2.15, “Backing Up a Server Certificate,” on page 18

Section 2.16, “Restoring a Server Certificate,” on page 18

Section 2.17, “Retrieving A Server's Private Key,” on page 18
Section 2.18, “Creating a Certificate from a CSR,” on page 19
Section 2.19, “Retrieving IP and DNS Information,” on page 19
Section 2.20, “Creating a Trusted Root Container,” on page 19
Section 2.21, “Creating a Trusted Root Object,” on page 20

Section 2.22, “Verifying Certificates with a Trusted Root,” on page 20
Section 2.23, “Housekeeping Tasks,” on page 20

2.1 Creating a Certificate Authority

When creating a Certificate Authority (CA), you should choose a server that is highly available and
highly reliable, then follow this procedure:

1

2

Determine that a CA does not already exist by calling NPKIFindOrganizational CA (page 64),
which returns an error if the CA does not exist.

Call NPKIGetServerUTCTime (page 94) to get the current time on the server that will host the
CA.

Tasks

13

3 Call NPKIGetServerlnfo (page 88) and NPKIGetAlgorithmInfo (page 73) to determine the key
sizes, algorithms, and validity dates that are supported on the server.

4 Determine the certificate attributes and extensions, then create the certificate by calling
NPKICreateOrganizational CA (page 29).

For an example implementation of this task, see CreateCA (../../../samplecode/ncslib_sample/
CreateCA.cpp.html).

2.2 Retrieving CA Certificates

CA certificates are retrieved by calling NPKIGetCACertificates (page 75).

1 You can call NPKIFindOrganizational CA (page 64) to get the Distinguished Name (DN) of the
CA.

2 Call NPKIGetCACCertificates (page 75) to retrieve the certificates. Most applications should
only use the self-signed certificate.

For a sample implementation of this task, see GetCACert (../../../samplecode/ncslib_sample/
GetCACert.cpp.html).

2.3 Backing Up the CA

The CA certificates and private key can be backed by calling NPKIExportCAKey (page 54)
function.

1 Call NPKIFindOrganizational CA (page 64) to get the DN of the CA. The CA name is the leaf
name of the DN.

2 Call NPKIExportCAKey (page 54) to export the CA’s private key and certificates into a
personal information exchange (PFX) file. Store the PFX file in a secure place.

For a sample implementation of this task, see BackupCA (../../../samplecode/ncslib_sample/
BackupCA.cpp.html).

2.4 Restoring the CA

To restore the certificate authority, call NPKIImportCAKey (page 98) to import the CA’s private key
and certificates into eDirectory™ using the PFX file you previously created using
NPKIExportCAKey (page 54).

For a sample implementation of this task, see RestoreCA (../../../samplecode/ncslib_sample/
RestoreCA.cpp.html).

2.5 Creating User Certificates

The first step in creating a user certificate is to find a CA and retrieve information from it. The
second step is to find a key generation server and retrieve information from it. The third step is to

14 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/CreateCA.cpp.html
../../../samplecode/ncslib_sample/GetCACert.cpp.html
../../../samplecode/ncslib_sample/BackupCA.cpp.html
../../../samplecode/ncslib_sample/RestoreCA.cpp.html

determine the certificates attributes and extensions using the information from the previous two
steps and user input.

1 Find the CA by calling NPKIFindOrganizational CA (page 64). Then call these accessor
functions:
* NPKIGetHostServerDN (page 80)—to get the name of the server that hosts the CA

* NPKIGetServerUTCTime (page 94)—to get the current time on the server which hosts the
CA

* NPKIGetServerInfo (page 88)—to get the supported key signature algorithms and the
maximum and minimum validity times

2 Only servers holding a writeable partition that contains the user's object can create certificates
for the user. Call NPKIFindKeyGenServersForUser (page 60) to find a server that holds this
partition. After a successful return, you can use the following accessor functions:

* NPKIServerNames (page 105)—to retrieve the servers' DN

* NPKIGetServerInfo (page 88)—to get the supported key generation algorithm and to
determine whether the key generation server is the same server as the CA server

* NPKIGetAlgorithmInfo (page 73)—to get the maximum supported key generation sizes.
3 Determine the certificate attributes and extensions, then create the user certificate by calling
NPKICreateUserCertificate (page 42).

For a sample implementation of this task, see CreateUserCert (../../../samplecode/ncslib_sample/
CreateUserCert.cpp.html).

2.6 Importing a User Certificate

To import a certificate for a user, call NPKIStoreUserCertificate (page 112) to store the certificate on
the user’s object in eDirectory. The certificate is stored on the industry standard attribute
userCertificate.

For a sample implementation of this task, see ImportUserCert (../../../samplecode/ncslib_sample/
ImportUserCert.cpp.html).

2.7 Retrieving User Certificates

The first step in retrieving user certificates is to find the certificates based on search criteria. The
second step is to so get each certificate and associated information using the accessor function
provided.

1 To find user certificates, call NPKIFindUserCertificates (page 66). Other than the mandatory
field of userDN, all other search criteria are optional. Only certificates that match all of your
search criteria are returned.

NOTE: : If the nickName field is used, all other search criteria is ignored.

2 After a successful return, call the accessor function NPKIUserCertInfo (page 114) to retrieve
each certificate and its associated information.

For a sample implementation of this task, see FindUserCerts (../../../samplecode/ncslib_sample/
FindUserCerts.cpp.html).

Tasks

15

../../../samplecode/ncslib_sample/CreateUserCert.cpp.html
../../../samplecode/ncslib_sample/ImportUserCert.cpp.html
../../../samplecode/ncslib_sample/FindUserCerts.cpp.html

2.8 Reading a User's Private Key Nicknames

The first step in getting all of a user's private key nicknames is to read all of the names. The second
step is to retrieve each of the names.

1 To read the private key nicknames for a user, call NPKIReadAlINickNames (page 103).

2 After a successful return, use the accessor function NPKINickName (page 102) to retrieve each

of nicknames.

For a sample implementation of this task, see ReadUserNicknames (../../../samplecode/
ncslib_sample/ReadUserNicknames.cpp.html).

2.9 Exporting a User's Private Key

To export a user's private key and certificate chain, call NPKIExportUserKey (page 58) to create a
PFX file. Store the PFX file in a secure place.

For a sample implementation of this task, see ExportUserCerts (../../../samplecode/ncslib_sample/
ExportUserCert.cpp.html).

2.10 Creating Server Certificates (Internal CA)

The first step in creating a server certificate is to find and retrieve information from the server for
which you wish to create a certificate. The second step is to find the CA and retrieve information
from it. The third step is to determine the certificates attributes and extensions using the information
from the previous two steps and user input.

1 Find the server for which you want to create a certificate by calling
NPKIFindKeyGenServersForUser (page 60). Then call these accessor functions:
* NPKIServerNames (page 105)—to retrieve the servers' DN

» NPKIGetServerInfo (page 88)—to get the supported key generation algorithm and to
determine whether the key generation server is the same server as the CA server

* NPKIGetAlgorithmInfo (page 73)—to get the maximum supported key generation sizes

2 Find the CA by calling NPKIFindOrganizational CA (page 64). Then call these accessor
functions:

* NPKIGetHostServerDN (page 80)—to get the name of the server that hosts the CA

* NPKIGetServerUTCTime (page 94)—to get the current time on the server that hosts the
CA

* NPKIGetServerInfo (page 88)—to get the supported key signature algorithms and the
maximum and minimum validity times

3 Determine the certificate attributes and extensions, then create the server certificate by calling
NPKICreateServerCertificate (page 34). The server certificate must be stored once it is created
(see Section 2.11, “Storing Server Certificates (Internal CA),” on page 17).

For a sample implementation of this task, see CreateServerCert (../../../samplecode/
ncslib_sample/CreateServerCert.cpp.html).

IMPORTANT: During creation of server certificates, if the key-generation server is the same
as the CA server, you should not store the certificates.

16 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/ReadUserNicknames.cpp.html
../../../samplecode/ncslib_sample/ExportUserCert.cpp.html
../../../samplecode/ncslib_sample/CreateServerCert.cpp.html

2.11 Storing Server Certificates (Internal CA)

Server certificates should be added to the certificate list by calling NPKICertificateList (page 22),
and then stored by a calling NPKIStoreServerCertificatesFromCertificateList (page 110).

IMPORTANT: During creation of server certificates, if the key-generation server is the same as the
CA server, you should not store the certificates.

After a successful call to NPKICreateServerCertificate (page 34) in a multiserver environment, the
certificates need to be stored as follows:
1 NPKICertificateList (page 22)—using the clear flag to delete all old certificates from the list

2 NPKICertInfo (page 24)—to get the server certificate that was just created by the successful
call to NPKICreateServerCertificate (page 34)

3 NPKICertificateList (page 22)—using the add flag to add the server certificate to the list
4 NPKIGetCACertificates (page 75)—to get the CA’s self-signed certificate

5 NPKlICertificateList (page 22)—using the add flag ORed with the sort flag to add the CA’s
certificate and to sort the list

6 NPKIStoreServerCertificatesFromCertificateList (page 110)—to store the certificate list

For a sample implementation of this task, see CreateServerCert (../../../samplecode/ncslib_sample/
CreateServerCert.cpp.html).

2.12 Creating Server Certificates (External CA)

There are two major tasks when creating an externally signed certificate. The first task is to create a
PKCS #10 Certificate Signing Request (CSR). Follow the steps below to create the CSR.

Send the CSR to the external CA and retrieve the resulting certificate and all of the CA’s certificates.
Then store all of the certificates in the server certificate object (see Section 2.13, “Storing Server
Certificates (External CA),” on page 18). For information about how to store the certificates,

1 Find the server for which you want to create a certificate by calling
NPKIFindKeyGenServersForUser (page 60). Then call the following accessor functions:
* NPKIServerNames (page 105)—to retrieve the servers' DN

» NPKIGetServerInfo (page 88)—to get the supported key generation algorithm and to
determine whether the key generation server is the same server as the CA server

* NPKIGetAlgorithmInfo (page 73)—to get the maximum supported key generation sizes

2 Determine the certificate attributes and extensions, then create the server CSR (Certificate
Signing Request) by calling NPKICreateServerCertificate (page 34). Send the CSR to the
external CA to get the server certificate. The server certificate must be stored once it is created
(see Section 2.13, “Storing Server Certificates (External CA),” on page 18).

For a sample implementation of this task, see GenerateCSR (../../../samplecode/ncslib_sample/
GenerateCSR.cpp.html).

Tasks

17

../../../samplecode/ncslib_sample/CreateServerCert.cpp.html
../../../samplecode/ncslib_sample/GenerateCSR.cpp.html

2.13 Storing Server Certificates (External CA)

Server certificates should be added to the certificate list by calling NPKICertificateList (page 22),
then stored by a calling NPKIStoreServerCertificatesFromCertificateList (page 110).
1 NPKICertificateList (page 22)—using the clear flag to delete all old certificates from the list

2 NPKICertificateList (page 22)—call this function for each of the certificates in the certificate
chain, using the add flag to add each certificate to the list

3 NPKICertificateList (page 22)—using the sort flag to sort the list
4 NPKIStoreServerCertificatesFromCertificateList (page 110)—to store the certificate list

For a sample implementation of this task, see StoreServerCerts (../../../samplecode/ncslib_sample/
StoreServerCerts.cpp.html).

2.14 Retrieving Server Certificates

Server certificates are retrieved by calling NPKIGetServerCertificates (page 83). If the certificates'
in the chain are needed, they can be accessed by calling NPKIChainCertInfo (page 25).

1 Call NPKIFindServerCertificateNames (page 62) to get a list of all certificate names for a
server. For each certificate name, call NPKIGetServerCertificateStatus (page 85) to determine
whether server certificates are available.

2 Call NPKIGetServerCertificates (page 83) to retrieve the server certificates and the number of
certificates in the chain.

3 To access the chain certificates, call NPKIChainCertInfo (page 25).

For a sample implementation of this task, see RetrieveServerCertificate (../../../samplecode/
ncslib_sample/RetrieveServerCertificate.cpp.html).

2.15 Backing Up a Server Certificate

To back up a server certificate, call NPKIExportServerKey (page 56) to export the server’s private
key and certificates into a PFX file. Store the PFX file in a secure place.

For a sample implementation of this task, see BackupServerCertificate (../../../samplecode/
ncslib_sample/BackupServerCertificate.cpp.html).

2.16 Restoring a Server Certificate

To restore the certificate authority call NPKIImportServerKey (page 100) to import the server’s
private-key and certificates into eDirectory using the PFX file you previously created using
NPKIExportServerKey (page 56).For a sample implementation of this task, see
RestoreServerCertificate (../../../samplecode/ncslib_sample/RestoreServerCertificate.cpp.html).

2.17 Retrieving A Server's Private Key

There are two separate ways to retrieve a server’s private key. The first method is to retrieve a
server’s private key securely wrapped in the server’s storage key. In this form, the key has been
cryptographically protected from disclosure and can only be unwrapped and used by NICI running
on the server.

18 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/StoreServerCerts.cpp.html
../../../samplecode/ncslib_sample/RetrieveServerCertificate.cpp.html
../../../samplecode/ncslib_sample/BackupServerCertificate.cpp.html
../../../samplecode/ncslib_sample/RestoreServerCertificate.cpp.html

The second way to retrieve a server’s private key is to get a NICI handle to the key. The key can then
be used by your NICI enabled application.

1 Call NPKIGetWrappedServerKey (page 97) to retrieve the server’s private key securely
wrapped in the server’s storage key.

2 Call NPKIGetHandleToServerKey (page 77) to get a NICI handle to the server’s private key.

For a sample implementation of this task, see GetServerKey (../../../samplecode/ncslib_sample/
GetServerKey.cpp.html).

2.18 Creating a Certificate from a CSR

The first step in creating a certificate from a CSR is to find a CA and retrieve information from it.
The second step is to determine the certificates attributes and extensions using the information from
the previous step and user input.

1 Find the CA by calling NPKIFindOrganizational CA (page 64). Then call these accessor
functions:
» NPKIGetHostServerDN (page 80)—to get the name of the server that hosts the CA

* NPKIGetServerUTCTime (page 94)—to get the current time on the server which hosts the
CA

* NPKIGetServerInfo (page 88)—to get the supported key signature algorithms and the
maximum and minimum validity times

2 Determine the certificate attributes and extensions, then create the certificate by calling
NPKIGenerateCertificateFromCSR (page 70).

For a sample implementation of this task, see SignCSR (../../../samplecode/ncslib_sample/
SignCSR.cpp.html).

2.19 Retrieving IP and DNS Information

You can retrieve [P and DNS addresses (as determined by WinSock) using the following functions:
1 Retrieve the IP and DNS information by calling NPKIGetServerlPAndDNSInfo (page 93),
which returns the number of IP addresses.

2 To retrieve each of the IP addresses, call NPKIGetServerIPAddress (page 91) to return the IP
address and the number of DNS names associated with that address.

3 To retrieve each of the DNS names associated with the previously retrieved IP address, call
NPKIGetServerDNSName (page 87).

For a sample implementation of this task, see GetIPandDNSInfo (../../../samplecode/ncslib_sample/
GetIPandDNSInfo.cpp.html).

2.20 Creating a Trusted Root Container

To create a trusted root container, call NPKICreateTrustedRootContainer (page 41). Trusted root
containers can be created within any other container.See the sample implementation of this task in
CreateTrustedRootContainer (../../../samplecode/ncslib_sample/
CreateTrustedRootContainer.cpp.html).

Tasks

19

../../../samplecode/ncslib_sample/GetServerKey.cpp.html
../../../samplecode/ncslib_sample/SignCSR.cpp.html
../../../samplecode/ncslib_sample/GetIPandDNSInfo.cpp.html
../../../samplecode/ncslib_sample/CreateTrustedRootContainer.cpp.html

2.21 Creating a Trusted Root Object

To add a trusted root to a trusted root container, call NPKICreateTrustedRoot (page 39). Trusted root
objects can only be created in a trusted root container.

IMPORTANT: The trusted root container must already exist.

See the sample implementation of these tasks in the CreateTrustedRoot (../../../samplecode/
ncslib_sample/CreateTrustedRoot.cpp.html).

2.22 Verifying Certificates with a Trusted Root

To properly verify a certificate, the entire certificate chain needs to be verified. The NPKIAPI
libraries provide the capability to store CA certificates (that is, trusted roots) within eDirectory in a
trusted root container. Use NPKIVerifyCertificateWithTrustedRoots (page 116) to have the
NPKIAPI libraries attempt to construct the entire certificate chain, using certificates found in the
specified trusted root container, and to verify the resulting chain.

For a sample implementation of this task, see VerifyWithTrustedRoot (../../../samplecode/
ncslib_sample/Verify WithTrustedRoot.cpp.html).

2.23 Housekeeping Tasks

When you are finished with all your operations, you need to logout and clean up the context you
created. For an example of how to use the clean up, see Loggingln (../../../samplecode/
ncslib_sample/LoggingIn.cpp.html).

20 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/CreateTrustedRoot.cpp.html
../../../samplecode/ncslib_sample/VerifyWithTrustedRoot.cpp.html
../../../samplecode/ncslib_sample/LoggingIn.cpp.html

Functions

Novell® Certificate Server™ Library for C Version 2 furnishes you with a directory-centered,
public key infrastructure to create, manage, and access X.509 certificates. The API is provided
entirely in the C programming language to provide the best cross-platform support for all platforms
integrating eDirectory.

NOTE: The NDK: Novell Certificate Server Classes for Java also are available.

This API is currently supported on all platforms supported by eDirectory 8.7.x For specific
configuration and implementation requirements, see Novell eDirectory 8.7 System Requirements
(http://www.novell.com/products/edirectory/sysreqs.html).

Novell Certificate Server interfaces, prototypes, and data types are defined in the Novell header files
npki.h and nverify.h. As in all earlier versions, the API is subject to change.

NOTE: When using this API, all functions should be treated as blocking functions.

Functions

21

http://www.novell.com/products/edirectory/sysreqs.html

NPKICertificateList

Stores a certificate (such as, X.509) or set of certificates (such as, PKCS #7) to an internal structure.

Syntax
#include "npki.h"

NWRCODE NPKICertificateList(
const NPKIContext context,

const pnuint8 certificate,

const nuint32 certificatelLen,

const nuint32 flags,

pnuint32 numberOfCertsInlList) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

certificate
(IN) Specifies the X.509 certificate or PKCS #7 certificate set to be acted upon.

certificatelen

(IN) Specifies the length in bytes of certificate.

flags
(IN) Specifies the task to preform on the certificate being passed in. Use one or more of the
following flags:

* PKI_ADD_ CERT—Used when a certificate is being added to the certificate list. This flag
can be used alone or with PKI_SORT _LIST. Using this flag with PKI_DEL CERT causes
an error.

* PKI DEL CERT—Used when a certificate is removed from the certificate list. The
parameter certificate must point to a valid X.509 DER-encoded certificate. This flag can
be used alone or with PKI_SORT _LIST. Using this flag with PKI_ADD_ CERT causes an
error

* PKI CLEAR CERTS—Used to delete all the certificates that have been stored with
previous calls to NPKICertificateList. The certificate parameter should be NULL. This
flag must be used alone.

* PKI_SORT_LIST—Used to sort this list of certificates. PKI_ E_ BROKEN_ CHAIN is
returned if the certificates do not form a complete chain. This flag can be used with either
PKI_ADD_CERT or PKI_DEL_ CERT. When used alone, certificate can be NULL.

numberOfCertsInList
(OUT) Specifies the number of certificates in the list.

Return Values

Returns 0 if successful, or a PKI error code if not successful.

22 NDK: Novell Certificate Server Library for C Version 2

Remarks

Each call to NPKICertificateList can store, remove, and/or sort the internal certificate chain
structure. A subsequent call to NPKIStoreServerCertificatesFromCertificateList (page 110) stores
the chain of certificates to a Key Material Object (KMO).

When creating a server certificate in a multi-server environment for a server that does not host the
CA, calling NPKICreateServerCertificate (page 34) just creates the KMO (that is, it does not store
the certificate or certificate chain). After a successful call to NPKICreateServerCertificate, call
NPKICertInfo (page 24) to get the object certificate that was just created. Call NPKICertificateList
(page 22) with the flag PKI_ CLEAR_CERTS to make sure the internal certificate list is cleared.

Add the object certificate to the certificate list by calling NPKICertificateList and passing in the
object certificate, object certificate length, and the flag PKI ADD CERT. Call
NPKIGetCACertificates (page 75) to get the self-signed certificate. Add this to the certificate list.
When all certificates have been added and a complete chain has been assembled, call
NPKIStoreServerCertificatesFromCertificateList (page 110) to store the certificates in the list to the
KMO.

See Also

NPKIStoreServerCertificatesFromCertificateList (page 110)

Functions

23

NPKICertinfo

Retrieves a newly created X.509 certificate with its corresponding size (formerly NWPKICertInfo).

Syntax
#include "npki.h"

NWRCODE NPKICertInfo (

const NPKIContext context,
pnuint32 certSize,
nuint8 const **cert) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

certSize
(OUT) Returns the size of the certificate.

cert
(OUT) Returns a constant pointer to the X.509 DER-encoded certificate.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

A successful call to NPKIGenerateCertificateFromCSR (page 70) or NPKICreateServerCertificate
(page 34) must be made immediately before calling this function.

See Also

NPKICreateServerCertificate (page 34), NPKIGenerateCertificateFromCSR (page 70)

24 NDK: Novell Certificate Server Library for C Version 2

NPKIChainCertinfo

Obtains a pointer to the specified X.509 certificate in a certificate chain, and the size of the
certificate (formerly NWPKIChainCertInfo).

Syntax
#include "npki.h"

NWRCODE NPKIChainCertInfo (

const NPKIContext context,
const nuint32 index,
pnuint32 certSize,
nuint8 const **cert,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

index

(IN) Indicates which certificate is to be returned.

NOTE: index is 0 based.

certSize

(OUT) Specifies the certificate size.

cert
(OUT) Points to the DER-encoded X.509 certificate.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

A successful call to either NPKIGetCACertificates (page 75) or NPKIGetServerCertificates
(page 83) must have been made before calling this function.

Functions 25

See Also

NPKIGetCACertificates (page 75), NPKIGetServerCertificates (page 83)

26 NDK: Novell Certificate Server Library for C Version 2

NPKIConnectTolPAddress

Establishes a connection to the server at the specified IP address for the specified NPKIContext.

Syntax
#include "npki.h"

NWRCODE NPKIConnectToIPAddress (

const NPKIContext context,
const nuint32 flags,
const nuintlo6 port,
const char *iPAddress,
const unicode *treeName,
const unicode *serverDN) ;

Parameters

context

(IN) Specifies the NPKI context for the request.

flags

(IN) Reserved for future use; pass zero.

port
(IN) Specifies the port number to be used. If zero is passed in, the default IP port (524) is used.

iPAddress
(IN) Points to the IP address to use in the format XXX XXX XXX XXX.

treeName

Returns the name of the tree that the server is in.

serverDN

Returns the fully distinguished name of the server.

Return Values

Returns 0 if successful, or a PKI or eDirectory error if not successful.

Remarks

You should call NPKIConnectTolPAddress after NPKISetTreeName (page 106) and before
NPKIDSLogin (page 51).

Functions 27

NPKICreateContext

Creates a new PKI context structure and initializes it with default values (formerly
NWPKICreateContext).

Syntax
#include "npki.h"

NWRCODE NPKICreateContext (
NPKIContext *context) ;

Parameters

context

(OUT) Points to the newly created context handle.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

See Also

NPKIFreeContext (page 69)

28 NDK: Novell Certificate Server Library for C Version 2

NPKICreateOrganizationalCA

Creates the Organizational (that is, Tree) Certificate Authority (CA) if one does not already exist
(formerly NWPKICreateOrganizationalCA).

Syntax
#include "npki.h"

NWRCODE NPKICreateOrganizationalCA (

const NPKIContext context,
const unicode *serverDN,
const unicode *organizationalCAName,
const nuint32 keyType,
const nuint32 keySize,
const unicode *subjectDN,
const nuint32 signatureAlgorithm,
const nuint32 dateFlags,
const nuint32 validFrom,
const nuint32 validTo,
const nuint32 publicKeyFlags,
const nuint32 privateKeyFlags,
const NPKI Extension *keyUsage,
const NPKI Extension *basicConstraints,
const NPKI ExtAltNames *altNames,
const NPKI Extension *NovellAttr,
const NPKI ASNl Extensions *extensions,
unicode const **organizationalCADN,
const nuint32 retryFlag,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN
(IN) Specifies the eDirectory Server that will host the organizational CA. This must be a valid
eDirectory server in contextDN.

organizationalCAName

(IN) Specifies the CA object name.

keyType

(IN) Specifies the type of key that you want generated. For this release, the only supported key
type is RSA or a value of PKI RSA ALGORITHM. (See “Key Generation Algorithms
Defines” on page 125).

keySize

Functions

29

(IN) Specifies the size of the key that the caller wants to generate. If the key size requested
cannot be generated, the server returns an error and no key is generated. Calling
NPKIGetServerInfo (page 88) with flags set to PKI_CA_INFO, NPKIGetAlgorithmInfo
(page 73) obtains the supported key size on the server.

subjectDN

(IN) Specifies the subjectDN. This is the name to be encoded in the subject field in the
X.509 certificate. The subject field identifies the entity associated with the public/private key
pair. (For more information, see RFC 2459%*, Section 4.1.2.6 (http://www.ietf.org/rfc/
rfc2459.txt’number=2459).)

signatureAlgorithm
(IN) Specifies the algorithm to use to sign the certificate. You can call NPKIGetServerInfo
(page 88) to determine which signature algorithms are supported.

dateFlags
(IN) Specifies whether dates have a two-digit or four-digit year. For this release, set this to
DEFAULT _YEAR ENCODING

validFrom
(IN) Specifies the beginning of the period of validity, represented as the number of seconds
since 00:00:00 UTC Jan 1, 1970, or as OXFFFFFFFF to represent the current time on the server.

validTo

(IN) Specifies the end of the period of validity, represented as the number of seconds since
00:00:00 UTC Jan 1, 1970, or as OXFFFFFFFF to represent the greatest validity period
available on the server.

You can call NPKIGetServerInfo (page 88) to determine the validity period supported by the
server.
publicKeyFlags
(IN) Specifies the public key options to use when creating the key pair. For this release, use the
define PUBLIC KEY SINGLE SERVER together with any optional public key flags.
privateKeyFlags

(IN) Specifies the private key options to use when creating the key pair. For this release, use the
define PRIVATE KEY.

NOTE: There currently is one “Optional Private Key Flag” on page 129 (PRIVATE KEY
_EXTRACTABLE). To use this optional flag, it must be ORed with the value PRIVATE KEY
to enable extraction of the CA’s private key into a PKCS #12 file. (PKCS #12 is the standard
format for extracting and importing keys). This flag must be used to enable backup of the CA’s
private key.

For a sample implementation of this task, see BackupCA (../../../samplecode/ncslib_sample/
BackupCA.cpp.html).

When using the PRIVATE KEY EXTRACTABLE flag and including the Novell Security
Attributes™ extension, it is necessary to bitwise-OR the extractable option (that is,
NOVELL _EXTENSION _EXTRACTABLE KEY in “Additional Flags” on page 122) along
with the appropriate Novell attribute (see NOVELL EXTENSION ORGCA_ DEFAULT

30 NDK: Novell Certificate Server Library for C Version 2

http://www.ietf.org/rfc/rfc2459.txt?number=2459
../../../samplecode/ncslib_sample/BackupCA.cpp.html

(0x00400) in “Mutually Exclusive Flags” on page 122) to the flags field in the Novell Security
Attributes extension.

keyUsage

(IN) Specifies the X.509 key usage extension. For more information, see Section 4.16, “X.509
Extensions,” on page 130 and Section 4.4, “Key Usage Extension,” on page 121. The key
usage extension is not included in the certificate if this parameter is NULL.

basicConstraints

(IN) Specifies the X.509 basic constraints extension. For more information, see Section 4.16,
“X.509 Extensions,” on page 130 and the Section 4.1, “Basic Constraints Extension,” on
page 119. The basic constraints extension is not included in the certificate if this parameter is
NULL.

altNames

(IN) Specifies the X.509 subject alternative name extension. For more information, see Section
4.16, “X.509 Extensions,” on page 130 and the Section 5.3, “Subject Alternative Names
Extension,” on page 134 for more details. The subject alternative names extension is not
included in the certificate if this parameter is NULL.

NovellAttr

(IN) Specifies the Novell Security Attributes extension. For more information, see the sections
Section 4.16, “X.509 Extensions,” on page 130 and Section 4.5, “Novell Security Attributes
Extension,” on page 122. If this parameter is NULL, the default Novell Security Attributes
extension for a CA is included in the certificate.

extensions

(IN) Not implemented for CA certificates in this release. Pass in NULL.

organizationalCADN

(OUT) Returns the CA object’s distinguished name (DN). The leaf name is supplied by the
caller in the field organizational CAName and the system concatenates it with the Security
container’s name to get the CA object's FDN.

retryFlag

(IN) Specifies whether the call is a retry. When NPKICreateOrganizational CA (page 29) is
called, a Certificate Authority object is created; however, eDirectory may take some time to
replicate the object.

Because of the possibility of replication delay, subsequent calls to
NPKICreateOrganizational CA (page 29) might be necessary (for example, if previous calls fail
due to replication delay); however, subsequent calls should be made with the retryFlag set to
PKI_RETRY so that the system does not try to create a new CA object. The error code that is
usually associated with a replication delay is ERR_ NO _SUCH_ENTRY, -601.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Functions

31

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

PKI NCP Calls

0x 2222 92 02 Install CA

Remarks

NPKICreateOrganizational CA creates a Certificate Authority (CA) object in the Security container
if one does not exist.

This function gives serverDN supervisor (S) rights to the All_Attributes ACL of the CA object,
sets the NDSPKI:Organizational CA DN attribute of the Security container to be the distinguished
name of the CA object, and gives [Public] read (R) rights to the NDSPKI:Organizational CA DN
attribute of the Security container.

This function makes the Install CA NCP call to serverDN. This causes PKI services to generate an
RSA key pair, create two X.509 certificates (one self-signed and one signed by the server’s machine
unique key), and store all of this information in the CA object.

To have the ability to backup the CA’s private key, you must use the optional private key flag,
PRIVATE KEY EXTRACTABLE.

For a sample implementation of how to back up the CA, see BackupCA (../../../samplecode/
ncslib_sample/BackupCA.cpp.html).

See Also

NPKIFindOrganizational CA (page 64), NPKIGetAlgorithmInfo (page 73), NPKIGetServerInfo
(page 88), NPKIGetServerUTCTime (page 94)

32 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/BackupCA.cpp.html

NPKICreateSASServiceObject

Creates the Secure Authentication Services (SAS) service object for the specified server.

Syntax
#include "npki.h"

NWRCODE NPKICreateSASServiceObject (

const NPKIContext context,
const unicode *serverName,
const unicode *contextDN) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverName

(IN) Specifies the name of the server for which to create SAS service object.

contextDN
(IN) Specifies the context of the server.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

NPKICreateSASServiceObject does not relink Key Material Objects (KMO) to a server, nor does it
relink a server to its KMOs. This function simply allows new KMOs to be linked with the server

specified in serverName.

Functions

33

NPKICreateServerCertificate

Creates a server key pair as well as the corresponding X.509 certificate (formerly
NWPKICreateServerCertificate).

Syntax
#include "npki.h"

NWRCODE NPKICreateServerCertificate(

const NPKIContext context,
const unicode *keyGenServerDN,
const unicode *signServerDN,
const unicode *certificateName,
const nuint32 keyType,
const nuint32 keySize,
const unicode *subjectDN,
const nuint32 signatureAlgorithm,
const nuint32 dateFlags,
const nuint32 validFrom,
const nuint32 validTo,
const nuint32 publicKeyFlags,
const nuint32 privateKeyFlags,
const NPKI Extension *keyUsage,
const NPKI Extension *basicConstraints,
const NPKI ExtAltNames *altNames,
const NPKI Extension *NovellAttr,
const NPKI ASN]l Extensions *extensions,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

keyGenServerDN
(IN) Points to the eDirectory FDN of the server for which to generate the X.509 certificate.

signServerDN
(IN) Specifies the eDirectory FDN of the server that hosts the CA that will be used to generate
the X.509 certificate.

certificateName

(IN) Specifies the certificate name to be used to identify the key pair and corresponding
certificate.

keyType
(IN) Specifies the type of key that is to be generated. For this release, the only supported key
type is RSA or a value of PKI RSA ALGORITHM (see “Key Generation Algorithms
Defines” on page 125).

34 NDK: Novell Certificate Server Library for C Version 2

keySize

(IN) Specifies the requested size of the key to be generated. If the key size requested could not
be generated, the server returns an error and no key is generated. Calling NPKIGetServerInfo
(page 88) with flags set to PKI_SERVER INFO, then NPKIGetAlgorithmInfo (page 73)
obtains the supported key sizes on the server. The intersection of the key sizes and algorithms
supported by the keyGenServerDN and the signServerDN are the valid key sizes and
algorithms.

subjectDN

(IN) Specifies the subjectDN. This is the name to be encoded in the subject name field in the
X.509 certificate. The subject field identifies the entity associated with the public/private key
pair. (For more information, see RFC 2459%*, Section 4.1.2.6 (http://www.ietf.org/rfc/
rfc2459.txt’number=2459).)

signatureAlgorithm

(IN) Specifies the signature algorithm to use to sign the certificates. You can call
NPKIGetServerInfo (page 88) to determine which signature algorithms are supported.
dateFlags
(IN) Specifies whether dates have a two-digit or four-digit year. For this release, set this to
DEFAULT _YEAR ENCODING
validFrom
(IN) Specifies the beginning of the period of validity, represented as the number of seconds
since 00:00:00 UTC Jan 1, 1970, or OxFFFFFFFF to represent the current time on the server.
validTo

(IN) Specifies the end of the period of validity, represented as the number of seconds since
00:00:00 UTC Jan 1, 1970, or OXFFFFFFFF to represent the greatest validity period available
on the server. You can call NPKIGetServerInfo (page 88) to determine the greatest validity
period supported by the server.

publicKeyFlags

(IN) Specifies the public key options to use when creating the key pair. Use one of the
following flags, together with any optional public key flags:

« PUBLIC KEY SINGLE SERVER—Used when the signing server is the same as the key
generation server. This is only possible when the key generation server also hosts a CA.

« PUBLIC KEY TWO_SERVER—Used when the signing server is not the same as the
key generation server.

« PUBLIC KEY EXTERNAL CA—Used when an external CA will sign the certificate.

privateKeyFlags

(IN) Specifies the private key options to use when creating the key pair. For this release use the
define PRIVATE KEY together with any optional private key flags.

NOTE: There currently is one “Optional Private Key Flag” on page 129 (PRIVATE KEY
_EXTRACTABLE). To use this optional flag, it must be OR'ed with the value PRIVATE _KEY
to enable extraction of the server's private key into PKCS #12 file (PKCS #12 is the standard
format for extracting and importing keys). This flag must be used to enable backup of the
server's private key.

Functions

35

http://www.ietf.org/rfc/rfc2459.txt?number=2459

36

When using the PRIVATE KEY EXTRACTABLE flag and including the Novell Security
Attributes extension, it's necessary to bitwise-OR the extractable option (that is,

NOVELL EXTENSION EXTRACTABLE KEY) along with the appropriate Novell attribute
to the flags field in the Novell Security Attributes extension (see “Mutually Exclusive Flags”
on page 122).

keyUsage
(IN) Specifies the X.509 key usage extension. For more information, see the Section 4.16,
“X.509 Extensions,” on page 130 and the Section 4.4, “Key Usage Extension,” on page 121.
The key usage extension is not included in the certificate if this parameter is NULL.

basicConstraints

(IN) Specifies the X.509 basic constraints extension. For more information, see the Section
4.16, “X.509 Extensions,” on page 130 and the Section 4.1, “Basic Constraints Extension,” on
page 119. The basic constraints extension is not included in the certificate if this parameter is
NULL.

altNames

(IN) Specifies the X.509 subject alternative name extension. For more information, see Section
4.16, “X.509 Extensions,” on page 130 and Section 5.3, “Subject Alternative Names
Extension,” on page 134. The subject alternative names extension is not included in the
certificate if this parameter is NULL.

NovellAttr

(IN) Specifies the Novell Security Attributes extension. For more information, see Section
4.16, “X.509 Extensions,” on page 130 and Section 4.5, “Novell Security Attributes
Extension,” on page 122. If this parameter is NULL, the default Novell Security Attributes
extension for a server certificate is included in the certificate.

extensions

(IN) Specifies any generic ASN.1 encoded extensions to add to the certificate. See Section
4.16, “X.509 Extensions,” on page 130.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

PKI NCP Calls

0x 2222 93 03 Create Key Pair
0x 2222 93 04 Sign Certificate

NDK: Novell Certificate Server Library for C Version 2

Remarks

When calling NPKICreateServerCertificate (page 34), three different modes can be used: single
server mode, dual server mode, or external mode. Depending on the mode selected, different
NCPs™ are sent and different results occur.

The single server mode is used to create a server certificate when the signing server is the same as
the key generation server. In this case, signServerDN should be set to NULL, and
publicKeyFlags should consist of the define PUBLIC KEY SINGLE SERVER combined
with any optional public key flags desired.

After calling NPKICreateServerCertificate successfully, the newly generated server certificate and
its corresponding certificate chain are stored in eDirectory. The newly generated server certificate is
returned and can be accessed by calling NPKICertInfo (page 24).

NOTE: Single server mode is possible only when the key generation server also hosts a CA.

The dual server mode is used to generate a server certificate when the signing server is not the same
as the key generation server. In this case publicKeyFlags should consist of the define
PUBLIC KEY TWO_SERVER combined with any optional public key flags desired. The newly
generated server certificate is returned and can be accessed by calling NPKICertInfo (page 24).

After calling NPKICreateServerCertificate successfully, it is necessary to store the newly generated
certificate and its corresponding certificate chain.

You can retrieve the certificate chain by calling NPKIGetCACertificates (page 75) with the flags
field set to PKI_OBJECT _KEY_ CERT combined with PKI SELF SIGNED CERT.

After the successful call to NPKIGetCACertificates (page 75), you should call NPKICertificateList
(page 22) to add the certificates one at a time with the £1ags field set to PKI_ADD. Once all the
certificates in the chain have been added, make the call again with the flags field set to PKI_SORT.
You must call NPKIStoreServerCertificatesFromCertificateList (page 110) to actually store the
certificates into the object.

The external server mode is used to generate a server certificate when an external CA signs the
certificate. In this case, signServerDN is set to NULL and publicKeyFlags consists of the
define PUBLIC_ KEY EXTERNAL CA combined with any other public key flags desired. A
PKCS #10 Public Key Signing Request (CSR) is generated and can be accessed by calling
NPKICSRInfo (page 47).

The external server mode is used to generate a server Certificate Signing Request (CSR) to facilitate
an external CA signing (or creating) the server certificate. For the external server mode, set
signServerDN to NULL and publicKeyFlags to the define
PUBLIC KEY EXTERNAL CA combined with any optional public key flags desired. A PKCS
#10 CSR is generated and accessed by calling NPKIStoreServerCertificates (page 107).

The CSR should be sent to the external CA. The external CA will send a new X.509 server
certificate in response. The new X.509 server certificate signed (created) by the external CA, as well
as the external CA’s certificate chain, should be added by making calls to NPKICertificateList
(page 22) with the f1ags field set to PKI_ADD. Once all the certificates in the chain have been
added, make the call again with the f1ags field set to PKI_SORT. You must call
NPKIStoreServerCertificatesFromCertificateList (page 110) to actually store the certificates into the
object. This method of storing certificates will handle PKCS #7 files that contain multiple
certificates

Functions

37

To have the ability to backup the server private key, the optional private key flag

(PRIVATE_KEY_ EXTRACTABLE) must be used. For a sample implementation of this task, see
CreateServerCertificate. (../../../samplecode/ncslib_sample/CreateServerCert.cpp.html). For a
sample implementation of how to back up the server certificate, see BackupServerCertificate (../../../
samplecode/ncslib_sample/BackupServerCertificate.cpp.html).

See Also

NPKICertificateList (page 22)

NPKICertInfo (page 24)

NPKICSRInfo (page 47)

NPKIFindServerCertificateNames (page 62)
NPKIGetCACertificates (page 75)
NPKIGetServerCertificateStatus (page 85)
NPKIGetServerInfo (page 88)

NPKIServerCertificateName (page 104)
NPKIStoreServerCertificates (page 107)
NPKIStoreServerCertificatesFromCertificateList (page 110)

38 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/CreateServerCert.cpp.html
../../../samplecode/ncslib_sample/BackupServerCertificate.cpp.html

NPKICreateTrustedRoot

Creates a Trusted Root object and stores the specified X.509 root (or CA) certificate in the
eDirectory object (formerly NWPKICreateTrustedRoot).

Syntax
#include "npki.h"

NWRCODE NPKICreateTrustedRoot (

const NPKIContext context,
const unicode *objectDN,
const pnuint8 certificate,
const nuint32 certificatelen) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

objectDN

(IN) Specifies the eDirectory FDN of the Trusted Root object to be created. Trusted Root
objects can be created only within Trusted Root containers.

certificate

(IN) Specifies the DER-encoded X.509 root (or CA) certificate you want to store in the Trusted
Root object.

certificateLen
(IN) Specifies the size of the certificate.
Return Values

Returns 0 if successful or an eDirectory error code if not successful.

Remarks

Trusted Root containers along with Trusted Root objects provide a method of logically grouping,
managing, and accessing X.509 root (CA) certificates within a directory service.

Trusted Root Objects can be created only within Trusted Root containers. Use
NPKICreateTrustedRootContainer (page 41) to create a Trusted Root container.

NOTE: For a sample implementation of this task, see CreateTrustedRoot (../../../samplecode/
ncslib_sample/CreateTrustedRoot.cpp.html).

Functions

39

../../../samplecode/ncslib_sample/CreateTrustedRoot.cpp.html

See Also

NPKICreateTrustedRootContainer (page 41), NPKIFindTrustedRootsInContext (page 65),
NPKIGetTrustedRootInfo (page 95)

40 NDK: Novell Certificate Server Library for C Version 2

NPKICreateTrustedRootContainer

Creates a container where Trusted Root objects can be created (formerly
NWPKICreateTrustedRootContainer).

Syntax
#include "npki.h"

NWRCODE NPKICreateTrustedRootContainer (

const NPKIContext context,
const unicode *objectDN
);
Parameters
context

(IN) Specifies the NPKI context for the request.

objectDN

(IN) Specifies the eDirectory FDN of the Trusted Root container to be created.

Return Values

Returns 0 if successful or an eDirectory error code if not successful.

Remarks

Trusted Root containers, along with Trusted Root objects, provide a method of logically grouping,
managing, and accessing X.509 root (or CA) certificates within a directory service.

NOTE: For a sample implementation of this task, see CreateTrustedRootContainer (../../../

samplecode/ncslib_sample/CreateTrustedRootContainer.cpp.html).

See Also

NPKICreateTrustedRoot (page 39), NPKIFindTrustedRootsInContext (page 65),

NPKIGetTrustedRootInfo (page 95)

Functions

4

../../../samplecode/ncslib_sample/CreateTrustedRootContainer.cpp.html

NPKICreateUserCertificate

Generates a key pair with its corresponding X.509 certificate (formerly
NWPKICreateUserCertificate).

Syntax
#include "npki.h"

NWRCODE NPKICreateUserCertificate (

const NPKIContext context,
const unicode *keyGenServerDN,
const unicode *signServerDN,
const unicode *userDN,
const unicode *nickName,
const nuint32 keyType,
const nuint32 keySize,
const unicode *subjectDN,
const nuint32 signatureAlgorithm,
const nuint32 dateFlags,
const nuint32 validFrom,
const nuint32 validTo,
const nuint32 publicKeyFlags,
const nuint32 privateKeyFlags,
const NPKI Extension *keyUsage,
const NPKI Extension *basicConstraints,
const NPKI ExtAltNames *altNames,
const NPKI Extension *NovellAttr,
const NPKI ASN]l Extensions *extensions,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

keyGenServerDN
(IN) Specifies the eDirectory FDN of the server used to generate the user’s key pair.

signServerDN
(IN) Specifies the eDirectory FDN of the server that hosts the certificate authority that
generates the X.509 certificate.

userDN
(IN) Specifies the FDN of the user object for which a certificate will be generated. This must be
a valid eDirectory user object in the current tree.

nickName

(IN) Specifies the certificate nickname. This name must be unique for the specified user.

42 NDK: Novell Certificate Server Library for C Version 2

keyType

(IN) Specifies the type of key that you want to be generated. Call NPKIGetServerInfo

(page 88) to get the supported key generation algorithms. For this release, the only supported
key type is PKI RSA ALGORITHM (see “Key Generation Algorithms Defines” on

page 125).

keySize

(IN) Specifies the requested size of the key to be generated. If the key size requested cannot be
generated, an error is returned by the server and no key is generated. Calling
NPKIGetServerInfo (page 88), then NPKIGetAlgorithmInfo (page 73) obtains the supported
key sizes supported on the server. The intersection of the key sizes and algorithms supported by
the keyGenServerDN and the signServerDN are the valid key sizes and algorithms.

subjectDN

(IN) Specifies the subjectDN. This is the name to be encoded in the subject field in the
X.509 certificate. The subject field identifies the entity associated with the public/private key
pair. (For more information, see RFC 2459%*, Section 4.1.2.6 (http://www.ietf.org/rfc/
rfc2459.txt?number=2459).)

This parameter should be NULL if the subject name (in the user certificate) is to be the user’s
typed FDN. If a name other than the eDirectory username is desired, this parameter must
contain the typed FDN (and publicKeyFlags must include the flag
PKI CUSTOM SUBIJECT NAME).

signatureAlgorithm

(IN) Specifies the signature algorithm to use to sign the certificate. To get the supported
algorithms, call NPKIGetServerInfo (page 88). For this release, signatureAlgorithm
must be set to one of the following:

« PKI SIGN WITH RSA AND MD2
« PKI SIGN_WITH RSA AND MDS5
« PKI_SIGN_WITH_RSA AND SHAI

dateFlags
(IN) Specifies whether dates have either a two-digit or four-digit year. For this release, set this
to DEFAULT _YEAR ENCODING
validFrom
(IN) Specifies the beginning of the period of validity, represented as the number of seconds
since 00:00:00 UTC Jan 1, 1970, or OxXFFFFFFFF to represent the current time on the server.
validTo

(IN) Specifies the end of the period of validity, represented as the number of seconds since
00:00:00 UTC Jan 1, 1970, or OXFFFFFFFF to represent the greatest validity period available
on the server.

You can call NPKIGetServerlnfo (page 88) to determine the greatest validity period available
on the server.

publicKeyFlags

Functions

http://www.ietf.org/rfc/rfc2459.txt?number=2459

(IN) Specifies the public key options to use when creating the key pair. Use one of the
following flags, together with any optional public key flags:

« PUBLIC KEY SINGLE SERVER—Used when the signing server is the same as the key
generation server. This is possible only when the key generation server also hosts a CA.

« PUBLIC_ KEY TWO_SERVER—Used when the signing server is not the same as the
key generation server.
privateKeyFlags

(IN) Specifies the private key options to use when creating the key pair. For this release use the
define PRIVATE KEY together with any optional private key flags.

NOTE: There currently is one “Optional Private Key Flag” on page 129 (PRIVATE KEY
_EXTRACTABLE). To use this optional flag, it must be bitwise-OR'ed with the value
PRIVATE KEY to enable extraction of a user's private key into a PKCS #12 file (PKCS #12 is
the standard format to import keys into a browser).

When using the PRIVATE KEY EXTRACTABLE flag and including the Section 4.5, “Novell
Security Attributes Extension,” on page 122, it's necessary to bitwise-OR the extractable option
(that is, NOVELL_EXTENSION EXTRACTABLE KEY) along with the appropriate Novell
attribute (see NOVELL EXTENSION USER DEFAULT in “Mutually Exclusive Flags” on
page 122).

keyUsage
(IN) Specifies the X.509 key usage extension. For more information, see Section 4.16, “X.509
Extensions,” on page 130 and Section 4.4, “Key Usage Extension,” on page 121. The key
usage extension is not included in the certificate if NULL is passed in this parameter.
basicConstraints

(IN) Specifies the X.509 basic constraints extension. For more information, see Section 4.16,

“X.509 Extensions,” on page 130 and Section 4.1, “Basic Constraints Extension,” on page 119.

The basic constraints extension is not included in the certificate if this parameter is NULL.
altNames

(IN) Specifies the X.509 subject alternative name extension. For more information, see Section
4.16, “X.509 Extensions,” on page 130 and Section 5.3, “Subject Alternative Names
Extension,” on page 134. The subject alternative names extension is not included in the
certificate if this parameter is NULL.

NovellAttr

(IN) Specifies the Novell Security Attributes extension. For more information, see Section
4.16, “X.509 Extensions,” on page 130 and the Section 4.5, “Novell Security Attributes
Extension,” on page 122. If this parameter is NULL, the default Novell Security Attributes for
a user certificate is included in the certificate.

extensions
(IN) Specifies any generic ASN.1 encoded extensions to add to the certificate. For more
information, see the Section 4.16, “X.509 Extensions,” on page 130.

reservedl

Reserved for future use.

44 NDK: Novell Certificate Server Library for C Version 2

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

PKI NCP Calls

0x2222 93 03 Create Key Pair
0x2222 93 04 Sign Certificate

Remarks

The key pair is stored securely in eDirectory as an attribute in the user’s object. The private key is
cryptographically wrapped using Novell International Cryptographic Infrastructure (NICI) to
protect the key.

When calling NPKICreateUserCertificate (page 42), three different modes can be used: single
server mode, dual server mode, or external mode (external mode is not supported in this release).
Depending on the mode selected, different NCPs are sent and different results occur.

Single server mode is used to generate a user certificate when the signing server is the same as the
key generation server. In this case, signServerDN is set to NULL, and publicKeyFlags
consists of the define PUBLIC_KEY SINGLE SERVER combined with any optional public key
flags desired. The newly generated user certificate is returned and can be accessed calling
NPKIUserCertInfo (page 114).

NOTE: Single server mode is possible only when the key generation server also hosts a CA.

The dual server mode is used to generate a user certificate when the signing server is not the same as
the key generation server. In this case publicKeyFlags consists of the define
PUBLIC KEY TWO_SERVER combined with any optional public key flags desired. The newly
generated user certificate is returned and can be accessed calling NPKIUserCertInfo (page 114).

If the error PKI_E_ADD_CERTIFICATE is returned when using dual server mode; although the
certificate was created, it could not be stored in eDirectory because of replication delays. If this error
occurs, you should call NPKIStoreUserCertificate (page 112) successfully. (The userDN,
nickName, and signServerDN parameters should be the same as in
NPKICreateUserCertificate, the flags parameter should be set to PKI INTERNAL KEY PAIR,
and all other parameters should be either NULL or 0.)

NOTE: The external server mode is not supported in this release.

The signServerDN must host a CA in the current tree. You can call
NPKIFindKeyGenServersForUser (page 60) and NPKIGetServerInfo (page 88) to determine which
servers meet the requirements to act as a CA for a specified user.

After a successful call to NPKICreateUserCertificate, the certificate and its length can be obtained
by calling NPKIUserCertInfo using 0 in the index parameter.

Functions

45

See Also

NPKIDeleteUserCertificate (page 49), NPKIFindUserCertificates (page 66),
NPKIStoreUserCertificate (page 112), NPKIUserCertInfo (page 114)

46 NDK: Novell Certificate Server Library for C Version 2

NPKICSRInfo

Obtains a pointer to a PKCS #10 Certificate Signing Request (CSR) and its corresponding size
(formerly NWPKICSRInfo).

Syntax
#include "npki.h"

NWRCODE NPKICSRInfo (

const NPKIContext context,
pnuint32 csrSize,
nuint8 const **csr) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

csrSize
(OUT) Returns the size of the CSR.

csr
(OUT) Returns a pointer to a DER-encoded CSR.

Return Values

Returns 0 if successful, or a PKI error code if not successful.

Remarks

You must call NPKICreateServerCertificate (page 34) successfully (using the external CA method)
immediately before calling this function.

See Also

NPKICreateServerCertificate (page 34)

Functions 47

NPKIDeleteDSObiject

Deletes an eDirectory object (formerly NWPKIDeleteDSObject).

Syntax
#include "npki.h"

NWRCODE NPKIDeleteDSObject (

const NPKIContext context,
const unicode *objectDN) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

objectDN
(IN) Specifies the FDN of the eDirectory object to be deleted.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

Typically, this function is used only to clean up objects created during a failed create certificate
operation.

WARNING: Caution should be used when calling this function because any object can be deleted if
the caller has sufficient rights.

See Also

NPKICreateServerCertificate (page 34), NPKICreateOrganizational CA (page 29)

48 NDK: Novell Certificate Server Library for C Version 2

NPKIDeleteUserCertificate

Deletes a user’s certificate (formerly NWPKIDeleteUserCertificate).

Syntax
#include "npki.h"

NWRCODE NPKIDeleteUserCertificate (

const NPKIContext context,

const unicode *userDN,

const unicode *nickName,

const nuint32 flags,

const pnuit8 certificate,

const nuit32 certificatelLength);
Parameters
context

(IN) Specifies the NPKI context for the request.

userDN

(IN) Specifies the FDN of a user object. This must be a valid eDirectory user object in the
current tree.

nickName

(IN) Specifies the certificate nickname. This name is used to identify the key pair and
associated certificate. It must be a valid certificate nickname for the specified user.

flags
(IN) This should currently be set to 0.

certificate
(IN) Specifies the DER-encoded X.509 certificate you want to delete.

certificateLength

(IN) Specifies the size of the certificate.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks
The certificateand certificateLength variables are used if there is no nickname for the

user certificate. This can happen if the certificate was added through LDAP. If the nickname field
has a value, certificate and certificatelLength can be NULL.

Functions

49

WARNING: Deleting a certificate can have severe consequences such as the inability to read
encrypted email or encrypted files.

See Also

NPKICreateUserCertificate (page 42), NPKIFindUserCertificates (page 66)

50 NDK: Novell Certificate Server Library for C Version 2

NPKIDSLogin

Performs all authentication operations needed to establish a client’s connection to a network
(formerly NWPKIDSLogin).

Syntax
include "npki.h"

NWRCODE NPKIDSLogin (

const NPKIContext context,
const unicode *objectDN,
const pnstr8 password) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

objectDN
(IN) Specifies the FDN name of the object logging in to the network.

password

(IN) Specifies the object’s password.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

See Also

NPKIDSLogout (page 52)

Functions

51

NPKIDSLogout

Terminates an object’s connection to the network (formerly NWPKIDSLogout).

Syntax
include "npki.h"

NWRCODE NPKIDSLogout (
const NPKIContext context) ;

Parameters

context

(IN) Specifies the NPKI context for the request.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

See Also

NPKIDSLogin (page 51), NPKISetTreeName (page 106)

52 NDK: Novell Certificate Server Library for C Version 2

NPKIDSObjectExists

Determines whether an eDirectory object exists.

Syntax
include "npki.h"

NWRCODE NPKIDSObjectExists (

const NPKIContext context,
const unicode *objectDN) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

objectDN
(IN) Points to the FDN of the object to be checked.

Return Values

Returns 0 if the object exists, or an eDirectory or PKI error code if not successful.

Functions

53

NPKIExportCAKey

Exports the CA's private key and corresponding certificates in Personal Information Exchange
Syntax (PFX) format (formerly NWPKIExportCAKey).

Syntax
#include "npki.h"

void NPKIExportCAKey (

NPKIContext const context,
const unicode *organizationlCAName,
const unicode *password,
const nuint32 flags,
pnuint32 const pfxSize,
nuint8 const **pfx);
Parameters
context

(IN) Specifies the NPKI context for the request.

organizationlCAName

(IN) Specifies the FDN of the CA object (for example, if your CA is called Organizational CA
and it exists in the Security container, this parameter should be set to Organizational CA). This
must be a valid eDirectory name of a CA object in the current tree.

password

(IN) Specifies the password with which to encrypt the private key and certificate.

flags

(IN) Specifies options for exporting the server key and certificate. The flags currently defined
are:PKI CA KEY AND CERTS—Exports the CA self-signed certificate and the chain of
certificates in the certification (see Section 4.8, “NPKIExportCAKey Flags,” on page 123).

pfxSize
(OUT) Specifies the size of the exported data PFX.

pfx
(OUT) Points to the PKCS #12 encoded data.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

PKI NCP Calls

0x2222 93 09 Read Key

54 NDK: Novell Certificate Server Library for C Version 2

Remarks

The private key and certificates are encrypted using the input password as specified in the Public
Key Cryptography Standards (PKCS) #12.

See Also

NPKIImportCAKey (page 98)

Functions 55

NPKIExportServerKey

Exports a server’s private key and corresponding certificates in Personal Information Exchange
Syntax (PFX) format (formerly NWPKIExportServerKey).

Syntax
#include "npki.h"

void NPKIExportServerKey (

const NPKIContext context,

const unicode *serverDN,

const unicode *certificateName,

const unicode *password,

const nuint32 flags,

pnuint32 const pfxSize,

nuint8 const **pfx);
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN
(IN) Specifies the FDN of the eDirectory server whose private key and certificates you want to
export. This must be a valid eDirectory server in the current tree.

certificateName
(IN) Specifies which private key and certificates you want to export. It must be a valid
certificate name for the specified server.

password

(IN) Specifies the password to use to encrypt the private key and certificate.

flags

(IN) Specifies options for exporting the server key and certificates (see Section 4.9,
“NPKIExportServerKey Flags,” on page 124). The flags currently defined

are:PKI CHAIN CERTIFICATE—Exports the chain of certificates in the certification path
along with the specified server certificate.

pfxSize
(OUT) Specifies the size of the exported data PFX.

pfx
(OUT) Points to the PKCS #12 encoded data.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

56 NDK: Novell Certificate Server Library for C Version 2

PKI NCP Calls

0x2222 93 09 Read Key

Remarks

The key and certificate are encrypted using the input password as specified in the Public Key
Cryptography Standards (PKCS) #12.

See Also

NPKIImportServerKey (page 100)

Functions 57

NPKIExportUserKey

Exports a private key and the corresponding certificates for the currently logged-in user in Personal
Information Exchange Syntax (PFX) format (formerly NWPKIExportUserKey).

Syntax
#include "npki.h"

NWRCODE NPKIExportUserKey (

const NPKIContext context,
const unicode *nickname,
const unicode *password,
const nuint32 flags,
pnuint32 *pfxSize,
nuint8 const **pfx);

Parameters

context

(IN) Specifies the NPKI context for the request.

nickname

(IN) Specifies the certificate nickname that identifies which private key and certificates are to
be exported. nickname must be a valid certificate nickname for the currently logged-in user
in the current tree.

password

(IN) Specifies the password to use to encrypt the private key and certificate.

flags

(IN) Specifies options for exporting the user key and certificates. The flags currently defined
are:PKI_CHAIN_ CERTIFICATE—Exports the chain of certificates in the certification path
along with the specified user certificate.

pfxSize
(OUT) Points to the size of the exported data.

pfx
(OUT) Points to the PKCS #12 encoded data.

Return Values

Returns 0 if successful, or an eDirectory, NICI or PKI error code if not successful.

PKI NCP Calls

0x2222 93 09 Read Key

58 NDK: Novell Certificate Server Library for C Version 2

Remarks

The key and certificate are encrypted using the input password as specified in the PKCS #12. For a
sample implementation of this task, see ExportUserCert (../../../samplecode/ncslib_sample/

ExportUserCert.cpp.html).

Functions 59

../../../samplecode/ncslib_sample/ExportUserCert.cpp.html

NPKIFindKeyGenServersForUser

Finds the servers that can be used to generate a public/private key pair (that is, a certificate) for the
users that reside in the specified name context (formerly NWPKIFindKeyGenServersForUser).

Syntax
#include "npki.h"

NWRCODE NWPKFindKeyGenServersForUser (

const NPKIContext context,
const unicode *nameContextDN,
pnuint32 numberOfServers) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

nameContextDN
(IN) Specifies the FDN context of the users for which you want to find a key generation server.
This must be a valid container in the current tree.

numberOfServers

(OUT) Returns the number of servers with a read/write or master replica of the partition in
which the user object resides.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

The requirements for a server to generate a key pair for a user are:

* The server must hold a read/write or master replica of the partition in which the user object
resides.

» The server must be running the correct version of the Novell Certificate Server.

NPKIFindKeyGenServersForUser (page 60) finds all of servers that meet the first requirement. Call
NPKIGetServerInfo (page 88) to determine if the selected server meets the second requirement.
When a successful call to NPKIFindKeyGenServersForUser is made, the server names are stored in
context specific values that can be accessed by calling NPKIServerNames (page 105).

NOTE: Multiple calls to NPKIServerNames are necessary if more than one server name is
available.

60 NDK: Novell Certificate Server Library for C Version 2

See Also

NPKIServerNames (page 105)

Functions 61

NPKIFindServerCertificateNames

Finds the server certificate names for the specified server (formerly
NWPKIFindServerCertificateNames).

Syntax
#include "npki.h"

NWRCODE NPKIFindServerCertificateNames (

const NPKIContext context,

const unicode *serverDN,

pnuint32 numberOfCertificateNames) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN
(IN) Specifies the eDirectory FDN of the server.

numberOfCertificateNames

(OUT) Specifies the number of server certificate names available.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

Calls NPKIServerCertificateName (page 104) to retrieve the server certificate names.

See Also

NPKICreateServerCertificate (page 34), NPKIServerCertificateName (page 104)

62 NDK: Novell Certificate Server Library for C Version 2

NPKIFindServersinContext

Finds all of the NCP servers in the name context supplied (formerly NWPKIFindServersinContext).

Syntax
#include "npki.h"

NWRCODE NPKIFindServersInContext (

const NPKIContext context,
const unicode *nameContextDN,
pnuint32 numberOfServers) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

nameContextDN

(IN) Specifies the eDirectory FDN for which you want to find an NCP server. This must be a
valid container in the current tree.

numberOfServers
(OUT) Specifies the number of NCP servers in contextDN.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

After a successful call, the server names are stored as non-typed relative names (that is, leaf or short
names) in data values that can be accessed by calling NPKIServerNames (page 105).

See Also

NPKIServerNames (page 105)

Functions

63

NPKIFindOrganizationalCA

Finds and returns the name of the CA for the current tree (formerly NWPKIFindOrganizational CA).

Syntax
#include "npki.h"

NWRCODE NPKIFindOrganizationalCA (

const NPKIContext context,
unicode const **objectDN) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

objectDN

(OUT) Points to a Unicode* string that contains the name of either the organizational CA or the
security container.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if unsuccessful. If the function returns 0,
objectDN contains the name of the organizational CA. If the routine returns an error code of

PKI E NO TREE CA, objectDN contains the security container’s name. Any other error causes
objectDN to be invalid.

Remarks

If CA cannot be found, this function returns the name of the security container.

See Also

NPKICreateOrganizational CA (page 29), NPKISetTreeName (page 106)

64 NDK: Novell Certificate Server Library for C Version 2

NPKIFindTrustedRootsInContext

Finds all of the Trusted Root objects within the specified Trusted Root container and returns the
number found (formerly NWPKIFindTrustedRootsInContext).

Syntax
#include "npki.h"

NWRCODE NPKIFindTrustedRootsInContext (

const NPKIContext context,
const unicode *nameContextDN,
pnuint32 numberOfTrustedRoots) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

nameContextDN
(IN) Points to the eDirectory FDN of the Trusted Root container that is to be searched.

numberOfTrustedRoots

(OUT) Specifies the number of trusted roots in the trusted root container specified by
nameContextDN.

Return Values

Returns 0 if successful or an eDirectory error code if not successful.

Remarks

For each root found, a call to NPKIGetTrustedRootInfo (page 95) can be made to retrieve the
relevant information about the root.

Trusted Root containers along with Trusted Root objects provide a method of logically grouping,

managing, and accessing X.509 root (or CA) certificates within a directory service.

See Also

NPKICreateTrustedRoot (page 39), NPKICreateTrustedRootContainer (page 41),
NPKIGetTrustedRootInfo (page 95)

Functions

65

NPKIFindUserCertificates

Finds all of the certificates for the userDN that meets the search criteria, stores the certificates in
context specific values, and returns the number of certificates that meet the search criteria (formerly
NWPKIFindUserCertificates).

Syntax
#include "npki.h"

NWRCODE NPKIFindUserCertificates (

const NPKIContext context,
const unicode *userDN,
const unicode *nickName,
const pnuint8 serialNumber,
const nuint32 serialNumberLen,
const nuint32 keyType,
const nuint32 minKeySize,
const nuint32 maxKeySize,
const nuint32 searchOnKeyUsage,
const nuintlo6 keyUsageValue,
const unicode *issuerDN,
const unicode *subjectDN,
const nuint32 certificateVvalid,
const nuint32 vendorID,
const nuint32 certificateStatus,
void *reservedl,
void *reserved?2,
void *reserved3,
void *reserved4,
nuint32 *numberOfUserCerts) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

userDN
(IN) Specifies the FDN of the user for which you want to find a certificate. userDN must be a
valid user object in the current tree.
nickName
(IN) (Optional) Specifies the certificate nickname that identifies which user certificate is to be
read. nickName must be either NULL or a valid certificate nickname for the specified user.
serialNumber

(IN) (Optional) Specifies the certificate serial number. serialNumber must be either NULL
or the serial number of a certificate for the specified user. If serialNumber is specified,
serialNumber also must be specified.

serialNumberLen

66 NDK: Novell Certificate Server Library for C Version 2

(IN) (Optional) Specifies the length of the field serialNumber parameter. If
serialNumber is specified, serialNumber must be specified. If you don't specify
serialNumber, set serialNumber to zero.

keyType

(IN) (Optional) Specifies the algorithm type used to generate the public/private key pair.
Currently the only algorithm supported is RSA (PKI_RSA ALGORITHM) (see “Key
Generation Algorithms Defines” on page 125). If you don't specify keyType, set it to zero.

minKeySize

(IN) (Optional) Specifies the minimum key size of the public/private key pair. If you don't
specify minKeySize. set it to zero.

maxKeySize

(IN) (Optional) Specifies the maximum key size of the public/private key pair. If you don't
specify maxKeySize, set it to zero.

searchOnKeyUsage

(IN) (Optional) Specifies whether to search using the keyUsageValue parameter. This
parameter is necessary because a value of zero is valid for the keyUsageValue parameter.
Set searchOnKeyUsage to TRUE or FALSE.

keyUsageValue

(IN) (Optional) Specifies the X.509 certificate extension, Key Usage. keyUsage is a bit field,
and can either be zero (that is, not present or not specified) or it can be constructed using any
valid combination of the following defines:

X509 KEY USAGE DIGITAL SIGNATURE
X509 KEY USAGE_NON_REPUDIATION
X509 KEY USAGE KEY ENCIPHERMENT
X509 KEY USAGE_DATA_ENCIPHERMENT
X509 KEY USAGE _KEY AGREEMENT
X509 KEY USAGE KEY CERT SIGN

X509 KEY USAGE_CRL_SIGN

X509 KEY USAGE ENCIPHER ONLY

X509 KEY USAGE_DECIPHER_ONLY

issuerDN
(IN) (Optional) Specifies the X.509 FDN typed of the CA that issued the certificate. If you
don't specify i ssuerDN, set it to NULL.

subjectDN
(IN) (Optional) Specifies the X.509 typed FDN of the subject of the certificate. If you don't
specify subjectDN, set it to NULL.

certificatevalid

(IN) (Optional) Specifies a specific date on which the requested certificate is valid. The date is
represented as the number of seconds since 00:00:00 UTC January 1, 1970. If you don't specify
certificateValid, setitto zero.

vendorID

Functions

67

(IN) (Optional) Specifies the vendor that issued the certificate. This parameter can be used to
narrow the search to certificates supplied by a specific vendor. If you don't specify vendorID,
set it to zero or PKI ALL VENDORS.

certificateStatus

(IN) (Optional) Specifies the status of the certificates you want to find. This parameter can be
used to narrow the search to certificates that have a specific status. If you don't specify
certificateStatus, set it to zero.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

reserved3

Reserved for future use.

reserved4

Reserved for future use.

numberOfUserCerts

(OUT) Returns the number of user certificates that meet the specified search criteria.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

Call NPKIUserCertInfo (page 114) to access the certificates and their sizes.

If you specify nickName, the certificate matching the nickname is returned (assuming a valid
nickname) and all other search parameters are ignored. For all other cases, the set of certificates
match all of the search criteria. If no search criteria are specified, all certificates for the user are
available.

For sample code, see FindUserCerts (../../../samplecode/ncslib_sample/FindUserCerts.cpp.html).

See Also

NPKICreateUserCertificate (page 42), NPKIStoreUserCertificate (page 112), NPKIUserCertInfo
(page 114)

68 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/FindUserCerts.cpp.html

NPKIFreeContext

Frees a previously allocated NPKI context and all associated memory.

Syntax
include "npki.h"

void NPKIFreeContext (
NPKIContext context) ;

Parameters

context

(IN) Specifies the NPKI context for the request.

See Also

NPKICreateContext (page 28)

Functions 69

NPKIGenerateCertificateFromCSR

Accepts a PKCS #10 CSR from an external source and sends the request to caServerDN, which
then creates and returns an X.509 certificate (formerly NWPKIGenerateCertificateFromCSR).

Syntax
#include "npki.h"

nuint32 NPKIGenerateCertificateFromCSR (

const NPKIContext context,

const unicode *caServerDN,

const pnuint8 extCSR,

const nuint32 extCSRSize,

const unicode *subjectDN,

const nuint32 signatureAlgorithm,

const nuint32 dateFlags,

const nuint32 validFrom,

const nuint32 validTo,

const NPKI Extension *keyUsage,

const NPKI Extension *basicConstraints,

const NPKI ExtAltNames *altNames,

const NPKI Extension *NovellAttr,

const NPKI ASN]l Extensions *extensions,

void *reservedl,

void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

caServerDN
(IN) Specifies the FDN of the server that hosts the CA. This must be a valid eDirectory server
in the current tree.

extCSR
(IN) Specifies the PKCS #10 CSR that is to be sent to the CA to create the X.509 certificate.

extCSRSize
(IN) Specifies the size of the PKCS #10 CSR.

subjectDN

(IN) Not supported in this release. Points to a subject name to use in the certificate, rather than
using the subject name in the CSR. At this time, this parameter is ignored regardless of the
value given.

signatureAlgorithm

(IN) Not supported in this release. Specifies the signature algorithm to use to sign the
certificate, rather than using the signature algorithm in the CSR. Calls NPKIGetServerInfo

70 NDK: Novell Certificate Server Library for C Version 2

(page 88) to determine which signature algorithms are supported. At this time, this parameter is
ignored regardless of the value given.

dateFlags

(IN) Specifies whether dates have a two-digit or four-digit year. For this release, set to
DEFAULT YEAR ENCODING.

validFrom

(IN) Specifies the beginning of the period of validity, represented as the number of seconds
since 00:00:00 UTC Jan 1, 1970, or OXFFFFFFFF to represent the current time on the server.

validTo

(IN) Specifies the end of the period of validity, represented as the number of seconds since
00:00:00 UTC Jan 1, 1970, or OXFFFFFFFF to represent the greatest validity period available
on the server. You call NPKIGetServerInfo (page 88) to determine the greatest validity period
available on the server.

keyUsage

(IN) Specifies the X.509 key usage extension. For more information, see Section 4.16, “X.509
Extensions,” on page 130 and Section 4.4, “Key Usage Extension,” on page 121. The key
usage extension is not included in the certificate if this parameter is NULL.

basicConstraints

(IN) Specifies the X.509 basic constraints extension. For more information, see Section 4.16,
“X.509 Extensions,” on page 130 and Section 4.1, “Basic Constraints Extension,” on page 119.
The basic constraints extension is not included in the certificate if this parameter is NULL.

altNames

(IN) Specifies the X.509 subject alternative name extension. For more information, see Section
4.16, “X.509 Extensions,” on page 130 and Section 5.3, “Subject Alternative Names
Extension,” on page 134. The subject alternative names extension is not included in the
certificate if this parameter is NULL.

NovellAttr

(IN) Specifies the Novell Security Attributes extension. For more information, see the Section
4.16, “X.509 Extensions,” on page 130 and Section 4.5, “Novell Security Attributes
Extension,” on page 122. If this parameter is NULL, the default Novell Security Attributes
extension for a key pair is created outside of the system.

extensions

(IN) Specifies any generic ASN.1 encoded extensions you want to add to the certificate. For
more information, see Section 4.16, “X.509 Extensions,” on page 130 and “General Purpose
Extension Structure” on page 134.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Functions

7

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

PKI NCP Calls

0x2222 93 04 Sign Certificate

Remarks

After a successful call, the resulting certificate and its size can be obtained by calling NPKICertInfo
(page 24). The newly-created certificate is not stored in eDirectory.

See Also

NPKICertInfo (page 24), NPKIFindOrganizational CA (page 64), NPKIGetServerInfo (page 88)

72 NDK: Novell Certificate Server Library for C Version 2

NPKIGetAlgorithminfo

Obtains the supported key sizes for the specified algorithm (formerly NWPKIGetAlgorithmInfo).

Syntax
#include "npki.h"

NWRCODE NPKIGetAlgorithmInfo (

const NPKIContext context,
const nuint32 algorithm,
pnuint32 maxKeyEncryptKeySize,
pnuint32 maxSigningKeySize,
pnuint32 maxDataEncryptKeySize,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

algorithm

(IN) Specifies a bit mask that represents which algorithm information to return. The correct
algorithms to use are the key-generation algorithms (as opposed to the signing algorithms)
returned by NPKIGetServerInfo (page 88).

maxKeyEncryptKeySize
(OUT) Returns the maximum key size supported for use as a key encrypting key.

maxSigningKeySize

(OUT) Specifies the maximum key size supported for use as a key signing key.

maxDataEncryptKeySize
(OUT) Specifies the maximum key size supported for use as a data encrypting key.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

A successful call to NPKIGetServerInfo (page 88) must have been made immediately before calling
this function.

Functions

73

See Also

NPKIGetServerlnfo (page 88)

74 NDK: Novell Certificate Server Library for C Version 2

NPKIGetCACertificates

Reads the CA certificates for objectDN and stores them in context specific values (formerly
NWPKIGetCACertificates).

Syntax
#include "npki.h"

NWRCODE NPKIGetCACertificates(

const NPKIContext context,
const unicode *objectDN,
const nuint32 flags,
pnuint32 objectCertSize,
nuint8 const **objectCert,
pnuint32 selfSignedCertSize,
nuint8 const **selfSignedCert,
pnuint32 numberOfChainCerts,
pnuint32 rootCertIndex,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

objectDN

(IN) Specifies the FDN of the object whose CA certificates you want. objectDN must be a
valid CA object in the current tree.

flags
(IN) Specifies which certificates are read and stored. The following flags are currently defined:

* PKI_CHAIN_CERTIFICATE—Retrieves the certificate chain (that is, the chain rooted in
the Novell Certifier CA). Only software that natively understands and processes the
Novell Security Attributes Extension should use this chain.

* PKI TRUSTED ROOT_CERTIFICATE—Retrieves the trusted root certificate. Only
software that natively understands and processes the Novell Security Attributes Extension
should use this certificate.

« PKI SELF SIGNED CERTIFICATE—Retrieves the self-signed certificate.

NOTE: Most applications should use this certificate.

* PKI OBJECT KEY_ CERTIFICATE—Retrieves the object certificate (that is, the
certificate for the specified object). Only software that natively understands and processes
the Novell Security Attributes Extension should use this certificate.

PKI_OBJECT _KEY_ CERTIFICATE can be combined with any of the other flags, but none of
the other flags can be used together at one time. Also, NPKIGetServerCertificates (page 83)
and NPKIGetCACCertificates (page 75) use the same internal variables to store results, so
calling either of these functions destroys the result of the previous call.

Functions

75

objectCertSize
(OUT) Returns the size of the object certificate.

objectCert
(OUT) Returns to the DER encoder X.509 object certificate.

selfSignedCertSize
(OUT) Returns the size of the self-signed certificate.

selfSignedCert
(OUT) Returns to the DER-encoded X.509 self-signed certificate.

numberOfChainCerts

(OUT) Returns the number of certificates in the certificate chain. You can call
NPKIChainCertInfo (page 25) to retrieve the certificates in the certificate chain.

rootCertIndex

(OUT) Returns which certificate in the certificate chain is marked as the root certificate.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory, PKI, or NetWare® error code if not successful.

PKI NCP Calls

0x2222 93 05 PKI Get Certificate

Remarks

The flags field determines which certificates are read. For sample code, see GetCACert (../../../
samplecode/ncslib_sample/GetCACert.cpp.html).

See Also

NPKIChainCertInfo (page 25), NPKIFindOrganizational CA (page 64)

76 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/GetCACert.cpp.html

NPKIGetHandleToServerKey

Obtains a NICI object handle to a server private key (formerly NWPKIGetHandleToServerKey).

Syntax
#include "npkikey.h"

NWRCODE NPKIGetHandleToServerKey (

const NPKIContext context,

const unicode *serverDN,

const unicode *certificateName,
NICI CC_HANDLE ccsCtx,

NICI OBJECT HANDLE *pkiKeyHandle);

Parameters

context

(IN) Specifies the NPKI context for the request.

serverDN

(IN) Points to the DN of the server object.

certificateName

(IN) Points to the certificate nickname that identifies which key is to be referenced.
certificateName must be a valid server certificate name the specified server.

ccsCtx

(IN) Specifies the NICI context you must create and destroy this context. This context must be
created and destroyed by the caller.

pkiKeyHandle

(OUT) Points to the handle to the NICI object for the private key specified by
certificateName.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

PKI NCPCalls

0x2222 93 09 Read Key

Remarks

After a successful return from this function, pkiKeyHandle contains a handle to a NICI object
that can then be used in calling other NICI functions.

Functions

77

IMPORTANT: This function does not work unless it is called on the server for which the key was
generated (that is, serverDN).

See Also

NPKIFindServerCertificateNames (page 62), NPKIServerCertificateName (page 104)

78 NDK: Novell Certificate Server Library for C Version 2

NPKIGetHandleToUserKey

Returns a NICI Object handle to a user key, specified by nickname (formerly
NWPKIGetHandleToUserKey).

Syntax
#include "npkikey.h"

NWRCODE NPKIGetHandleToUserKey (

const NPKIContext context,
const unicode *nickname,
NICI CC_HANDLE ccsCtx,

NICI OBJECT HANDLE *pkiKeyHandle) ;

Parameters

context

(IN) Specifies the NPKI context for the request.

nickname

(IN) Points to the certificate nickname that identifies which key to be referenced. nickname
must be a valid certificate nickname for the currently logged-in user in the current tree. The
corresponding private key must be stored in eDirectory.

ccsCtx

(IN) Specifies the NICI context. You must create and destroy this context.

pkiKeyHandle
(OUT) Points to the handle to the NICI object for the private key specified by the nickname.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

PKI NCPCalls

0x2222 93 09 Read Key

Remarks

After a successful call the pkiKeyHandle contains a NICI object handle to the private key that
can then be passed into other NICI calls to encrypt, decrypt or verify data.

See Also

NPKIFindUserCertificates (page 66), NPKIReadAllNickNames (page 103)

Functions

79

NPKIGetHostServerDN

Gets the DN of the server that is associated with the specified object (that is, reads the eDirectory
attribute A HOST_SERVER of objectDN) (formerly NWPKIGetHostServerDN).

Syntax
#include "npki.h"

NWRCODE NPKIGetHostServerDN (

const NPKIContext context,
const unicode *objectDN,
unicode const **serverDN) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

objectDN
(IN) Specifies the FDN of the object to read. This must be a valid eDirectory object name.

serverDN

(OUT) Returns the host server’s FDN. This is a valid eDirectory object name.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

The eDirectory A HOST SERVER attribute is used on PKI and Secure Authentication Services
(SAS) objects to identify which server hosts the object (or service).

See Also

NPKICreateServerCertificate (page 34), NPKIFindOrganizational CA (page 64),
NPKIGetServerInfo (page 88), NPKIUserCertInfo (page 114)

80 NDK: Novell Certificate Server Library for C Version 2

NPKIGetKMOCertificateName

Gets the certificate name for a key material object (KMO).

Syntax
#include "npki.h"

NWRCODE NPKIGetKMOCertificateName
(

const NPKIContext context,

const unicode *kmoDN,

unicode const **certificateName) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

kmoDN
(IN) Points to the DN of the key material object.

certificateName

(OUT) Points to the name of the certificate.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Functions

81

NPKIGetSASServiceName

Obtains the Secure Authentication Service (SAS) service name of the specified server object
(formerly NWPKIGetSASServiceName).

Syntax
#include "npki.h"

NWRCODE NPKIGetSASServiceName (

const NPKIContext context,
const unicode *serverDN,
unicode const **serviceName) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN

(IN) Specifies the eDirectory server. This must be a valid eDirectory server in the current tree
that has SAS installed.

serviceName
(OUT) Returns the SAS service name.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

82 NDK: Novell Certificate Server Library for C Version 2

NPKIGetServerCertificates

Obtains the certificates in a specified certificate set on a given server and stores them in context-
specific values (formerly NWPKIGetServerCertificates).

Syntax
#include "npki.h"

NWRCODE NPKIGetServerCertificates(

const NPKIContext context,
const unicode *serverDN,
const unicode *certificateName,
const nuint32 flags,
pnuint32 objectCertSize,
nuint8 const **objectCert,
pnuint32 numberOfChainCerts,
pnuint32 rootCertIndex,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN

(IN) Points to the FDN of the eDirectory server whose certificates you want to obtain. This
must be a valid eDirectory server in the current tree.

certificateName

(IN) Identifies which server certificate set you want to get.

flags

(IN) The £1ags field determines which certificates are read and stored. The following f1ags

are currently defined:
* PKI_CHAIN_CERTIFICATE—Retrieves the certificate chain.
« PKI_ TRUSTED ROOT_CERTIFICATE—Retrieves the trusted root certificate.

« PKI OBJECT KEY CERTIFICATE—Retrieves the object certificate (that is, the
certificate for the specified object).

« PKI CHAIN CERTIFICATE and PKI TRUSTED ROOT CERTIFICATE cannot be

combined.

objectCertSize
(OUT) Specifies the size of the object certificate.

objectCert
(OUT) Points to the DER encoder X.509 object certificate.

Functions

83

numberOfChainCerts

(OUT) Specifies the number of certificates in the certificate chain. You can call
NPKIChainCertInfo (page 25) to retrieve the certificates in the certificate chain.

rootCertIndex

(OUT) Specifies which certificate in the certificate chain is marked as the root certificate.

reservedl

Reserved for future use.

reserved2
Reserved for future use.
Return Values

Returns 0 if successful, or an eDirectory, PKI, or NetWare error code if not successful.

Remarks

The £1lags field determines which certificates are read. NPKIGetServerCertificates (page 83) and
NPKIGetCACertificates (page 75) use the same internal variables to store results, so calling one
function right after calling the other causes data to be overwritten.

PKI NCP Calls

0x2222 93 05 PKI Get Certificate.

See Also

NPKIChainCertInfo (page 25), NPKICreateServerCertificate (page 34),
NPKIFindServerCertificateNames (page 62), NPKIGetCACertificates (page 75),
NPKIServerCertificateName (page 104), NPKIStoreServerCertificates (page 107),
NPKIStoreServerCertificatesFromCertificateList (page 110)

84 NDK: Novell Certificate Server Library for C Version 2

NPKIGetServerCertificateStatus

Determines the status of the server certificate (formerly NWPKIGetServerCertificateStatus).

Syntax
#include "npki.h"

NWRCODE NPKIGetServerCertificateStatus (

const NPKIContext context,
const unicode *serverDN,
const unicode *certificateName,
pnuint32 flags);
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN
(IN) Specifies the FDN of the eDirectory server for which you want the status of a certificate.
This must be a valid eDirectory server in the current tree.

certificateName
(IN) Specifies the certificate name that you want to get information about. This must be a valid
certificate for the specified server.

flags
(OUT) Specifies the status of the server certificate.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

The server certificate can be in one of five states:

+ KMO_EMPTY—The server certificate does not have a valid public-private key pair.
« KMO_KEY PAIR PRESENT—The server certificate has a valid public-private key pair.

« KMO_TRUSTED ROOT_PRESENT—The server certificate has a valid public-private key
pair and a valid trusted root.

« KMO_CERTIFICATE PRESENT—The server certificate has a valid public-private key pair, a
valid trusted root, and a valid object certificate.

« KMO_INVALID STATE—The server certificate is in an invalid state.

Functions

85

See Also

NPKICreateServerCertificate (page 34), NPKIFindServerCertificateNames (page 62),
NPKIGetCACertificates (page 75), NPKIServerCertificateName (page 104),
NPKIStoreServerCertificates (page 107)

86 NDK: Novell Certificate Server Library for C Version 2

NPKIGetServerDNSName

Retrieves the DNS name for a server (formerly NWPKIGetServerDNSName).

Syntax
#include "npki.h"

NWRCODE NPKIGetServerDNSName (

const NPKIContext context,
nuint32 index,
unicode const **DNSName) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

index

(IN) Specifies which DNS Name is to be returned. This DNS name is associated with the IP
address returned by the previous successful call to NPKIGetServerIPAddress (page 91).
index is 0 based.

DNSName
(OUT) Returns the specified DNS name.

Return Values

Returns 0 if successful, or PKI error code if not successful.

Remarks

NPKIGetServerDNSName can only be used after a successful call to
NPKIGetServerlPAndDNSInfo (page 93), followed by a successful call to
NPKIGetServer[PAddress (page 91).

See Also

NPKIGetServerDNSName (page 87), NPKIGetServer[PAddress (page 91)

Functions 87

NPKIGetServerinfo

Opens a connection to the specified server and sends a PKI ping NCP to determine supported values
for the server (formerly NWPKIGetServerInfo).

Syntax
#include "npki.h"

NWRCODE NPKIGetServerInfo (

const NPKIContext context,
const unicode *serverDN,
const nuint32 flags,
pnuint32 keyGenerationalAlgorithms,
pnuint32 signingAlgorithms,
pnuint32 maxValidFromTime,
pnuint32 maxValidToTime,
pnuint32 caOperational,
pnuint32 pathLength,
pnuint32 reservedl,
pnuint32 serverVersion,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN
(IN) Specifies the FDN of the server for which you want to get information. This must be a
valid eDirectory server in the current tree.
flags
(IN) Specifies what information the ping requests. The following flags and are defined:
* PKI_CA_INFO—Retrieves information for creating or using a CA object.
« PKI SERVER INFO—Retrieves information for creating a server certificate.
« PKI USER INFO—Retrieves information for creating a user certificate.

keyGenerationAlgorithms

(OUT) Returns a bit mask that indicates which key generation algorithms are available on the
server.

You can call NPKIGetAlgorithmInfo (page 73) for each of the algorithms to determine the
maximum key size supported (this key generation algorithm is used as an argument in the
NPKIGetAlgorithmInfo function to identify the maximum supported key sizes for key
generation).

signingAlgorithms

(OUT) Returns a bit mask that indicates which signing algorithms are available on the server.

maxValidFromTime

88 NDK: Novell Certificate Server Library for C Version 2

(OUT) Returns the maximum starting validity period represented as the number of seconds
since 00:00:00 UTC January 1, 1970. This time can be different depending on which flag is
passed in the flag field. If the CA is installed and operational on the server specified in the call
to NPKIGetServerInfo (page 88), this returns the time corresponding to the CA. See Remarks.

maxValidToTime

(OUT) Returns the maximum ending validity period represented as the number of seconds
since 00:00:00 UTC January 1, 1970. This time can be different depending on which flag is
passed in the flag field. If the CA is installed and operational on the server specified in the call
to NPKIGetServerInfo (page 88), this returns the time corresponding to the CA. See Remarks.

caOperational

(OUT) Returns a bit mask that indicates whether a CA is installed and operational on the server
specified in the call to NPKIGetServerInfo (page 88). The current possible bit values are as
follows:

* PKI NO CA PRESENT—The server does not host a CA.
« PKI TREE CA PRESENT—The server hosts the organizational CA.

pathLength

(OUT) Returns the path length of the certificate authority certificates. For more information,
see Section 4.1, “Basic Constraints Extension,” on page 119.

NOTE: This parameter is valid only when the flags field is set to PKI CA INFO.

reservedl

Reserved for future use.

serverVersion

(OUT) Returns the version of the PKI.NLM, PKI.DLM or PKI.SO running on the server
specified by the serverDN parameter.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or PKI error code if not successful.

PKI NCP Calls

0x2222 93 01 PKI Ping

Remarks

The flags parameter determines the set of information to acquire. The information returned from the
ping is stored in context specific data values. You can call NPKIGetAlgorithmInfo (page 73) to get
the supported key generation algorithm key sizes.

Functions

89

When creating server certificates, you must call “NPKIGetServerInfo” on page 88 on the server
creating the key pair and the server hosting the CA. Use the greater of the maxvValidFromTime
and the lesser of the maxValidToTime.

If the key pair server and the CA server are the same, you only need to call NPKIGetServerInfo
(page 88) once. For sample code, see GetServerInfo (../../../samplecode/ncslib_sample/
GetServerInfo.cpp.html).

See Also

NPKIGetAlgorithmInfo (page 73)

90 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/GetServerInfo.cpp.html

NPKIGetServerlPAddress

Retrieves information about a specified IP address obtained by calling

NPKIGetServer[PAndDNSInfo (page 93) (formerly NWPKIGetServerIPAddress).

Syntax
#include "npki.h"

NWRCODE NPKIGetServerIPAddress (

const NPKIContext context,

nuint32 index,

nuintl6 *ipLength,

nuint8 const **ipValue,

unicode const **ipNumber,

nuintlo6 *numberOfDNSNames) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

index

(IN) Indicates which IP address is to be returned.

NOTE: index is 0 based.

ipLength
(OUT) Returns to the length of the data in ipvalue.

ipValue
(OUT) Returns to the IP address in network byte order (hex).

ipNumber
(OUT) Returns to the IP address in Unicode format.

numberOfDNSNames

(OUT) Returns to the number of DNS names associated with the IP Address.

Return Values

Returns 0 if successful, or a PKI error code if not successful.

Remarks

Call NPKIGetServer[PAddress only after calling NPKIGetServer[PAndDNSInfo (page 93)

successfully.

Functions

91

See Also

NPKIGetServerDNSName (page 87), NPKIGetServerlPAndDNSInfo (page 93)

92 NDK: Novell Certificate Server Library for C Version 2

NPKIGetServerlPAndDNSInfo

Discovers IP and DNS information about the specified server by querying DNS
(formerlyNPKIGetServerIPAndDNSInfo).

Syntax
#include "npki.h"

NWRCODE NPKIGetServerIPAndDNSInfo (

const NPKIContext context,

const unicode *serverDN,

const pnuint32 numberOfIPAddresses) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN

(IN) Specifies the FDN of the eDirectory server.

numberOfIPAddresses
(OUT) Returns the number of IP addresses for the server.

Return Values

Returns 0 if successful, or a PKI error code if not successful.

PKI NCP Calls

0x2222 93 14 GET IP AND DNS ADDRESSES

Remarks

Returns the number of IP addresses assigned to the server and other details about all of the IP

addresses NPKIGetServerIPAddress (page 91) for each of the addresses.

See Also

NPKIGetServerDNSName (page 87), NPKIGetServer[PAddress (page 91)

Functions

93

NPKIGetServerUTCTime

Obtains the Universal Time Coordinated (UTC) time for a given server (formerly
NWPKIGetServerUTCTime).

Syntax
#include "npki.h"

NWRCODE NPKIGetServerUTCTime (

const NPKIContext context,
const unicode *serverDN,
pnuint32 time) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN

(IN) Specifies the FDN of the eDirectory server whose time you want. This must be a valid
eDirectory server in the current tree.

time

(OUT) Points to the server’s current time UTC time, represented as the number of seconds
since 00:00:00 UTC January 1, 1970.

Return Values

Returns 0 if successful, or an eDirectory, PKI, or NetWare error code if not successful.

See Also

NPKIGetServerInfo (page 88)

94 NDK: Novell Certificate Server Library for C Version 2

NPKIGetTrustedRootinfo

Retrieves information about the specified trusted root (formerly NWPKIGetTrustedRootInfo).

Syntax
#include "npki.h"

NWRCODE NPKIGetTrustedRootInfo (

const NPKIContext context,
nuint32 index,
unicode const **name,
unicode const **validFrom,
unicode const **validTo,
unicode const **subjectName,
nuit8 const **certificate,
pnuint32 certificatelen) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

index

(IN) Specifies the Trusted Root object for which information is to be returned.

NOTE: index is 0 based.

name

(OUT) Returns the eDirectory FDN of the specified Trusted Root object.

validFrom
(OUT) Returns a Unicode string representation of the starting validity of the X.509 certificate
stored in the specified Trusted Root object. Date is in the form YYYMMDDSS.
validTo
(OUT) Returns a Unicode string representation of the ending validity of the X.509 certificate
stored in the specified Trusted Root object. Date is in the form YYYMMDDSS.
subjectName
(OUT) Returns a Unicode representation of the subject name of the X.509 certificate stored in
the specified Trusted Root object.
certificate
(OUT) Returns the DER-encoded X.509 root (or CA) certificate stored in the specified Trusted
Root object.
certificateLen
(OUT) Returns the size of the certificate.

Functions

95

Return Values

Returns 0 if successful, or an eDirectory error code if not successful.

Remarks

You must call NPKIFindTrustedRootsInContext (page 65) successfully before calling
NPKIGetTrustedRootInfo. Trusted Root containers and Trusted Root objects provide a method to
logically group, manage and access X.509 root (or certificate authority) certificates within a
directory service.

See Also

NPKICreateTrustedRoot (page 39), NPKICreateTrustedRootContainer (page 41),
NPKIFindTrustedRootsInContext (page 65)

96 NDK: Novell Certificate Server Library for C Version 2

NPKIGetWrappedServerKey

Obtains a server private key cryptographically wrapped in the server's key storage key (formerly
NWPKIGetWrappedServerKey).

Syntax
#include "npki.h"

NWRCODE NPKIGetWrappedServerKey (

const NPKIContext context,
const unicode *serverDN,
const unicode *serverCertificateName,
pnuint32 wrappedKeySize,
nuint8 const **wrappedKey) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN

(IN) Specifies the FDN of the server for which you want to get a private key.

serverCertificateName

(IN) Specifies which server key to retrieve.

wrappedKeySize
(OUT) Specifies the size of the cryptographically wrapped private key.

wrappedKey
(OUT) Points to the cryptographically wrapped private key.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

See Also

NPKICreateServerCertificate (page 34), NPKIFindServerCertificateNames (page 62),
NPKIServerCertificateName (page 104)

Functions

97

NPKIimportCAKey

Imports an organization’s CA private key and corresponding certificates from a PFX format (also
known as PKCS #12) to a CA object (formerly NWPKIImportCAKey).

Syntax
#include "npki.h"

void NPKIImportCAKey (

const NPKIContext context,
const unicode *hostServerDN,
const unicode *organizationlCAName,
const unicode *password,
const nuint32 flags,
const nuint32 pfxSize,
const nuint8 *pfx);
Parameters
context

(IN) Specifies the NPKI context for the request.

hostServerDN
(IN) Specifies the FDN of the server to host the CA.

organizationlCAName

(IN) Specifies the name of the organizational CA object certificate and private key you want to
import. If the CA object does not exist, one is created.

password

(IN) Specifies the password used to decrypt the private key and certificates.

flags

(IN) Specifies options for importing the server key and certificate. The flags currently defined
are:PKI_OVERWRITE—Overwrites any information currently associated with this certificate
name for the indicated server.

pfxSize
(IN) The size of the data in pfx.

pfx
(IN) Specifies the PKCS #12 encoded data to import.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or a PKI error code if not successful.

98 NDK: Novell Certificate Server Library for C Version 2

PKI NCP Calls

0x2222 93 10 Write Key

See Also

“NPKIExportCAKey” on page 54

Functions 99

NPKIlimportServerKey

Imports a server’s private key and corresponding certificates from a PFX format (also known as
PKCS #12) to a KMO (formerly NWPKIImportServerKey).

Syntax
#include "npki.h"

void NPKIImportServerKey (

const NPKIContext context,

const unicode *serverDN,

const unicode *certificateName,

const unicode *password,

const nuint32 flags,

const nuint32 pfxSize,

const nuint8 *pfx);
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN
(IN) Specifies the FDN eDirectory server. This must be a valid eDirectory server in the current
tree.

certificateName
(IN) Specifies the name of the certificate and private key you want to import. If the KMO
corresponding to certificateName does not exist, one is created.

password

(IN) Specifies the password used to decrypt the private key and certificates.

flags

(IN) Specifies options for importing the server key and certificate. The flags currently defined
are:PKI_OVERWRITE—Overwrites any information currently associated with this certificate
name for the indicated server.

pfxSize
(IN) The size of the data pointed in pfx.

pfx
(IN) Specifies to the PKCS #12 encoded data to import.

Return Values

Returns 0 if successful, or an eDirectory, NICI, or a PKI error code if not successful.

100 NDK: Novell Certificate Server Library for C Version 2

PKI NCP Calls

0x2222 93 10 Write Key

See Also

NPKIExportServerKey (page 56)

Functions 101

NPKINickName

Obtains a pointer to a certificate nickname (formerly NWPKINickName).

Syntax
#include "npki.h"

NWRCODE NPKINickName (

const NPKIContext context
nuint32 index,
unicode const **nickName) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

index

(IN) Specifies which nickname is to be returned.

NOTE: index is 0 based.

nickName
(OUT) Returns the specified nickname.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

You must call NPKIReadAlINickNames (page 103) successfully before calling NPKINickName.

See Also

NPKIFindUserCertificates (page 66), NPKIReadAllNickNames (page 103)

102 NDK: Novell Certificate Server Library for C Version 2

NPKIReadAlINickNames

Reads the certificate nicknames for userDN and stores them in context-specific data values
(formerly NWPKIReadAllNickNames).

Syntax
#include "npki.h"

NWRCODE NPKIReadAllNickNames (

const NPKIContext context,

const unicode *userDN,

pnuint32 numberOfNickNames) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

userDN

(IN) Specifies the FDN of the user for which you want to read certificate names. userDN must
be a valid User object in the current tree.

numberOfNickNames

(OUT) Returns the number of nicknames of certificates for the specified user.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

Calls to NPKINickName (page 102) can be made to retrieve the nicknames. For sample code, see
ReadUserNicknames (../../../samplecode/ncslib_sample/ReadUserNicknames.cpp.html).

See Also

NPKIFindUserCertificates (page 66), NPKINickName (page 102)

Functions 103

../../../samplecode/ncslib_sample/ReadUserNicknames.cpp.html

NPKIServerCertificateName

Obtains a server certificate name (formerly NWPKIServerCertificateName).

Syntax
#include "npki.h"

NWRCODE NPKIServerCertificateName (

const NPKIContext context,

nuint32 index,

unicode const **serverCertificateName) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

index

(IN) Specifies which server certificate name is to be returned.

NOTE: index is 0 based.

serverCertificateName

(OUT) Points to the specified server certificate name.

Return Values

Returns 0 if successful, or a PKI error code if not successful.

Remarks

You must call NPKIFindServerCertificateNames (page 62) successfully immediately before calling
NPKIServerCertificateName.

See Also

NPKIFindServerCertificateNames (page 62)

104 NDK: Novell Certificate Server Library for C Version 2

NPKIServerNames

Obtains the specified eDirectory server’s leaf name and FDN (formerly NWPKIServerNames).

Syntax
#include "npki.h"

NWRCODE NPKIServerNames (

const NPKIContext context,
nuint32 index,
unicode const **serverDN,
unicode const **serverName) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

index

(IN) Indicates which server name is to be returned.

NOTE: index is 0 based.

serverDN

(OUT) Returns the eDirectory FDN of the server.

serverName

(OUT) Returns the leaf name of the server.

Return Values

Returns 0 if successful, or a PKI error code if not successful.

Remarks

You must call either NPKIFindKeyGenServersForUser (page 60) or NPKIFindServersInContext
(page 63) before calling NPKIServerNames. You can call this function repeatedly to get all of the

SCrver names.

See Also

NPKIFindKeyGenServersForUser (page 60), NPKIFindServersInContext (page 63)

Functions 105

NPKISetTreeName

Sets the given tree name in to the context (formerly NWPKISetTreeName).

Syntax
#include "npki.h"

NWRCODE NPKISetTreeName (

const NPKIContext context,
const unicode *treeName) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

treeName

(IN) Specifies the tree name. This must be a valid eDirectory tree.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

106 NDK: Novell Certificate Server Library for C Version 2

NPKIStoreServerCertificates

Stores server certificates after a successful call to NPKICreateServerCertificate (page 34) (formerly
NWPKIStoreServerCertificates). (Being deprecated.)

Syntax
#include "npki.h"

NWRCODE NPKIStoreServerCertificates(

const NPKIContext context,
const unicode *serverDN,
const unicode *certificateName,
const nuint32 flags,
const nuint32 trustedRoot,
const pnuint8 certificate,
const nuint32 certificatelLen,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN
(IN) Specifies the FDN of the eDirectory server (that is, the server for which the certificate(s)
are stored).

certificateName

(IN) Specifies which server certificate you want to store.

flags
(IN) Specifies which certificates are stored. The flags currently defined are:
* PKI_CHAIN_CERTIFICATE—Store the certificate chain.
« PKI TRUSTED ROOT CERTIFICATE—Store the trusted root.
« PKI SELF SIGNED CERTIFICATE—Store the self-signed certificate.
« PKI OBJECT _KEY CERTIFICATE—Store the object certificate.

« PKI WAIVE SUBJECT NAME IN CERTIFICATE—Normally
NPKIStoreServerCertificates (page 107) checks that the requested name and the subject
name in the certificate match. This optional flag waives the check, enabling the certificate
to be stored even if the requested name and certificate name are dissimilar.

NOTE: The flags PKI CHAIN_ CERTIFICATE, PKI TRUSTED ROOT _ CERTIFICATE,
and PKI SELF SIGNED_CERTIFICATE are mutually exclusive. In addition,

PKI OBJECT KEY CERTIFICATE and PKI TRUSTED ROOT CERTIFICATE are also
mutually exclusive.

Functions 107

trustedRoot
(IN) Specifies which certificate to mark as the trusted root. Use one of the following defines:

* PKI_ ORG_CA_CERTIFICATE—Use the self-signed organizational certificate as the
trusted root. This is the most commonly used option.

NOTE: This is the default flag developers typically should use.

« PKI NOVELL CERTIFICATE—Use the Novell Root Certifier Certificate as the trusted
root. (Use this option only if your software can natively understand and process the Novell
Security Attributes extension.)

NOTE: If PKI NOVELL_ CERTIFICATE is used, the developer's relying software must
be configured to handle the Novell Security Attributes extension (see Section 4.16,
“X.509 Extensions,” on page 130).

certificate
(IN) (Optional) Specifies a DER-encoded X.509 certificate.

NOTE: If the certificate parameter is not used, you must call NPKIGetCACertificates
(page 75) immediately before calling NPKIStoreServerCertificates.

certificatelen

(IN) (Optional) Specifies the length of the certificate, if present.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory, PKI, or NetWare error code if not successful.

PKI NCP Calls

0x2222 93 07 Store Certificate

Remarks

IMPORTANT: NPKIStoreServerCertificates is being deprecated because it can only handle a chain
of two certificates. Use NPKICertificateList (page 22) and
NPKIStoreServerCertificatesFromCertificateList (page 110) to replace
NWPKIStoreServerCertificates.

Two of the three modes of calling NPKICreateServerCertificate (page 34) require subsequent calls
to NPKIStoreServerCertificates (page 107).

108 NDK: Novell Certificate Server Library for C Version 2

In the two server mode, after successfully calling NPKICreateServerCertificate, you should call
NPKIGetCACertificates (page 75) to retrieve the CA’s self-signed certificate. Then you should call
NPKIStoreServerCertificates to store the certificates.

NPKIStoreServerCertificates combines the CA’s object certificate and certificate chain to form the
certificate chain for the server.

In the external certificate authority mode, two calls to NPKIStoreServerCertificates should be made.

One call should store the certificate chain and the other should store the newly created certificate.
The certificates and certificatelLen parameters provide the capability to send in a
certificate to be stored.

See Also

NPKICertificateList (page 22), NPKICreateServerCertificate (page 34),
NPKIFindServerCertificateNames (page 62), NPKIGetCACertificates (page 75),
NPKIServerCertificateName (page 104), NPKIStoreServerCertificatesFromCertificateList

(page 110)

Functions 109

NPKIStoreServerCertificatesFromCertificateList

Stores server certificates from an internal certificate chain structure.

Syntax
#include "npki.h"

NWRCODE NPKIStoreServerCertificatesFromCertificateList (

const NPKIContext context,
const unicode *serverDN,
const unicode *certificateName,
const nuint32 flags,
const nuint32 trustedRootIndex,
void *reservedl,
void *reserved?2) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

serverDN

(IN) Points to the distinguished name of the server.

certificateName

(IN) Points to the name of the certificate.

flags

(IN) Reserved Pass in zero.

trustedRootIndex
(IN) Specifies the index number of the trusted root.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

PKI NCP Calls

0x2222 93 07 Store Certificate

110 NDK: Novell Certificate Server Library for C Version 2

Remarks

Two of the three modes of calling NPKICreateServerCertificate (page 34) require subsequent calls
to NPKICertificateList (page 22) and NPKIStoreServerCertificatesFromCertificateList (page 110).
In the two server mode, after successfully calling NPKICreateServerCertificate (page 34), you
should call NPKIGetCACertificates (page 75) successfully to retrieve the CA’s self-signed
certificate. Call NPKICertificateList (page 22) to add the self-signed certificate to the list. Then call
NPKICertInfo (page 24) to retrieve the newly created server certificate. Next call
NPKICertificateList to add it to the list, then call NPKIStoreServerCertificatesFromCertificateList
to store the certificates.

NPKIStoreServerCertificatesFromCertificateList (page 110) combines the CA’s object certificate
and certificate chain to form the certificate chain for the server.In the external certificate authority
mode, calls to NPKICertificateList should be made for each of the certificates to store the whole
certificate chain from root to leaf. Then call NPKIStoreServerCertificatesFromCertificateList to
store the newly formed chain to the KMO.

See Also

NPKICertificateList (page 22), NPKICertInfo (page 24), NPKICreateServerCertificate (page 34),
NPKIGetCACertificates (page 75)

Functions 111

NPKIStoreUserCertificate

Stores a certificate on a user object (formerly NWPKIStoreUserCertificate).

Syntax
#include "npki.h"

NWRCODE NPKIStoreUserCertificate (

const NPKIContext context,
const unicode *userDN,
const unicode *nickName,
const unicode *signerDN,
const nuint32 flags,
const pnuint8 cert,
const nuint32 certSize,
const nuint32 vendorlID,
const pnuint8 privateKey,
const nuint32 privateKeySize,
void *reservedl,
void *reserved?2) ;

Parameters

context

(IN) Specifies the NPKI context for the request.

userDN
(IN) Specifies the FDN of a User object. This must be a valid eDirectory user object in the
current tree.
nickName
(IN) Specifies the certificate nickname. This name is used to identify the key pair and
associated certificate. This name must be unique for the specified user.
signerDN
(IN) Specifies the FDN of the eDirectory object that signed the certificate.
If the certificate is an external certificate, signerDN can be set to point to the trusted root
object that contains the certificate of the signing CA, or it can be set to the user object.
flags

(IN) Specifies options when storing user certificates. If the key pair was generated by the
Novell Certificate Server and the private key is stored in eDirectory, the flag

PKI INTERNAL KEY PAIR should be used. If the key pair was generated external to the
Novell Certificate Server, the flag PKI EXTERNAL KEY PAIR should be used.

cert

(IN) Specifies the DER-encoded X.509 certificate that you want to store. This parameter can be
a NULL if you called NPKICreateUserCertificate (page 42) immediately before this function

112 NDK: Novell Certificate Server Library for C Version 2

and the error PKI_E ADD CERTIFICATE was returned. The flag
PKI INTERNAL KEY PAIR must be set when cert is NULL.

certSize
(IN) Specifies the size of the certificate.

This parameter can be 0 if you called NPKICreateUserCertificate (page 42) immediately before
this function and the error PKI_E_ADD_ CERTIFICATE was returned. The flag
PKI INTERNAL KEY_ PAIR must be set when certSize is 0.

vendorID

(IN) Specifies which vendor supplied the certificate. If the flag PKI INTERNAL KEY PAIR
is set, this parameter is ignored, and the vendorID is set to PKI VENDOR NOVELL.

privateKey
(IN) Not implemented in this release. Set to NULL.

privateKeySize

(IN) Not implemented in this release. Set to 0.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

See Also

NPKICreateUserCertificate (page 42), NPKIFindUserCertificates (page 66)

Functions 113

NPKIlUserCertinfo

Obtains information about a user certificate (formerly NWPKIUserCertInfo).

Syntax
#include "npki.h"

NWRCODE NPKIUserCertInfo (

const NPKIContext context,
const nuint32 index,
unicode const **nickName,
pnuint32 certSize,
nuint8 const **cert,
pnuint32 certStatus,
pnuint32 certChainSize,
nuint8 const **certChain,
pnuint32 vendorID,
void *reservedl,
void *reserved?2) ;

Parameters

context

(IN) Specifies the NPKI context for the request.

index

(IN) Specifies which certificate is to be returned.

NOTE: index is 0 based.

nickName

(OUT) Returns the certificate nickname. This name is used to identify the key pair and
associated certificate. This name must be unique for the specified user.

certSize

(OUT) Returns size of the specified certificate.

cert
(OUT) Returns the specified DER-encoded X.509 certificate.

certStatus
(OUT) Returns status of the certificate.

certChainSize

(OUT) Not implemented in this release.

certChain

(OUT) Not implemented in this release.

vendorID

114 NDK: Novell Certificate Server Library for C Version 2

(OUT) Returns vendor ID associated with the certificate.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or a PKI error code if not successful.

Remarks

You must call either NPKICreateUserCertificate (page 42) or NPKIFindUserCertificates (page 66)
successfully immediately before calling this function.

See Also

NPKICreateUserCertificate (page 42), NPKIFindUserCertificates (page 66)

Functions 115

NPKIVerifyCertificateWithTrustedRoots

Constructs a certificate chain starting with the specified certificate and using all of the Trusted Root
objects within the specified Trusted Root container (formerly
NWPKI VerifyCertificateWith TrustedRoots).

Syntax
#include "npki.h"

NWRCODE NPKIVerifyCertificateWithTrustedRoots (

const NPKIContext context,
const pnuint8 certificate,
const nuint32 certificatelen,
const unicode *TRContextDN,
void *reservedl,
nuint32 flags,
pnuint32 cRLReason,
pnuint32 cRLHoldInstruction,
time t *cRLRevocationTime,
time t *cRLInvalidityDateTime,
pnuint32 certInvalidityReason,
void *reservedd) ;
Parameters
context

(IN) Specifies the NPKI context for the request.

certificate
(IN) Specifies the DER-encoded X.509 certificate you want to verify.

certificatelen

(IN) Specifies the size of the certificate.

TRContextDN
(IN) Specifies the FDN of the Trusted Root container that is to be searched.

reservedl

Reserved for future use

flags

(IN) Specifies whether to verify the certificate, check certificate revocation, both, or neither.
For related flag definitions, see Section 4.12, “NPKIx509 Certificate Invalidity Reasons,” on
page 127 and Section 4.13, “NPKIx509 CRL Hold Types,” on page 128.

cRLReason

(OUT) Returns the reason code, if the certificate has been revoked (that is, the reason the
certificate has been revoked; private key compromised, affiliate change, superseded, etc.). This
field is set only if the return code is set to PKI E CERT INVALID and the
certInvalidityReason is set to NPKIx509Invalid Certificate On CRL.

116 NDK: Novell Certificate Server Library for C Version 2

cRLHoldInstruction

(OUT) Returns the hold instruction from the CRL, if the certificate has been revoked and the
reason code is certificateHold, points to the hold instruction from the CRL. This field
will be set only if the return code is set to PKI_E CERT INVALID and the
certInvalidityReason is set to NPKIx509Invalid Certificate On_CRL and the
cRLReason is set to PKI CERTIFICATE HOLD.

cRLRevocationTime

(OUT) Returns the date the certificate became invalid. This field is set only if the return code is
set to PKI_ E CERT INVALID and the certInvalidityReason is set to
NPKIx509Invalid Certificate On_CRL.

cRLInvalidityDateTime
(OUT) Returns the date the CRL becomes invalid.

certInvalidityReason

(OUT) Returns the reason why the certificate is invalid. (that is, revoked, invalid issuer,
unreadable extensions, expired, etc.). This field is set only if the return code is set to
PKI_E CERT _INVALID.

reserved4
Reserved for future use.
Return Values

Returns 0 if successful, or an eDirectory or PKI error code if not successful.

Remarks

The chain is considered complete once a self-signed certificate has been found. Once the complete
certificate chain has been constructed, it is to verified. Certificate revocation checking is supported.

For sample code, see VerifyWithTrustedRoot (../../../samplecode/ncslib_sample/
VerifyWithTrustedRoot.cpp.html).

See Also

NPKICreateTrustedRootContainer (page 41), NPKICreateTrustedRoot (page 39),
NPKIFindTrustedRootsInContext (page 65), NPKIGetTrustedRootInfo (page 95)

Functions

117

../../../samplecode/ncslib_sample/VerifyWithTrustedRoot.cpp.html

NPKIVersioninfo

Obtains the version info of the client module, NPKIAPI.

Syntax
#include "npki.h"

NWRCODE NPKIVersionInfo (

nuint32 *versionNumber,
void *reservedl,
void *reserved?2) ;
Parameters
versionNumber

(OUT) The version number of the client module. For Windows NT/2000 the module is
npkiapi.dll. For Netware it is npkiapi.nlm, and for Linux, Solaris, and AIX it is libnpkiapi.so.

reservedl

Reserved for future use.

reserved2

Reserved for future use.

Return Values

Returns 0 if successful, or a PKI error code if not successful.

Remarks

A PKIContext does not need to be created to call this function. For sample code, see VersionInfo (../
../../samplecode/ncslib_sample/Versionlnfo.cpp.html).

118 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/VersionInfo.cpp.html

Defines

Novell® Certificate Server™ Library for C Version 2 interfaces, prototypes, and data types are
defined in the Novell header files, npki.h, and npki_ver.h. The data types and structures used for
verification are found in nverify.h. Their use and definition are found in npkit.doc.

This section contains the following topics:

* Section 4.1, “Basic Constraints Extension,” on page 119
» Section 4.2, “Date Flags,” on page 120
» Section 4.3, “General Name Type Extensions,” on page 120

* Section 4.4, “Key Usage Extension,” on page 121Section 4.5, “Novell Security Attributes
Extension,” on page 122

* Section 4.5, “Novell Security Attributes Extension,” on page 122

» Section 4.6, “NPKI Context Definitions,” on page 123

* Section 4.7, “NPKIGetServerCertificateStatus Defines,” on page 123

» Section 4.8, “NPKIExportCAKey Flags,” on page 123

» Section 4.9, “NPKIExportServerKey Flags,” on page 124

* Section 4.10, “NPKIGetServerInfo Defines and Flags,” on page 124

» Section 4.11, “NPKI_Version Values,” on page 126

» Section 4.12, “NPKIx509 Certificate Invalidity Reasons,” on page 127
» Section 4.13, “NPKIx509 CRL Hold Types,” on page 128

» Section 4.14, “Private Key Flags,” on page 128

* Section 4.15, “Public Key Flags,” on page 129

 Section 4.16, “X.509 Extensions,” on page 130

» Section 4.17, “Subject Alternative Name Types (obsolete, 3/2005),” on page 131

4.1 Basic Constraints Extension

The X.509 basic constraints extension is used to specify whether the certificate is for a certificate
authority (CA). The X.509 basic constraints extension has essentially two parts:

» CA—Specifies whether the certificate is for a CA

* pathLenConstraint—If the certificate is for a CA, pathLenConstraint specifies how many
subordinate levels of a certificate chain that the CA can certify.

The pathLenConstraint canrange from zero to infinite. If the value is zero, it means that the
CA cannot create other CAs but it can still create end entity objects (that is, user and server
certificates). If the value is one, it means that at most a CA one level below this CA can be created,
etc. [f the pathLenConstraint is not specified it means the value is infinite and there is no
restrictions on the number of levels of CAs that can be created.

CAs must have the basic constraints extension encoded. Certificates for non-CAs should not have
the basic constraints extension encoded.

Defines

119

The basic constraints extension uses the general purpose extension structure Section 5.2,
“NPKI_Extension,” on page 134 described in the Section 5.2.1, “General Purpose Extension
Structure,” on page 134.

value might or might not be present. If value is present, it should be one nuint32 encoded as
pathLenConstraint in the extension. If no path length constraint is desired (that is, a value of
infinite), 1ength should be set to 0 and value should not be present.

There is one extension specific flag defined for the basic constraints extension:

Value Name Description

0x0100 X509 BASIC_CONSTRAINTS_CA Specifies that the certificate is for a CA.

4.2 Date Flags

The date flags determine the ASN.1 encoding of the validity period in the certificate.

Value Name Description
0x00 DEFAULT_YEAR_ENCODING There is nothing specific to do.
1 PKI_HOLD_INSTRUCTION_CALL_ISSUER The person trying to verify the certificate should

contact the certificate’s issuer for information.

2 PKI_HOLD_INSTRUCTION_REJECT The X.509 default for date encoding (see RFC
2459 for more details).

4.3 General Name Type Extensions

The following general name type values specify which encoding format is used to encode the
general name:

Value Name Description

0x0000 X509 GENERAL_NAME_OTHER_NAME The name is encoded as an
OtherName type of GeneralName as
specified in RFC 2459.

0x0001 X509_GENERAL_NAME_RFC822_NAME The name is encoded as an
IA5String type of GeneralName as
specified in RFC 2459.

0x0002 X509_GENERAL_NAME_DNS_NAME The name is encoded as an
ORAddress type of GeneralName as
specified in RFC 2459.

0x0003 X509_GENERAL_X400_ADDRESS The name is encoded as an
IA5String type of GeneralName as
specified in RFC 2459.

0x0004 X509_GENERAL_NAME_DIRECTORY_NAME The name is encoded as a Name
type of GeneralName as specified in
RFC 2459.

120 NDK: Novell Certificate Server Library for C Version 2

Value Name Description

0x0005 X509 GENERAL_NAME_EDI_PARTY_NAME The name is encoded as an
EDIPartyName type of GeneralName
as specified in RFC 2459

0x0006 X509 GENERAL_NAME_UNIFORM_RESOURCE_ID The name is encoded as an

ENTIFIER IA5String type of GeneralName as

specified in RFC 2459.

0x0007 X509_GENERAL_NAME_IP_ADDRESS The name is encoded as n OCTECT
STRING type of GeneralName in
"network byte order" as specified by
ASN.1, RFC 2459 and RFC 791.

0x0008 X509 GENERAL_NAME_REGISTERED_ID The name is encoded as an OBJECT

IDENTIFIER type of GeneralName
as specified in ASN.1. and RFC
2459,

4.4 Key Usage Extension

The X.509 key usage extension is used to specify how a key is used. When an application goes
through the verification process, it normally checks that the key is only being used for an intended

purpose.

The key usage extension uses the general purpose extension structure Section 5.2.1, “General

Purpose Extension Structure,” on page 134.

No additional flags are defined for this extension.

value must be one nuint16 where each bit is a key usage. Any combination of key usages may
be used, but not all are appropriate combinations or are appropriate for all types of keys.

The following key usages are defined:

Value Name Description

0x8000 X509 _KEY_USAGE_DIGITAL_SIGNATURE Designate that the key is used to create
digital signatures.

0x4000 X509 _KEY_USAGE_NON_REPUDIATION Designate that the key will be used for non-
repudiation. This type of key usually has
legal ramifications.

0x2000 X509 _KEY_USAGE_KEY_ENCIPHERMENT Designates that the key will be used to
encrypt other keys.

0x1000 X509 _KEY_USAGE_DATA_ENCIPHERMENT Designates that the key will be used to
directly encrypt data.

0x0800 X509 _KEY_USAGE_KEY_AGREEMENT Not valid for RSA keys.

0x0400 X509 _KEY_USAGE_KEY_CERT_SIGN Designates that the key will be used to sign

certificates.

Defines

121

Value Name Description

0x0200 X509 KEY_USAGE_CRL_SIGN Designates that the key will be used to sign
CRLs.

0x0100 X509_KEY_USAGE_ENCIPHER_ONLY Not valid for RSA keys.

0x0080 X509 _KEY_USAGE_DECIPHER_ONLY Not valid for RSA keys.

4.5 Novell Security Attributes Extension

The Novell Security Attributes extension is used to specify the cryptographic qualities of the key
and the environment in which the key was generated. In addition, it can be used to identify the
enterprise that the subject (of the X.509 certificate) belongs to.

The Novell Security Attributes extension specific flags are optional flags that can be used to specify
values to be encoded into the Novell Security Attributes extension. If no extension specific flags are
set, the lowest cryptographic qualities are encoded.

The Novell Security Attributes extension uses the general purpose extension structure as described
in Section 5.2.1, “General Purpose Extension Structure,” on page 134.

For this release, value must not be present, and length should be set to 0.
This section contains the following topics:

» Section 4.5.1, “Mutually Exclusive Flags,” on page 122
» Section 4.5.2, “Additional Flags,” on page 122

4.5.1 Mutually Exclusive Flags

The mutually exclusive flags used in the Novell Security Attributes extension are defined below:

Value Name Description

0x00100 NOVELL_EXTENSION_SERVER_DEFAULT Specifies that the key pair is for a server.
0x00200 NOVELL_EXTENSION_USER_DEFAULT Specifies that the key pair is for a user.

0x00400 NOVELL_EXTENSION_ORGCA _DEFAULT Specifies that the key pair is for the
Organizational CA.

4.5.2 Additional Flags

An additional flag used in the Novell Security Attributes extension is defined below:

122 NDK: Novell Certificate Server Library for C Version 2

Value Name Description

0x10000 NOVELL_EXTENSION_EXTRACTABLE_KEY Specifies that the private key can be
extracted from the Novell International
Cryptographic Infrastructure (NICI). Setting
this flag reduces the cryptographic quality.
This flag only applies to keys generated by
Novell PKIS.

0x00200 NOVELL_EXTENSION_USER_DEFAULT Specifies that the key pair is for a user.

0x00400 NOVELL_EXTENSION_ORGCA_DEFAULT Specifies that the key pair is for the
Organizational CA.

4.6 NPKI Context Definitions

Value Name Description
nuit32 NPKIContext Definition of the NPKIContext.
b NPKI_INVALID _CONTEXT Invalid context number.

4.7 NPKIGetServerCertificateStatus Defines

One of the following defined values is returned in the flags parameter after a successful call to
NPKIGetServerCertificateStatus (page 85).

Value Name Description
0 KMO_EMPTY No certificates or key pair have been stored.
1 KMO_KEY_PAIR_PRESENT A key pair has been stored, but no certificates have been
stored.
2 KMO_TRUSTED_ROOT_PRESE A key pair and the root certificate have been stored, but
NT the object certificate has not been stored.
3 KMO_CERTIFICATE_PRESENT All certificates as well as the key pair have been stored,

and the object is in working order.

Oxffffffff ~ KMO_INVALID_STATUS The object is in an invalid state.

4.8 NPKIExportCAKey Flags

The following flags are used to specify which set of information to return by a successful call to
NPKIExportCAKey (page 54).

Defines

123

Value Name Description

0x04 PKI_CA_KEY_AND_CERTS Use this flag when exporting the CA self-signed certificate,
public certificate, and the CA's chain.

0x10
0x01

4.9 NPKIExportServerKey Flags

These flags determine which certificates are obtained by calls to: NPKIGetCA Certificates
(page 75), NPKIGetServerCertificates (page 83), “NPKIExportServerKey” on page 56,
“NPKIExportUserKey” on page 58 and NPKIStoreServerCertificates (page 107). These flags
typically are used for more advanced applications.

Value Name

Description

0x01 PKI_OBJECT_KEY_CERTIFICATE

0x02 PKI_TRUSTED_ROOT_CERTIFICATE

0x04 PKI_CHAIN_CERTIFICATE

0x10 PKI_SELF_SIGNED_CERTIFICATE

Use this flag when exporting or retrieving information
about the object certificate.

Use this flag when exporting or retrieving information
about the trusted root certificate.

IMPORTANT: This flag is not for use with
NPKIExportServerCert. Use the flag the flag
PKI_SELF_SIGNED_CERTIFICATE instead.

Use this flag when exporting or retrieving information
about the certificate chain.

This flag is not for use with
NPKIGetServerCertificates (page 83). Use this flag
when exporting or retrieving information on the self-
signed certificate.

4.10 NPKIGetServerinfo Defines and Flags

» Section 4.10.1, “Server Information Flags,” on page 124

* Section 4.10.2, “Key Generation Algorithms Defines,” on page 125

» Section 4.10.3, “Signing Algorithms Defines,” on page 125

» Section 4.10.4, “Key Pair Storage Defines,” on page 125

» Section 4.10.5, “CA Operational Defines,’

> on page 126

4.10.1 Server Information Flags

The following flags are used to specify which set of information to obtain by calling
NPKIGetServerInfo (page 88). For sample code, see GetServerInfo (../../../samplecode/

ncslib_sample/GetServerInfo.cpp.html).

124 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/GetServerInfo.cpp.html

Value Name Description

0x01 PKI_CA_INFO Use when querying for information about creating or using a certificate
authority.

0x02 PKI_USER_INFO Use when querying for information about creating a user certificate.

0x03 PKI_SERVER_INFO Use querying for information about creating a server certificate.

4.10.2 Key Generation Algorithms Defines

One of the following values will be returned in the keyGenerationAlgorithms parameter by a
successful call to NPKIGetServerInfo (page 88). (Currently, only the RSA algorithm is supported.)

Value Name Description

0x01 PKI_RSA_ALGORITHM The RSA algorithm is supported.

4.10.3 Signing Algorithms Defines

One of the following values will be returned in the signingAlgorithms parameter by a successful call
to NPKIGetServerInfo (page 88). (Currently only RSA algorithms are supported.)

Value Name Description

0x00 PKI_UNKNOWN_ALGORITHM The algorithm is unknown and not supported.

0x01 PKI_SIGN_WITH_RSA_AND_MD2 The MD2 with RSA encryption signing algorithm is
supported.

0x02 PKI_SIGN_WITH_RSA_AND_MD5 The MD5 with RSA encryption signing algorithm is
supported.

0x04 PKI_SIGN_WITH_RSA_AND_SHA1 The SHA1 with RSA encryption signing algorithm is
supported.

4.10.4 Key Pair Storage Defines

The following flags are used to specify which set of information to return from a successful call to
NPKIStoreUserCertificate (page 112).

Value Name Description

0x00000001 PKI_INTERNAL_KEY_PAIR The key pair was generated by
Novell PKI service and the private
key is stored in eDirectory™.

0x00000002 PKI_EXTERNAL_KEY_PAIR The key pair was generated external
to the Novell PKI service.

0x00004000 PKI_DONT_CHECK_NICKNAME_UNIQUENESS It is allowable to have more than one
user certificate belonging to a user
with the same nickname.

Defines

125

4.10.5 CA Operational Defines

One of the following values is returned in the caOperational parameter by a successful call to
NPKIGetServerInfo (page 88).

Value Name Description

0x00 PKI_NO_CA A CA is either not installed and/or not operational on
the specified server.

0x01 PKI_ORGANIZATIONAL_CA An organizational CA is installed and operational on
the specified server.

0x02 PKI_SUB_ORGANIZATIONAL CA An organizational CA is installed and operational on
the specified server (currently not supported).

4.11 NPKI _Version Values

The NPKI NDK Version number can be used to compare with the return value of NPKIVersionInfo
(page 118) to determine if the version of the NPKI library.

Value Constant Description

0x00010000 PKIS_VERSION_ONE_ZERO_ZERO PKIS NDK version 1.0.
0x00010005 PKIS_VERSION_ONE_ZERO_FIVE PKIS NDK version 1.0.5.
0x00010009 PKIS_VERSION_ONE_ZERO_NINE PKIS NDK version 1.0.9.
0x00020000 PKIS_VERSION_TWO_ZERO_ZERO PKIS NDK version 2.0.
0x00020002 PKIS_VERSION_TWO_ZERO_TWO PKIS NDK version 2.0.2.
0x00020003 PKIS_VERSION_TWO_ZERO_THREE PKIS NDK version 2.0.3.
0x00020011 PKIS_VERSION_TWO_ONE_ONE PKIS NDK version 2.1.1.
0x00020200 PKIS_VERSION_TWO_TWO_ZERO PKIS NDK version 2.2.
0x00020201 PKIS_VERSION_TWO_TWO_ONE PKIS NDK version 2.2.1.
0x00020400 PKIS_VERSION_TWO_FOUR_ZERO PKIS NDK version 2.4.
0x00020500 PKIS_VERSION_TWO_FIVE_ZERO PKIS NDK version 2.5.
0x00020502 PKIS_VERSION_TWO_FIVE_TWO PKIS NDK version 2.5.2.
0x00020504 PKIS_VERSION_TWO_FIVE_FOUR PKIS NDK version 2.5.4.
0x00020600 PKIS_VERSION_TWO_SIX_ZERO PKIS NDK version 2.6.
0x00020700 PKIS_VERSION_TWO_SEVEN_ZERO PKIS NDK version 2.7.
0x00020702 PKIS_VERSION_TWO_SEVEN_TWO PKIS NDK version 2.7.2.
0x00020703 PKIS_VERSION_TWO_SEVEN_THREE PKIS NDK version 2.7.3.
0x00020704 PKIS_VERSION_TWO_SEVEN_FOUR PKIS NDK version 2.7 .4.
0x00020705 PKIS_VERSION_TWO_SEVEN_FIVE PKIS NDK version 2.7.5.

126 NDK: Novell Certificate Server Library for C Version 2

Value Constant Description

0x00020706 PKIS_VERSION_TWO_SEVEN_SIX PKIS NDK version 2.7.6.
PKIS_VERSION NPKI_VERSION The current NPKI version 2.7.6.
_TWO_SEVEN_

SIX

4.12 NPKIx509 Certificate Invalidity Reasons

The following section describes the certificate invalidity reason flags:

4.12.1 flags

The following flags are used to specify why a certificate may be invalid. For use with the
cRLReason field in the function NPKIVerifyCertificateWithTrustedRoots (page 116).

Value Name Description

0x0000000 NPKIx509CertificateValid The certificate is valid.

0x0000001 NPKIx509Invalid_System_Error The system is unstable and should be
rebooted.

0x0000002 NPKIx509Invalid_Decode_Error There was an ASN1 decoding problem.

0x0000003 NPKIx509Invalid_Subject_Issuer_Name The subject name of the issuing
certificate does not match the issuer
name of subject certificate.

0x0000004 NPKIx509Invalid_Future The start date is in the future.

0x0000005 NPKIx509Invalid_Expired The end date is in the past.

0x0000006 NPKIx509Invalid_Issuer Not CA The issuer is not a valid CA.

0x0000007 NPKIx509Invalid_Path_Length The X.509 basic constraints extension
path length has been violated.

0x0000008 NPKIx509Invalid_Unknown_Critical Extension There was a critical extension that could
not be understood.

0x0000009 NPKIx509Invalid_KeyUsage The key does not support the requested
usage.

0x000000A NPKIx509Invalid_CRL_Decode Error An error occurred during the decoding of
the certificate revocation list (CRL).

0x000000B NPKIx509Invalid_Certificate_On_CRL One of the certificates in the chain is on a
CRL.

0x000000C NPKIx509Invalid_Cant_Process CDP The certificate contained a distribution
point that can not be processed.

0x000000D NPKIx509Invalid_Cant_Read_CRL the CRL could not be read.

0x000000E NPKIx509Invalid_Invalid_CRL The CRL was not valid for this certificate.

0x000000F NPKIx509Invalid_Expired_CRL. The CRL has expired.

Defines

127

Value Name Description

0x0000010 NPKIx509Invalid_CRL_Issuer_Name The issuer name of the CRL identified in
the certificate does not match the issuer
name in the actual CRL retrieved.

0x0000011 NPKIx509Invalid_Issuer_Not_Trusted Indicates that one or more of the
certificates in the certificate chain does
not exist in the specified trusted root
container.

This error code can only be returned by a
call to
NPKIVerifyCertificateWithTrustedRoots
(page 116).

0x0000012 NPKIx509Invalid_CDP_Exists_Did_Not_Check This is an advisory flag. The Certificate
_CRL Distribution Point (CDP) exists but the
CRL was not checked because the caller
of the function requested that it not be
checked.

0x0000013 NPKIx509Invalid_Invalid_Signature The signature on the CRL is invalid.

4.13 NPKIx509 CRL Hold Types

The following section describes the CRL hold flags:

4.13.1 Certificate Hold Flags

The following flags are used to specify what to do if a certificate is on hold. For use with the
cRLHoldInstruction field in the functions NPKIVerifyCertificate WithTrustedRoots (page 116).

Value Name Description
0 PKI_HOLD_INSTRUCTION_NONE There is nothing specific to do.
1 PKI_HOLD_INSTRUCTION_CALL_ISSUER The person trying to verify the certificate should

contact the certificate’s issuer for information.

2 PKI_HOLD_INSTRUCTION_REJECT The certificate should be rejected as though it
were revoked.

4.14 Private Key Flags

The following tables provide the general and private key flags:

» Section 4.14.1, “General Private Key Flag,” on page 128
» Section 4.14.2, “Optional Private Key Flag,” on page 129

4.14.1 General Private Key Flag

Use the following private key flag for creating certificates.

128 NDK: Novell Certificate Server Library for C Version 2

Value Name Description

0x0002 PRIVATE_KEY Use for all certificates.

4.14.2 Optional Private Key Flag

Value Name Description

0x0004 PRIVATE_KEY _EXTRACTABLE Use to allow a key to be extracted out of NICI. This is
valid for all certificates.

NOTE: When using the PRIVATE KEY EXTRACTABLE flag and including the Novell Security
Attributes™ Extension, it’s necessary to bitwise-OR the extractable option (that is,

NOVELL EXTENSION EXTRACTABLE KEY) along with the appropriate Novell attribute to
the flags field in the Novell Security Attributes extension.

4.15 Public Key Flags

The following tables provide the public key flags:

» Section 4.15.1, “Certificate Authority Public Key Flags,” on page 129

» Section 4.15.2, “End Entity Certificate Creation Public Key Flags,” on page 129
» Section 4.15.3, “Optional Certificate Creation Public Key Flags,” on page 130

» Section 4.15.4, “Server Private Key and Certificate Flag,” on page 130

4.15.1 Certificate Authority Public Key Flags

Use the following flag for creating an Organizational Certificate Authority (CA):

Value Name Description

0x0001 | 0x0002 | 0x0020 PUBLIC_KEY_ORGANIZATIONAL_CA Use when creating a CA.

4.15.2 End Entity Certificate Creation Public Key Flags

Use one of the following flags for creating user and server certificates:

Value Name Description

0x0002 | 0x0020 | 0x0100 PUBLIC_KEY_SINGLE_SERVER Use when the key generation server
is the same as the CA server.

0x0004 | 0x0010 | 0x0100 PUBLIC_KEY_TWO_SERVER Use when the key generation server
is not the same as the CA server.

0x0004 | 0x0010 | 0x0100 PUBLIC_KEY_EXTERNAL_CA Use when the CA is external to
Novell.

Defines

129

4.15.3 Optional Certificate Creation Public Key Flags

Value Name Description

0x00001000 PKI_CUSTOM_SUBJECT_NAME Use when the subject name is not
the default.

0x100 PKI_WAIVE_SUBJECT_NAME_IN_CERTIFICATE Use when the subject name of the

PKCS #10 CSR is not the subject
name returned in the X.509
certificate.

4.15.4 Server Private Key and Certificate Flag

Value Name Description

0x01 PKI_OVERWRITE Use to allow import of a server private key and certificate.

416 X.509 Extensions

The extensions of a X.509 certificate provide a generic way to include information in the certificate.
Currently the API provides explicit support for four X.509 extensions: Key Usage, basic constraints,
subject alternative name, and the Novell Security Attributes. In addition, the API currently supports
the ability to include any generic ASN.1 encoded extensions when generating server and user
certificates.

NOTE: Creating an ASN.1 encoded extension is an advanced operation, requiring detailed
knowledge of ASN.1 and X.509 extensions. However, existing ASN.1 encoded extensions may be
used without such detailed knowledge. To review an example that uses the parameters to include in
an extended key usage extension on the user certificate as it is created, see UserExtendedKeyUsage
(../../../samplecode/ncslib_sample/UserExtendedKeyUsage.cpp.html).

To provide a generic method of specifying data for X.509 extensions, the API provides general
purpose data structures and defines, as well as extension-specific data structures and defines. Also
see Section 5.2.1, “General Purpose Extension Structure,” on page 134. The following table
describes the general purpose extension flags:

4.16.1 General Purpose Extension Flags

The following are a list of general purpose extension flags:

Value Name Description

0x0000 PKI_EXTENSION_INCLUDE The extension is included in the certificate.
0x0001 PKI_EXTENSION_DONT_INCLUDE Excludes the extension from the certificate.

130 NDK: Novell Certificate Server Library for C Version 2

../../../samplecode/ncslib_sample/UserExtendedKeyUsage.cpp.html

Value Name Description

0x0002 PKI_EXTENSION_CRITICAL Use to set the extension as critical in the certificate.

NOTE: If an extension is set to critical, application
software should understand the extension, or fail
verification of the certificate.)

4.17 Subject Alternative Name Types (obsolete,
3/2005)

The subject alternative name type determined which encoding format was used to encode the
alternative name and is now deprecated and replaced by Section 4.3, “General Name Type
Extensions,” on page 120. As specified by the X.509 standard, three of the name types were encoded
as IA5String, which is the same as ASCII (r fc822Name, dNSName, and
uniformResourceldentifier).

When using any of the three forms specified above, the value must contain the Unicode
representation of the IA5String and the 1ength field must contain the number of bytes in the
Unicode string including the NULL terminator.

NOTE: The names are specified in Unicode instead of [A5String because all other parameters in the
API are Unicode. However, only IA5String characters are supported.

When using any other than the three forms specified above, value field must contain the data
structures defined in the X.509 document RFC 2459. (This means that other forms required you to
do any ASN.1 encoding.)

Also see Section 5.3, “Subject Alternative Names Extension,” on page 134.

The following subject alternative name types were defined:

Value Name Description

0x000 X509 _SUBJECT_ALT_NAME_OTHER_NAME The alternative name must be

0 encoded as an OtherName
sequence as specified in RFC
2459,

0x000 X509 SUBJECT_ALT _NAME_RFC822 NAME The alternative name must be a

1 Unicode representation of an
IA5String.

0x000 X509 SUBJECT _ALT _NAME_DNS NAME The alternative name must be a

2 Unicode representation of an
IA5String.

0x000 X509 _SUBJECT_ALT_NAME_X400_ADDRESS The alternative name must be

3 encoded as an ORAddress
sequence as specified in RFC
2459,

Defines

131

Value Name

Description

0x000 X509 SUBJECT ALT_NAME_DIRECTORY_NAME

0x000 X509 SUBJECT ALT_NAME_EDI_PARTY_NAME

0x000 X509_SUBJECT_ALT_NAME_UNIFORM_RESOURCE_ID
6 ENTIFIER

0x000 X509 SUBJECT ALT_NAME_IP_ADDRESS

0x000 X509 SUBJECT ALT_NAME_REGISTERED_ID

The alternative name must be
encoded as a Name choice as
specified in RFC 2459.

The alternative name must be
encoded as an EDIPartyName
sequence as specified in RFC
2459,

The alternative name must be a
Unicode representation of an
IA5String.

The alternative name must be an
OCTET STRING in "network byte
order" as specified in RFC 2459.
(network byte order specified in
RFC 791).

The alternative name must be
encoded as an OBJECT
IDENTIFIER as specified in RFC
2459.

132 NDK: Novell Certificate Server Library for C Version 2

Structures

The following extensions are defined in this section:

» Section 5.1, “ASN1 Encoded Extension,” on page 133
* Section 5.2, “NPKI Extension,” on page 134

» Section 5.3, “Subject Alternative Names Extension,” on page 134

5.1 ASN1 Encoded Extension

The following structure allows ASN1 encoded extensions to be specified during the creation of
server and user certificates. To add multiple extensions, create a structure for each extension and
then link the structures using the next field in the structures.

IMPORTANT: Each extension must be a fully ASN.1 encoded extension conforming to RFC 2459.

typedef struct NPKI ASNl Extensions
{

NPKI Extension extension;
struct NPKI ASNlExtensions *next;
NPKI AltNames *altName; // Array of structures

}

NPKI ASN1 Extensions;

extensions

Contains the values of the ASN1 encoded extension to be encoded into the certificate. See
Section 5.2.1, “General Purpose Extension Structure,” on page 134.

NOTE: Creating an ASN.1 encoded extension is an advanced operation, requiring detailed
knowledge of ASN.1 and X.509 extensions. However, existing ASN.1 encoded extensions may
be used without such detailed knowledge. To review an example that uses the parameters to
include in an extended key usage extension on the user certificate as it is created, see
UserExtendedKeyUsage (../../../samplecode/ncslib_sample/UserExtendedKeyUsage.cpp.html).

next
Points to the next node of type NPKI_ASN1_Extensions structure. To add multiple extensions,
create a structure for each extension and then link the structures using the next field in the
structures. The next field in last structure in the linked list should be set to null.

altName

Points to an array of NPKI-AltName structures; each element in the array contains one
alternative name.

Structures 133

../../../samplecode/ncslib_sample/UserExtendedKeyUsage.cpp.html

5.2 NPKI_Extension

The NPKI_ Extension consists of the general purpose extension structure described in the following
section:

5.2.1 General Purpose Extension Structure

The following extension is the genera purpose structure that allows data to be specified for most
supported extensions.

typedef struct NPKI Extension
{

nuint32 flags;
nuint32 length; /* length of value */
nuint8 *value;

}NPKI Extension;

flags
Specifies how the extension is encoded in the certificate. £1ag is composed of both general
purpose flags combined with any extension specific flags if necessary. See Section 4.16.1,
“General Purpose Extension Flags,” on page 130.

length

Specifies the number of bytes which follow in value. If the extension is not to be encoded in the
certificate, flags should be set to PKI_ EXTENSION DONT_INCLUDE, length should be set
to 0 and value should be NULL.

value

Points to a byte-array of data.

5.3 Subject Alternative Names Extension

The X.509 subject alternative name extension is used to specify additional identities to be bound to
the subject of the certificate (that is, other names that identify the object). See Section 4.3, “General
Name Type Extensions,” on page 120.

The subject alternative name extension uses a specific extension structure (NPKI ExtAltNames or
NPKI_AltName) described below:

typedef struct NPKI ExtAltNames
{
nuint32 flags;
nuintlé6 numberOfNames;
NPKI AltNames *altName; // Array of structures

}NPKI ExtAltNames;

flags

Specifies how the extension is encoded in the certificate. f1ags is composed of both general
purpose flags combined with any subject alternative names extension specific flags. For a

134 NDK: Novell Certificate Server Library for C Version 2

description of the general purpose flags, see the Section 4.16.1, “General Purpose Extension
Flags,” on page 130.

NOTE: There are no subject alternative name extension specific flags defined in this release.

numberOfNames

Specifies the number of elements in the array altName.

altName

Points to an array of NPKI-AltName structures; each element in the array contains one
alternative name. The NPKI-AltName structures are described below.

typedef struct NPKI AltName
{

nuintlé type;

nuintlé length;

nuint8 *value; }NPKI_ AltName;
type

Specifies how the subject alternative name is encoded in the certificate. For a description of the
types, see the Section 4.3, “General Name Type Extensions,” on page 120.

length
Specifies the length (in bytes) of the value field (that is, the alternative names).

value

Points to the byte array that contains the alternative name.

Structures 135

136 NDK: Novell Certificate Server Library for C Version 2

NPKI Sample Code

See the following Novell Certificate Server samples:

» BackupCA (../../../samplecode/ncslib_sample/BackupCA.cpp.html)

» BackupServerCertificate (../../../samplecode/ncslib_sample/BackupServerCertificate.cpp.html)
* CreateServerCertificate (../../../samplecode/ncslib_sample/CreateServerCert.cpp.html)

* CreateTrustedRoot (../../../samplecode/ncslib_sample/CreateTrustedRoot.cpp.html)

* CreateTrustedRootContainer (../../../samplecode/ncslib_sample/
CreateTrustedRootContainer.cpp.html)

* CreateUserCert (../../../samplecode/ncslib_sample/CreateUserCert.cpp.html)

* ExportUserCert (../../../samplecode/ncslib_sample/ExportUserCert.cpp.html)

» FindUserCerts (../../../samplecode/ncslib_sample/FindUserCerts.cpp.html)

» GenerateCSR (../../../samplecode/ncslib_sample/GenerateCSR.cpp.html)

* GetCACert (../../../samplecode/ncslib_sample/GetCACert.cpp.html)

* Get]PandDNSInfo (../../../samplecode/ncslib_sample/GetIPandDNSInfo.cpp.html)

* GetServerlnfo (../../../samplecode/ncslib_sample/GetServerlnfo.cpp.html)

* GetServerKey (../../../samplecode/ncslib_sample/GetServerKey.cpp.html)

» ImportUserCert (../../../samplecode/ncslib_sample/ImportUserCert.cpp.html)

* Loggingln (../../../samplecode/ncslib_sample/Loggingln.cpp.html)

» ReadUserNicknames (../../../samplecode/ncslib_sample/ReadUserNicknames.cpp.html)
* RestoreCA (../../../samplecode/ncslib_sample/RestoreCA.cpp.html)

» RestoreServerCertificate (../../../samplecode/ncslib_sample/RestoreServerCertificate.cpp.html)

» RetrieveServerCertificate (../../../samplecode/ncslib_sample/
RetrieveServerCertificate.cpp.html)

» SignCSR (../../../samplecode/ncslib_sample/SignCSR.cpp.html)
» VerifyWithTrustedRoot (../../../samplecode/ncslib_sample/Verify WithTrustedRoot.cpp.html)

* Versionlnfo (../../../samplecode/ncslib_sample/VersionInfo.cpp.html)

NPKI Sample Code 137

../../../samplecode/ncslib_sample/BackupCA.cpp.html
../../../samplecode/ncslib_sample/BackupServerCertificate.cpp.html
../../../samplecode/ncslib_sample/CreateServerCert.cpp.html
../../../samplecode/ncslib_sample/CreateTrustedRoot.cpp.html
../../../samplecode/ncslib_sample/CreateTrustedRootContainer.cpp.html
../../../samplecode/ncslib_sample/CreateUserCert.cpp.html
../../../samplecode/ncslib_sample/ExportUserCert.cpp.html
../../../samplecode/ncslib_sample/FindUserCerts.cpp.html
../../../samplecode/ncslib_sample/GenerateCSR.cpp.html
../../../samplecode/ncslib_sample/GetCACert.cpp.html
../../../samplecode/ncslib_sample/GetIPandDNSInfo.cpp.html
../../../samplecode/ncslib_sample/GetServerInfo.cpp.html
../../../samplecode/ncslib_sample/GetServerKey.cpp.html
../../../samplecode/ncslib_sample/ImportUserCert.cpp.html
../../../samplecode/ncslib_sample/LoggingIn.cpp.html
../../../samplecode/ncslib_sample/ReadUserNicknames.cpp.html
../../../samplecode/ncslib_sample/RestoreCA.cpp.html
../../../samplecode/ncslib_sample/RestoreServerCertificate.cpp.html
../../../samplecode/ncslib_sample/RetrieveServerCertificate.cpp.html
../../../samplecode/ncslib_sample/SignCSR.cpp.html
../../../samplecode/ncslib_sample/VerifyWithTrustedRoot.cpp.html
../../../samplecode/ncslib_sample/VersionInfo.cpp.html

138 NDK: Novell Certificate Server Library for C Version 2

Revision History

Revision Date

Changes

October 11, 2006

March 1, 2006

October 5, 2005
March 2, 2005

October 6, 2004
June 9, 2004

8 October 2003

June 2003

March 2003
January 2003

Fixed broken links.

» Fixed broken sample code links.

* Updated Trademark information.
» Transitioned to revised Novell documentation standards.

» Fixed broken links and made minor documentation updates to comply
with requirements of Novell Forge.

» Deprecated Section 4.17, “Subject Alternative Name Types (obsolete, 3/
2005),” on page 131 and replaced with the revised Section 4.3,
“General Name Type Extensions,” on page 120.

» Added Section 4.11, “NPKI_Version Values,” on page 126.
» Made technical corrections and fixed broken links

* Rolled in the latest version of the 2.72.1 code, which includes all bug
fixes for future releases.

* Made minor documentation updates.

Changed name from Novell Certificate Server™ API Version 2 to Novell
Certificate Server Library for C Version 2 to clarify differences between Java
and C APl libraries.

» Updated information to include new NDK: Novell Certificate Server
Classes for Java API.

* Reorganized and edited all chapters.
Updated broken Sample Code links.

Added as a new component to the Novell® Certificate Server Libraries.

Revision History 139

	NDK: Novell Certificate Server Library for C Version 2
	About This Guide
	1 Getting Started
	1.1 NPKI Dependencies
	1.2 Getting Started
	1.3 Retrieving API Version Information
	1.4 Getting Server Information

	2 Tasks
	2.1 Creating a Certificate Authority
	2.2 Retrieving CA Certificates
	2.3 Backing Up the CA
	2.4 Restoring the CA
	2.5 Creating User Certificates
	2.6 Importing a User Certificate
	2.7 Retrieving User Certificates
	2.8 Reading a User's Private Key Nicknames
	2.9 Exporting a User's Private Key
	2.10 Creating Server Certificates (Internal CA)
	2.11 Storing Server Certificates (Internal CA)
	2.12 Creating Server Certificates (External CA)
	2.13 Storing Server Certificates (External CA)
	2.14 Retrieving Server Certificates
	2.15 Backing Up a Server Certificate
	2.16 Restoring a Server Certificate
	2.17 Retrieving A Server's Private Key
	2.18 Creating a Certificate from a CSR
	2.19 Retrieving IP and DNS Information
	2.20 Creating a Trusted Root Container
	2.21 Creating a Trusted Root Object
	2.22 Verifying Certificates with a Trusted Root
	2.23 Housekeeping Tasks

	3 Functions
	NPKICertificateList
	NPKICertInfo
	NPKIChainCertInfo
	NPKIConnectToIPAddress
	NPKICreateContext
	NPKICreateOrganizationalCA
	NPKICreateSASServiceObject
	NPKICreateServerCertificate
	NPKICreateTrustedRoot
	NPKICreateTrustedRootContainer
	NPKICreateUserCertificate
	NPKICSRInfo
	NPKIDeleteDSObject
	NPKIDeleteUserCertificate
	NPKIDSLogin
	NPKIDSLogout
	NPKIDSObjectExists
	NPKIExportCAKey
	NPKIExportServerKey
	NPKIExportUserKey
	NPKIFindKeyGenServersForUser
	NPKIFindServerCertificateNames
	NPKIFindServersInContext
	NPKIFindOrganizationalCA
	NPKIFindTrustedRootsInContext
	NPKIFindUserCertificates
	NPKIFreeContext
	NPKIGenerateCertificateFromCSR
	NPKIGetAlgorithmInfo
	NPKIGetCACertificates
	NPKIGetHandleToServerKey
	NPKIGetHandleToUserKey
	NPKIGetHostServerDN
	NPKIGetKMOCertificateName
	NPKIGetSASServiceName
	NPKIGetServerCertificates
	NPKIGetServerCertificateStatus
	NPKIGetServerDNSName
	NPKIGetServerInfo
	NPKIGetServerIPAddress
	NPKIGetServerIPAndDNSInfo
	NPKIGetServerUTCTime
	NPKIGetTrustedRootInfo
	NPKIGetWrappedServerKey
	NPKIImportCAKey
	NPKIImportServerKey
	NPKINickName
	NPKIReadAllNickNames
	NPKIServerCertificateName
	NPKIServerNames
	NPKISetTreeName
	NPKIStoreServerCertificates
	NPKIStoreServerCertificatesFromCertificateList
	NPKIStoreUserCertificate
	NPKIUserCertInfo
	NPKIVerifyCertificateWithTrustedRoots
	NPKIVersionInfo

	4 Defines
	4.1 Basic Constraints Extension
	4.2 Date Flags
	4.3 General Name Type Extensions
	4.4 Key Usage Extension
	4.5 Novell Security Attributes Extension
	4.5.1 Mutually Exclusive Flags
	4.5.2 Additional Flags

	4.6 NPKI Context Definitions
	4.7 NPKIGetServerCertificateStatus Defines
	4.8 NPKIExportCAKey Flags
	4.9 NPKIExportServerKey Flags
	4.10 NPKIGetServerInfo Defines and Flags
	4.10.1 Server Information Flags
	4.10.2 Key Generation Algorithms Defines
	4.10.3 Signing Algorithms Defines
	4.10.4 Key Pair Storage Defines
	4.10.5 CA Operational Defines

	4.11 NPKI_Version Values
	4.12 NPKIx509 Certificate Invalidity Reasons
	4.12.1 flags

	4.13 NPKIx509 CRL Hold Types
	4.13.1 Certificate Hold Flags

	4.14 Private Key Flags
	4.14.1 General Private Key Flag
	4.14.2 Optional Private Key Flag

	4.15 Public Key Flags
	4.15.1 Certificate Authority Public Key Flags
	4.15.2 End Entity Certificate Creation Public Key Flags
	4.15.3 Optional Certificate Creation Public Key Flags
	4.15.4 Server Private Key and Certificate Flag

	4.16 X.509 Extensions
	4.16.1 General Purpose Extension Flags

	4.17 Subject Alternative Name Types (obsolete, 3/2005)

	5 Structures
	5.1 ASN1 Encoded Extension
	5.2 NPKI_Extension
	5.2.1 General Purpose Extension Structure

	5.3 Subject Alternative Names Extension

	6 NPKI Sample Code
	A Revision History

