
n

NDK: Novell Public Key Infrastructure Toolbox
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
M a r c h 1 , 2 0 0 6

N O V E L L P U B L I C K E Y
I N F R A S T R U C T U R E T O O L B O X

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 1993-2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

http://www.novell.com/info/exports/

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc. in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc. in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 9

1 Concepts 11
1.1 NPKIT Dependencies . 11

2 Tasks 13
2.1 Getting Started. 13
2.2 Decoding an X509 Certificate . 13
2.3 Decoding a CRL . 14

3 Functions 15
NPKIT_CacheAddElement . 16
NPKIT_CacheAddPKCS12Elements . 18
NPKIT_CacheClearAllElements . 20
NPKIT_CacheCreateContext . 21
NPKIT_CacheElementInfo . 22
NPKIT_CacheExportToPKCS12 . 24
NPKIT_CacheFreeContext . 26
NPKIT_CacheRead . 27
NPKIT_CacheWrite . 29
NPKIT_CRLCreateContext. 31
NPKIT_CRLDecode . 32
NPKIT_CRLEntryExtensionInfo . 34
NPKIT_CRLEntryInfo . 36
NPKIT_CRLExtensionInfo . 38
NPKIT_CRLFreeContext . 40
NPKIT_CRLInvalidityDateInfo . 41
NPKIT_CRLReasonCodeInfo. 42
NPKIT_VerifyCertificate . 43
NPKIT_VerifyCertChain . 45
NPKIT_VerifyCertChainWithCallback. 48
NPKIT_VerifyIssuerSubjectNameMatch. 49
NPKIT_Version. 50
NPKIT_x509BasicConstraintsInfo . 51
NPKIT_x509CreateContext . 52
NPKIT_x509CRLDistributionPoint . 53
NPKIT_x509CRLDistributionPointsInfo . 56
NPKIT_x509DecodeCertificate. 57
NPKIT_x509FreeContext . 61
NPKIT_x509GetExtensionData . 62
NPKIT_x509IssuerAltName . 64
NPKIT_x509IssuerAltNamesInfo . 66
NPKIT_x509KeyUsageInfo. 67
NPKIT_x509NovellExtensionInfo . 69
7

8 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509SubjectAltName . 72
NPKIT_x509SubjectAltNamesInfo . 74

4 Values 75
4.1 Basic Constraints Extension Values. 75
4.2 CRL Distribution Point Values . 76
4.3 General Name Type Extensions. 76
4.4 Key Usage Extension Values . 77
4.5 NPKI_VerifyCallBackStruct Flag Values . 77
4.6 NPKIT_Version Values. 78
4.7 NPKIT_x509 Certificate Invalidity Reason Flags . 79

4.7.1 NPKIT_x509 CRL Distribution Point Reason Code . 80
4.8 NPKIT_x509 CRL Types Values . 81
4.9 NPKIT_x509 CRL Hold Types . 81
4.10 X.509 Extensions . 81
4.11 Subject Alternative Name Extension Values (obsolete, 3/2005) . 84

5 Structures 87
NPKI_CertChain . 88
NPKI_VerifyCallBackStruct . 90

A Revision History 93
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
About This Guide

The Novell® Public Key Infrastructure Toolbox (NPKIT) API furnishes you with non-directory-
centered, public key infrastructure (PKI) services to manage and access X.509 certificates. This API
is delivered entirely in the C programming language to provide broad cross-platform support for all
platforms that support Novell eDirectory™ (including Solaris*, Linux*, and AIX*), without
requiring eDirectory™.

This API will help you use this functionality to further enhance or customize your security solutions
without re-writing your own technology. For information about the PKI APIs and how they work
together, see NDK: Novell Certificate Server APIs --- Overview.

This guide provides the following topics:

• Chapter 1, “Concepts,” on page 11
• Chapter 2, “Tasks,” on page 13
• Chapter 3, “Functions,” on page 15
• Chapter 4, “Values,” on page 75
• Chapter 5, “Structures,” on page 87

Audience

This guide is intended for Novell Certificate Servers experienced in both the C and Java
programming languages..

Feedback

We want to hear your comments and suggestions about this manual. Please use the User Comments
feature at the bottom of each page of the online documentation and enter your comments there.

Documentation Updates

For the most recent version of this guide, see Novell Cluster Services SDK (http://
developer.novell.com/ndk/ncslib.htm).

Additional Documentation

For documentation on Novell Certificate Server, see the Novell Certificate Server 2.7.x Web site
(http://www.novell.com/documentation/crt27/index.html).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
9

http://developer.novell.com/ndk/ncslib.htm
http://www.novell.com/documentation/crt27/index.html

10 NDK: Novel

novdocx (E
N

U
) 01 February 2006
When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.
l Public Key Infrastructure Toolbox

1
novdocx (E

N
U

) 01 February 2006
1Concepts

For more conceptual information about Novell® Public Key Infrastructure Toolbox, see Concepts in
Novell Certificate Server™ APIs-Overview.

1.1 NPKIT Dependencies
See Novell eDirectory™ 8.7 System Requirements (http://www.novell.com/products/edirectory/
sysreqs.html).
Concepts 11

http://www.novell.com/products/edirectory/sysreqs.html

12 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Public Key Infrastructure Toolbox

2
novdocx (E

N
U

) 01 February 2006
2Tasks

The Novell® Public Key Infrastructure Toolbox contains functions that enable you to manage and
access certificates. Examples of the following implementations can be examined in the NPKIT
Sample Code file (../../../samplecode/ncslib_sample/index.htm).

2.1 Getting Started
Before calling many of the Novell PKI Toolbox API functions, you must first create an appropriate
context. Call one of these functions:

• NPKIT_x509CreateContext (page 52)
• NPKIT_CRLCreateContext (page 31)

When finished with the operations within one of these contexts, you need to clear the context by
calling the corresponding function:

• NPKIT_x509FreeContext (page 61)
• NPKIT_CRLFreeContext (page 40)

2.2 Decoding an X509 Certificate
Basic information about a certificate is obtained by calling NPKIT_x509DecodeCertificate
(page 57). Once this function has been called, there are several other functions that can be called to
obtain additional certificate information.

1 Create an x509 context by calling NPKIT_x509CreateContext (page 52).
2 Decode the certificate by calling NPKIT_x509DecodeCertificate (page 57).
3 Optionally, obtain additional information about the certificate using one or more of the

following procedures:
3a Obtain key usage information by calling NPKIT_x509KeyUsageInfo (page 67).
3b Obtain subject alternative names information by calling

NPKIT_x509SubjectAltNamesInfo (page 74) to find the number of names, then
NPKIT_x509SubjectAltName (page 72)for information about each name.

3c Obtain issuer alternative names information by calling NPKIT_x509IssuerAltNamesInfo
(page 66) to find the number of names, then NPKIT_x509IssuerAltName (page 64) for
information about each name.

3d Obtain information about each extension by calling NPKIT_x509GetExtensionData
(page 62) (number of extensions was returned by NPKIT_x509DecodeCertificate
(page 57)).

3e Obtain basic constraint information by calling NPKIT_x509BasicConstraintsInfo
(page 51).

3f Obtain CRL distribution point information by calling
NPKIT_x509CRLDistributionPointsInfo (page 56) to find the number of distribution
points, then NPKIT_x509CRLDistributionPoint (page 53) for information about each
distribution point.
Tasks 13

../../../samplecode/ncslib_sample/index.htm
../../../samplecode/ncslib_sample/index.htm

14 NDK: Novel

novdocx (E
N

U
) 01 February 2006
3g Obtain information about any Novell extensions (if any exist) by calling
NPKIT_x509NovellExtensionInfo (page 69).

4 Free the x509 context by calling NPKIT_x509FreeContext (page 61).

2.3 Decoding a CRL
Obtain basic information about a CRL by calling NPKIT_CRLDecode (page 32). Once this function
has been called, there are several other functions that can be called to obtain additional information
about the list. To decode a CRL, follow the steps listed below:

1 Create a CRL context by calling NPKIT_CRLCreateContext (page 31).
2 Decode the CRL by calling NPKIT_CRLDecode (page 32).
3 Optionally, to obtain additional information about the CRL:

3a Obtain information about each list extension by calling NPKIT_CRLExtensionInfo
(page 38) (number of list extensions was returned by NPKIT_CRLDecode (page 32)).

3b Obtain basic information about each entry in the list by calling NPKIT_CRLEntryInfo
(page 36) (the number of entries in the list was returned by NPKIT_CRLDecode
(page 32)). After this function is called, several other functions can be called to obtain
additional information about the entry. This is done by using one or more of the following
optional methods:

• Obtain information about why the certificate in this entry was revoked by calling
NPKIT_CRLReasonCodeInfo (page 42).

• Obtain invalidity date information for the revoked certificate in this entry by calling
NPKIT_CRLInvalidityDateInfo (page 41).

• Obtain information about each entry extension by calling
NPKIT_CRLEntryExtensionInfo (page 34) (the number of extensions was returned
by NPKIT_CRLEntryInfo (page 36)).

4 Free the CRL context by calling NPKIT_CRLFreeContext (page 40).
l Public Key Infrastructure Toolbox

3
novdocx (E

N
U

) 01 February 2006
3Functions

The Novell® Public Key Infrastructure Toolbox furnishes you with a nondirectory-centered, public
key infrastructure to manage and access X.509 certificates. The functions within this document are
provided in the C programming language to provide the best cross-platform support for all platforms
integrated with Novell eDirectory™. See Dependencies in “Tasks” on page 13 for specific
configuration and implementation requirements.

Novell Certificate Server™ interfaces, prototypes, and data types are defined in the Novell header
files npkit.h, nverify.h, NPKIT_Verify.h, and NPKIT_x509.h. As in all early versions, the API is
subject to change.

NOTE: When using this API, all functions should be treated as blocking functions.

NPKIT Error Codes: For a listing of NPKIT error codes, see the Certificate Server Certificate
Server Error Code Constants.
Functions 15

16 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheAddElement
Adds a cache element of type elementType to the context.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheAddElement
(
 NPKIT_CacheContext context
 const nuint32 elementType,
 const pnuint8 data,
 const nuint32 dataLength,
 void *reserved1,
 void *reserved2,
 void *reserved3,
 void *reserved4
);

Parameters
context

(IN) Defines the context for the function.

elementType
(IN) Specifies one of the following types of cache elements to add:

data
(IN) Specifies the data to be added.

Value Description

NPKIT_PEM_OBJ_X509 Specifies an x.509 certificate.

NPKIT_PEM_OBJ_X509_REQUEST Specifies a PKCS #10 CSR (Certificate Signing
Request).

NPKIT_PEM_OBJ_X509_TRUSTED Specifies a trusted x.509 certificate (that is a CA or root
certificate).

NPKIT_PEM_OBJ_CRL Specifies an x.509 Certificate Revocation List.

NPKIT_PEM_OBJ_PKCS7 Specifies a PKCS #7 file which contains one or more
x.509 certificates.

NPKIT_PEM_OBJ_WRAP_PRIV_KEY Specifies a wrapped private key (that is a private-key
that has been cryptographically wrapped for
protection).

NPKIT_PEM_OBJ_TERISA_KEY_FILE Specifies a TERESA key file.

NPKIT_PEM_OBJ_RSA_PRIV_KEY Specifies a raw RSA private key (PKCS #8).

NPKIT_PEM_OBJ_PRIV_KEY Specifies a raw private key (PKCS #1).
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
dataLength
(IN) Allocates the length of the data to be added.

reserved1
For future use; pass NULL.

reserved2
For future use; pass NULL.

reserved3
For future use; pass NULL.

reserved4
For future use; pass NULL.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CacheCreateContext (page 21)
NPKIT_CacheFreeContext (page 26)
NPKIT_CacheWrite (page 29)
Functions 17

18 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheAddPKCS12Elements
Adds all the elements in the PKCS#12 data to the context.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheAddPKCS12Elements
(
 NPKIT_CacheContext context
 const unicode *password
 const pnuint8 pfxData,
 const nuint32 pfxDataLength,
 nuint32 *numberOfElementsAdded,
 void *reserved1,
 void *reserved2,
 void *reserved3,
 void *reserved4
);

Parameters
context

(IN) Defines the context.

password
(IN) Specifies the password used to decrypt the PKCS12 data.
 pfx -
 numberOfElementsAdded - .

pfxData
(IN) Specifies the PFX (or PKCS#12) data.

pfxDataLength
(IN) Sets the length of the PFX (or PKCS#12) data.

numberOfElementsAdded
(OUT) Returns the number of elements that were added to the cache.

reserved1
For future use; pass NULL.

reserved2
For future use; pass NULL.

reserved3
For future use; pass NULL.

reserved4
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
For future use; pass NULL.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CacheAddElement (page 16)
NPKIT_CacheCreateContext (page 21)
NPKIT_CacheFreeContext (page 26)
NPKIT_CacheWrite (page 29)
Functions 19

20 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheClearAllElements
.Clears all elements from a cache contex.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheClearAllElements
(
 NPKIT_CacheContext *context
 void *reserved1,
 void *reserved2
);

Parameters
context

(IN) Specifies the context..

reserved1
For future use; pass NULL.

reserved2
For future use; pass NULL.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CacheAddElement (page 16)
NPKIT_CacheCreateContext (page 21)
NPKIT_CacheFreeContext (page 26)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheCreateContext
Creates a new NPKIT cache context and initializes it with default values.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheCreateContext
(
 NPKIT_CacheContext *context
);

Parameters
context

(IN) The context parameters for the NPKIT cache.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CacheFreeContext (page 26)
Functions 21

22 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheElementInfo
Retreives information about the specified cache element.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheElementInfo
(
 NPKIT_CacheContext context
 const nuint32 index,
 pnuint32 elementType,
 nuint8 const **data,
 pnuint32 dataLength,
 pnuint32 flags,
 void *reserved2,
 void *reserved3,
 void *reserved4
);

Parameters
context

Points to the newly created cache element context handle.

index
(IN) Specifies which cache element to get information from.

elementType
(OUT) Specifies one of the following types of cache elements to add:

Value Description

NPKIT_PEM_OBJ_X509 Specifies an x.509 certificate.

NPKIT_PEM_OBJ_X509_REQUEST Specifies a PKCS #10 CSR (Certificate Signing
Request).

NPKIT_PEM_OBJ_X509_TRUSTED Specifies a trusted x.509 certificate (that is a CA or root
certificate).

NPKIT_PEM_OBJ_CRL Specifies an x.509 Certificate Revocation List.

NPKIT_PEM_OBJ_PKCS7 Specifies a PKCS #7 file which contains one or more
x.509 certificates.

NPKIT_PEM_OBJ_WRAP_PRIV_KEY Specifies a wrapped private key (that is a private-key
that has been cryptographically wrapped for
protection).

NPKIT_PEM_OBJ_TERISA_KEY_FILE Specifies a TERESA key file.

NPKIT_PEM_OBJ_RSA_PRIV_KEY Specifies a raw RSA private key (PKCS #8).
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
data
(OUT) Returns the data from the specified cache element.

dataLength
(OUT) Returns the length of the data from the specified cache element.

flags
(IN) Specifies which format the element data will be returned in. Use one of the following:

reserved2
For future use; pass NULL.

reserved3
For future use; pass NULL.

reserved4
For future use; pass NULL.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CacheAddElement (page 16)
NPKIT_CacheCreateContext (page 21)
NPKIT_CacheRead (page 27)

NPKIT_PEM_OBJ_PRIV_KEY Specifies a raw private key (PKCS #1).

NPKIT_PEM_OBJ_UNKNOWN Unknown element type.

Value Description

NPKIT_NORMAL_FORMAT Specifies that the element info should be returned in the normal or
DER format.

NPKIT_PEM_FORMAT Specifies that the element info should be returned in PEM format.

Value Description
Functions 23

24 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheExportToPKCS12
Exports the data in the Cache Context into a Personal Information Exchange Syntax (PFX) format.
The cache context must contain a private-key, a matching x.509 certificate, and corresponding
certificate chain.
The private key and certificates are encrypted using the input password as specified in the Public
Key Cryptography Standards (PKCS) #12.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheExportToPKCS12
(
 NPKIT_CRLContext context
 const nuint32 flags,
 const unicode *name,
 const char *path,
 const unicode *password,
 const nuint8 **pfxData,
 nuint32 *pfxSize,
 void *reserved1,
 void *reserved2,
 void *reserved3,
 void *reserved4
);

Parameters
context

(IN) pecifies the NPKIT_Cache context handle for the request. A successful call to
NPKIT_CacheCreateContext (page 21) must have previously been made to obtain the context
handle.

flags
(IN) Currently no flags are defined; pass a zero value.

name
(IN) Specifies the name of the cache file.

path
(IN) (Optional) If used, specifies the complete file path, including file name to use when
reading the cache file. If used, the parameter name should null.

password
(IN) Specifies the password to use to encrypt the data with.

pfxData
(OUT) Returns the PFX data.

pfxSize
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
(OUT) Returns the size of the PFX data.

reserved1
For future use; pass NULL.

reserved2
For future use; pass NULL.

reserved3
For future use; pass NULL.

reserved4
For future use; pass NULL.

Return Values
Returns 0 if successful or a NICI or PKI error code if not successful. For a listing of NPKIT error
codes, see Certificate Server Error Code Constants.

See Also
NPKIT_CacheCreateContext (page 21)
NPKIT_CacheFreeContext (page 26)
Functions 25

26 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheFreeContext
Frees a previously allocated NPKIT cache context and all associated memory.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheFreeContext
(
 NPKIT_CacheContext context
);

Parameters
context

(IN) Specifies context.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CacheCreateContext (page 21)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheRead
Reads the certificate information stored in the cache.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheRead
(
 NPKIT_CacheContext context
 const nuint32 flags,
 const unicode *name,
 const char *path,
 pnuint32 numberOfElements,
 void *reserved1,
 void *reserved2
);

Parameters
context

(IN) Specifies the NPKIT_Cache context handle for the request. A successful call to
NPKIT_CacheCreateContext (page 21) must have previously been made to obtain the context
handle.

flags
(IN) Specifies options for reading the cache file. The valid flags and their behavior are listed
below:

name
(IN) Specifies the name of the cache file.

path
(IN) (Optional) If used, specifies the complete file path, including file name to use when
reading the cache file. If used, the parameter name should NULL.

numberOfElements

Value Description

NPKIT_PEM_NORMAL_NAME Using the flag NPKIT_PEM_NORMAL_NAME indicates that the
parameter name is to be interpreted as a Unicode string,
allowing cache files with Unicode names to be stored on file
systems which do not support Unicode file names.

NPKIT_PEM_ASCII_NAME Using the flag NPKIT_PEM_ASCII_NAME indicates that the
parameter name is to be interpreted as an ASCII string. (This
means that when using this flag, you must pass a null-
terminated character string value in the name parameter.)

 PKIT_PEM_OVERWRITE_FILE Enables overwriting of existing cache file.
Functions 27

28 NDK: Novel

novdocx (E
N

U
) 01 February 2006
(OUT) Returns the number of elements that were added to the cache.

reserved1
For future use; pass NULL.

reserved2
For future use; pass NULL.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CacheCreateContext (page 21)
NPKIT_CacheFreeContext (page 26)
NPKIT_CacheWrite (page 29)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_CacheWrite
Writes all the cache elements in the cache context to the specified cache file.

Syntax
#include "<npkit.h>, <ntypes.h>"

NWRCODE NPKIT_CacheWrite
(
 NPKIT_CacheContext context
 const nuint32 flags,
 const unicode *name,
 const char *path,
 void *reserved1,
 void *reserved2
);

Parameters
context

(IN) Specifies the NPKIT_Cache context handle for the request. A successful call to
NPKIT_CacheCreateContext (page 21) must have previously been made to obtain the context
handle.

flags
(IN) flags - Specifies options for writing the cache file. The three possible flags and their
behavior are listed below:

name
(IN) Specifies the name of the cache file.

path
(IN) (Optional) If used, specifies the complete file path, including file name to use when
writing the cache file. If used, the parameter name should null.

Value Description

NPKIT_PEM_NORMAL_NAME Using the flag NPKIT_PEM_NORMAL_NAME indicates that
the parameter name is to be interpreted as a Unicode string,
allowing cache files with Unicode names to be stored on file
systems which do not support Unicode file names.

NPKIT_PEM_ASCII_NAME Using the flag NPKIT_PEM_ASCII_NAME indicates that the
parameter name is to be interpreted as an ASCII string. (This
means that when using this flag, you must pass a null-
terminated character string value in the name parameter.)

NPKIT_PEM_OVERWRITE_FILE Using the flag NPKIT_PEM_OVERWRITE_FILE specifies that
existing cache files with the same name should be
overwritten. This flag may be bitwise-OR'ed with either of the
two other flags.
Functions 29

30 NDK: Novel

novdocx (E
N

U
) 01 February 2006
reserved1
For future use; pass NULL.

reserved2
For future use; pass NULL.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CacheRead (page 27)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_CRLCreateContext
Creates an NPKIT_CRL context handle (formerly NWPKIx509CreateContext).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_CRLCreateContext
(
 NPKIT_CRLContext *context
);

Parameters
context

(OUT) Points to the newly created NPKIT_CRL context handle. This is a nuint32 value.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CRLFreeContext (page 40), NPKIT_CRLDecode (page 32)
Functions 31

32 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CRLDecode
Decodes the specified Certificate Revocation List (CRL) from its ASN.1 DER encoding (formerly
NWx509DecodeCRL).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_CRLDecode
(
 NPKIT_CRLContext context,
 const nuint8 *cRLData,
 nuint32 cRLDataLen,
 nuint8 const **unsignedCRL,
 pnuint32 unsignedCRLLength,
 pnuint32 signatureAlgorithmType,
 unicode const **signatureAlgorithmOID,
 nuint8 const **signature,
 pnuint32 signatureLength,
 pnuint32 version,
 uniocode const **issuerName,
 struct tm const **thisUpdate,
 time_t const **thisUpdateTime,
 struct tm const **nextUpdate,
 time_t const **nextUpdateTime,
 pnuint32 numberOfRevokedCertificates,
 pnuint32 numberOfCRLExtensions
);

Parameters
context

(IN) Specifies the NPKIT_CRL context handle for the request. This is a nuint32 value.

cRLData
(IN) Points to the CRL to be decoded.

cRLDataLen
(IN) Specifies the size of the data pointed to by cRLData.

unsignedCRL
(OUT) Points to the unsigned portion of the CRL.

unsignedCRLLength
(OUT) Specifies the length of the unsigned portion of the CRL.

signatureAlgorithmType
(OUT) Points to the algorithm used in the signature.

signatureAlgorithmOID
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
(OUT) Points to a Unicode string that contains a human-readable form of the signature
algorithm object identifier (OID) (for example, {1 2 840 113549 1 1 1}).

signature
(OUT) Points to the signature of the CRL.

signatureLength
(OUT) Points to the length of the data in signature.

version
(OUT) Points to the version number of the CRL.

issuerName
(OUT) Points to a Unicode string that contains the name of the Certificate Authority (CA) that
issued the CRL.

thisUpdate
(OUT) Points to a struct tm representation of the most recent date the CRL was updated.
The time is in UTC standard time.

thisUpdateTime
(OUT) Points to a time_t representation of the date when the CRL was last updated.
Represented as the number of seconds since 00:00:00 UTC January 1, 1970.

nextUpdate
(OUT) Points to a struct tm representation of the next date the CRL will be updated. The
time is in UTC standard time.

nextUpdateTime
(OUT) Points to a time_t representation of the date when the CRL will be updated next.
Represented as the number of seconds since 00:00:00 UTC January 1, 1970.

numberOfRevokedCertificates
(OUT) Points to the number of revoked certificates in the CRL.

numberOfCRLExtensions
(OUT) Points to the number of extensions associated with the CRL.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

See Also
NPKIT_CRLCreateContext (page 31), NPKIT_CRLEntryInfo (page 36),
NPKIT_CRLExtensionInfo (page 38), NPKIT_CRLFreeContext (page 40)
Functions 33

34 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CRLEntryExtensionInfo
Obtains the specified ASN.1 encoded extension for the CRL entry (formerly
NWx509CRLEntryExtensionInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_CRLEntryExtensionInfo
(
 NPKIT_CRLContext context,
 const nuint32 extensionIndex,
 enum NPKIT_509Extension *type,
 unicode const **OID,
 pnbool8 critical,
 pnuint32 valueLen,
 nuint8 const **value
);

Parameters
context

(IN) Specifies the NPKIT_CRL context handle for the request. This is a nuint32 value.

extensionIndex
(IN) Specifies which extension is to be returned. index is 0 based.

type
(OUT) Points to the extension type of the extension indicated by the extensionIndex. See
Section 4.10, “X.509 Extensions,” on page 81.

OID
(OUT) Points to a Unicode representation of the OID.

critical
(OUT) Specifies whether the extension is critical or not.

valueLen
(OUT) Specifies the length of data in bytes pointed to by value.

value
(OUT) Points to the ASN.1 encoded value of the extension.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
Remarks
Before calling this function, you must first successfully call NPKIT_CRLDecode (page 32)
followed by NPKIT_CRLEntryInfo (page 36). The extension retrieved in this call is for the entry
specified in your call to NPKIT_CRLEntryInfo (page 36).

See Also
NPKIT_CRLDecode (page 32), NPKIT_CRLEntryInfo (page 36), NPKIT_CRLInvalidityDateInfo
(page 41), NPKIT_CRLReasonCodeInfo (page 42)
Functions 35

36 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CRLEntryInfo
Obtains information about a revoked certificate.

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_CRLEntryInfo
(
 NPKIT_CRLContext context,
 const nuint32 index,
 nuint8 const **serialNumber,
 pnuint32 serialNumberLen,
 struct tm const **revocationDate,
 time_t const **revocationTime,
 pnuint32 numberOfCRLEntryExtensions
);

Parameters
context

(IN) Specifies the NPKIT_CRL context handle for the request. This is a nuint32 value.

index
(IN) Specifies which CRL entry information is to be returned. index is 0 based.

serialNumber
(OUT) Points to the serial number of the specified revoked certificate.

serialNumberLen
(OUT) Points to the length of the data in serialNumber.

revocationDate
(OUT) Points to a struct tm representation of the date the specified certificate was revoked.
The time is in UTC standard time.

revocationTime
(OUT) Points to a time_t representation of the time the specified certificate was revoked.
Represented as the number of seconds since 00:00:00 UTC January 1, 1970.

numberOfCRLEntryExtensions
(OUT) Specifies the number of extensions of the specified certificate.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
Remarks
Returns the serial number, length of the serial number, the date and the time the certificate was
revoked for the index specified. A successful call to NPKIT_CRLDecode (page 32) must be made
prior to making this call. Subsequent calls to NPKIT_CRLEntryExtensionInfo (page 34) can be
made to retrieve the CRL entry extension information for each of the CRL entry extensions
identified in numberOfCRLEntryExtensions.

See Also
NPKIT_CRLDecode (page 32), NPKIT_CRLEntryExtensionInfo (page 34),
NPKIT_CRLInvalidityDateInfo (page 41), NPKIT_CRLReasonCodeInfo (page 42)
Functions 37

38 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CRLExtensionInfo
Obtains information about the specified extension of the CRL (Certificate Revocation List)
(formerly NWx509CRLExtensionInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_CRLExtensionInfo
(
 NPKIT_CRLContext context,
 nuint32 index,
 enum NPKIT_x509Extension *type,
 unicode const **OID,
 pnbool8 critical,
 pnuint32 valueLen,
 nuint8 const **value
);

Parameters
context

(IN) Specifies the NPKIT_CRL context handle for the request. This is a nuint32 value.

index
(IN) Specifies which CRL extension is to be returned. index is 0 based.

type
(OUT) Points to the extension type.

OID
(OUT) Points to a Unicode representation of the OID that identifies the extension.

critical
(OUT) Specifies whether the extension is critical or not.

valueLen
(OUT) Specifies the length of the data in value.

value
(OUT) Points to the ASN.1 encoded value of the extension indicated by the index.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
Remarks
Before calling this function, you must call NPKIT_CRLDecode (page 32) successfully.

See Also
NPKIT_CRLDecode (page 32)
Functions 39

40 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CRLFreeContext
Frees a previously allocated CRL context and all associated memory (formerly
NWx509FreeContext).

Syntax
#include "NPKIT_x509.h"

void NPKIT_CRLFreeContext
(
 NPKIT_CRLContext context
);

Parameters
context

(IN) Specifies the NPKIT_CRL context handle to be freed. This is a nuint32 value.

See Also
NPKIT_CRLCreateContext (page 31)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_CRLInvalidityDateInfo
Returns the invalidity date associated with the CRL (Certificate Revocation List) entry (formerly
NWx509CRLInvalidityDateInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_CRLInvalidityDateInfo
(
 NPKIT_CRLContext context,
 struct tm const **invalidityDate,
 time_t const **invalidityDateTime
);

Parameters
context

(IN) Specifies the NPKIT_CRL context handle for the request. This is a nuint32 value.

invalidityDate
(OUT) Points to a struct tm representation of the date the certificate became invalid. The
time is in UTC standard time.

invalidityDateTime
(OUT) Points to a time_t representation of when the certificate became invalid. Represented
as the number of seconds since 00:00:00 UTC January 1, 1970.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_CRLDecode (page 32)
followed by NPKIT_CRLEntryExtensionInfo (page 34). The invalidity date retrieved in this call is
for the entry specified in your call to NPKIT_CRLEntryInfo (page 36). The invalidity date is an
optional extension. Therefore, not all CRL entries will have an associated invalidity date.

See Also
NPKIT_CRLDecode (page 32), NPKIT_CRLEntryInfo (page 36), NPKIT_CRLExtensionInfo
(page 38)
Functions 41

42 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_CRLReasonCodeInfo
Returns the CRL invalidity reason code associated with the CRL entry (formerly
NWx509CRLReasonCodeInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_CRLReasonCodeInfo
(
 NPKIT_CRLContext context,
 pnuint32 reason
);

Parameters
context

(IN) Specifies the NPKIT_CRL context handle for the request. This is a nuint32 value.

reason
(OUT) Points to the reason why the certificate is on the CRL. For more information, see
Section 4.7, “NPKIT_x509 Certificate Invalidity Reason Flags,” on page 79.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_CRLDecode (page 32)
followed by NPKIT_CRLEntryInfo (page 36). The reason code retrieved in this call is for the entry
specified in your call to NPKIT_CRLEntryInfo (page 36). The reason code is an optional extension.
Therefore, not all CRL entries have an associated reason code.

See Also
NPKIT_CRLDecode (page 32), NPKIT_CRLEntryInfo (page 36), NPKIT_CRLExtensionInfo
(page 38)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_VerifyCertificate
Determines if the specified subjectCertificate can be verified by the issuerCertificate (formerly
NWPKIVerifyCertificate).

Syntax
#include "NPKIT_Verify.h"

NWRCODE NPKIT_VerifyCertificate
(
 const pnuint8 issuerCertificate,
 const nuint32 issuerCertificateLen,
 const pnuint8 subjectCertificate,
 const nuint32 subjectCertificateLen,
 const pnuint8 CRL,
 const nuint32 CRLLen,
 pnuint32 reason,
 pnuint32 holdInstruction,
 void *reserved1,
 void *reserved2,
 void *reserved3,
 void *reserved4
);

Parameters
issuerCertificate

(IN) Points to the DER encoded X.509 certificate to use to verify the subject certificate.

issuerCertificateLen
(IN) Specifies the size of the issuer certificate.

subjectCertificate
(IN) Points to the DER encoded X.509 subject certificate to verify.

subjectCertificateLen
(IN) Specifies the size of the subject certificate.

CRL
(IN) Specifies the DER encoded CRL. (Not implemented in this release; pass in NULL.)

CRLLen
(IN) Specifies the size of the CRL. (Not implemented in this release; pass in NULL.)

reason
(OUT) If the certificate is invalid, otherwise specifies the reason code. See Section 4.7,
“NPKIT_x509 Certificate Invalidity Reason Flags,” on page 79.

holdInstruction
Functions 43

44 NDK: Novel

novdocx (E
N

U
) 01 February 2006
(OUT) If the certificate has been revoked, and the reason code is certificateHold, otherwise
specifies the hold instruction from the CRL. (Not implemented in this release; pass in NULL.)

reserved1
Reserved for future use. Pass in NULL.

reserved2
Reserved for future use. Pass in NULL.

reserved3
Reserved for future use. Pass in NULL.

reserved4
Reserved for future use. Pass in NULL.

Return Values
Returns 0 if successful or a PKI or NICI error code if not successful. For a listing of NPKIT error
codes, see Certificate Server Error Code Constants.

Remarks
In this release NPKIT_VerifyCertificate (page 28) checks the following:

• Issuer and subject names agree.
• Subject validity dates are a subset of issuer validity dates.
• Validity dates are valid.
• The issuer certificate signed the subject certificate.
• The issuer is a CA.
• The path length constraints have not been exceeded.
• The key usage of issuer allows for certificate signing.
• The issuer’s critical extensions are supported

This function does not check for certificate revocation. Use NPKIT_VerifyCertChain (page 45) for
complete certificate verification

See Also
NPKIT_VerifyCertChain (page 45), NPKIT_VerifyCertChainWithCallback (page 48)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_VerifyCertChain
Verifies the certificate chain passed in (formerly NWPKIVerifyCertChain).

Syntax
#include "NPKIT_Verify.h"

NWRCODE NPKIT_VerifyCertChain
(
 NPKI_CertChain *certificates,
 nuint32 flags,
 pnuint32 cRLReason,
 pnuint32 cRLHoldInstruction,
 time_t *cRLRevocationTime,
 time_t *cRLInvalidityDateTime,
 NPKI_CertChain **revokedCertificate,
 pnuint32 certInvalidityReason,
 NPKIT_CRLCacheContext CRLCacheContext,
 void *reserved1,
 void *reserved2,
 void *reserved3,
 void *reserved4
);

Parameters
certificates

(IN) Points to the linked list of NPKI_CertChain structures, each of which contains an X.509
DER encoded certificate which is to be verified. The linked list of certificates must be in leaf to
root order and the last certificate, in the list, is assumed to be a trusted certificate. (If the last
certificate has a CRL Distribution Point extension, it must be a self-signed certificate.)

flags
(IN) Specifies whether to verify the certificate, certificate revocation, both, or neither. Use one
or more of the following flags:

NPKI_VERIFY_NORMAL
NPKI_VERIFY_DONT_CHECK_CERTIFICATE
NPKI_VERIFY_DONT_CHECK_CRL
For more information, see Section 4.5, “NPKI_VerifyCallBackStruct Flag Values,” on page 77.

cRLReason
(OUT) If the certificate has been revoked, specifies the reason code from the CRL (that is,
private key compromised, affiliate change, superseded, etc.). This parameter is only set if the
return code is PKI_E_CERT_INVALID and the certInvalidityReason is set to
NPKIx509Invalid_Certificate_On_CRL. For more information, see Section 4.7, “NPKIT_x509
Certificate Invalidity Reason Flags,” on page 79.

cRLHoldInstruction
Functions 45

46 NDK: Novel

novdocx (E
N

U
) 01 February 2006
(OUT) If the certificate has been revoked, specifies the hold instruction from the CRL. This
parameter is only set if the return code is PKI_E_CERT_INVALID, the certInvalidityReason is
set to NPKIx509Invalid_Certificate_On_CRL, and the cRLReason is set to
PKI_CERTIFICATE_HOLD. The possible values for cRLHoldInstruction are:

PKI_HOLD_INSTRUCTION_NONE
PKI_HOLD_INSTRUCTION_CALL_ISSUER
PKI_HOLD_INSTRUCTION_REJECT
For more information, see Section 4.9, “NPKIT_x509 CRL Hold Types,” on page 81.

cRLRevocationTime
(OUT) Points to the time the certificate became invalid. This parameter only set if the return
code is PKI_E_CERT_INVALID and the certInvalidityReason is set to
NPKIx509Invalid_Certificate_On_CRL.

cRLInvalidityDateTime
(OUT) Points to the time the CRL becomes invalid.

revokedCertificate
(OUT) Points to the node in the linked list of NPKI_CertChain structures that contains the
invalid certificate. This parameter only set if the return code is PKI_E_CERT_INVALID.

certInvalidityReason
(OUT) Reason why the certificate is invalid. This will only be set if the return code is set to
PKI_E_CERT_INVALID.

CRLCacheContext
(OUT) Reserved for future use. Pass in NULL.

reserved1
(OUT) Reserved for future use. Pass in NULL.

reserved2
(OUT) Reserved for future use. Pass in NULL.

reserved3
(OUT) Reserved for future use. Pass in NULL.

reserved4
(OUT) Reserved for future use. Pass in NULL.

Return Values
Returns 0 if successful or a NICI or PKI error code if not successful. For a listing of NPKIT error
codes, see Certificate Server Error Code Constants.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
Remarks
The certificate chain must be in leaf to root order. The last certificate in the chain is assumed to be
trusted. If any certificate is invalid (that is, revoked or expired), this function returns an error. You
must allocate and deallocate all the certificate chain structures and data.

See Also
NPKIT_VerifyCertificate (page 43), NPKIT_VerifyCertChainWithCallback (page 48)
Functions 47

48 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_VerifyCertChainWithCallback
Creates a thread that verifies the certificate chain passed in (formerly
NWPKIVerifyCertChainWithCallback).

Syntax
#include "NPKIT_Verify.h"

NWRCODE NPKIT_VerifyCertChainWithCallback
(
 NPKI_VerifyCallBackStruct *data
);

Parameters
data

(IN) Points to a NPKI_VerifyCallBackStruct structure. For more information, see Section 4.5,
“NPKI_VerifyCallBackStruct Flag Values,” on page 77. You must set the first three fields in
this structure and the rest of the fields can be filled in by calling that
NPKIT_VerifyCertChainWithCallback (page 48) function. You must allocate and deallocate
this structure.

Return Values
This function returns 0 if successful, or a NICI error or a platform-specific error code if a thread
could not be created. The return value from the verification is returned in the code field of the
NPKI_VerifyCallBackStruct structure.

Remarks
The certificate chain must be in leaf to root order. The last certificate in the chain is assumed to be
trusted. If any certificate is invalid (that is, revoked, or expired), the code field in the Section 4.5,
“NPKI_VerifyCallBackStruct Flag Values,” on page 77 contains an error. You must allocate and
deallocate the certificate chain structures and data and provide a callback function to receive the
results of the verification.

See Also
NPKIT_VerifyCertificate (page 43), NPKIT_VerifyCertChain (page 45),
NPKIT_VerifyIssuerSubjectNameMatch (page 49)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_VerifyIssuerSubjectNameMatch
Verifies whether the subjectCerfificate's issuer name matches the
issuerCertificate's subject name.

Syntax
#include "NPKIT_Verify.h"

NWRCODE NPKIT_VerifyIssuerSubjectNameMatch
(
 const pnuint8 issuerCertificate,
 const nuint32 issuerCertificateLen,
 const pnuint8 subjectCertificate,
 const nuint32 subjectCertificateLen
);

Parameters
issuerCertificate

(IN) Points to the DER encoded issuer certificate to use to verify the subject certificate.

issuerCertificateLen
(OUT) Specifies the length of issuerCertificate.

subjectCertificate
(IN) Points to the DER encoded subject certificate to verify.

subjectCertificateLen
(IN) Specifies the length of the subject certificate.

Return Values
Returns 0 if names match, PKI_E_SUBJECT_NAME_COMPARISON_FAILURE if the names do
not match, or a NICI or other PKI error code if not successful. For a listing of NPKIT error codes,
see Certificate Server Error Code Constants.

Remarks
This is a lightweight function that can be used to construct and sort a certificate chain.
Functions 49

50 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_Version
Checks the version number of the NPKIT library being used.

Syntax
#include "NPKIT_x509.h"

 or #include "NPKIT_Verify.h"

nuint32 NPKIT_Version(void);

Return Values
Returns the version of NPKIT as an array of four bytes, the first two bytes being the major version
number, and the second two bytes being the minor version number. See Section 4.6,
“NPKIT_Version Values,” on page 78.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_x509BasicConstraintsInfo
Retrieves the details about the Basic Constraints extension, if the extension exists on the certificate
(formerly NWx509BasicConstraintsInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509BasicConstraintsInfo
(
 NPKIT_x509Context context,
 nuint8 const **cA,
 nuint32 const **pathLenConstraint
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

cA
(OUT) Points to the value cA as encoded in the extension. If this value is zero, the certificate is
not for a CA. If the value is non-zero, the certificate is for a CA. For more information, see the
Section 4.1, “Basic Constraints Extension Values,” on page 75.

pathLenConstraint
(OUT) Points to the value pathLenConstraint as encoded in the extension. This value
represents the number of levels of CAs that this Certificate Authority is authorized to create.
The value -1 is returned if there is no constraint. For more information, see the Section 4.1,
“Basic Constraints Extension Values,” on page 75.

Return Values
Returns 0 if successful, or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_x509BasicConstraintsInfo
(page 51). The Basic Constraints extension is an optional extension. Therefore, not all certificates
have Basic Constraints information.

See Also
NPKIT_x509DecodeCertificate (page 57), NPKIT_x509GetExtensionData (page 62)
Functions 51

52 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509CreateContext
Creates a new NPKIT_x509 API context handle (formerly NWx509CreateContext).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509CreateContext
(
 NPKIT_x509Context *context
);

Parameters
context

(OUT) Points to the newly created NPKIT_x509 context handle. This is a nuint32 value.

Return Values
This routine returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error
codes, see Certificate Server Error Code Constants.

Remarks
This context is used for ASN.1 decoding of X.509 objects.

See Also
NPKIT_x509FreeContext (page 61)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_x509CRLDistributionPoint
Returns information about a CRL Distribution Point in the certificate (formerly
NWx509CRLDistributionPoint).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509CRLDistributionPoint
(
 NPKIT_x509Context context,
 nuint32 index,
 pnuint32 dataSets,
 nuint8 *fullNameType,
 nuint8 const **fullNameValue,
 pnuint32 fullNameValueLength,
 unicode const **fullName,
 unicode const **nameRelativeToCRLIssuer,
 pnuint32 reasons,
 nuint8 *crlIssuerType,
 nuint8 const **crlIssuerValue,
 pnuint32 crlIssuerValueLength,
 unicode const **crlIssuerName
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request.This is a nuint32 value.

index
(IN) Specifies which CRL distribution point is to be returned. index is 0 based.

dataSets
(OUT) Specifies which sets of data the function has returned. For more information, see
Section 4.2, “CRL Distribution Point Values,” on page 76.

fullNameType
(OUT) Points to the type of the ASN1 NAME in the certificate distribution point (CDP) (for
example, URI, Directory Name, etc.). This parameter only set if dataSets includes the value
Section 4.2, “CRL Distribution Point Values,” on page 76.

fullNameValue
(OUT) Points to where the CRL can be acquired as encoded in the certificate. This parameter
only set if dataSets includes the value NPKIT_x509DistPtsFullName.

fullNameValueLength
(OUT) Specifies the length in bytes of the data that fullNameValue points to. This parameter
will only be set if dataSets includes the value NPKIT_x509DistPtsFullName.
Functions 53

54 NDK: Novel

novdocx (E
N

U
) 01 February 2006
fullName
(OUT) Points to a Unicode string containing the human-readable representation of where the
CRL can be acquired. This parameter only is only set if the fullName type can be converted to a
human-readable representation and if dataSets includes the value
NPKIT_x509DistPtsFullName.

nameRelativeToCRLIssuer
(OUT) Points to where the CRL can be acquired, relative to the CRL issuer name as encoded in
the certificate. Set this parameter only if dataSets includes
NPKIT_x509DistPtsNameRelativeToCRLIssuer.

reasons
(OUT) Specifies the ivalidity reasons contained in the CRL. See Section 4.7.1, “NPKIT_x509
CRL Distribution Point Reason Code,” on page 80.

crlIssuerType
(OUT) Points to the Issuer Name type; for example, X.500, distinguished name (DN), rfc822,
DNS name, IP address, or URL. This parameter is only set if dataSets includes the value
NPKIT_x509DistPtsCRLIssuer.

crlIssuerValue
(OUT) Points to the Issuer Name as encoded in the certificate. This parameter is only set if
dataSets includes the value NPKIT_x509DistPtsCRLIssuer.

crlIssuerValueLength
(OUT) Specifies the length of the data pointed to by crlIssuerValue. This parameter is
only set if dataSets includes the value NPKIT_x509DistPtsCRLIssuer.

crlIssuerName
(OUT) Points to a Unicode string containing the human-readable representation of the CRL
Issuer’s Name. This parameter only is set if the crlIssuerName type can be converted to a
human-readable representation and if dataSets includes the value
NPKIT_x509DistPtsCRLIssuer.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57) before calling NPKIT_x509CRLDistributionPointsInfo (page 56). Calling
NPKIT_x509CRLDistributionPointsInfo is not necessary, but should be done before calling this
function to determine whether distribution points exist, and how many there are. You can pass in a
NULL to any of the OUT parameters, in which case no value is returned for that parameter. The
CRL distribution points extension is an optional extension. Therefore, not all certificates have CRL
distribution points information.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
See Also
NPKIT_x509CRLDistributionPointsInfo (page 56), NPKIT_x509DecodeCertificate (page 57)
Functions 55

56 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509CRLDistributionPointsInfo
Obtains the number of CRL distribution points encoded in the certificate (formerly
NWx509CRLDistributionPointsInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509CRLDistributionPointsInfo
(
 NPKIT_x509Context context,
 pnuint32 numCRLDistributionPoints
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

numCRLDistributionPoints
(OUT) Specifies the number of CRL distribution points encoded in the certificate.

Return Values
Returns 0 if successful, or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57). The CRL distribution points extension is an optional extension. Therefore, not all
certificates have CRL distribution points information.

See Also
NPKIT_x509CRLDistributionPoint (page 53), NPKIT_x509DecodeCertificate (page 57)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_x509DecodeCertificate
Decodes the specified certificate from its ASN.1 DER encoding (formerly
NWx509DecodeCertificate).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509DecodeCertificate
(
 NPKIT_x509Context context,
 const nuint8 *certificate,
 const nuint32 certificateLen,
 nuint8 const **unsignedCertificate,
 pnuint32 unsignedCertificateLen,
 nuint8 const **signature,
 pnuint32 signatureLen,
 nuint8 const **serialNumber,
 pnuint32 serialNumberLen,
 nuint8 const **keyModulus,
 pnuint32 keyModulusLen,
 nuint8 const **keyExponent,
 pnuint32 keyExponentLen,
 unicode const **publicKeyAlgorithmOID,
 unicode const **signatureKeyAlgorithmOID,
 unicode const **subjectName,
 unicode const **issuerName,
 struct tm const **startDate,
 struct tm const **endDate,
 time_t const **startTime,
 time_t const **endTime,
 pnuint32 numberOfExtensions
 pnuint32 version
 pnuint32 keySize
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

certificate
(IN) Points to the DER encoded X.509 certificate you want to be ASN.1 decoded.

certificateLen
(IN) Specifies the size of the certificate.

unsignedCertificate
Functions 57

58 NDK: Novel

novdocx (E
N

U
) 01 February 2006
(OUT) Points to the unsigned certificate. This is a pointer to the start of the tbsCertificate field
of the ASN.1 object Certificate. (The unsigned portion of the certificate should be used along
with the signature to validate that the data in the certificate has not been modified or corrupted.)

unsignedCertificateLen
(OUT) Specifies the ASN.1 encoded value for the size of unsignedCertificate This is
the size of the data returned in unsignedCertificate (that is, the size of the tbsCertificate
field of the ASN.1 object Certificate).

signature
(OUT) Points to the start of the signatureValue field of the ASN.1 object Certificate. The
unsigned portion of the certificate should be used along with the signature to validate that the
data in the certificate has not been modified or corrupted.

signatureLen
(OUT) Specifies the ASN.1 encoded value for the size of signature. This is the size of the
data returned in signature (that is, the size of the signatureValue field in the ASN.1 object
Certificate).

serialNumber
(OUT) Points to the serial number.

serialNumberLen
(OUT) Specifies the length of serialNumber.

keyModulus
(OUT) Points to the key modulus.

keyModulusLen
(OUT) Specifies the length of keyModulus.

keyExponent
(OUT) Points to the key exponent.

keyExponentLen
(OUT) Specifies the length of keyExponent.

publicKeyAlgorithmOID
(OUT) Points to a Unicode string that contains a human-readable representation of the public
key algorithm OID (for example, {1 2 840 113549 1 1 1}).

signatureKeyAlgorithmOID
(OUT) Points to a Unicode string that contains a human-readable representation of the
signature key algorithm OID (for example, {1 2 840 113549 1 1 5}).

subjectName
(OUT) Points to a Unicode string representing the subject name.

issuerName
(OUT) Points to a Unicode string representing the issuer name.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
startDate
(OUT) Points to a struct tm representation of the validFrom portion of the Validity. The time is
in UTC standard time.

endDate
(OUT) Points to a struct tm representation of the validTo portion of the Validity. The time is in
UTC standard time.

startTime
(OUT) Points to a time_t representation of the validFrom portion of the Validity. This time is
represented as the number of seconds since 00:00:00 UTC January 1, 1970.

endTime
(OUT) Points to a time_t representation of the validTo portion of the Validity. This time is
represented as the number of seconds since 00:00:00 UTC January 1, 1970.

numberOfExtensions
(OUT) Specifies the number of extensions encoded in the certificate.

version
(OUT) Specifies the version of the certificate.

keySize
(OUT) Specifies the key size of the public key in the certificate.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
After calling this function successfully, iterative calls to NPKIT_x509GetExtensionData (page 62)
can be made to retrieve the ASN.1 encoded certificate extensions. Also, if the corresponding
extensions exist in the certificate, you can call the following functions to get the decoded specifics
about the extension:

NPKIT_x509BasicConstraintsInfo (page 51)
NPKIT_x509SubjectAltNamesInfo (page 74)
NPKIT_x509IssuerAltNamesInfo (page 66)
NPKIT_x509KeyUsageInfo (page 67)
NPKIT_x509CRLDistributionPointsInfo (page 56)
NPKIT_x509NovellExtensionInfo (page 69)

See Also
NPKIT_x509BasicConstraintsInfo (page 51), NPKIT_x509CRLDistributionPointsInfo (page 56),
NPKIT_x509GetExtensionData (page 62), NPKIT_x509IssuerAltNamesInfo (page 66),
Functions 59

60 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509KeyUsageInfo (page 67), NPKIT_x509NovellExtensionInfo (page 69),
NPKIT_x509SubjectAltNamesInfo (page 74)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_x509FreeContext
Frees a previously allocated NPKIT_x509 context and all associated memory (formerly
NWx509FreeContext).

Syntax
#include "NPKIT_x509.h"

void NPKIT_x509FreeContext
(
 NPKIT_x509Context context
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle to be freed. This is a nuint32 value.

See Also
NPKIT_x509CreateContext (page 52)
Functions 61

62 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509GetExtensionData
Retrieves the ASN.1 encoded certificate extension specified by index (formerly
NWx509GetExtensionData).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509GetExtensionData
(
 NPKIT_x509Context context,
 nuint32 index,
 enum NPKIT_x509Extension type,
 unicode const **OID,
 pnbool8 critical,
 pnuint32 valueLen,
 nuint8 const **value
);

Parameters
context

(IN) Specifies the NPKIT_x509 context for the request. This is a nuint32 value.

index
(IN) Specifies which extension is to be returned. index is 0 based.

type
(OUT) Specifies the type of extension. For more information, see the NPKIT_x509Extension
section.

OID
(OUT) Points to a Unicode string that contains a human-readable representation of the OID.

critical
(OUT) Specifies whether the extension is critical or not.

valueLen
(OUT) Specifies the length of the value.

value
(OUT) Points to the ASN.1 encoded extension.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57). If the extension is of the corresponding type, you can call one of the following functions
to retrieve the decoded extension information:

NPKIT_x509BasicConstraintsInfo (page 51)
NPKIT_x509SubjectAltNamesInfo (page 74)
NPKIT_x509IssuerAltNamesInfo (page 66)
NPKIT_x509KeyUsageInfo (page 67)
NPKIT_x509CRLDistributionPointsInfo (page 56)
NPKIT_x509NovellExtensionInfo (page 69)

See Also
NPKIT_x509BasicConstraintsInfo (page 51), NPKIT_x509CRLDistributionPointsInfo (page 56),
NPKIT_x509DecodeCertificate (page 57), NPKIT_x509IssuerAltNamesInfo (page 66),
NPKIT_x509KeyUsageInfo (page 67), NPKIT_x509NovellExtensionInfo (page 69),
NPKIT_x509SubjectAltNamesInfo (page 74)
Functions 63

64 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509IssuerAltName
Retrieves the specified Issuer Alternative Name and related information (formerly
NWx509IssuerAltName).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509IssuerAltName
(
 NPKIT_x509Context context,
 nuint32 index,
 nuint8 *type,
 nuint8 const **value,
 pnuint32 length,
 unicode const **name
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

index
(IN) Specifies which issuer alternative name is to be returned. index is 0 based.

type
(OUT) Points to the type of issuer alternative name. For more information, see Section 4.3,
“General Name Type Extensions,” on page 76.

value
(OUT) Points to the ASN.1 encoded issuer alternative name.

length
(OUT) Specifies the length of value.

name
(OUT) Points to a Unicode string representation of the issuer alternative name.

NOTE: This field is only set when the issuer alternative name is one of the following extension
types:

X509_GENERAL_NAME_RFC822_NAME
X509_GENERAL_NAME_DNS_NAME
X509_GENERAL_NAME_DIRECTORY_NAME
For more details, see Section 4.3, “General Name Type Extensions,” on page 76.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57). You should call NPKIT_x509IssuerAltNamesInfo (page 66) before calling this function
to determine how many issuer alternative names are encoded in the certificate. For more details
about issuer alternative names, see Section 4.3, “General Name Type Extensions,” on page 76. The
issuer alternative names extension is optional. Therefore, not all certificates have issuer alternative
names.

See Also
NPKIT_x509DecodeCertificate (page 57), NPKIT_x509IssuerAltNamesInfo (page 66),
NPKIT_x509SubjectAltName (page 72)
Functions 65

66 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509IssuerAltNamesInfo
Retrieves the number of issuer alternative names encoded in the certificate if the issuer alternative
names extension exists in the certificate (formerly NWx509IssuerAltNamesInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509IssuerAltNamesInfo
(
 NPKIT_x509Context context,
 pnuint32 numIssuerAltNames
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

numIssuerAltNames
(OUT) Specifies the number of issuer alternative names encoded in the certificate.

Return Values
This routine returns 0 if successful, or a PKI error code if not successful. For a listing of NPKIT
error codes, see Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57). Iterative calls to NPKIT_x509IssuerAltName (page 64) can be made to retrieve each of
the issuer alternative names. The issuer alternative names extension is optional. Therefore, not all
certificates will have Issue Alternative Names.

See Also
NPKIT_x509DecodeCertificate (page 57), NPKIT_x509GetExtensionData (page 62),
NPKIT_x509IssuerAltName (page 64)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_x509KeyUsageInfo
Retrieves the information from the key usage extension of the certificate if a key usage extension is
encoded in the certificate (formerly NWx509KeyUsageInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509KeyUsageInfo
(
 NPKIT_x509Context context,
 pnuint16 keyUsage
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

keyUsage
(OUT) Specifies the key usage value as encoded in the certificate. The following defines can be
used with a bit-wise AND to determine which key usages are encoded.

For more information about key usages, see Section 4.4, “Key Usage Extension Values,” on
page 77.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Constant Value

X509_KEY_USAGE_DIGITAL_SIGNATURE 0x8000

X509_KEY_USAGE_NON_REPUDIATION 0x4000

X509_KEY_USAGE_KEY_ENCIPHERMENT 0x2000

X509_KEY_USAGE_DATA_ENCIPHERMENT 0x1000

X509_KEY_USAGE_KEY_AGREEMENT 0x0800

X509_KEY_USAGE_KEY_CERT_SIGN 0x0400

X509_KEY_USAGE_CRL_SIGN 0x0200

X509_KEY_USAGE_ENCIPHER_ONLY 0x0100

X509_KEY_USAGE_DECIPHER_ONLY 0x0080
Functions 67

68 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57). The key usage extension is optional. Therefore, not all certificates will have key usages.

See Also
NPKIT_x509DecodeCertificate (page 57), NPKIT_x509GetExtensionData (page 62)
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
NPKIT_x509NovellExtensionInfo
Retrieves the Novell Security Attribute extension information encoded in the certificate if the
Novell Security Attribute extension exists in the certificate.

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509NovellExtensionInfo
(
 NPKIT_x509Context context,
 unicode const **version,
 unicode const **URIReference,
 nbool8 *keyQEnforceQuality,
 nint16 *keyQCSCriteria,
 nint16 *keyQCSRating,
 nint16 *keyQCryptoCriteria,
 nint16 *keyQCryptoRating,
 nint16 *keyQKeyStorage,
 nbool8 *cryptoProEnforceQuality,
 nint16 *cryptoProCSCriteria,
 nint16 *cryptoProCSRating,
 nint16 *cryptoProCryptoCriteria,
 nint16 *cryptoProCryptoRating,
 nint16 *cryptoProKeyStorage,
 nint16 *certificateClass,
 nuint8 const **EIDRootLabel,
 nint32 *EIDRootLabelLen,
 nuint8 const **EIDEnterpriseLabel,
 nuint8 const *EIDEnterpriseLabelLen,
 nuint8 const **EIDRegistryLabel,
 nint32 *EIDRegistryLabelLen
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

version
(OUT) Points to a Unicode string containing the version of the Novell Security Attribute.

URIReference
(OUT) Points to a Unicode string containing a URI where more information about the Novell
Security Attributes can be found.

keyQEnforceQuality
(OUT) Points to the enforce quality flag, which specifies whether the cryptography provider
can use the private key on a platform that does not meet the minimum key quality attributes
specified.
Functions 69

70 NDK: Novel

novdocx (E
N

U
) 01 February 2006
keyQCSCriteria
(OUT) Points to the computer security criteria under which the machine used to generate the
key pair was evaluated (for example, TCSEC or Common Criteria).

keyQCSRating
(OUT) Points to the computer security rating of the machine used to generate the key pair (for
example, TCSEC C2 EVALUATED).

keyQCryptoCriteria
(OUT) Points to the cryptographic module criteria under which the machine used to generate
the key pair was evaluated (for example, FIPS 140-1).

keyQCryptoRating
(OUT) Points to the cryptographic module rating of the machine used to generate the key pair
(for example, FIPS 140-1 VENDOR INSPECTED).

keyQKeyStorage
(OUT) Points to the key storage quality which represents the protection used to secure the
private key (for example, password, biometric).

cryptoProEnforceQuality
(OUT) Points to the enforce quality flag, which specifies whether the user will use the private
key on a platform that meets the minimum cryptography process attributes specified.

cryptoProCSCriteria
(OUT) Points to the computer security criteria under which the machine that uses the private
key was evaluated (that is, TCSEC or Common Criteria).

cryptoProCSRating
(OUT) Points to the cryptographic module rating of the machine that uses the private key (that
is, FIPS 140-1 VENDOR INSPECTED).

cryptoProCryptoCriteria
(OUT) Points to the cryptographic module criteria under which the machine that uses the
private key was evaluated (that is, FIPS 140-1).

cryptoProCryptoRating
(OUT) Points to the cryptographic module rating of the machine that uses the private key (that
is, FIPS 140-1 VENDOR INSPECTED).

cryptoProKeyStorage
(OUT) Points to the cryptography process storage quality which represents the protection used
to secure the private key (for example, password, biometric).

certificateClass
(OUT) Points to the certificate class, which represents the amount of due diligence preformed
by the CA before signing the certificate (for example, e-mail address, enterprise name,
government agency).

EIDRootLabel
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
(OUT) Points to the enterprise identifier, which specifies the levels and categories for secrecy
and integrity for the Root authority.

EIDRootLabelLen
(OUT) Specifies the length of the EIDRootLabel field.

EIDEnterpriseLabel
(OUT) Points to the enterprise identifier, which specifies the levels and categories for secrecy
and integrity for the enterprise authority.

EIDEnterpriseLabelLen
(OUT) Points to the length of the EIDEnterpriseLabel field.

EIDRegistryLabel
(OUT) Points to the enterprise identifier which specifies the levels and categories for secrecy
and integrity for the registry authority.

EIDRegistryLabelLen
(OUT) Points to the length of the EIDRegistryLabel field.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57). The Novell Security Attribute contains information about the cryptographic key quality
and operating system’s security assurance.For more information about Novell Security Attributes,
see Novell Certificate Extension Attributes - Novell Security Attributes (http://
developer.novell.com/repository/attributes/pkisv10.pdf). The Novell Security Attributes extension
is optional. Therefore, not all certificates have Novell Security Attributes

See Also
NPKIT_x509DecodeCertificate (page 57), NPKIT_x509GetExtensionData (page 62)
Functions 71

http://developer.novell.com/repository/attributes/pkisv10.pdf

72 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509SubjectAltName
Retrieves the specified subject alternative name and related information (formerly
NW509SubjectAltName).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509SubjectAltName
(
 NPKIT_x509Context context,
 nuint32 index,
 nuint8 *type,
 nuint8 const **value,
 pnuint32 length,
 unicode const **name
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

index
(IN) Specifies which subject alternative name is to be returned. index is 0 based.

type
(OUT) Points to the type of subject alternative name. For more information, see the section
Section 4.3, “General Name Type Extensions,” on page 76.

value
(OUT) Points to the ASN.1 encoded subject alternative name.

length
(OUT) Specifies the length of value.

name
(OUT) Points to a Unicode string containing a representation of the subject alternative name.

NOTE: This field is only set when the Subject Alternative Name is one of the following types:

X509_GENERAL_NAME_RFC822_NAME
X509_GENERAL_NAME_DNS_NAME
X509_GENERAL_NAME_DIRECTORY_NAME
For more details, see Section 4.3, “General Name Type Extensions,” on page 76.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57). You should call NPKIT_x509SubjectAltNamesInfo (page 74) before calling this function
to determine how many subject alternative names are encoded in the certificate. For more details
about subject alternative names, see Section 4.3, “General Name Type Extensions,” on page 76. The
subject alternative name extension is optional. Therefore, not all certificates have subject alternative
names.

See Also
NPKIT_x509DecodeCertificate (page 57), NPKIT_x509GetExtensionData (page 62),
NPKIT_x509IssuerAltName (page 64), NPKIT_x509SubjectAltNamesInfo (page 74)
Functions 73

74 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKIT_x509SubjectAltNamesInfo
Retrieves the number of subject alternative names encoded in the certificate if the subject alternative
names extension exists in the certificate (formerly NWx509SubjectAltNamesInfo).

Syntax
#include "NPKIT_x509.h"

NWRCODE NPKIT_x509SubjectAltNamesInfo
(
 NPKIT_x509Context context,
 pnuint32 numSubjectAltNames
);

Parameters
context

(IN) Specifies the NPKIT_x509 context handle for the request. This is a nuint32 value.

numSubjectAltNames
(OUT) Specifies the number of subject alternative names encoded in the certificate.

Return Values
Returns 0 if successful or a PKI error code if not successful. For a listing of NPKIT error codes, see
Certificate Server Error Code Constants.

Remarks
Before calling this function, you must first successfully call NPKIT_x509DecodeCertificate
(page 57). Iterative calls to NPKIT_x509SubjectAltName (page 72) can be made to retrieve each of
the subject alternative names.

The subject alternative name extension is optional. Therefore, not all certificates have subject
alternative names.

See Also
NPKIT_x509DecodeCertificate (page 57), NPKIT_x509SubjectAltName (page 72)
l Public Key Infrastructure Toolbox

4
novdocx (E

N
U

) 01 February 2006
4Values

Novell Certificate Server interfaces, prototypes, and data types are defined in the Novell
npkit.h, NPKIT_Verify.h, NPKIT_x509.h, npki_ver.h, and nverify.h header
files. This section contains the following topics:

• Section 4.1, “Basic Constraints Extension Values,” on page 75
• Section 4.2, “CRL Distribution Point Values,” on page 76
• Section 4.3, “General Name Type Extensions,” on page 76
• Section 4.4, “Key Usage Extension Values,” on page 77
• Section 4.5, “NPKI_VerifyCallBackStruct Flag Values,” on page 77
• Section 4.6, “NPKIT_Version Values,” on page 78
• Section 4.7, “NPKIT_x509 Certificate Invalidity Reason Flags,” on page 79
• Section 4.8, “NPKIT_x509 CRL Types Values,” on page 81
• Section 4.9, “NPKIT_x509 CRL Hold Types,” on page 81
• Section 4.10, “X.509 Extensions,” on page 81
• Section 4.11, “Subject Alternative Name Extension Values (obsolete, 3/2005),” on page 84

4.1 Basic Constraints Extension Values
The X.509 Basic Constraints extension is used to specify that a certificate belongs to a CA. The
X.509 Basic Constraints extension has essentially two parts:

• CA: Specifies whether the certificate is for a CA.
• pathLenConstraint: If the certificate is for a CA, pathLenConstraint specifies how many

subordinate levels of a certificate chain that the CA can certify. The pathLenConstraint can
range from zero, meaning that the CA cannot certify other CAs but can certify leaf objects (that
is, user and server certificates) to infinite (that is, when pathLenConstraint is not specified).

Certificates for CAs must have the Basic Constraints extension encoded. Other certificates should
not.

The Basic Constraints extension uses the general-purpose extension structure NPKI_Extension
described in Section 4.10, “X.509 Extensions,” on page 81.

There is one value specific flag defined for the Basic Constraints extension:

Value Name Description

0xffffffff X509_CA_PATH_LENGTH_UNLI
MITED

Compare this value with the value returned in
pathLenConstraint from
NPKIT_x509BasicConstraintsInfo (page 51) to
determine if the CA path length is unlimited
Values 75

76 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.2 CRL Distribution Point Values
Any number of the following defined values will be returned in the datasets field by a successful
call to NPKIT_x509CRLDistributionPoint (page 53).

4.3 General Name Type Extensions
The following general name type values specify which encoding format is used to encode the
general name:

Value Name Description

0x0001 NPKIT_x509DistPtsFullName The full name of the distribution point is
being passed back.

0x0002 NPKIT_x509DistPtsNameRelativeToCRLI
ssuer

The distribution points name is relative to
the CRL issuer.

0x0004 NPKIT_x 509DistPtsReasons The reason codes are being passed back.

0x0008 NPKIT_x 509DistPtsCRLIssue The CRL issuer name is being passed
back.

Value Name Description

0x0000 X509_GENERAL_NAME_OTHER_NAME The name is encoded as an
OtherName type of GeneralName as
specified in RFC 2459.

0x0001 X509_GENERAL_NAME_RFC822_NAME The name is encoded as an
IA5String type of GeneralName as
specified in RFC 2459.

0x0002 X509_GENERAL_NAME_DNS_NAME The name is encoded as an
ORAddress type of GeneralName as
specified in RFC 2459.

0x0003 X509_GENERAL_X400_ADDRESS The name is encoded as an
IA5String type of GeneralName as
specified in RFC 2459.

0x0004 X509_GENERAL_NAME_DIRECTORY_NAME The name is encoded as a Name
type of GeneralName as specified in
RFC 2459.

0x0005 X509_GENERAL_NAME_EDI_PARTY_NAME The name is encoded as an
EDIPartyName type of GeneralName
as specified in RFC 2459

0x0006 X509_GENERAL_NAME_UNIFORM_RESOURCE_ID
ENTIFIER

The name is encoded as an
IA5String type of GeneralName as
specified in RFC 2459.

0x0007 X509_GENERAL_NAME_IP_ADDRESS The name is encoded as n OCTECT
STRING type of GeneralName in
"network byte order" as specified by
ASN.1, RFC 2459 and RFC 791.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
4.4 Key Usage Extension Values

The X.509 key usage extension is used to specify for what purpose a key should be used. When an
application goes through the verification process, it typically checks whether the key is being used
for a purpose that it was not intended for.

The value of this extension is returned in a pointer to a nuint16 by NPKIT_x509KeyUsageInfo
(page 67) where each bit specifies a key usage. Any combination of key usages can be present but
not all are appropriate combinations or are appropriate for all types of keys.

The following values for key usages are defined:

4.5 NPKI_VerifyCallBackStruct Flag Values
One of the following defined values should be passed into the flags field of the function
NPKIVerifyCertificateChain or in the flags field of the NPKI_VerifyCallBackStruct:

0x0008 X509_GENERAL_NAME_REGISTERED_ID The name is encoded as an OBJECT
IDENTIFIER type of GeneralName
as specified in ASN.1. and RFC
2459.

Value Name Description

0x8000 X509_KEY_USAGE_DIGITAL_SIGNATU
RE

For creating digital signatures.

0x4000 X509_KEY_USAGE_NON_REPUDIATIO
N

For non-repudiation. This type of key usually
has legal ramifications.

0x2000 X509_KEY_USAGE_KEY_ENCIPHERME
NT

For encrypting other keys.

0x1000 X509_KEY_USAGE_DATA_ENCIPHERM
ENT

For directly encrypting data.

0x0800 X509_KEY_USAGE_KEY_AGREEMENT For key agreement (for example, when a
Diffie_Hellman key is to be used for key
management). Not valid for RSA keys.

0x0400 X509_KEY_USAGE_KEY_CERT_SIGN For signing certificates.

0x0200 X509_KEY_USAGE_CRL_SIGN For signing CRLs.

0x0100 X509_KEY_USAGE_ENCIPHER_ONLY Only for enciphering data while performing
key agreement
(X509_KEY_USAGE_KEY_AGREEMENT
must also be set). Not valid for RSA keys

0x0080 X509_KEY_USAGE_DECIPHER_ONLY Only for deciphering data while performing
key agreement
(X509_KEY_USAGE_KEY_AGREEMENT
must also be set). Not valid for RSA keys.

Value Name Description
Values 77

78 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.6 NPKIT_Version Values
The NPKIT NDK Version number can be used to compare with the return value of NPKIT_Version
(page 50) to determine if the version of the NPKIT library.

Value Name Description

0x00000000 NPKI_VERIFY_NORMAL Verifies the certificate chain along with
Certificate Revocation Lists (CRL).

0x00000001 NPKI_VERIFY_DONT_CHECK_CERTIFI
CATE

Do not verify the certificate chain.

0x00000002 NPKI_VERIFY_DONT_CHECK_CRL Do not check CRLs.

Value Constant Description

0x00010000 PKIS_VERSION_ONE_ZERO_ZERO PKIS NDK version 1.0.

0x00010005 PKIS_VERSION_ONE_ZERO_FIVE PKIS NDK version 1.0.5.

0x00010009 PKIS_VERSION_ONE_ZERO_NINE PKIS NDK version 1.0.9.

0x00020000 PKIS_VERSION_TWO_ZERO_ZERO PKIS NDK version 2.0.

0x00020002 PKIS_VERSION_TWO_ZERO_TWO PKIS NDK version 2.0.2.

0x00020003 PKIS_VERSION_TWO_ZERO_THREE PKIS NDK version 2.0.3.

0x00020011 PKIS_VERSION_TWO_ONE_ONE PKIS NDK version 2.1.1.

0x00020200 PKIS_VERSION_TWO_TWO_ZERO PKIS NDK version 2.2.

0x00020201 PKIS_VERSION_TWO_TWO_ONE PKIS NDK version 2.2.1.

0x00020400 PKIS_VERSION_TWO_FOUR_ZERO PKIS NDK version 2.4.

0x00020500 PKIS_VERSION_TWO_FIVE_ZERO PKIS NDK version 2.5.

0x00020502 PKIS_VERSION_TWO_FIVE_TWO PKIS NDK version 2.5.2.

0x00020504 PKIS_VERSION_TWO_FIVE_FOUR PKIS NDK version 2.5.4.

0x00020600 PKIS_VERSION_TWO_SIX_ZERO PKIS NDK version 2.6.

0x00020700 PKIS_VERSION_TWO_SEVEN_ZERO PKIS NDK version 2.7.

0x00020702 PKIS_VERSION_TWO_SEVEN_TWO PKIS NDK version 2.7.2.

0x00020703 PKIS_VERSION_TWO_SEVEN_THREE PKIS NDK version 2.7.3.

0x00020704 PKIS_VERSION_TWO_SEVEN_FOUR PKIS NDK version 2.7.4.

0x00020705 PKIS_VERSION_TWO_SEVEN_FIVE PKIS NDK version 2.7.5.

0x00020706 PKIS_VERSION_TWO_SEVEN_SIX PKIS NDK version 2.7.6.

0x00020707 PKIS_VERSION_TWO_SEVEN_SEVEN PKIS NDK version 2.7.7.

0x00020708 PKIS_VERSION_TWO_SEVEN_EIGHT PKIS NDK version 2.7.8.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
4.7 NPKIT_x509 Certificate Invalidity Reason
Flags
The following flags are used to specify why a certificate is invalid. These values are used by the
cRLReason parameter in the functions NPKIT_VerifyCertChain (page 45),
NPKIT_VerifyCertChainWithCallback (page 48), and NPKIT_VerifyCertChain (page 45).

0x00020709 PKIS_VERSION_TWO_SEVEN_NINE PKIS NDK version 2.7.9.

0x00030000 PKIS_VERSION_THREE_ZERO_ZERO PKIS NDK version 3.0.0.

0x00030100 PKIS_VERSION_THREE_ONE_ZERO PKIS NDK version 3.1.0.

0x00030101 PKIS_VERSION_THREE_ONE_ONE PKIS NDK version 3.1.1.

 NPKIT_VERSION PKIS_VERSION_THREE_ONE_ONE The current NPKIT version 3.1.1.

 NPKI_VERSION PKIS_VERSION_THREE_ONE_ONE The current NPKI version 3.1.1.

NPKI_CERTIFICATE_
SERVER_VERSION

PKIS_VERSION_THREE_ONE_ONE The current NPKI certificate
server version 3.1.1.

NPKI_INSTALL_VERS
ION

PKIS_VERSION_THREE_ONE_ONE The current NPKI install version
3.1.1.

Value Name Description

0x0000000 NPKIx509CertificateValid The certificate is valid.

0x0000001 NPKIx509Invalid_System_Error Hardware or network problems were
encountered.

0x0000002 NPKIx509Invalid_Decode_Error There was a problem decoding the
certificate.

0x0000003 NPKIx509Invalid_Subject_Issuer_Name The subject name of the issuing certificate
does not match the issuer name of
subject certificate.

0x0000004 NPKIx509Invalid_Future The certificate’s start date is in the future.

0x0000005 NPKIx509Invalid_Expired The certificate has expired.

0x0000006 NPKIx509Invalid_Issuer_Not_CA The issuer is not a valid CA.

0x0000007 NPKIx509Invalid_Path_Length The X.509 basic constraints path length
has been violated.

0x0000008 NPKIx509Invalid_Unknown_Critical_Extensi
on

The certificate contains a critical
extension that can not be understood.

0x0000009 NPKIx509Invalid_KeyUsage The key does not support the requested
usage.

0x000000A NPKIx509Invalid_CRL_Decode_Error An error occurred during the decoding of
the CRL.

Value Constant Description
Values 79

80 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.7.1 NPKIT_x509 CRL Distribution Point Reason Code
The following flags are used to specify why a CRL distribution point is invalid. These values are
used by the reasons parameter in the function NPKIT_x509CRLDistributionPoint (page 53).

0x000000B NPKIx509Invalid_Certificate_On_CRL One of the certificates in the chain is on a
CRL.

0x000000C NPKIx509Invalid_Cant_Process_CDP The certificate contains a distribution point
that can not be processed.

0x000000D NPKIx509Invalid_Cant_Read_CRL The CRL could not be read.

0x000000E NPKIx509Invalid_Invalid_CRL The CRL is not valid for this certificate.

0x000000F NPKIx509Invalid_Expired_CRL The CRL has expired and a new one has
not been issued.

0x0000010 NPKIx509Invalid_CRL_Issuer_Name The issuer name of the CRL identified in
the certificate does not match the issuer
name in the CRL retrieved.

0x0000011 NPKIx509Invalid_Issuer_Not_Trusted One or more of the certificates in the
certificate chain does not exist in the
specified trusted root container.

NOTE: This error code can only be
returned by a call to
NPKIVerifyCertificateWithTrustedRoots,
and not any of the NPKIT functions.

0x0000012 NPKIx509Invalid_CDP_Exists_Did_Not_Ch
eck_CRL

(An advisory flag.) The CDP (Certificate
Distribution Point) exists, but the CRL was
not checked because you requested that
it not be checked.

0x0000013 NPKIx509Invalid_Invalid_Signature The signature of the CRL is invalid.

Value Name Description

0 PKI_UNSPECIFIED The reason is not specified.

1 PKI_KEY_COMPROMISED Invalid because the key was compromised.

2 PKI_CA_COMPROMISED Invalid because the certificate authority was
compromised.

3 PKI_AFFILIATION_CHANGED Invalid because the certificate’s affiliation was
inappropriately changed.

4 PKI_SUPERSEDED Invalid because the certificate has been superseded.

5 PKI_CESSATION_OF_OPERATION Invalid because the CA is no longer operational.

6 PKI_CERTIFICATE_HOLD Invalid because the certificate has been placed on
hold.

Value Name Description
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
4.8 NPKIT_x509 CRL Types Values

One of the following values is returned in the crlIssuerType of NPKIT_x509CRLDistributionPoint
(page 53) function.

4.9 NPKIT_x509 CRL Hold Types
The following flags are used to specify what to do if a certificate is on hold. These values are used
by the cRLHoldInstruction parameter in the functions NPKIT_VerifyCertChain (page 45),
NPKIT_VerifyCertChainWithCallback (page 48), and NPKIT_VerifyIssuerSubjectNameMatch
(page 49).

4.10 X.509 Extensions
The extensions of a X.509 certificate provide a generic way to include information in the certificate.
Currently the function provides support for including five X.509 extensions types: key usage, basic
constraints, issuer alternative name, subject alternative name, and the Novell Security Attributes.

7 PKI_PRIVILEDGE_WITHDRAWN Invalid because the user’s privileges have been
withdrawn by the CA.

8 PKI_AA_COMPROMISE Invalid because the certificate has been compromised.

Value Name Description

0x00000000 NPKIT_x509UnknownType The CRL is of an unknown type.

0x00000001 NPKIT_x509CRLType The CRL is a general type, containing all
reason codes.

0x00000002 NPKIT_x509DeltaCRLType The CRL is a delta CRL.

0x00000004 NPKIT_x509OnlyUserCertsType The CRL contains only user certificates.

0x00000008 NPKIT_x509OnlyCACertsType The CRL contains only CA certificates.

0x00000010 NPKIT_x509OnlySomeReasonsType The CRL contains only certificates that were
revoked for the specified reasons.

0x00000020 NPKIT_x509IndirectCRLType The CRL is an indirect CRL.

Value Name Description

0 PKI_HOLD_INSTRUCTION_NONE No hold instructions.

1 PKI_HOLD_INSTRUCTION_CALL_ISSUER The person trying to verify the certificate
should contact the certificate’s issuer for
information.

2 PKI_HOLD_INSTRUCTION_REJECT The certificate should be rejected as if it were
revoked.

Value Name Description
Values 81

82 NDK: Novel

novdocx (E
N

U
) 01 February 2006
To provide a generic method of specifying data for X.509 extensions, the API provides general-
purpose data structures and defines, as well as extension-specific data structures and defines.

The following lists extensions from enum NPKIT_x509Extension (see also
NPKIT_CRLEntryExtensionInfo (page 34), NPKIT_CRLExtensionInfo (page 38), and
NPKIT_x509GetExtensionData (page 62).

Extension Name Description

None No type has been specified.

Unknown This extension that cannot be handled properly by NPKIT.

DecodeError The extension type cannot be determined because of an error during
decoding.

AuthorityKeyIdentifier Provides a means of identifying the particular public key used to sign
a certificate. This extension is used when an issuer has multiple
signing keys (either because of multiple concurrent key pairs or
changeover). Generally, this extension should be included in
certificates.

SubjectKeyIdentifier Provides a means of identifying the particular public key used in an
application. When a reference to a public key identifier is needed
(such as with the use an Authority Key Identifier) and is not included
in the associated certificate, a SHA-1 hash of the subject public key
is used. The hash is calculated over the value (excluding tag and
length) of the subject public key field in the certificate.

KeyUsage Defines the purpose (for example, encipherment, signature,
certificate signing, etc.) of the key contained in the certificate.

PrivateKeyUsagePeriod Allows the certificate issuer to specify a different validity period for
the private key than the certificate. This extension is intended for use
with digital signature keys and consists of two optional components:
notBefore and notAfter. The private key associated with the
certificate should not be used to sign objects before or after the
times specified by the two components, respectively. CAs
conforming to this profile should not generate certificates with
private key usage period extensions unless at least one of the two
components is present.

CertificatePolicies Specifies the policy under which the certificate has been issued and
the purposes for which the certificate can be used, defined by a
sequence of policy information terms, each consisting of an Object
Identifier (OID™) and optional qualifier.

PolicyMapping Extension to be used within CA certificates for listing one or more
pairs of object identifiers, each of them including an
issuerDomainPolicy and a subjectDomainPolicy. The pairing
indicates the issuing CA considers its issuerDomainPolicy
equivalent to the subject CA’s subjectDomainPolicy.

SubjectAltName Allows you to bind additional identities to the subject of the
certificate. Defined options include an RFC822 name (e-mail
address), a DNS name, IP address, and URL.

IssuerAltName Extension for associating Internet style identities with the issuer of
the certificate. Defined options include an rfc822 name (electronic
mail address), a DNS name, an IP address, and an URL.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
SubjectDirectoryAttributes This extension is not recommended, but it can be used in local
environments.

IMPORTANT: This extension must be non-critical.

BasicConstraints Identifies whether the subject of the certificate is a CA and how deep
a certification path can exist through that CA.

NameConstraints Specifies a name space within which all subject names in
subsequent certificates in a certification path must be located.
Restrictions might apply to the subject distinguished name or subject
alternative names. Restrictions are defined in terms of permitted or
excluded name subtrees. Any name matching a restriction in the
excludedSubtrees field is invalid regardless of information
appearing in the permittedSubtrees.

PolicyConstraints Constrains path validation in two ways; it can be used to prohibit
policy mapping or require that each certificate in a path contain an
acceptable policy identifier. The policy constraints extension can be
used in certificates issued to CAs.

CRLDistributionPoints Specifies how CRL information is obtained.

ExtendedKeyUsage Specifies one or more purposes for which the certified public key can
be used, in addition to or in place of the basic purposes indicated in
the key usage extension.

AuthorityInfoAccess Specifies how to access CA information and services for the issuer
of the certificate in which the extension appears. Information and
services can include on-line validation services and CA policy data.
(The location of CRLs is not specified in this extension; that
information is provided by the cRLDistributionPoints extension.) This
extension can be included in subject or CA certificates, and it MUST
be non-critical.

NovellAttribute Specifies Novell Security Attributes. For full information, see
NPKIT_x509NovellExtensionInfo (page 69).

CRLNumber Conveys a monotonically increasing sequence number for each
CRL issued by a given CA through a specific CA X.500 directory
entry or CRL distribution point. This extension allows users to easily
determine when a particular CRL supersedes another CRL.

ReasonCode Identifies the reason for a certificate revocation. CAs are strongly
encouraged to include reason codes in CRL entries; however, do not
include a reason code CRL entry extension when using the
unspecified reasonCode value.

InstructionCode A non-critical CRL entry extension that provides a registered
instruction identifier indicating the action to be taken after
encountering a certificate that has been placed on hold.

Extension Name Description
Values 83

84 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.11 Subject Alternative Name Extension Values
(obsolete, 3/2005)
The X.509 subject alternative name extension were formerly used to specify additional identities to
be bound to the subject of the certificate (that is, other names that identify the object) but are now
deprecated. That functionality is now provided by Section 4.3, “General Name Type Extensions,” on
page 76.

The subject alternative name type specified which encoding format was used to encode the
alternative name. The following subject alternative name types were defined:

InvalidityDate A non-critical CRL entry extension that provides the date on which it
is known or suspected that the private key was compromised or that
the certificate otherwise became invalid. This date might be earlier
than the revocation date in the CRL entry, which is the date at which
the CA processed the revocation. When a revocation is first posted
by a CA in a CRL, the invalidity date can precede the date of issue of
earlier CRLs, but the revocation date must not precede the date of
issue of earlier CRLs. Whenever this information is available, CAs
are strongly encouraged to share it with CRL users.

DeltaCRLIndicator A critical CRL extension that identifies a delta CRL. The use of delta-
CRLs can significantly improve processing time for applications that
store revocation information in a format other than the CRL
structure. This allows changes to be added to the local database
while ignoring unchanged information.

IMPORTANT: When a delta CRL is issued, the CAs also must issue
a complete CRL.

IssuingDistributionPoint A critical CRL extension that identifies the CRL distribution point for
a particular CRL and indicates whether the CRL covers revocation
for end entity certificates only, CA certificates only, or a limited set of
reason codes. Although the extension is critical, conforming
implementations are not required to support this extension.

CertificateIssuer Identifies the certificate issuer associated with an entry in an indirect
CRL (that is, a CRL that has the indirectCRL indicator set in its
issuing distribution point extension). If this extension is not present
on the first entry in an indirect CRL, the certificate issuer defaults to
the CRL issuer. On subsequent entries in an indirect CRL, if this
extension is not present, the certificate issuer for the entry is the
same as that for the preceding entry.

Value Name Description

0x0000 X509_SUBJECT_ALT_NAME_OTHER_NA
ME

An OtherName sequence as specified in RFC
2459.

0x0001 X509_SUBJECT_ALT_NAME_RFC822_NA
ME

Unicode representation of an IA5String.

0x0002 X509_SUBJECT_ALT_NAME_DNS_NAME Unicode representation of an IA5String.

Extension Name Description
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
0x0003 X509_SUBJECT_ALT_NAME_X400_ADDR
ESS

An ORAddress sequence as specified in RFC
2459.

0x0004 X509_SUBJECT_ALT_NAME_DIRECTOR
Y_NAME

A Name choice as specified in x.501.

0x0005 X509_SUBJECT_ALT_NAME_EDI_PARTY
_NAME

An EDIPartyName sequence as specified in
RFC 2459.

0x0006 X509_SUBJECT_ALT_NAME_UNIFORM_
RESOURCE_IDENTIFIER

A Unicode representation of an IA5String.

0x0007 X509_SUBJECT_ALT_NAME_IP_ADDRES
S

An OCTET STRING in network byte order as
specified in ASN.1. (Network byte order is
specified in RFC 791.)

0x0008 X509_SUBJECT_ALT_NAME_REGISTER
ED_ID

An OBJECT IDENTIFIER as specified in
ASN.1.

Value Name Description
Values 85

86 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Public Key Infrastructure Toolbox

5
novdocx (E

N
U

) 01 February 2006
5Structures

This section provides the structures used by NPKIT:

• NPKI_CertChain (page 88)
• NPKI_VerifyCallBackStruct (page 90)
Structures 87

88 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKI_CertChain
Contains information defining a certificate chain.

Structure
typedef struct NPKI_CertChain
{
 pnuint8 cert;
 nuint32 certLen;
 NPKI_CRL *cRLStruct;
 nuint32 flags;
 nuint32 numErrors;
 NPKI_ERROR *error;
 void reserved1;
 void reserved2;
 struct NPKI_CertChain *next;
}NPKI_CertChain;

Fields
cert

Points to the certificate.

certLen
Specifies the length in bytes of the certificate.

cRLStruct
Optional, not supported yet. Pass in NULL.

flags
Future use, pass in NULL.

numErrors
Future use, set to zero.

error
Future use, set to NULL.

reserved1
Future use, set to NULL.

reserved2
Future use, set to NULL.

next
Points to the next NPKI_CertChain structure containing the next certificate in the chain.
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
Remarks
This structure is used to pass a certificate chain to NPKIT_VerifyCertChain (page 45) and is used in
the certificateChain field of the structure Section 4.5, “NPKI_VerifyCallBackStruct Flag
Values,” on page 77“. The certificates in the certificate chain need to be in order, leaf to root.
Structures 89

90 NDK: Novel

novdocx (E
N

U
) 01 February 2006
NPKI_VerifyCallBackStruct
Contains information defining a callback structure.

Structure
typedef struct NPKI_VerifyCallBackStruct
{
 void (*callback) (void *data);
 NPKI_CertChain *certificateChain;
 nuint32 flags;
 NWRCODE ccode;
 nuint32 cRLReason;
 nuint32 cRLHoldInstruction;
 time_t cRLRevocationTime;
 time_t cRLInvalidityDateTime;
 NPKI_CertChain *revokedCertificate;
 nuint32 certInvalidityReason;
 void *reserved1;
 void *reserved2;
 void *reserved3;
 void *userData;
}NPKI_VerifyCallBackStruct;

Fields
callback (void* data)

(IN) Points to the user-defined callback function.

certificateChain
(IN) Points to a linked list of NPKIT_VerifyCertChain (page 45) structures containing the
certificate chain in leaf to root order.

flags
(IN) Pass in one of the following flags:

NPKI_VERIFY_NORMAL
NPKI_VERIFY_DONT_CHECK_CERTIFICATE
NPKI_VERIFY_DONT_CHECK_CRL
For more information, see Section 4.5, “NPKI_VerifyCallBackStruct Flag Values,” on page 77.

ccode
(OUT) Specifies whether the verify function succeeded or not.

cRLReason
(OUT) Specifies the reason code from the CRL (only when certificate is on the CRL). This
field is set only when the ccode is set to PKI_E_CERT_INVALID.

cRLHoldInstruction
l Public Key Infrastructure Toolbox

novdocx (E
N

U
) 01 February 2006
(OUT) Specifies the hold instruction from the CRL. This field is set only when the ccode is set
to PKI_E_CERT_INVALID.

cRLRevocationTime
(OUT) Specifies the time of certificate revocation. This field is set only when the ccode is set
to PKI_E_CERT_INVALID.

cRLInvalidityDateTime
(OUT) Specifies the time the certificate became invalid (only when certificate is on the CRL
and invalidityDate is specified on the CRL). Thisfield is set only if the ccode is set to
PKI_E_CERT_INVALID.

revokedCertificate
(OUT) Points to the invalid certificate. This field is set only when the ccode is set to
PKI_E_CERT_INVALID.

certInvalidityReason
(OUT) Code to specify why the certificate is invalid. This will only be set if the ccode is set to
PKI_E_CERT_INVALID.

reserved1
Reserved for future use.

reserved2
Reserved for future use.

reserved3
Reserved for future use.

userData
(IN) Points to a user-defined data structure. This field is available for you to pass information to
the callback function.

Remarks
Points to the following structure is passed into the data field of the function
NPKIT_VerifyCertChainWithCallback (page 48).

NOTE: This structure must be allocated and deallocated by the caller.
Structures 91

92 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l Public Key Infrastructure Toolbox

Revision History

A
novdocx (E

N
U

) 01 February 2006

93

ARevision History

Revision Date Changes

March 1, 2006 • Updated offsite links to provide more recent resource data.

• Document the following NPKIT functions:

• NPKIT_CacheAddElement (page 16)

• NPKIT_CacheAddPKCS12Elements (page 18)

• NPKIT_CacheClearAllElements (page 20)

• NPKIT_CacheCreateContext (page 21)

• NPKIT_CacheElementInfo (page 22)

• NPKIT_CacheExportToPKCS12 (page 24)

• NPKIT_CacheFreeContext (page 26)

• NPKIT_CacheRead (page 27)

• NPKIT_CacheWrite (page 29)

October 5, 2005 • Transitioned to revised Novell documentation standards.

October 6, 2005 • Added Section 4.7.1, “NPKIT_x509 CRL Distribution Point Reason
Code,” on page 80 for NPKIT_x509CRLDistributionPoint (page 53).

March 2, 2005 • Made technical corrections and fixed broken links.

• Deprecated Section 4.11, “Subject Alternative Name Extension Values
(obsolete, 3/2005),” on page 84 and replaced with the revised Section
4.3, “General Name Type Extensions,” on page 76.

• Added the Section 4.7, “NPKIT_x509 Certificate Invalidity Reason
Flags,” on page 79.

• Added Section 4.6, “NPKIT_Version Values,” on page 78.

October 6, 2004 Made technical corrections and fixed broken links.

8 October 2003 Updated links to other Novell Certificate Server™ for C Libraries.

June 2003 Edited entire document.

March 2003 Fixed broken links in original documentation and added links to external
sample code.

January 2003 Added as a new component to the Novell Certificate Server Libraries.

	NDK: Novell Public Key Infrastructure Toolbox
	About This Guide
	1 Concepts
	1.1 NPKIT Dependencies

	2 Tasks
	2.1 Getting Started
	2.2 Decoding an X509 Certificate
	2.3 Decoding a CRL

	3 Functions
	NPKIT_CacheAddElement
	NPKIT_CacheAddPKCS12Elements
	NPKIT_CacheClearAllElements
	NPKIT_CacheCreateContext
	NPKIT_CacheElementInfo
	NPKIT_CacheExportToPKCS12
	NPKIT_CacheFreeContext
	NPKIT_CacheRead
	NPKIT_CacheWrite
	NPKIT_CRLCreateContext
	NPKIT_CRLDecode
	NPKIT_CRLEntryExtensionInfo
	NPKIT_CRLEntryInfo
	NPKIT_CRLExtensionInfo
	NPKIT_CRLFreeContext
	NPKIT_CRLInvalidityDateInfo
	NPKIT_CRLReasonCodeInfo
	NPKIT_VerifyCertificate
	NPKIT_VerifyCertChain
	NPKIT_VerifyCertChainWithCallback
	NPKIT_VerifyIssuerSubjectNameMatch
	NPKIT_Version
	NPKIT_x509BasicConstraintsInfo
	NPKIT_x509CreateContext
	NPKIT_x509CRLDistributionPoint
	NPKIT_x509CRLDistributionPointsInfo
	NPKIT_x509DecodeCertificate
	NPKIT_x509FreeContext
	NPKIT_x509GetExtensionData
	NPKIT_x509IssuerAltName
	NPKIT_x509IssuerAltNamesInfo
	NPKIT_x509KeyUsageInfo
	NPKIT_x509NovellExtensionInfo
	NPKIT_x509SubjectAltName
	NPKIT_x509SubjectAltNamesInfo

	4 Values
	4.1 Basic Constraints Extension Values
	4.2 CRL Distribution Point Values
	4.3 General Name Type Extensions
	4.4 Key Usage Extension Values
	4.5 NPKI_VerifyCallBackStruct Flag Values
	4.6 NPKIT_Version Values
	4.7 NPKIT_x509 Certificate Invalidity Reason Flags
	4.7.1 NPKIT_x509 CRL Distribution Point Reason Code

	4.8 NPKIT_x509 CRL Types Values
	4.9 NPKIT_x509 CRL Hold Types
	4.10 X.509 Extensions
	4.11 Subject Alternative Name Extension Values (obsolete, 3/2005)

	5 Structures
	NPKI_CertChain
	NPKI_VerifyCallBackStruct

	A Revision History

