
n

NDK: SecretStore Developer Kit for C
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
M a r c h 1 , 2 0 0 6

S E C R E T S T O R E ™ D E V E L O P E R K I T
F O R C

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 1999-2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

http://www.novell.com/info/exports/

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc. in the United States.
ASM is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc. in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a trademark of Novell, Inc.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of SUSE AG, a Novell business.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 11

1 Getting Started 13
1.1 Novell SecretStore Background. 13
1.2 SecretStore API Enhancements . 14

1.2.1 Improved Transport and OS Platform Access. 14
1.2.2 Improved API Performance . 14
1.2.3 New Shared Secret Format . 14

1.3 Development Dependencies . 15
1.3.1 Workstation Prerequisites . 15
1.3.2 Server Prerequisites . 15
1.3.3 Installing SSOCOMP Software . 16

1.4 Deployment Dependencies . 17
1.4.1 Server Requirements . 18
1.4.2 Client Requirements . 18

1.5 Understanding SecretStore Functions. 18
1.5.1 SecretStore Implementation . 19
1.5.2 SecretStore Architecture . 19
1.5.3 SecretStore API General Information . 20
1.5.4 Single Sign-on Methods . 20
1.5.5 SecretStore Vault Service . 21
1.5.6 SecretStore Encrypted Attribute Service. 22
1.5.7 Connector Interfaces . 22
1.5.8 SecretStore Management Utilities. 25

1.6 Understanding Shared Secret Functions. 26
1.6.1 Shared Secret Terminology. 26
1.6.2 Shared Secret Format . 27
1.6.3 Shared Secret Types. 28

1.7 Shared Secret Functions . 30
1.7.1 Operational Functions . 30
1.7.2 Processing Functions . 30
1.7.3 Sequence of Shared Application or Credential Set Secret Operations 31
1.7.4 Sample Code. 31

1.8 SecretStore Scenarios . 32
1.8.1 Establishing the Secret ID . 32
1.8.2 Enabling the Check for Secret ID Collision . 32
1.8.3 Enabling the First-Time User. 33
1.8.4 Password Changes . 33

1.9 eDirectory and SecretStore . 33
1.10 NICI and SecretStore. 34

1.10.1 Storage Encryption . 34
1.10.2 Reading and Writing Encryption . 34
1.10.3 Session-Oriented Security. 35

1.11 Naming Conventions . 35
1.11.1 Naming Examples . 35

1.12 Enhanced Protection . 36
1.13 SecretStore Service Discovery . 36

1.13.1 Distinguished Name Attribute . 37
1.13.2 Locating an Acceptable SecretStore Service . 37

1.14 Using Extension Structures . 38
7

8 NDK: Secre

novdocx (E
N

U
) 01 February 2006
1.14.1 Extension Structure Levels . 38
1.14.2 Using Extension Structures . 39

2 Tasks 41
2.1 Displaying a Splash Screen . 41
2.2 Enabling and Maintaining SecretStore . 42

2.2.1 Server Installation for NetWare and Windows . 42
2.3 Enabling SSOCOMP in Applications . 42

2.3.1 Get Service Information . 43
2.3.2 Read Available Secrets . 43
2.3.3 Verify Connection to Proper Tree. 43

2.4 Writing Shared Application or Credential Secrets . 43
2.5 Reading Shared Application or Credential Secrets . 45
2.6 Modifying Shared Application or Credential Secrets . 45

2.6.1 Adding A Shared Secret Key . 45
2.6.2 Removing A Shared Secret Key . 46

2.7 Removing Shared Application or Credential Secrets . 47
2.8 SecretStore Sample Code . 48

3 Secret Store Structures 49
3.1 Structured Definitions . 49

SSS_CONTEXT_T . 50
SS_EXT_T . 52
SS_HINT_T . 53
SS_PWORD_T. 54
SS_SECRET_ID_T . 55
SS_SECRET_T . 56

3.2 Service Location Information . 56
SS_SERVER_INFO_T . 57
SSS_GSINFOEXT_T . 58
SS_READEXT_T . 60

3.3 Shared Secret Structures . 60
SS_SH_SECRET_ID_T . 61
SS_ADV_CRED_T and SS_ADV_CERT_T. 62
SS_ADDR_T . 63
SS_ADV_BIND_INFO_T . 64
SS_OBJECT_DN_T . 65

4 Return Values 67

5 Functions 71
5.1 Enabling Functions . 71
5.2 Administrative Functions . 71
5.3 Shared Secret Functions . 72

5.3.1 Shared Secret Data Management Functions . 72
5.3.2 Shared Secret Support Functions . 72

5.4 API Function Flags . 72
5.4.1 Input Only Flags for Write API . 72
5.4.2 Input Only Flags for Unlock API . 73
5.4.3 Input Only Flags for Read API . 73
5.4.4 Input Only Flags for All APIs . 73
5.4.5 Input Only Flag for GetServiceInfo API . 73
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
5.4.6 Output Only Flags from Read API . 74
5.4.7 Output Only Flag from GetServiceInformation API statFlags 74
5.4.8 Context Flags for The Type of Context Passed in to Initialize Context Structure . . . 74
5.4.9 Context Flags for Input and Returned from the Context Structure 75

5.5 Function Prototypes. 75
NSSSAddSHSEntry. 76
NSSSCreateSHSHandle . 78
NSSSDestroySHSHandle . 79
NSSSEnumerateSecretIDs . 80
NSSSGetNextSHSEntry . 83
NSSSGetServiceInformation . 85
NSSSReadSharedSecret . 88
NSSSReadSecret . 90
NSSSRemoveSecret . 93
NSSSRemoveSecretStore. 95
NSSSRemoveSharedSecret . 97
NSSSRemoveSHSEntry . 100
NSSSSetEPMasterPassword . 102
NSSSUnlockSecrets . 104
NSSSWriteSecret . 107
NSSSWriteSharedSecret. 110

6 SecretStore Samples 113

A Software Revision History 115
A.1 June 1, 2005 . 115

A.1.1 Fixed an Encryption Problem . 115
A.2 March 2005 . 115

A.2.1 Updated Dependencies for .NET Framework . 115
A.2.2 Updated Sample Code . 115

A.3 October 29, 2004 Midrelease . 115
A.4 October 6, 2004 Release. 116
A.5 June 9, 2004 Release . 116
A.6 March 18, 2004 Release . 116

A.6.1 Revised Software Version from 3.3 to 3.3.1 . 116
A.6.2 Updated NICI Versioning. 116
A.6.3 Enhanced SecretStore Version Checking . 116
A.6.4 Added AES to Client . 116
A.6.5 Enhanced Searching of Override Object . 117
A.6.6 Improved Discovery of SecretStore Service Location . 117
A.6.7 Enabled Server Connection . 117

B Revision History 119
9

10 NDK: Secre

novdocx (E
N

U
) 01 February 2006
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
About This Guide

Novell SecretStore Developer Kit for C (SSOCOMP) provides C functions that enable network
applications to securely access user secrets. This document describes the C programming library that
augments the Novell SecretStore for Java API set.

This guide contains the following sections:

• Chapter 1, “Getting Started,” on page 13
• Chapter 2, “Tasks,” on page 41
• Chapter 3, “Secret Store Structures,” on page 49
• Chapter 4, “Return Values,” on page 67
• Chapter 5, “Functions,” on page 71
• Chapter 6, “SecretStore Samples,” on page 113
• Appendix A, “Software Revision History,” on page 115
• Appendix B, “Revision History,” on page 119

Audience

This guide is intended for C application developers who wish to enable Novell SecretStore
functionality within their applications.

Feedback

We want to hear your comments and suggestions about this manual. Please use the User Comments
feature at the bottom of each page of the online documentation and enter your comments there.

Documentation Updates

For the most recent version of this guide, see Novell SecretStore Developer Kit for C (http://
developer.novell.com/ndk/ssocomp.htm).

Additional Documentation

You may want to refer to documentation for Novell International Cryptographic Infrastructure
(NICI™) (http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html) to
understand how security services are implemented by SSOCOMP. You also might refer to the
Novell SecretStore Administration Guide. (http://www.novell.com/documentation/secretstore33/
pdfdoc/nssadm/nssadm.pdf)

For additional background about enabling your applications to use SecretStore, see:

• A Technical Overview of Novell SecretStore 3.2 (http://support.novell.com/techcenter/articles/
dnd20030503.html)

• Understanding Novell's Single Sign-On (http://support.novell.com/techcenter/articles/
ana20000202.html)
11

http://developer.novell.com/ndk/ssocomp.htm
http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html
http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html
http://www.novell.com/documentation/secretstore33/pdfdoc/nssadm/nssadm.pdf
http://support.novell.com/techcenter/articles/dnd20030503.html
http://support.novell.com/techcenter/articles/dnd20030503.html
http://support.novell.com/techcenter/articles/dnd20030503.html
http://support.novell.com/techcenter/articles/ana20000202.html
http://support.novell.com/techcenter/articles/ana20000202.html
http://support.novell.com/techcenter/articles/ana20000202.html

12 NDK: Secre

novdocx (E
N

U
) 01 February 2006
• SecretStore: Novell Single Sign-on Version 1.1 (http://support.novell.com/techcenter/articles/
dnd20000402.html)

• SecretStore Single Sign-on (http://support.novell.com/techcenter/articles/dnd19991105.html)

For SecretStore source code projects, visit Forge Project: Novell SecretStore Developer Kit for C
(http://forge.novell.com/modules/xfmod/project/?ssocomp).

For SecretStore sample code, see Novell Forge Files Novell SecretStore Developer Kit for C (http://
forge.novell.com/modules/xfmod/project/
showfiles.php?group_id=1073&release_id=1448#selected).

For help with SecretStore problems or questions, visit the Novell Support Forum (http://
forge.novell.com/modules/xfmod/newsportal/
thread.php?group_id=1073&group=novell.devsup.singlesignon).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.
tStore Developer Kit for C

http://support.novell.com/techcenter/articles/dnd20000402.html
http://support.novell.com/techcenter/articles/dnd20000402.html
http://support.novell.com/techcenter/articles/dnd20000402.html
http://support.novell.com/techcenter/articles/dnd19991105.html
http://support.novell.com/techcenter/articles/dnd19991105.html
http://support.novell.com/techcenter/articles/dnd19991105.html
http://forge.novell.com/modules/xfmod/project/?ssocomp
http://forge.novell.com/modules/xfmod/project/showfiles.php?group_id=1073&release_id=1448#selected
http://forge.novell.com/modules/xfmod/newsportal/thread.php?group_id=1073&group=novell.devsup.singlesignon

1
novdocx (E

N
U

) 01 February 2006
1Getting Started

The concepts described in this section include:

• Section 1.1, “Novell SecretStore Background,” on page 13
• Section 1.2, “SecretStore API Enhancements,” on page 14
• Section 1.3, “Development Dependencies,” on page 15
• Section 1.4, “Deployment Dependencies,” on page 17
• Section 1.5, “Understanding SecretStore Functions,” on page 18
• Section 1.6, “Understanding Shared Secret Functions,” on page 26
• Section 1.7, “Shared Secret Functions,” on page 30
• Section 1.8, “SecretStore Scenarios,” on page 32
• Section 1.9, “eDirectory and SecretStore,” on page 33
• Section 1.10, “NICI and SecretStore,” on page 34
• Section 1.11, “Naming Conventions,” on page 35
• Section 1.12, “Enhanced Protection,” on page 36
• Section 1.13, “SecretStore Service Discovery,” on page 36
• Section 1.14, “Using Extension Structures,” on page 38

1.1 Novell SecretStore Background
As a component in the eDirectory™ infrastructure, the Novell® SecretStore™ service is designed to
securely store sensitive data such as user IDs, passwords, biometrics, and other login credentials—
all commonly called secrets.

After secrets are safely stored in eDirectory, single sign-on services (such as Novell SecureLogin,
Novell iChain, and Novell Portal Services, and third-party applications) can access and use these
credentials on behalf of the authenticated user. SecretStore also protects the methods of storing,
accessing, and retrieving these secrets.

Novell SecretStore version 3.2 has undergone a major upgrade, with numerous modifications to its
client APIs, client and server platforms, and supported transport protocols. Among other things, it
has been enhanced to support LDAP cross-platform access based on Secure Sockets Layer (SSL) to
make the service available on all eDirectory-supported client and server platforms.

Originally, Novell Single Sign-on (NSSO) version 1.0 provided single sign-on access for a limited
number of key applications that were used primarily in intranet environments. Version 2.x, bundled
with Passlogix v-GO*, expanded the functionality to most Web sites and Windows-based
applications, with limited support for terminal emulators.

In June 2001, Novell released Novell SecureLogin 2.5 (NSL), an interim single sign-on solution that
provided enhanced features of NSSO 2.x but lacked integration with several key Novell
technologies (SecretStore, NMAS™, NICI, etc.). Consequently, Novell introduced Novell
SecureLogin 3.0 during Fall 2001, when it combined features of both NSSO and NSL and full
Getting Started 13

14 NDK: Secre

novdocx (E
N

U
) 01 February 2006
integration with Novell security technologies. NSL 3.0 was fully integrated with the SecretStore
API described in this document and supersedes earlier versions.

With the February 2002 NDK release, the name of the API was changed from Novell Single Sign-on
for C to Novell SecretStore Developer Kit for C, stressing the SecretStore functionality that
facilitates the single sign-on process for various applications. Novell is now labelling and branding
SecretStore components separately from the products that consume them.

Although Novell Single Sign-on was the first Novell product that used SecretStore technology, a
number of Novell products now consume the SecretStore methods described in this document (for
example, Novell SecureLogin, Novell iChain, Novell Portal Services (NPS), Novell DirXML®, and
virtual CDs (VCD).

1.2 SecretStore API Enhancements
The SecretStore version 3.2 API includes these modifications:

• Section 1.2.1, “Improved Transport and OS Platform Access,” on page 14
• Section 1.2.2, “Improved API Performance,” on page 14
• Section 1.2.3, “New Shared Secret Format,” on page 14

1.2.1 Improved Transport and OS Platform Access
SSOCOMP now allows applications to choose NCP™ or LDAP access to eDirectory without
requiring transport-specific APIs. As before, the NCP protocol is only available on Windows clients
and requires Novell Client™ to be present on the workstation. However, the SecretStore LDAP
client can be installed on either the server or the workstation without requiring Novell Client.

1.2.2 Improved API Performance
SecretStore interfaces now provide faster access to the secrets in a user's SecretStore. Older versions
of the SecretStore client APIs were designed to be stateless; that is, each API had to set up and tear
down the connection to the SecretStore server. This approach supported regular connectors and was
based on connectors' simple “per API” access to SecretStore.

As the paradigm of accessing SecretStore shifted from connectors to the universal connectors,
supporting stateful sessions became necessary. Consequently, SecretStore now allows initialization
at the beginning of a session by calling NSSSGetServiceInformation (page 85), then reusing the
initialized state data in the context across other function calls.

All function calls are now enabled to tear down the connection and end a session upon request after
the work is done. Nevertheless, the new API still supports stateless operations if no session is
established ahead of time by the connector via the context. These changes to the SecretStore API
architecture provide for improved performance by allowing the use of the initialized context across
the calls.

1.2.3 New Shared Secret Format
In previous implementations of the API, both regular and universal connectors created overlapping
secrets for the same applications in the user's SecretStore, which led to synchronization problems
between the applications. For example, when a connector modified a user's credential in the target
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
application, other connectors lost their ability to perform single sign-on for the user, and
subsequently became out of sync. Consequently, connectors required user intervention to
synchronize the changes made to credentials in the target application.

In addition, creating multiple secrets for common applications in SecretStore increases the number
of secrets in every store. This can decrease application performance and efficiency, while
unnecessarily increasing storage requirements.

To solve these problems, the SecretStore functions are now implemented as a shim layer to enable
applications to process and interpret secret data that conform to the Shared Secret specification
originally used by Novell SecureLogin. Connectors conforming to this set of specifications in the
Shared Secret API can create secrets in the user's SecretStore that can be shared between regular and
universal connectors.

1.3 Development Dependencies
• Section 1.3.1, “Workstation Prerequisites,” on page 15
• Section 1.3.2, “Server Prerequisites,” on page 15
• Section 1.3.3, “Installing SSOCOMP Software,” on page 16

1.3.1 Workstation Prerequisites
• Novell Client32 for Windows NT/2000/XP or a Novell Client™ for Windows 95/98/ME

workstation where the NCP client is installed.
• Novell LDAP SDK components where the SecretStore LDAP client is installed.

• For NCP installation, copy the nsss and nssncp components to the Windows System32
directory.

• For LDAP installation, copy nsss and nssldp components where the shared libraries
should be on the target client operating system.

• In the Windows-based client, supply the necessary registry keys to turn on and turn off the
logger capability on the client DLLs. When turned on and off through SSManager.exe under
the test tab, this diagnostic tool creates a nsss.log file that writes a diagnostic trace.

1.3.2 Server Prerequisites
• Novell International Cryptographic Infrastructure (NICI) software Version 2.4.x or newer. We

recommend that the target servers be upgraded to the latest version of NICI available through
Novell’s cryptography support web page (http://www.novell.com/products/cryptography).

A version of NICI is supplied with the SecretStore installation as an option.

To verify that your server meets this requirement before continuing, type the following at the
server console:

MODULES XENG* <Enter>

• Supervisor rights to the [Root] object of the eDirectory tree to install SecretStore.
• Novell Support Pack 1 or later for NetWare 5.0.
Getting Started 15

http://www.novell.com/products/cryptography

16 NDK: Secre

novdocx (E
N

U
) 01 February 2006
1.3.3 Installing SSOCOMP Software
You install the SecretStore binaries from the Novell SecretStore Developer Kit for C download page
(http://developer.novell.com/ndk/ssocomp.htm) or from the Novell Software Evaluation and
Development Library CD if you are a Novell DeveloperNet subscriber. Here is a typical install path
(C:\Novell\ndk\ssocomp\SecStore):

You will find the following API software for your platform requirements in the
SecStore\Client and SecStore\Server directories, as shown in the figure:

• “Installing SecretStore Client Software” on page 16
• “Installing SecretStore Server Software” on page 17

IMPORTANT: A future version of SecretStore that includes these components will ship with
eDirectory 8.8.

Installing SecretStore Client Software

For all SecretStore client installs, unzip SSSnapin.zip located in the SecStore\Client
directory. This installs a SecretStore snap-in into your workstation's ConsoleOne® directory, and
enables you to manage your SecretStore applications.

NetWare

1 To install SecretStore LDAP Client for NetWare applications, copy nssldp.nlm and
nsss.nlm (from ...SecStore\Client\NetWare) to sys:system on the server.

2 Download and install the following required LDAP Libraries for C (http://
developer.novell.com/ndk/cldap.htm) client components to the same server:

• ldapsdk.nlm

• ldapssl.nlm

• ldapx.nlm
tStore Developer Kit for C

http://developer.novell.com/ndk/ssocomp.htm
http://developer.novell.com/ndk/cldap.htm

novdocx (E
N

U
) 01 February 2006
Windows

1 To install the cryptography engine required by SecretStore, download and install the latest
NICI software (2.6.x) from the Novell Product Downloads (http://download.novell.com/
index.jsp) page.

2 To install SecretStore for Win32 applications, run SecretStoreClientInstall.exe
(...\SecStore\Client\Windows) and follow the on-screen installation instructions. This process
installs ldapsdk.dll, ldapssl.dll, and ldapx.dll.

Installing SecretStore Server Software

SecretStore server installations for different platforms are designed to work with eDirectory 8.7.x.
Consequently, SecretStore ships as a standard component of eDirectory 8.8.x and does not require
an independent installation from the NDK website. If necessary, use the following procedures to
install a version of SecretStore that you might require:

NetWare

1 Run sssnetware.exe (from ...SecStore\Server\NetWare).
2 Unzip to a directory on the server while you are logged in as the administrator.
3 Run nwconfig to install the SecretStore.

NOTE: Check the SSOCOMP Readme (../../../../readme/ssocomp.html) for the latest information
related to this component.

Windows

1 On the Windows server where eDirectory 8.7.x is installed, run
SecretStoreServerInstall.exe (from ...SecStore\Server\Windows).

2 Follow the on-screen installation instructions.

NOTE: Check the SSOCOMP Readme (../../../../readme/ssocomp.html) for the latest information
related to this component.

UNIX

1 Copy SecretStore.tar.z (from ...SecStore\Server\UNIX) to the target supported
platform you select. Supported platforms include Linux (SUSE® and Red Hat*), AIX*,
Solaris*, and HP-UX*.

2 Untar and unzip SecretStore.tar.z.
3 Install SecretStore in eDirectory 8.7.x by running the ssinstall script.

1.4 Deployment Dependencies
You must install SSOCOMP, which is included in the Novell Developer Kit (http://
developer.novell.com/ndk/ssocomp.htm) download to enable development and access to SecretStore
in your applications. No other install dependencies are required to use this API.

This API allows applications to choose either NCP or LDAP access to eDirectory without requiring
transport-specific functions. Like earlier versions of this service, the NCP protocol is only available
Getting Started 17

http://download.novell.com/index.jsp
../../../../readme/ssocomp.html
../../../../readme/ssocomp.html
http://developer.novell.com/ndk/ssocomp.htm

18 NDK: Secre

novdocx (E
N

U
) 01 February 2006
on Windows clients and requires installation of the Novell Client on the workstation. However, the
SecretStore LDAP client can be installed on the workstation or server without requiring the Novell
Client, but LDAP SDK components should be installed in the target environment (LDAPSDK,
LDAPSSL, and LDAPX).

To test and use an application that you have enabled with SecretStore, you need the client and server
software listed below:

• Section 1.3.2, “Server Prerequisites,” on page 15
• Section 1.3.1, “Workstation Prerequisites,” on page 15

1.4.1 Server Requirements
• Novell LDAP SDK for LDAP option.
• NetWare® 6.x or 5.0 with Support Pack 1 or later versions (for eDirectory, whether running

NetWare or Windows NT/2000 [eDirectory 8.7x]).
• eDirectory or Novell Directory Services (the version installed with NetWare 5 or Windows

NT). NetWare 5.1 with eDirectory 8.5 is required to use or install LDAP.

NOTE: If the product NDS® 8 for NetWare is listed, verify that it is 8.12 or later. If you are
using NDS 8, make sure you use NetWare 5.0 Support Pack 1 or later.

• Use Novell International Cryptographic Infrastructure (NICI) 1.5.7 or later on NetWare, or
NICI 2.4.2 or later (the latest version is preferable) on the Windows client and server.

1.4.2 Client Requirements
• Novell SecretStore service client software must be installed on a workstation running the

Novell Client for Windows NT Version 4.5 or later, or Novell Client for Windows 95/98
Version 3.0 or later. Use the latest versions of the client for NCP access. ConsoleOne 1.3 or
later. ConsoleOne 1.3 is installed with NetWare 6. To manage the network, a SecretStore
service ConsoleOne snap-in is provided in the Novell SecureLogin service product.

1.5 Understanding SecretStore Functions
This section discusses the following specifications for SecretStore functions:

• Section 1.5.1, “SecretStore Implementation,” on page 19
• Section 1.5.2, “SecretStore Architecture,” on page 19
• Section 1.5.3, “SecretStore API General Information,” on page 20
• Section 1.5.4, “Single Sign-on Methods,” on page 20
• Section 1.5.5, “SecretStore Vault Service,” on page 21
• Section 1.5.6, “SecretStore Encrypted Attribute Service,” on page 22
• Section 1.5.7, “Connector Interfaces,” on page 22
• Section 1.5.8, “SecretStore Management Utilities,” on page 25
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
1.5.1 SecretStore Implementation
Novell SecretStore is a collection of hidden attributes on an object (User object by default) in
eDirectory. These attributes are implemented through eDirectory schema extensions and encrypted
on the server using Novell International Cryptographic Infrastructure (NICI) services.

• The single-valued Key attribute holds the cryptographic data and is the repository for stores-
related statistical information.

• The multi-valued Secrets attribute holds encrypted secrets identified by secret IDs and is the
repository for the secrets' statistical information (time stamps and so on).

NOTE: For more implementation information about NICI, see the NICI 2.x Administration Guide
(http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html).

Hidden attributes, by definition, are not accessible from client operating systems through eDirectory
common interfaces and utilities. These attributes can only be accessed by SecretStore interfaces that
apply strict access control and security measures to their access, transport, and disclosure.

In addition to these hidden and encrypted attributes, which protect data against attacks directed to
the server, SecretStore provides an optional Enhanced Protection (EP) mode to defend against
administrative attacks by locking the user's SecretStore. EP also enables secure unlocking, either
through user control or through an action involving two separate administrators.

In this two-administrator scheme, the eDirectory password or authentication credential are reset by a
network administrator, but SecretStore can only be unlocked by a separate SecretStore
Administrator. To provide full control over this high-security feature, audit information is recorded
after each administrative unlocking of Novell SecretStore in EP mode.

1.5.2 SecretStore Architecture
The overall architecture of the SecretStore API includes:

• Cross-platform functions that work on any platform supported by eDirectory (NetWare,
Windows, Solaris, AIX, Linux, and HP-UX).

• Cross-transport functions that support either NCP (only on Windows clients) or LDAP (on all
eDirectory platforms).

• Cross-language functions that can be accessed through any Java* or C++ compatible
programming language.

• Two categories of operational functions for writing connectors:
• Raw Novell SecretStore functions
• Shared Secret functions

• A set of raw management functions for writing utilities that:
• Are available across different platforms and can transmit data to and from SecretStore

over encrypted transports.
• Can start and end “stateless” SecretStore sessions for enabled applications (see “Improved

API Performance” on page 14).
• Can start and end “stateful” SecretStore sessions that expand over multiple operations, if

necessary (see “Improved API Performance” on page 14).
Getting Started 19

http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html
http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html
http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html

20 NDK: Secre

novdocx (E
N

U
) 01 February 2006
• Can find services for the users on administratively-designated servers across the
eDirectory tree using the SecretStore client's service location feature.

• Provide Enhanced Protection (EP) against possible administrative attacks (see Section
1.12, “Enhanced Protection,” on page 36).

• Provide two-administrator recovery from EP locking of the SecretStore (see “SecretStore
Implementation” on page 19).

1.5.3 SecretStore API General Information
• All of the Novell SecretStore functions are capable of obtaining a context internally in NCP

mode. They operate by setting up a session and tearing it down at the end of that call in each
stateless API session.

• Each of the SecretStore functions is capable of accepting a context (LDAP or NCP) from the
caller that has been created outside the SecretStore client or inside it with a prior call to
NSSSGetServiceInformation (page 85).

• All of the Novell SecretStore functions default to set the target object's SecretStore
Distinguished Name (DN) to be the same as the caller DN, unless specified otherwise by the
calling application.

• For a caller DN to be different than the SecretStore's target object DN, the caller DN must have
administrative rights over the SecretStore’s target object DN or must be defined as SecretStore
administrator through configuration.

• In LDAP mode, the caller DN and the SecretStore target object DN should comply with LDAP
form.

• Each of the SecretStore C functions is capable of unbinding or destroying the context upon
request.

1.5.4 Single Sign-on Methods
The SecretStore service uses two basic single sign-on methods:

• “Application Connectors” on page 20
• “Universal Connectors” on page 21

NOTE: These methods require implementation of the Shared Secret functions described in this
document to enable applications to share secrets stored by different services.

Application Connectors

Using application connectors (or “regular” connectors) was the original method that enabled
individual applications to access SecretStore. Specific application connectors were created for a
number of e-mail systems, database systems, enterprise in-house applications, etc.

One popular example of an application connector is the Connector for Lotus Notes, which was part
of the now-obsolete Novell Single Sign-on product line. While SecretStore remains as the
cornerstone enabling technology, application connectors have been a specialized way of enabling
applications to perform single sign-on operations.

Connectors are the method of choice in network environments where home-grown applications are
used and the source of the client component of a network application is available for modification.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
In this category, there are some very successful custom application connector implementations. For
example, Novell GroupWise® and the Novell Client for Windows have built-in connectors that
provide single sign-on when SecretStore is available.

This set of solutions provides cross-platform support for a wide range of applications.

Universal Connectors

Universal connectors are currently the most efficient, cost-effective, and preferred method to enable
single sign-on to target services. However, their use is limited to applications operating on Windows
and using the Windows GUI. Users interact with the GUI to provide secrets and IDs, which are then
stored in SecretStore.

These stored credentials are then passed to the application on subsequent invocations. The passed
credentials authenticate the user without active interaction. This also allows for populating
SecretStore for known applications beforehand. The greatest benefit of universal connectors is that
they can often provide single sign-on to an application without requiring modifications to the
application code itself.

Novell SecureLogin (NSL) is an advanced example of a universal connector. NSL relies on the
architecture and methods of operation in the Windows operating system, browsers, and terminal
emulators to recognize the prompts for authentication. The user or the administrator uses the built-in
wizards or scripting language capability of the product to enable NSL to recognize the target
applications, browsers, and service authentication dialogs.

Proxy Portals

Proxy portals are another category of universal connectors. Using these, a trusted, secure service can
do the following:

• Act as a connector to authenticate the user to the applications and services
• Allow for populating users' SecretStores ahead of time so that the users can subsequently

access applications

1.5.5 SecretStore Vault Service
SecretStore can be used as a secure vault to store user or application secrets of any kind. SecretStore
by default is installed on an eDirectory user object by extending schema extensions. However, by
using the management utilities supplied with SecretStore, you can extend schema on other object
types, which allows applications to use SecretStore as a vault for storing secrets.

When SecretStore is enabled on a user object, the service guarantees that the read operation is only
available when the requestor owns the SecretStore. This means that the DN of the requestor on the
connection is the same as the target object containing the SecretStore. Consequently, if the
administrator is the requestor, the service allows all of the operations to be performed for
management and administration of the target store except reading of the user's secrets.

For non-user object based stores, since the store is used as a vault for applications, requestors with
administrative rights also are allowed to read the secrets and perform necessary operations on behalf
of the service owning the vault.
Getting Started 21

22 NDK: Secre

novdocx (E
N

U
) 01 February 2006
1.5.6 SecretStore Encrypted Attribute Service
SecretStore also provides the Encrypted Attribute Service, which allows requestors to store data in
an encrypted secure form in eDirectory. As described in the previous items, access control on the
stored data is a function of the type of object used for the target SecretStore.

1.5.7 Connector Interfaces
The interfaces for the administrative utilities and SecretStore connectors are based on SecretStore
NCP-92 and/or LDAP extensions on Windows workstations. Client applications running on
NetWare and UNIX platforms (HP-UX, Linux, Solaris, and AIX) are only LDAP-based extensions.
NCP-92 is SecretStore's encrypted transport for secure transmission of data between a client and a
server.

The NCP-92 transport utilizes NICI for encrypting inbound and outbound data to and from
SecretStore. For more information, see Section 1.10, “NICI and SecretStore,” on page 34.

This strong encryption is based on the common algorithm and strongest session key that is
negotiated between NICI running on the client and server. The key and algorithm are negotiated at
the end of the user's successful Novell Client authentication to eDirectory. At the end of each session
the keys are destroyed. Each session with a different server has its own keys.

An LDAP extensions-based connection can be established through an SSL LDAP bind with the
server. The bind can be done by the application prior to calling SecretStore, or by SecretStore if the
application provides the appropriate credentials when calling the SecretStore interface. If a
connection over LDAP is not SSL-based, SecretStore rejects it. The strength of encryption on the
wire is dependent on the SSL-negotiated algorithm for the session.

Figure 1-1 illustrates the client NCP and LDAP protocol stacks on a client workstation.

Figure 1-1 Novell SecretStore C Server Architecture

NOTE: The NCP-92 stack is available only on clients running Windows operating systems, when
the Novell Client is installed.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
Figure 1-2 illustrates the server NCP and LDAP protocol stacks on a server platform.

Figure 1-2 Novell SecretStore C Server Architecture

NOTE: The NCP-92 stack is available only on NetWare server operating systems.

Operational Functions for Connectors

This section describes the operational functions used by connectors:

Function Description

NSSSGetServiceInformation
(page 85)

Enables binding and unbinding over LDAP or creating and destroying
eDirectory contexts over NCP to a target SecretStore server. It
returns the following statistical information regarding a user's
SecretStore:

• Number of secrets

• Cryptographic algorithm ID used on that SecretStore

• Cryptographic strength of the server

• Cryptographic strength of the client

• Caller's DN

• Target SecretStore's DN

• Master Password Hint

• DN of the last SecretStore administrator that unlocked the
SecretStore

In addition to the user (owner), the administrator is allowed to
perform this operation on the user's SecretStore (except for the
return of the Master Password hint).
Getting Started 23

24 NDK: Secre

novdocx (E
N

U
) 01 February 2006
Sample Code

SecretStore sample code is available as part of the SecretStore component of the NDK. Here are the
samples that demonstrate the use of the operational functions described above:

NSSSWriteSecret (page 107) Enables populating SecretStore with secrets identified by uniquely-
supplied secret IDs. It also enables the creation of new secrets (with
the optional ability to overwrite existing secrets), checking for secret
ID collision, and creating the secret for the first time by using special
flags.

Creating the first secret in a user's Novell SecretStore causes the
creation of the Key and Secret hidden attribute pair for that user. In
addition to the user (owner), the administrator is allowed to perform
this operation on the user's Novell SecretStore.

NSSSReadSecret (page 90) Enables reading a secret identified by the supplied secret ID. It also
enables the repair and synchronization of the SecretStore upon
request by using a special flag.The first read operation after a write
initiates a background synchronization and repair of the SecretStore.

This function returns secret-related statistical information such as
creation time stamp, last modified time stamp, and last accessed
time stamp, in addition to the secret value. If the SecretStore
configuration enables the Last Access Time Stamp option (which is
optional due to the performance penalty involved), that time stamp is
returned on the read.

If Enhanced Protection is turned on, every read on an EP-flagged
secret causes a check to see if there has been an administrative
eDirectory login credential change. If so, the user's Novell
SecretStore is locked. Only the owner is allowed to perform this
operation on his or her SecretStore.

NSSSRemoveSecret (page 93) Enables removing a secret identified by the supplied secret ID.
Removing the last secret in the user's SecretStore results in
complete removal of the SecretStore from the object (removal of the
Key and Secrets attribute pair).

This functions returns secret-related statistical information such as
creation time stamp, last modified time stamp, and last accessed
time stamp, in addition to the secret value. If the SecretStore
configuration enables the Last Access Time Stamp option (which is
optional due to the performance penalty involved), then that time
stamp is returned on the read. In addition to the user (owner), the
administrator is allowed to perform this operation on the user's
SecretStore.

Source Code Sample Program Description

sstst.c SSTST.EXE Demonstrates the use of the functions for connectors over the NCP
transport.

lstst.c LSTST.EXE Demonstrates the use of the functions over the LDAP transport.

Function Description
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
1.5.8 SecretStore Management Utilities
The API also includes the following utilities to configure and manage a user's SecretStore.

• SSManager is a Windows*-based utility that allows users to manage their Novell SecretStores.
SSManager.exe is included in the SecretStore Client install for Windows
(...\ndk\ssocomp\SecStore\Client\Windows) and is accessible from the program files menu.

• SSStatus is a Windows-based “light” version of SSManager that allows users to turn on
Enhanced Protection, set the Master Password, and unlock the SecretStore when necessary. The
SSStatus.exe tool is included in the SecretStore Client install
(...\ndk\ssocomp\SecStore\Client\Windows).

• ConsoleOne, with the appropriate snap-ins installed, is the all-purpose administrative utility for
managing users' SecretStores, in addition to configuring and deploying the service in an
eDirectory environment. The snapin SSSnapin.zip is included in the SDK in the
\SecStore\Client\ folder.

• SSSINIT.EXE enables administrators to extend the schema on a tree without performing a
full installation of SecretStore on the server in that tree. The same utility also is used to remove
schema extensions from the tree if the extensions are not used by any objects.

• LDAPINIT.EXE enables administrators to add SecretStore extensions to a target server in the
tree, which enables SecretStore LDAP operations against the SecretStore on that server. The
same utility is used to remove the extensions from the server.

Management Functions for Utilities

SecretStore uses the following management functions for writing utilities:

shtst.c SHTST.EXE Demonstrates the use of the Shared Secret functions over NCP.

lshtst.c LSHTST.EXE Demonstrates the use of the Shared Secret functions over LDAP.

nbstst.c NBSTST.EXE Demonstrates the use of the functions over LDAP when the bind is
made by the application outside SecretStore and the context passed by
the application is used to access the store.

Function Description

NSSSEnumerateSecretIDs
(page 80)

Enables you to get a list of the secret IDs for secrets stored in the
user's SecretStore. In addition to the administrator, the user is
allowed to perform this operation on their Novell SecretStore.

NSSSSetEPMasterPassword
(page 102)

(NSSSSetMasterPassword) Enables the owner to set a Master
Password and related hint on their SecretStore for the first time, if
setting of Master Passwords is allowed through configuration on the
server. The Master Password is used for unlocking the SecretStore
and should be set before locking occurs.

Only the owner is allowed to perform this operation on his or her
SecretStore.

Source Code Sample Program Description
Getting Started 25

26 NDK: Secre

novdocx (E
N

U
) 01 February 2006
1.6 Understanding Shared Secret Functions
The Shared Secret functions leverage the functions described in “Operational Functions for
Connectors” on page 23 and “Management Functions for Utilities” on page 25. Shared Secret
functions are used for storing secret data in a “shared secret” format. These functions provide access
to the SecretStore so that the single sign-on information in a user's SecretStore can be shared
between different connectors.

To make this possible, the connectors (regular or universal) should conform to the Shared Secret
specification, which defines the Shared Secret format as the means by which connectors may share
login credentials.

To implement these functions, you should understand the following concepts:

• Section 1.6.1, “Shared Secret Terminology,” on page 26
• Section 1.6.2, “Shared Secret Format,” on page 27
• Section 1.6.3, “Shared Secret Types,” on page 28

1.6.1 Shared Secret Terminology
The following terms used with the Shared Secret functions:

Secret: An addressable data member of a user's SecretStore that contains authentication data.
Referenced by a SecretID, a secret can contain up to 60 KB of data, though in practice most are
much smaller. Secrets are securely encrypted using NICI and the tree and user keys (see Section
1.10, “NICI and SecretStore,” on page 34). Secrets are accessible only to the authenticated NDS/
eDirectory user via secure calls to the SecretStore server.

SecretID: An identifier or name by which a data member of SecretStore is referenced. These names
are used when reading and writing secrets. They are limited in length to 255 displayable characters
encoded in Unicode.

NSSSUnlockSecrets (page 104) Enables the removal of the lock from a user's locked store by using
one of the following methods:

• Deleting all of the locked secrets

• Providing the last eDirectory password set by the user (only for
eDirectory password changes, not other kinds of credentials)

• Using the Master Password (if one was set prior to locking that
can be used to unlock in any form of administrative credential
change)

In addition to the user (owner), a designated and configured
SecretStore administrator can unlock the user's SecretStore. If the
two-administrator password reset scheme is not being used, the
owner must use one of the methods listed above to unlock the
SecretStore.

NSSSRemoveSecretStore
(page 95)

Enables the complete removal of the Novell SecretStore from the
target object. Both the user and administrator are allowed to perform
this operation on SecretStore.

Function Description
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
Application: A Windows program, Web application, or mainframe host application for which login
information is being stored.

Credential Set: Data used to authenticate a user to a desktop, Web, or host application. Typically
comprised of a username and password, a credential set can also include a PIN, e-mail address,
domain or database name, certificate, or other information as required by the application. A
credential set is also referred to as Login Credentials or Details.

Login Details: The user-friendly name exposed in the user interface and documentation to
represent one or more credential sets associated with a given application login.

1.6.2 Shared Secret Format
A shared secret is a regular secret that follows a set of rules that enable it to be read by all connectors
that conform to this specification. A shared secret is made up of a type, a name, and a set of key/
value pairs. The type and name of a shared secret combine to form the shared secret's identifier
(secretID); the set of key/value pairs make up the data.

NOTE: The Shared Secret specification identifies certain reserved characters that must be escaped
when used outside of their context. See the list of “Reserved Characters” on page 28.

SecretID Format

The following format should be used for the SecretIDs to comply with the Shared Secret format:

<type>:<name>

where <type> identifies the type of shared secret (either “SS_App” for Application secrets or
“SS_CredSet” for Credential Set secrets), and <name> identifies the name of the shared secret.

The colon (:) serves as a delimiter and should not be escaped. All reserved characters used in either
the type or name must be escaped. When combined, the type, colon, and name string cannot exceed
255 displayable characters in length.

Data Format

Shared Secret data is made up of key/value pairs in the following format:

<key><delimiter><value><linefeed>...<key><delimiter><value><linefeed><
null>

where <key> identifies a key, <delimiter> is the equals character (=) in most cases (otherwise the
colon character), <value> identifies a value, <linefeed> is the line feed character, and <null> is the
null terminator that must always appear at the end of the data.

Line feed characters separate the pairs from each other. All of the pairs combined cannot exceed 60
KB in size. Keys should be treated as case-ignore strings, whereas the values are case sensitive. A
null terminator must follow the last pair to signal the end of the sequence. The null terminator must
be present even when no entry exists. Duplicate keys are not allowed; however, duplicate values are
permitted and should be discarded by connectors if they are encountered during parsing operations.
The data must be in 16-bit Little Endian Unicode*, including the null terminator. All reserved
characters used in the key or value must be escaped.
Getting Started 27

28 NDK: Secre

novdocx (E
N

U
) 01 February 2006
In processing, be careful to modify only those key/value pairs on which the connector is directly
dependent. For example, suppose you have two connectors that are dependent on the same shared
secret, but one uses a Password key whereas the other requires a PIN key. In such a case, each
application should add its own key without modifying any of the other keys that may exist but are
not required for its operations.

Reserved Characters

The following are Shared Secret reserved characters:

• Backslash (\)
• Colon (:)
• Equals sign (=)
• Line feed (0x0A)
• Null terminator (0x00)

Reserved characters that are used outside of their context must be escaped by preceding them with a
backslash (\) character.

NOTE: Line feed and null characters cannot be used within a character string.

1.6.3 Shared Secret Types
There are currently two types of shared secrets:

• Application Shared Secrets (page 28) contain information associating and linking applications
with credentials, as well as application-specific data.

• Credential Set Shared Secrets (page 29) contain login credential information used for one or
more applications.

When used together, these types of shared secrets can enable several applications to use the same set
of credentials, or enable one application to have more than one set of credentials. This effectively
means that, depending on the connector's choosing, there can be a many-to-many relationship
between the two types.

As indicated in the example earlier, different connectors might, as allowed by the target application,
require different credentials for authenticating the users (password, smart card, PIN, etc.). This
results in the need for a many-to-many grouping of these secrets.

Application Shared Secrets

Application shared secrets are used to represent Windows applications, Web applications, or
mainframe/host applications. Application SecretIDs follow the previously defined format with a
type value of SS_App. The application ID should be able to uniquely identify the application. As a
rule, it should use the appropriate format as shown in the following table:

Application Data Type Application Format

Windows program_name.exe

Web unique URL
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
Application data contains application-specific information that is necessary to authenticate the user
to the application but is not considered a credential. Examples include the Control ID for a password
field in a Windows application, or the name of a password field in a Web form.

Users do not normally need to enter such information to authenticate; it is inherent in the
application. This application-specific data is in the key/value pair format with an equals (=)
character as the delimiter. The choice of what keys to use is left up to the connector.

Application data also contains pointers to the credential sets with which the application is
associated. These pointers follow the key/value pair format as follows:

SS_CredSet:<credsetname>

where <credsetname> is the name of the credential set that is associated with the application.The
key must be SS_CredSet and the colon character serves as the delimiter for credential set pointers.

NOTE: An exception to the data format for these pointers is that duplicates are permitted when the
key is SS_CredSet to enable applications to be associated with more than one credential set.

Credential Set Shared Secrets

Credential Set shared secrets are used to contain login credentials needed to authenticate a user to a
Windows application, Web site, or mainframe/host application. They can be shared between
multiple applications of the same or different type, primarily when the authentication database or
mechanism behind such applications is the same.

Examples include NDS authentication to the same object in a tree, or Windows and Web interfaces
to the same application, such as GroupWise. By sharing credential sets, a password saved or
changed in one application automatically applies to other applications that share the same
authentication database and secret data at the target.

Credential Set SecretIDs follow the format outlined previously with a type value of SS_CredSet.
The administrator or user normally determines the name of a credential set. The name should help
associate shared credentials with the appropriate applications. An example of a shared secret
identifier is:

SS_CredSet:Groupwise

Credential data contains information that users provide to authenticate to an application. Examples
include the username and the password. This data is in the key/value pair format, with an equals
character (=) as the delimiter. The choice of which keys to use is left up to connector. However,
connectors must agree with each other on this to share single sign-on information. Thus, where
possible, the following known keys should be used:

• Username
• Password
• Other

An example of a shared secret value is:

Mainframe/host host application name

Application Data Type Application Format
Getting Started 29

30 NDK: Secre

novdocx (E
N

U
) 01 February 2006
Password=zuma<linefeed>Username=jdoe<null>

1.7 Shared Secret Functions
The Shared Secret functions are built on top of the raw SecretStore functions, so they inherently
comply with the SecretStore specifications (see “Shared Secret Format” on page 27). Connectors
use these functions to create Shared Secret (SHS) compliant secret IDs and secrets.

This section discusses the following specifications for Shared Secret functions:

• Section 1.7.1, “Operational Functions,” on page 30
• Section 1.7.2, “Processing Functions,” on page 30
• Section 1.7.3, “Sequence of Shared Application or Credential Set Secret Operations,” on

page 31
• Section 1.7.4, “Sample Code,” on page 31

1.7.1 Operational Functions
The Shared Secret operational functions operate on SecretStore and require that you set up the
context to the SecretStore using regular SecretStore functions before using these function. These
calls use SecretIDs that comply with SHS format (see “Shared Secret Format” on page 27):

1.7.2 Processing Functions
Here are the processing functions that operate on the secret buffers returned by the Shared Secret
Operational functions:

Function Description

NSSSReadSharedSecret (page 88) Enables a secret in the SHS format to be read out of the
SecretStore and assigned to a handle previously created with a
Create Handle call to be used by these calls.

NSSSWriteSharedSecret
(page 110)

Enables a secret in the SHS format that is previously assigned to a
handle to be written to the SecretStore.

NSSSRemoveSharedSecret
(page 97)

Enables a secret in the SHS format to be removed from the
SecretStore. The SecretID is assigned to a previously initialized
handle. These operational APIs are created and formed using the
Processing APIs listed below.

Function Description

NSSSCreateSHSHandle
(page 78)

Enables the creation of a handle for an SHS buffer for the first time to
populate and process an SHS format compliant secret that is formed as a
list of components.

NSSSDestroySHSHandle
(page 79)

Enables the destruction of an SHS secret buffer signified by a handle in
memory after the completion of the target operations.

NSSSGetNextSHSEntry
(page 83)

Enables moving through the SHS buffer components (key/value pairs) of
the Shared Secret signified by the handle.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NOTE: As explained in Section 1.6.2, “Shared Secret Format,” on page 27, Shared Secret
components are on key/value paired structures formed as a list that are used by the processing
functions. Operational functions can consume SHS buffers (list of components) signified by a
handle and convert them to and from raw secret format for raw read and write operations to and
from SecretStore.

1.7.3 Sequence of Shared Application or Credential Set Secret
Operations
To help you implement the Shared Secret functions, you should understand the sequence of events
when reading, writing, and removing a shared Application or Credential Set secret. Follow the
procedures outlined in the following sections:

• Section 2.4, “Writing Shared Application or Credential Secrets,” on page 43
• Section 2.5, “Reading Shared Application or Credential Secrets,” on page 45
• Section 2.6, “Modifying Shared Application or Credential Secrets,” on page 45
• Section 2.7, “Removing Shared Application or Credential Secrets,” on page 47

Keep in mind the following points about the connector:

• For each thread in a connector operating on shared secrets, a call to NSSSCreateSHSHandle
(page 78) is needed to return a handle that is used for passing to subsequent calls.

• All of these calls require a SecretStore context handle that has previously been initialized
through calls to NSSSGetServiceInformation (page 85).

• All of these calls require the handle as a well as a user-populated SS_SH_SECRET_ID_T
structure containing the shared secret type, name, and length to be passed to them.

• All of these calls create a SecretID according to the SecretID format using either SS_App or
SS_CredSet as the prefix.

1.7.4 Sample Code
As with the SecretStore raw APIs, a complete collection of Shared Secret sample code is available
on Novell's Developer Web site as a component of the Novell NDK. The following sample code can
be downloaded and used as template that completely demonstrates the use of SecretStore APIs:

• sshtst.c is the source code for the SSHTST.EXE program that demonstrates the use of the
shared Secret APIs over the NCP transport.

• lshtst.c is the source code for the LSHTXT.EXE program that demonstrates the use of the
shared Secret APIs over LDAP.

NSSSAddSHSEntry
(page 76)

Enables inserting a component (key/value pair) into the Shared Secret
buffer signified by the handle at the current position of the Shared Secret.

NSSSRemoveSHSEntry
(page 100)

Enables removing a component (key/value pair) from the Shared Secret
buffer signified by the handle passed in at the current position of the Shared
Secret.

Function Description
Getting Started 31

32 NDK: Secre

novdocx (E
N

U
) 01 February 2006
All of the API prototypes, flags, structures, and error codes are defined in the ssshs.h file.

1.8 SecretStore Scenarios
Users first authenticate to eDirectory where their SecretStore-enabled applications get access to the
SecretStore service. Following authentication, the application user is granted access to the enabled
application services and resources without seeing a password dialog box or other authentication
screens when the application starts up. It appears to the user as if access were granted automatically.

NOTE: The APIs are designed for client enablement for SSO and other methods of SecretStore
utilization. The SecretStore service will be shipped as a component of all eDirectory platforms after
the version 8.7.3 release.

When the user first launches an enabled application, the application's client queries eDirectory as to
whether or not the user is authenticated to the directory. If the user is not authenticated, then the
application's client displays the password entry dialog box. After the user enters a password, the
application authenticates the user and grants access.

If the user is authenticated to eDirectory, then the client asks for the secret from SecretStore. This
can be done in one of the following scenarios:

• Section 1.8.1, “Establishing the Secret ID,” on page 32
• Section 1.8.2, “Enabling the Check for Secret ID Collision,” on page 32
• Section 1.8.3, “Enabling the First-Time User,” on page 33
• Section 1.8.4, “Password Changes,” on page 33

1.8.1 Establishing the Secret ID
Making a call to NSSSEnumerateSecretIDs (page 80) or directly to NSSSReadSecret (page 90)
indicates whether or not this is the first time SecretStore has been accessed for the application. If the
Secret ID is returned by the call to NSSSEnumerateSecretIDs (page 80), the application can then
proceed by calling NSSSReadSecret (page 90) and using the returned secret to log in the user to the
application. A successful direct call to NSSSReadSecret returns the secret for the application.

If these calls denote failure or a non-existent Secret ID, the application prompts the user for
authentication. If the user successfully authenticates, the application uses the authentication
information in calls to NSSSWriteSecret (page 107) to create and populate the user's SecretStore for
the next time (the user launches the application).

The NSSSEnumerateSecretIDs (page 80) function provides the method for applications with
multiple login IDs to select the proper authentication method. Applications can then have the
necessary configuration information to define a default login in case of multiple IDs.

1.8.2 Enabling the Check for Secret ID Collision
As an alternative for populating the SecretStore for the first time, NSSSWriteSecret (page 107) can
be used with the proper flag to check for ID collision or to bypass the check and overwrite the secret
if it already exists in the SecretStore. Use the NSSS_CHK_SID_FOR_COLLISION_F flag to
enable NSSSWriteSecret for collision checking.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
1.8.3 Enabling the First-Time User
The first time a user authenticates to an application, no secret is available through SecretStore for
that application, and the user is prompted to enter a password. Upon successful authentication to the
application, the user is granted access and the application authentication information and secret is
stored in an encrypted format in the SecretStore for subsequent use.

1.8.4 Password Changes
In the case of password administration where users are required to change their passwords after a
certain number of days, a user doesn't need to remember a password that hasn't been recently used.
This is done by enabling the password update code section in the application. SecretStore can
retrieve and supply the old password to the application. The user then enters only the new password.

After the user changes the password, the new secret is captured and encrypted. The application then
calls NSSSWriteSecret (page 107) to overwrite the existing secret, which updates SecretStore with
the new credentials. This ensures seamless operation the next time the user launches that
application. If the shared secret calls are used here, the secret is updated in a format that allows all
applications to use the secret and retain synchronization.

A user can use the Novell ConsoleOne management utility Version 1.3 or newer, in addition to
SSManager.exe, to recall forgotten passwords or view secrets stored in the SecretStore. The Novell
iManager™ plugin also can be used for SecretStore management.

1.9 eDirectory and SecretStore
SecretStore is a service that leverages the distribution operations built into eDirectory—user profile
information is securely stored in eDirectory, not on the client machine. As a result, user access is
guaranteed throughout the network and is not workstation based. And, because the user is the only
person authorized to access his or her secrets, access is tightly controlled.

With SecretStore, passwords and credentials are never stored or transmitted in the clear; they are
first encrypted using the Novell International Cryptographic Infrastructure (NICI). When the client
application retrieves the secret from SecretStore, the secret is decrypted at the client side and, upon
successful completion of the application’s authentication process, is promptly destroyed and
removed from memory (similar to how the eDirectory private key is handled in the eDirectory
authentication process).

See Section 1.10, “NICI and SecretStore,” on page 34 and Novell International Cryptographic
Infrastructure (NICI™) (http://www.novell.com/documentation/nici20/nici_admin_guide/data/
agbcq0d.html).

To give users access to network services, eDirectory uses an authentication service based on the
RSA public-key/private-key encryption/decryption algorithms. This authentication mechanism uses
a private key attribute and a digital signature to verify a user's identity. eDirectory authentication is
session-oriented, and the client's signature is valid only for the duration of the current session.

With SecretStore, however, after authentication to eDirectory, users don't need to be reauthenticated
every time they ask for additional services or applications, because reauthentication takes place
automatically in the background. Therefore, the integrity of SecretStore-enabled applications is
protected and secure, and the user can access resources globally without needing to continuously
reauthenticate.
Getting Started 33

http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html
http://www.novell.com/documentation/nici20/nici_admin_guide/data/agbcq0d.html

34 NDK: Secre

novdocx (E
N

U
) 01 February 2006
In LDAP mode of SecretStore access, the client establishes a SSL-based connection with the server
and the data is securely transmitted on the wire over SSL. However, as mentioned above, the data in
the SecretStore on the server is encrypted through NICI.

1.10 NICI and SecretStore
All cryptographic services used for SecretStore are based on Novell International Cryptographic
Infrastructure (NICI) (http://www.novell.com/documentation/nici20/nici_admin_guide/data/
a20gkue.html). NICI is used both in NCP-based transmission of secrets and for storage of secrets in
eDirectory.

NOTE: Download and install NICI on your workstation independently if you are using Novell
Client and NCP-based access.

The encryption performed on the server by the SecretStore service is divided into two separate
processes:

• Section 1.10.1, “Storage Encryption,” on page 34: Stores user secrets in SecretStore within
eDirectory.

• Section 1.10.2, “Reading and Writing Encryption,” on page 34: Securely transmits secrets
across the network between clients and servers.

1.10.1 Storage Encryption
Data stored in SecretStore is first encrypted with the Security Domain Infrastructure (SDI) NICI-
wrapped key. (SDI is initialized the first time SecretStore is installed into the tree.) This means that
the authenticated owner that has rights to SecretStore can use the SecretStore API to decrypt the
application's secrets.

The SecretStore service uses NICI to encrypt data that is stored in or retrieved from eDirectory.
When the data stored in SecretStore is first created, a symmetric key is generated and stored for the
user. This key is wrapped by NICI SDI in a special storage format.

Subsequent reads and writes to the SecretStore cause the key to be unwrapped and used to encrypt
and decrypt the stored data. Reading and writing negotiate a supported algorithm for decrypting and
encrypting the data. SecretStore always picks the highest strength algorithm available through NICI
policies for encrypting the data. Currently this algorithm is 3DES for worldwide usage.

1.10.2 Reading and Writing Encryption
SecretStore secrets are encrypted and transmitted over the network with a NICI algorithm, and the
key for this algorithm is encrypted in a NICI session key when using NCP. This key is established
between the NICI on the client and NICI on the server at the end of the Novell Client user
authentication session. This happens independently from the SecretStore in the end of the eDirectory
authentication.

The SecretStore NCP client's wire encryption requests a NICI session key for the server with which
it wants to communicate. Then an encryption key for encrypting the data with the common
algorithm is negotiated between SecretStore client and SecretStore server. The data is encrypted in
the encryption key, and then the encryption key is wrapped in the session key. Both the encrypted
tStore Developer Kit for C

http://www.novell.com/documentation/nici20/nici_admin_guide/data/a20gkue.html
http://www.novell.com/documentation/nici20/nici_admin_guide/data/a20gkue.html

novdocx (E
N

U
) 01 February 2006
data and the wrapped encryption key are sent over the wire to the server where the encryption key is
unwrapped with the session key and the data is decrypted with SecretStore wire encryption key.

NOTE: The encryption algorithm is negotiated between two ends beforehand and the highest-
strength common algorithm between the client and server is picked for the operation. The algorithm
ID is transmitted with the encrypted data,

Remember, in the LDAP mode of SecretStore operations, the client establishes an SSL-based
connection with the server and the data is securely transmitted on the wire over SSL.

1.10.3 Session-Oriented Security
SecretStore uses session-oriented security, which means that each internal call from the enabled
applications is considered a session from beginning to end. After one session is completed, the keys
are destroyed and a new set of keys is established for the next client request.

1.11 Naming Conventions
To prevent name collisions in SecretStore, we recommend that non-shared secrets be constructed
using certain guidelines to assure that names are unique. Notice that our naming guidelines do not
prevent you from using an alternate scheme, which may result in secret names that are not unique.
Alternative naming schemes are not able to prevent a name collision between non-registered
applications.

IMPORTANT: To manage and coordinate SecretStore secret ID changes worldwide, it is important
to register your names with Novell Developer Support. Please see the Virtual Resources site (http://
developer.novell.com/devres/ss/resource.htm) for further information.

The length of the secret name must be 255 or fewer characters long. Secret IDs should follow this
structure:

//<Company DNS Name>/<AppName>:OptionalComponents

<Company DNS Name> is the registered domain name of the company that has developed the
SecretStore-enabled application, such as novell.com or ibm.com.

<AppName> is the name of the SecretStore-enabled application.

<OptionalNamecomponents> can be any sequence of name components that an application chooses
to define and use.

1.11.1 Naming Examples
Here are three examples of SecretStore secret IDs:

• //Novell.com/LotusNotes:c:/Lotus/jsmith.id
• //Novell.com/ EntrustEntelligence:c:/Program Files/Entrust/entrust.epf
• //Novell.com/GroupWise:ver.0.jdoe
Getting Started 35

http://developer.novell.com/devres/ss/resource.htm

36 NDK: Secre

novdocx (E
N

U
) 01 February 2006
1.12 Enhanced Protection
SecretStore includes an optional enhanced protection setting that a user can apply to each secret.
Enhanced protection means that a user's secret is not only protected from the view of others, but it
becomes locked when an administrator changes the user's eDirectory password or other login
credentials.

For example, suppose a network administrator attempted to view another user's secrets by changing
the user's eDirectory password and then logging in as that user using the new password. The
administrator would be unable to view the secrets that are flagged with enhanced protection because
the SecretStore becomes locked. If the administrator attempted to unlock the secrets, he or she
would be prompted to enter the user's previous eDirectory password, rather than the new one that the
administrator created.

Secrets can be unlocked with the last valid eDirectory password that the user entered using a user-
initiated Change Password request. As a result, even if the user or administrator changes the
eDirectory password several times after the secrets have been locked, the status of the locked secrets
is not affected.

The other method of unlocking the SecretStore is to supply the Master Password for SecretStore.
Master Password is designed to prevent the loss of secrets when administrator password change has
been the result of the user forgetting the eDirectory password. Master password should be set by the
user before SecretStore gets locked. The Master Password also is the method to unlock the store if
non-password login credentials were changed by the administrator (such as issuing new Smart Card,
Proximity Card, or other similar devices.).

In addition, SecretStore supports an optional password to be validated before access to a particular
application secret is granted. These optional passwords are set by applications that are used in
conjunction with the enhanced protection feature as an additional access control on the secret. A
password can be used at secret creation time and should be supplied at retrieval time. These
passwords can be a maximum of 64 characters long. This additional access control method allows an
application to prevent other applications of the same user to read its secret.

To read those secrets that have the enhanced protection feature turned on and that use the optional
enhanced protection password feature, the application must provide the password for reading the
secret out of the SecretStore. Failure to provide the correct password that was used at the time of
creation of the secrets results in NSSS_E_EP_ACCESS_DENIED error. Consequently, the
applications or rogue programs can't read enhanced protection enabled secrets with enhanced
protection passwords on them.

Another feature for Enhanced Protection is the ability to create hidden secrets. These secrets are not
shown when NSSSEnumerateSecretIDs (page 80) is called and NSSSGetServiceInformation
(page 85) returns their count. An application that creates a hidden secret can only read that secret by
supplying its SecretID, which is known only to that application and was used to create the secret.
Without knowing the secret ID, the only way to remove a hidden secret is to remove the SecretStore.

1.13 SecretStore Service Discovery
The SecretStore client library must be able to locate a SecretStore server that can service its requests
before any operations can be performed. A server is only able to service a request from the client if
it meets these criteria:

• The server is running the SecretStore service.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
• The server contains a writable replica of the partition that contains the user whose secrets are
being operated on.

The service discovery process used in the SecretStore API avoids the shortcomings of methods
available in earlier versions of the service. In addition, it provides additional flexibility by allowing
the administrator to specify a particular set of service configuration parameters that should be used
when accessing the SecretStore service.

This section contains the following topics:

• Section 1.13.1, “Distinguished Name Attribute,” on page 37
• Section 1.13.2, “Locating an Acceptable SecretStore Service,” on page 37

1.13.1 Distinguished Name Attribute
A new attribute, sssSingleSignonConfigDN, has been designated for specifying the distinguished
name of the SecretStore object that contains the configuration parameters the user should use. The
administrator can add this attribute to user objects and containers. During service discovery, the
client uses this attribute in its attempts to find a server that supports the specified configuration
settings, as described below.

When the SecretStore service is loaded on a server, it builds a cache of the available configurations
for different containers it can support (defined by the administrator). This cache can be built using a
command line parameter telling it the distinguished name of a SecretStore override object that
should be used for obtaining configuration parameters (see NSSSGetServiceInformation (page 85)
and NSSSReadSecret (page 90) for a description of these parameters).

While loading, the service adds a special service information attribute to the root of its partition.
This attribute contains the distinguished name of the server, its IP address, and the distinguished
name of the specified configuration object, if any. When the service is unloaded, it removes this
attribute from the root of the partition. Using this technique, clients have a well-known location
where they can find information about available SecretStore servers that can possibly support their
configuration.

1.13.2 Locating an Acceptable SecretStore Service
To locate an acceptable SecretStore service, the client first determines if the specified user should
use a particular configuration by looking for the sssServerPolicyOverrideDN attribute on
the user object and its parent containers. When this attribute is found, the distinguished name of the
specified configuration object is read into memory.

Next, the client reads the service information attribute (added by SecretStore services while loading)
from the root of the partition. It then looks at each value of that attribute for a server name that has a
matching configuration object's distinguished name (if one was found on the user object or one of its
parent containers). If no configuration object distinguished name is required, any server in the list
will match.

As soon as a matching entry is found, the client pings the server to see if it is available. If not, it
continues looking at attribute value entries and pinging servers until a server is found that responds,
or until it has exhausted all attribute value entries.
Getting Started 37

38 NDK: Secre

novdocx (E
N

U
) 01 February 2006
Using this method, the client avoids the need to traverse the Directory tree looking for servers that
contain a writable replica of the partition. Also, the administrator can configure objects that use
SecretStore in such a way as to prevent unnecessary traffic over expensive WAN links.

1.14 Using Extension Structures
Each function in the NSSS API can accept an optional parameter of type SS_EXT_T. This
parameter has been included to provide access to extended functionality in the API for future
expansions without having to change the interface.

// optional extension structuretypedefstruct_ss_extension{unsigned
long clientVersion;//* INvoid *extParms;//* IN-pointer to optional
data}SS_EXT_T;

A description of the extension structures and example of how to use them are showin in the
following sections:

• Section 1.14.1, “Extension Structure Levels,” on page 38
• Section 1.14.2, “Using Extension Structures,” on page 39

1.14.1 Extension Structure Levels
There are two levels of extension structures:

1. The simple SS_EXT_T structure. This provides a generic way to pass to each API function the
address of a structure that extends the functionality of that particular function.

2. The second level of extension structures consists of all the function-specific structures, whose
address is placed in the extParms field of the function specific structure prior to calling the API
functions. Currently version 3.2 of SecretStore only has extensions defined for the
NSSSGetServiceInformation and NSSSReadSecret function to optionally return statistical
information.

NOTE: Please refer to the Chapter 5, “Functions,” on page 71 for a discussion of the fields in
each of the extension structures mentioned above.

NSSO Function Extension Structure

NSSSGetServiceInformation (page 85) SS_GSINFOEXT_T

NSSSReadSecret (page 90) SS_READEXT_T

NSSSWriteSecret (page 107) SS_WRITEEXT_T

NSSSRemoveSecret (page 93) SS_REMEXT_T

NSSSUnlockSecrets (page 104) SS_UNLOCKEXT_T

NSSSRemoveSecretStore (page 95) SS_REMSTOREEXT_T

NSSSEnumerateSecretIDs (page 80) SS_ENUMEXT_T

NSSSSetEPMasterPassword (page 102) SS_SETMPEXT_T
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
1.14.2 Using Extension Structures
An example of how to use these extension structures is provided in the file sstst.c. Typically, the
steps for using the two extension structure levels are:

1 Allocate storage for the extension structures. This can be done on the stack or as global
variables. Typically it makes sense to have only one SS_SERVER_INFO_T structure used by
all the function-specific extension structures because it was designed to preserve information
between function calls. The structures are initialized as they are allocated in the following code
fragment:

/* Structure passed to all API functions. */SS_EXT_T ext = {0};/*
Example of structures for individual API functions */SSS_READEXT_T
readInfo = {0};SSS_GSINFOEXT_T gsInfo = {0};

2 Initialize the extension structures. All function-specific extension structures point to the same
server information structure:
readInfo.ssServerInfo = &serverInfo;gsInfo.ssServerInfo =
&serverInfo;

3 Prepare to call an API function by placing the address of the function-specific extension
structure into the extParms field of the generic extension structure:
ext.clientVersion = NSSS_VERSION_NUMBER;ext.extParms = &gsInfo;

4 Call the desired API function.

NOTE: If all of the state data (such as changes to context or server information, etc. that can be
obtained through an initializing call to NSSSGetServiceInformation (page 85) and used on
subsequent calls) are not provided, each API call initializes the information automatically on entry
and destroys it on return. So, when enabling an application that only requires a read from
SecretStore, the overhead of initialization is neither required nor recommended through calling
NSSSGetServiceInformation.
Getting Started 39

40 NDK: Secre

novdocx (E
N

U
) 01 February 2006
tStore Developer Kit for C

2
novdocx (E

N
U

) 01 February 2006
2Tasks

Novell SecretStore leverages Novell eDirectory and Novell International Cryptographic
Infrastructure (NICI) to securely store and retrieve user authentication information. The SecretStore
client application makes read and write calls to SecretStore services on the server, which processes
and executes the requests. User secrets (such as the username and password) are encrypted by
SecretStore using NICI encryption and stored as eDirectory hidden attributes.

All requests between client and server take advantage of the authenticated credentials established
between the client and server after login. SecretStore secure NCP uses NICI ephemeral session keys
to guarantee confidentiality and integrity of the user data.

Figure 2-1 NCP92 Single Sign-on Using SecretStore

The diagram above shows the basic steps used in a NCP92 single sign-on session with SecretStore:

1 The SecretStore-enabled application client requests authentication secrets from the server.
2 The request is sent to SecretStore on the server over the encrypted channel.
3 SecretStore receives the request and retrieves the data from eDirectory.
4 SecretStore decrypts the secret data and sends back the data to the SecretStore client over the

same secure connection.

NOTE: LDAP-based access to SecretStore establishes a SSL-based connection to the target server
after a successful bind and does not use NICI for wire encryption.

2.1 Displaying a Splash Screen
It is a good idea for SecretStore-enabled applications to have a splash screen appear during
automatic login to notify the user of the events that have transpired under cover (that is, when the
enabled application executes the NSSSReadSecret (page 90) function). The screen signifies to the
user that SecretStore has authenticated them automatically to the application.
Tasks 41

42 NDK: Secre

novdocx (E
N

U
) 01 February 2006
2.2 Enabling and Maintaining SecretStore
SecretStore can be installed in two different ways, both of which require that the user be logged in
and authenticated to eDirectory as admin:

1. Use the product installation CD to run the client and server installs to upgrade the server and
client to support SecretStore.

2. Manual installation of SecretStore components through the Novell Development Kit (NDK)
complying with SecretStore requirements. For more information, see Section 1.4, “Deployment
Dependencies,” on page 17.

Server installation is not required for eDirectory version 8.8 and newer.

2.2.1 Server Installation for NetWare and Windows
1 Login as the admin to the server.
2 Copy sss, ssncp, ssldp, and lsss components to SYS:SYSTEM directory on NetWare or

Novell\NDS directory on Windows.
3 While logged in as admin, make the target server your primary tree and connection through

Network Neighborhood connection table tab.
4 Run sssinit.exe supplied by the NDK toward the target server to extend the schema.
5 Run ldap.exe supplied by the NDK toward the target server to add LDAP extensions to the

target server. /h or /H or /? Command line options will give you the usage information on this
program

6 Modify autoexec.ncf to add the following lines on NetWare in the order listed below to load the
SecretStore NCP plugin:
 load ssncp.nlm

The NLDAP server automatically loads the LSSS extension manager, which loads ssldp plugin,
then sss server.

7 On Windows Servers, use the eDirectory Console to make these components autoload.

NOTE: The install program extends the schema on the user object to add SecretStore by
default.

8 Once SecretStore is installed and the schema has been extended, SecretStore can be tested by
executing sstst.exe for NCP or lstst.exe for LDAP access. The source code for these test
programs is provided in the NDK for developers use.

9 SecretStore operations can also be tested through ssmanager.exe that is supplied in the SDK.

2.3 Enabling SSOCOMP in Applications
Follow these steps to enable SecretStore within your applications (also see Chapter 1, “Getting
Started,” on page 13):

1 Get Service Information (page 43)
2 Read Available Secrets (page 43)
3 Verify Connection to Proper Tree (page 43)
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
2.3.1 Get Service Information
Enabling an application to use SecretStore requires making a call to NSSSGetServiceInformation
(page 85). A tree name also could be included with the context structure with the call.

For use, refer to sstst.c or lstst.c in “Using Extension Structures” on page 39.

NSSSGetServiceInformation informs you whether SecretStore has been enabled, who you are
logged in as, and provides information about the SecretStore you work with.

2.3.2 Read Available Secrets
Once you obtain service information, you need to read the available secrets by calling
NSSSEnumerateSecretIDs (page 80). If you're looking for a particular application, you know what
your Secret ID is.

If the specified ID exists in the SecretStore, call NSSSReadSecret (page 90) with the specified ID to
obtain the secret from SecretStore. The returned Secret can then be supplied to your SecretStore-
enabled application to complete authentication.

2.3.3 Verify Connection to Proper Tree
When a call is made to SecretStore, verification is made to ensure that you are connected to the tree
you have named. If you have not designated a tree, it is assumed the primary connection is being
used.

Once an authenticated connection is verified, a search is made for a SecretStore server in that tree
that can handle your request. After discovering the name of a suitable SecretStore server, the server
is pinged to ensure it is on line and able to process the request. The call can then be made and the
requested information returned. This procedure is repeated for each API. Each API sets up a
separate secure session with the server. The process underlying each call made to the API includes
the following:

• Establishing a secure connection to the server
• Passing the data over the secure connection to the server.
• Tearing down the connection or continuing with other operations, then tearing down the

connection.

None of these processes should impact performance significantly. Through the SecretStore
technology, secrets (that is, passwords and other authentication credentials) are securely encrypted
at all times, whether in transmission or in storage, and accessible only by the owner of the data.
Since the data type is irrelevant, passwords and tokens can be safely stored and retrieved to enable a
true single login experience for all applications. See Section 1.10, “NICI and SecretStore,” on
page 34.

2.4 Writing Shared Application or Credential
Secrets

1 Call NSSSCreateSHSHandle (page 78) for each application thread that is involved in the
sharing of secrets. A void pointer is returned that provides a handle for passing subsequent
calls.
Tasks 43

44 NDK: Secre

novdocx (E
N

U
) 01 February 2006
2 Call NSSSReadSharedSecret (page 88) to pass in the handle created in Step 1 and a user-
populated SS_SH_SECRET_ID_T structure that contains the shared secret type, name, and
length.

NOTE: You also pass in the populated SSS_CONTEXT_T and SS_OBJECT_DN_T
structures; ssFlags; and the SS_PWORD_T, SSS_READEXT_T, and SS_EXT_T structures
that are typically provided when calling NSSSReadSecret (page 90). Consequently,
NSSRReadSharedSecret enables you to make calls to trees and user DNs outside of the primary
connection.

3 Internally, NSSSReadSharedSecret (page 88) calls NSSSReadSecret (page 90) to retrieve
secret data stored on SecretStore.
3a The secret data is parsed according to the shared secret format using the parsing library.
3b Sequential internal calls are made to enter key and value data into a linked list.

4 Call NSSSAddSHSEntry (page 76) sequentially to enter key or value data into the linked list
(that is, the list associated with the handle).

NOTE: This function contains pointers to user-allocated key and value buffers and the
unsigned long context flag member of the SSS_CONTEXT_T structure populated from calling
NSSSGetServiceInformation (page 85).

5 Call NSSSWriteSharedSecret (page 110) to pass a handle to write a shared secret, as well as a
user-populated SS_SH_SECRET_ID_T structure containing the share secret type, name, and
length. This creates a secret ID according to the secret ID format using either the prefix
SS_App or SS_CredSet.

NOTE: You also pass in the populated SSS_CONTEXT_T and SS_OBJECT_DN_T
structures, ssFlags, and the SS_PWORD and SS_EXT_T structures that are typically passed
when calling NSSSWriteSecret (page 107). Consequently, NSSRWriteSharedSecret enables
you to make calls to trees and user DNs outside of the primary connection.

6 NSSSWriteSharedSecret (page 110) makes sequential internal calls to populate an internal
buffer with data retrieved from the linked list.
6a The internal buffer is parsed according to the shared secret format using the parsing

library.
6b Parsed data is passed into the secret buffer, then passed to NSSSWriteSecret (page 107) in

the SecretStore client.
7 Before exiting the application, call NSSSDestroySHSHandle (page 79) to free memory

associated with the handle of each shared secret thread.

NOTE: A complete set of operations is demonstrated in sshtst.exe and lshtst.exe and related
source files for these executables are available in the SDK. In addition to these executable
programs, SSManager.exe can be used to create, test, and view shared and raw (non-shared)
secrets.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
2.5 Reading Shared Application or Credential
Secrets

1 For each user-defined application thread involved in secrets sharing, call
NSSSCreateSHSHandle (page 78) to obtain a void pointer as a handle to parse subsequent
calls.

2 Call NSSSReadSharedSecret (page 88) to pass the handle and a user-populated
SS_SH_SECRET_ID_T structure containing the shared secret type, name, and length.

NOTE: You also pass the populated SSS_CONTEXT_T and SS_OBJECT_DN_T structures;
ssFlags; and the SS_PWORD_T, SSS_READEXT_T, and SS_EXT_T structures that are
normally passed into the call to NSSSReadSecret (page 90). Consequently,
NSSReadSharedSecret enables you to call trees and user DNs outside of the primary
connection.

3 Internally, NSSSReadSharedSecret (page 88) calls NSSSReadSecret (page 90) to retrieve
secret data stored on SecretStore. This function contains the handle and pointers to internally
allocated key and value buffers.
3a The internal secret data is parsed according to the shared secret format using the parsing

library.
3b Sequential internal calls are made to enter key and value data into a linked list.

4 Call NSSSGetNextSHSEntry (page 83) sequentially. This function returns the handle, the
unsigned long context flag from the user-populated SSS_CONTEXT_T structure passed into
NSSSReadSharedSecret (page 88), and pointers to user-allocated key value buffer and length
parameters.

5 Use the data returned for application-specific tasks.
6 Before exiting the application, call NSSSDestroySHSHandle (page 79) to free memory

associated with the handle of each shared secret thread.

2.6 Modifying Shared Application or Credential
Secrets
To modify shared secrets in applications or credentials, you must be able to add and remove the keys
used to secure secrets stored in a user's SecretStore as explained in the following sections.

• Section 2.6.1, “Adding A Shared Secret Key,” on page 45
• Section 2.6.2, “Removing A Shared Secret Key,” on page 46

2.6.1 Adding A Shared Secret Key
1 For each user-defined application thread involved in secrets sharing, call

NSSSCreateSHSHandle (page 78) to obtain a void pointer as a handle to parse subsequent
calls.

2 Call NSSSReadSharedSecret (page 88) to pass in the handle created in Step 1 and a user-
populated SS_SH_SECRET_ID_T structure that contains the shared secret type, name, and
length.
Tasks 45

46 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NOTE: You also pass in the populated SSS_CONTEXT_T and SS_OBJECT_DN_T
structures; ssFlags; and the SS_PWORD_T, SSS_READEXT_T, and SS_EXT_T structures
that are typically provided when calling NSSSReadSecret (page 90). Consequently,
NSSRReadSharedSecret enables you to make calls to trees and user DNs outside of the primary
connection.

3 Internally, NSSSReadSharedSecret (page 88) calls NSSSReadSecret (page 90) to retrieve
secret data stored on SecretStore. This function contains the handle and pointers to internally
allocated key and value buffers.
3a The secret data is parsed according to the shared secret format using the parsing library.
3b Sequential internal calls are made to enter key and value data into a linked list.

4 Call NSSSAddSHSEntry (page 76) sequentially to enter key or value data into the linked list.

NOTE: This function contains pointers to user-allocated key and value buffers and the
unsigned long context flag member of the SSS_CONTEXT_T structure populated from calling
NSSSGetServiceInformation (page 85).

5 Call NSSSWriteSharedSecret (page 110) to pass a handle to write a shared secret, as well as a
user-populated SS_SH_SECRET_ID_T structure containing the share secret type, name, and
length. This creates a secret ID according to the secret ID format using either the prefix
SS_App or SS_CredSet.

NOTE: You also pass in the populated SSS_CONTEXT_T and SS_OBJECT_DN_T
structures, ssFlags, and the SS_PWORD_T and SS_EXT_T structures that are typically passed
when calling NSSSWriteSecret (page 107). Consequently, NSSRWriteSharedSecret enables
you to make calls to trees and user DNs outside of the primary connection.

6 NSSSWriteSharedSecret (page 110) makes sequential internal calls to retrieve data from the
link list and populate an internal buffer.
6a The internal buffer is parsed according to the shared secret format using the parsing

library. The resultant data is passed into the Secret buffer for passage to NSSSWriteSecret
(page 107) in the SecretStore client.

6b The function makes an internal call to store the Secret buffer as a shared secret in
SecretStore using NSSSWriteSecret.

7 Before exiting the application, call NSSSDestroySHSHandle (page 79) to free memory
associated with the handle of each shared secret thread.

2.6.2 Removing A Shared Secret Key
1 For each user-defined application thread involved in secrets sharing, call

NSSSCreateSHSHandle (page 78) to obtain a void pointer as a handle to parse subsequent
calls.

2 Call NSSSReadSharedSecret (page 88) to pass in the handle created in Step 1 and a user-
populated SS_SH_SECRET_ID_T structure that contains the shared secret type, name, and
length.

NOTE: You also pass in the populated SSS_CONTEXT_T and SS_OBJECT_DN_T
structures; ssFlags; and the SS_PWORD_T, SSS_READEXT_T, and SS_EXT_T structures
that are typically provided when calling NSSSReadSecret (page 90). Consequently,
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NSSRReadSharedSecret enables you to make calls to trees and user DNs outside of the primary
connection.

3 Internally, NSSSReadSharedSecret (page 88) calls NSSSReadSecret (page 90) to retrieve
secret data stored on SecretStore. This function contains the handle and pointers to internally
allocated key and value buffers.
3a The secret data is parsed according to the shared secret format using the parsing library.
3b Sequential internal calls are made to obtain key and value data passed into a linked list.

4 For each key you want to remove, call NSSSRemoveSHSEntry (page 100) to remove the key-
value pair. This call contains the handle, pointers to user-allocated key and value buffers, and
the unsigned long context flag member of the SSS_CONTEXT_T structure populated from
calling NSSSGetServiceInformation (page 85).

5 Call NSSSWriteSharedSecret (page 110) to pass a handle to write a shared secret, as well as a
user-populated SS_SH_SECRET_ID_T structure containing the share secret type, name, and
length. This creates a secret ID according to the secret ID format using either the prefix
SS_App or SS_CredSet.

NOTE: You also pass in the populated SSS_CONTEXT_T and SS_OBJECT_DN_T
structures, ssFlags, and the SS_PWORD_T and SS_EXT_T structures that are typically passed
when calling NSSSWriteSecret (page 107). Consequently, NSSRWriteSharedSecret enables
you to make calls to trees and user DNs outside of the primary connection.

6 NSSSWriteSharedSecret (page 110) makes sequential internal calls to retrieve data from the
linked list and populate an internal buffer.
6a The internal buffer is parsed according to the shared secret format using the parsing

library. The resultant data is passed into the Secret buffer for passage to NSSSWriteSecret
(page 107) in the SecretStore client.

6b The function makes an internal call to store the Secret buffer as a shared secret in
SecretStore using NSSSWriteSecret.

7 Before exiting the application, call NSSSDestroySHSHandle (page 79) to free memory
associated with the handle of each shared secret thread.

2.7 Removing Shared Application or Credential
Secrets

1 Call NSSSRemoveSharedSecret (page 97) to pass in a user-populated SS_SH_SECRET_ID_T
structure that contains the shared secret type, name, and length.

NOTE: You also pass in the populated SSS_CONTEXT_T and SS_OBJECT_DN_T
structures; ssFlags; and the SS_EXT_T structures that are typically provided when calling
NSSSRemoveSharedSecret. Consequently, NSSSRemoveSharedSecret enables you to make
calls to trees and user DNs outside of the primary connection.

2 Internally, the Secret Identifier is parsed according to the shared secret format designated for
handling delimited characters.
2a NSSSRemoveSharedSecret (page 97) calls NSSSRemoveSecret to remove shared secrets

from SecretStore.
Tasks 47

48 NDK: Secre

novdocx (E
N

U
) 01 February 2006
2.8 SecretStore Sample Code
See the Single Sign-on sample code (../../../samplecode/ssocomp_sample/index.htm) to view and
download examples of the SecretStore API used in client applications.
tStore Developer Kit for C

../../../samplecode/ssocomp_sample/index.htm

3
novdocx (E

N
U

) 01 February 2006
3Secret Store Structures

Novell SecretStore interfaces are based on the standard C-language types. SecretStore prototypes
and data types are defined in nssscl.h. The topics you should understand that relate to the interface
include the following sections:

• Section 3.1, “Structured Definitions,” on page 49
• Section 3.2, “Service Location Information,” on page 56
• Section 3.3, “Shared Secret Structures,” on page 60

3.1 Structured Definitions
All of the character arrays in the following structures have the maximum length in bytes, but
applications should pass in strings with the number of characters that are half the length of these
character arrays. These arrays are double the size in length for unicode strings. Reference the length
in characters in Section 5.4, “API Function Flags,” on page 72.

The structure definitions include the following:

• SSS_CONTEXT_T (page 50)
• SS_EXT_T (page 52)
• SS_HINT_T (page 53)
• SS_PWORD_T (page 54)
• SS_SECRET_ID_T (page 55)
• SS_SECRET_T (page 56)
• SS_SERVER_INFO_T (page 57)
• SS_SH_SECRET_ID_T (page 61)
• SS_ADV_BIND_INFO_T (page 64)
• SS_ADDR_T (page 63)
• SS_ADV_CRED_T and SS_ADV_CERT_T (page 62)
• SS_OBJECT_DN_T (page 65)
Secret Store Structures 49

50 NDK: Secre

novdocx (E
N

U
) 01 February 2006
SSS_CONTEXT_T
Contains the optional Directory Services context. Passing a NULL pointer on the APIs causes the
system to internally get the proper user context. Passing an initialized version of this structure to the
SecretStore functions enables SecretStore to retain the state between calls and establishes an
ongoing session between SecretStore’s client and server.

Syntax
typedef struct SSS_CONTEXT_T
{
 unsigned long flags;
 unsigned long dsCtx;
 unsigned long version;
 SS_SERVER_INFO_TssServerInfo;
 SS_OBJECT_DN_T callerDN;
 SSS_HANDLES_T *handles;
 void *bindInfo;
} SSS_CONTEXT_T;

Fields
flags (IN)

Specifies what type of context was passed in:

Flag Description Action

NSSS_NCP_CTX_F NCP context type (dsCtx)

NSSS_LDAP_CTX_F LDAP context type
(dsCtx)

NSSS_CONTEXT_INITIALIZED
_F

The context already is
initialized.

Context could be initialized outside
the SecretStore client or inside
through a previous call to
NSSSGetServiceInformation
(page 85)

NSSS_INIT_LDAP_SS_HANDL
E_F

Initializes the handle's
structure without a bind.

In the case of context having been
initialized outside SecretStore the
caller must pass this flag to allocate
and initialize the internal handles
structure with necessary state data

NSSS_DEINIT_LDAP_SS_HAN
DLE_F

Deinitializes the handle's
structure without unbind.

In the case of context having been
initialized outside SecretStore the
caller must pass this flag to free the
internal handles structure after the
state data is no longer needed

NSSS_NSSS_REINIT_TARGET
_DN_F

Reinitializes the target
DN saved in the context.

In the case of client switching
between different eDirectory trees
this flag should be used to update
the copy of Target DN saved in the
context
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
dsCtx
Specifies the Directory Service NCP/LDAP context.

version
Points to the LDAP Context (reserved for future).

epPword (optional IN)
Encodes the actual clear password supplied.

Description
This is an optional parameter that allows the SecretStore client to keep a stateful session with the
SecretStore server based on the session-related information stored in this context.

NSSS_LDAP_CONTEXT_LESS
_DN_F

Resolves LDAP DN as
contextless.

Indicates that a contextless DN is
passed on the request for bind and
prompts the SecretStore to search
the tree to find the full DN of the user.
In case of multiple DNs containing
the common

NSSS_ADV_BIND_INFO_T Use advanced bind
structure and run service
location.

Indicates that the advanced bind
structure is passed in and
SecretStore is prompted to perform a
service location to find the proper
target server for the user in the
eDirectory tree.

Flag Description Action
Secret Store Structures 51

52 NDK: Secre

novdocx (E
N

U
) 01 February 2006
SS_EXT_T
This is an optional structure for a passing extended information to the functions.

Syntax
typedef struct
{
 unsigned long clientVersion;
 void *extParms;
} SS_EXT_T;

Fields
clientVersion

(IN) Specifies the version of the SSS client in NSSS_VERSION_NUMBER.

extParms
(IN) Depending on the call and version passed, points to an API specific extension structure. It
is the caller’s responsibility to initialize this pointer if the SS_EXT_T structure is used to pass
extensions that an API calls.

Description
This is an optional parameter that can be defined by the service and be used in the future to extend
each API. The contents of the structure that extParms points to can change based on the version of
the service. Caller can pass a NULL in place of this parameter.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
SS_HINT_T
Structure used to encode the user’s Master Password hint.

Syntax
typedef struct SS_HINT_T
{
 unsigned long hintLen;
 char hint[NSSS_MAX_MP_PWORD_HINT_LEN];
} SS_HINT_T;

Fields
hintLen

Specifies the length of enhanced protection and password to set in bytes.

hint[NSSS_MAX_MP_PWORD_HINT_LEN]
Specifies the password characters string that should be passed in.

Description
This identifies the structure that can be used for encoding of the hint on related functions.
Secret Store Structures 53

54 NDK: Secre

novdocx (E
N

U
) 01 February 2006
SS_PWORD_T
Structure used to encode the user’s Password for SecretStore use.

Syntax
typedef struct SS_PWORD_T
{
 unsigned long pwordLen;
 char pword[NSSS_MAX_EP_PWORD_LEN];
} SS_PWORD_T;

Fields
pwordLen

Specifies the length of enhanced protection and password to set in bytes.

pword[NSSS_MAX_EP_PWORD_LEN]
Specifies the number of password characters should be passed in.

Description
This structure can be used for encoding of the password on related functions.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
SS_SECRET_ID_T
Structure used to encode the Secret ID for SecretStore use.

Syntax
typedef struct SS_SECRET_ID_T
{
 long len;
 char id[NSSS_MAX_SECRET_ID_LEN];
} SS_SECRET_ID_T;

Fields
len

Specifies the maximum length of the ID in bytes.

id
Specifies the actual ID, including the terminating char. This is the length in bytes when the id is
passed in local code page. If the string is already in Unicode then the id can accommodate the
unisze(id) <= NSSS_MAX_SECRET_ID_LEN.

Description
This structure can be used for encoding of Secret ID on related APIs.
Secret Store Structures 55

56 NDK: Secre

novdocx (E
N

U
) 01 February 2006
SS_SECRET_T
Structure used to encode the Secret for SecretStore use.

Syntax
typedef struct SS_SECRET_T
{
long len;
char *data;
} SS_SECRET_T;

Fields
len

Specifies the length of the data in bytes.

data
Points to the actual data of data.

Description
This structure can be used for encoding or retrieval of secrets on related functions.

3.2 Service Location Information
This SSS_CONTEXT_T contains the SS_SERVER_INFO_T structure for service location
information:
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
SS_SERVER_INFO_T
Holds information about the server which services the SecretStore requests, and helps to accelerate
access to SecretStore and provide multi-tree capabilities.

Syntax
typedef struct _ss_server_info
{
 char treeName[NSSS_MAX_TREE_NAME_LEN];
 char ssServerDN[NSSS_MAX_DN_LEN];
 char ssServerIPAddr[NSSS_MAX_IP_ADDR_LEN];
 char sssConfigDN[NSSS_MAX_DN_LEN];
} SS_SERVER_INFO_T;

Fields
treeName

(IN/OUT) Specifies the field in which the name of the tree is designated where server is
located.

ssServerDN
(IN/OUT) Specifies the designated name of the server where SecretStore is located.

ssServerIPAddr
(OUT) Specifies the IP address of the SecretStore server.

ssoConfigDN
(IN/OUT) Specifies the distinguished name of the SecretStore configuration or override
configuration objects.

Description
When the address of this structure is provided and contains valid data, the API uses the data to
bypass the service discovery process and directly contact the server that serviced the last API
function call. Also, rather than rely on the primary connection to identify the tree in which the target
user resides, the tree name that is stored in this structure and can be changed by the programmer to
allow calls to be made to any tree to which the user is authenticated.
Secret Store Structures 57

58 NDK: Secre

novdocx (E
N

U
) 01 February 2006
SSS_GSINFOEXT_T
Gets service info extended optional data modified for version 0x00000205.

Syntax
typedef struct _ss_get_service_information_extension
{
unsigned long statFlags;
unsigned long secretCount;
unsigned long lockCount;
unsigned long enumBufLen;
unsigned long hidSecCount;
unsigned long clientVersion;
unsigned long serverVersion;
unsigned long serverCryptoStrength;
unsigned long clientCryptoStrength;
unsigned long unlockTStamp;
unsigned long admnDNLen;
char admnDN[NSSS_MAX_DN_LEN];
unsigned long hintLen;
char hint[NSSS_MAX_MP_PWORD_HINT_LEN]];

} SSS_GSINFOEXT_T;

Fields
statFlags

(OUT) Specifies the return flags on the SecretStore.

secretCount
(OUT) Specifies the number of secrets in the SecretStore.

lockCount
(OUT) Specifies the number of locked secrets.

enumBufLen]
(OUT) Specifies the Secret ID enumeration buffer length in bytes.

hidSecCount
(OUT) Specifies the number of hidden secrets

clientVersion
(OUT) Specifies the version of the SecretStore client.

serverVersion
(IN) Specifies the version of the SecretStore server:

serverCryptoStrength
(IN) Specifies the cryptographic strength of the server:

• NSSS_NICI_DOMESTIC_ENGINE—3DES or stronger
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
• NSSS_NICI_EXPORT_ENGINE—DES or stronger

clientCryptoStrength
(OUT) Specifies the cryptographic strength of the client:.

unlockTStamp
(OUT) Specifies the time stamp of the last administrative unlocking of the SecretStore on a two
admin unlocking scheme by a SecretStore Administrator for audit purposes.

admnDNLen
(OUT) Specifies the length of the admin DN of the last SecretStore administrator that has
unlocked the SecretStore on a two admin unlocking for audit purposes.

admnDN
(OUT) Specifies the admin DN of the last SecretStore administrator that has unlocked the
SecretStore on a two admin unlocking for audit purposes.

hintLen
(OUT) Specifies the length of the master password hint.

hint[NSSS_MAX_MP_PWORD_HINT_LEN]]
(OUT) Specifies the actual password hint.

Description
This structure returns the status information on the target user's SecretStore.
Secret Store Structures 59

60 NDK: Secre

novdocx (E
N

U
) 01 February 2006
SS_READEXT_T
Reads extended optional data.

Syntax
typedef struct _ss_read_extension
{
unsigned long statFlags;
unsigned long crtStamp;
unsigned long latStamp;
unsigned long lmtStamp;

} SS_READEXT_T;

Fields
statFlags

(OUT) Specifies the return flags on the secret.

crtStanp
(OUT) Specifies the secret creation time stamp.

latStamp
(OUT) Specifies the last accessed time stamp (optional).

lmtStamp
(OUT) Specifies the last modified time stamp.

Description
This is the optional extension that can be passed on the NSSSReadSecret (page 90) API to obtain
information on a secret.

3.3 Shared Secret Structures
The following shared secret structure is defined:

SS_SH_SECRET_ID_T (page 61)
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
SS_SH_SECRET_ID_T
Defines the structure for encoding a Shared Secret ID.

Syntax
typedef struct struct _ss_sh_secret_id
{
int type;
char pName[NSSS_MAX_SECRET_ID_LEN];
int length;

} SS_SH_SECRET_ID_T;

Fields
type

Specifies the type of secret to be shared (that is, SS_App or SS_CredSet).

pName[NSSS_MAX_SECRET_ID_LEN]
Specifies the name of the shared secret.

length
Specifies the length in characters of the shared secret's name, including the NULL terminator.
This is the same value as used by the identifier.

Description
This structure is used by the SharedSecret functions for encoding the a Shared Secret ID.
Secret Store Structures 61

62 NDK: Secre

novdocx (E
N

U
) 01 February 2006
SS_ADV_CRED_T and SS_ADV_CERT_T
This is the generic structure used by SS_ADV_BIND_INFO_T to provide generic storage for
different authentication credentials. The same structure also can be used to encode a certificate
required for authentication.

Syntax
typedef struct
{
unsigned long len;
void *data];
} SS_ADV_CRED_T;

Fields
len

(IN) Specifies the length of the data buffer in bytes.

data
(IN) The actual data buffer to hold the credential.

Description
This structure provides a generic storage for passing credential in an advanced bind to eDirectory.
Flags in the SS_ADV_BIND_INFO_T define the type of credential used.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
SS_ADDR_T
This is the structure used by SS_ADV_BIND_INFO_T to provide storage for the server’s IP
address.

Syntax
typedef struct
{
unsigned long len;
char addr[NSSS_MAX_ADDR_LEN];
} SS_ADDR_T;

Fields
len

(IN) Specifies the length of the address in bytes.

addr
(IN) The actual address buffer to hold the IP address.

Description
This structure provides a generic storage for passing the target server’s IP address in an advanced
bind to eDirectory.
Secret Store Structures 63

64 NDK: Secre

novdocx (E
N

U
) 01 February 2006
SS_ADV_BIND_INFO_T
Used to bind over supported protocols by eDirectory.

Syntax
typedef struct
{
unsigned long version;
unsigned long flags;
unsigned long portNum;
SS_ADDR_T hName;
SS_CERT_T cert;
SS_ADV_CRED_T *cred;
} SS_ADV_BIND_INFO_T;

Fields
version

(IN) Specifies the bind structure’s version. NSSS_CUR_ADV_BIND_INFO_VER signifies
the version this structure.

flags
(IN) Specifies the flags that can be used to determine which type of credential and
authentication mechanism is used. Current supported flags include the following:

portNum
(IN) Specifies the port to bind on (optional).

hName
(IN) Designates the DNS name or the IP address of the target server.

cert
(IN) Encodes or stores the certificate needed for authentication.

cred
(IN) This generic structure can be used to encode or store the credential for authentication.
(When LDAP is used to login, password can be stored here.)

Description
This structure provides the advance bind information to bind over different protocols.

Flag Description

NSSS_PWORD_CRED_F Indicates that a password is being used for credential.

NSSS__SET_ANON_PORT_F Indicates an anonymous port other than the default is being
used.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
SS_OBJECT_DN_T
Used by SecretStore functions to provide storage for the object DN.

Syntax
typedef struct
{
unsigned long len;
char addr[NSSS_MAX_ADDR_LEN];
} SS_ADDR_T;

Fields
len

(IN) Specifies the length of the DN in bytes.

addr
(IN) The actual buffer to hold the DN.

Description
This structure provides a storage for passing the target object DN on the functions.
Secret Store Structures 65

66 NDK: Secre

novdocx (E
N

U
) 01 February 2006
tStore Developer Kit for C

4
novdocx (E

N
U

) 01 February 2006
4Return Values

This table describes the values commonly returned by the SecretStore service.

Value Return Code Description

-800 NSSS_E_OBJECT_NOT_FOUND Target object could not be found.

-801 NSSS_E_NICI_FAILURE NICI operations have failed.

-802 NSSS_E_INVALID_SECRET_ID The Secret ID is not in the user secret store.

-803 NSSS_E_SYSTEM_FAILURE Some internal operating system services have
not been available.

-804 NSSS_E_ACCESS_DENIED Access to the target Secret Store has been
denied.

-805 NSSS_E_NDS_INTERNAL_FAILURE NDS internal NDS services have not been
available.

-806 NSSS_E_SECRET_UNINITIALIZED Secret has not been initialized with a write.

-807 NSSS_E_BUFFER_LEN Size of the buffer is not in a nominal range
between minimum and maximum.

-808 NSSS_E_INCOMPATIBLE_VERSION Client and server components are not of the
compatible versions.

-809 NSSS_E_CORRUPTED_STORE Secret Store data on the server has been
corrupted.

-810 NSSS_E_SECRET_ID_EXISTS Secret ID already exists in the SecretStore.

-811 NSSS_E_NDS_PWORD_CHANGED User NDS password has been changed by the
administrator.

-812 NSSS_E_INVALID_TARGET_OBJECT Target NDS user object not found.

-813 NSSS_E_STORE_NOT_FOUND Target NDS user object does not have a
Secret Store.

-814 NSSS_E_SERVICE_NOT_FOUND Secret Store is not on the network.

-815 NSSS_E_SECRET_ID_TOO_LONG Length of the Secret ID buffer exceeds the
limit.

-816 NSSS_E_ENUM_BUFF_TOO_SHORT Length of the enumeration buffer is too short.

-817 NSSS_E_NOT_AUTHENTICATED User not authenticated.

-818 NSSS_E_NOT_SUPPORTED Not supported operations.

-819 NSSS_E_NDS_PWORD_INVALID Typed in NDS password not valid.

-820 NSSS_E_NICI_OUTOF_SYNC Session keys of the client and server NICI are
out of sync.

-821 NSSS_E_SERVICE_NOT_SUPPORTED Requested service not yet supported.
Return Values 67

68 NDK: Secre

novdocx (E
N

U
) 01 February 2006
-822 NSSS_E_TOKEN_NOT_SUPPORTED NDS authentication type not supported.

-823 NSSS_E_UNICODE_OP_FAILURE Unicode text conversion operation failed.

-824 NSSS_E_TRANSPORT_FAILURE Connection to server is lost.

-825 NSSS_E_CRYPTO_OP_FAILURE Cryptographic operation failed.

-826 NSSS_E_SERVER_CONN_FAILURE Opening a connection to the server failed.

-827 NSSS_E_CONN_ACCESS_FAILURE Access to server connection failed.

-828 NSSS_E_ENUM_BUFF_TOO_LONG Size of the enumeration buffer exceeds the
limit.

-829 NSSS_E_SECRET_BUFF_TOO_LONG Size of the Secret buffer exceeds the limit.

-830 NSSS_E_SECRET_ID_TOO_SHORT Length of the Secret ID should be greater than
zero.

-831 NSSS_E_CORRUPTED_PACKET_DATA Protocol data corrupted on the wire.

-832 NSSS_E_EP_ACCESS_DENIED Enhanced protection’s password validation
failed. Access to the secret denied.

-833 NSSS_E_SCHEMA_NOT_EXTENDED Schema is not extended to support
SecretStore on the target tree.

-834 NSSS_E_ATTR_NOT_FOUND One of the optional service attributes is not
instantiated.

-835 NSSS_E_MIGRATION_NEEDED Server has been upgraded and the user's
SecretStore should be updated.

-836 NSSS_E_MP_PWORD_INVALID Master password could not be verified to read
or unlock the secrets.

-837 NSSS_E_MP_PWORD_NOT_SET Master password has not been set on the
SecretStore.

-838 NSSS_E_MP_PWORD_NOT_ALLOWED Ability to use master password has been
disabled.

-839 NSSS_E_WRONG_REPLICA_TYPE Not a writeable replica of NDS.

-840 NSSS_E_ATTR_VAL_NOT_FOUND The API was unable to find a value for an
attribute in the Directory.

-841 NSSS_E_INVALID_PARAM A parameter passed to the API has not been
properly initialized.

-842 NSSS_E_NEED_SECURE_CHANNEL The connection to SecretStore requires SSL to
be secure (returned when access is via
LDAP).

Value Return Code Description
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
-843 NSSS_E_CONFIG_NOT_SUPPORTED The client could not locate a server that
supports the policy override required by the
caller. In previous versions of the client, if a
server supporting the requested configuration
(now known as policy override) could not be
found, any server would be returned. In
version 3.0, if we don’t find a server supporting
the required policy override, it is considered an
error and we don’t return anything.

-844 NSSS_E_STORE_NOT_LOCKED An attempt to unlock SecretStore failed
because the store is not locked.

-845 NSSS_E_TIME_OUT_OF_SYNC The eDirectory replica on the server that holds
SecretStore is out of sync with the replica ring.

-846 NSSS_E_VERSION_MISMATCH Versions of the client dlls don’t match.

-847 NSSS_E_SECRET_BUFF_TOO_SHORT The buffer supplied for the secret is too short
(minimum NSSS_MIN_IDLIST_BUF_LEN).

-848 NSSS_E_SH_SECRET_FAILURE The shared secret processing operations
failed.

-849 NSSS_E_PARSER_FAILURE The shared secret parser operations failed.

-850 NSSS_E_UTF8_OP_FAILURE The UTF8 string operations failed.

-851 NSSS_E_CTX_LESS_CN_NOT_UNIQUE The contextless name for LDAP bind does not
resolve to a unique DN.

-852 NSSS_E_UNSUPPORTED_BIND_CRED The login credential for advanced bind is not
supported.

-854 NSSS_E_CERTIFICATE_NOT_FOUND The certificate required for the bind is not
found.

-888 NSSS_E_NOT_IMPLMENTED Feature not yet implemented.

-899 NSSS_E_BETA_EXPIRED The product's BETA life has expired! Official
release copy should be purchased.

Value Return Code Description
Return Values 69

70 NDK: Secre

novdocx (E
N

U
) 01 February 2006
tStore Developer Kit for C

5
novdocx (E

N
U

) 01 February 2006
5Functions

The Novell SecretStore API includes functions to enable and maintain transparent authentication
capabilities, providing simplification of user authentication within your client/server applications.
SecretStore functions can be identified as either of the following categories:

• Section 5.1, “Enabling Functions,” on page 71
• Section 5.2, “Administrative Functions,” on page 71
• Section 5.3, “Shared Secret Functions,” on page 72

5.1 Enabling Functions
The following functions prepare applications to use Novell Single Sign-on and include:

5.2 Administrative Functions
These functions create the user's Single Sign-on capability and generate encryption keys for an
enabled application:

Functions Description

NSSSGetServiceInformation
(page 85)

Returns service and SecretStore related information.

NSSSReadSecret (page 90) Reads the application secrets from the SecretStore service for a
logged in and authenticated eDirectory user of a SecretStore enabled
application.

NSSSRemoveSecret (page 93) Removes a specified secret from a user's SecretStore on an
eDirectory object for an application.

NSSSWriteSecret (page 107) Writes new secrets or overwrites the old secrets of an application in
the SecretStore service for a logged in and authenticated eDirectory
user of a SecretStore-enabled application.

Functions Description

NSSSEnumerateSecretIDs
(page 80)

Lists the application secret identifiers in a target secret.

NSSSRemoveSecretStore
(page 95)

Removes SecretStore from a target object.

NSSSSetEPMasterPassword
(page 102)

Allows the owner of SecretStore to set the SecretStore master
password.

NSSSUnlockSecrets (page 104) Unlocks a client's SecretStore after it was locked in an enhanced
protection scenario by removing the lock, or by using a previous
eDirectory password on master password.
Functions 71

72 NDK: Secre

novdocx (E
N

U
) 01 February 2006
5.3 Shared Secret Functions
The shared secret functions enable you to share single sign-on data with other single sign-on
applications. There are two categories of shared secret functions:

• Section 5.3.1, “Shared Secret Data Management Functions,” on page 72
• Section 5.3.2, “Shared Secret Support Functions,” on page 72

5.3.1 Shared Secret Data Management Functions
These functions call the Shared Secret Support Functions (page 72) to populate or extract data from
a shared secret:

• NSSSReadSharedSecret (page 88)
• NSSSRemoveSharedSecret (page 97)
• NSSSWriteSharedSecret (page 110)

5.3.2 Shared Secret Support Functions
These support functions populate or extract data from a shared secret:

• NSSSAddSHSEntry (page 76)
• NSSSCreateSHSHandle (page 78)
• NSSSDestroySHSHandle (page 79)
• NSSSGetNextSHSEntry (page 83)
• NSSSRemoveSHSEntry (page 100)

5.4 API Function Flags
The following flags are defined for the Single Sign-on API functions:

5.4.1 Input Only Flags for Write API

Value Flag Description

0x00000001L NSSS_ENHANCED_PROTECTION_F Enhanced Protection indicator flag for
Read and Write.

0x00000040L NSSS_EP_PASSWORD_USED_F (Optional) Enhanced Protection optional
password indicator flag for Read and
Write.

0x00004000L NSSS_CHK_SID_FOR_COLLISION_F Check for existing SID to prevent
collision and overwrite.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
5.4.2 Input Only Flags for Unlock API

5.4.3 Input Only Flags for Read API

5.4.4 Input Only Flags for All APIs

5.4.5 Input Only Flag for GetServiceInfo API

Value Flag Description

0x00000020L NSSS_EP_MASTER_PWORD_USED_
F

The master password used to read a
secret in place of the Enhanced
Protection password or to unlock in place
of the old eDirectory password.

0x00000004L NSSS_REMOVE_LOCK_FROM_
STORE_F

Can delete locked secrets from store to
remove lock.

Value Flag Description

0x00000020L NSSS_EP_MASTER_PWORD_USED_
F

The master password used to read a
secret in place of the Enhanced
Protection password or to unlock in place
of the old eDirectory password.

0x00000008L NSSS_REPAIR_THE_ STORE_F Request all possible repairs on damaged
store.

Value Flag Description

0x00000010L NSSS_ALL_STRINGS_UNICODE_F Informs the service that the strings, such
as secretID, DN, searchString, etc., are
already converted to unicode and no
conversion is necessary. (Results
returned in unicode.)

0x00000200L NSSS_DESTROY_CONTEXT_F Internally destroys the DS context
passed in. This flag can be used on the
last call to SecretStore to destroy the
context that was used.

0x00000800L NSSS_UNBINDLDAP_F Indicates LDAP-based access to
directory should be terminated.

0x00000080L NSSS_SET_TREE_NAME_F Use the tree name in the context to set
the tree.

Value Flag Description

0x00000080L NSSS_SET_TREE_NAME_F Sets the tree name.
Functions 73

74 NDK: Secre

novdocx (E
N

U
) 01 February 2006
5.4.6 Output Only Flags from Read API
These flags come back on the returned optional extension structures, NSSSGetServiceInformation
(page 85) and NSSSReadSecret (page 90) (statFlags on reading a secret and statFlags on the store):

5.4.7 Output Only Flag from GetServiceInformation API
statFlags

5.4.8 Context Flags for The Type of Context Passed in to
Initialize Context Structure

0x00000100L NSSS_GET_ CONTEXT_F Returns a DS context for reuse in the
subsequent calls.

0x00000800L NSSS_BINDLDAP_F Bind over LDAP to eDirectory hosting the
SecretStore is requested.

Value Flag Description

0x0001000L NSSS_SECRET_LOCKED_F Enhanced protection lock on a secret.

0x0002000L NSSS_SECRET_NOT_INITIALIZED_F Secret not yet initialized with a Write.

0x0004000L NSSS_ENHANCED_PROTECT_INFO_
F

Secret is marked for enhanced
protection.

0x0008000L NSSS_STORE_NOT_SYNCED_F Store is not yet synchronized across
replicas.

0x0020000L NSSS_EP_PWORD_PRESENT_F There is an Enhanced Protection
application password on the secret.

Value Flag Description

0x0080000L NSSS_MP_NOT_ ALLOWED_F The use of master password has been
disabled by the service.

0x0040000L NSSS_EP_MASTER_PWORD_
PRESENT_F

There is a master password on the
SecretStore (Admin configurable option
on the server).

Value Flag Description

0x00000001L NSSS_NCP_CTX_F NCP context.

0x00000002L NSSS_LDAP_CTX_F LDAP context. (Reserved for the future.)

0x00000008L NSSS_INIT_LDAP_SS_HANDLE_F Initialize the client supplied context for
SS use.

Value Flag Description
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
5.4.9 Context Flags for Input and Returned from the Context
Structure

5.5 Function Prototypes
The following are _stdcall function prototypes exported APIs in Windows. For definitions of the
SecretStore function return types, refer to nssscl.h.

0x00000010L NSSS_DEINIT_LDAP_SS_HANDLE_F Deinitialize the client context for
application unbind

0x00000020L NSSS_REINIT_TARGET_DN_F Reinitialize the target DN for admin in the
context when admin is switching target.

0x00000040L NSSS_LDAP_CONTEXT_LESS_DN_F Resolving the context less DN for the
bind is requested because the DN that is
passed in is contextless.

0x00000080L NSSS_ADV_BIND_INFO_F Use the advanced bind structure and
preform service location.

Value Flag Description

0x00000004L NSSS_CONTEXT_INITIALIZED_F Connection to server is established and
context structure is initialized (returned
from SS when context is initialized or can
be supplied when the context is
preinitialized outside SS and is passed in
for SS use).

Value Flag Description
Functions 75

76 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSAddSHSEntry
Enters a key or a value in a key-value pair stored in a Shared Secret.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSAddSHSEntry
(
 void *handle,
 unsigned char *key,
 unsigned char *val,
 unsigned long ssCtxFlags
);

Parameters
handle

(IN) Specifies the handle created by NSSSCreateSHSHandle (page 78).

key
(IN) Adds a key to a key-value pair stored in a Shared Secret.

val
(IN) Adds a value to a key-value pair stored in a Shared Secret.

ssCtxFlags
(IN) Specifies an optional structure that can be initialized by calling
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.
NSSS_NCP_CTX_F—Directory Service API context indicator flag
NSSS_LDAP_CTX_F—LDAP context indicator flag <reserved>

Return Values

Remarks
This function contains pointers to user-allocated key and value buffers and the unsigned long
context flag member of the SSS_CONTEXT_T structure populated from calling
NSSSGetServiceInformation (page 85).

Value Description

NSSS_SUCCESS The operation succeeded.

NSSS_E_SH_SECRET_FAILURE Shared Secret processing and operations failed.

NSSS_E_INVALID_PARAM API parameter is not initialized.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
See Also
NSSSCreateSHSHandle (page 78)
NSSSGetNextSHSEntry (page 83)
NSSSRemoveSHSEntry (page 100)
See other Shared Secret buffer calls here.
Functions 77

78 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSCreateSHSHandle
Returns a void pointer that handles the passing of shared secret data to subsequent calls.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL_PTR(void) NSSSCreateSHSHandle (void);

Return Values
Returns a void pointer that functions as a handle.

Remarks
This function is called for each thread in a user-defined application that shares secrets.

See Also
NSSSDestroySHSHandle (page 79)
See other Shared Secret buffer calls here.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NSSSDestroySHSHandle
Frees the memory associated with the handle created for each Shared Secret thread of execution.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSDestroySHSHandle
(
 void *handle
);

Parameters
handle

(IN) Specifies the handle created by NSSSCreateSHSHandle (page 78).

Remarks
This call signifies the end of shared secret processing by destroying an internal Shared Secret buffer.

See Also
NSSSCreateSHSHandle (page 78)
See other Shared Secret buffer calls here.
Functions 79

80 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSEnumerateSecretIDs
Enables the administrator or user to list the secret identifiers (secret IDs) for secrets stored in the
user's SecretStore.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSEnumerateSecretIDs
(
 SSS_CONTEXT_T *callerContext,
 SS_OBJECT_DN_T *targetObject,
 unsigned long ssFlags,
 char *searchString,
 unsigned long *count
 SS_SECRET_T *secretIDList,
 SS_EXT_T *ext
);

Parameters
callerContext

(IN) This optional structure can be initialized by making a call to NSSSGetServiceInformation
(page 85) prior to use here. The flags field of the structure can take on the following values to
indicate the type of context used.NSSS_NCP_CTX_F—Directory Service API context
indicator flagNSSS_LDAP_CTX_F—LDAP context indicator flag <reserved>

targetObject
(IN) This is the optional RDN (relative distinguished name or "short name") of the target object
that contains the user's secrets. You should have at least READ/WRITE privileges over the
target object.

ssFlags
(IN) This is a set of flags for initializing secrets:

Value Description

NSSS_ALL_STRINGS_UNICODE_F Indicates that all applicable char strings (such as
targetObject, secretID, etc.) are already in Unicode and
the API does not need to perform conversion from local
code page to Unicode. This flag also instructs the API not
to convert the return char strings to local code page.

NOTE: This is a feature of SSO client Version 1.1 and
will not work on the older versions.

NSSS_SET_TREE_NAME_F Sets the tree name.

NSSS_DESTROY_CONTEXT_F Internally destroys the DS context passed in. This flag
can be used on the last call to SecretStore to destroy the
context that was used.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
searchString
(IN) Set to *, NULL, or "" if all entries are desired in the search. Use the asterisk "*" as
delimiter to search for specific entries with known prefixes, such as
"MYAppSecretNumber_*".

count
(OUT) The number of secret identifiers stored for the user.

secretIDList
(OUT) An asterisk "*" separated list of secret identifiers matching the search string.

ext
(OUT) If present, this structure can return a set of applicable future extensions for the secrets.

Return Values
These are common return values for this function; see Chapter 4, “Return Values,” on page 67 for
more information.

Remarks
The memory allocated for the secretIDBuffer should be set to NSSS_ENUM_BUFFER_GUESS.
This should be enough memory for most applications.

If this call returns NSSS_ERR_MORE_DATA (not a fatal error), call it again with a buffer the size
of returned secretIDList->len. If the buffer is too small for all of the data in the SecretStore, the
returned buffered from the server is stuffed as much as it has room. search string can be used to
change the scope of the search when buffer size is a constraint.

Value Description

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure such as
memory allocation.

NSSS_E_CORRUPTED_STORE This indicates data corruption in SecretStore.

NSSS_E_NICI_FAILURE NICI failure detected.

NSSS_E_INVALID_SECRET_ID Secret ID is not in the SecretStore.

NSSS_E_ACCESS_DENIED eDirectory denied access to an object or attributed related
to the SecretStore.

NSSS_E_STORE_NOT_FOUND Client does not have a SecretStore or the schema is not
extended to begin with.

NSSS_E_NDS_INTERNAL_FAILURE Some eDirectory operation has failed internally.

NSSS_E_INCOMPATIBLE_VERSION Client SecretStore is not compatible with server
SecretStore.

NSSS_E_INVALID_TARGET_OBJECT Target object is not the type designated for SecretStore
attachment.
Functions 81

82 NDK: Secre

novdocx (E
N

U
) 01 February 2006
See Also
NSSSReadSecret (page 90)
NSSSWriteSecret (page 107)
NSSSRemoveSecret (page 93)
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NSSSGetNextSHSEntry
Specifies sequential calls required to obtain the Shared Secret data returned to
NSSSReadSharedSecret (page 88).

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSGetNextSHSEntry
(
 BOOL bRestart,
 void *handle,
 in *keyLen,
 unsigned long *key,
 int *valLen,
 unsigned char *val,
 unsigned long ssCtxFlags);

Parameters
bRestart

(IN) Specifies location in the buffer to begin search. Set to 1 to begin from the beginning of the
buffer, otherwise, set to 0.

handle
(IN) Points to the handle created by NSSSCreateSHSHandle (page 78).

keyLen
(OUT) Points to the length of the key.

key
(OUT) Points to the key used for storing key-value pair data as defined in the SharedSecret
format.

valLen
(OUT) Points to the length of the value.

val
(OUT) Points to the value used to for storing key-value pair data as defined in the SharedSecret
format.

ssCtxFlags
(IN) Specifies an optional structure that can be initialized by calling
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.
NSSS_NCP_CTX_F—Directory Service API context indicator flag
NSSS_LDAP_CTX_F—LDAP context indicator flag <reserved>
Functions 83

84 NDK: Secre

novdocx (E
N

U
) 01 February 2006
Return Values

Remarks
Sequential calls to this function contain the handle, the unsigned long context flag from the user-
populated SSS_CONTEXT_T struct passed into NSSSReadSharedSecret (page 88), and pointers to
user-allocated key/value buffer and length parameters which are populated upon return of the call.

See Also
NSSSAddSHSEntry (page 76)
NSSSRemoveSharedSecret (page 97)
See other Shared Secret buffer calls here.

Value Description

NSSS_SUCCESS The operation succeeded in returning a key or value data.

NSSS_E_SH_SECRET_FAILURE Shared Secret processing and operations failed

–1 The operation has completed its search.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NSSSGetServiceInformation
Returns service information from the SecretStore for authenticated users of a Single Sign-on
enabled application.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSGetServiceInfomaion
(
 SSS_CONTEXT_T *callerContext,
 SS_OBJECT_DN_T *targetObjDN,
 unsigned long ssFlags,
 SSS_GSINFOEXT_T *gsInfo, //mandatory
 SS_EXT_T *ext);

Parameters
callerContext

(IN) This handle can be initialized by making calls to eDirectory prior to SecretStore or
requesting NSSSGetServiceInformation to initialize it. The flags field can take on these values
to indicate the type of context used:

targetObjDN
(IN) This is the optional RDN (relative distinguished name or "short name") of the target object
that contains the user's secrets. The caller should have at least READ/WRITE privileges over
the target object.

NOTE: For binding to server over LDAP/SSL this parameter is mandatory and it should be in
fully qualified LDAP form ("cn=user, ou=users, o=novell").

ssFlags
(IN) This is a set of flags for initializing secrets:

Value Description

NSSS_NCP_CTX_F Sets the NCP context indicator flag.

NSSS_LDAP_CTX_F Sets the LDAP context indicator flag.

NSSS_INIT_LDAP_SS_HANDLE_F Set when init is passed into the handle without bind. This is
done when you do the bind for contexts initialized outside of
SecretStore client.

NSSS_DEINIT_LDAP_HANDLE_F Deinitializes the passed in handle when you want to
perform the unbind later (for contexts initialized outside of
SecretStore client).

NSSS_REINIT_TARGET_DN_F Reinitializes the handle to a new target DN. Set when the
administrator plans to switch from one target DN to another.
Functions 85

86 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSS_ALL_STRINGS_UNICODE_F as defined by Section 5.4.4, “Input Only Flags for All
APIs,” on page 73.
NSSS_SET_TREE_NAME_F as defined by Section 5.4.4, “Input Only Flags for All APIs,” on
page 73.
NSSS_GET_CONTEXT_F as defined by Section 5.4.5, “Input Only Flag for GetServiceInfo
API,” on page 73.
NSSS_DESTROY_CONTEXT_F
(OUT)
NSSS_ENHANCED_PROTECT_INFO_F—Secret is marked for enhanced protection.
NSSS_EP_MASTER_PWORD_PRESENT_F—There is a master password on the SecretStore
(Admin configurable option on the server).
NSSS_MP_NOT_ALLOWED_F—The use of master password has been disabled by the
service.

ext
(OUT) If present, this structure can return a set of applicable future extensions for the secrets.

Return Values
These are common return values for this function; see Chapter 4, “Return Values,” on page 67 for
more information.

Remarks
This can authenticate and connect the SecretStore client to the target SecretStore server. The
initialized context (NCP/LDAP) can be utilized across other calls to have an ongoing session with
SecretStore. This allows considerable performance enhancement by reusing credentials across

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure such
as memory allocation.

NSSS_E_CORRUPTED_STORE This indicates data corruption in SecretStore.

NSSS_E_NICI_FAILURE NICI failure detected.

NSSS_E_INVALID_SECRET_ID Secret ID is not in the SecretStore.

NSSS_E_ACCESS_DENIED eDirectory denied access to an object or attributed
related to the SecretStore.

NSSS_E_STORE_NOT_FOUND Client does not have a SecretStore or the schema is not
extended to begin with.

NSSS_E_NDS_INTERNAL_FAILURE Some eDirectory operation has failed internally.

NSSS_E_INCOMPATIBLE_VERSION Client SecretStore is not compatible with server
SecretStore.

NSSS_E_INVALID_TARGET_OBJECT Target object is not the type designated for SecretStore
attachment.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
multiple calls and avoiding reinitialization per call. These new SecretStore calls can still perform
per-call initialization and operations for connectors.

IMPORTANT: Because the (*) character is reserved, when using SecretStore, no names in secrets
should contain (*).

See Also
NSSSReadSecret (page 90)
NSSSWriteSecret (page 107)
NSSSRemoveSecret (page 93)
Functions 87

88 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSReadSharedSecret
Reads data from an existing Shared Secret to retrieve secret data from a user's SecretStore located on
eDirectory.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSReadSharedSecret
(
 void *handle,
 SS_SH_SECRET_ID_T *pSharedSecret,
 SSS_CONTEXT_T *context,
 SS_OBJECT_DN_T *targetObjDN,
 unsigned long ssFlags,
 SS_PWORD_T *epPassword,
 SSS_READEXT_T *readData,
 SS_EXT_T *ext
);

Parameters
handle

(IN) Specifies the handle created by NSSSCreateSHSHandle (page 78).

pSharedSecret
(IN) Points to the user-populated SS_SH_SECRET_ID_T struct containing the shared secret
type, name, and length.

context
(IN) Points to an optional structure that can be initialized by making a prior call to
NSSSGetServiceInformation (page 85). The flags field of the structure can take on the
following values to indicate the type of context used.NSSS_NCP_CTX_F—Directory Service
API context indicator flagNSSS_LDAP_CTX_F—LDAP context indicator flag <reserved>

targetObjDN
(IN) Points to the optional RDN (relative distinguished name or "short name") of the target
object that contains the user's secrets. The caller should have at least READ/WRITE privileges
over the target object.

NOTE: For binding to server over LDAP/SSL this parameter is mandatory and it should be in
fully qualified LDAP form ("cn=user, ou=users, o=novell").

ssFlags
(IN) Specifies the flags used when making the call to NSSSReadSecret (page 90).

epPassword
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
(IN) Points to an optional field to pass in the Master Password or the Enhanced Protection
Password for reading a secret. When neither one of the passwords are present, you can pass in a
NULL.

readData
(IN) Points to the extension to be set to read data stored in a user's secrets.

ext
(IN) Points to the extensions used for the secrets.

Return Values

Remarks
This function passes the handle, as well as a user-populated SS_SH_SECRET_ID_T structure,
containing the shared secret type, name, and length. It also points to internally allocated key and
value buffers

See Also
NSSSReadSecret (page 90)
NSSSWriteSharedSecret (page 110)
See other Shared Secret Buffer calls here.

Value Description

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to a failure such as
improper memory allocation.

NSSS_E_UTF8_OP_FAILURE The UTF8 string operations failed.

NSSS_E_INVALID_PARAM The API parameter is not initialized.

NSSS_E_SECRET_ID_TOO_SHORT The length of the Secret ID should be greater than zero.
Functions 89

90 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSReadSecret
Reads the secrets from the SecretStore service for an authenticated user of a SecretStore-enabled
application.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSReadSecret
(
 SSS_CONTEXT_T callerContext,
 SS_OBJECT_DN_T *targetObject,
 unsigned long ssFlags,
 SS_PWORD_T epPassword
 SSS_READEXT_T readInfo,
 SS_SECRET_ID_T *secretID,
 SS_SECRET_T *secretValue,
 SS_EXT_T *ext
);

Parameters
callerContext

(IN) Specifies an optional structure that can be initialized by making a call to
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.NSSS_NCP_CTX_F—
Directory Service API context indicator flagNSSS_LDAP_CTX_F—LDAP context indicator
flag <reserved>

targetObject
(IN) Points to the optional RDN (relative distinguished name or "short name") of the target
object that contains the user's secrets. You should have at least READ/WRITE privileges over
the target object.

ssFlags
(IN) Specifies a set of flags for initializing secrets.

Value Description

NSSS_ALL_STRINGS_UNICODE_F This flag indicates that all applicable char strings such
as targetObject, secretID etc., are already in Unicode
and the API does not need to perform conversion from
local code page to Unicode. This flag instructs the API
not to convert the return char strings to local code page
as well. This is a feature of SSO client v1.1 and does
not work on the older versions.

NSSS_ENHANCED_PROTECTION_F Enhanced Protection indicator flag for Read and Write.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
epPassword
(IN) Specifies an optional field to pass in the Master Password or the Enhanced Protection
Password for reading a secret. When neither one of the passwords are present, you can pass in a
NULL.

readInfo
(OUT) Specifies the structure that returns the status information coming back from reading a
secret.

secretID
(IN) Points to a unique secret identifier chosen by the application that should be supplied to
locate the application secret values in the user’s secrets, preferably in the Novell conventional
format described earlier in this document.

secretValue
(OUT) Points to a buffer that the client allocates for the returned secret value. A call with
"secretValue->len=0" returns the required buffer size in "secretValue->size".

ext
(OUT) If present, points to a set of applicable future extensions for the secrets.

Return Values
These are common return values for this function (see Chapter 4, “Return Values,” on page 67 for
more information):

NSSS_EP_MASTER_PWORD_USED_F Enables the user to supply the EP master password to
unlock the SecretStore in place of the previous
eDirectory password.

NSSS_REPAIR_THE_STORE_F Request all possible repairs on damaged store.

NSSS_SET_TREE_NAME_F Sets the tree name.

NSSS_DESTROY_CONTEXT_F Internally destroys the DS context passed in. This flag
can be used on the last call to SecretStore to destroy
the context that was used.

Value Description

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure such as
memory allocation.

NSSS_E_CORRUPTED_STORE This indicates data corruption in SecretStore.

NSSS_E_NICI_FAILURE NICI failure detected.

NSSS_E_INVALID_SECRET_ID Secret ID is not in the SecretStore.

NSSS_E_ACCESS_DENIED eDirectory denied access to an object or attribute related to
the SecretStore.

Value Description
Functions 91

92 NDK: Secre

novdocx (E
N

U
) 01 February 2006
Remarks
This SecretStore call accesses the service on behalf of a logged in and authenticated user. It returns
to the client component of the application a clear copy of the application's secrets stored in
SecretStore.

The unique secretID that was chosen for this application when the user’s SecretStore was being
populated is passed in as input. As a result, the object is located in the tree and the SecretStore is
read until the secretID is located. When the proper secret is located in the SecretStore, it is decrypted
and returned in the secretValue buffer allocated for the purpose. Since the actual required size of the
secret buffer is returned regardless of the success or failure of this call, the client can make a second
call with the proper buffer size if the original request failed due to insufficient buffer size.

If the targetObject is of the "User" type in eDirectory, then the callerContext and the targetObject
should match. In other words, only the owner of the SecretStore can read the secrets. If the
targetObject is not a User, the call that has proper access rights can read SecretStore on a non-User
object type in eDirectory.

The SecretCount field can return the count of secrets in the SecretStore if the client is talking to a
Version 2.0 SecretStore on the server.

NOTE: sssinit.exe enables an administrator to extend the schema on a non-user object for
SecretStore. This tool and the SecretStore product installation by default extends schema on a non-
user object.

See Also
NSSSWriteSecret (page 107)

NSSS_E_STORE_NOT_FOUND Client does not have a SecretStore or the Schema is not
extended to begin with.

NSSS_E_NDS_PWORD_CHANGE Admin has changed the user password and as a result the
client's SecretStore is locked (non-repudiation).

NSSS_E_NDS_INTERNAL_FAILURE Some eDirectory operation has failed internally.

NSSS_E_INCOMPATIBLE_VERSION Client SecretStore is not compatible with server SecretStore.

NSSS_E_INVALID_TARGET_OBJECT Target object is not the type designated for SecretStore
attachment.

NSSS_E_EP_ACCESS_DENIED Enhanced Protection password validation failed.

Value Description
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NSSSRemoveSecret
Removes the specified secret from SecretStore.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NWSSRemoveSecret
(
 SSS_Context_T callerContext,
 SS_OBJECT_DN_T *targetObject,
 unisgned long ssFlags,
 SS_SECRET_ID_T *secretID,
 SS_EXT_T *ext
);

Parameters
callerContext

(IN) Specifies an optional structure that can be initialized by calling
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.NSSS_NCP_CTX_F—
Directory Service API context indicator flagNSSS_LDAP_CTX_F—LDAP context indicator
flag <reserved>

targetObject
(IN) Points to an optional RDN (relative distinguished name or "short name") of the target
object that contains the user's secrets. You should have at least READ/WRITE privileges over
the target object.

ssFlags
(IN) Specifies a set of flags for initializing secrets.

secretID

Value Description

NSSS_ALL_STRINGS_UNICODE_F Indicates that all applicable char strings such as
targetObject, secretID etc., are already in Unicode and
the API does not need to perform conversion from local
code page to Unicode. This flag instructs the API not to
convert the return char strings to local code page as well.
This is a feature of SSO client v1.1 and will not work on
the older versions.

NSSS_SET_TREE_NAME_F Sets the tree name.

NSSS_DESTROY_CONTEXT_F Internally destroys the DS context passed in. This flag can
be used on the last call to SecretStore to destroy the
context that was used.
Functions 93

94 NDK: Secre

novdocx (E
N

U
) 01 February 2006
(IN) Points to a unique secret identifier chosen by the application that should be supplied to
locate the application secret values in the user's SecretStore to be removed.

ext
(OUT) If present, returns a set of applicable future extensions for the secrets.

Return Values
These are common return values (for more information, see Chapter 4, “Return Values,” on
page 67):

Remarks
The NSSSRemoveSecret (page 93) call removes an identified secret from the SecretStore for the
user. If the secret happens to be the last secret in the user's SecretStore the SecretStore is removed
completely.

NOTE: This function formerly was called NSSSRemoveSecretID.

See Also
NSSSReadSecret (page 90)
NSSSWriteSecret (page 107)
NSSSEnumerateSecretIDs (page 80)
NSSSRemoveSecret (page 93)

Value Description

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure such as
memory allocation.

NSSS_E_CORRUPTED_STORE This indicates data corruption in SecretStore.

NSSS_E_NICI_FAILURE NICI failure detected.

NSSS_E_INVALID_SECRET_ID Secret ID is not in the SecretStore.

NSSS_E_ACCESS_DENIED eDirectory denied access to an object or attribute related to
the SecretStore.

NSSS_E_STORE_NOT_FOUND Client does not have a SecretStore or the Schema is not
extended to begin with.

NSSS_E_NDS_INTERNAL_FAILURE Some eDirectory operation has failed internally.

NSSS_E_INCOMPATIBLE_VERSION Client SecretStore is not compatible with server
SecretStore.

NSSS_E_INVALID_TARGET_OBJECT Target object is not the type designated for SecretStore
attachment.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NSSSRemoveSecretStore
Removes SecretStore from the eDirectory object.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSRemoveSecretStore
(
 SSS_CONTEXT_T callerContext,
 SS_OBJECT_DN_T *targetObject,
 unsigned long ssFlags,
 SS_EXT_T *ext
);

Parameters
callerContext

(IN) Specifies an optional structure that can be initialized by making a call to
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.NSSS_NCP_CTX_F—
Directory Service API context indicator flagNSSS_LDAP_CTX_F—LDAP context indicator
flag <reserved>

targetObject
(IN) Points to the optional RDN (relative distinguished name or "short name") of the target
object that contains the user's secrets. You should have at least READ/WRITE privileges over
the target object.

ssFlags
(IN) Specifies a set of flags for initializing secrets.

ext
(OUT) If present, points to a set of applicable future extension returns for the secrets.

Value Description

NSSS_ALL_STRINGS_UNICODE_F Indicates that all applicable char strings such as
targetObject, secretID etc., are already in Unicode and
the API does not need to perform conversion from local
code page to Unicode. This flag instructs the API not to
convert the return char strings to local code page as well.
This is a feature of SSO client Version 1.1 and will not
work on the older versions.

NSSS_SET_TREE_NAME_F Sets the tree name.

NSSS_DESTROY_CONTEXT_F ***
Functions 95

96 NDK: Secre

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values (for more information, see Chapter 4, “Return Values,” on
page 67):

See Also
NSSSEnumerateSecretIDs (page 80)
NSSSReadSecret (page 90)
NSSSWriteSecret (page 107)

Value Description

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure
such as memory allocation.

NSSS_E_CORRUPTED_STORE This indicates data corruption in SecretStore.

NSSS_E_NICI_FAILURE NICI failure detected.

NSSS_E_INVALID_SECRET_ID Secret ID is not in the SecretStore.

NSSS_E_ACCESS_DENIED eDirectory denied access to an object or attribute
related to the SecretStore.

NSSS_E_STORE_NOT_FOUND Client does not have a SecretStore or the Schema is
not extended to begin with.

NSSS_E_NDS_INTERNAL_FAILURE Some eDirectory operation has failed internally.

NSSS_E_INCOMPATIBLE_VERSION Client SecretStore is not compatible with server
SecretStore.

NSSS_E_INVALID_TARGET_OBJECT Target object is not the type designated for
SecretStore attachment.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NSSSRemoveSharedSecret
Removes a Shared Secret from a user’s SecretStore on eDirectory.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSRemoveSharedSecret
(
 SS_SH_SECRET_ID_T *pSharedSecret,
 SSS_CONTEXT_T *context,
 SS_OBJECT_DN_T *targetObjDN,
 unsigned long ssFlags,
 SS_EXT_T *ext
);

Parameters
pSharedSecret

(IN) Points to the user-populated SS_SH_SECRET_ID_T struct containing the shared secret
type, name, and length.

context
(IN) Specifies an optional structure that can be initialized by making a call to
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.
NSSS_NCP_CTX_F—Directory Service API context indicator flag
NSSS_LDAP_CTX_F—LDAP context indicator flag <reserved>

targetObjDN
(IN) Points to the optional relative distinguished name (RDN or “short name”) of the target
object that contains the user's secrets. You should have at least READ/WRITE privileges over
the target object.

NOTE: For binding to server over LDAP/SSL this parameter is mandatory and it should be in
fully qualified LDAP form ("cn=user, ou=users, o=novell").

ssFlags
(IN) Specifies the flags passed to NSSSRemoveSecret (page 93).

Value Description

NSSS_ALL_STRINGS_UNICODE_F Indicates that all applicable char strings such as
targetObject, secretID etc., are already in Unicode and
the API does not need to perform conversion from local
code page to Unicode. This flag instructs the API not to
convert the return char strings to local code page as well.
This is a feature of SSO client v1.1 and will not work on
the older versions.
Functions 97

98 NDK: Secre

novdocx (E
N

U
) 01 February 2006
ext

(IN) Points to the extensions used for the secrets.

Return Values

Remarks
This function passes a user-populated SS_SH_SECRET_ID_T structure that contains the shared
secret type, name, and length. It also passes the populated SSS_CONTEXT_T and
SS_OBJECT_DN_T structures, ssFlags, and the SS_EXT_T structures that are normally passed into
the call to NSSSRemoveSecret. Consequently, this function provides flexibility in making calls to
trees and user DNs other than the primary connection.

NSSS_SET_TREE_NAME_F Sets the tree name.

NSSS_DESTROY_CONTEXT_F Internally destroys the DS context passed in. This flag can
be used on the last call to SecretStore to destroy the
context that was used.

Value Description

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure
such as memory allocation.

NSSS_E_CORRUPTED_STORE This indicates data corruption in SecretStore.

NSSS_E_NICI_FAILURE A NICI failure was detected.

NSSS_E_INVALID_SECRET_ID Secret ID is not in the SecretStore.

NSSS_E_ACCESS_DENIED eDirectory denied access to an object or attribute
related to the SecretStore.

NSSS_E_STORE_NOT_FOUND The client does not have a SecretStore or the
schema is not extended to begin with.

NSSS_E_NDS_INTERNAL_FAILURE Some eDirectory operation has failed internally.

NSSS_E_INCOMPATIBLE_VERSION The client SecretStore is not compatible with the
server SecretStore.

NSSS_E_INVALID_TARGET_OBJECT The target object is not the type designated for the
SecretStore attachment.

NSSS_E_SECRET_ID_TOO_SHORT The length of the Secret ID should be greater than
zero.

NSSS_E_INVALID_PARAM The API parameter is not initialized.

Value Description
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
See Also
NSSSRemoveSecret (page 93)
See other Shared Secret buffer calls here.
Functions 99

100 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSRemoveSHSEntry
Removes a key or a value in a key-value pair stored in a Shared Secret.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSRemoveSHSEntry
(
 void *handle,
 unsigned char *key,
 unsigned char *val,
 unsigned long ssCtxFlags
);

Parameters
handle

(IN) Specifies the handle created by NSSSCreateSHSHandle (page 78).

key
(IN) Points to the value of the key-value pair desired to be removed.

val
(IN) Points to the value of the key-value pair desired to be removed.

ssCtxFlags
(IN) Specifies an optional structure that can be initialized by calling
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.
NSSS_NCP_CTX_F—Directory Service API context indicator flag
NSSS_LDAP_CTX_F—LDAP context indicator flag <reserved>

Return Values

Value Description

NSSS_SUCCESS The operation succeeded in returning a key or value data.

NSSS_E_SH_SECRET_FAILURE Shared Secret processing and operations failed.

NSSS_E_INVALID_PARAM The API parameter is not initialized.

NSSS_E_SYSTEM_FAILURE Some internal operating system services have not been
available.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
Remarks
This function contains the handle, pointers to user-allocated key and value buffers, and the unsigned
long context flag member of the SSS_CONTEXT_T struct populated from calling
NSSSGetServiceInformation (page 85).

See Also
NSSSAddSHSEntry (page 76)
NSSSGetNextSHSEntry (page 83)
Functions 101

102 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSSetEPMasterPassword
A special function for use by administrative utilities.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSSetEPMasterPassword
(
 SSS_CONTEXT_T *callerContext,
 SS_OBJECT_DN_T *targetObjDN,
 unsigned long ssFlags,
 SS_PWORD_T *password,
 SS_HINT_T *hint,
 SS_EXT_T *ext
);

Parameters
callerContext

(IN) Points to an optional structure that can be initialized by making a call to
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.NSSS_NCP_CTX_F—
Directory Service API context indicator flagNSSS_LDAP_CTX_F—LDAP context indicator
flag <reserved>

targetObject
(IN) Points to the optional RDN (relative distinguished name or "short name") of the target
object that contains the user's secrets. The caller should have at least READ/WRITE privileges
over the target object.

ssFlags
(IN) Specifies the set of flags for initializing secrets:

Value Description

NSSS_ALL_STRINGS_UNICODE_F Indicates that all applicable char strings such as
targetObject, secretID, etc., are already in Unicode
and the API does not need to perform conversion
from local code page to Unicode. This flag instructs
the API not to convert the return char strings to local
code page as well. This is a feature of SSO client
Version 1.1 and will not work on the older versions.

NSSS_REMOVE_LOCK_FROM_STORE_F Causes SecretStore to delete all of the enhanced
protected secrets that are locked and, therefore,
remove the lock from SecretStore.

NSSS_EP_MASTER_PWORD_USED_F Enables the user to supply the EP master password
to unlock the SecretStore in place of the previous
eDirectory password.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
password
(IN) Points to the master password to be set.

hint
(IN) Points to the hint for the master password to be set by the user.

ext
(OUT) If present, points to a set of applicable future extension returns for the secrets.

Return Values
These are common return values for this function; see Chapter 4, “Return Values,” on page 67 for
more information.

Remarks
This call can set a master password on the user's SecretStore if it is allowed by the service and if the
user has enhanced protection set on their SecretStore.

See Also
See other Shared Secret Buffer calls here.

NSSS_SET_TREE_NAME_F Sets the tree name.

NSSS_DESTROY_CONTEXT_F ***

Value Description
Functions 103

104 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSUnlockSecrets
This call unlocks the client's SecretStore after an administrative change of the client's eDirectory
password has caused the user's SecretStore with enhanced protection secrets to become locked.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSUnlockSecrets
(
 SSS_CONTEXT_T callerContext,
 SS_OBJECT_DN_T *targetObject,
 unsigned long ssFlags,
 SS_PWORD_T *password,
 SS_EXT_T *ext
);

Parameters
callerContext

(IN) Specifies the optional structure that can be initialized by making a call to
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used:NSSS_NCP_CTX_F—
Directory Service API context indicator flagNSSS_LDAP_CTX_F—LDAP context indicator
flag <reserved>

targetObject
(IN) Points to the optional RDN (relative distinguished name or "short name") of the target
object that contains the user's secrets. The caller should have at least READ/WRITE privileges
over the target object.

ssFlags
(IN) Specifies the set of flags for initializing secrets:

Value Description

NSSS_ALL_STRINGS_UNICODE_F Indicates that all applicable char strings such as
targetObject, secretID, etc., are already in Unicode
and the API does not need to perform conversion
from local code page to Unicode. This flag instructs
the API not to convert the return char strings to local
code page as well. This is a feature of SSO client
Version 1.1 and will not work on the older versions.

NSSS_REMOVE_LOCK_FROM_STORE_F Causes SecretStore to delete all of the enhanced
protected secrets that are locked and, therefore,
remove the lock from SecretStore.

NSSS_EP_MASTER_PWORD_USED_F Enables the user to supply the EP master password
to unlock the SecretStore in place of the previous
eDirectory password.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
password
(IN) This points to the client's clear text password.

ext
(OUT) If present, this structure can return a set of applicable future extensions for the secrets.

Return Values
These are common return values for this function; see Chapter 4, “Return Values,” on page 67 for
more information.

Remarks
NSSSUnlockSecrets the client's SecretStore after an administrative change of the client's eDirectory
password. When administrator changes a eDirectory user's password, the SecretStore service is
automatically locked. A prior call to NSSSReadSecret (page 90) will fail with the
NSSS_E_NDS_PWORD_CHANGED. Then the client should make a call to NSSSUnlockSecrets
(page 104) and supply the client's old eDirectory password to unlock the SecretStore.

If the service allows master password for users and the user has set a master password on their
SecretStore prior to locking, then the user can use the master password to unlock the SecretStore.
This helps for instances when the user forgets the eDirectory password.

NSSS_SET_TREE_NAME_F Sets the tree name.

NSSS_DESTROY_CONTEXT_F ***

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure such as
memory allocation.

NSSS_E_CORRUPTED_STORE This indicates data corruption in SecretStore.

NSSS_E_NICI_FAILURE NICI failure detected.

NSSS_E_INVALID_SECRET_ID Secret ID is not in the SecretStore.

NSSS_E_ACCESS_DENIED eDirectory denied access to an object or attribute related
to the SecretStore.

NSSS_E_STORE_NOT_FOUND Client does not have a SecretStore or the schema is not
extended to begin with.

NSSS_E_NDS_INTERNAL_FAILURE Some eDirectory operation has failed internally.

NSSS_E_INCOMPATIBLE_VERSION Client SecretStore is not compatible with server
SecretStore.

NSSS_E_UNLOCKING_FAILED Verification of the old eDirectory password failed;
therefore, unlocking the store failed.

NSSS_E_INVALID_TARGET_OBJECT Target object is not the type designated for SecretStore
attachment.

Value Description
Functions 105

106 NDK: Secre

novdocx (E
N

U
) 01 February 2006
If the password change has been due to a user forgetting the password and there is no master
password, then SecretStore is not recoverable. Consequently, the locked SecretStore should be
deleted and recreated by the client. eDirectory password changes by the user will not cause the
SecretStore to be locked.

The owner of the SecretStore can use this function call with proper flags to remove the locked
secrets or unlock the SecretStore with the previous eDirectory password or master password.

See Also
NSSSEnumerateSecretIDs (page 80)
NSSSReadSecret (page 90)
NSSSWriteSecret (page 107)
Chapter 4, “Return Values,” on page 67
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
NSSSWriteSecret
This call writes a secret to the user's SecretStore for authenticated users of SecretStore-enabled
applications.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSWriteSecret
(
 SSS_Context_T callerContext,
 SS_OBJECT_DN_T *targetObject,
 unsigned long ssFlags
 SS_PWORD_T *epPassword,
 SS_SECRET_ID_T *secretID,
 SS_SECRET_T *secretValue,
 SS_EXT_F *ext
);

Parameters
callerContext

(IN) This optional structure can be initialized by making a call to NSSSGetServiceInformation
(page 85) prior to use here. The flags field of the structure can take on the following values to
indicate the type of context used.NSSS_NCP_CTX_F—Directory Service API context
indicator flagNSSS_LDAP_CTX_F—LDAP context indicator flag <reserved>

targetObject
(IN) This is the optional RDN (relative distinguished name or "short name") of the target object
that contains the user's secrets. You should have at least READ/WRITE privileges over the
target object.

ssFlags
(IN) This is a set of flags for initializing secrets.

Value Description

NSSS_ENHANCED_PROTECTION_F Sets the enhanced protection ON for this secret.

NSSS_EP_PASSWORD_USED_F If Enhanced Protection is turned on (using the
NSSS_ENHANCED_PROTECTION flag), this optional
flag specifies the use of the password supplied through
the SS_WRITEEXT_T and SS_EXT_T structures.

NSSS_CHECK_SID_FOR_COLISION_F Forces the NSSSWriteSecret (page 107) to check for
the existance fo the secret in the SecretStore to prevent
from overwriting a secret by returning the appropriate
error.
Functions 107

108 NDK: Secre

novdocx (E
N

U
) 01 February 2006
epPassword
(IN) This is an optional field to pass in the Master Password or the Enhanced Protection
Password for writing a secret. When neither one of the passwords are present, you can pass in a
NULL.

secretID
(IN) This is a unique secret identifier chosen by the application that should be supplied to
locate the application secret values in the user's SecretStore.

secretValue
(IN) This is a buffer that the client allocates for the application secret value and encodes the
secret within it.

ext
(OUT) If present, this structure can return a set of applicable future extensions for the secrets.

Return Values
These are common return values for this function; see Chapter 4, “Return Values,” on page 67 for
more information.

NSSS_ALL_STRINGS_UNICODE_F This flag indicates that all applicable char strings (such
as targetObject, secretID, etc.) are already in Unicode
and the API does not need to perform conversion from
local code page to Unicode. This flag instructs the API
not to convert the return char strings to local code page
as well. This is a feature of SSO client Version 1.1 and
will not work on the older versions.

NSSS_SET-TREE_NAME_F Sets the tree name.

NSSS_DESTROY_CONTEXT_F Internally destroys the DS context passed in. This flag
can be used on the last call to SecretStore to destroy the
context that was used.

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure such as
memory allocation.

NSSS_E_CORRUPTED_STORE This indicates data corruption in SecretStore.

NSSS_E_NICI_FAILURE NICI failure detected.

NSSS_E_INVALID_SECRET_ID Secret ID is not in the SecretStore.

NSSS_E_ACCESS_DENIED eDirectory denied access to an object or attribute related
to the SecretStore.

NSSS_E_STORE_NOT_FOUND Client does not have a SecretStore or the Schema is not
extended to begin with.

NSSS_E_NDS_INTERNAL_FAILURE Some eDirectory operation has failed internally.

Value Description
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
Remarks
The NSSSWriteSecret call begins a session with SecretStore to populate it with a new secret. This
function call takes the clear copy of the application's secret from the application, encrypts it, and
stores it in the user's SecretStore in eDirectory. The user of the application must be logged in and
authenticated to eDirectory in order for this call to succeed.

The unique secret ID that was chosen for this application when installing the user's SecretStore is
passed in as input. As a result, the object is located in the tree and the SecretStore is populated by
adding the application secret values to it. Once the proper attribute value is located in the
SecretStore, it is populated or overwritten with the application secret value in the incoming buffer.
The application secret is encrypted and written to the user's secret associated with the target
application. This call overwrites the existing value if present. This call by default creates and writes
the secret and if the secret identified by the secret ID is found it will overwrite it.

The NSSS_CHECK_SID_FOR_COLLISION_F flag is used to force a check for existing secret
identified by the secret ID in the SecretStore to prevent collision. The owner and other persons with
proper access rights can use this function.

See Also
NSSSReadSecret (page 90)

NSSS_E_INCOMPATIBLE_VERSION Client SecretStore is not compatible with server
SecretStore.

NSSS_E_INVALID_TARGET_OBJECT Target object is not the type designated for SecretStore
attachment.
Functions 109

110 NDK: Secre

novdocx (E
N

U
) 01 February 2006
NSSSWriteSharedSecret
Creates a SecretID according to the Shared Secret format utilizing either the prefix SS_App or
SS_CredSet.

Syntax
#include <nssscl.h>

SS_EXTERN_LIBCALL(int) NSSSWriteSharedSecret
(
 void *handle,
 SS_SH_SECRET_ID_T *pSharedSecret,
 SSS_CONTEXT_T *context,
 SS_OBJECT_DN_T targetObjDN,
 unsigned long *ssFlags,
 SS_PWORD_T *epPassword,
 SS_EXT_T *ext
);

Parameters
handle

Specifies the handle created by NSSSCreateSHSHandle (page 78).

pSharedSecret
(IN) Points to the user-populated SS_SH_SECRET_ID_T struct containing the Shared Secret
type, name, and length.

context
(IN) Specifies an optional structure that can be initialized by making a call to
NSSSGetServiceInformation (page 85) prior to use here. The flags field of the structure can
take on the following values to indicate the type of context used.NSSS_NCP_CTX_F—
Directory Service API context indicator flagNSSS_LDAP_CTX_F—LDAP context indicator
flag <reserved>

targetObjDN
(IN) This is the optional RDN (relative distinguished name or "short name") of the target object
that contains the user's secrets. The caller should have at least READ/WRITE privileges over
the target object.

NOTE: For binding to server over LDAP/SSL this parameter is mandatory and it should be in
fully qualified LDAP form ("cn=user, ou=users, o=novell").

ssFlags
(IN) Specifies the flags used when making the call to NSSSWriteSecret (page 107).

epPassword
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
(IN) Specifies an optional field to pass in the Master Password or the Enhanced Protection
Password for reading a secret. When neither one of the passwords are present, you can pass in a
NULL.

ext
(IN) Points to the extensions used for the secrets.

Return Values

Remarks
The internal buffer is parsed according to the shared secret format defined by the parsing library.
The resulting data is passed into the secret buffer for passage into NSSSWriteSecret (page 107) and
stored as shared secrets in the SecretStore. Consequently, this function provide flexibility in making
calls to trees and user DNs other than the primary connection.

See Also
NSSSReadSharedSecret (page 88)
NSSSWriteSecret (page 107)
See other Shared Secret buffer calls here.

Value Description

NSSS_SUCCESS The operation succeeded.

NSSS_E_SYSTEM_FAILURE Some internal operation failed due to some failure such as
memory allocation.

NSSS_E_UTF8_OP_FAILURE Utf8 string operations failed.

NSSS_E_INVALID_PARAM API parameter is not initialized..

NSSS_E_SECRET_ID_TOO_SHORT Length of the Secret ID should be greater than zero.

NSSS_E_SH_SECRET_FAILURE Shared Secret processing and operations failed.

NSSS_E_SECRET_ID_EXISTS Secret ID already exists in the Secret Store.
Functions 111

112 NDK: Secre

novdocx (E
N

U
) 01 February 2006
tStore Developer Kit for C

6
novdocx (E

N
U

) 01 February 2006
6SecretStore Samples

See the SecretStore samples (../../../samplecode/ssocomp_sample/index.htm) to enable both a client
and server application using the SecretStore API. Some of the SecretStore samples are summarized
below:

• sstst.c (../../../samplecode/ssocomp_sample/sstst.c.html): The source for sstst.exe, the NCP
version of the API operations.

• lstst.c (../../../samplecode/ssocomp_sample/lstst.c.html): The source for lstst.exe, the LDAP
version of the API operations.

• nbstst.c (../../../samplecode/ssocomp_sample/nbstst.c.html): The source for nbstst.exe, the
LDAP version of the API operations with binding outside of the SecretStore APIs.

• sshtst.c (../../../samplecode/ssocomp_sample/sshtst.c.html): The source for shtst.exe, the NCP
version of the Shared Secret functions.

• lshtst.c (../../../samplecode/ssocomp_sample/lshtst.c.html): The source for lstst.exe, the LDAP
version of the Shared Secret functions.
SecretStore Samples 113

../../../samplecode/ssocomp_sample/index.htm
../../../samplecode/ssocomp_sample/sstst.c.html
../../../samplecode/ssocomp_sample/lstst.c.html
../../../samplecode/ssocomp_sample/nbstst.c.html
../../../samplecode/ssocomp_sample/sshtst.c.html
../../../samplecode/ssocomp_sample/lshtst.c.html

114 NDK: Secre

novdocx (E
N

U
) 01 February 2006
tStore Developer Kit for C

A
novdocx (E

N
U

) 01 February 2006
ASoftware Revision History

This section explains some of the important software changes that have occurred in versions of the
SecretStore Developer Kit for C.

• Section A.1, “June 1, 2005,” on page 115
• Section A.2, “March 2005,” on page 115
• Section A.3, “October 29, 2004 Midrelease,” on page 115
• Section A.4, “October 6, 2004 Release,” on page 116
• Section A.5, “June 9, 2004 Release,” on page 116
• Section A.6, “March 18, 2004 Release,” on page 116

A.1 June 1, 2005
• Section A.1.1, “Fixed an Encryption Problem,” on page 115
• Refreshed Some Sample Code Files

A.1.1 Fixed an Encryption Problem
Fixed an encryption problem in the Advanced Encryption Standard (AES) algorithm on the client
and server that caused SecretStore errors on Solaris and AIX.

A.2 March 2005
• Section A.2.1, “Updated Dependencies for .NET Framework,” on page 115
• Section A.2.2, “Updated Sample Code,” on page 115

A.2.1 Updated Dependencies for .NET Framework
Because the binary files have been compiled using Microsoft VC7, they now have dependencies on
the .NET framework. The file msvcr71.dll has been included in the build to satisfy this dependency
in the event that .NET 1.1 is not installed on the Windows machine that is running the SecretStore
Client or Server.

A.2.2 Updated Sample Code
Various bug fixes and readability improvements were made to the sample code.

A.3 October 29, 2004 Midrelease
• Removed outdated product documentation and created a dynamic link directly to the Novell

SecretStore Administration Guide. (http://www.novell.com/documentation/secretstore33/
pdfdoc/nssadm/nssadm.pdf)
Software Revision History 115

http://www.novell.com/documentation/secretstore33/pdfdoc/nssadm/nssadm.pdf
http://www.novell.com/documentation/secretstore33/pdfdoc/nssadm/nssadm.pdf

116 NDK: Secre

novdocx (E
N

U
) 01 February 2006
A.4 October 6, 2004 Release
• Fixed an internal bug in the Unix server.
• In the ConsoleOne snapin, fixed the hyperlink in the About dialog to direct the browser to the

correct Web location.

A.5 June 9, 2004 Release
• Fixed Windows server install bug. Fixed network service detection bug on the old client

nwsso.dll. Made other updates on nwsso.dll and ssmanager.exe, ssstatus.exe, and the Windows
client install.

A.6 March 18, 2004 Release
• Section A.6.1, “Revised Software Version from 3.3 to 3.3.1,” on page 116
• Section A.6.2, “Updated NICI Versioning,” on page 116
• Section A.6.3, “Enhanced SecretStore Version Checking,” on page 116
• Section A.6.4, “Added AES to Client,” on page 116
• Section A.6.5, “Enhanced Searching of Override Object,” on page 117
• Section A.6.6, “Improved Discovery of SecretStore Service Location,” on page 117
• Section A.6.7, “Enabled Server Connection,” on page 117

A.6.1 Revised Software Version from 3.3 to 3.3.1
Novell® software naming conventions now use three digits instead of two to specify version
number in the following format:

x.y.z

The first digit (x) designates the major release number of the component; the second digit (y)
designates

A.6.2 Updated NICI Versioning

A.6.3 Enhanced SecretStore Version Checking

A.6.4 Added AES to Client
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
A.6.5 Enhanced Searching of Override Object
Fixed a bug in the search algorithm to improve discovery of SecretStore on a tree. The service now
stops at the root of the partition where SecretStore is found and no longer walks the entire root of the
tree.

A.6.6 Improved Discovery of SecretStore Service Location
With 3.3.1, the SecretStore service location algorithm has been modified in anticipation of
eDirectory 8.8, which will include SecretStore. (How is SS contained as a part of eDirectory...on
server/client?)

Previously, the service location algorithm searched the root of the partition, read the entire list of
operational servers that advertised SecretStore, then found and connected to the server that
contained the override replica object. In other words, the service locator pinged all of the candidate
servers for SecretStore, then connected with the first server that returned the SecretStore service.
This process often increased network traffic and consumed network resources.

Now, with eDirectory 8.8 and above, each client contains a SecretStore service object to store
credentials.

A.6.7 Enabled Server Connection
Software Revision History 117

118 NDK: Secre

novdocx (E
N

U
) 01 February 2006
tStore Developer Kit for C

B
novdocx (E

N
U

) 01 February 2006
BRevision History

March 1, 2006 • Updated documentation template.

• Updated and fixed broken links.

October 5, 2005 • Transitioned to revised Novell documentation standards.

March 2, 2005 Fixed broken links and revised documentation to facilitate management on
the Novell Forge development site.

October 29, 2004
Midrelease

• Made technical corrections and fixed outdated links.

October 6, 2004 • Added Section 1.3.3, “Installing SSOCOMP Software,” on page 16 to
clarify how to install SecretStore LDAP software components.

• Made technical corrections and fixed broken links.

June 9, 2004 • Added Appendix A, “Software Revision History,” on page 115 to
describe ongoing API software changes in the SecretStore Developer
Kit for C API.

• Made minor documentation revisions.

December 5, 2003 Updated the documentation to reflect that the API functions now work on any
platform supported by eDirectory, including HP-UX.
Revision History 119

120 NDK: Secre

novdocx (E
N

U
) 01 February 2006
October 8, 2003 Revised document overall and added new conceptual topics about
implementing shared secrets:

• Section 1.5, “Understanding SecretStore Functions,” on page 18

• Section 1.6, “Understanding Shared Secret Functions,” on page 26

• Section 1.7, “Shared Secret Functions,” on page 30

• Section 1.2, “SecretStore API Enhancements,” on page 14

Added new task topics to explain how to implement shared secrets:

• Section 2.2, “Enabling and Maintaining SecretStore,” on page 42

• Section 2.6, “Modifying Shared Application or Credential Secrets,” on
page 45

• Section 2.7, “Removing Shared Application or Credential Secrets,” on
page 47

Revised SecretStore Structure section and added the following new shared
secret structures:

• SSS_GSINFOEXT_T (page 58)

• SS_SH_SECRET_ID_T (page 61)

• SS_ADV_CRED_T and SS_ADV_CERT_T (page 62)

• SS_ADDR_T (page 63)

• SS_ADV_BIND_INFO_T (page 64)

• SS_OBJECT_DN_T (page 65)

Added the following new functions to enable shared secret functionality:

• NSSSAddSHSEntry (page 76)

• NSSSCreateSHSHandle (page 78)

• NSSSDestroySHSHandle (page 79)

• NSSSGetNextSHSEntry (page 83)

• NSSSRemoveSharedSecret (page 97)

• NSSSRemoveSHSEntry (page 100)

• NSSSWriteSharedSecret (page 110)

• NSSSReadSharedSecret (page 88)

• Changed name of NSSRemoveSecretId to NSSSRemoveSecret
(page 93).

• Deprecated NSSSAddSecretID (obsolete 7/03) and replaced with new
shared secret functionality.

February 2002 Changed document name from “Novell Single Sign-on for C” and revised
documentation to reflect SecretStore service functionality. Deleted
NSSOOpenStreamAttribute function.
tStore Developer Kit for C

novdocx (E
N

U
) 01 February 2006
June 2001 Added extended optional data structure information for each function; added
input and output flag definitions for the functions; revised return values; and
made a number of other corrections to documentation. Also added:

1. Section 1.13, “SecretStore Service Discovery,” on page 36.

2. Section 2.3, “Enabling SSOCOMP in Applications,” on page 42.

3. NSSSGetServiceInformation (page 85).

4. NSSSSetEPMasterPassword (page 102).

September 2000 Added extended optional data structure information for each function; added
input and output flag definitions for the functions; revised return values; and
made a number of other corrections to documentation.

May 2000 Added new parameter support for Version 1.1 APIs.
Revision History 121

	NDK: SecretStore Developer Kit for C
	About This Guide
	1 Getting Started
	1.1 Novell SecretStore Background
	1.2 SecretStore API Enhancements
	1.2.1 Improved Transport and OS Platform Access
	1.2.2 Improved API Performance
	1.2.3 New Shared Secret Format

	1.3 Development Dependencies
	1.3.1 Workstation Prerequisites
	1.3.2 Server Prerequisites
	1.3.3 Installing SSOCOMP Software

	1.4 Deployment Dependencies
	1.4.1 Server Requirements
	1.4.2 Client Requirements

	1.5 Understanding SecretStore Functions
	1.5.1 SecretStore Implementation
	1.5.2 SecretStore Architecture
	1.5.3 SecretStore API General Information
	1.5.4 Single Sign-on Methods
	1.5.5 SecretStore Vault Service
	1.5.6 SecretStore Encrypted Attribute Service
	1.5.7 Connector Interfaces
	1.5.8 SecretStore Management Utilities

	1.6 Understanding Shared Secret Functions
	1.6.1 Shared Secret Terminology
	1.6.2 Shared Secret Format
	1.6.3 Shared Secret Types

	1.7 Shared Secret Functions
	1.7.1 Operational Functions
	1.7.2 Processing Functions
	1.7.3 Sequence of Shared Application or Credential Set Secret Operations
	1.7.4 Sample Code

	1.8 SecretStore Scenarios
	1.8.1 Establishing the Secret ID
	1.8.2 Enabling the Check for Secret ID Collision
	1.8.3 Enabling the First-Time User
	1.8.4 Password Changes

	1.9 eDirectory and SecretStore
	1.10 NICI and SecretStore
	1.10.1 Storage Encryption
	1.10.2 Reading and Writing Encryption
	1.10.3 Session-Oriented Security

	1.11 Naming Conventions
	1.11.1 Naming Examples

	1.12 Enhanced Protection
	1.13 SecretStore Service Discovery
	1.13.1 Distinguished Name Attribute
	1.13.2 Locating an Acceptable SecretStore Service

	1.14 Using Extension Structures
	1.14.1 Extension Structure Levels
	1.14.2 Using Extension Structures

	2 Tasks
	2.1 Displaying a Splash Screen
	2.2 Enabling and Maintaining SecretStore
	2.2.1 Server Installation for NetWare and Windows

	2.3 Enabling SSOCOMP in Applications
	2.3.1 Get Service Information
	2.3.2 Read Available Secrets
	2.3.3 Verify Connection to Proper Tree

	2.4 Writing Shared Application or Credential Secrets
	2.5 Reading Shared Application or Credential Secrets
	2.6 Modifying Shared Application or Credential Secrets
	2.6.1 Adding A Shared Secret Key
	2.6.2 Removing A Shared Secret Key

	2.7 Removing Shared Application or Credential Secrets
	2.8 SecretStore Sample Code

	3 Secret Store Structures
	3.1 Structured Definitions
	SSS_CONTEXT_T
	SS_EXT_T
	SS_HINT_T
	SS_PWORD_T
	SS_SECRET_ID_T
	SS_SECRET_T

	3.2 Service Location Information
	SS_SERVER_INFO_T
	SSS_GSINFOEXT_T
	SS_READEXT_T

	3.3 Shared Secret Structures
	SS_SH_SECRET_ID_T
	SS_ADV_CRED_T and SS_ADV_CERT_T
	SS_ADDR_T
	SS_ADV_BIND_INFO_T
	SS_OBJECT_DN_T

	4 Return Values
	5 Functions
	5.1 Enabling Functions
	5.2 Administrative Functions
	5.3 Shared Secret Functions
	5.3.1 Shared Secret Data Management Functions
	5.3.2 Shared Secret Support Functions

	5.4 API Function Flags
	5.4.1 Input Only Flags for Write API
	5.4.2 Input Only Flags for Unlock API
	5.4.3 Input Only Flags for Read API
	5.4.4 Input Only Flags for All APIs
	5.4.5 Input Only Flag for GetServiceInfo API
	5.4.6 Output Only Flags from Read API
	5.4.7 Output Only Flag from GetServiceInformation API statFlags
	5.4.8 Context Flags for The Type of Context Passed in to Initialize Context Structure
	5.4.9 Context Flags for Input and Returned from the Context Structure

	5.5 Function Prototypes
	NSSSAddSHSEntry
	NSSSCreateSHSHandle
	NSSSDestroySHSHandle
	NSSSEnumerateSecretIDs
	NSSSGetNextSHSEntry
	NSSSGetServiceInformation
	NSSSReadSharedSecret
	NSSSReadSecret
	NSSSRemoveSecret
	NSSSRemoveSecretStore
	NSSSRemoveSharedSecret
	NSSSRemoveSHSEntry
	NSSSSetEPMasterPassword
	NSSSUnlockSecrets
	NSSSWriteSecret
	NSSSWriteSharedSecret

	6 SecretStore Samples
	A Software Revision History
	A.1 June 1, 2005
	A.1.1 Fixed an Encryption Problem

	A.2 March 2005
	A.2.1 Updated Dependencies for .NET Framework
	A.2.2 Updated Sample Code

	A.3 October 29, 2004 Midrelease
	A.4 October 6, 2004 Release
	A.5 June 9, 2004 Release
	A.6 March 18, 2004 Release
	A.6.1 Revised Software Version from 3.3 to 3.3.1
	A.6.2 Updated NICI Versioning
	A.6.3 Enhanced SecretStore Version Checking
	A.6.4 Added AES to Client
	A.6.5 Enhanced Searching of Override Object
	A.6.6 Improved Discovery of SecretStore Service Location
	A.6.7 Enabled Server Connection

	B Revision History

