
n

NDK: Novell ODBC Driver for eDirectory
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
F e b r u a r y 2 8 , 2 0 0 7

N O V E L L O D B C D R I V E R F O R
E D I R E C T O R Y TM R E A D - W R I T E

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. Please
refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

novdocx (E
N

U
) 01 February 2006
Novell TradeMarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html)

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
ODBC Driver for eDirectory 7

1 Requirements 9
1.1 Resource Restrictions . 9
1.2 Hardware and Software Requirements . 9

2 Getting Started 11
2.1 Installing the ODBC Driver. 11
2.2 Installing an SQL Report Generating Tool . 12
2.3 Logging In to the eDirectory Tree . 12
2.4 Check eDirectory Rights . 12
2.5 Selecting the eDirectory Data Source . 12

2.5.1 Adding an eDirectory Data Source . 13
2.5.2 Deleting an eDirectory Data Source . 14
2.5.3 Modifying an eDirectory Data Source . 14

2.6 Selecting the Data and Generating the Report . 15
2.7 Inserting, Updating or Deleting Entries from the eDirectory Data Source 15

3 Novell eDirectory and SQL Integration 17
3.1 Mapping of eDirectory Data to Relational Tables . 17
3.2 Special Columns in Tables . 18
3.3 Composite Attributes . 19
3.4 Multi-Valued Attributes. 20

3.4.1 Multiple Rows . 20
3.4.2 Concatenating Rows . 21

3.5 Data Type Mappings . 23
3.6 Effective Rights Table . 25
3.7 eDirectory Class Types . 27

3.7.1 Super Classes . 27
3.7.2 Auxiliary Classes . 28

4 Tasks 29
4.1 ACL Attribute Query. 29
4.2 Auxiliary Class Queries . 30
4.3 Concatenation Query. 31
4.4 Container Class Query . 31
4.5 Creating Custom Tables . 32

4.5.1 Defining Tables . 32
4.5.2 Where are the User-Defined Tables Stored? . 32
4.5.3 Defining Tables from a Text File . 32

4.6 Join Query . 33
4.7 Last Login Time Query . 33
4.8 Parent Container Queries . 34
4.9 Restricted Effective Rights Query . 35
4.10 Simple Effective Rights Query . 36
5

6 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.11 Simple Search Query . 39
4.12 Simple Update Queries . 39

4.12.1 Insert . 40
4.12.2 Update . 40
4.12.3 Delete. 40

4.13 Sorting Query . 40
4.14 Super Class Query . 41
4.15 User Class Query . 42
4.16 Optimizing the ODBC Driver Performance . 42

5 ODBC Driver Advanced Write Capability 45
5.1 Cursor . 45

5.1.1 Updating Using the Cursor. 45
5.1.2 Getting the Cursor Name . 45
5.1.3 Excerpt of a Sample Program . 46

6 Troubleshooting 49
6.1 Common Problems. 49
6.2 Uninstalling the Novell ODBC Driver for eDirectory . 50

A Revision History 51
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
ODBC Driver for eDirectory

The Novell® ODBC Driver for Novell eDirectoryTM Read-Write provides an Open Database
Connectivity (ODBC) driver specifically designed to query and retrieve eDirectory data. This
eDirectory ODBC driver serves as an independent interface for extracting and reporting specified
directory information for use in the applications that you use every day. It allows you to populate
reports, import data into your custom programs, or view data within a spreadsheet. In addition, the
Novell ODBC driver for eDirectory retains the standard ODBC qualities of simplicity, high
performance, and independent interface programming to make the job of reporting and retrieving
information quick and easy.

With the implementation of the write feature, you can now do simple update operations like insert,
modify, and delete on eDirectory objects. Refer to Section 2.7, “Inserting, Updating or Deleting
Entries from the eDirectory Data Source,” on page 15 for more details. The driver also comes with
more advanced features like update enabled cursor and positioned update. Refer to Chapter 5,
“ODBC Driver Advanced Write Capability,” on page 45 for more details.

The architecture behind the Novell ODBC driver for eDirectory consists of the application, the
ODBC.DLL Driver Manager, the Novell ODBCNDS.DLL driver, the network, and eDirectory
itself. The driver employs ODBCNDS.DLL to abstract the directory tree into accessible relational
database tables, which hides the complexity of the underlying directory syntax. Information is
selected and ordered from the relational tables using standard Structured Query Language (SQL)
statements embedded into the application.

This guide consists of the following sections:

• Requirements
• Novell eDirectory and SQL Integration
• Tasks
• ODBC Driver Advanced Write Capability
• Troubleshooting
• Revision History

Audience

This guide is intended for developers who are not familiar with all of the components of the LDAP
ODBC SDK.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comment feature at the bottom of each page of the
online documentation.

Additional Information

For the related developer support postings for ODBC Driver for eDirectory, see the Developer
Support Forums (http://developer.novell.com/ndk/devforums.htm).
7

http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm

8 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Documentation Updates

For the most recent version of this guide, see the ODBC Driver for eDirectory NDK page (http://
developer.novell.com/ndk/odbc.htm).

Docuentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX*, should use forward slashes as required by your software.
l ODBC Driver for eDirectory

http://developer.novell.com/ndk/odbc.htm

1
novdocx (E

N
U

) 01 February 2006
1Requirements

The Novell® ODBC driver for Novell eDirectoryTM has hardware and software requirements for the
workstation you will run it from. Beyond the basic needs to run the driver, you should impose some
resource restrictions because of the nature of the eDirectory database. See the following sections:

• Section 1.1, “Resource Restrictions,” on page 9
• Section 1.2, “Hardware and Software Requirements,” on page 9

1.1 Resource Restrictions
Since the ODBC Driver for eDirectory uses the resources of the workstation for memory and hard
disk storage, you can ask for a report that generates more data than your workstation can handle in
memory or store on the target drive.

eDirectory can contain a tremendous number of objects. For example, a container object can have

• Over 10,000 objects in NetWare 5
• Millions of objects in NDS 8

Before requesting data on all objects of a certain type from the top of the tree or from a branch, you
should have a rough estimate of how many objects you are requesting data about. If you are
generating a report for thousands of objects, you may want to generate multiple reports rather than a
single report.

Also, each object in eDirectory contains multiple attributes. For example, User objects in NDS 8 had
over 90 attributes. If you add other products which add attributes to User objects, such as
ZENworks, the number is even greater. The Novell ODBC Driver for NDS reads the schema to
determine the actual number of attributes an object contains, and an SQL query for information on
all attributes builds a table with all attributes, even those attributes which have no values. Therefore,
an SQL query for all attribute information about objects is not recommended. To keep a report to a
reasonable size, you need to select specific attributes for the report. To determine which objects have
tables and what attributes an object has, see Possible NDS Tables and Columns. You should also be
aware that you can request a report that will take a tremendous amount of time to generate. The
obvious cause is to request too much data. However, there are other causes. NDS allows data to be
replicated and stored in multiple locations which makes it possible to have some data available only
from a WAN link. Therefore, to generate reports quickly, you need to have some knowledge of how
the NDS database has been replicated and whether replicas of all partitions are stored locally or over
WAN links.

1.2 Hardware and Software Requirements
To install the Novell ODBC Driver for eDirectory, you must have workstation with the following
configuration:

• Windows 95*, Windows 98*, or Windows NT 3.51* or later
• A network card
• Novell Client32TM or NetWare ClientTM for Windows software installed
Requirements 9

10 NDK: Novel

novdocx (E
N

U
) 01 February 2006
In addition, you must have Novell Directory Services (eDirectory) installed and running on the
network.

To use the driver, you need the following amounts of disk space. The target drive can be on the
workstation or a server.

Table 1-1 Hardware and Software Requirements

Location Size Stores

Workstation 2 MB ODBCNDS.DLL, Help, Redist DLL

Target Drive 200 KB Example and information files
l ODBC Driver for eDirectory

2
novdocx (E

N
U

) 01 February 2006
2Getting Started

The following sections explain what you need to know and do to use the Novell® ODBC driver for
Novell eDirectory™ for the first time:

• Section 2.1, “Installing the ODBC Driver,” on page 11
• Section 2.2, “Installing an SQL Report Generating Tool,” on page 12
• Section 2.3, “Logging In to the eDirectory Tree,” on page 12
• Section 2.4, “Check eDirectory Rights,” on page 12
• Section 2.5, “Selecting the eDirectory Data Source,” on page 12
• Section 2.6, “Selecting the Data and Generating the Report,” on page 15
• Section 2.7, “Inserting, Updating or Deleting Entries from the eDirectory Data Source,” on

page 15

2.1 Installing the ODBC Driver
To install the Novell ODBC Driver for eDirectory, launch the install program. The standard
installation dialog boxes opens, prompting you to select a directory to load the programs. The
default installation will place the files in the C:\Novell\ODBCNDS directory. The license and
Readme files are placed here, along with a directory containing sample applications.

When you install the Novell ODBC Driver for eDirectory, the following components are loaded into
their respective directories:

• ODBCNDS.DLL file
• Configured Default eDirectory Database data source
• Sample Crystal Report and Visual Basic reports
• Help documentation

After installation, you can open the Data Source Administrator, documentation, and Visual Basic
and Crystal Report samples from the Windows Start Menu. During installation, you can click the
Configure Data Sources button or select the 32bit ODBC file in the Control Panel to open the Data
Source Administrator.

The last dialog box gives you options to Launch Release Notes, which opens the Readme file, or
to Configure Data Sources, which opens the Data Source Administrator to specify the
eDirectory tree and context that you want to configure as a data source for the ODBC driver.

To select the eDirectory tree and context that you want to abstract into an eDirectory data source, see
Section 2.5, “Selecting the eDirectory Data Source,” on page 12.

To uninstall the driver, see Section 6.2, “Uninstalling the Novell ODBC Driver for eDirectory,” on
page 50.
Getting Started 11

12 NDK: Novel

novdocx (E
N

U
) 01 February 2006
2.2 Installing an SQL Report Generating Tool
Many applications are ODBC-aware and allow you to connect to an NDS ODBC data source to
report information, populate spreadsheets, and load data to external databases. You can also build
custom applications that embed SQL statements in the program code. To name a few, the Novell
ODBC Driver for NDS supports the following tools:

• Seagate Software Crystal Reports
• Microsoft Visual Basic
• Microsoft Access
• JDBC to ODBC Bridge

The Novell ODBC Driver for NDS allows you to read information and make it work for you in a
variety of ways. With the popularity of the ODBC technology, most data applications provide an
ODBC interface for connecting to an ODBC data source. And because NDS is a scalable, extensible
network directory that contains valuable information and can be accessed easily through your
network, the reports and applications that can be designed are limitless. Here are a few ideas for
using the Novell ODBC Driver for NDS:

• Use a spreadsheet application to show the time used on a network account for each user.
• Use a report application mailing feature to run a mailing list from the users in the directory.
• Run a report that identifies volume information, including volume name, the host server, and

status of the volume.
• Access Workstation information including entry name, operating system, CPU, and memory.

2.3 Logging In to the eDirectory Tree
Before using the Novell ODBC Driver for Novell eDirectory, log in to the eDirectory tree or trees
that you will be using to generate reports. The driver does not prompt you to log in. It uses the
credentials you establish before it is launched. If you are not logged in and authenticated, you have
no rights to any eDirectory data and therefore your reports will be empty.

2.4 Check eDirectory Rights
The Novell ODBC Driver for NDS is constrained by NDS security. If the account you use to log in
to the NDS tree does not have rights to the requested information, the information is not returned.
Even if you have Supervisor rights to the root of the NDS tree, you may not have rights to all
information in the NDS database because NDS allows rights to be revoked in branches of the tree so
that these branches can be managed independently. Before using the driver to generate a report,
make sure you have the NDS rights to the data you are requesting. If you do not have the rights to
read an attribute, the driver returns the SQL NULL value in that attribute’s column in the SQL table.

2.5 Selecting the eDirectory Data Source
To ODBC, the data source is the database that you are accessing. Since eDirectory is a hierarchical,
distributed database, the Novell ODBC Driver for NDS allows you to select the NDS tree or trees
you want to access, and within the tree, the NDS context or contexts you want to use as data sources.
Each tree and each point within a tree are configured as a different data source.
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
This allows you great flexibility. You will want to configure at least one NDS data source for each
NDS tree or specific context that you want to query. The data source determines from which NDS
containers the driver can gather information. If the data source uses the root container as its context,
information can be gathered from the entire NDS tree. If the data source uses a child container as its
context, the driver can gather information only from that branch of the NDS tree.

You can have different data sources for different trees and contexts in the database. For example,
you can specify a data source for your whole directory tree, another for a Organizational Unit object
in the tree, and another for an Organization object in the tree. All three would use the Novell ODBC
Driver for NDS, but each would have a unique data source name (DSN) and abstract a unique scope
within the directory. If your organization has multiple NDS trees, you can specify multiple data
sources for each NDS tree.

The ODBC Data Source Administrator requires four pieces of information to create a data source:
name, description, NDS tree, and NDS context. The Novell Data Source Setup dialog box allows
you to browse and select an NDS tree, and from the NDS tree, to browse and select an NDS context.

The Windows ODBC Data Source Administrator dialog box allows you to view a list of the
configured data sources and add, delete, and modify the data source names. It allows you to select
the Novell ODBC Driver for NDS, which opens the Novell Data Source Setup dialog box. Once this
Novell dialog box is open, you can enter a DSN and configure the NDS context of the data source.
When you install the Novell ODBC Driver for NDS, the installation program automatically installs
a default data source to the NDS context that you were using during installation.

Once you have created a data source with a unique name, applications can view this as another
repository of relational database information. The directory can now be viewed and used in standard
reporting applications. To retrieve and order this information, you can embed SQL requests in your
application, or use applications that automatically generate SQL statements for reporting directory
information.

To select the default data source, complete the following steps:

1. Start your SQL application.
2. Connect to the Novell ODBC Driver for NDS.
3. From the data source window, select the "Default NDS Data Source".

To add, modify, or delete a data source, see one of the following:

• Section 2.5.1, “Adding an eDirectory Data Source,” on page 13
• Section 2.5.2, “Deleting an eDirectory Data Source,” on page 14
• Section 2.5.3, “Modifying an eDirectory Data Source,” on page 14

2.5.1 Adding an eDirectory Data Source
For a given driver you can create multiple data sources. For example, if you have several network
trees, you can create one data source for each tree, or you can select multiple contexts within a tree
and create a data source for each context. All data sources uses the same ODBC driver but will have
a unique DSN (data source name).

Follow these steps to add a new data source, select a driver, and name the data source:

1 Select Start > Settings > Control Panel > 32BIT ODBC (or just ODBC on Windows NT).
Getting Started 13

14 NDK: Novel

novdocx (E
N

U
) 01 February 2006
The ODBC Data Source Administrator dialog box in Windows opens.
2 Select the USER DSN tab. Click the Add button.

The Create New Data Source dialog box opens, displaying a list of drivers.
3 Double-click the Novell ODBC Driver for NDS driver in the list.

The NDS ODBC Driver dialog box will open.
4 Enter a Name and Description for the new data source.
5 To use your current NDS context for the data source, select the Use Default NDS Context

button and skip to Step 7. To select the NDS context for the data source, deselect the Use
Default NDS Context button.
The NDS tree view window will activate.

6 Select the NDS tree and context from the tree view in the list box.
7 Select OK.

The ODBC Data Source Administrator lists the new data source.

NOTE: These steps can be accomplished in a different order depending on the version of ODBC
Administrator installed on your machine. This example is based on the 32-bit ODBC administrator
supplied with ODBC version 3.0. In earlier versions, click the Add button to select a data source list.

2.5.2 Deleting an eDirectory Data Source
Follow these steps to remove a data source from the Data Source Administrator dialog box:

1 Select the data source to be deleted from the ODBC Data Source Administrator dialog.
2 Click the Remove button.

You will be prompted to verify the deletion before the DSN is removed from the list.

2.5.3 Modifying an eDirectory Data Source
You can change your mind and alter the configuration of a data source in the administrator dialog
box. This allows you to reuse the DSN (Data Source Name) and redefine the tree or organization
unit.

Follow these steps to modify a new data source for an existing Data Source Name.

1 Double-click an existing data source name in the Data Source Administrator dialog box.

The NDS ODBC Driver dialog will open with Name, Description, and the current data source
displayed.

2 Select a new tree and context data source from the Database Details list box.
3 Click OK.

The DSN remains in the list, but will now have a new configuration of entry class definitions.
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
2.6 Selecting the Data and Generating the Report
The following SQL statement uses two User class attributes (Given Name and Surname) and one
special column name NDS_Tree. It gathers information about users so it uses the UserNDS table.
These attributes are public read attributes, so any logged in NDS user can execute this statement and
generate a report.

SQL Statement

Enter the following statement into the query window, execute the statement, and retrieve the data.

SELECT "Given Name", "Surname", "NDS_Tree"
FROM UserNDS

Result Table

The SQL statement generates a report similar to the following:

Table 2-1 SQL Statement Result Table

2.7 Inserting, Updating or Deleting Entries from
the eDirectory Data Source
You can update the NDS Data Source using simple insert, update, and delete SQL queries.

Insert

The following SQL statement enables you to add an user object to the NDS Data Source:

INSERT into UserNDS (Surname, Nds_Name, UID) values (’Duke’, ’Luke’,
8)

Update

The following SQL statement enables you to modify an user object in the NDS Data Source:

UPDATE UserNDS SET Surname = ’Kuke’, UID = UID + 20 WHERE Nds_Name LIKE
’%uke’

The following SQL escape syntax enables you to modify the timestamp:

Given Name Surname NDS_Tree

Kris Hammons NOVELL_INC

Lynn Thayn NOVELL_INC

Jan Aitchison NOVELL_INC

Alex Buckley NOVELL_INC

Tom Turner NOVELL_INC

Cory Petersen NOVELL_INC
Getting Started 15

16 NDK: Novel

novdocx (E
N

U
) 01 February 2006
UPDATE UserNDS SET "password expiration time" = {ts '2004-02-02
08:00:00.00'} WHERE Nds_Name = 'user'"

Delete

The following SQL statement enables you to delete an user object from the NDS Data Source:

DELETE FROM UserNDS WHERE Nds_Name = ’Luke’ OR UID > 7

NOTE: While inserting an object, you need to specify the Nds_Name as an attribute (column in
SQL).

The driver does not support positioned update, delete, or insertion.

If the attribute value is in decimals it will be treated as an Integer while adding to Novell eDirectory.

You cannot create or drop a table (create or delete an object class, which requires schema extension)
using the ODBC driver.

For a single entry, SQL semantics does not permit using multiple values for a single column. Hence,
this driver does not allow you to Insert/Update an entry with multiple values for one particular
attribute. However, the driver allows you to put in just one value for a multi-valued attribute.
l ODBC Driver for eDirectory

3
novdocx (E

N
U

) 01 February 2006
3Novell eDirectory and SQL
Integration

The Novell® ODBC driver for Novell eDirectory™ maps eDirectory information into an SQL
relational table. In general, eDirectory objects become the rows in the table, and eDirectory
attributes become the columns in the table. eDirectory also maintains information about objects
other than attributes. This information is mapped to the table in special columns. For more
information about these topics, see:

• Section 3.1, “Mapping of eDirectory Data to Relational Tables,” on page 17
• Section 3.2, “Special Columns in Tables,” on page 18
• Section 3.3, “Composite Attributes,” on page 19
• Section 3.4, “Multi-Valued Attributes,” on page 20
• Section 3.5, “Data Type Mappings,” on page 23
• Section 3.6, “Effective Rights Table,” on page 25
• Section 3.7, “eDirectory Class Types,” on page 27

3.1 Mapping of eDirectory Data to Relational
Tables
The object class and attribute definitions in the eDirectory schema are taken from their structure as a
hierarchical X.500 directory and mapped to a flattened relational database table. eDirectory
concepts such as object class inheritance, naming attributes, and attribute syntax give way to the
relational database features of tables and columns. Actual entries, or objects created in the
eDirectory database, become the rows in the table. The eDirectory data in a relational table has the
following format:

• eDirectory object classes correspond to the tables
• eDirectory class attributes correspond to columns of the table
• Entries correspond to rows of the table

For example, a table for the User object with four entries and with three attributes (Surname, Given
Name, and Title) would look similar to the following diagram.

Figure 3-1 Mapping of eDirectory Data to Relational Tables.
Novell eDirectory and SQL Integration 17

18 NDK: Novel

novdocx (E
N

U
) 01 February 2006
The eDirectory class name corresponds with the table name, for example, the table for the Volume
object is Volume. However, the eDirectory classes "User" and "Group" are exceptions to this
convention. They are represented as "UserNDS" and "GroupNDS" because these class names are
also SQL keywords. The following table describes in general the eDirectory elements and their SQL
counterparts.

Table 3-1 eDirectory elements and their SQL counterparts.

3.2 Special Columns in Tables
eDirectory does not use attributes to keep track of the following information about eDirectory
objects:

• The tree in which the object resides.

SQL eDirectory

Database The selected tree and context represents the database. These are selected
when the Data Source is configured.

Refer to Section 2.5, “Selecting the eDirectory Data Source,” on page 12 for
more information.

Tables eDirectory classes are represented as database tables. The table name is the
same as the class name. If the class name contains spaces, the table name
must be enclosed in double quotes in an SQL query.

Two of the eDirectory class names have been given special table names to
avoid conflicts with the SQL query keywords. The table for the User class is
UserNDS, and the table for Group class is GroupNDS.

eDirectory has more than one type of class: effective and non-effective classes;
super and auxiliary classes. Class type affects the entries that belong to the
table. (For more information, see Section 3.7, “eDirectory Class Types,” on
page 27.)

Columns eDirectory class attributes represent the table columns. Each attribute
represents one or more table columns. If the attribute type is a structure, it will
result in more than one column in the database table. For example, the "Home
directory" attribute will create the following three possible columns in the table:

Home Directory_NameSpace
Home Directory_Path
Home Directory_VolName

For more information, see Section 3.5, “Data Type Mappings,” on page 23.

Records Each eDirectory object represents one or more rows in the database table. If an
object has a multi-valued attribute and multiple values have been assigned to
the attribute, the object can have multiple rows in the table.

For more information, see Section 3.4, “Multi-Valued Attributes,” on page 20.

Special Columns Special columns are used to present additional information items which are
available from the eDirectory database but are not attributes. These items
include the object’s eDirectory context, tree name, and full name. For more
information, see Section 3.2, “Special Columns in Tables,” on page 18.
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
• The fully distinguished name of the object.
• The fully distinguished name of the context that contains the object.
• The name value in the multi-valued naming attribute that is the name of the object.

Since these are not attributes, the ODBC Driver for eDirectory provides column names for this
information, and these names can be used just like attribute names in SQL statements. All tables can
contain the following columns:

• NDS_Tree
• NDS_FullName
• NDS_Context
• NDS_Name

3.3 Composite Attributes
Some attributes use a syntax that contains multiple data fields. For example, the Home Directory
attribute uses the Path syntax. This syntax has three fields: name space, volume, and path. The
ODBC Driver for eDirectory splits such attributes into multiple columns, one for each data field in
the syntax. The name of each column consists of the attribute name followed by an underscore and
the field name. The Home Directory attribute is split into the following columns:

• Home Directory_NameSpace
• Home Directory_VolName
• Home Directory_Path

The column names may not be completely applicable to attributes which extend the schema. A
syntax can be used to store data other than data specified by the label as long as the data fits the data
type. For example, the name space field can contain 4 bytes of data, but eDirectory does not verify
that the data contains a valid name space value. The volume field contains a distinguished name
which eDirectory verifies. However, eDirectory does not verify that it contains a volume name, only
that it contains a distinguished name of an object in the eDirectory tree. The path field contains a
string which eDirectory stores but does not verify. Therefore, the path syntax can be used to store the
distinguished name of any object in the eDirectory tree with a string value (perhaps a description)
and 4-byte value (perhaps a integer level).

When specifying a composite attribute in an SQL select statement, each column that you want must
be included in the statement. For example, to select only one of the columns for the Home Directory
attribute, you would use the following:

select "Home Directory_NameSpace" from UserNDS

To select all columns, you would use the following:

select "Home Directory_NameSpace", "Home Directory_VolName", "Home
Directory_Path" from UserNDS

Notice, you cannot just specify the attribute name for composite attributes. You must specify each
column.

For more information, see Section 3.5, “Data Type Mappings,” on page 23.
Novell eDirectory and SQL Integration 19

20 NDK: Novel

novdocx (E
N

U
) 01 February 2006
3.4 Multi-Valued Attributes
Most eDirectory attributes are multi-valued, meaning that the attribute can contain more than one
value. The order of the values is not guaranteed, and the order can vary from replica to replica. Since
the default is to allow multiple values, an attribute must be defined with the
DS_SINGLE_VALUED_ATTR flag to have eDirectory enforce the rule of only one value. For
example, the Given Name attribute is multi-valued so that a User object can have his or her legal
given name and multiple nick names, for example, Elizabeth, Liz, and Beth.

When including attributes in a report, you need to know whether the attributes are multi-valued.
(Consult the attribute definition in the eDirectory Schema Reference for this information.) If your
report selects multi-valued attributes, you need to select the method of reporting them:

• Section 3.4.1, “Multiple Rows,” on page 20
• Section 3.4.2, “Concatenating Rows,” on page 21

3.4.1 Multiple Rows
The standard method of reporting multiple values in an SQL report is to put each value in a separate
row. If you include two or more multi-valued attributes in a report and select to report each value on
a separate row, the size of the table grows by multiples of the number of values. For example,
suppose you request a report that includes a user’s Telephone Number and Group Membership
attributes, and each user has 2 telephone numbers and belongs to 3 groups. The table has six rows
for each user. The figure below illustrates such a table.

Figure 3-2 Multiple Rows

If your report is gathering information for 100 users, instead of a 100 row table your report generates
a 600 row table. Depending on available workstation resources and the number of multi-valued
attributes you have included in the report, you could run out of memory or hard disk space before
the report is completed. For a solution to this problem, see Section 3.4.2, “Concatenating Rows,” on
page 21.
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
To determine whether an attribute is multi-valued, see the eDirectory Schema Reference.

For information on how an eDirectory syntax is translated to an SQL data type, see Section 3.5,
“Data Type Mappings,” on page 23.

3.4.2 Concatenating Rows
Concatenation allows multiple values of an attribute to be written to a single row in a column, with
values separated by a specified delimiter. If your report has selected two or more attributes with
multi-values, concatenating values into a single row reduces the size of the table (see Section 3.4.1,
“Multiple Rows,” on page 20 for information on how a table can increase in size with multi-valued
attributes). The disadvantage of concatenation is that the values can get very long. The advantage is
that you can create a report that contains many multi-valued attributes without increasing the
number of rows in the report.

Multi-valued attributes have two column names to select from when creating a report. The column
name that ends with an _S suffix is the name for concatenating values. For example, the column
name for the CN attribute, which is multi-valued, is CN. When CN is selected, the driver produces a
row for each value. When the CN_S column is selected, the driver concatenates the values into a
single row in the column.

The following sections supply the information you need to concatenate values in your reports:

• “Attributes Eligible for Concatenation” on page 21
• “Separator Characters Used by Concatenation” on page 22
• “Separator Character Functions” on page 22
• “Concatenation Query” on page 23

Attributes Eligible for Concatenation

Not all multi-valued attributes can be concatenated. The Novell ODBC Driver for eDirectory
supports concatenation of attributes only if they use one of the following syntaxes:

• Case Exact String
• Case Ignore String
• Class Name
• Distinguished Name
• Facsimile Telephone Number
• Network Address (Address column only)
• Numeric String
• Printable String
• Telephone Number
• Typed Name (ObjName column only)

Thus, an attribute must meet two conditions for concatenation: be multi-valued and use one of the
supported syntaxes. You can use the eDirectory Schema Reference to verify which attributes support
these conditions or use the ODBC catalog function of your SQL tool to query the eDirectory tree for
a list of all columns. The tool returns the column names for all the eDirectory attributes defined in
that eDirectory tree. Attributes which can be concatenated have a name with an _S suffix.
Novell eDirectory and SQL Integration 21

22 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Separator Characters Used by Concatenation

Value concatenation requires the use of a separator character to indicate the end of one value and the
beginning of another. Since eDirectory attributes can store a variety of data types, a single separator
cannot be selected that will be appropriate for all possible values. The Novell ODBC Driver for
eDirectory allows you to set the separator for each report. The default separator is a comma. You can
use any single character string as the separator or one of the following escaped values for non-
printing characters.

Table 3-2 Separator Characters Used by Concatenation

Separator Character Functions

The Novell ODBC Driver for eDirectory supports two scalar functions for managing the separator
character used when concatenating values.

Table 3-3 Separator Character Functions

These functions use the standard SQL escape syntax for scalar functions:

Table 3-4 SQL Escape Syntax for Scalar Functions

For a list of characters that SetSeparator can use, see “Separator Characters Used by Concatenation”
on page 22.

Value Description

’\n’ Line feed

’\r’ Carriage return

’\t’ Tab

’\f ’ Form feed

’\b’ Back space

‘\\’ or ’\’ Back slash

Function Description

SetSeparator Sets the character value of the separator. Accepts a single
character string argument specifying the character to use.

GetSeparator Returns the value of the current separator. Accepts no
arguments.

Function Syntax Description

{fn SetSeparator(’:’)} Sets the separator to a colon

{fn SetSeparator(’\t’)} Sets the separator to a tab character

{fn GetSeparator()} Gets the current separator character
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
Concatenation Query

The following example illustrates how to use the SetSeparator function to set the separator to the
plus (+) character and then concatenate the values for the Member attribute into one row for
GroupNDS objects.

SQL Statement:

SELECT Member_S

FROM GroupNDS WHERE { fn SetSeparator(’+’) } <>’,’

Enter this statement into the query window, execute the statement, and retrieve the data.

Result Table:

The SQL statement will generate a report similar to the following:

Table 3-5 Concatenation Query Result

3.5 Data Type Mappings
This section shows the mapping from eDirectory data types to SQL data types:

Table 3-6 Details of Data Type Mappings

NDS_Name Member_S

Top Dogs FJohnson.Fred’s Widgets+GSwift.Fred’s Widgets+ SBrady.Fred’s Widgets

eDirectory Attribute Syntax Column Name SQL Data Type

SYN_BACK_LINK <attribute>_RemoteId

<attribute>_ObjName

SQL_INTEGER

SQL_VARCHAR

SYN_BOOLEAN <attribute> SQL_BIT

SYN_CE_STRING <attribute> SQL_VARCHAR

SYN_CI_LIST* <attribute> SQL_VARCHAR

SYN_CI_STRING <attribute> SQL_VARCHAR

SYN_CLASS_NAME <attribute> SQL_VARCHAR

SYN_COUNTER <attribute> SQL_INTEGER

SYN_DIST_NAME <attribute> SQL_VARCHAR

SYN_EMAIL_ADDRESS <attribute>_Type

<attribute>_Addr

SQL_INTEGER

SQL_VARCHAR

SYN_FAX_NUMBER <attribute> SQL_VARCHAR
Novell eDirectory and SQL Integration 23

24 NDK: Novel

novdocx (E
N

U
) 01 February 2006
SYN_HOLD <attribute>_ObjName

<attribute>_Amount

SQL_VARCHAR

SQL_INTEGER

SYN_INTEGER** <attribute> SQL_INTEGER

SYN_INTERVAL <attribute> SQL_INTEGER

SYN_NET_ADDRESS <attribute>_AddrType

<attribute>_AddrLength

<attribute>_Addr

SQL_INTEGER

SQL_INTEGER

SQL_VARCHAR

SYN_NU_STRING <attribute> SQL_VARCHAR

SYN_OBJECT_ACL <attribute>_ProtAttr

<attribute>_Privileges

<attribute>_Supervisor

<attribute>_Browse

<attribute>_Create

<attribute>_Delete

<attribute>_Rename

<attribute>_Compare

<attribute>_Read

<attribute>_Write

<attribute>_Add Self

<attribute>_Inheritable

SQL_VARCHAR

SQL_INTEGER

SQL_BIT

SQL_BIT

SQL_BIT

SQL_BIT

SQL_BIT

SQL_BIT

SQL_BIT

SQL_BIT

SQL_BIT

SQL_BIT

SYN_OCTET_LIST Not Supported

SYN_OCTET_STRING** <attribute>_Length
<attribute>_Data***

SQL_INTEGER

SQL_VARCHAR

SYN_PATH** <attribute>_NameSpace

<attribute>_Path

<attribute>_VolName

SQL_INTEGER

SQL_VARCHAR

SQL_VARCHAR

SYN_PO_ADDRESS <attribute>_Name
<attribute>_Street

<attribute>_POBox

<attribute>_City

<attribute>_State

<attribute>_Zip

SQL_VARCHAR

SQL_VARCHAR

SQL_VARCHAR

SQL_VARCHAR

SQL_VARCHAR

SQL_VARCHAR

eDirectory Attribute Syntax Column Name SQL Data Type
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
NOTE: * The strings in the Case Ignore List are placed in a single string with a comma separating
the individual strings.

**Certain attributes with this syntax are specially interpreted by the ODBC driver.

***The data is presented in hexadecimal format.

3.6 Effective Rights Table
The Effective Rights table is a special table. It does not represent an eDirectory object class. It
represents the rights that the objects in the eDirectory tree have to the objects in the branch of the
eDirectory tree specified by the data source. The rights are calculated by treating each object in the
tree as a trustee of each object in the container and its subcontainers and as a trustee of each of those
object’s attributes. The following equation gives an estimate of the total number of rows in this
table:

(# of objects in the data source context) x

(# of objects in the tree) x

SYN_PR_STRING <attribute> SQL_VARCHAR

SYN_REPLICA_POINTER <attribute>_Server

<attribute>_Type

<attribute>_Number

<attribute>_Count

<attribute>_AddrType

<attribute>_AddrLength

<attribute>_Addr

SQL_VARCHAR

SQL_INTEGER

SQL_INTEGER

SQL_INTEGER

SQL_INTEGER

SQL_INTEGER

SQL_VARCHAR

SYN_STREAM <attribute> SQL_VARCHAR

SYN_TEL_NUMBER <attribute> SQL_VARCHAR

SYN_TIME <attribute> SQL_TIMESTAMP

SYN_TIMESTAMP <attribute>_Time

<attribute>_EventId

SQL_TIMESTAMP

SQL_INTEGER

SYN_TYPED_NAME <attribute>_ObjName

<attribute>_Level

<attribute>_Interval

SQL_VARCHAR

SQL_INTEGER

SQL_INTEGER

SYN_UNKNOWN <attribute>_Name

<attribute>_SyntaxId

<attribute>_Length

<attribute>_Value

SQL_VARCHAR

SQL_INTEGER

SQL_INTEGER

SQL_VARCHAR

eDirectory Attribute Syntax Column Name SQL Data Type
Novell eDirectory and SQL Integration 25

26 NDK: Novel

novdocx (E
N

U
) 01 February 2006
(average number of mandatory & optional attributes per object class)

As the equation shows, the number of rows in the effective rights table is extremely large for even a
small table. A table for a tree with 20 objects in the data source context, 100 objects in the tree and
an average of 50 attributes per object class would have approximately 100,000 rows. You will
almost always need to use a where clause to restrict the number of rows returned by your queries of
the Effective Rights table.

The table below lists and defines each of the columns in the Effective Rights table. Notice that this
table does not include the NDS_Tree, NDS_Context, or NDS_FullName.

Table 3-7 Details of the Effective Rights Table

Column Name SQL Data Type Description

Object Name SQL_VARCHAR The full name of the object for which the trustee has
rights. Values for object name include all of the objects in
the context specified by the data source.

Object Class SQL_VARCHAR The class of the object for which the trustee has rights.

Trustee Name SQL_VARCHAR The full name of the object that has rights to the object
specified by the Object Name column. Values for trustee
name include the names of all objects in the directory.

Trustee Class SQL_VARCHAR The class of the trustee object.

Attribute SQL_VARCHAR The name of the protected attribute. A value of [entry
rights] indicates the rights are for the object itself. A value
of [all attributes] indicates the rights are applied to all
attributes.

Privileges SQL_INTEGER An integer whose value represents the combination of the
individual privileges that are granted.

Add Self SQL_BIT The trustee has rights to add or remove itself as an
attribute value. This right is used only for attributes that
contain object names as values, such as lists of group
members or mailing lists.

Browse SQL_BIT The trustee has the right to see object in the NDS tree.

Compare SQL_BIT The trustee has the the right to compare the values of an
attribute.

Create SQL_BIT The trustee has the right to create a new object in the
NDS tree. This right is available only for container objects.

Delete SQL_BIT The trustee has the right to delete the object from the
NDS tree.

Read SQL_BIT The trustee has the the right to read and compare the
values of an attribute. The Read right implies the
Compare right.

Rename SQL_BIT The trustee has the right to change the name of the
object.

Supervisor SQL_BIT The trustee has all rights to the object, all of the object's
attributes, or a specific attribute.
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
For example query statements and their results, see

• Section 4.10, “Simple Effective Rights Query,” on page 36
• Section 4.9, “Restricted Effective Rights Query,” on page 35

3.7 eDirectory Class Types
eDirectory classes are either effective or non-effective. Non-effective classes can be either auxiliary
classes or super classes, but they cannot be used to create entries in the database. Effective classes
are the base classes that are used to create entries in the database. They can also be super classes.
From super classes, classes inherit attributes and may inherit other structural features such as
naming and containment .

3.7.1 Super Classes
Since a super class is a class definition, it has its own relational database table, and you can generate
reports from these super class tables. However, to generate reports without surprises, you need to be
aware of how eDirectory and the ODBC driver use super classes.

• eDirectory has a hierarchical schema, and more than one class can inherit from the same super
class. For example, Top is a super class of all effective classes, and ndsLoginProperties is a
super class of User, Person, Organizational Person, Organization, and Organizational Unit.

• The ODBC driver determines the base set of entries for a table by performing an eDirectory
query for all entries whose Object Class attribute contains the class associated with the table.
The Object Class attribute for each entry is multi-valued and contains the names of the entry’s
base class, its super classes, and auxiliary classes. For example, the Object Class attribute for
User entry would always include the following classes: Top, ndsLoginProperties, Person,
Organizational Person, and User.

Thus, if you run a report using the ndsLoginProperties table, the table could contain entries from the
following base classes: User, Person, Organizational Person, Organization, and Organizational Unit.
In addition, if your schema has been extended to include classes that define ndsLoginProperties as a
super class such as residentialPerson and inetOrgPerson, then the table could contain entries from
these classes.

When using a table from a super class, you should use the special column, NDS_Name, for the
entry’s name rather than an attribute such as CN. Not all classes use CN as their naming attribute,
and some super classes do not define a naming attribute. The NDS_Name column retrieves the
entry’s name regardless of the naming attribute.

For an example query using a super class table, see Section 4.14, “Super Class Query,” on page 41.

For more information about super classes, see the Novell eDirectory Schema Reference (http://
developer.novell.com/ndk/doc/ndslib/schm_enu/data/h4q1mn1i.html).

Write SQL_BIT The trustee has the right to add, change, or remove any
values of the attribute. The Write property right implies the
Add Self property right.

Column Name SQL Data Type Description
Novell eDirectory and SQL Integration 27

http://developer.novell.com/ndk/doc/ndslib/schm_enu/data/h4q1mn1i.html
http://developer.novell.com/ndk/doc/ndslib/schm_enu/data/h4q1mn1i.html
http://developer.novell.com/ndk/doc/ndslib/schm_enu/data/h4q1mn1i.html

28 NDK: Novel

novdocx (E
N

U
) 01 February 2006
3.7.2 Auxiliary Classes
Auxiliary classes also require some special handling. Since they are a class definition, they have
their own relational database table, and you can generate reports from them. To generate a report,
you should be aware of the following features of auxiliary classes.

• Auxiliary classes are assigned to individual entries in the directory rather than to a base class.
Therefore, not all entries of a base class will have the auxiliary class value in their Object Class
attributes and entries of other base classes may have the auxiliary class value in their Object
Class attributes. An auxiliary class can be assigned to any entry in the directory. For example,
Partition is an auxiliary class in NDS 8.xx and is assigned to any container entry such as a
Country, Organization, or Orgranizational Unit entry that becomes the partition’s root.

• The ODBC driver determines the base set of entries for an auxiliary class table by performing
an eDirectory query for all entries whose Object Class attribute contains the auxiliary class
associated with the table. The Object Class attribute for each entry is multi-valued and contains
the names of the any auxiliary classes assigned to the entry.

You should use the special column, NDS_Name, to include the entry’s name in the report because
most auxiliary classes do not include naming attributes and because not all base classes use the same
naming attribute. (For more information about auxiliary classes, see the eDirectory Schema
Reference.)

For an example query using an auxiliary class table, see Section 4.2, “Auxiliary Class Queries,” on
page 30.

An auxiliary class table contains only the attributes defined for the auxiliary class. At times you may
want to create a query that returns columns for the auxiliary class attributes and base class attributes.
To do this, you must perform a join between the base class and the auxiliary class. The join should
be performed on the NDS_FullName field. For an example, see Section 4.6, “Join Query,” on
page 33.
l ODBC Driver for eDirectory

4
novdocx (E

N
U

) 01 February 2006
4Tasks

The following sections provide examples of simple to complex SQL query statements and sample
tables that result from such queries.

• Section 4.1, “ACL Attribute Query,” on page 29
• Section 4.2, “Auxiliary Class Queries,” on page 30
• Section 4.3, “Concatenation Query,” on page 31
• Section 4.4, “Container Class Query,” on page 31
• Section 4.5, “Creating Custom Tables,” on page 32
• Section 4.6, “Join Query,” on page 33
• Section 4.7, “Last Login Time Query,” on page 33
• Section 4.8, “Parent Container Queries,” on page 34
• Section 4.9, “Restricted Effective Rights Query,” on page 35
• Section 4.10, “Simple Effective Rights Query,” on page 36
• Section 4.11, “Simple Search Query,” on page 39
• Section 4.12, “Simple Update Queries,” on page 39
• Section 4.13, “Sorting Query,” on page 40
• Section 4.14, “Super Class Query,” on page 41
• Section 4.15, “User Class Query,” on page 42

4.1 ACL Attribute Query
This sample illustrates the break up of the ACL attribute into multiple columns. The ACL_Trustee,
ACL_Attribute, ACL_Read, ACL_Write columns all come from the value of the ACL attribute. For
a complete list of all ACL columns see Section 3.5, “Data Type Mappings,” on page 23. A value of
one in a privilege column such as ACL_Read or ACL_Write indicates the privilege is granted to the
indicated trustee. A value of zero indicates the trustee does not have that privilege. The O
(Organization Name) attribute is the naming attribute for the Organization class.

SQL Statement

SELECT O, ACL_Trustee, ACL_Attribute, ACL_Read, ACL_Write from
Organization

Result Table

Table 4-1 ACL Attribute Query Result

O ACL_Trustee ACL_Attribute ACL_Read ACL_Write

org1 org1 Login Script 1 0

org1 org1 Print Job Configuration 1 0
Tasks 29

30 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.2 Auxiliary Class Queries
In NDS 8.xx, Partition is an auxiliary class. The example queries produce results from a Novell
eDirectory tree with the following configuration.

The following query searches the eDirectory tree and creates a report that lists all the containers
which are partition roots regardless of the container’s base class. The containers which have not
been assigned to Partition auxiliary class do not appear in the report.

SQL Statement

SELECT NDS_Name FROM Partition

Result Table

The following query restricts the query to containers which belong to the Organization class.

SQL Statement

SELECT NDS_Name FROM Partition

WHERE "Object Class" = ’Organization’

Result Table

ManyUsers ManyUsers Login Script 1 0

ManyUsers ManyUsers Print Job Configuration 1 0

FewUsers FewUsers Login Script 1 0

FewUsers FewUsers Print Job Configuration 1 0

NDS_Name

Acme,Inc.

England

Operations

Engineering

NDS_Name

Operations

Engineering

O ACL_Trustee ACL_Attribute ACL_Read ACL_Write
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
4.3 Concatenation Query
The following example illustrates how to use the SetSeparator function to set the separator to the
plus (+) character and then concatenate the values for the Member attribute into one row for
GroupNDS objects.

SQL Statement

SELECT Member_S

FROM GroupNDS WHERE { fn SetSeparator(’+’) } <>’,’

Enter this statement into the query window, execute the statement, and retrieve the data.

Result Table

The SQL statement will generate a report similar to the following:

Table 4-2 Concatenation Query Result Report

4.4 Container Class Query
The following SQL code queries the O attribute, the Telephone Number attribute, and the L (local)
attribute from all Organization objects. Note that the specified column names are the same as the
names of the corresponding attributes. The name of the table is Organization which is the class name
for all Organization objects. The Telephone Number attribute name must be enclosed in quotes since
it contains a space. In the NetWare Administrator utility the O, L, and Telephone Number attribute
values are labeled as Name, Location, and Telephone respectively. Notice that a <null> result is
returned for the FewUsers organization's telephone number. This simply means that the attribute has
not been assigned a value in eDirectory.

SQL Statement

SELECT O, L, “Telephone Number” from Organization

Result Table

Table 4-3 Container Class Query Result Report

NDS_Name Member_S

Top Dogs FJohnson.Fred’s Widgets+GSwift.Fred’s Widgets+ SBrady.Fred’s Widgets

O L Telephone Number

org1 Salt Lake City 801-837-9999

ManyUsers Provo 801-123-4567

FewUsers San Jose <Null>
Tasks 31

32 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.5 Creating Custom Tables
In order to provide further customization and avoid ODBC tool limitations, you can create custom
user tables. User table names start with an underscore. For example, if a table name "_userReport"
has been created by the user then a query using it could look like, "Select * from _userReport". All
user-defined tables will appear in the lists of tables displayed by tools like MSQuery, Excel, Crystal
Reports, etc.

4.5.1 Defining Tables
To define a table:

1 Open the ODBC Data Source Administrator by clicking Start > Settings > Control Panel, then
double-clicking the ODBC Data Source Administrator icon.

2 Add a new Novell NDS source or configure an existing one. The driver should say "Novell
ODBC, Driver for NDS".

3 Select a Tree and press the "User Defined Tables" button. User Defined tables are based on the
schema of an existing tree. If "Use default context" is selected then the schema of your default
tree will be used.

4 Add a new Table, or change and existing one. The default directory is "c:\winnt\odbc".
All files with a ".out" extension (Odbc User Table) will listed in the dialog. The "Browse"
button can change this directory. Double clicking a table in the list, or selecting a table and
clicking "Modify", brings up a dialog to modify that table.

5 Select attributes for the new table. There are two types of Classes in NDS: Base and Auxiliary
Classes. In a user-defined table you can have attributes from only one base class. You can have
attributes from many Auxiliary classes. The top half of the dialog is used for Base class
attributes, and the bottom for the Auxiliary Attributes.

6 The left column represents the classes and attributes in the schema and the right side represents
the attributes in the user-defined table. All Base Attributes added to the user-defined table will
be erased if a new Base Class is selected. However, all Auxiliary attributes remains if a new
Auxiliary class is selected.

4.5.2 Where are the User-Defined Tables Stored?
By default User-defined tables are stored in ‘UserDefinedTables' under the installation directory. So
a typical default directory would be “c:\novell\odbcnds\userDefinedTables”. The
"Browse" button can change this directory. This directory is stored in the Registry under the key,
HKEY_CURRENT_USER\Software\Novell\ODBCnds\path.

All files with a ".out" extension (Odbc User Table) will listed as user-defined tables.

4.5.3 Defining Tables from a Text File
The user table is a standard text file. A User defined table should always begin with an underscore
and have either an out extension or no extension.

The file format is as follows:

Line 1: Ignored by driver for now. In the future this includes version numbers and tree name.
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
Line 2: Base Class name.

Line 3 - End: All attributes, auxiliary and base. Column names should not include composite
attribute suffixes or concatenation suffixes. NDS_* columns are automatically included in all tables.

4.6 Join Query
The following query joins a base class table with an auxiliary class table. It reads the O column
which is part of the Organization table and the Synchronized Up To_Time column which is part of
the Partition table.

SQL Statement

SELECT O, "Synchroinzed Up To_Time"

FROM Organization, Partition

WHERE Organization.NDS_FullName=Partition.NDS_FullName

Result Table

Table 4-4 Join Query Result Report

4.7 Last Login Time Query
This example illustrates how to filter results using a comparison. The query below returns all users
who have not logged in since June 10, 1999 at 8:00 am. Notice how the literal timestamp value is
expressed. It is contained within braces which serve as escape sequence delimiters. The ts indicates
the value is a timestamp. The actual string representing the timestamp is contained within the single
quotes.

SQL Statement

SELECT CN, “Last Login Time” FROM UserNDS

WHERE “Last Login Time” < {ts ’1999-06-10 08:00:00.00’}

Result Table

Table 4-5 Last Login Time Query Reslut Report

O Synchronized Up To_Time

Operations 2000-02-18 13:06:41.000

Enginerring 2000-02-19 09:03:23.000

CN Last Login Time

dward0 1999-06-04 07:05:36.000

dward1 1999-06-08 09:17:12.000
Tasks 33

34 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.8 Parent Container Queries

The first SQL query results in entries from the Fred's Widgets organization as well as its subordinate
organizational units. The second query illustrates the use of the NDS_Context column to get
information from only the parent context.

SQL Statement

select NDS_Context, Surname from UserNDS

Result Table

Table 4-6 Parent Container Query Result Report

dward2 1999-06-06 10:15:47.000

dward3 1999-06-08 08:37:04.000

dward4 1999-06-08 10:45:16.000

NDS_Context Surname

Sales.Fred’s Widgets Purdy

Sales.Fred’s Widgets Anderson

Sales.Fred’s Widgets Desmond

Sales.Fred’s Widgets Knight

Sales.Fred’s Widgets Turnet

Marketing.Fred’s Widgets Gilbert

Marketing.Fred’s Widgets Bergman

Marketing.Fred’s Widgets Fairbanks

Marketing.Fred’s Widgets Metcalf

Product Develpment.Fred’s Widgets Sanders

Product Develpment.Fred’s Widgets Smith

Product Develpment.Fred’s Widgets Weirsdorf

Product Develpment.Fred’s Widgets Hancock

Operations.Fred’s Widgets Brown

Operations.Fred’s Widgets Jones

Operations.Fred’s Widgets Madsen

Operations.Fred’s Widgets Garcia

Fred’s Widgets Johnson

CN Last Login Time
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
SQL Statement

select NDS_Context, Surname from UserNDS where NDS_Context = ’Fred’’s
Widgets’

Result Table

Table 4-7 Result Table

4.9 Restricted Effective Rights Query
The query below illustrates how to perform several restrictions when querying the Effective Rights
table.

First, the like operator is used to restrict the trustees to those in the FewUsers Organization. The
Object is restricted to dward0.FewUsers by a simple equality comparison. Finally, the attributes are
limited to [Entry Rights]. This query lists the rights of the trustee to operate on the
dward0.FewUsers entry as a whole. The query is further restricted to retrieve the value of only the
Browse and Delete privileges. The result table illustrates the typical situation where all trustees have
browse privileges but none have delete privileges.

SQL Statement

 SELECT "Object Name", "Trustee Name", "Attribute", "Browse", "Delete"

FROM "Effective Rights"

WHERE "Trustee Name" LIKE ’*.FewUsers’ AND "Object Name" =
’dward0.FewUsers’

AND "Attribute" = ’[Entry Rights]’

Result Table

The query produces a table similar to the following. The zeros in the rights columns mean FALSE
(the trustee does not have this right), and the ones TRUE (the trustee does have this right).

Fred’s Widgets Brady

Fred’s Widgets Swift

NDS_Context Surname

Fred’s Widgets Johnson

Fred’s Widgets Brady

Fred’s Widgets Swift

NDS_Context Surname
Tasks 35

36 NDK: Novel

novdocx (E
N

U
) 01 February 2006
Table 4-8 Restricted Effective Rights Query Result Report

4.10 Simple Effective Rights Query
The following query illustrates how to obtain the read, write, and compare rights of user Sjones on
the attributes of user JDoe.

SQL Statement

SELECT "Object Name", "Trustee Name", "Attribute", "Compare", "Read",
"Write"

FROM "Effective Rights"

WHERE "Object Name" = ’JDoe.Sales’ AND "Trustee Name" =
’SJones.Marketing’

Object Name Trustee Name Attribute Browse Delete

dward0.FewUsers cjohnson0.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson1.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson2.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson3.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson4.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson5.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson6.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson7.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson8.FewUsers [Entry Rights] 1 0

dward0.FewUsers cjohnson9.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward0.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward1.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward2.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward3.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward4.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward5.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward6.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward7.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward8.FewUsers [Entry Rights] 1 0

dward0.FewUsers dward9.FewUsers [Entry Rights] 1 0
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
Results Table

The query produces a table similar to the following. The zeros in the rights columns mean FALSE
(the trustee does not have this right), and the ones TRUE (the trustee does have this right).

Table 4-9 Simple Effective Rights Query Result Report

Object Name Trustee Name Attribute Compare Read Write

JDoe.Sales SJones.Marketing [Entry Rights] 0 0 0

JDoe.Sales SJones.Marketing [All Attributes Rights] 0 0 0

JDoe.Sales SJones.Marketing ACL 1 1 0

JDoe.Sales SJones.Marketing Back Link 1 1 0

JDoe.Sales SJones.Marketing Bindery Property 1 1 0

JDoe.Sales SJones.Marketing Cross Certificate Pair 1 1 0

JDoe.Sales SJones.Marketing CA Public Key 1 1 0

JDoe.Sales SJones.Marketing CN 1 1 0

JDoe.Sales SJones.Marketing Description 1 1 0

JDoe.Sales SJones.Marketing Facsimile Telephone
Number

1 1 0

JDoe.Sales SJones.Marketing Home Directory 1 1 0

JDoe.Sales SJones.Marketing L 1 1 0

JDoe.Sales SJones.Marketing Login Allowed Time
Map

1 1 0

JDoe.Sales SJones.Marketing Login Disabled 1 0 1

JDoe.Sales SJones.Marketing Login Expiration Time 1 1 0

JDoe.Sales SJones.Marketing Login Grace Limit 1 1 0

JDoe.Sales SJones.Marketing Login Grace Remaining 1 1 0

JDoe.Sales SJones.Marketing Login Intruder Address 1 1 0

JDoe.Sales SJones.Marketing Login Intruder Attempts 1 1 0

JDoe.Sales SJones.Marketing Login Intruder Reset
Time

1 1 0

JDoe.Sales SJones.Marketing Login Maximum
Simultaneous

1 1 0

JDoe.Sales SJones.Marketing Login Script 1 1 0

JDoe.Sales SJones.Marketing Login Time 1 1 0

JDoe.Sales SJones.Marketing Minimum Account
Balance

1 1 0

JDoe.Sales SJones.Marketing EMail Address 1 1 0
Tasks 37

38 NDK: Novel

novdocx (E
N

U
) 01 February 2006
JDoe.Sales SJones.Marketing Network Address 1 1 0

JDoe.Sales SJones.Marketing Network Address
Restriction

1 1 0

JDoe.Sales SJones.Marketing Obituary 1 1 0

JDoe.Sales SJones.Marketing Object Class 1 1 0

JDoe.Sales SJones.Marketing OU 1 1 0

JDoe.Sales SJones.Marketing Password Allow
Change

1 1 0

JDoe.Sales SJones.Marketing Password Expiration
Interval

1 1 0

JDoe.Sales SJones.Marketing Password Expiration
Time

1 1 0

JDoe.Sales SJones.Marketing Password Minimum
Length

1 1 0

JDoe.Sales SJones.Marketing Password Required 1 1 0

JDoe.Sales SJones.Marketing Password Unique
Required

1 1 0

JDoe.Sales SJones.Marketing Physical Delivery Office
Name

1 1 0

JDoe.Sales SJones.Marketing Postal Address 1 1 0

JDoe.Sales SJones.Marketing Postal Code 1 1 0

JDoe.Sales SJones.Marketing Postal Office Box 1 1 0

JDoe.Sales SJones.Marketing Print Job Configuration 1 1 0

JDoe.Sales SJones.Marketing Printer Control 1 1 0

JDoe.Sales SJones.Marketing Profile 1 1 0

JDoe.Sales SJones.Marketing Public Key 1 1 0

JDoe.Sales SJones.Marketing Higher Privileges 1 1 0

JDoe.Sales SJones.Marketing Security Equals 1 1 0

JDoe.Sales SJones.Marketing See Also 1 1 0

JDoe.Sales SJones.Marketing S 1 1 0

JDoe.Sales SJones.Marketing SA 1 1 0

JDoe.Sales SJones.Marketing Surname 1 1 0

JDoe.Sales SJones.Marketing Telephone Number 1 1 0

JDoe.Sales SJones.Marketing Title 1 1 0

...

Object Name Trustee Name Attribute Compare Read Write
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
This example table is not complete. The User class has over 90 attributes in a default NetWare 5
installation. Since the Effective Rights table is returning rights to attributes, the query returns results
for all attributes defined for the class unless restricted to a selected set. Also, the attributes come
back in an unsorted order, unless you include an order statement.

4.11 Simple Search Query
The following SQL statement uses two User class attributes (Given Name and Surname) and one
special column name NDS_Tree. It gathers information about users so it uses the UserNDS table.
These attributes are public read attributes, so any logged in eDirectory user can execute this
statement and generate a report.

SQL Statement

SELECT "Given Name", "Surname", "NDS_Tree"

FROM UserNDS

Enter this statement into the query window, execute the statement, and retrieve the data.

Result Table

The SQL statement will generate a report similar to the following:

Table 4-10 Simple Search Query Result Report

4.12 Simple Update Queries
You can update the NDS Data Source using simple insert, update and delete SQL queries. To update
the Data Source, you should have rights to write onto Novell eDirectory.

Note that:

• While inserting an object, you need to specify the Nds_Name as an attribute (column in SQL).
• The driver does not support positioned update, delete, or insertion.
• If the attribute value is in decimals it will be treated as an Integer while adding to Novell

eDirectory.
• You cannot create or drop a table (create or delete an object class, which requires schema

extension) using the ODBC driver.

Given Name Surname NDS_Tree

Kris Hammons NOVELL_INC

Lynn Thayn NOVELL_INC

Jan Aitchison NOVELL_INC

Alex Buckley NOVELL_INC

Tom Turner NOVELL_INC

Cory Petersen NOVELL_INC
Tasks 39

40 NDK: Novel

novdocx (E
N

U
) 01 February 2006
• For a single entry, SQL semantics does not permit using multiple values for a single column.
Hence, this driver does not allow you to Insert/Update an entry with multiple values for one
particular attribute. However, the driver will allow you to put in just one value for a multi-
valued attribute.

4.12.1 Insert
The following SQL statement enables you to add an user object to the NDS Data Source:

INSERT into UserNDS (Surname, Nds_Name, UID) values (’Duke’, ’Luke’,
8)

4.12.2 Update
The following SQL statement enables you to modify an user object in the NDS Data Source:

UPDATE UserNDS SET Surname = ’Kuke’, UID = UID + 20 WHERE Nds_Name LIKE
’%uke’

4.12.3 Delete
The following SQL statement enables you to delete an user object from the NDS Data Source:

DELETE FROM UserNDS WHERE Nds_Name = ’Luke’ OR UID > 7

4.13 Sorting Query
This example illustrates the use of the “order by” clause to sort a table on multiple columns.

SQL Statement

SELECT NDS_Context, Surname

FROM UserNDS

ORDER BY NDS_Context, Surname

Result Table

Table 4-11 Sorting Query Result Report

NDS_Context Surname

Marketing.Fred’s Widgets Bergman

Marketing.Fred’s Widgets Fairbanks

Marketing.Fred’s Widgets Gilbert

Marketing.Fred’s Widgets Metcalf

Operations.Fred’s Widgets Metcalf

Operations.Fred’s Widgets Garcia
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
4.14 Super Class Query
The ndsLoginProperties class is a super class of Organization, Organizational Unit, Person,
Organizational Person, and User. The following example query is based on an eDirectory tree with
the following structure.

Figure 4-1 Super Class Query

The following query searches the eDirectory tree for all entries that have ndsLoginProperties as a
super class. It returns entries from multiple base classes.

SQL Statement

SELECT NDS_Name FROM ndsLoginProperties

Result Table

Operations.Fred’s Widgets Garcia

Operations.Fred’s Widgets Madsen

Product Development.Fred’s Widgets Hancock

Product Development.Fred’s Widgets Sanders

Product Development.Fred’s Widgets Smith

Product Development.Fred’s Widgets Weirsdorf

Sales.Fred’s Widgets Anderson

Sales.Fred’s Widgets Desmond

Sales.Fred’s Widgets Knight

Sales.Fred’s Widgets Purdy

Sales.Fred’s Widgets Turnet

NDS_Name

Engineering

NDS_Context Surname
Tasks 41

42 NDK: Novel

novdocx (E
N

U
) 01 February 2006
4.15 User Class Query
This example queries the attributes of a user. Notice that the table name, UserNDS, is not the same
as the object class name, User. This is because user is a keyword in SQL. Also, the NDS_Context,
NDS_FullName, and NDS_Tree columns do not correspond to eDirectory attributes but are special
columns available for each entry.

SQL Statement

select CN, Surname, NDS_Context, NDS_FullName, NDS_Tree from UserNDS

Result Table

Table 4-12 User Class Query Result Report

Notice that Michael Anderson is listed twice in the table. CN is a multi-valued attribute and two
values have been entered: Michael and Mike. Only the first value is used in the object’s
distinguished name, or as the column labels it, in the object’s NDS full name.

4.16 Optimizing the ODBC Driver Performance
Following are the few optimization methods suggested when using the ODBC driver for eDirectory.
Using the following SQL sample query, you can make use one or more of these methods to improve
the ODBC driver performance.

SELECT "_GroupNDS"."CN", "_UserNDS"."CN", "_UserNDS"."employeeStatus",
"_OU"."OU" FROM "_GroupNDS" "_GroupNDS", "_OU" _OU", "_UserNDS"

BBrown

TJones

LSmith

DWard

CN Surname NDS_Context NDS_FullName NDS_FullName

admin admin Widgets admin.Widgets BGB

Cory Jones Sales.Widgets Cory.Sales.Widgets BGB

Kris Smith Operations.Widgets Kris.Operations.Widgets BGB

Lynn Brown Operations.Widgets Lynn.Operations.Widgets BGB

Michael Anderson Development.Widgets Michael.Development.Widget
s

BGB

Mike Anderson Development.Widgets Michael.Development.Widget
s

BGB

Kim Wilson Development.Widgets Kim.Development.Widgets BGB

NDS_Name
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
"_UserNDS" WHERE ("_GroupNDS"."NDS_Context"="_OU"."NDS_FullName") AND
("_GroupNDS"."Member"="_UserNDS"."Group Membership") AND
"_GroupNDS"."CN"='FP2111' ORDER BY "_GroupNDS"."CN"

Method 1: Use one more static comparison in the query. In the above query,
"_GroupNDS"."CN"='FP2111' implies a static comparison which makes the query perform faster
than a query without it. We recommend you to use the static comparison for attributes which have
unique value. For example, CN.

Method 2: Use static comparison in the largest table selected. For example, if you are reading from
User and OU and if the number of Users are larger than OU, use the static comparison in the User.
This considerably reduces the time taken for search.

Method 3: Order the tables with the slowest spin in the left, when selecting the table in the from
clause. For example, from the previous query, order the tables in the following sequence:

SELECT "_GroupNDS"."CN", "_UserNDS"."CN",
"_UserNDS"."employeeStatus","_OU"."OU" FROM
"_UserNDS","_OU","_GroupNDS"
Tasks 43

44 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l ODBC Driver for eDirectory

5
novdocx (E

N
U

) 01 February 2006
5ODBC Driver Advanced Write
Capability

The Novell® ODBC Driver for Novell eDirectory™ now has an advanced write capability specified
by the ODBC standards. It supports positioned update and/or delete and allows you to open a
writable cursor for the fields you wish to modify.

The positioned update and/or delete is done by positioning a writable cursor on a specific row in a
result set which is obtained from a select request.

5.1 Cursor
A cursor is a tool that allows you to step through a result set row-by-row for row-conditional
processing. Applications can perform multiple operations on each individual row in a given result
set. A cursor is opened on the result set by execution of the query.

A cursor is used when the program needs to perform update or delete operations on specific rows in
a result set. For example, the program might retrieve some rows from the query results, display them
on the screen for the user, and then respond to a user’s request to update or delete data.

For updating data using a cursor, the SELECT statements that are used to generate the result set
must explicitly specify FOR UPDATE or FOR UPDATE OF column_list in the SELECT statement.
This will open a cursor for that column_list that you can update.

For example, SELECT * FROM account FOR UPDATE OF balance

If the statement has been not declared with FOR UPDATE, it defaults to a read only cursor and you
will not be allowed to do cursor updates or deletes.

5.1.1 Updating Using the Cursor
The syntax for update and delete statements using cursors is:

UPDATE tablename SET column = value [, SET column = value...] WHERE
CURRENT OF cursorname

OR

DELETE FROM tablename WHERE CURRENT OF cursorname

This will update or delete the row on which the cursor is currently positioned. If the cursor is
positioned on AFTER_LAST_ROW, the operation will throw an error ERR_CURSORSTATE.

5.1.2 Getting the Cursor Name
The ODBC driver automatically generates a cursor name when you call SQLAllocStmt to allocate a
statement handle. You can use SQLGetCursorName to get the full name of the cursor associated
with a specific statement handle.

The prototype for SQLGetCursorName is:
ODBC Driver Advanced Write Capability 45

46 NDK: Novel

novdocx (E
N

U
) 01 February 2006
RETCODE SQLGetCursorName(HSTMT hstmt,
 UCHAR FAR *szCursor,
 SWORD cbCursorMax,
 SWORD FAR *pcbCursor

);

You can use SQLSetCursorName to set the cursor name of an active statement handle. You have to
use SQLSetCursorName to change the cursor name before executing the SELECT statement.

The prototype for SQLSetCursorName is:

RETCODE SQLSetCursorName(HSTMT hstmt,
 UCHAR FAR *szCursor,
 SWORD cbCursor

);

5.1.3 Excerpt of a Sample Program
/* Execute the select query */

retcode = SQLExecDirect(hstmtSlt, (unsigned char*)SELECT
Nds_Name,SurName,\"Telephone number\" from UserNDS FOR UPDATE OF

\"Telephone
Number\",SQL_NTS);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
 retcode = SQLBindCol(hstmtSlt, 1, SQL_C_CHAR, ndsname, C_LENGTH,
 &cbndsname);

 retcode = SQLBindCol(hstmtSlt, 2, SQL_C_CHAR, sname, C_LENGTH,
 &cbsname);

 retcode = SQLBindCol(hstmtSlt, 3, SQL_C_CHAR, telnum, C_LENGTH,
 &cbtelnum);

} else {
printf ("Error while executing the query!\n");
exit(1);

}
/* Read through the resultset until the cursor points to the required
row */
do {

retcode = SQLFetch(hstmtSlt);
}
while ((retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
&&

 (strcmp((const char*)ndsname, "tpeter") != 0));
/* Get the cursor name */
SQLGetCursorName(hstmtSlt, cursor, CURSOR_LEN, &cursorLen);

/* Allocate a statement for update */
SQLAllocStmt(hdbc, &hstmtUpdt);

sprintf(updsql,"UPDATE UserNDS SET \"Telephone Number\"=’01-1022-1122’
l ODBC Driver for eDirectory

novdocx (E
N

U
) 01 February 2006
WHERE current of %s", cursor);

retcode = SQLExecDirect(hstmtUpdt,(unsigned char*)updsql, SQL_NTS);

if(retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {
// Successfully updated

}

ODBC Driver Advanced Write Capability 47

48 NDK: Novel

novdocx (E
N

U
) 01 February 2006
l ODBC Driver for eDirectory

6
novdocx (E

N
U

) 01 February 2006
6Troubleshooting

The following sections describe some of the common problems that you might encounter while
using the Novell® ODBC driver for Novell eDirectory™ and provide instructions for uninstalling
the driver.

• Section 6.1, “Common Problems,” on page 49
• Section 6.2, “Uninstalling the Novell ODBC Driver for eDirectory,” on page 50

6.1 Common Problems
There are three common problems that can cause the Novell ODBC Driver for eDirectory to fail in
producing the report you requested.

Insufficient Resources

Some reports generate so much data that the workstation runs out of memory or disk space. An
eDirectory Data Source can contain thousands and millions of objects, depending on the eDirectory
versions that are running in the tree. If you are getting "out of resource" types of errors, restrict your
query to select fewer items:

• Select fewer attributes or specify the attributes rather than using a wildcard to include all
attributes.

• Examine the attributes you select to ensure that only a few of them are multi-valued.
• Restrict the number of objects selected by specifying only one container.

For more information on how eDirectory attributes and objects can cause a report to become
extremely large, see:

• Section 3.4, “Multi-Valued Attributes,” on page 20
• Section 3.3, “Composite Attributes,” on page 19
• Section 3.6, “Effective Rights Table,” on page 25

eDirectory Rights

You must have eDirectory rights to the data you request in your report. If you do not have at least
Browse rights to the objects and Read rights to the attributes, your report contains NULL in all the
columns. You can use the Effective Rights Table to generate a report that indicates your rights to the
objects and attributes for which you are interested in generating a report.

SQL Statement Errors

You must use the correct table and column names in SQL statements.

• If the table or column name has a space, the name must be enclosed in double quotes.
• If the attribute uses a syntax that creates multiple columns in the table, the column name for the

attribute includes a field specifier.
Troubleshooting 49

50 NDK: Novel

novdocx (E
N

U
) 01 February 2006
For information on how attributes are split into multiple columns, see Section 3.3, “Composite
Attributes,” on page 19.

For information on how to discover the tables and columns available in your eDirectory tree, see
Possible eDirectory Tables and Columns.

Jet Engine Limit of 255 Columns

Many Microsoft* tools use the Jet Engine for ODBC access. Because Jet limits the number of
columns to 255 you may not have access to all the columns you need. The following are
workarounds for this limitation:

• Create a User-defined table to access the columns you need.
• Select ODBC options instead of Jet, if available. For example the ‘defaultType' property of

Visual Basic data access objects can be switched from ‘useJet' to ‘useODBC'.

Run-time Error 3061 Too Few Parameters, While Using Microsoft Jet Database
Engine

You might get this error if the Jet is parsing the query incorrectly. To resolve this, use the
dbOpenSnapshot and dbSQLPassThrough flags with the OpenRecordset() or any equivalent
function. For more information, see the sample code for Browse under vb.

While using DAO over ODBCDirect, if the time required to retrieve the result set
exceeds the default or user specified query timeout interval, you will get a "Query
Cancelled" message from the ODBC Driver, followed by a "Execution Cancelled"
message.

To avoid this timeout problem, set the QueryTimeout value to 0 as follows:

Dim conODBCDirect As DAO.Connection
conODBCDirect.QueryTimeout = 0

6.2 Uninstalling the Novell ODBC Driver for
eDirectory
To uninstall the Novell ODBC Driver for eDirectory, follow these steps.

1 Go to Start Menu > Control Panel > Add/Remove Programs.
2 Select Novell ODBC Driver For eDirectory.
3 Click the Add/Remove button.

This invokes the uninstallation program and removes the ODBCNDS.DLL file and the sample
applications from your hard drive.
l ODBC Driver for eDirectory

Revision History

A
novdocx (E

N
U

) 01 February 2006

51

ARevision History

The following table lists all changes made to the Novell® ODBC driver for Novell eDirectory™
documentation:

February 2007 Added addtional type for update syntax on Section 2.7, “Inserting Updating
or Deleting Entries from the eDirectory Data Source“

March 2006 Fixed formatting issues.

October 2005 Added information on Section 4.16, “Optimizing the ODBC Driver
Performance,” on page 42.

March 2005 Changed the component name ODBC Driver for NDS to ODBC Driver for
eDirectory Read-Write in required instances.

October 2004 Made the following changes:

• Added information on Chapter 5, “ODBC Driver Advanced Write
Capability,” on page 45.

• Organized the document to improve navigability.

February 2004 Made the following changes:

• Added information on Simple Update Queries.

• Renamed the product name from “NDS” to “Novell eDirectory” at
relevant instances.

October 2003 Added troubleshooting tips.

June 2001 Added user defined tables.

May 2000 Added information about super classes and auxiliary classes. Added tasks for
performing queries to the super and auxiliary classes and a task for a join
query.

	NDK: Novell ODBC Driver for eDirectory
	ODBC Driver for eDirectory
	1 Requirements
	1.1 Resource Restrictions
	1.2 Hardware and Software Requirements

	2 Getting Started
	2.1 Installing the ODBC Driver
	2.2 Installing an SQL Report Generating Tool
	2.3 Logging In to the eDirectory Tree
	2.4 Check eDirectory Rights
	2.5 Selecting the eDirectory Data Source
	2.5.1 Adding an eDirectory Data Source
	2.5.2 Deleting an eDirectory Data Source
	2.5.3 Modifying an eDirectory Data Source

	2.6 Selecting the Data and Generating the Report
	2.7 Inserting, Updating or Deleting Entries from the eDirectory Data Source

	3 Novell eDirectory and SQL Integration
	3.1 Mapping of eDirectory Data to Relational Tables
	3.2 Special Columns in Tables
	3.3 Composite Attributes
	3.4 Multi-Valued Attributes
	3.4.1 Multiple Rows
	3.4.2 Concatenating Rows

	3.5 Data Type Mappings
	3.6 Effective Rights Table
	3.7 eDirectory Class Types
	3.7.1 Super Classes
	3.7.2 Auxiliary Classes

	4 Tasks
	4.1 ACL Attribute Query
	4.2 Auxiliary Class Queries
	4.3 Concatenation Query
	4.4 Container Class Query
	4.5 Creating Custom Tables
	4.5.1 Defining Tables
	4.5.2 Where are the User-Defined Tables Stored?
	4.5.3 Defining Tables from a Text File

	4.6 Join Query
	4.7 Last Login Time Query
	4.8 Parent Container Queries
	4.9 Restricted Effective Rights Query
	4.10 Simple Effective Rights Query
	4.11 Simple Search Query
	4.12 Simple Update Queries
	4.12.1 Insert
	4.12.2 Update
	4.12.3 Delete

	4.13 Sorting Query
	4.14 Super Class Query
	4.15 User Class Query
	4.16 Optimizing the ODBC Driver Performance

	5 ODBC Driver Advanced Write Capability
	5.1 Cursor
	5.1.1 Updating Using the Cursor
	5.1.2 Getting the Cursor Name
	5.1.3 Excerpt of a Sample Program

	6 Troubleshooting
	6.1 Common Problems
	6.2 Uninstalling the Novell ODBC Driver for eDirectory

	A Revision History

