
n

NDK: Server Management
Novell

m

ovdocx (E
N

U
) 01 February 2006
www . n o v e l l . c o

Developer Kit
M a r c h 1 , 2 0 0 6

S E R V E R M A N A G E M E N T

novdocx (E
N

U
) 01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 1993-2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell developer products,
and to get updates, see developer.novell.com/ndk. To access online documentation for Novell products,
see www.novell.com/documentation.

novdocx (E
N

U
) 01 February 2006
Novell Trademarks

AppNotes is a registered trademark of Novell, Inc.
AppTester is a registered trademark of Novell, Inc. in the United States.
ASM is a trademark of Novell, Inc.
Beagle is a trademark of Novell, Inc.
BorderManager is a registered trademark of Novell, Inc.
BrainShare is a registered service mark of Novell, Inc. in the United States and other countries.
C3PO is a trademark of Novell, Inc.
Certified Novell Engineer is a service mark of Novell, Inc.
Client32 is a trademark of Novell, Inc.
CNE is a registered service mark of Novell, Inc.
ConsoleOne is a registered trademark of Novell, Inc.
Controlled Access Printer is a trademark of Novell, Inc.
Custom 3rd-Party Object is a trademark of Novell, Inc.
DeveloperNet is a registered trademark of Novell, Inc., in the United States and other countries.
DirXML is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
Excelerator is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
exteNd Workbench is a trademark of Novell, Inc.
FAN-OUT FAILOVER is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc., in the United States and other countries.
Hardware Specific Module is a trademark of Novell, Inc.
Hot Fix is a trademark of Novell, Inc.
Hula is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
Internetwork Packet Exchange is a trademark of Novell, Inc.
IPX is a trademark of Novell, Inc.
IPX/SPX is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
Link Support Layer is a trademark of Novell, Inc.
LSL is a trademark of Novell, Inc.
ManageWise is a registered trademark of Novell, Inc., in the United States and other countries.
Mirrored Server Link is a trademark of Novell, Inc.
Mono is a registered trademark of Novell, Inc.
MSL is a trademark of Novell, Inc.
My World is a registered trademark of Novell, Inc., in the United States.
NCP is a trademark of Novell, Inc.
NDPS is a registered trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NDS Manager is a trademark of Novell, Inc.
NE2000 is a trademark of Novell, Inc.
NetMail is a registered trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare/IP is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
NetWare Core Protocol is a trademark of Novell, Inc.
NetWare Loadable Module is a trademark of Novell, Inc.
NetWare Management Portal is a trademark of Novell, Inc.
NetWare Name Service is a trademark of Novell, Inc.
NetWare Peripheral Architecture is a trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.
NetWare SFT and NetWare SFT III are trademarks of Novell, Inc.
NetWare SQL is a trademark of Novell, Inc.
NetWire is a registered service mark of Novell, Inc., in the United States and other countries.
NLM is a trademark of Novell, Inc.
NMAS is a trademark of Novell, Inc.
NMS is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.
Novell Application Launcher is a trademark of Novell, Inc.
Novell Authorized Service Center is a service mark of Novell, Inc.
Novell Certificate Server is a trademark of Novell, Inc.
Novell Client is a trademark of Novell, Inc.
Novell Cluster Services is a trademark of Novell, Inc.
Novell Directory Services is a registered trademark of Novell, Inc.
Novell Distributed Print Services is a trademark of Novell, Inc.
Novell iFolder is a registered trademark of Novell, Inc.
Novell Labs is a trademark of Novell, Inc.
Novell SecretStore is a registered trademark of Novell, Inc.
Novell Security Attributes is a trademark of Novell, Inc.
Novell Storage Services is a trademark of Novell, Inc.
Novell, Yes, Tested & Approved logo is a trademark of Novell, Inc.
Nsure is a registered trademark of Novell, Inc.
Nterprise is a registered trademark of Novell, Inc., in the United States.
Nterprise Branch Office is a trademark of Novell, Inc.
ODI is a trademark of Novell, Inc.
Open Data-Link Interface is a trademark of Novell, Inc.
Packet Burst is a trademark of Novell, Inc.
PartnerNet is a registered service mark of Novell, Inc., in the United States and other countries.
Printer Agent is a trademark of Novell, Inc.
QuickFinder is a trademark of Novell, Inc.
Red Box is a trademark of Novell, Inc.
Red Carpet is a registered trademark of Novell, Inc., in the United States and other countries.
Sequenced Packet Exchange is a trademark of Novell, Inc.
SFT and SFT III are trademarks of Novell, Inc.
SPX is a trademark of Novell, Inc.
Storage Management Services is a trademark of Novell, Inc.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.
System V is a trademark of Novell, Inc.
Topology Specific Module is a trademark of Novell, Inc.
Transaction Tracking System is a trademark of Novell, Inc.
TSM is a trademark of Novell, Inc.

novdocx (E
N

U
) 01 February 2006
TTS is a trademark of Novell, Inc.
Universal Component System is a registered trademark of Novell, Inc.
Virtual Loadable Module is a trademark of Novell, Inc.
VLM is a trademark of Novell, Inc.
Yes Certified is a trademark of Novell, Inc.
ZENworks is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 01 February 2006

Contents

novdocx (E
N

U
) 01 February 2006
About This Guide 15

1 Server Environment Concepts 17
1.1 Server Environment Introduction . 17
1.2 Server Get Functions for 4.x-6.x . 17
1.3 Server Information Functions for 4.x-6.x . 17
1.4 Server LAN Board Information Functions for 4.x-6.x . 18
1.5 Server Media Manager Information Functions for 4.x-6.x . 19
1.6 Server Network and Router Information Functions for 4.x-6.x. 19
1.7 Server NLM Information Functions for 4.x-6.x . 19
1.8 Server Protocol Stack Information Functions for 4.x-6.x . 20
1.9 Server Set Functions for 4.x-6.x . 20
1.10 Server Volume Information Functions for 4.x-6.x. 21
1.11 Server Configuration Functions . 21
1.12 Server Connection Functions . 22
1.13 Server Console Functions . 22

2 Server Environment Functions 23
GetServerConfigurationInfo . 26
NWAttachToFileServer . 28
NWAttachToFileServerByConn . 30
NWCheckConsolePrivileges. 32
NWCheckNetWareVersion . 33
NWDisableFileServerLogin. 35
NWDownFileServer . 37
NWEnableFileServerLogin . 39
NWEnumNetAddresses . 41
NWGenerateGUIDs . 43
NWGetActiveConnListByType . 45
NWGetActiveLANBoardList . 47
NWGetActiveProtocolStacks . 49
NWGetCacheInfo . 51
NWGetCPUInfo . 53
NWGetDirCacheInfo. 55
NWGetDiskCacheStats (obsolete-moved from .h file 6/99) . 57
NWGetDiskChannelStats (obsolete-moved from .h file 6/99). 58
NWGetFileServerDateAndTime . 59
NWGetFileServerDescription . 61
NWGetFileServerExtendedInfo . 63
NWGetFileServerInfo . 65
NWGetFileServerInformation . 67
NWGetFileServerLANIOStats (obsolete-moved from .h file 6/99) . 70
NWGetFileServerLoginStatus. 71
NWGetFileServerMiscInfo (obsolete 12/98) . 73
NWGetFileServerVersionInfo . 74
7

8 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetFileSystemStats (obsolete-moved from .h file 6/99) . 76
NWGetFSDriveMapTable (obsolete-moved from .h file 6/99) . 77
NWGetFSLANDriverConfigInfo (obsolete-moved from .h file 6/99) . 78
NWGetGarbageCollectionInfo. 79
NWGetGeneralRouterAndSAPInfo . 81
NWGetIPXSPXInfo . 83
NWGetKnownNetworksInfo. 85
NWGetKnownServersInfo . 87
NWGetLANCommonCountersInfo . 89
NWGetLANConfigInfo . 91
NWGetLANCustomCountersInfo. 93
NWGetLoadedMediaNumList . 95
NWGetLSLInfo . 97
NWGetLSLLogicalBoardStats . 99
NWGetMediaMgrObjChildrenList . 101
NWGetMediaMgrObjInfo . 103
NWGetMediaMgrObjList . 105
NWGetMediaNameByMediaNum . 108
NWGetMLIDBoardInfo . 110
NWGetNetWareFileSystemsInfo. 112
NWGetNetWareProductVersion . 114
NWGetNetworkRouterInfo. 116
NWGetNetworkRoutersInfo. 118
NWGetNetworkSerialNumber . 120
NWGetNLMInfo . 122
NWGetNLMLoadedList . 124
NWGetNLMsResourceTagList . 126
NWGetOSVersionInfo . 128
NWGetPacketBurstInfo . 130
NWGetPhysicalDiskStats (obsolete-moved from .h file 6/99) . 132
NWGetProtocolStackConfigInfo . 133
NWGetProtocolStackCustomInfo . 135
NWGetProtocolStackStatsInfo . 137
NWGetProtocolStkNumsByLANBrdNum. 139
NWGetProtocolStkNumsByMediaNum . 141
NWGetServerConnInfo . 143
NWGetServerInfo . 147
NWGetServerSetCategories . 149
NWGetServerSetCommandsInfo . 151
NWGetServerSourcesInfo. 153
NWGetUserInfo . 155
NWGetVolumeInfoByLevel . 157
NWGetVolumeSegmentList . 159
NWGetVolumeSwitchInfo . 161
NWIsManager . 163
NWLoginToFileServer . 165
NWLogoutFromFileServer. 168
NWSetFileServerDateAndTime. 169

3 Server Environment Structures 171
CACHE_COUNTERS . 172
r Management

novdocx (E
N

U
) 01 February 2006
CACHE_INFO . 176
CACHE_MEM_COUNTERS. 178
CACHE_TREND_COUNTERS. 180
CPU_INFO . 182
DIR_CACHE_INFO . 184
DRV_MAP_TABLE. 187
DSK_CACHE_STATS . 190
FILE_SERVER_COUNTERS . 194
FSE_FILE_SYSTEM_INFO . 196
FSE_MM_OBJ_INFO . 198
FSE_SERVER_INFO . 202
IPX_INFO . 206
KNOWN_NET_INFO . 208
LAN_COMMON_INFO . 209
LAN_CONFIG_INFO . 211
LSL_INFO. 216
MEDIA_INFO_DEF . 219
MLID_BOARD_INFO . 220
NETWARE_PRODUCT_VERSION . 222
NLM_INFO . 223
NWFSE_ACCT_INFO . 226
NWFSE_ACTIVE_CONN_LIST . 228
NWFSE_ACTIVE_LAN_BOARD_LIST . 229
NWFSE_ACTIVE_STACKS . 231
NWFSE_AUTH_INFO . 233
NWFSE_CACHE_INFO . 234
NWFSE_CPU_INFO. 236
NWFSE_DIR_CACHE_INFO . 237
NWFSE_FILE_SERVER_INFO . 238
NWFSE_FILE_SYSTEM_INFO . 240
NWFSE_GARBAGE_COLLECTION_INFO . 241
NWFSE_GENERAL_ROUTER_SAP_INFO. 243
NWFSE_IPXSPX_INFO . 245
NWFSE_KNOWN_NETWORKS_INFO . 246
NWFSE_KNOWN_SERVER_INFO . 247
NWFSE_LAN_COMMON_COUNTERS_INFO . 248
NWFSE_LAN_CONFIG_INFO . 250
NWFSE_LAN_CUSTOM_INFO . 251
NWFSE_LOADED_MEDIA_NUM_LIST. 252
NWFSE_LOCK_INFO . 253
NWFSE_LOGIN_NAME . 254
NWFSE_LOGIN_TIME. 255
NWFSE_LSL_INFO . 256
NWFSE_LSL_LOGICAL_BOARD_STATS . 257
NWFSE_MEDIA_MGR_OBJ_INFO . 259
NWFSE_MEDIA_MGR_OBJ_LIST . 260
NWFSE_MEDIA_NAME_LIST . 262
NWFSE_MLID_BOARD_INFO. 263
NWFSE_NETWORK_ADDRESS. 264
NWFSE_NETWORK_ROUTER_INFO. 265
NWFSE_NETWORK_ROUTERS_INFO . 267
NWFSE_NLM_INFO. 268
9

10 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_NLM_LOADED_LIST . 269
NWFSE_NLMS_RESOURCE_TAG_LIST . 271
NWFSE_OS_VERSION_INFO . 272
NWFSE_PACKET_BURST_INFO . 275
NWFSE_PRINT_INFO . 276
NWFSE_PROTOCOL_CUSTOM_INFO . 278
NWFSE_PROTOCOL_ID_NUMS . 279
NWFSE_PROTOCOL_STK_CONFIG_INFO . 280
NWFSE_PROTOCOL_STK_STATS_INFO . 282
NWFSE_SERVER_INFO . 284
NWFSE_SERVER_SET_CATEGORIES . 285
NWFSE_SERVER_SET_CMDS_INFO. 286
NWFSE_SERVER_SRC_INFO. 288
NWFSE_STATS_INFO . 289
NWFSE_USER_INFO. 290
NWFSE_VOLUME_INFO_BY_LEVEL . 291
NWFSE_VOLUME_SEGMENT_LIST. 292
NWFSE_VOLUME_SWITCH_INFO . 293
NW_GUID . 294
PACKET_BURST_INFO . 295
PHYS_DSK_STATS . 301
resourceTagBuf. 304
ROUTERS_INFO . 305
SERVER_AND_VCONSOLE_INFO . 306
SERVERS_SRC_INFO . 307
SPX_INFO. 308
STACK_INFO . 311
USER_INFO . 312
VERSION_INFO . 316
VOLUME_INFO_BY_LEVEL. 319
VOLUME_INFO_BY_LEVEL_DEF . 320
VOLUME_INFO_BY_LEVEL_DEF2 . 325
VOLUME_SEGMENT . 327

4 Server Management Concepts 329

5 Server Management Tasks 331
5.1 Managing Volumes. 331
5.2 Managing a Volume’s Name Space . 331
5.3 Managing NCF Files. 331
5.4 Managing NLMs . 331
5.5 Managing SET Values . 331

6 Server Management Functions 333
NWSMAddNSToVolume . 334
NWSMDismountVolumeByName . 336
NWSMDismountVolumeByNumber. 338
NWSMExecuteNCFFile . 340
NWSMLoadNLM . 342
NWSMLoadNLM2 . 344
r Management

novdocx (E
N

U
) 01 February 2006
NWSMMountVolume . 347
NWSMSetDynamicCmdIntValue . 349
NWSMSetDynamicCmdStrValue . 351
NWSMUnloadNLM . 353

7 TTS Concepts 355
7.1 TTS Introduction . 355
7.2 Implicit Transaction Tracking . 355
7.3 Explicit Transaction Tracking. 355
7.4 Transaction Tracking Process . 356
7.5 Implicit Tracking Threshold . 356
7.6 TTS Transaction Functions . 356
7.7 TTS Status and File Control Functions . 357
7.8 TTS Threshold Functions . 357

8 TTS Tasks 359
8.1 Enabling TTS . 359

9 TTS Functions 361
NWDisableTTS. 362
NWEnableTTS . 364
NWGetTTSStats (obsolete-moved from .h file 6/99) . 366
NWTTSAbortTransaction . 367
NWTTSBeginTransaction. 369
NWTTSEndTransaction . 371
NWTTSGetConnectionThresholds . 373
NWTTSGetControlFlags. 375
NWTTSGetProcessThresholds . 377
NWTTSIsAvailable . 379
NWTTSSetConnectionThresholds . 381
NWTTSSetControlFlags . 383
NWTTSSetProcessThresholds. 385
NWTTSTransactionStatus . 387

10 Server-Based Server Environment Concepts 389
10.1 Prerequisites . 389
10.2 Potential Uses . 389
10.3 Server-Based Server Environment Functions . 389

11 Server-Based Server Environment Functions 395
11.1 A*-GetD* Functions . 395

CheckConsolePrivileges . 396
CheckNetWareVersion . 398
ClearConnectionNumber . 400
DisableFileServerLogin . 402
DisableTransactionTracking . 404
DownFileServer . 406
EnableFileServerLogin . 408
11

12 NDK: Serve

novdocx (E
N

U
) 01 February 2006
EnableTransactionTracking . 410
GetBinderyObjectDiskSpaceLeft . 412
GetConnectionSemaphores . 415
GetConnectionsOpenFiles . 418
GetConnectionsTaskInformation . 422
GetConnectionsUsageStats (obsolete 4/99) . 426
GetConnectionsUsingFile. 427
GetDiskCacheStats (obsolete 4/99) . 431
GetDiskChannelStats (obsolete 4/99) . 432
GetDiskUtilization . 433
GetDriveMappingTable (obsolete 4/99) . 436

11.2 GetF*-TTS* Functions . 436
GetFileServerDateAndTime . 437
GetFileServerDescriptionStrings . 439
GetFileServerLANIOStats (obsolete 4/99) . 441
GetFileServerLoginStatus . 442
GetFileServerMiscInformation (obsolete 4/99) . 444
GetFileServerName . 445
GetFileSystemStats (obsolete 4/99) . 447
GetLANDriverConfigInfo (obsolete 4/99) . 448
GetLogicalRecordInformation. 449
GetLogicalRecordsByConnection. 452
GetPathFromDirectoryEntry . 455
GetPhysicalDiskStats (obsolete 4/99) . 457
GetPhysicalRecordLocksByFile . 458
GetPhysRecLockByConnectAndFile . 462
GetSemaphoreInformation . 465
GetServerInformation . 468
GetServerMemorySize . 472
GetServerUtilization . 473
SendConsoleBroadcast . 474
SetFileServerDateAndTime . 476
TTSGetStats (Obsolete-moved from .h file 4/99) . 479

11.3 SSGetA*-SSGetK* Functions . 479
SSGetActiveConnListByType. 480
SSGetActiveLANBoardList . 482
SSGetActiveProtocolStacks . 484
SSGetCacheInfo. 486
SSGetCPUInfo . 489
SSGetDirCacheInfo . 492
SSGetFileServerInfo. 495
SSGetFileSystemInfo . 499
SSGetGarbageCollectionInfo . 501
SSGetIPXSPXInfo . 503
SSGetKnownNetworksInfo . 507
SSGetKnownServersInfo . 509

11.4 SSGetL*-SSGetN* Functions . 510
SSGetLANCommonCounters. 512
SSGetLANConfiguration. 515
SSGetLANCustomCounters . 522
SSGetLoadedMediaNumberList . 524
SSGetLSLInfo. 526
SSGetLSLLogicalBoardStats . 529
SSGetMediaManagerObjChildList . 531
SSGetMediaManagerObjInfo . 534
SSGetMediaManagerObjList . 539
SSGetMediaNameByNumber. 542
SSGetNetRouterInfo. 544
r Management

novdocx (E
N

U
) 01 February 2006
SSGetNetworkRoutersInfo . 546
SSGetNLMInfo. 548
SSGetNLMLoadedList . 552
SSGetNLMResourceTagList . 554

11.5 SSGetO*-SSGetV* Functions . 555
SSGetOSVersionInfo. 557
SSGetPacketBurstInfo . 560
SSGetProtocolConfiguration . 563
SSGetProtocolCustomInfo. 566
SSGetProtocolNumbersByLANBoard . 568
SSGetProtocolNumbersByMedia . 570
SSGetProtocolStatistics. 573
SSGetRouterAndSAPInfo . 575
SSGetServerInfo . 577
SSGetServerSourcesInfo . 579
SSGetUserInfo. 581
SSGetVolumeSegmentList . 585
SSGetVolumeSwitchInfo . 587

12 Server-Based TTS Concepts 591
12.1 Transaction Process . 591
12.2 Transaction Tracking . 592

12.2.1 Implicit Transaction Tracking. 592
12.2.2 Explicit Transaction Tracking . 593

12.3 Record Locking . 593
12.4 Transaction Backouts . 593

12.4.1 Causes of Transaction Backout . 594
12.4.2 Solutions for Transaction Backout. 594

12.5 Disable/Enable Transaction Tracking . 595
12.5.1 Disable Transactions. 595
12.5.2 Enable Transactions . 596

12.6 Functions . 596

13 Server-Based TTS Functions 597
TTSAbortTransaction . 598
TTSBeginTransaction. 600
TTSEndTransaction . 602
TTSGetApplicationThresholds . 604
TTSGetWorkstationThresholds . 606
TTSIsAvailable . 608
TTSSetApplicationThresholds . 609
TTSSetWorkstationThresholds. 611
TTSTransactionStatus . 613

A Revision History 615
13

14 NDK: Serve

novdocx (E
N

U
) 01 February 2006
r Management

novdocx (E
N

U
) 01 February 2006
About This Guide

This guide contains information about concepts, tasks, functions, and structures having to do with
server management. Topics discussed include server environment, server management, and TTS.
Volume management is discussed separately in the NDK: Volume Management documentation.

This guide documents the following services:

• Chapter 2, “Server Environment Functions,” on page 23
• Chapter 6, “Server Management Functions,” on page 333
• Chapter 9, “TTS Functions,” on page 361
• Chapter 11, “Server-Based Server Environment Functions,” on page 395
• Chapter 13, “Server-Based TTS Functions,” on page 597

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Documentation Updates

For the most recent version of this guide, see NLM and NetWare Libraries for C (including CLIB
and XPlat) (http://developer.novell.com/ndk/clib.htm).

Additional Information

For information about other CLib and XPlat interfaces, see the following guides:

• NDK: NLM Development Concepts, Tools, and Functions
• NDK: Program Management
• NDK: NLM Threads Management
• NDK: Connection, Message, and NCP Extensions
• NDK: Connection, Message, and NCP Extensions
• NDK: Multiple and Inter-File Services
• NDK: Single and Intra-File Services
• NDK: Volume Management
• NDK: Client Management
• NDK: Network Management
• NDK: Internationalization
• NDK: Unicode
• NDK: Sample Code
• NDK: Getting Started with NetWare Cross-Platform Libraries for C
• NDK: Bindery Management
15

http://developer.novell.com/ndk/clib.htm
http://developer.novell.com/ndk/clib.htm

16 NDK: Serve

novdocx (E
N

U
) 01 February 2006
For CLib and XPlat source code projects, visit Forge (http://forge.novell.com).

For help with CLib and XPlat problems or questions, visit the NLM and NetWare Libraries for C
(including CLIB and XPlat) Developer Support Forum (http://developer.novell.com/ndk/
devforums.htm). There are two for NLM development (XPlat and CLib) and one for Windows XPlat
development.

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
r Management

http://forge.novell.com
http://developer.novell.com/ndk/devforums.htm
http://developer.novell.com/ndk/devforums.htm

1
novdocx (E

N
U

) 01 February 2006
1Server Environment Concepts

This documentation provides and overview of Server Environment, its functions, and features.

1.1 Server Environment Introduction
Server Environment returns detailed statistical information about NetWare® servers. It also allows
you to perform the following tasks:

• Check the version of NetWare running on the server
• Check whether you have console operator privileges on a server
• Bring down a server
• Enable and disable server logins
• Attach, log in, and log out of NetWare servers using the bindery

The functions fall into three groups:

• Functions compatible with 3.x and above
• Functions compatible with 4.x, 5.x, and 6.x

The header nwfse.h defines NetWare 4.x, 5.x, and 6.x functions; nwserver.h defines the remaining
functions.

For a description of structures and other data definitions that relate to this topic, see “Server
Environment Structures” on page 171.

1.2 Server Get Functions for 4.x-6.x
These functions return 4.x, 5.x, and 6.x server information by server name and type.

1.3 Server Information Functions for 4.x-6.x
These functions return detailed information about the NetWare® server associated with the specified
connection handle.

Function Header Comment

NWGetServerInfo nwfse.h Returns information about the server including the
specified type and name.

NWGetServerSourcesInfo nwfse.h Returns information about all servers matching the
specified type and name.

NWGetKnownServersInfo nwfse.h Returns all known servers.
Server Environment Concepts 17

18 NDK: Serve

novdocx (E
N

U
) 01 February 2006
1.4 Server LAN Board Information Functions for
4.x-6.x
These functions return information about LAN boards on a 4.x, 5.x, or 6.x server.

Function Header Comment

NWGetCacheInfo nwfse.h Returns information about a server’s file
cache.

NWGetFileServerInfo nwfse.h Returns server operation statistics
information.

NWGetNetWareFileSystemsInfo nwfse.h Returns counters of the times specific
operations on the file system were
performed.

NWGetPacketBurstInfo nwfse.h Returns counters and statistics about
packet burst on the server.

NWGetIPXSPXInfo nwfse.h Returns a server’s internal IPX and SPX
statistics.

NWGetGarbageCollectionInfo nwfse.h Returns counters about a server’s memory
allocation manager.

NWGetDirCacheInfo nwfse.h Returns statistics about a server’s directory
caching.

NWGetCPUInfo nwfse.h Returns CPU information and descriptive
strings for the CPU type, numeric
coprocessor, and bus type for the indicated
CPU number (for 4.x, this is 1).

NWGetVolumeSwitchInfo nwfse.h Returns counters containing the number of
times a specified code path was taken in the
server.

NWGetOSVersionInfo nwfse.h Returns version information about the
server’s operating system.

Function Header Comment

NWGetActiveLANBoardList nwfse.h Returns a list of LAN Board IDs that can be
used as input to other functions.

NWGetLANConfigInfo nwfse.h Returns configuration information for a LAN
Board.

NWGetLANCommonCountersInfo nwfse.h Returns counters common to all types of
LAN Boards.

NWGetLANCustomCountersInfo nwfse.h Returns counters specific to a particular
LAN Board.

NWGetLSLInfo nwfse.h Returns information about the link support
layer (LSL).
r Management

novdocx (E
N

U
) 01 February 2006
1.5 Server Media Manager Information Functions
for 4.x-6.x
These functions return media manager information for a 4.x, 5.x, or 6.x server.

1.6 Server Network and Router Information
Functions for 4.x-6.x
These functions return routing and service advertising information for a 4.x, 5.x, or 6.x server.

1.7 Server NLM Information Functions for 4.x-6.x
These functions return information about NLMs on a 4.x, 5.x, or 6.x server.

NWGetLSLLogicalBoardStats nwfse.h Returns information about the LSL logical
boards.

Function Header Comment

NWGetLoadedMediaNumList nwfse.h Returns a list of Media IDs for all the
managed media objects in a server.

NWGetMediaMgrObjList nwfse.h Returns a list of Media IDs for all the media
objects matching the specified type.

NWGetMediaMgrObjChildrenList nwfse.h Returns a list of children IDs for a media
object.

NWGetMediaMgrObjInfo nwfse.h Returns information about a media object.
This information includes parent, sibling,
and children counts and I/O capabilities.

NWGetMediaNameByMediaNum nwfse.h Returns the descriptive name and
information about a media object specified
by the media ID.

Function Header Comment

NWGetKnownNetworksInfo nwfse.h Returns a list of networks known to a
server.

NWGetNetworkRouterInfo nwfse.h Returns information about the specified
network to a server, if known.

NWGetGeneralRouterAndSAPInfo nwfse.h Returns flags and information concerning
the status of routing and SAP on a server.

NWGetNetworkRoutersInfo nwfse.h Returns information about routers on the
specified network.

Function Header Comment
Server Environment Concepts 19

20 NDK: Serve

novdocx (E
N

U
) 01 February 2006
1.8 Server Protocol Stack Information Functions
for 4.x-6.x
These functions return protocol stack information for a 4.x, 5.x, or 6.x server.

1.9 Server Set Functions for 4.x-6.x
These functions return the set table configuration categories and commands for a 4.x, 5.x, or 6.x
server.

Function Header Comment

NWGetNLMLoadedList nwfse.h Returns a list of NLM IDs that can be used
with NWGetNLMInfo and
NWGetNLMsResourceTagList.

NWGetNLMInfo nwfse.h Returns strings identifying an NLM’s
filename, name, and copyright, along with
detailed information about the module.

NWGetNLMsResourceTagList nwfse.h Returns resource tag lists for an NLM.
Resource tags are used by NetWare® to
identify resources allocated by the module.

Function Header Comment

NWGetActiveProtocolStacks nwfse.h Returns a list of Stack IDs for all the
loaded protocol stacks in the server.

NWGetProtocolStackConfigInfo nwfse.h Returns configuration information
describing a protocol stack.

NWGetProtocolStackStatsInfo nwfse.h Returns counters for a protocol stack,
including the number of custom
counters.

NWGetProtocolStkNumsByMediaNum nwfse.h Returns Stack IDs for the specified
media number.

NWGetProtocolStkNumsByLANBrdNum nwfse.h Returns Stack IDs for the protocol
stacks bound to a LAN Board.

NWGetProtocolStackCustomInfo nwfse.h Returns the custom counters for the
protocol stack.

Function Header Comment

NWGetServerSetCommandsInfo nwfse.h Returns all of a server’s set table
commands for all categories.

NWGetServerSetCategories nwfse.h Returns the set table categories on the
server.
r Management

novdocx (E
N

U
) 01 February 2006
1.10 Server Volume Information Functions for
4.x-6.x
These functions return volume information for a 4.x, 5.x, or 6.x server.

1.11 Server Configuration Functions
These functions read NetWare® server configuration data.

Function Header Comment

NWGetVolumeSegmentList nwfse.h Returns a list of volume segment information
for the server.

NWGetVolumeInfoByLevel nwfse.h Returns detailed information about the
specified volume according to the specified
information level.

Function Header Comment

NWCheckNetWareVersion nwserver.h Allows verification of compatibility between
applications and the version of NetWare
running on a NetWare server.

NWGetFileServerDateAndTime nwserver.h Returns the network date and time
maintained on the specified NetWare
server.

NWGetFileServerDescription nwserver.h Returns descriptive information about the
specified NetWare server, including
company name, version, revision date, and
copyright notice.

NWGetFileServerExtendedInfo nwserver.h Returns extended information about the
specified NetWare server.

NWGetFileServerInformation nwserver.h Returns commonly referenced information
about a NetWare server including version
numbers, connection statistics, SFT level,
and TTS level.

NWGetFileServerLoginStatus nwserver.h Returns whether clients can log in to the
specified workstation.

NWCCGetConnRefInfo nwserver.h Returns the name of the NetWare server
associated with the specified connection ID.

NWGetFileServerVersionInfo nwserver.h Returns name and version information for
the specified NetWare server.

NWGetNetworkSerialNumber nwserver.h Returns the NetWare server’s serial number
and the application number.

NWIsManager nwserver.h Checks whether a calling station is a
manager
Server Environment Concepts 21

22 NDK: Serve

novdocx (E
N

U
) 01 February 2006
1.12 Server Connection Functions
These functions perform NetWare® server attachments and logins.

1.13 Server Console Functions
These functions perform console operations.

Function Header Comment

NWAttachToFileServer nwserver.h Attempts to establish a connection with the
specified NetWare server.

NWAttachToFileServerByConn nwserver.h Attaches to a NetWare server through a
service identified by a connection.

NWLoginToFileServer nwserver.h Attempts to log a bindery object in to a
NetWare server. This function performs only
the login; the workstation must be currently
attached to the server.

NWLogoutFromFileServer nwserver.h Attempts to log a bindery object out of the
specified NetWare server. This function
doesn’t release the connection.

Function Header Comment

NWCheckConsolePrivileges nwserver.h Determines whether the client is a
NetWare® server console operator.

NWDisableFileServerLogin nwserver.h Disables all logins to a NetWare server.

NWDownFileServer nwserver.h Brings a NetWare server down.

NWEnableFileServerLogin nwserver.h Enables logins to a NetWare server.

NWSetFileServerDateAndTime nwserver.h Sets the date and time of a NetWare server.
r Management

2
novdocx (E

N
U

) 01 February 2006
2Server Environment Functions

This documentation alphabetically lists the server environment functions and describes their
purpose, syntax, parameters, and return values.

• “GetServerConfigurationInfo” on page 26
• “NWAttachToFileServer” on page 28
• “NWAttachToFileServerByConn” on page 30
• “NWCheckConsolePrivileges” on page 32
• “NWCheckNetWareVersion” on page 33
• “NWDisableFileServerLogin” on page 35
• “NWDownFileServer” on page 37
• “NWEnableFileServerLogin” on page 39
• “NWEnumNetAddresses” on page 41
• “NWGenerateGUIDs” on page 43
• “NWGetActiveConnListByType” on page 45
• “NWGetActiveLANBoardList” on page 47
• “NWGetActiveProtocolStacks” on page 49
• “NWGetCacheInfo” on page 51
• “NWGetCPUInfo” on page 53
• “NWGetDirCacheInfo” on page 55
• “NWGetDiskCacheStats (obsolete-moved from .h file 6/99)” on page 57
• “NWGetDiskChannelStats (obsolete-moved from .h file 6/99)” on page 58
• “NWGetFileServerDateAndTime” on page 59
• “NWGetFileServerDescription” on page 61
• “NWGetFileServerExtendedInfo” on page 63
• “NWGetFileServerInfo” on page 65
• “NWGetFileServerInformation” on page 67
• “NWGetFileServerLANIOStats (obsolete-moved from .h file 6/99)” on page 70
• “NWGetFileServerLoginStatus” on page 71
• “NWGetFileServerMiscInfo (obsolete 12/98)” on page 73
• “NWGetFileServerVersionInfo” on page 74
• “NWGetFileSystemStats (obsolete-moved from .h file 6/99)” on page 76
• “NWGetFSDriveMapTable (obsolete-moved from .h file 6/99)” on page 77
• “NWGetFSLANDriverConfigInfo (obsolete-moved from .h file 6/99)” on page 78
• “NWGetGarbageCollectionInfo” on page 79
• “NWGetGeneralRouterAndSAPInfo” on page 81
• “NWGetIPXSPXInfo” on page 83
Server Environment Functions 23

24 NDK: Serve

novdocx (E
N

U
) 01 February 2006
• “NWGetKnownNetworksInfo” on page 85
• “NWGetKnownServersInfo” on page 87
• “NWGetLANCommonCountersInfo” on page 89
• “NWGetLANConfigInfo” on page 91
• “NWGetLANCustomCountersInfo” on page 93
• “NWGetLoadedMediaNumList” on page 95
• “NWGetLSLInfo” on page 97
• “NWGetLSLLogicalBoardStats” on page 99
• “NWGetMediaMgrObjChildrenList” on page 101
• “NWGetMediaMgrObjInfo” on page 103
• “NWGetMediaMgrObjList” on page 105
• “NWGetMediaNameByMediaNum” on page 108
• “NWGetMLIDBoardInfo” on page 110
• “NWGetNetWareFileSystemsInfo” on page 112
• “NWGetNetWareProductVersion” on page 114
• “NWGetNetworkRouterInfo” on page 116
• “NWGetNetworkRoutersInfo” on page 118
• “NWGetNetworkSerialNumber” on page 120
• “NWGetNLMInfo” on page 122
• “NWGetNLMLoadedList” on page 124
• “NWGetNLMsResourceTagList” on page 126
• “NWGetOSVersionInfo” on page 128
• “NWGetPacketBurstInfo” on page 130
• “NWGetPhysicalDiskStats (obsolete-moved from .h file 6/99)” on page 132
• “NWGetProtocolStackConfigInfo” on page 133
• “NWGetProtocolStackCustomInfo” on page 135
• “NWGetProtocolStackStatsInfo” on page 137
• “NWGetProtocolStkNumsByLANBrdNum” on page 139
• “NWGetProtocolStkNumsByMediaNum” on page 141
• “NWGetServerConnInfo” on page 143
• “NWGetServerInfo” on page 147
• “NWGetServerSetCategories” on page 149
• “NWGetServerSetCommandsInfo” on page 151
• “NWGetServerSourcesInfo” on page 153
• “NWGetUserInfo” on page 155
• “NWGetVolumeInfoByLevel” on page 157
• “NWGetVolumeSegmentList” on page 159
• “NWGetVolumeSwitchInfo” on page 161
r Management

novdocx (E
N

U
) 01 February 2006
• “NWIsManager” on page 163
• “NWLoginToFileServer” on page 165
• “NWLogoutFromFileServer” on page 168
• “NWSetFileServerDateAndTime” on page 169
Server Environment Functions 25

26 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetServerConfigurationInfo
Returns the engine type and loader type of the server.

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.12, 3.2, 4.02, 4.1, 5.x, 6.x

Platform: NLM

Service: Server Environment

Syntax
#include <nwenvrn.h>

int GetServerConfigurationInfo (
 int *serverType,
 int *loaderType);

Parameters
serverType

(OUT) Points to the NetWare server engine type.

loaderType
(OUT) Points to the NetWare loader type.

Return Values

Remarks
You can pass a NULL pointer in either parameter. When a NULL pointer is passed in, a value will
not be returned for the specified parameter.

serverType receives one of the following values defined in NWENVRN.H:

Decimal Hex Constant

0 0x00 ESUCCESS always.

Value Constant Description

0 TYPE_NORMAL_SERVER NLM application is running on a normal NetWare server.

1 TYPE_IO_ENGINE NLM application is running in the IO Engine of a NetWare
SFT III™ server.
r Management

novdocx (E
N

U
) 01 February 2006
loaderType receives one of the following values defined in NWENVRN.H:

Example

GetServerConfigurationInfo

#include <stdio.h>
#include <nwenvrn.h>

void main()
{
 int serverType, loaderType;

 if (!GetServerConfigurationInfo(&serverType, &loaderType))
 {
 if (loaderType == LOADER_TYPE_OS2)
 printf("This NLM is running on NetWare for OS/2.\n\n");
 else if (loaderType == LOADER_TYPE_DOS)
 {
 if (serverType == TYPE_IO_ENGINE)
 printf("This NLM is running on NetWare SFTIII"
 " in an IO Engine.\n\n");
 else if (serverType == TYPE_OS_ENGINE)
 printf("This NLM is running on NetWare SFTIII"
 " in an MS Engine.\n\n");
 else if (serverType == TYPE_NORMAL_SERVER)
 printf("This NLM is running on a dedicated"
 " NetWare server with a DOS loader.\n\n");
 }
 }
}

2 TYPE_OS_ENGINE NLM application is running in the MS Engine of a NetWare
SFT III server.

Value Constant Description

1 LOADER_TYPE_DOS NLM application is running on a dedicated NetWare server
with a DOS loader.

2 LOADER_TYPE_OS2 NLM application is running on a nondedicated server
running on OS/2.

3 LOADER_TYPE_MSWIN31 NLM application is running on a nondedicated server
running Netware for Windows.

Value Constant Description
Server Environment Functions 27

28 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWAttachToFileServer
Attaches to the specified NetWare server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAttachToFileServer (
 const nstr8 N_FAR *serverName,
 nuint16 scopeFlag,
 NWCONN_HANDLE N_FAR *newConnID);

Delphi Syntax
uses calwin32

Function NWAttachToFileServer
 (const serverName : pnstr8;
 scopeFlag : nuint16;
 Var newConnID : NWCONN_HANDLE
) : NWCCODE;

Parameters
serverName

(IN) Points to the name of the server to connect.

scopeFlag
Is reserved; must be 0.

newConnID
(OUT) Points to the new connection handle, if the attachment was successful.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
r Management

novdocx (E
N

U
) 01 February 2006
Remarks

WARNING: Before attaching to the specified server, NWAttachToFileServer tries to get the
server’s net address from the default server’s Bindery.

NO_RESPONSE_FROM_SERVER will be returned if RIP traffic is filtered on a router but SAP
traffic is not. The dynamic object can be read from the bindery, but the request to attach to a server
cannot be routed

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

0x0000 SUCCESSFUL

0x8800 ALREADY_ATTACHED

0x8801 INVALID_CONNECTION

0x8847 NO_SERVER_ERROR

0x890A NLM_INVALID_CONNECTION

0x89FC UNKNOWN_FILE_SERVER

0x89FF NO_RESPONSE_FROM_SERVER
Server Environment Functions 29

30 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWAttachToFileServerByConn
Attaches to a NetWare server through a service identified by a connection.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAttachToFileServerByConn (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *serverName,
 nuint16 scopeFlag,
 NWCONN_HANDLE N_FAR *newConnID);

Delphi Syntax
uses calwin32

Function NWAttachToFileServerByConn
 (conn : NWCONN_HANDLE;
 const serverName : pnstr8;
 scopeFlag : nuint16;
 Var newConnID : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle through which to attach.

serverName
(IN) Points to a 48-character buffer for the server name (optional).

scopeFlag
(IN) Reserved for Novell use only; must be 0.

newConnID
(OUT) Points to the connection handle, if any, to serverName.
r Management

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWAttachToFileServerByConn allows attachments to servers not seen by the preferred server.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 22 Get Station’s Logged Info (old)
0x2222 23 28 Get Station’s Logged Info
0x2222 104 1 Ping for NDS NCP

See Also
NWAttachToFileServer (page 28)

0x0000 SUCCESSFUL

0x8800 ALREADY_ATTACHED

0x8801 INVALID_CONNECTION

0x8847 NO_SERVER_ERROR

0x890A NLM_INVALID_CONNECTION

0x89FC UNKNOWN_FILE_SERVER
Server Environment Functions 31

32 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWCheckConsolePrivileges
Determines if the logged-in user is a console operator.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCheckConsolePrivileges (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWCheckConsolePrivileges
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

NCP Calls
0x2222 23 200 Check Console Privileges

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

novdocx (E
N

U
) 01 February 2006
NWCheckNetWareVersion
Checks compatibility of OS modules.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCheckNetWareVersion
 (NWCONN_HANDLE conn,
 nuint16 minVer,
 nuint16 minSubVer,
 nuint16 minRev,
 nuint16 minSFT,
 nuint16 minTTS,
 pnuint8 compatibilityFlag);

Delphi Syntax
uses calwin32

Function NWCheckNetWareVersion
 (conn : NWCONN_HANDLE;
 minVer : nuint16;
 minSubVer : nuint16;
 minRev : nuint16;
 minSFT : nuint16;
 minTTS : nuint16;
 compatibilityFlag : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the connection handle of the server to check.

minVer
(IN) Specifies the minimum version required for the module to run.
Server Environment Functions 33

34 NDK: Serve

novdocx (E
N

U
) 01 February 2006
minSubVer
(IN) Specifies the minimum sub-version required for the module to run.

minRev
(IN) Specifies the minimum revision required for the module to run.

minSFT
(IN) Specifies the minimum revision required to check System Fault Tolerance (SFT).

minTTS
(IN) Specifies the minimum revision required to check Transaction Tracking System (TTS).

compatibilityFlag
(OUT) Points to a flag indicating compatibility:

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

NCP Calls
0x2222 23 200 Check Console Privileges

See Also
NWGetFileServerVersionInfo (page 74)

C Value Delphi Value Value Name

0x00 $00 COMPATIBLE

0x01 $01 VERSION_NUMBER_TOO_LOW

0x02 $02 SFT_LEVEL_TOO_LOW

0x04 $04 TTS_LEVEL_TOO_LOW

0x0000 SUCCESSFUL
r Management

novdocx (E
N

U
) 01 February 2006
NWDisableFileServerLogin
Allows an operator to instruct the NetWare server to refuse new login requests.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDisableFileServerLogin (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWDisableFileServerLogin
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES
Server Environment Functions 35

36 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
NWDisableFileServerLogin is usually made during some crucial time-before taking the server
down, for instance.

It is recommended that caution be used with NWDisableFileServerLogin. If, after calling
NWDisableFileServerLogin, the service connection to the NetWare server is lost or destroyed, a
new connection cannot be created; therefore, the user cannot log in again. If no other user on the
server has SUPERVISOR privileges, the server must be brought down from the console connected
to the server and rebooted before any new users (including the SUPERVISOR) can access it.

To call NWDisableFileServerLogin, you must have console operator rights.

NCP Calls
0x2222 23 203 Disable File Server Login
r Management

novdocx (E
N

U
) 01 February 2006
NWDownFileServer
Allows a supervisor to bring down a NetWare server from a remote console.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDownFileServer (
 NWCONN_HANDLE conn,
 nuint8 forceFlag);

Delphi Syntax
uses calwin32

Function NWDownFileServer
 (conn : NWCONN_HANDLE;
 forceFlag : nuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

forceFlag
(IN) Specifies a flag enabling the server to shut down when files are still open (0=enabled).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
Server Environment Functions 37

38 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
If forceFlag is zero, the server shuts down even if files are open. If forceFlag is non-zero and
any files are in use or open, 0x89FF (failure) is returned, and the server stays up. If no files are open
or in use, the server shuts down, and SUCCESSFUL returns.

To call NWDownFileServer, you must have console operator rights.

NCP Calls
 0x2222 23 211 Down File Server

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Down Failure
r Management

novdocx (E
N

U
) 01 February 2006
NWEnableFileServerLogin
Allows an operator to instruct the server to begin accepting new login requests from clients.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWEnableFileServerLogin (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWEnableFileServerLogin
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES
Server Environment Functions 39

40 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
Enabling the server’s log state also unlocks the SUPERVISOR’s account if it has been locked
because of intruder detection.

To call NWEnableFileServerLogin, you must have console operator rights.

If the calling station does not have operator privileges, NO_CONSOLE_PRIVILEGES is returned,
and the NetWare server’s log state remains unchanged.

NCP Calls
0x2222 23 204 Enable File Server Login

See Also
NWDisableFileServerLogin (page 35)
r Management

novdocx (E
N

U
) 01 February 2006
NWEnumNetAddresses
Enumerates all the network addresses used by the specified NetWare server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE NWEnumNetAddresses (
 NWCONN_HANDLE conn,
 pnuint32 searchNumber
 SERVER_AND_VCONSOLE_INFO N_FAR *serverTimeAndVConsoleInfo,
 pnuint16 reserved,
 NW_GUID N_FAR *fseServerGUID,
 nuint32 itemsInArray,
 pnuint32 itemsReturned,
 NWFSE_NETWORK_ADDRESS N_FAR *fseNetworkAddresses);

Delphi Syntax
uses calwin32

Type
 NW_GUID = Array[0..15] of nuint8;

Function NWEnumNetAddresses(
 conn : NWCONN_HANDLE;
 Var searchNumber : nuint32;
 Var serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : pnuint16;
 Var fseServerGUID : NW_GUID;
 itemsInArray : nuint32;
 Var itemsReturned : nuint32;
 Var fseNetworkAddresses: NWFSE_NETWORK_ADDRESS
) : NWCCODE;

Parameters
conn
Server Environment Functions 41

42 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the NetWare server connection handle.

searchNumber
(IN/OUT) Points to the iteration value used for subsequent calls (set to zero initially).

serverTimeAndVConsoleInfo
(OUT) Points to SERVER_AND_VCONSOLE_INFO, which contains the server console
version.

reserved
Is reserved for future use.

fseServerGUID
(OUT) Points to NW_GUID, which contains the server's Global Universal Identification
(GUID).

itemsInArray
(IN) Specifies the size of the array pointed to by fseNetworkAddresses.

itemsReturned
(OUT) Points to the actual number of addresses returned by fseNetworkAddresses.

fseNetworkAddresses
(OUT) Points to NWFSE_NETWORK_ADDRESS, which contains the network address
information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
You need to allocate enough space for the address in the address field of
NWFSE_NETWORK_ADDRESS, or NWE_BUFFER_OVERFLOW will be returned.

Upon return, the addressSize field in NWFSE_NETWORK_ADDRESS will contain the size
needed to read the address. To call NWEnumNetAddresses iteratively and avoid the
NWE_BUFFER_OVERFLOW error, reset the addressSize field to the maximum buffer size.

NCP Calls
0x2222 123 17 Enumerate NCP Service Network Addresses

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x880E NWE_BUFFER_OVERFLOW

0x8977 NWE_BUFFER_TOO_SMALL

0x897E NCP_BOUNDARY_CHECK_FAILED
r Management

novdocx (E
N

U
) 01 February 2006
NWGenerateGUIDs
Returns a Global Universal Identification (GUID) list from a server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE NWGenerateGUIDs (
 NWCONN_HANDLE connHandle,
 nuint32 GUIDSize,
 NW_GUID GUIDList[]);

Delphi Syntax
uses calwin32

Function NWGenerateGUIDs
 (connHandle : NWCONN_HANDLE;
 GUIDSize : nuint32;
 GUIDList [] : NW_GUID
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the connection handle of the server where the GUID list request should be sent.

GUIDSize
(IN) Specifies the number of GUIDs that will fit in the space allocated for GUIDList.

GUIDList
(OUT) Points to an array of NW_GUID structures that contain a list of the server's GUIDs.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 43

44 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
GUIDSize will be the maximum number of GUIDs generated by the server.

You need to allocate enough space to accommodate the number of GUIDs specified in GUIDSize.

NCP Calls
0x2222 23 33 Generate GUIDs

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x880E NWE_BUFFER_OVERFLOW

0x8869 ACCESS_VIOLATION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FB INVALID_PARAMETER
r Management

novdocx (E
N

U
) 01 February 2006
NWGetActiveConnListByType
Returns a bitmap (set if logged in) of all connections of a specified type.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetActiveConnListByType (
 NWCONN_HANDLE conn,
 nuint32 startConnNum,
 nuint32 connType,
 NWFSE_ACTIVE_CONN_LIST N_FAR *fseActiveConnListByType);

Delphi Syntax
uses calwin32

Function NWGetActiveConnListByType
 (conn : NWCONN_HANDLE;
 startConnNum : nuint32;
 connType : nuint32;
 Var fseActiveConnListByType : NWFSE_ACTIVE_CONN_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startConnNum
(IN) Specifies the first connection number to return information about.

connType
(IN) Specifies the type of the connection (see Connection Type Values (NDK: Connection,
Message, and NCP Extensions)).

fseActiveConnListByType
Server Environment Functions 45

46 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_ACTIVE_CONN_LIST.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Console operator rights are NOT necessary to call NWGetActiveConnListByType.

NCP Calls
0x2222 123 14 Get Active Connection List By Type

See Also
NWGetUserInfo (page 155)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FD Invalid Connection

0x89FF Failure or Invalid Start Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetActiveLANBoardList
Returns information about the active LAN boards on a server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetActiveLANBoardList (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_ACTIVE_LAN_BOARD_LIST N_FAR *fseActiveLANBoardList);

Delphi Syntax
uses calwin32

Function NWGetActiveLANBoardList
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseActiveLANBoardList : NWFSE_ACTIVE_LAN_BOARD_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the starting LAN board number.

fseActiveLANBoardList
(OUT) Points to NWFSE_ACTIVE_LAN_BOARD_LIST.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 47

48 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
Console operator rights are NOT necessary to call NWGetActiveLANBoardList.

startNum will normally be 0, unless the amount of LAN Boards is greater than
FSE_MAX_NUM_OF_LANS. To return the extra, set startNum to LANLoadedCount + 1.

NCP Calls
 0x2222 123 20 Active LAN Board List

See Also
NWGetLANCommonCountersInfo (page 89), NWGetLANConfigInfo (page 91),
NWGetLANCustomCountersInfo (page 93), NWGetLSLLogicalBoardStats (page 99),
NWGetProtocolStkNumsByLANBrdNum (page 139)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FF Failure or Invalid Start Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetActiveProtocolStacks
Returns protocol stack information in NWFSE_ACTIVE_STACKS.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetActiveProtocolStacks
 (NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_ACTIVE_STACKS N_FAR *fseActiveStacks);

Delphi Syntax
uses calwin32

Function NWGetActiveProtocolStacks
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseActiveStacks : NWFSE_ACTIVE_STACKS
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the number to start with if NWGetActiveProtocolStacks is called iteratively.

fseActiveStacks
(OUT) Points to NWFSE_ACTIVE_STACKS.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 49

50 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetActiveProtocolStacks, you must have console operator rights.

In the first call, startNumber should be 0. On subsequent calls, use the number of stacks
retrieved.

NCP Calls
0x2222 123 40 Active Protocol Stacks

See Also
NWGetProtocolStackConfigInfo (page 133), NWGetProtocolStackCustomInfo (page 135),
NWGetProtocolStackStatsInfo (page 137), NWGetProtocolStkNumsByLANBrdNum (page 139),
NWGetProtocolStkNumsByMediaNum (page 141)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure or Invalid Start Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetCacheInfo
Allows a caller from a workstation to get server cache management statistical and operating system
information.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetCacheInfo (
 NWCONN_HANDLE conn,
 NWFSE_CACHE_INFO N_FAR *fseCacheInfo);

Delphi Syntax
uses calwin32

Function NWGetCacheInfo
 (conn : NWCONN_HANDLE;
 Var fseCacheInfo : NWFSE_CACHE_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseCacheInfo
(IN) Points to NWFSE_CACHE_INFO.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
Server Environment Functions 51

52 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetCacheInfo, you must have console operator rights.

NCP Calls
 0x2222 123 01 Get Cache Information

See Also
NWGetDirCacheInfo (page 55)
r Management

novdocx (E
N

U
) 01 February 2006
NWGetCPUInfo
Gets CPU and hardware configuration information about the server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetCPUInfo (
 NWCONN_HANDLE conn,
 nuint32 CPUNum,
 pnstr8 CPUName,
 pnstr8 numCoprocessor,
 pnstr8 bus,
 NWFSE_CPU_INFO N_FAR *fseCPUInfo);

Delphi Syntax
uses calwin32

Function NWGetCPUInfo
 (conn : NWCONN_HANDLE;
 CPUNum : nuint32;
 CPUName : pnstr8;
 numCoprocessor : pnstr8;
 bus : pnstr8;
 Var fseCPUInfo : NWFSE_CPU_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

CPUNum
(IN) Specifies the CPU number. Pass one for NetWare 5.x and 6.x and zero for NetWare 4.0.

CPUName
Server Environment Functions 53

54 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(OUT) Points to the ASCII string of the CPU type. This string space must be allocated by the
application.

numCoprocessor
(OUT) Points to the ASCII string of whether or not a coprocessor is present. This string space
must be allocated by the application.

bus
(OUT) Points to the ASCII string of the bus type. This string space must be allocated by the
application.

fseCPUInfo
(OUT) Points to NWFSE_CPU_INFO.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Under NETX, if an invalid connection handle is passed to conn, NWGetCPUInfo will return
0x0000. NETX will pick a default connection handle if the connection handle cannot be resolved.

Console operator rights are NOT necessary to call NWGetCPUInfo.

NCP Calls
0x2222 123 08 CPU Information

0x0000 SUCCESSFUL

0x89FE DIRECTORY_LOCKED

0x89FF Failure or Invalid CPU Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetDirCacheInfo
Returns information about the directory cache manager.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDirCacheInfo (
 NWCONN_HANDLE conn,
 NWFSE_DIR_CACHE_INFO N_FAR *fseDirCacheInfo);

Delphi Syntax
uses calwin32

Function NWGetDirCacheInfo
 (conn : NWCONN_HANDLE;
 Var fseDirCacheInfo : NWFSE_DIR_CACHE_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseDirCacheInfo
(OUT) Points to NWFSE_DIR_CACHE_INFO.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
Server Environment Functions 55

56 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetDirCacheInfo, you must have console operator rights.

NCP Calls
 0x2222 123 12 Get Directory Cache Information
r Management

novdocx (E
N

U
) 01 February 2006
NWGetDiskCacheStats (obsolete-moved from .h file 6/
99)
was last documented in Release 15 for NetWare 2.x only.

Server Environment Functions 57

58 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetDiskChannelStats (obsolete-moved from .h file
6/99)
was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
NWGetFileServerDateAndTime
Returns the network date and time maintained on the specified NetWare server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerDateAndTime (
 NWCONN_HANDLE conn,
 pnuint8 dateTimeBuffer);

Delphi Syntax
uses calwin32

Function NWGetFileServerDateAndTime
 (conn : NWCONN_HANDLE;
 dateTimeBuffer : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

dateTimeBuffer
(OUT) Points to a 7-byte buffer for the network date and time.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
Server Environment Functions 59

60 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
Since the date and time are not automatically synchronized across an internetwork, dates and times
may differ among servers.

The system time clock is a 7-byte value defined in the following format:

NOTE: The year value corresponds to the specified years:

80-99 1980-1999
100-179 2000-2079

NCP Calls
0x2222 20 Get File Server Date And Time

Byte Value Range

0 Year 80 through 179

1 Month 1 through 12

2 Day 1 through 31

3 Hour 0 through 23 (0 = 12 midnight; 23 = 11 PM)

4 Minute 0 through 59

5 Second 0 through 59

6 Day of Week 0 through 6, 0=Sunday
r Management

novdocx (E
N

U
) 01 February 2006
NWGetFileServerDescription
Returns information about a NetWare server, including company name, NetWare version, revision
date and copyright notice, using descriptive strings.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerDescription (
 NWCONN_HANDLE conn,
 pnstr8 companyName,
 pnstr8 revision,
 pnstr8 revisionDate,
 pnstr8 copyrightNotice);

Delphi Syntax
uses calwin32

Function NWGetFileServerDescription
 (conn : NWCONN_HANDLE;
 companyName : pnstr8;
 revision : pnstr8;
 revisionDate : pnstr8;
 copyrightNotice : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

companyName
(OUT) Points to the name of the company providing the version of NetWare (80 characters,
optional).

revision
(OUT) Points to the NetWare version and revision description string (80 characters, optional).
Server Environment Functions 61

62 NDK: Serve

novdocx (E
N

U
) 01 February 2006
revisionDate
(OUT) Points to the revision date in the form xx/xx/xx. For example: 12/16/91 (24 characters,
optional).

copyrightNotice
(OUT) Points to the copyright notice (80 characters, optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Under NETX, if an invalid connection handle is passed to conn, NWGetFileServerDescription will
return 0x0000. NETX will pick a default connection handle if the connection handle cannot be
resolved.

Each string is NULL-terminated.

For items not desired in the return, substitute NULL. However, all parameter positions must be
filled.

Any client attached to the specified server can call NWGetFileServerDescription. Console operator
rights are not required.

NCP Calls
0x2222 23 201 Get File Server Description Strings

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY
r Management

novdocx (E
N

U
) 01 February 2006
NWGetFileServerExtendedInfo
Returns extended information about the specified NetWare server, including versions for
accounting, VAP, queueing, print server, virtual console, security and internet bridging.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerExtendedInfo (
 NWCONN_HANDLE conn,
 pnuint8 accountingVer,
 pnuint8 VAPVer,
 pnuint8 queueingVer,
 pnuint8 printServerVer,
 pnuint8 virtualConsoleVer,
 pnuint8 securityVer,
 pnuint8 internetBridgeVer);

Delphi Syntax
uses calwin32

Function NWGetFileServerExtendedInfo
 (conn : NWCONN_HANDLE;
 accountingVer : pnuint8;
 VAPVer : pnuint8;
 queueingVer : pnuint8;
 printServerVer : pnuint8;
 virtualConsoleVer : pnuint8;
 securityVer : pnuint8;
 internetBridgeVer : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.
Server Environment Functions 63

64 NDK: Serve

novdocx (E
N

U
) 01 February 2006
accountingVer
(OUT) Points to the accounting version number (optional).

VAPVer
(OUT) Points to the VAP version number (optional).

queueingVer
(OUT) Points to the queueing version number (optional).

printServerVer
(OUT) Points to the print server version number (optional).

virtualConsoleVer
(OUT) Points to the virtual console version number (optional).

securityVer
(OUT) Points to the security version number (optional).

internetBridgeVer
(OUT) Points to the internet bridging version number (optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWGetFileServerExtendedInfo returns values as a single byte per parameter, individual values
between 0 and 255.

If you don’t want certain information, substitute NULL. However, all parameter positions must be
filled.

To call NWGetFileServerExtendedInfo, you must have console operator rights.

NCP Calls
0x2222 23 17 Get File Server Information

See Also
NWGetFileServerInformation (page 67), NWGetFileServerVersionInfo (page 74)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY
r Management

novdocx (E
N

U
) 01 February 2006
NWGetFileServerInfo
Calls for the server’s operational statistics.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerInfo (
 NWCONN_HANDLE conn,
 NWFSE_FILE_SERVER_INFO N_FAR *fseFileServerInfo);

Delphi Syntax
uses calwin32

Function NWGetFileServerInfo
 (conn : NWCONN_HANDLE;
 Var fseFileServerInfo : NWFSE_FILE_SERVER_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseFileServerInfo
(OUT) Points to NWFSE_FILE_SERVER_INFO to get NetWare server information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
Server Environment Functions 65

66 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
Under NETX, if an invalid connection handle is passed to conn, NWGetFileServerInfo will return
0x0000. NETX will pick a default connection handle if the connection handle cannot be resolved.

Console operator rights are NOT necessary to call NWGetFileServerInfo.

NCP Calls
 0x2222 123 02 Get File Server Information
r Management

novdocx (E
N

U
) 01 February 2006
NWGetFileServerInformation
Returns several items, including NetWare server name, NetWare versions, maximum and peak
connections, number of licensed connections currently in use, maximum volumes supported, and
SFT and TTS level of support.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerInformation (
 NWCONN_HANDLE conn,
 pnstr8 serverName,
 pnuint8 majorVer,
 pnuint8 minVer,
 pnuint8 rev,
 pnuint16 maxConns,
 pnuint16 maxConnsUsed,
 pnuint16 connsInUse,
 pnuint16 numVolumes,
 pnuint8 SFTLevel,
 pnuint8 TTSLevel);

Delphi Syntax
uses calwin32

Function NWGetFileServerInformation
 (conn : NWCONN_HANDLE;
 serverName : pnstr8;
 majorVer : pnuint8;
 minVer : pnuint8;
 rev : pnuint8;
 maxConns : pnuint16;
 maxConnsUsed : pnuint16;
 connsInUse : pnuint16;
 numVolumes : pnuint16;
 SFTLevel : pnuint8;
 TTSLevel : pnuint8
) : NWCCODE;
Server Environment Functions 67

68 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Parameters
conn

(IN) Specifies the NetWare server connection handle.

serverName
(OUT) Points to the name of NetWare server (48 bytes, optional).

majorVer
(OUT) Points to the major NetWare version number (optional).

minVer
(OUT) Points to the minor NetWare version number (optional).

rev
(OUT) Points to the revision number of the NetWare OS on NetWare server (optional).

maxConns
(OUT) Points to the maximum number of connections the server will support (optional). The
connection table for NetWare 4.x is dynamic. This number will be the maximum of what the
table has grown to.

maxConnsUsed
(OUT) Points to the highest number of connections simultaneously in use (optional).

connsInUse
(OUT) Points to the number of licensed connections the server currently has in use (optional).

numVolumes
(OUT) Points to the maximum number of volumes the server will support (optional).

SFTLevel
(OUT) Points to the SFT level the server supports (optional).

TTSLevel
(OUT) Points to the TTS Level of NetWare server operating system (optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWGetFileServerInformation will only return the number of licensed connections in use. For
NetWare 3.x, all connections are considered licensed. For NetWare 4.x, many connections do not
require a server license and will not be returned in connsInUse.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY
r Management

novdocx (E
N

U
) 01 February 2006
Under NETX, if an invalid connection handle is passed to conn, NWGetFileServerInformation will
return 0x0000. NETX will pick a default connection handle if the connection handle cannot be
resolved.

The buffer allocated to receive NetWare server name should be at least 48 bytes long.

Substitute NULL for a parameter if a return is not desired. However, all parameter positions must be
filled. Any client can call NWGetFileServerInformation without logging in to the specified NetWare
server.

NCP Calls
0x2222 23 17 Get File Server Information

See Also
NWGetFileServerInformation (page 67), NWGetFileServerVersionInfo (page 74)
Server Environment Functions 69

70 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetFileServerLANIOStats (obsolete-moved from .h
file 6/99)
was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
NWGetFileServerLoginStatus
Returns a NetWare server’s login status.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerLoginStatus (
 NWCONN_HANDLE conn,
 pnuint8 loginEnabledFlag);

Delphi Syntax
uses calwin32

Function NWGetFileServerLoginStatus
 (conn : NWCONN_HANDLE;
 loginEnabledFlag : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

loginEnabledFlag
(OUT) Points to a zero flag if clients cannot log in and non-zero if they can.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
Server Environment Functions 71

72 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
NWGetFileServerLoginStatus determines if the users’ logins are currently allowed on the target
server.

NCP Calls
0x2222 23 205 Get File Server Login Status

0x8996 SERVER_OUT_OF_MEMORY
r Management

novdocx (E
N

U
) 01 February 2006
NWGetFileServerMiscInfo (obsolete 12/98)
was last documented in Release 15 for NetWare 2.x only.

Server Environment Functions 73

74 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetFileServerVersionInfo
Returns information about a NetWare server’s name and version levels.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerVersionInfo (
 NWCONN_HANDLE conn,
 VERSION_INFO N_FAR *versBuffer);

Delphi Syntax
uses calwin32

Function NWGetFileServerVersionInfo
 (conn : NWCONN_HANDLE;
 Var versBuffer : VERSION_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

versBuffer
(OUT) Points to the VERSION_INFO structure, which contains the NetWare server version
information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
Console operator rights and an authenticated connection are NOT necessary to call
NWGetFileServerVersionInfo; you only need an attachment.

To get product version information (major, minor, and revision), call
NWGetNetWareProductVersion (page 114).

NCP Calls
0x2222 23 17 Get File Server Information

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY
Server Environment Functions 75

76 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetFileSystemStats (obsolete-moved from .h file 6/
99)
was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
NWGetFSDriveMapTable (obsolete-moved from .h file
6/99)
was last documented in Release 15 for NetWare 2.x only.

Server Environment Functions 77

78 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetFSLANDriverConfigInfo (obsolete-moved from
.h file 6/99)
was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
NWGetGarbageCollectionInfo
Returns the server’s memory manager’s statistical information.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetGarbageCollectionInfo (
 NWCONN_HANDLE conn,
 NWFSE_GARBAGE_COLLECTION_INFO N_FAR *fseGarbageCollectionInfo);

Delphi Syntax
uses calwin32

Function NWGetGarbageCollectionInfo
 (conn : NWCONN_HANDLE;
 Var fseGarbageCollectionInfo : NWFSE_GARBAGE_COLLECTION_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseGarbageCollectionInfo
(OUT) Points to NWFSE_GARBAGE_COLLECTION_INFO returning garbage collection
information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
Server Environment Functions 79

80 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetGarbageCollectionInfo, you must have console operator rights.

NCP Calls
 0x2222 123 07 Garbage Collection Information
r Management

novdocx (E
N

U
) 01 February 2006
NWGetGeneralRouterAndSAPInfo
Returns router information received from RIP and SAP packets.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetGeneralRouterAndSAPInfo (
 NWCONN_HANDLE conn,
 NWFSE_GENERAL_ROUTER_SAP_INFO N_FAR *fseGeneralRouterSAPInfo);

Delphi Syntax
uses calwin32

Function NWGetGeneralRouterAndSAPInfo
 (conn : NWCONN_HANDLE;
 Var fseGeneralRouterSAPInfo : NWFSE_GENERAL_ROUTER_SAP_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseGeneralRouterSAPInfo
(OUT) Points to NWFSE_GENERAL_ROUTER_SAP_INFO returning general router SAP
information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
Server Environment Functions 81

82 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetGeneralRouterAndSAPInfo, you must have console operator rights.

NCP Calls
0x2222 123 50 Get General Router and SAP Information

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

novdocx (E
N

U
) 01 February 2006
NWGetIPXSPXInfo
Returns the server’s internal IPX and SPX statistics information.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetIPXSPXInfo (
 NWCONN_HANDLE conn,
 NWFSE_IPXSPX_INFO N_FAR *fseIPXSPXInfo);

Delphi Syntax
uses calwin32

Function NWGetIPXSPXInfo
 (conn : NWCONN_HANDLE;
 Var fseIPXSPXInfo : NWFSE_IPXSPX_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseIPXSPXInfo
(OUT) Points to NWFSE_IPXSPX_INFO returning IPX/SPX information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
Server Environment Functions 83

84 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
Under NETX, if an invalid connection handle is passed to conn, NWGetIPXSPXInfo will return
0x0000. NETX will pick a default connection handle if the connection handle cannot be resolved.

Console operator rights are NOT necessary to call NWGetIPXSPXInfo.

NCP Calls
0x2222 123 06 IPX SPX Information
r Management

novdocx (E
N

U
) 01 February 2006
NWGetKnownNetworksInfo
Returns information about networks for which the server has received Routing Information Packets
(RIPs).

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetKnownNetworksInfo
 (NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_KNOWN_NETWORKS_INFO N_FAR *fseKnownNetworksInfo);

Delphi Syntax
uses calwin32

Function NWGetKnownNetworksInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseKnownNetworksInfo : NWFSE_KNOWN_NETWORKS_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the starting network with which to begin the search (commonly 0 to begin the
search, on subsequent calls it should be the total number of networks returned up to the call.)

fseKnownNetworksInfo
(OUT) Points to NWFSE_KNOWN_NETWORKS_INFO returning information about known
networks.
Server Environment Functions 85

86 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetKnownNetworksInfo, you must have console operator rights.

NCP Calls
0x2222 123 53 Get Known Networks Information

See Also
NWGetNetworkRouterInfo (page 116), NWGetNetworkRoutersInfo (page 118)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED
r Management

novdocx (E
N

U
) 01 February 2006
NWGetKnownServersInfo
Returns information about servers advertising themselves to the server with SAP packets.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetKnownServersInfo
 (NWCONN_HANDLE conn,
 nuint32 startNum,
 nuint32 serverType,
 NWFSE_KNOWN_SERVER_INFO N_FAR *fseKnownServerInfo);

Delphi Syntax
uses calwin32

Function NWGetKnownServersInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 serverType : nuint32;
 Var fseKnownServerInfo : NWFSE_KNOWN_SERVER_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the cumulative number of servers returned from all previous calls; normally,
zero (0) for the first call.

serverType
(IN) Specifies the server type:

0x0400 NetWare server
0xFFFF All other server types
Server Environment Functions 87

88 NDK: Serve

novdocx (E
N

U
) 01 February 2006
fseKnownServerInfo
(OUT) Points to NWFSE_KNOWN_SERVER_INFO containing known server information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetKnownServersInfo, you must have console operator rights.

startNum should be set to zero on the first call. On subsequent calls, the value returned in the
numberOfEntries field in the SERVER_AND_VCONSOLE_INFO structure should be added
to the value in startNum until INVALID_CONNECTION is returned.

NCP Calls
0x2222 123 56 Get Known Servers Information

See Also
NWGetServerSourcesInfo (page 153)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8901 Returned from NWFSE_KNOWN_SERVER_INFO when no more items are found

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

novdocx (E
N

U
) 01 February 2006
NWGetLANCommonCountersInfo
Returns common statistics for a LAN board.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLANCommonCountersInfo (
 NWCONN_HANDLE conn,
 nuint32 boardNum,
 nuint32 blockNum,
 NWFSE_LAN_COMMON_COUNTERS_INFO N_FAR *fseLANCommonCountersInfo);

Delphi Syntax
uses calwin32

Function NWGetLANCommonCountersInfo
 (conn : NWCONN_HANDLE;
 boardNum : nuint32;
 blockNum : nuint32;
 Var fseLANCommonCountersInfo : NWFSE_LAN_COMMON_COUNTERS_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

boardNum
(IN) Specifies the board numbers returned by NWGetActiveLANBoardList.

blockNum
(IN) Specifies the starting number of the common counters to return; usually set to zero (0) to
return all the counters.

fseLANCommonCountersInfo
Server Environment Functions 89

90 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_LAN_COMMON_COUNTERS_INFO returning LAN common
counters information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetLANCommonCountersInfo, you must have console operator rights.

NCP Calls
0x2222 123 22 LAN Common Counters Information

See Also
NWGetActiveLANBoardList (page 47), NWGetLANConfigInfo (page 91),
NWGetLANCustomCountersInfo (page 93), NWGetLSLLogicalBoardStats (page 99),
NWGetProtocolStkNumsByLANBrdNum (page 139)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure or Invalid Board or Block Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetLANConfigInfo
Returns configuration information for the LAN board identified by boardNum .

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLANConfigInfo
 (NWCONN_HANDLE conn,
 nuint32 boardNum,
 NWFSE_LAN_CONFIG_INFO N_FAR *fseLANConfigInfo);

Delphi Syntax
uses calwin32

Function NWGetLANConfigInfo
 (conn : NWCONN_HANDLE;
 boardNum : nuint32;
 Var fseLANConfigInfo : NWFSE_LAN_CONFIG_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

boardNum
(IN) Specifies the number of the LAN board for which you want LAN driver information.

fseLANConfigInfo
(OUT) Points to NWFSE_LAN_CONFIG_INFO returning LAN configuration information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 91

92 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetLANConfigInfo, you must have console operator rights.

NCP Calls
0x2222 123 21 LAN Configuration Information

See Also
NWGetActiveLANBoardList (page 47), NWGetLANCommonCountersInfo (page 89),
NWGetLANCustomCountersInfo (page 93), NWGetLSLLogicalBoardStats (page 99),
NWGetProtocolStkNumsByLANBrdNum (page 139)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8979 ERR_NO_ITEMS_FOUND

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure or Invalid Board Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetLANCustomCountersInfo
Returns custom statistics for a LAN board.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLANCustomCountersInfo
 (NWCONN_HANDLE conn,
 nuint32 boardNum,
 nuint32 startingNum,
 NWFSE_LAN_CUSTOM_INFO N_FAR *fseLANCustomInfo);

Delphi Syntax
uses calwin32

Function NWGetLANCustomCountersInfo
 (conn : NWCONN_HANDLE;
 boardNum : nuint32;
 startingNum : nuint32;
 Var fseLANCustomInfo : NWFSE_LAN_CUSTOM_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

boardNum
(IN) Specifies the board number returned by NWGetActiveLANBoardList.

startingNum
(IN) Specifies the cumulative number of custom counters already returned; normally, zero (0)
for the first call.

fseLANCustomInfo
Server Environment Functions 93

94 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_LAN_CUSTOM_INFO returning information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetLANCustomCountersInfo, you must have console operator rights.

NCP Calls
 0x2222 123 23 LAN Custom Counters Information

See Also
NWGetActiveLANBoardList (page 47), NWGetLANConfigInfo (page 91),
NWGetLANCommonCountersInfo (page 89), NWGetLSLLogicalBoardStats (page 99),
NWGetProtocolStkNumsByLANBrdNum (page 139)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure or Invalid Start or Board Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetLoadedMediaNumList
Returns a list of loaded media numbers.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLoadedMediaNumList (
 NWCONN_HANDLE conn,
 NWFSE_LOADED_MEDIA_NUM_LIST N_FAR *fseLoadedMediaNumList);

Delphi Syntax
uses calwin32

Function NWGetLoadedMediaNumList
 (conn : NWCONN_HANDLE;
 Var fseLoadedMediaNumList : NWFSE_LOADED_MEDIA_NUM_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseLoadedMediaNumList
(OUT) Points to NWFSE_LOADED_MEDIA_NUM_LIST returning information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
Server Environment Functions 95

96 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetLoadedMediaNumList, you must have console operator rights.

NCP Calls
0x2222 123 47 Get Loaded Media Num List

See Also
NWGetMediaMgrObjChildrenList (page 101), NWGetMediaMgrObjInfo (page 103),
NWGetMediaMgrObjList (page 105), NWGetMediaNameByMediaNum (page 108),
NWGetProtocolStkNumsByMediaNum (page 141)

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

novdocx (E
N

U
) 01 February 2006
NWGetLSLInfo
Returns LSL information.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLSLInfo (
 NWCONN_HANDLE conn,
 NWFSE_LSL_INFO N_FAR *fseLSLInfo);

Delphi Syntax
uses calwin32

Function NWGetLSLInfo
 (conn : NWCONN_HANDLE;
 Var fseLSLInfo : NWFSE_LSL_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseLSLInfo
(OUT) Points to NWFSE_LSL_INFO returning LSL™ information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
Server Environment Functions 97

98 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetLSLInfo, you must have console operator rights.

NCP Calls
 0x2222 123 25 LSL Information

See Also
NWGetLSLLogicalBoardStats (page 99)

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

novdocx (E
N

U
) 01 February 2006
NWGetLSLLogicalBoardStats
Returns LSL logical board statistics.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLSLLogicalBoardStats (
 NWCONN_HANDLE conn,
 nuint32 LANBoardNum,
 NWFSE_LSL_LOGICAL_BOARD_STATS N_FAR *fseLSLLogicalBoardStats);

Delphi Syntax
uses calwin32

Function NWGetLSLLogicalBoardStats
 (conn : NWCONN_HANDLE;
 LANBoardNum : nuint32;
 Var fseLSLLogicalBoardStats : NWFSE_LSL_LOGICAL_BOARD_STATS
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

LANBoardNum
(IN) Specifies a board number returned by NWGetActiveLANBoardList.

fseLSLLogicalBoardStats
(OUT) Points to NWFSE_LSL_LOGICAL_BOARD_STATS returning LSL logical board
statistics.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 99

100 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetLSLLogicalBoardStats, you must have console operator rights.

NCP Calls
0x2222 123 26 LSL Logical Board Statistics

See Also
NWGetLSLInfo (page 97)

0x00000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FB ERR_NCP_NOT_SUPPORTED

0x89FF Failure or Invalid LAN Board Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetMediaMgrObjChildrenList
Returns a list of children belonging to a given media manager parent object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetMediaMgrObjChildrenList (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 nuint32 objType,
 nuint32 parentObjNum,
 NWFSE_MEDIA_MGR_OBJ_LIST N_FAR *fseMediaMgrObjList);

Delphi Syntax
uses calwin32

Function NWGetMediaMgrObjChildrenList
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 objType : nuint32;
 parentObjNum : nuint32;
 Var fseMediaMgrObjList : NWFSE_MEDIA_MGR_OBJ_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the value returned in nextStartObjNum of
NWFSE_MEDIA_MGR_OBJ_LIST; Normally, zero (0) on the first call.

objType
(IN) Specifies one of the types defined in nwfse.h, such as ADAPTER_OBJECT or
MIRROR_OBJECT.
Server Environment Functions 101

102 NDK: Serve

novdocx (E
N

U
) 01 February 2006
parentObjNum
(IN) Specifies the parent object ID number such as one returned by NWGetMediaMgrObjList.

fseMediaMgrObjList
(OUT) Points to NWFSE_MEDIA_MGR_OBJ_LIST listing media manager object’s children.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetMediaMgrObjChildrenList, you must have console operator rights.

NCP Calls
0x2222 123 32 Get Media Manager Object Children’s List

See Also
NWGetLoadedMediaNumList (page 95), NWGetMediaMgrObjInfo (page 103),
NWGetMediaMgrObjList (page 105), NWGetMediaNameByMediaNum (page 108),
NWGetProtocolStkNumsByMediaNum (page 141)

0x0000 SUCCESSFUL

0x8979 Invalid Start Number, Object Type, or Parent Object Number

0x897E NCP_BOUNDARY_CHECK_FAILED
r Management

novdocx (E
N

U
) 01 February 2006
NWGetMediaMgrObjInfo
Returns information about media manager objects (storage devices).

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetMediaMgrObjInfo (
 NWCONN_HANDLE conn,
 nuint32 objNum,
 NWFSE_MEDIA_MGR_OBJ_INFO N_FAR *fseMediaMgrObjInfo);

Delphi Syntax
uses calwin32

Function NWGetMediaMgrObjInfo
 (conn : NWCONN_HANDLE;
 objNum : nuint32;
 Var fseMediaMgrObjInfo : NWFSE_MEDIA_MGR_OBJ_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objNum
(IN) Specifies the object ID number returned by NWGetMediaMgrObjList representing the
device you want information about.

fseMediaMgrObjInfo
(OUT) Points to NWFSE_MEDIA_MGR_OBJ_INFO returning media manager object
information.
Server Environment Functions 103

104 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetMediaMgrObjInfo, you must have console operator rights.

Media manager objects are storage devices which are managed by the OS in an object-oriented
database to allow for the needs of current and future file system applications and storage
applications.

NCP Calls
0x2222 123 30 Get Media Manager Object Information

See Also
NWGetLoadedMediaNumList (page 95), NWGetMediaMgrObjChildrenList (page 101),
NWGetMediaMgrObjList (page 105), NWGetMediaNameByMediaNum (page 108),
NWGetProtocolStkNumsByMediaNum (page 141)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
r Management

novdocx (E
N

U
) 01 February 2006
NWGetMediaMgrObjList
Returns a list of media manager objects (storage devices) of the specified type.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetMediaMgrObjList (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 nuint32 objType,
 NWFSE_MEDIA_MGR_OBJ_LIST N_FAR *fseMediaMgrObjList);

Delphi Syntax
uses calwin32

Function NWGetMediaMgrObjList
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 objType : nuint32;
 Var fseMediaMgrObjList : NWFSE_MEDIA_MGR_OBJ_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the value returned in the nextStartObjNum field of the
fseMediaMgrObjList parameter (set to -1 initially).

objType
(IN) Specifies the object type.

fseMediaMgrObjList
Server Environment Functions 105

106 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(OUT) Points to the NWFSE_MEDIA_MGR_OBJ_LIST structure listing media manager
objects.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetMediaMgrObjList, you must have console operator rights.

Media manager objects are storage devices maintained by the media manager in an object-oriented
database.

Object types are the following:

NCP Calls
0x2222 123 31 Get Media Manager Objects List

0x0000 SUCCESSFUL

0x8979 Invalid Start Number or Object Type

0x897E NCP_BOUNDARY_CHECK_FAILED

C Value Delphi Value Value Name

0 0 FSE_ADAPTER_OBJECT

1 1 FSE_CHANGER_OBJECT

2 2 FSE_DEVICE_OBJECT

4 4 FSE_MEDIA_OBJECT

5 5 FSE_PARTITION_OBJECT

6 6 FSE_SLOT_OBJECT

7 7 FSE_HOTFIX_OBJECT

8 8 FSE_MIRROR_OBJECT

9 9 FSE_PARITY_OBJECT

10 10 FSE_VOLUME_SEG_OBJECT

11 11 FSE_VOLUME_OBJECT

12 12 FSE_CLONE_OBJECT

14 14 FSE_MAGAZINE_OBJECT

15 15 FSE_VIRTUAL_DEVICE_OBJECT

0xFFFF $FFFF FSE_UNKNOWN_OBJECT
r Management

novdocx (E
N

U
) 01 February 2006
See Also
NWGetLoadedMediaNumList (page 95), NWGetMediaMgrObjInfo (page 103),
NWGetMediaMgrObjChildrenList (page 101), NWGetMediaNameByMediaNum (page 108),
NWGetProtocolStkNumsByMediaNum (page 141)
Server Environment Functions 107

108 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetMediaNameByMediaNum
Returns the identifying name or label for the given media object.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetMediaNameByMediaNum
 (NWCONN_HANDLE conn,
 nuint32 mediaNum,
 pnstr8 mediaName,
 NWFSE_MEDIA_NAME_LIST N_FAR *fseMediaNameList);

Delphi Syntax
uses calwin32

Function NWGetMediaNameByMediaNum
 (conn : NWCONN_HANDLE;
 mediaNum : nuint32;
 mediaName : pnstr8;
 Var fseMediaNameList : NWFSE_MEDIA_NAME_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

mediaNum
(IN) Specifies the object ID number of the target media object returned by calling either
NWGetMediaMgrObjList or NWGetMediaMgrChildrenList.

mediaName
(OUT) Points to the name of the media object specified by mediaNum.

fseMediaNameList
r Management

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_MEDIA_NAME_LIST returning information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetMediaNameByMediaNum, you must have console operator rights.

mediaName requires a buffer at least as large as FSE_MEDIA_NAME_LEN_MAX +1. It can be
longer than that if desired.

NCP Calls
0x2222 123 46 Get Media Name By Media Number

See Also
NWGetLoadedMediaNumList (page 95), NWGetMediaMgrObjInfo (page 103),
NWGetMediaMgrObjChildrenList (page 101), NWGetMediaMgrObjList (page 105),
NWGetProtocolStkNumsByMediaNum (page 141)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
Server Environment Functions 109

110 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetMLIDBoardInfo
Returns a list of and information for each Multiple Link Interface Driver (MLID) bound to a
network board.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE NWGetMLIDBoardInfo (
 NWCONN_HANDLE conn,
 nuint32 MLIDBoardNum,
 NWFSE_MLID_BOARD_INFO N_FAR *fseMLIDBoardInfo);

Delphi Syntax
uses calwin32

Function NWGetMLIDBoardInfo
 (conn : NWCONN_HANDLE;
 MLIDBoardNum : nuint32;
 var fseMLIDBoardInfo : NWFSE_MLID_BOARD_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

MLIDBoardNum
(IN) Specifies one of the board numbers returned by calling NWGetActiveLANBoardList.

fseMLIDBoardInfo
(OUT) Points to NWFSE_MLID_BOARD_INFO, which contains the MLID list and
information.
r Management

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
You must have CONSOLE privileges to call NWGetMLIDBoardInfo.

NWGetMLIDBoardInfo returns 0x89FF if no procotols are bound to the specified board.

NetWare 4.x returns only one protocol per board.

IMPORTANT: Some older versions of the Win32 DLLs do not include this function.

NCP Calls
0x2222 123 27 MLID Board Information

See Also
NWGetActiveLANBoardList (page 47)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0c89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure or Invalid LAN Board Number
Server Environment Functions 111

112 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetNetWareFileSystemsInfo
Returns information about a loaded file system.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetWareFileSystemsInfo (
 NWCONN_HANDLE conn,
 NWFSE_FILE_SYSTEM_INFO N_FAR *fseFileSystemInfo);

Delphi Syntax
uses calwin32

Function NWGetNetWareFileSystemsInfo
 (conn : NWCONN_HANDLE;
 Var fseFileSystemInfo : NWFSE_FILE_SYSTEM_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseFilesystemInfo
(OUT) Points to NWFSE_FILE_SYSTEMS_INFO returning NetWare file systems
information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetNetWareFileSystemsInfo, you must have console operator rights.

NCP Calls
0x2222 123 03 NetWare File Systems Information
Server Environment Functions 113

114 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetNetWareProductVersion
Returns the NetWare product version.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetWareProductVersion (
 NWCONN_HANDLE conn,
 NETWARE_PRODUCT_VERSION N_FAR *version);

Delphi Syntax
uses calwin32

Function NWGetNetWareProductVersion
 (conn : NWCONN_HANDLE;
 Var version : NETWARE_PRODUCT_VERSION
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

version
(OUT) Points to the NETWARE_PRODUCT_VERSION structure, which contains the
NetWare product version information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
Console operator rights and an authenticated connection are NOT necessary to call
NWGetNetWareProductVersion; you only need an attachment.

NWGetNetWareProductVersion supports all versions of NetWare servers, and is run on all
supported platforms. Prior to NetWare 5.1, the version returned will be the OS version or the server
version; however, starting with NetWare 5.1 these might not be the same because the OS does not
always change with the release of a new product version of NetWare.

If you use the version command on the server console, the Novell NetWare version returned is
equivalent to the product version (NetWare 5.1 and greater) or the OS version (prior to NetWare 5.1)
returned from the NWGetNetWareProductVersion call. The Server Version returned from the
version command on the server console is equivalent to the server version returned from the
NWGetFileServerVersionInfo (page 74) call or the OS version returned from the
NWGetOSVersionInfo (page 128) call. The server version and the OS version are the same.

NCP Calls
0x2222 23 17 Get File Server Information

0x8836 INVALID_PARAMETER

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY
Server Environment Functions 115

116 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetNetworkRouterInfo
Returns information about network routing (other networks known to NetWare server).

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetworkRouterInfo (
 NWCONN_HANDLE conn,
 nuint32 networkNum,
 NWFSE_NETWORK_ROUTER_INFO N_FAR *fseNetworkRouterInfo);

Delphi Syntax
uses calwin32

Function NWGetNetworkRouterInfo
 (conn : NWCONN_HANDLE;
 networkNum : nuint32;
 Var fseNetworkRouterInfo : NWFSE_NETWORK_ROUTER_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

networkNum
(IN) Specifies the number of the network for which to return information.

fseNetworkRouterInfo
(OUT) Points to NWFSE_NETWORK_ROUTER_INFO returning network router
information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
r Management

novdocx (E
N

U
) 01 February 2006
Remarks

To call NWGetNetworkRouterInfo, you must have console operator rights.

NCP Calls
0x2222 123 51 Get Network Router Information

See Also
NWGetKnownNetworksInfo (page 85), NWGetNetworkRoutersInfo (page 118)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
Server Environment Functions 117

118 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetNetworkRoutersInfo
Returns information about the routers on a network.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetworkRoutersInfo (
 NWCONN_HANDLE conn,
 nuint32 networkNum,
 nuint32 startNum,
 NWFSE_NETWORK_ROUTERS_INFO N_FAR *fseNetworkRoutersInfo);

Delphi Syntax
uses calwin32

Function NWGetNetworkRoutersInfo
 (conn : NWCONN_HANDLE;
 networkNum : nuint32;
 startNum : nuint32;
 Var fseNetworkRoutersInfo : NWFSE_NETWORK_ROUTERS_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

networkNum
(IN) Specifies the number of the network for which to return information.

startNum
(IN) Specifies the value returned in numberOfEntries in
NWFSE_NETWORK_ROUTERS_INFO; normally, zero (0) on the first call.

fseNetworkRoutersInfo
r Management

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_NETWORK_ROUTERS_INFO returning network routers
information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetNetworkRoutersInfo, you must have console operator rights.

NCP Calls
0x2222 123 52 Get Network Routers Information

See Also
NWGetKnownNetworksInfo (page 85), NWGetNetworkRouterInfo (page 116)

0x0000 SUCCESSFUL

0x8801 Invalid Network Number or Start Number

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED
Server Environment Functions 119

120 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetNetworkSerialNumber
Returns the NetWare server’s serial number and the application number.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetworkSerialNumber (
 NWCONN_HANDLE conn,
 pnuint32 serialNum,
 pnuint16 appNum);

Delphi Syntax
uses calwin32

Function NWGetNetworkSerialNumber
 (conn : NWCONN_HANDLE;
 serialNum : pnuint32;
 appNum : pnuint16
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

serialNum
(OUT) Points to the NetWare server’s serial number.

appNum
(OUT) Points to the application number.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
The combination of the server serial number and the application number is unique.

NCP Calls
0x2222 23 17 Get File Server Information
0x2222 23 18 Get Network Serial Number

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY
Server Environment Functions 121

122 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetNLMInfo
Returns information about a specific loaded NLM.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNLMInfo (
 NWCONN_HANDLE conn,
 nuint32 NLMNum,
 pnstr8 fileName,
 pnstr8 NLMname,
 pnstr8 copyright,
 NWFSE_NLM_INFO N_FAR *fseNLMInfo);

Delphi Syntax
uses calwin32

Function NWGetNLMInfo
 (conn : NWCONN_HANDLE;
 NLMNum : nuint32;
 fileName : pnstr8;
 NLMname : pnstr8;
 copyright : pnstr8;
 Var fseNLMInfo : NWFSE_NLM_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

NLMNum
(IN) Specifies the NLM ID number returned by NWGetNLMLoadedList.

fileName
(OUT) Points to the name of the NLM file.
r Management

novdocx (E
N

U
) 01 February 2006
NLMName
(OUT) Points to a short description of the NLM.

copyright
(OUT) Points to the copyright string (optional).

fseNLMInfo
(OUT) Points to NWFSE_NLM_INFO.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetNLMInfo, you must have console operator rights.

NWGetNLMInfo should only be called for NLMs that have information in the buffer.

NCP Calls
0x2222 123 11 NLM Information

See Also
NWGetNLMLoadedList (page 124), NWGetNLMsResourceTagList (page 126)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure or Invalid NLM Number
Server Environment Functions 123

124 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetNLMLoadedList
Returns a list of loaded NLM sequence numbers.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNLMLoadedList (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_NLM_LOADED_LIST N_FAR *fseNLMLoadedList);

Delphi Syntax
uses calwin32

Function NWGetNLMLoadedList
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseNLMLoadedList : NWFSE_NLM_LOADED_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the starting number (set to zero the first time NWGetNLMLoadedList is called).

fseNLMLoadedList
(OUT) Points to the NWFSE_NLM_LOADED_LIST structure.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetNLMLoadedList, you must have console operator rights.

NWGetNLMLoadedList will only return information about 130 NLMs at a time. If you have more
than 130 NLMs loaded, call NWGetNLMLoadedList iteratively and pass to startNum the number
of the next NLM that you want to start the list with. For example:

fseNLMLoadedList->NLMNums[fseNLMLoadedList->NLMsInList]+1

NCP Calls
0x2222 123 10 Get NLM Loaded List

See Also
NWGetNLMInfo (page 122), NWGetNLMsResourceTagList (page 126)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure
Server Environment Functions 125

126 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetNLMsResourceTagList
Returns information about resources used by NLMs on a server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNLMsResourceTagList (
 NWCONN_HANDLE conn,
 nuint32 NLMNum,
 nuint32 startNum,
 NWFSE_NLMS_RESOURCE_TAG_LIST N_FAR *fseNLMsResourceTagList);

Delphi Syntax
uses calwin32

Function NWGetNLMsResourceTagList
 (conn : NWCONN_HANDLE;
 NLMNum : nuint32;
 startNum : nuint32;
 Var fseNLMsResourceTagList : NWFSE_NLMS_RESOURCE_TAG_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

NLMNum
(IN) Specifies the NLM ID number representing the NLM on the server, returned by
NWGetNLMLoadedList.

startNum
(IN) Specifies the previous startNum, plus the value in packetResourceTags of
NWFSE_NLMS_RESOURCE_TAG_LIST; normally 0 (zero) on the first call.

fseNLMsResourceTagList
r Management

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_NLMS_RESOURCE_TAG_LIST.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetNLMsResourceTagList, you must have console operator rights.

NCP Calls
0x2222 123 15 Get NLM’s Resource Tag List

See Also
NWGetNLMInfo (page 122), NWGetNLMLoadedList (page 124)

0x0000 SUCCESSFUL
Server Environment Functions 127

128 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetOSVersionInfo
Returns the NetWare OS version information.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetOSVersionInfo (
 NWCONN_HANDLE conn,
 NWFSE_OS_VERSION_INFO N_FAR *fseOSVersionInfo);

Delphi Syntax
uses calwin32

Function NWGetOSVersionInfo
 (conn : NWCONN_HANDLE;
 Var fseOSVersionInfo : NWFSE_OS_VERSION_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fseOSVersionInfo
(OUT) Points to the NWFSE_OS_VERSION_INFO structure, which contains the operating
system version information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
Console operator rights and an authenticated connection are NOT necessary to call
NWGetOSVersionInfo; you only need an attachment.

It is recommended that the newer function call, NWGetNetWareProductVersion (page 114), be used
rather than NWGetOSVersionInfo.

NCP Calls
0x2222 123 13 Get Operating System Version Information
Server Environment Functions 129

130 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetPacketBurstInfo
Returns the server’s packet burst operational counters and statistics.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetPacketBurstInfo (
 NWCONN_HANDLE conn,
 NWFSE_PACKET_BURST_INFO N_FAR *fsePacketBurstInfo);

Delphi Syntax
uses calwin32

Function NWGetPacketBurstInfo
 (conn : NWCONN_HANDLE;
 Var fsePacketBurstInfo : NWFSE_PACKET_BURST_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

fsePacketBurstInfo
(OUT) Points to NWFSE_PACKET_BURST_INFO getting packet burst information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
To call NWGetPacketBurstInfo, you must have console operator rights.

NCP Calls
0x2222 123 05 Packet Burst Information
Server Environment Functions 131

132 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetPhysicalDiskStats (obsolete-moved from .h file
6/99)
was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
NWGetProtocolStackConfigInfo
Returns configuration information about the protocols on a server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStackConfigInfo (
 NWCONN_HANDLE conn,
 nuint32 stackNum,
 pnstr8 stackFullName,
 NWFSE_PROTOCOL_STK_CONFIG_INFO N_FAR *fseProtocolStkConfigInfo);

Delphi Syntax
uses calwin32

Function NWGetProtocolStackConfigInfo
 (conn : NWCONN_HANDLE;
 stackNum : nuint32;
 stackFullName : pnstr8;
 Var fseProtocolStkConfigInfo : NWFSE_PROTOCOL_STK_CONFIG_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

stackNum
(IN) Specifies the number of the protocol stack to return information about, usually returned by
NWGetActiveProtocolStacks,

stackFullName
(OUT) Points to the full description of the protocol stack.

fseProtocolStkConfigInfo
Server Environment Functions 133

134 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_PROTOCOL_STK_CONFIG_INFO getting protocol stack
configuration information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetProtocolStackConfigInfo, you must have console operator rights.

NCP Calls
0x2222 123 41 Get Protocol Stack Configuration Information

See Also
NWGetActiveProtocolStacks (page 49), NWGetProtocolStackCustomInfo (page 135),
NWGetProtocolStackStatsInfo (page 137), NWGetProtocolStkNumsByLANBrdNum (page 139),
NWGetProtocolStkNumsByMediaNum (page 141)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FF Failure
r Management

novdocx (E
N

U
) 01 February 2006
NWGetProtocolStackCustomInfo
Returns custom information about a protocol stack on a server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStackCustomInfo (
 NWCONN_HANDLE conn,
 nuint32 stackNum,
 nuint32 customStartNum,
 NWFSE_PROTOCOL_CUSTOM_INFO N_FAR *fseProtocolStackCustomInfo);

Delphi Syntax
uses calwin32

Function NWGetProtocolStackCustomInfo
 (conn : NWCONN_HANDLE;
 stackNum : nuint32;
 customStartNum : nuint32;
 Var fseProtocolStackCustomInfo : NWFSE_PROTOCOL_CUSTOM_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

stackNum
(IN) Specifies the number identifying the protocol stack to return information about, usually
returned by NWGetActiveProtocolStacks.

customStartNum
(IN) Specifies the custom information to begin with. Normally zero (0) on the first call; on all
subsequent call, the previous customStartNum, plus the value returned in customCount
of NWFSE_PROTOCOL_CUSTOM_INFO.
Server Environment Functions 135

136 NDK: Serve

novdocx (E
N

U
) 01 February 2006
fseProtocolStackCustomInfo
(OUT) Points to NWFSE_PROTOCOL_CUSTOM_INFO getting protocol stack custom
information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetProtocolStackCustomInfo, you must have console operator rights.

NCP Calls
0x2222 123 43 Get Protocol Stack Custom Information

See Also
NWGetActiveProtocolStacks (page 49), NWGetProtocolStackConfigInfo (page 133),
NWGetProtocolStackStatsInfo (page 137), NWGetProtocolStkNumsByLANBrdNum (page 139),
NWGetProtocolStkNumsByMediaNum (page 141)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FF Failure
r Management

novdocx (E
N

U
) 01 February 2006
NWGetProtocolStackStatsInfo
Returns the protocol statistics indicated by stackNum for a server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStackStatsInfo (
 NWCONN_HANDLE conn,
 nuint32 stackNum,
 NWFSE_PROTOCOL_STK_STATS_INFO N_FAR *fseProtocolStkStatsInfo);

Delphi Syntax
uses calwin32

Function NWGetProtocolStackStatsInfo
 (conn : NWCONN_HANDLE;
 stackNum : nuint32;
 Var fseProtocolStkStatsInfo : NWFSE_PROTOCOL_STK_STATS_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

stackNum
(IN) Specifies the number identifying the protocol stack to return information about, usually
returned by NWGetActiveProtocolStacks.

fseProtocolStkStatsInfo
(OUT) Points to NWFSE_PROTOCOL_STK_STATS_INFO getting protocol stack
configuration information.
Server Environment Functions 137

138 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetProtocolStackStatsInfo, you must have console operator rights.

NCP Calls
0x2222 123 42 Get Protocol Stack Statistics Information

See Also
NWGetActiveProtocolStacks (page 49), NWGetProtocolStackConfigInfo (page 133),
NWGetProtocolStackCustomInfo (page 135), NWGetProtocolStkNumsByLANBrdNum
(page 139), NWGetProtocolStkNumsByMediaNum (page 141)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure
r Management

novdocx (E
N

U
) 01 February 2006
NWGetProtocolStkNumsByLANBrdNum
Returns a list of protocol stack ID numbers for a given LAN board.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStkNumsByLANBrdNum (
 NWCONN_HANDLE conn,
 nuint32 LANBoardNum,
 NWFSE_PROTOCOL_ID_NUMS N_FAR *fseProtocolStkIDNums);

Delphi Syntax
uses calwin32

Function NWGetProtocolStkNumsByLANBrdNum
 (conn : NWCONN_HANDLE;
 LANBoardNum : nuint32;
 Var fseProtocolStkIDNums : NWFSE_PROTOCOL_ID_NUMS
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

LANBoardNum
(IN) Specifies the ID number of the LAN board for which you want a list of protocols;
normally an ID number returned by NWGetActiveLANBoardList.

fseProtocolStkIDNums
(OUT) Points to NWFSE_PROTOCOL_ID_NUMS getting protocol stack numbers by LAN
board number.
Server Environment Functions 139

140 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetProtocolStkNumsByLANBrdNum, you must have console operator rights.

NCP Calls
0x2222 123 45 Get Protocol Stack Numbers By LAN Board Number

See Also
NWGetActiveLANBoardList (page 47), NWGetActiveProtocolStacks (page 49),
NWGetProtocolStackConfigInfo (page 133), NWGetProtocolStackCustomInfo (page 135),
NWGetProtocolStackStatsInfo (page 137), NWGetProtocolStkNumsByMediaNum (page 141)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure
r Management

novdocx (E
N

U
) 01 February 2006
NWGetProtocolStkNumsByMediaNum
Returns a list of protocol stack ID numbers for a given media.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStkNumsByMediaNum (
 NWCONN_HANDLE conn,
 nuint32 mediaNum,
 NWFSE_PROTOCOL_ID_NUMS N_FAR *fseProtocolStkIDNums);

Delphi Syntax
uses calwin32

Function NWGetProtocolStkNumsByMediaNum
 (conn : NWCONN_HANDLE;
 mediaNum : nuint32;
 Var fseProtocolStkIDNums : NWFSE_PROTOCOL_ID_NUMS
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

mediaNum
(IN) Specifies the ID number representing the frame type used by the protocol.

fseProtocolStkIDNums
(OUT) Points to NWFSE_PROTOCOL_ID_NUMS getting protocol stack numbers by media
number.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 141

142 NDK: Serve

novdocx (E
N

U
) 01 February 2006
An invalid media number can abend the server

Remarks
To call NWGetProtocolStkNumsByMediaNum, you must have console operator rights.

NCP Calls
0x2222 123 44 Get Protocol Stack Number By Media Number

See Also
NWGetActiveProtocolStacks (page 49), NWGetLoadedMediaNumList (page 95),
NWGetProtocolStackConfigInfo (page 133), NWGetProtocolStackCustomInfo (page 135),
NWGetProtocolStackStatsInfo (page 137), NWGetProtocolStkNumsByLANBrdNum (page 139)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

novdocx (E
N

U
) 01 February 2006
NWGetServerConnInfo
Returns connection information in a NetWare server for a given connection number.

Local servers: blocking

Remote servers:

NetWare Server: 5.x, 6.x

Platform: NLM, Windows 95, Windows NT

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

int NWGetServerConnInfo (
 NWCONN_HANDLE conn,
 nuint32 retInfoMask,
 nuint32 connectionNumber,
 SERVER_AND_VCONSOLE_INFO N_FAR *serverTimeAndVConsoleInfo,
 puint16 reserved,
 NWFSE_NETWORK_ADDRESS N_FAR *networkAddress,
 NWFSE_LOGIN_TIME N_FAR *loginTime,
 NWFSE_LOGIN_NAME N_FAR *loginName,
 NWFSE_LOCK_INFO N_FAR *lockInfo,
 NWFSE_PRINT_INFO N_FAR *printInfo,
 NWFSE_STATS_INFO N_FAR *statsInfo,
 NWFSE_ACCT_INFO N_FAR *acctInfo,
 NWFSE_AUTH_INFO N_FAR *authInfo);

Delphi Syntax
uses calwin32

Function NWGetServerConnInfo
 (conn : NWCONN_HANDLE;
 retInfoMask : nuint32;
 connectionNumber : nuint32;
 Var serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : pnuint16;
 Var networkAddress : NWFSE_NETWORK_ADDRESS;
 Var loginTime : NWFSE_LOGIN_TIME;
 Var loginName : NWFSE_LOGIN_NAME;
 Var lockinfo : NWFSE_LOCK_INFO;
 Var printInfo : NWFSE_PRINT_INFO;
 Var statusInfo : NWFSE_STATS_INFO;
 Var acctInfo : NWFSE_ACCT_INFO;
Server Environment Functions 143

144 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 Var authInfo : NWFSE_AUTH_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

retInfoMask
(IN) Specifies the connection information to be returned.

connectionNumber
(IN) Specifies the number of a connection to return information for.

serverTimeAndVConsoleInfo
(OUT) Points to SERVER_AND_VCONSOLE_INFO, which contains the console and server
versions.

reserved
Is reserved for future use.

networkAddress
(OUT) Points to NWFSE_NETWORK_ADDRESS, which contains information about the
connection address.

loginTime
(OUT) Points to NWFSE_LOGIN_TIME, which contains the server login time.

loginName
(OUT) Points to NWFSE_LOGIN_NAME, which contains the login name for the server.

lockInfo
(OUT) Points to NWFSE_LOCK_INFO, which contains information about the logical and
record locks of the server.

printInfo
(OUT) Points to NWFSE_PRINT_INFO, which contains the printing information.

statsInfo
(OUT) Points to NWFSE_STATS_INFO, which contains statistical information about the
server.

acctInfo
(OUT) Points to NWFSE_ACCT_INFO, which contains accounting information about the
server.

authInfo
(OUT) Points to NWFSE_AUTH_INFO, which contains authentication information about the
server.
r Management

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Before calling NWGetServerConnInfo, allocate memory for the address pointer used in
NWFSE_NETWORK_ADDRESS and set the addressSize field to a valid value.

If the passed in addressSize value is smaller than expected, addressSize is set to the
required value and NWGetServerConnInfo returns NWE_BUFFER_OVERFLOW.

WARNING: If memory isn't allocated and invalid information is passed to networkAddress,
the server might abend.

retInfoMask can have the following values (all can be ORed with the exception of
CONN_INFO_ALL_MASK):

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x880E NWE_BUFFER_OVERFLOW

0x8977 NEW_BUFFER_TOO_SMALL

0x897E NCP_BOUNDARY_CHECK_FAILED

Value Delphi Definition

0x00000001 $00000001 CONN_INFO_TRANS_MASK specifies to return
NWFSE_NETWORK_ADDRESS (page 264).

0x00000002 $00000002 CONN_INFO_LOGIN_TIME_MASK specifies to return
NWFSE_LOGIN_TIME (page 255).

0x00000004 $00000004 CONN_INFO_LOGIN_NAME_MASK specifies to return
NWFSE_LOGIN_NAME (page 254).

0x00000008 $00000008 CONN_INFO_LOCK_MASK specifies to return NWFSE_LOCK_INFO
(page 253).

0x00000010 $00000010 CONN_INFO_PRINT_MASK specifies to return
NWFSE_PRINT_INFO (page 276).

0x00000020 $00000020 CONN_INFO_STATS_MASK specifies to return
NWFSE_STATS_INFO (page 289).

0x00000040 $00000040 CONN_INFO_ACCT_MASK specifies to return NWFSE_ACCT_INFO
(page 226).

0x00000080 $00000080 CONN_INFO_AUTH_MASK specifies to return NWFSE_AUTH_INFO
(page 233).

0xFFFFFFFF CONN_INFO_ALL_MASK specifies that all structures are to be
returned.
Server Environment Functions 145

146 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 123 16 Enumerate Connection Information from Connection List
r Management

novdocx (E
N

U
) 01 February 2006
NWGetServerInfo
Returns the address and the number of hops to the server specified by serverName in relation to
the server represented by conn .

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetServerInfo (
 NWCONN_HANDLE conn,
 nuint32 serverType,
 const nstr8 N_FAR *serverName,
 NWFSE_SERVER_INFO N_FAR *fseServerInfo);

Delphi Syntax
uses calwin32

Function NWGetServerInfo
 (conn : NWCONN_HANDLE;
 serverType : nuint32;
 const serverName : pnstr8;
 Var fseServerInfo : NWFSE_SERVER_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

serverType
(IN) Specifies the type of server to search for, such as a file server (0x0400).

serverName
(IN) Points to the name of the server for which to search.

fseServerInfo
Server Environment Functions 147

148 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_SERVER_INFO containing server information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetServerInfo, you must have console operator rights to the 4.x server indicated by
conn. serverType can indicate either a 3.x or 4.x server.

NCP Calls
0x2222 123 54 Get Server Information

See Also
NWGetServerSourcesInfo (page 153)

0x0000 SUCCESSFUL

0x8801 Invalid Server Name

0x8901 Invalid Server Type

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FB INVALID_PARAMETERS
r Management

novdocx (E
N

U
) 01 February 2006
NWGetServerSetCategories
Returns SET console command configuration parameter categories for the server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetServerSetCategories (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_SERVER_SET_CATEGORIES N_FAR *fseServerSetCategories);

Delphi Syntax
uses calwin32

Function NWGetServerSetCategories
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseServerSetCategories : NWFSE_SERVER_SET_CATEGORIES
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the value returned in nextSequenceNumber of
fseServerSetCategories; normally zero (0) on the first call.

fseServerSetCategories
(OUT) Points to NWFSE_SERVER_SET_CATEGORIES getting server set categories.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 149

150 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks

To call NWGetServerSetCategories, you must have console operator rights.

NCP Calls
0x2222 123 61 Get Server Set Categories

See Also
NWGetServerSetCommandsInfo (page 151), NWSMSetDynamicCmdIntValue (page 349),
NWSMSetDynamicCmdStrValue (page 351)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89F5 Invalid Star Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetServerSetCommandsInfo
Returns SET console command configuration parameter commands for the server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetServerSetCommandsInfo (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_SERVER_SET_CMDS_INFO N_FAR *fseServerSetCmdsInfo);

Delphi Syntax
uses calwin32

Function NWGetServerSetCommandsInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseServerSetCmdsInfo : NWFSE_SERVER_SET_CMDS_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the value returned in nextSequenceNumber of
fseServerSetCmdsInfo ; normally zero (0) on the first call.

fseServerSetCmdsInfo
(OUT) Points to NWFSE_SERVER_SET_CMDS_INFO getting server set commands
information.
Server Environment Functions 151

152 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetServerSetCommandsInfo, you must have console operator rights.

NCP Calls
0x2222 123 60 Get Server Set Commands Information

See Also
NWGetServerSetCategories (page 149), NWSMSetDynamicCmdIntValue (page 349),
NWSMSetDynamicCmdStrValue (page 351)

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FF Failure of Invalid Start Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetServerSourcesInfo
Returns address information about servers known to a server with a given name.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetServerSourcesInfo (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 nuint32 serverType,
 const nstr8 N_FAR *serverName,
 NWFSE_SERVER_SRC_INFO N_FAR *fseServerSrcInfo);

Delphi Syntax
uses calwin32

Function NWGetServerSourcesInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 serverType : nuint32;
 const serverName : pnstr8;
 Var fseServerSrcInfo : NWFSE_SERVER_SRC_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the value returned in numberOfEntries of fseServerSrcInfo;
normally zero (0) on the first call.

serverType
(IN) Specifies the server type to get information from, such as a file server (0x0400).
Server Environment Functions 153

154 NDK: Serve

novdocx (E
N

U
) 01 February 2006
serverName
(IN) Points to the server name to get information from.

fseServerSetCmdsInfo
(OUT) Points to NWFSE_SERVER_SRC_INFO getting server sources information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetServerSourcesInfo, you must have console operator rights.

NCP Calls
0x2222 123 55 Get Server Sources Information

See Also
NWGetServerInfo (page 147)

0x0000 SUCCESSFUL

0x8801 Invalid Server Name or Server Type

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED
r Management

novdocx (E
N

U
) 01 February 2006
NWGetUserInfo
Gets NetWare user information about a given logged-in server connection.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetUserInfo (
 NWCONN_HANDLE conn,
 nuint32 connNum,
 pnstr8 userName,
 NWFSE_USER_INFO N_FAR *fseUserInfo);

Delphi Syntax
uses calwin32

Function NWGetUserInfo
 (conn : NWCONN_HANDLE;
 connNum : nuint32;
 userName : pnstr8;
 Var fseUserInfo : NWFSE_USER_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

connNum
(IN) Specifies the connection number of logged-in user.

userName
(OUT) Points to the user name (size of MAX_DN_BYTES).

fseServerSetCmdsInfo
(OUT) Points to NWFSE_USER_INFO getting user information.
Server Environment Functions 155

156 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWGetUserInfo, you must have console operator rights.

NCP Calls
0x2222 123 04 User Information

See Also
NWCCGetAllConnInfo, NWGetActiveConnListByType (page 45), NWGetConnectionInformation

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FF Failure or Invalid Connection Number
r Management

novdocx (E
N

U
) 01 February 2006
NWGetVolumeInfoByLevel
Returns information about the specified volume, returning different structures depending on the
infoLevel specified.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetVolumeInfoByLevel (
 NWCONN_HANDLE conn,
 nuint32 volNum,
 nuint32 infoLevel,
 NWFSE_VOLUME_INFO_BY_LEVEL N_FAR *fseVolumeInfo);

Delphi Syntax
uses calwin32

Function NWGetVolumeInfoByLevel
 (conn : NWCONN_HANDLE;
 volNum : nuint32;
 infoLevel : nuint32;
 Var fseVolumeInfo : NWFSE_VOLUME_INFO_BY_LEVEL
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volNum
(IN) Specifies the volume number for which information is being obtained.

infoLevel
(IN) Specifies which level of information to return (1 or 2).

fseVolumeInfo
Server Environment Functions 157

158 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(OUT) Points to NWFSE_VOLUME_INFO_BY_LEVEL containing the information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Console operator rights are NOT necessary to call NWGetVolumeInfoByLevel.

NCP Calls
0x2222 123 34 Get Volume Information By Level

See Also
NWGetVolumeInfoWithHandle, NWGetVolumeInfoWithNumber (Volume Management)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x8998 VOLUME_DOES_NOT_EXIST

0x89FF Failure
r Management

novdocx (E
N

U
) 01 February 2006
NWGetVolumeSegmentList
Returns a list of up to 32 volume segments for a given volume.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetVolumeSegmentList (
 NWCONN_HANDLE conn,
 nuint32 volumeNum,
 NWFSE_VOLUME_SEGMENT_LIST N_FAR *fseVolumeSegmentList);

Delphi Syntax
uses calwin32

Function NWGetVolumeSegmentList
 (conn : NWCONN_HANDLE;
 volNum : nuint32;
 Var fseVolumeSegmentList : NWFSE_VOLUME_SEGMENT_LIST
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

volumeNum
(IN) Specifies the number representing a specific volume. Zero (0) = Volume SYS

fseVolumeSegmentList
(OUT) Points to NWFSE_VOLUME_SEGMENT_LIST containing the volume segment list.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 159

160 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
Console operator rights are NOT necessary to call NWGetVolumeSegmentList.

NCP Calls
0x2222 123 33 Get Volume Segment List

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x8998 VOLUME_DOES_NOT_EXIST
r Management

novdocx (E
N

U
) 01 February 2006
NWGetVolumeSwitchInfo
Gets information about the volume switch counter such as the number of overall times through the
function.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetVolumeSwitchInfo (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_VOLUME_SWITCH_INFO N_FAR *fseVolumeSwitchInfo);

Delphi Syntax
uses calwin32

Function NWGetVolumeSwitchInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseVolumeSwitchInfo : NWFSE_VOLUME_SWITCH_INFO
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

startNum
(IN) Specifies the starting number; set to zero (0) on the first call.

fseVolumeSwitchInfo
(OUT) Points to NWFSE_VOLUME_SWITCH_INFO getting volume switch information.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.
Server Environment Functions 161

162 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks

To call NWGetVolumeSwitchInfo, you must have console operator rights.

NCP Calls
0x2222 123 09 Volume Switch Information

0x0000 SUCCESSFUL

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FF Failure or Invalid Start Item Number
r Management

novdocx (E
N

U
) 01 February 2006
NWIsManager
Checks whether a calling station is a manager.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWIsManager (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWIsManager
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWIsManager, you must have console operator rights.

A station is a manager if it is a supervisor, or if it appears in the MANAGERS property of the
supervisor object.

0x0000 Calling station is a manager.

0x89FF Calling station is not a manager.
Server Environment Functions 163

164 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NCP Calls
0x2222 23 73 Is Calling Station A Manager
r Management

novdocx (E
N

U
) 01 February 2006
NWLoginToFileServer
Attempts to log an object in to the specified NetWare server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWLoginToFileServer (
 NWCONN_HANDLE conn,
 const nstr8 N_FAR *objName,
 nuint16 objType,
 const nstr8 N_FAR *password);

Delphi Syntax
uses calwin32

Function NWLoginToFileServer
 (conn : NWCONN_HANDLE;
 const objName : pnstr8;
 objType : nuint16;
 const password : pnstr8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

objName
(IN) Points to the bindery object name of the object logging in to the NetWare server object
name (up to 48 characters including the NULL terminator).

objType
(IN) Specifies the Bindery object type of the object logging in to the NetWare server.

password
Server Environment Functions 165

166 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(IN) Points to the upper-case password of the bindery object logging in to the NetWare server
(or pass in a zero-length string if a password is not required).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
If the conn parameter specifies an NDS authenticated connection, NWLoginToFileServer will
return ALREADY_ATTACHED (0x8800).

To determine if the conn parameter specifies an NDS authenticated connection, call
NWCCGetConnRefInfo with the infoType parameter set to NWCC_INFO_NDS_STATE. If
NWCC_NDS_CAPABLE is returned in the infoType parameter, the connection must be cleared
(see Closing and Clearing Connections) and a new connection must be opened (see Attaching to
Servers and Opening Connections) before NWLoginToFileServer will successfully return (NDK:
Connection, Message, and NCP Extensions).

If the encryption key is not available, it attempts an unencrypted login. If the key is available, the
password is encrypted and an encrypted login is attempted.

0x0000 SUCCESSFUL

0x8800 ALREADY_ATTACHED

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89C1 LOGIN_DENIED_NO_ACCOUNT_BALANCE

0x89C2 LOGIN_DENIED_NO_CREDIT

0x89C5 INTRUDER_DETECTION_LOCK

0x89D9 ERR_MAX_SERVERS

0x89DA UNAUTHORIZED_LOGIN_TIME

0x89DB UNAUTHORIZED_LOGIN_STATION

0x89DC ACCOUNT_DISABLED

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

0x89DF PASSWORD_EXPIRED

0x89FB INVALID_PARAMETERS

0x89FE BINDERY_LOCKED

0x89FF NO_SUCH_OBJECT_OR_BAD_PASSWORD

0xFF Failure
r Management

novdocx (E
N

U
) 01 February 2006
NWLoginToFileServer performs only the login, not the attach. Clients must be previously attached
to call NWLoginToFileServer. Attaching to a NetWare server is not the same as logging in. A
workstation attaches to a NetWare server to obtain a connection number. The workstation can then
log in to the NetWare server using that connection number. NWLoginToFileServer does not,
however, interpret the login script.

Valid bindery object types for OT_ constants follow:

OT_WILD 0xFFFF
OT_UNKNOWN 0x0000
OT_USER 0x0100
OT_USER_GROUP 0x0200
OT_PRINT_QUEUE 0x0300
OT_FILE_SERVER 0x0400
OT_JOB_SERVER 0x0500
OT_GATEWAY 0x0600
OT_PRINT_SERVER 0x0700
OT_ARCHIVE_QUEUE 0x0800
OT_ARCHIVE_SERVER 0x0900
OT_JOB_QUEUE 0x0A00
OT_ADMINISTRATION 0x0B00
OT_NAS_SNA_GATEWAY 0x2100
OT_REMOTE_BRIDGE_SERVER 0x2600
OT_TCPIP_GATEWAY 0x2700

Extended bindery object types follow:

OT_TIME_SYNCHRONIZATION_SERVER 0x2D00
OT_ARCHIVE_SERVER_DYNAMIC_SAP 0x2E00
OT_ADVERTISING_PRINT_SERVER 0x4700
OT_PRINT_QUEUE_USER 0x5300

NCP Calls
0x2222 23 24 Keyed Object Login
0x2222 23 53 Get Bindery Object ID
Server Environment Functions 167

168 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWLogoutFromFileServer
Attempts to log the workstation out of the specified NetWare server.

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWLogoutFromFileServer (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWLogoutFromFileServer
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle associated with the server from which to
log out.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWLogoutFromFileServer, you must have console operator rights.

If successful, drive mappings dependent on the connection are deleted.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x88FB INVALID_PARAMETERS
r Management

novdocx (E
N

U
) 01 February 2006
NWSetFileServerDateAndTime
Sets the date and time of a NetWare server.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Environment

Syntax
#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetFileServerDateAndTime (
 NWCONN_HANDLE conn,
 nuint8 year,
 nuint8 month,
 nuint8 day,
 nuint8 hour,
 nuint8 minute,
 nuint8 second);

Delphi Syntax
uses calwin32

Function NWSetFileServerDateAndTime
 (conn : NWCONN_HANDLE;
 year : nuint8;
 month : nuint8;
 day : nuint8;
 hour : nuint8;
 minute : nuint8;
 second : nuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

year
(IN) Specifies the value corresponding to the year (0-179).
Server Environment Functions 169

170 NDK: Serve

novdocx (E
N

U
) 01 February 2006
month
(IN) Specifies the month value (1=January; 12=December).

day
(IN) Specifies the day value (1-31).

hour
(IN) Specifies the hour value (0=midnight; 23=11 p.m.).

minute
(IN) Specifies the minute value (0-59).

second
(IN) Specifies the second value (0-59).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
To call NWSetFileServerDateAndTime, you must have console operator rights.

The year parameter contains the following values which correspond to the specified years:

0-79 2000-2079
80-99 1980-1999
100-179 2000-2079

NCP Calls
0x2222 23 202 Set File Server Date And Time

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

3
novdocx (E

N
U

) 01 February 2006
3Server Environment Structures

This documentation alphabetically lists the reference information for each server environment
structure.
Server Environment Structures 171

172 NDK: Serve

novdocx (E
N

U
) 01 February 2006
CACHE_COUNTERS
Returns cache information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 nuint32 readExistingBlockCount ;
 nuint32 readExistingWriteWaitCount ;
 nuint32 readExistingPartialReadCount ;
 nuint32 readExistingReadErrorCount ;
 nuint32 writeBlockCount ;
 nuint32 writeEntireBlockCount ;
 nuint32 getDiskCount ;
 nuint32 getDiskNeedToAllocCount ;
 nuint32 getDiskSomeoneBeatMeCount ;
 nuint32 getDiskPartialReadCount ;
 nuint32 getDiskReadErrorCount ;
 nuint32 getAsyncDiskCount ;
 nuint32 getAsyncDiskNeedToAlloc ;
 nuint32 getAsyncDiskSomeoneBeatMe ;
 nuint32 errorDoingAsyncReadCount ;
 nuint32 getDiskNoReadCount ;
 nuint32 getDiskNoReadAllocCount ;
 nuint32 getDiskNoReadSomeoneBeatMeCount ;
 nuint32 diskWriteCount ;
 nuint32 diskWriteAllocCount ;
 nuint32 diskWriteSomeoneBeatMeCount ;
 nuint32 writeErrorCount ;
 nuint32 waitOnSemaphoreCount ;
 nuint32 allocBlockWaitForSomeoneCount ;
 nuint32 allocBlockCount ;
 nuint32 allocBlockWaitCount ;
} CACHE_COUNTERS;

Delphi Structure
uses calwin32

 CACHE_COUNTERS = packed Record
 readExistingBlockCount : nuint32;
 readExistingWriteWaitCount : nuint32;
 readExistingPartialReadCount : nuint32;
 readExistingReadErrorCount : nuint32;
 writeBlockCount : nuint32;
 writeEntireBlockCount : nuint32;
 getDiskCount : nuint32;
 getDiskNeedToAllocCount : nuint32;
 getDiskSomeoneBeatMeCount : nuint32;
r Management

novdocx (E
N

U
) 01 February 2006
 getDiskPartialReadCount : nuint32;
 getDiskReadErrorCount : nuint32;
 getAsyncDiskCount : nuint32;
 getAsyncDiskNeedToAlloc : nuint32;
 getAsyncDiskSomeoneBeatMe : nuint32;
 errorDoingAsyncReadCount : nuint32;
 getDiskNoReadCount : nuint32;
 getDiskNoReadAllocCount : nuint32;
 getDiskNoReadSomeoneBeatMeCount : nuint32;
 diskWriteCount : nuint32;
 diskWriteAllocCount : nuint32;
 diskWriteSomeoneBeatMeCount : nuint32;
 writeErrorCount : nuint32;
 waitOnSemaphoreCount : nuint32;
 allocBlockWaitForSomeoneCount : nuint32;
 allocBlockCount : nuint32;
 allocBlockWaitCount : nuint32
 End;

Fields
readExistingBlockCount

Specifies the number of times an existing cache block has been read.

readExistingWriteWaitCount
Specifies the number of times an existing cache block was being read but had to wait until
someone else was finished writing to it before it could be read completely.

readExistingPartialReadCount
Specifies the number cache blocks that were being read but encountered dirty sectors.

readExistingReadErrorCount
Specifies the number of cache blocks that experienced errors while trying to be read.

writeBlockCount
Specifies the number of cache buffers that were dirty and written to disk.

writeEntireBlockCount
Specifies the number of entire cache blocks that were dirty and written to disk.

getDiskCount
Specifies the number of times a block is obtained from disk to be compared against what is in a
cache.

getDiskNeedToAllocCount
Specifies the number of times a cache control structure needs to be allocated because what is
obtained from disk is not in a cache.

getDiskSomeoneBeatMeCount
Specifies the number of times a cache control structure is allocated to store new data from a
disk but a recheck of a cache shows the new data is already stored indicating someone else beat
Server Environment Structures 173

174 NDK: Serve

novdocx (E
N

U
) 01 February 2006
the first attempt to store the data. (The newly allocated cache control structure is then returned
to the available list.)

getDiskPartialReadCount
Specifies the number of times a disk was only partially read.

getDiskReadErrorCount
Specifies the number of times an error was encountered while reading data from a disk.

getAsyncDiskCount
Specifies the number of times a block is obtained from an asynchronous disk to be compared
against what is in a cache.

getAsyncDiskNeedToAlloc
Specifies the number of times a cache control structure needs to be allocated because what is
obtained from an asynchronous disk is not in a cache.

getAsyncDiskSomeoneBeatMe
Specifies the number of times a cache control structure is allocated to store new data from an
asynchronous disk but a recheck of a cache shows the new data is already stored indicating
someone else beat the first attempt to store the data. (The newly allocated cache control
structure is then returned to the available list.)

errorDoingAsyncReadCount
Specifies the number of times an error occurred while reading from a disk. It is used to
compare with what may or may not be in a cache.

getDiskNoReadCount
Specifies the number of times data is obtained from a disk and put into a cache without
requesting a read on the data.

getDiskNoReadAllocCount
Specifies the number of times a new cache control structure has to be allocated during the time
that data is obtained from disk to be put into a cache.

getDiskNoReadSomeoneBeatMeCount
Specifies the number of times a cache control structure has to be allocated during the time that
data is obtained from disk to be put into a cache but a recheck of a cache shows the new data is
already stored indicating someone else beat the first attempt to store the data. (The newly
allocated cache control structure is then returned to the available list.)

diskWriteCount
Specifies the number of times a cache block has been written to disk.

diskWriteAllocCount
Specifies the number of times a cache control structure was allocated during the time that data
is being written to disk.

diskWriteSomeoneBeatMeCount
Specifies the number of times a cache control structure has to be allocated during the time that
a cache block is written to disk but a recheck of a cache shows the new data is already written
r Management

novdocx (E
N

U
) 01 February 2006
to disk indicating someone else beat the first attempt to store the data. (The newly allocated
cache control structure is then returned to the available list.)

writeErrorCount
Specifies the number of times an error was encountered while writing a cache to disk.

waitOnSemaphoreCount
Specifies the number of times a cache control blocks was waiting on a semaphore while cache
and disk blocks were being checked

allocBlockWaitForSomeoneCount
Specifies the number of times that the allocate waiting count was set. You must set a semaphore
and try again later.

allocBlockCount
Specifies the number of times a cache control block was allocated.

allocBlockWaitCount
Specifies the number of times the LRU and cache nodes were not available.
Server Environment Structures 175

176 NDK: Serve

novdocx (E
N

U
) 01 February 2006
CACHE_INFO
Returns information about a cache.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 nuint32 maxByteCount ;
 nuint32 minNumOfCacheBuffers ;
 nuint32 minCacheReportThreshold ;
 nuint32 allocWaitingCount ;
 nuint32 numDirtyBlocks ;
 nuint32 cacheDirtyWaitTime ;
 nuint32 cacheMaxConcurrentWrites ;
 nuint32 maxDirtyTime ;
 nuint32 numOfDirCacheBuffers ;
 nuint32 cacheByteToBlockShiftFactor ;
} CACHE_INFO;

Delphi Structure
uses calwin32

 CACHE_INFO = packed Record
 maxByteCount : nuint32;
 minNumOfCacheBuffers : nuint32;
 minCacheReportThreshold : nuint32;
 allocWaitingCount : nuint32;
 numDirtyBlocks : nuint32;
 cacheDirtyWaitTime : nuint32;
 cacheMaxConcurrentWrites : nuint32;
 maxDirtyTime : nuint32;
 numOfDirCacheBuffers : nuint32;
 cacheByteToBlockShiftFactor : nuint32
 End;

Fields
maxByteCount

Specifies the length in bytes of a cache block.

minNumOfCacheBuffers
Specifies the minimum number of cache buffers allowed on the server (default is 20, but values
from 20-1000 are supported).

minCacheReportThreshold
Specifies the number of cache buffers used for the report threshold (default value is 20, but
values from 0-1000 are supported).
r Management

novdocx (E
N

U
) 01 February 2006
allocWaitingCount
Specifies the number of processes waiting to allocate a cache block.

numDirtyBlocks
Specifies the number of dirty blocks waiting to be written to disk.

cacheDirtyWaitTime
Specifies the maximum wait before a Write request is written to disk (default is 3.3 seconds,
but values from 0.1-10 seconds are supported).

cacheMaxConcurrentWrites
Specifies the maximum number of Write requests for changed file data that can be put in the
elevator before the disk head begins a sweep across the disk (default is 50, but values from 10-
100 are supported).

maxDirtyTime
Specifies the longest time (in ticks) since the server was brought up that a dirty block has
waited before it was written to disk.

numOfDirCacheBuffers
Specifies the number of directory cache buffers on the server.

cacheByteToBlockShiftFactor
Specifies the n factor used in the block size equation.

Remarks
The minNumOfCacheBuffers, minCacheReportThreshold, cacheDirtyWaitTime,
and cacheMaxConcurrentWrites fields can be set by using the SET console command.

When the number of cache buffers reach a number equal to the sum of the numbers specified by the
minNumOfCacheBuffers and minCacheReportThreshold fields, the server sends a
message warning that the cache buffers are getting low.

The block size (in bytes) is calculated using:

block size = 2 n+9

where n is the shift factor.
Server Environment Structures 177

178 NDK: Serve

novdocx (E
N

U
) 01 February 2006
CACHE_MEM_COUNTERS
Returns cache memory information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 nuint32 originalNumOfCacheBuffers ;
 nuint32 currentNumOfCacheBuffers ;
 nuint32 cacheDirtyBlockThreshold ;
 nuint32 waitNodeCount ;
 nuint32 waitNodeAllocFailureCount ;
 nuint32 moveCacheNodeCount ;
 nuint32 moveCacheNodeFromAvailCount ;
 nuint32 accelerateCacheNodeWriteCount ;
 nuint32 removeCacheNodeCount ;
 nuint32 removeCacheNodeFromAvailCount ;
} CACHE_MEM_COUNTERS;

Delphi Structure
uses calwin32

 CACHE_MEM_COUNTERS = packed Record
 originalNumOfCacheBuffers : nuint32;
 currentNumOfCacheBuffers : nuint32;
 cacheDirtyBlockThreshold : nuint32;
 waitNodeCount : nuint32;
 waitNodeAllocFailureCount : nuint32;
 moveCacheNodeCount : nuint32;
 moveCacheNodeFromAvailCount : nuint32;
 accelerateCacheNodeWriteCount : nuint32;
 removeCacheNodeCount : nuint32;
 removeCacheNodeFromAvailCount : nuint32
 End;

Fields
originalNumOfCacheBuffers

Specifies the number of cache buffers that existed when the server was brought up.

currentNumOfCacheBuffers
Specifies the number of cache buffers currently on the server.

cacheDirtyBlockThreshold
Specifies the maximum number of cache blocks allowed to be dirty simultaneously.

waitNodeCount
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the number of wait nodes that have been allocated. (Wait nodes are memory chunks
created to track the start and end of internal processes.)

waitNodeAllocFailureCount
Specifies the number of times a wait node was unable to be allocated.

moveCacheNodeCount
Specifies the number of times a cache block control node has been moved from one node to
another for memory management.

moveCacheNodeFromAvailCount
Specifies the number of times a cache block control node has been available and sitting in the
available list and then moved.

accelerateCacheNodeWriteCount
Specifies the number of dirty cache nodes that were moved to the beginning of the list to be
written to disk.

removeCacheNodeCount
Specifies the number of cache block control structure nodes that were removed while
collapsing cache memory segments.

removeCacheNodeFromAvailCount
Specifies the number of cache block control nodes that were removed from the cache node
available list.
Server Environment Structures 179

180 NDK: Serve

novdocx (E
N

U
) 01 February 2006
CACHE_TREND_COUNTERS
Returns cache trend information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 nuint32 numCacheChecks ;
 nuint32 numCacheHits ;
 nuint32 numDirtyCacheChecks ;
 nuint32 numDirtyCacheHits ;
 nuint32 cacheUsedWhileChecking ;
 nuint32 waitForDirtyBlocksDecreaseCount ;
 nuint32 allocBlockFromAvailCount ;
 nuint32 allocBlockFromLRUCount ;
 nuint32 allocBlockAlreadyWaiting ;
 nuint32 LRUSittingTime ;
} CACHE_TREND_COUNTERS;

Delphi Structure
uses calwin32

 CACHE_TREND_COUNTERS = packed Record
 numCacheChecks : nuint32;
 numCacheHits : nuint32;
 numDirtyCacheChecks : nuint32;
 numDirtyCacheHits : nuint32;
 cacheUsedWhileChecking : nuint32;
 waitForDirtyBlocksDecreaseCount : nuint32;
 allocBlockFromAvailCount : nuint32;
 allocBlockFromLRUCount : nuint32;
 allocBlockAlreadyWaiting : nuint32;
 LRUSittingTime : nuint32
 End;

Fields
numCacheChecks

Specifies the total number of times any block in the cache was looked at since the server was
brought up.

numCacheHits
Specifies the number of times cache requests were serviced from existing cache blocks.

numDirtyCacheChecks
Specifies the number of times a cache block was checked to determine if it is dirty.
r Management

novdocx (E
N

U
) 01 February 2006
numDirtyCacheHits
Specifies the time in ticks the oldest cache block has been available (sitting in the LRU list).

cacheUsedWhileChecking
Specifies the number of cache blocks that were allocated and then returned to the available list
while a cache was being checked during different cache operations (read, write, etc.).

waitForDirtyBlocksDecreaseCount
Specifies the number of times a process had to wait until the number of dirty cache blocks
decreased to less than the cache dirty block threshold.

allocBlockFromAvailCount
Specifies the number of cache blocks removed from the available list and used.

allocBlockFromLRUCount
Specifies the number of cache blocks removed from the LRU list and used done if cache blocks
cannot be removed from the available list).

allocBlockAlreadyWaiting
Specifies the number of times an attempt was made to allocate a cache block but none are
available in the available list or LRU (system waits and tries again later).

LRUSittingTime
Specifies the time (in ticks) that the oldest cache block has been available and was sitting in the
LRU list.
Server Environment Structures 181

182 NDK: Serve

novdocx (E
N

U
) 01 February 2006
CPU_INFO
Returns CPU information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 nuint32 pageTableOwnerFlag ;
 nuint32 CPUTypeFlag ;
 nuint32 coProcessorFlag ;
 nuint32 busTypeFlag ;
 nuint32 IOEngineFlag ;
 nuint32 FSEngineFlag ;
 nuint32 nonDedicatedFlag;
} CPU_INFO;

Delphi Structure
uses calwin32

 CPU_INFO = packed Record
 pageTableOwnerFlag : nuint32;
 CPUTypeFlag : nuint32;
 coProcessorFlag : nuint32;
 busTypeFlag : nuint32;
 IOEngineFlag : nuint32;
 FSEngineFlag : nuint32;
 nonDedicatedFlag : nuint32;
 End;

Fields
pageTableOwnerFlag

Specifies which domain is the current domain.

CPUTypeFlag
Specifies the CPU type:

0 80386
1 80486
2 Pentium
3 Pentium Pro

coProcessorFlag
Specifies whether a numeric coprocessor is present (true=present).

busTypeFlag
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the bus type:

0x01=micro channel
0x02=EISA
0x04=PCI
0x08=PCMCIA
0x10=ISA

IOEngineFlag
Specifies whether the IO engine is installed (true=installed).

FSEngineFlag
Specifies whether the file system engine is installed (true=installed).

nonDedicatedFlag
Specifies whether the CPU is dedicated.

Remarks
Server Environment Structures 183

184 NDK: Serve

novdocx (E
N

U
) 01 February 2006
DIR_CACHE_INFO
Returns information for a directory cache.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 nuint32 minTimeSinceFileDelete ;
 nuint32 absMinTimeSinceFileDelete ;
 nuint32 minNumOfDirCacheBuffers ;
 nuint32 maxNumOfDirCacheBuffers ;
 nuint32 numOfDirCacheBuffers ;
 nuint32 dCMinNonReferencedTime ;
 nuint32 dCWaitTimeBeforeNewBuffer ;
 nuint32 dCMaxConcurrentWrites ;
 nuint32 dCDirtyWaitTime ;
 nuint32 dCDoubleReadFlag ;
 nuint32 mapHashNodeCount ;
 nuint32 spaceRestrictionNodeCount ;
 nuint32 trusteeListNodeCount ;
 nuint32 percentOfVolumeUsedByDirs ;
} DIR_CACHE_INFO;

Delphi Structure
uses calwin32

 DIR_CACHE_INFO = packed Record
 minTimeSinceFileDelete : nuint32;
 absMinTimeSinceFileDelete : nuint32;
 minNumOfDirCacheBuffers : nuint32;
 maxNumOfDirCacheBuffers : nuint32;
 numOfDirCacheBuffers : nuint32;
 dCMinNonReferencedTime : nuint32;
 dCWaitTimeBeforeNewBuffer : nuint32;
 dCMaxConcurrentWrites : nuint32;
 dCDirtyWaitTime : nuint32;
 dCDoubleReadFlag : nuint32;
 mapHashNodeCount : nuint32;
 spaceRestrictionNodeCount : nuint32;
 trusteeListNodeCount : nuint32;
 percentOfVolumeUsedByDirs : nuint32;
 End;

Fields
minTimeSinceFileDelete
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the minimum time (in clock ticks) between when a file is deleted and when it can be
purged.

absMinTimeSinceFileDelete
Specifies the minimum time (in clock ticks) between when a file is deleted and when it can be
purged after the system has no available blocks.

minNumOfDirCacheBuffers
Specifies the minimum number of directory cache buffers that can be allocated on the server.

maxNumOfDirCacheBuffers
Specifies the maximum number of directory cache buffers that can be allocated on the server.

numOfDirCacheBuffers
Specifies the current number of directory cache buffers on the server.

dCMinNonReferencedTime
Specifies the time (in clock ticks) that must elapse between the last reference of a directory
buffer and the time it is reused.

dCWaitTimeBeforeNewBuffer
Specifies the time (in clock ticks) that must elapse before an additional directory cache buffer
can be allocated.

dCMaxConcurrentWrites
Specifies the maximum number of write requests from directory cache buffers that can be put
in the elevator before they are written to disk.

dCDirtyWaitTime
Specifies the maximum time (in clock ticks) that the server can wait before writing dirty cache
buffers to disk.

dCDoubleReadFlag
Specifies whether the directory block must be read and verified from both copies of directory
tables.

mapHashNodeCount
Specifies the number of times a hash node has been allocated for directories.

spaceRestrictionNodeCount
Specifies the total number of disk space restrictions placed since the server was brought up.

trusteeListNodeCount
Specifies the total number of trustee assignments set on the file system since the server was
brought up.

percentOfVolumeUsedByDirs
Specifies the total volume space percentage that is used by directory entries.
Server Environment Structures 185

186 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
The minNumOfDirCacheBuffers, maxNumOfDirCacheBuffers,
dCMinNonReferencedTime, dCWaitTimeBeforeNewBuffer,
dCMaxConcurrentWrites, dCDirtyWaitTime, and percentOfVolumeUsedByDirs
fields can be set by using the SET console command.
r Management

novdocx (E
N

U
) 01 February 2006
DRV_MAP_TABLE
Returns drive map table data.

Service: Server Environment

Defined In: nwserver.h

Structure
typedef struct
{
 nuint32 systemElapsedTime ;
 nuint8 SFTSupportLevel ;
 nuint8 logicalDriveCount ;
 nuint8 physicalDriveCount ;
 nuint8 diskChannelTable [5];
 nuint16 pendingIOCommands ;
 nuint8 driveMappingTable [32];
 nuint8 driveMirrorTable [32];
 nuint8 deadMirrorTable [32];
 nuint8 reMirrorDriveNumber ;
 nuint8 reserved ;
 nuint32 reMirrorCurrentOffset ;
 nuint16 SFTErrorTable [60];
} DRV_MAP_TABLE;

Delphi Structure
uses calwin32

 DRV_MAP_TABLE = packed Record
 systemElapsedTime : nuint32;
 SFTSupportLevel : nuint8;
 logicalDriveCount : nuint8;
 physicalDriveCount : nuint8;
 diskChannelTable : Array[0..4] Of nuint8;
 pendingIOCommands : nuint16;
 driveMappingTable : Array[0..31] Of nuint8;
 driveMirrorTable : Array[0..31] Of nuint8;
 deadMirrorTable : Array[0..31] Of nuint8;
 reMirrorDriveNumber : nuint8;
 reserved : nuint8;
 reMirrorCurrentOffset : nuint32;
 SFTErrorTable : Array[0..59] Of nuint16;
 End;

Fields
systemElapsedTime
Server Environment Structures 187

188 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Specifies how long the NetWare server has been up. systemElapsedTime is returned in
units of approximately 1/18 second and is used to determine the amount of time that has
elapsed between consecutive calls. When this field reaches 0xFFFFFFFF, it wraps back to zero.

SFTSupportLevel
Specifies the SFT level offered by the NetWare server: 1 hot disk error fix 2 disk mirroring and
transaction tracking 3 physical NetWare server mirroring

logicalDriveCount
Specifies the number of logical drives attached to the server. If the NetWare server supports
SFT Level II or above and disks are mirrored, logicalDriveCount will be lower than the
actual number of physical disk subsystems attached to the NetWare server. The NetWare
server’s operating system considers mirrored disks to be one logical drive.

physicalDriveCount
Specifies the number of physical disk units attached to the server.

diskChannelTable
Specifies the 5-byte table that indicates which disk channels exists on the server and what their
drive types are. (Each channel is 1 byte.) A nonzero value in the Disk Channel Table indicates
that the corresponding disk channel exists in the NetWare server. The drive types are:
1 = XT
2 = AT
3 = SCSI
4 = disk coprocessor
50 to 255 = Value Added Disk Drive (VADD)

pendingIOCommands
Specifies the number of outstanding disk controller commands.

driveMappingTable
Specifies the 32-byte table containing the primary physical drive to which each logical drive is
mapped (0xFF = no such logical drive).

driveMirrorTable
Specifies the 32-byte table containing the secondary physical drive to which each logical drive
is mapped (0xFF = no such logical drive).

deadMirrorTable
Specifies the 32-byte table containing the secondary physical drive to which each logical drive
was last mapped (0xFF = logical drive was never mirrored). This table is used in conjunction
with the Drive Mirror Table. If the entry in the Drive Mirror Table shows that a drive is not
currently mirrored, the table can be used to determine which drive previously mirrored the
logical drive. The Dead Mirror Table is used to remirror a logical drive after a mirror failure.

reMirrorDriveNumber
Specifies the physical drive number of the disk currently being remirrored (0xFF = no disk
being remirrored).

reserved
Is currently not used.
r Management

novdocx (E
N

U
) 01 February 2006
reMirrorCurrentOffset
Specifies the block number that is currently being remirrored.

SFTErrorTable
Specifies the 60-byte table containing SFT internal error counters.
Server Environment Structures 189

190 NDK: Serve

novdocx (E
N

U
) 01 February 2006
DSK_CACHE_STATS
Returns disk caching statistics.

Service: Server Environment

Defined In: nwserver.h

Structure
typedef struct
{
 nuint32 systemElapsedTime ;
 nuint16 cacheBufferCount ;
 nuint16 cacheBufferSize ;
 nuint16 dirtyCacheBuffers ;
 nuint32 cacheReadRequests ;
 nuint32 cacheWriteRequests ;
 nuint32 cacheHits ;
 nuint32 cacheMisses ;
 nuint32 physicalReadReqeusts ;
 nuint32 physicalWriteRequests ;
 nuint16 physicalReadErrors ;
 nuint16 physicalWriteErrors ;
 nuint32 cacheGetRequests ;
 nuint32 cacheFullWriteRequests ;
 nuint32 cachePartialWriteRequests ;
 nuint32 backgroundDirtyWrites ;
 nuint32 backgroundAgedWrites ;
 nuint32 totalCacheWrites ;
 nuint32 cacheAllocations ;
 nuint16 thrashingCount ;
 nuint16 LRUBlockWasDirtyCount ;
 nuint16 readBeyondWriteCount ;
 nuint16 fragmentedWriteCount ;
 nuint16 cacheHitOnUnavailCount ;
 nuint16 cacheBlockScrappedCount ;
} DSK_CACHE_STATS;

Delphi Structure
uses calwin32

 DSK_CACHE_STATS = packed Record
 systemElapsedTime : nuint32;
 cacheBufferCount : nuint16;
 cacheBufferSize : nuint16;
 dirtyCacheBuffers : nuint16;
 cacheReadRequests : nuint32;
 cacheWriteRequests : nuint32;
 cacheHits : nuint32;
 cacheMisses : nuint32;
 physicalReadRequests : nuint32;
r Management

novdocx (E
N

U
) 01 February 2006
 physicalWriteRequests : nuint32;
 physicalReadErrors : nuint16;
 physicalWriteErrors : nuint16;
 cacheGetRequests : nuint32;
 cacheFullWriteRequests : nuint32;
 cachePartialWriteRequests : nuint32;
 backgroundDirtyWrites : nuint32;
 backgroundAgedWrites : nuint32;
 totalCacheWrites : nuint32;
 cacheAllocations : nuint32;
 thrashingCount : nuint16;
 LRUBlockWasDirtyCount : nuint16;
 readBeyondWriteCount : nuint16;
 fragmentedWriteCount : nuint16;
 cacheHitOnUnavailCount : nuint16;
 cacheBlockScrappedCount : nuint16;
 End;

Fields
systemElapsedTime

Specifies how long the NetWare server has been up. This value is returned in units of
approximately 1/18 second and is used to determine the amount of time that has elapsed
between consecutive calls. when systemElapsedTime reaches 0xFFFFFFFF, it wraps back
to zero.

cacheBufferCount
Specifies the number of cache buffers in the server.

cacheBufferSize
Specifies the number of bytes in a cache buffer.

dirtyCacheBuffers
Specifies the number of cache buffers in use.

cacheReadRequests
Specifies the number of times the cache software received a request to read data from the disk.

cacheWriteRequests
Specifies the number of times the cache software received a request to write data to the disk.

cacheHits
Specifies the number of times cache requests were serviced form existing cache blocks.

cacheMisses
Specifies the number of times cache requests could not be serviced form existing cache blocks.

physicalReadReqeusts
Specifies the number of times the cache software issued a physical read request to a disk driver.
(A physical read requests reads in as much data as the cache block holds.)

physicalWriteRequests
Server Environment Structures 191

192 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Specifies the number of times the cache software issued a physical write request to a disk
driver.

physicalReadRequests
Specifies the number of times the cache software received an error from the disk driver on a
disk read request.

physicalWriteErrors
Specifies the number of times the cache software received an error from the disk driver on a
disk write request.

cacheGetRequests
Specifies the number of times the cache software received a request to read information from
the disk.

cacheFullWriteRequests
Specifies the number of times the cache software was requested to write information to disk
that exactly filled one or more sectors.

cachePartialWriteRequests
Specifies the number of times the cache software was requested to write information to disk
that did not exactly fill a sector. (Partial write requests require a disk preread.)

backgroundDirtyWrites
Specifies the number of times a cache block that was written to disk was completely filled with
information. (The whole cache block was written.)

backgroundAgedWrites
Specifies the number of times the background disk write process wrote a partially filled cache
block to disk. (The cache block was written to disk because the block had not been accessed for
a significant period of time.)

totalCacheWrites
Specifies the total number of cache buffers written to disk.

cacheAllocations
Specifies the number of times a cache block was allocated for use.

thrashingCount
Specifies the number of times a cache block was not available when a cache block allocation
was requested.

LRUBlockWasDirtyCount
Specifies the number of times the Least_Recently_Used cache block allocation algorithm
reclaimed a dirty cache block.

readBeyondWriteCount
Specifies the number of times a file read request was received for data not yet written to disk
(due to file write requests that had not yet filled the cache block). (This requires a disk preread.)

fragmentedWriteCount
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the number of times a dirty cache block contained noncontiguous sectors of
information to be written, and the skipped sectors were not preread from the disk. (Multiple
disk writes were issued to write out the cache buffer.)

cacheHitOnUnavailCount
Specifies the number of times a cache request could be serviced from an available cache block
but the cache buffer could not be used because it was in the process of being written to or read
from disk.

cacheBlockScrappedCount
Specifies the number of times a cache block was scrapped.
Server Environment Structures 193

194 NDK: Serve

novdocx (E
N

U
) 01 February 2006
FILE_SERVER_COUNTERS
Returns information regarding the number of file packets received by the server.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 nuint16 tooManyHops ;
 nuint16 unknownNetwork ;
 nuint16 noSpaceForService ;
 nuint16 noReceiveBuffers ;
 nuint16 notMyNetwork ;
 nuint32 netBIOSProgatedCount ;
 nuint32 totalPacketsServiced ;
 nuint32 totalPacketsRouted ;
} FILE_SERVER_COUNTERS;

Delphi Structure
uses calwin32

 FILE_SERVER_COUNTERS = packed Record
 tooManyHops : nuint16;
 unknownNetwork : nuint16;
 noSpaceForService : nuint16;
 noReceiveBuffers : nuint16;
 notMyNetwork : nuint16;
 netBIOSProgatedCount : nuint32;
 totalPacketsServiced : nuint32;
 totalPacketsRouted : nuint32;
 End;

Fields
tooManyHops

Specifies the number of packets discarded because they had passed through more than 16
bridges without reaching their destination.

unknownNetwork
Specifies the number of packets discarded because their destination network was unknown to
the server.

noSpaceForService
Is reserved (pass 0).

noReceiveBuffers
Specifies the number of times a packet was discarded because no buffers existed to receive it.
r Management

novdocx (E
N

U
) 01 February 2006
notMyNetwork
Specifies the number of received packets not destined for the server.

netBIOSProgatedCount
Specifies the number of NetBIOS packets received that were sent forward.

totalPacketsServiced
Specifies the total packets received by the server.

totalPacketsRouted
Specifies the number of all packets forwarded by the server.
Server Environment Structures 195

196 NDK: Serve

novdocx (E
N

U
) 01 February 2006
FSE_FILE_SYSTEM_INFO
Return file system information related to disk operation.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 FATMovedCount ;
 nuint32 FATWriteErrorCount ;
 nuint32 someoneElseDidItCount0 ;
 nuint32 someoneElseDidItCount1 ;
 nuint32 someoneElseDidItCount2 ;
 nuint32 iRanOutSomeoneElseDidItCount0 ;
 nuint32 iRanOutSomeoneElseDidItCount1 ;
 nuint32 iRanOutSomeoneElseDidItCount2 ;
 nuint32 turboFATBuildScrewedUpCount ;
 nuint32 extraUseCountNodeCount ;
 nuint32 extraExtraUseCountNodeCount ;
 nuint32 errorReadingLastFATCount ;
 nuint32 someoneElseUsingThisFileCount ;
} FSE_FILE_SYSTEM_INFO;

Delphi Structure
uses calwin32

FSE_FILE_SYSTEM_INFO = packed Record
 FATMovedCount : nuint32;
 FATWriteErrorCount : nuint32;
 someoneElseDidItCount0 : nuint32;
 someoneElseDidItCount1 : nuint32;
 someoneElseDidItCount2 : nuint32;
 iRanOutSomeoneElseDidItCount0 : nuint32;
 iRanOutSomeoneElseDidItCount1 : nuint32;
 iRanOutSomeoneElseDidItCount2 : nuint32;
 turboFATBuildScrewedUpCount : nuint32;
 extraUseCountNodeCount : nuint32;
 extraExtraUseCountNodeCount : nuint32;
 errorReadingLastFATCount : nuint32;
 someoneElseUsingThisFileCount : nuint32;
 End;

Fields
FATMovedCount

Specifies the number of times the NetWare server OS has moved the location of the FAT.
r Management

novdocx (E
N

U
) 01 February 2006
FATWriteErrorCount
Specifies the number of disk write errors in both the original and mirrored copy of a disk’s FAT
sector.

someoneElseDidItCount0
Specifies this is used internally by the OS.

someoneElseDidItCount1
Specifies this is used internally by the OS.

someoneElseDidItCount2
Specifies this is used internally by the OS.

iRanOutSomeoneElseDidItCount0
Specifies this is used internally by the OS.

iRanOutSomeoneElseDidItCount1
Specifies this is used internally by the OS.

iRanOutSomeoneElseDidItCount2
Specifies this is used internally by the OS.

turboFATBuildScrewedUpCount
Specifies the number of times the OS tried to allocate a Turbo FAT index but failed.

extraUseCountNodeCount
Specifies the number of times the OS tried to allocate a use count node for a TTS transaction
but failed.

extraExtraUseCountNodeCount
Specifies the number of times the OS tired to allocate an additional use count node for a TTS
transaction but failed.

errorReadingLastFATCount
Specifies the number of times the OS received an error reading the data in the last FAT.

someoneElseUsingThisFileCount
Specifies the number of times the OS was reading a file that another process was also reading.
Server Environment Structures 197

198 NDK: Serve

novdocx (E
N

U
) 01 February 2006
FSE_MM_OBJ_INFO
Returns media management information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 MEDIA_INFO_DEF MediaInfo ;
 nuint32 mediaType ;
 nuint32 cartridgeType ;
 nuint32 unitSize ;
 nuint32 blockSisze ;
 nuint32 capacity ;
 nuint32 preferredUnitSize ;
 nuint8 name [64];
 nuint32 type ;
 nuint32 status ;
 nuint32 functionMask ;
 nuint32 controlMask ;
 nuint32 parentCount ;
 nuint32 siblingCount ;
 nuint32 childCount ;
 nuint32 specificInfoSize ;
 nuint32 objectUniqueID ;
 nuint32 mediaSlot ;
} FSE_MM_OBJ_INFO;

Delphi Structure
uses calwin32

FSE_MM_OBJ_INFO = packed Record
 MediaInfo : MEDIA_INFO_DEF;
 mediaType : nuint32;
 cartridgeType : nuint32;
 unitSize : nuint32;
 blockSize : nuint32;
 capacity : nuint32;
 preferredUnitSize : nuint32;
 name : Array[0..63] Of nuint8;
 mediaManagerType : nuint32;
 status : nuint32;
 functionMask : nuint32;
 controlMask : nuint32;
 parentCount : nuint32;
 siblingCount : nuint32;
 childCount : nuint32;
 specificInfoSize : nuint32;
r Management

novdocx (E
N

U
) 01 February 2006
 objectUniqueID : nuint32;
 mediaSlot : nuint32;
 End;

Fields
MediaInfo

Points to MEDIA_INFO_DEF (page 219).

mediaType
Specifies the media type of the object, as follows:
0 Hard disk
1 CD-ROM
2 WORM device
3 Tape device
4 Magneto-optical device

cartridgeType
Specifies the type of cartridge or magazine the device can use, as follows:
0x00000000 Fixed media
0x00000001 5.25 floppy
0x00000002 3.5 floppy
0x00000003 5.25 optical
0x00000004 3.5 optical
0x00000005 0.5 tape
0x00000006 0.25 tape
0x00000007 8 mm tape
0x00000008 4 mm tape
0x00000009 Bernoulli disk

unitSize
Specifies the number of bytes per sector.

blockSize
Specifies the maximum number of sectors that the driver can handle per I/O request.

capacity
Specifies the maximum number of sectors on the device.

preferredUnitSize
Specifies the preferred transfer unit size for the device (from 512B to 1KB for formatted
devices).

name
Specifies the length-preceded string representing the name of the object.

type
Specifies the media manager database type:
0 AdApter Object
1 Changer object
Server Environment Structures 199

200 NDK: Serve

novdocx (E
N

U
) 01 February 2006
2 Device object
4 Media object
5 Partition object
6 Slot object
7 Hotfix object
8 Mirror object
9 Parity object
10 Volume segment object
11 Volume object
12 Clone object
14 Magazine object
15 Virtual device object
FFFF Unknown object type

status
Specifies the status mask for the object:
FSE_OBJECT_ACTIVATED 0x00000001
FSE_OBJECT_CREATED 0x00000002
FSE_OBJECT_SCRAMBLED 0x00000004
FSE_OBJECT_RESERVED 0x00000010
FSE_OBJECT_BEING_IDENTIFIED 0x00000020
FSE_OBJECT_MAGAZINE_LOADED 0x00000040
FSE_OBJECT_FAILURE 0x00000080
FSE_OBJECT_REMOVABLE 0x00000100
FSE_OBJECT_READ_ONLY 0x00000200
FSE_OBJECT_IN_DEVICE 0x00010000
FSE_OBJECT_ACCEPTS_MAGAZINES 0x00020000
FSE_OBJECT_IS_IN_A_CHANGER 0x00040000
FSE_OBJECT_LOADABLE 0x00080000
FSE_OBJECT_BEING_LOADED 0x00080000
FSE_OBJECT_DEVICE_LOCK 0x01000000
FSE_OBJECT_CHANGER_LOCK 0x02000000
FSE_OBJECT_REMIRRORING 0x04000000
FSE_OBJECT_SELECTED 0x08000000

functionMask
Specifies the function mask:
0X0001 Random read
0x0002 Random write
0x0004 Random write once
0x0008 Sequential read
0x0010 Sequential write
0x0020 Reset end of tape
0x0040 Single file mark
0x0080 Multiple file mark
0x0100 Single set mark
0x0200 Multiple set mark
0x0400 Space data blocks
0x0800 Locate data blocks
0x1000 Position partition
0x2000 Position media

controlMask
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the control mask:
0x0001 FSE_ACTIVATE_DEACTIVE
0x0002 FSE_MOUNT_DISMOUNT
0x0004 FSE_SELECT_UNSELECT
0x0008 FSE_LOCK_UNLOCK
0x0010 FSE_EJECT
0x0020 FSE_MOVE

parentCount
Specifies the number of parent objects for the device, usually 1.

siblingCount
Specifies the number of sibling objects for the device.

childCount
Specifies the number of child objects for the device.

specificInfoSize
Specifies the size of the data structures that will be returned.

objectUniqueID
Specifies the number which identifies the device in the media manager database.

mediaSlot
Specifies the number of the slot the device occupies.
Server Environment Structures 201

202 NDK: Serve

novdocx (E
N

U
) 01 February 2006
FSE_SERVER_INFO
Returns information about the NetWare server.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 nuint32 replyCanceledCount ;
 nuint32 writeHeldOffCount ;
 nuint32 writeHeldOffWithDupRequest ;
 nuint32 invalidRequestTypeCount ;
 nuint32 beingAbortedCount ;
 nuint32 alreadyDoingReallocCount ;
 nuint32 deAllocInvalidSlotCount ;
 nuint32 deAllocBeingProcessedCount ;
 nuint32 deAllocForgedPacketCount ;
 nuint32 deAllocStillTransmittingCount ;
 nuint32 startStationErrorCount ;
 nuint32 invalidSlotCount ;
 nuint32 beingProcessedCount ;
 nuint32 forgedPacketCount ;
 nuint32 stillTransmittingCount ;
 nuint32 reExecuteRequestCount ;
 nuint32 invalidSequenceNumCount ;
 nuint32 duplicateIsBeingSentAlreadyCnt ;
 nuint32 sentPositiveAcknowledgeCount ;
 nuint32 sentDuplicateReplyCount ;
 nuint32 noMemForStationCtrlCount ;
 nuint32 noAvailableConnsCount ;
 nuint32 reallocSlotCount ;
 nuint32 reallocSlotCameTooSoonCount ;
} FSE_SERVER_INFO;

Delphi Structure
uses calwin32

FSE_SERVER_INFO = packed Record
 replyCanceledCount : nuint32;
 writeHeldOffCount : nuint32;
 writeHeldOffWithDupRequest : nuint32;
 invalidRequestTypeCount : nuint32;
 beingAbortedCount : nuint32;
 alreadyDoingReallocCount : nuint32;
 deAllocInvalidSlotCount : nuint32;
 deAllocBeingProcessedCount : nuint32;
 deAllocForgedPacketCount : nuint32;
 deAllocStillTransmittingCount : nuint32;
 startStationErrorCount : nuint32;
r Management

novdocx (E
N

U
) 01 February 2006
 invalidSlotCount : nuint32;
 beingProcessedCount : nuint32;
 forgedPacketCount : nuint32;
 stillTransmittingCount : nuint32;
 reExecuteRequestCount : nuint32;
 invalidSequenceNumCount : nuint32;
 duplicateIsBeingSentAlreadyCnt : nuint32;
 sentPositiveAcknowledgeCount : nuint32;
 sentDuplicateReplyCount : nuint32;
 noMemForStationCtrlCount : nuint32;
 noAvailableConnsCount : nuint32;
 reallocSlotCount : nuint32;
 reallocSlotCameTooSoonCount : nuint32;
 End;

Fields
replyCanceledCount

Specifies the number of replies that were cancelled because the connection was reallocated
while the request was being processed.

writeHeldOffCount
Specifies the number of times that writes were delayed because of a pending TTS(tm)
transaction or cache busy condition.

writeHeldOffWithDupRequest
Specifies the number of times that writes were cancelled since a duplicate request was received.
(DO EITHER OF THESE REQUESTS GET WRITTEN? HOW ARE THEY PROCESSED-
ORIGINAL OR DUPLICATE? HOW CAN THE GET THEM TO BE PROCESSED?)

invalidRequestTypeCount
Specifies the number of packets received which had an invalid request type or were received
after the server was downed.

beingAbortedCount
Specifies the number of packets received for a connection being terminated.

alreadyDoingReallocCount
Specifies the number of times that a connection is requested when a connection already exists.

deAllocInvalidSlotCount
Specifies the number of times an attempt was made to deallocate a connection slot which was
not valid.

deAllocBeingProcessedCount
Specifies the number of times the server was deallocated because requests were still being
processed.

deAllocForgedPacketCount
Specifies the number of times the server was deallocated because a forget packet was received.
Server Environment Structures 203

204 NDK: Serve

novdocx (E
N

U
) 01 February 2006
deAllocStillTransmittingCount
Specifies the number of times the server was deallocated because information was still being
transmitted.

startStationErrorCount
Specifies the number of times the server was unable to allocate a connection for any reason.

invalidSlotCount
Specifies the number of requests received for an invalid connection slot.

beingProcessedCount
Specifies the number of times a duplicate request was received during processing of the first
request.

forgedPacketCount
Specifies the number of suspicious invalid packets received.

stillTransmittingCount
Specifies the number of times a new request is received before a reply to a previous request has
been sent.

reExecuteRequestCount
Specifies the number of times the requester did not receive the reply and the request had to be
reprocessed.

invalidSequenceNumCount
Specifies the number of request packets the server received from a connection where the
sequence number in the packet did not match the current sequence number or the next sequence
number.

duplicateIsBeingSentAlreadyCnt
Specifies the number of times a duplicate reply was requested when the reply had already been
sent.

sentPositiveAcknowledgeCount
Specifies the number of acknowledgments sent by the server (sent when a connection repeats a
request being serviced).

sentDuplicateReplyCount
Specifies the number of request packets for which the server had to send a duplicate reply (only
sent for requests the server cannot process).

noMemForStationCtrlCount
Specifies the number of times the server could not allocate memory to expand the connection
table for a new connection.

noAvailableConnsCount
Specifies the number of times no slots were available in the connection table for a new
connection.

reallocSlotCount
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the number of times the server reallocated the same slot in the connection table for a
client that logged out and relogged in.

reallocSlotCameTooSoonCount
Specifies the number of times that a request came from a client to relog in before that client had
been completely logged out.

Remarks
It is rarely possible to create suspicious packets because of faulty equipment.

If the number specified by the forgedPacketCount and invalidSequenceNumCount
fields are large, it may indicate an attempt to breach network security.

Packets with bad sequence numbers are discarded.
Server Environment Structures 205

206 NDK: Serve

novdocx (E
N

U
) 01 February 2006
IPX_INFO
Returns information about the IPX protocol.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 IPXSendPacketCount ;
 nuint16 IPXMalformPacketCount ;
 nuint32 IPXGetECBRequestCount ;
 nuint32 IPXGetECBFailCount ;
 nuint32 IPXAESEventCount ;
 nuint16 IPXPostponedAESCount ;
 nuint16 IPXMaxConfiguredSocketCount ;
 nuint16 IPXMaxOpenSocketCount ;
 nuint16 IPXOpenSocketFailCount ;
 nuint32 IPXListenECBCount ;
 nuint16 IPXECBCancelFailCount ;
 nuint16 IPXGetLocalTargetFailCount ;
} IPX_INFO;

Delphi Structure
uses calwin32

IPX_INFO = packed Record
 IPXSendPacketCount : nuint32;
 IPXMalformPacketCount : nuint16;
 IPXGetECBRequestCount : nuint32;
 IPXGetECBFailCount : nuint32;
 IPXAESEventCount : nuint32;
 IPXPostponedAESCount : nuint16;
 IPXMaxConfiguredSocketCount : nuint16;
 IPXMaxOpenSocketCount : nuint16;
 IPXOpenSocketFailCount : nuint16;
 IPXListenECBCount : nuint32;
 IPXECBCancelFailCount : nuint16;
 IPXGetLocalTargetFailCount : nuint16;
 End;

Fields
IPXSendPacketCount

Specifies the number of IPX packets sent by the server.

IPXMalformPacketCount
Specifies the number of IPX packets discarded because they were malformed.
r Management

novdocx (E
N

U
) 01 February 2006
IPXGetECBRequestCount
Specifies the number of ECB requests.

IPXGetECBFailCount
Specifies the number of times an ECB was requested, but could not be supplied.

IPXAESEventCount
Specifies the number of AES events scheduled.

IPXPostponedAESCount
Specifies the number of AES events that could not be scheduled, but were placed in a waiting
list.

IPXMaxConfiguredSocketCount
Specifies the maximum number of sockets that can be open at one time.

IPXMaxOpenSocketCount
Specifies the maximum number of sockets open at one time since the server was booted.

IPXOpenSocketFailCount
Specifies the number of times a request to open a socket failed.

IPXListenECBCount
Specifies the number of ECBs listening for a packet.

IPXECBCancelFailCount
Specifies the number of ECB listens that were cancelled.

IPXGetLocalTargetFailCount
Specifies the number of times the server failed to find the target.
Server Environment Structures 207

208 NDK: Serve

novdocx (E
N

U
) 01 February 2006
KNOWN_NET_INFO
Returns information about known networks.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 netIDNumber ;
 nuint16 hopsToNet ;
 nuint16 netStatus ;
 nuint16 timeToNet ;
} KNOWN_NET_INFO;

Delphi Structure
uses calwin32

KNOWN_NET_INFO = packed Record
 netIDNumber : nuint32;
 hopsToNet : nuint16;
 netStatus : nuint16;
 timeToNet : nuint16;
 End;

Fields
netIDNumber

Specifies the network ID number that is used by the server.

hopsToNet
Specifies the number of routers to cross to get to the network.

netStatus
Specifies the status of the network.

timeToNet
Specifies the number of clock ticks to the network (roundtrip).
r Management

novdocx (E
N

U
) 01 February 2006
LAN_COMMON_INFO
Returns information about traffic on the LAN.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 notSupportedMask ;
 nuint32 totalTxPacketCount ;
 nuint32 totalRxPacketCount ;
 nuint32 noECBAvailableCount ;
 nuint32 packetTxTooBigCount ;
 nuint32 packetTxTooSmallCount ;
 nuint32 packetRxOverflowCount ;
 nuint32 packetRxTooBigCount ;
 nuint32 packetRxTooSmallCount ;
 nuint32 packetTxMiscErrorCount ;
 nuint32 packetRxMiscErrorCount ;
 nuint32 retryTxCount ;
 nuint32 checksumErrorCount ;
 nuint32 hardwareRxMismatchCount ;
 nuint32 reserved [50];
} LAN_COMMON_INFO;

Delphi Structure
uses calwin32

 LAN_COMMON_INFO = packed Record
 notSupportedMask : nuint32;
 totalTxPacketCount : nuint32;
 totalRxPacketCount : nuint32;
 noECBAvailableCount : nuint32;
 packetTxTooBigCount : nuint32;
 packetTxTooSmallCount : nuint32;
 packetRxOverflowCount : nuint32;
 packetRxTooBigCount : nuint32;
 packetRxTooSmallCount : nuint32;
 packetTxMiscErrorCount : nuint32;
 packetRxMiscErrorCount : nuint32;
 retryTxCount : nuint32;
 checksumErrorCount : nuint32;
 hardwareRxMismatchCount : nuint32;
 reserved : Array[0..49] Of nuint32;
 End;
Server Environment Structures 209

210 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Fields
notSupportedMask

Specifies a bit mask representing the fields in the statistics table. If the bit is 0, the counter is
supported; if it is 1, the counter is not supported.

totalTxPacketCount
Specifies the total number of packets transmitted by the LAN board.

totalRxPacketCount
Specifies the total number of packets that were received by the LAN board.

noECBAvailableCount
Specifies the number of times the LAN board failed to get a receive ECB.

packetTxTooBigCount
Specifies the number of times the send packet was too big for this LAN board to send.

packetTxTooSmallCount
Specifies the number of times the send packet was too small for this LAN board to send.

packetRxOverflowCount
Specifies the number of times the LAN board’s receive buffers overflowed.

packetRxTooBigCount
Specifies the number of times this LAN board could not receive a packet because the packet
was too big.

packetRxTooSmallCount
Specifies the number of times this LAN board could not receive a packet because the packet
was too small.

packetTxMiscErrorCount
Specifies the number of times any kind of transmit error occurred for this LAN board.

packetRxMiscErrorCount
Specifies the number of times any kind of receive error occurred for this LAN board.

retryTxCount
Specifies the number of times the LAN board retried a transmit because of failure.

checksumErrorCount
Specifies the number of times a checksum error occurred for this LAN board.

hardwareRxMismatchCount
Specifies a counter that may be incremented when a packet is received which does not pass
length consistency checks.

reserved
Reserved for future use.
r Management

novdocx (E
N

U
) 01 February 2006
LAN_CONFIG_INFO
Get network card (LAN card) configuration information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 DriverCFG_MajorVersion ;
 nuint8 DriverCFG_MinorVersion ;
 nuint8 DriverNodeAddress [6];
 nuint16 DriverModeFlags ;
 nuint16 DriverBoardNum ;
 nuint16 DriverBoardInstance ;
 nuint32 DriverMaxSize ;
 nuint32 DriverMaxRecvSize ;
 nuint32 DriverRecvSize ;
 nuint32 reserved1 [3];
 nuint16 DriverCardID ;
 nuint16 DriverMediaID ;
 nuint16 DriverTransportTime ;
 nuint8 DriverReserved [16];
 nuint8 DriverMajorVersion ;
 nuint8 DriverMinorVersion ;
 nuint16 DriverFlags ;
 nuint16 DriverSendRetries ;
 nuint32 DriverLink ;
 nuint16 DriverSharingFlags ;
 nuint16 DriverSlot ;
 nuint16 DriverIOPortsAndLengths [4];
 nuint32 DriverMemDecode0 ;
 nuint16 DriverLength0 ;
 nuint32 DriverMemDecode1 ;
 nuint16 DriverLength1 ;
 nuint8 DriverInterrupt [2];
 nuint8 DriverDMAUsage [2];
 nuint32 Reserved2 [3];
 nuint8 DriverLogicalName [18];
 nuint32 DriverLinearMem [2];
 nuint16 DriverChannelNum ;
 nuint8 DriverIOReserved [6];
} LAN_CONFIG_INFO;

Delphi Structure
uses calwin32

 LAN_CONFIG_INFO = packed Record
 DriverCFG_MajorVersion : nuint8;
Server Environment Structures 211

212 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 DriverCFG_MinorVersion : nuint8;
 DriverNodeAddress : Array[0..5] Of nuint8;
 DriverModeFlags : nuint16;
 DriverBoardNum : nuint16;
 DriverBoardInstance : nuint16;
 DriverMaxSize : nuint32;
 DriverMaxRecvSize : nuint32;
 DriverRecvSize : nuint32;
 Reserved1 : Array[0..2] Of nuint32;
 DriverCardID : nuint16;
 DriverMediaID : nuint16;
 DriverTransportTime : nuint16;
 DriverReserved : Array[0..15] Of nuint8;
 DriverMajorVersion : nuint8;
 DriverMinorVersion : nuint8;
 DriverFlags : nuint16;
 DriverSendRetries : nuint16;
 DriverLink : nuint32;
 DriverSharingFlags : nuint16;
 DriverSlot : nuint16;
 DriverIOPortsAndLengths : Array[0..3] Of nuint16;
 DriverMemDecode0 : nuint32;
 DriverLength0 : nuint16;
 DriverMemDecode1 : nuint32;
 DriverLength1 : nuint16;
 DriverInterrupt : Array[0..1] Of nuint8;
 DriverDMAUsage : Array[0..1] Of nuint8;
 Reserved2 : Array[0..2] Of nuint32;
 DriverLogicalName : Array[0..17] Of nuint8;
 DriverLinearMem : Array[0..1] Of nuint32;
 DriverChannelNum : nuint16;
 DriverIOReserved : Array[0..5] Of nuint8;
 End;

Fields
DriverCFG_MajorVersion

Specifies the Novell® defined major version number of the configuration table.

DriverCFG_MinorVersion
Specifies the Novell defined minor version of the configuration table.

DriverNodeAddress
Specifies the node address of the LAN board.

DriverModeFlags
Specifies the mode supported by the driver:

0x0001 Specifies whether the driver was real or a dummy; set to 1.
0x0002 Specifies if the driver uses DMA.
0x0004 Specifies to routers to pass router table changes when they occur, rather than

forwarding all RIP and SAP packets; set only if but 4 is set.
r Management

novdocx (E
N

U
) 01 February 2006
0x0008 Specifies if the driver supports multicasting.
0x0010 Specifies if the driver can bind with a protocol stack without providing a network

number.
0x0030 Specifies if the driver supports raw sends, no prepending any hardware header.
0x0400 Specifies if the HSM can handle fragmented RCBs.
0x2000 Specifies if the HSM can handle promiscuous RCBs.
0xC000 Specifies the driver node address, as follows:
00 Format is unspecified; the node address is assumed to be in the
native format of the physical layer.
01 Illegal combination
10 Driver node address is canonical
11 Driver node address is noncanonical

DriverBoardNum
Specifies the logical board number (1-255) assigned to the LAN board by the LSL(tm) service.

DriverBoardInstance
Specifies the number of the physical card the logical board is using.

DriverMaxSize
Specifies the maximum send or receive packet size in bytes the board can handle.

DriverMaxRecvSize
Specifies the maximum packet size in bytes that the LAN board can receive.

DriverRecvSize
Specifies the maximum packet size in bytes a protocol stack can send or receive using this
board.

reserved1
Is reserved (pass zero).

DriverCardID
Specifies the number assigned to the LAN board by IMSP.

DriverMediaID
Specifies the number identifying the link-level envelope used by the MLID.

DriverTransportTime
Specifies the time in ticks to transmit a 576-byte packet.

DriverReserved
Reserved for future use (currently set to zero).

DriverMajorVersion
Specifies the major version number of the MLID.

DriverMinorVersion
Specifies the minor version number of the MLID.
Server Environment Structures 213

214 NDK: Serve

novdocx (E
N

U
) 01 February 2006
DriverFlags
Specifies a bit map showing the architecture supported by the MLID:

The following bits are set if the board can share:

The following bits are set if:

DriverSendRetries
Contains the number of times that the MLID retries send events before aborting the send.

DriverLink
Used by the LSL.

DriverSharingFlags
Contains a bit map defining the sharing abilities of the MLID.

DriverSlot
Specifies the slot number of the board if installed in MCA or EISA machine; otherwise it is 0.

DriverIOPortsAndLengths
Each WORD is defined below:

DriverMemDecode0

0x0001 EISA

0x0002 ISA

0x0004 MCA

0x0100 Hub management

0x0600 Multicast filtering and format: 00 LAN medium defaults 01 Illegal combination

0x0020 Primary interrupt

0x0040 Secondary interrupt

0x0080 DMA channel 0

0x0100 DMA channel 1

0x0200 A command line information string to place in AUTOEXEC.NCF is available.

0x0400 To prevent default information from the AUTOEXEC.NCF, this bit overrides the
setting of bit 9.

Word 1 Primary base I/O port

Word 2 Number of I/O ports beginning with primary base I/O port

Word 3 Secondary base I/O port

Word 4 Number of I/O ports beginning with secondary base I/O port
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the absolute primary memory address that the LAN board uses.

DriverLength0
Specifies the amount of memory in paragraphs the board uses starting at
DriverMemDecode0

DriverMemDecode1
Specifies the absolute secondary memory address the board uses.

DriverLength1
Specifies the amount of memory in paragraphs the board uses, starting at
DriverMemDecode1.

DriverInterrupt
Specifies the primary interrupt in the first byte; secondary interrupt in the secondary byte. FFh
means not used.

DriverDMAUsage
Specifies the primary DMA channel used in the board in the first byte; secondary DMA
channel in the second byte. FFh means not used.

Reserved2
Specifies the logical name of the LAN driver, given at load time.

DriverLogicalName
Specifies the logical name of the LAN driver, given at load time.

DriverLinearMem
Specifies the addresses of DriverMemDecode0 and DriverMemDecode1 in the first and
second LONGS.

DriverChannelNum
Specifies the multichannel adapters. It holds the channel number of the NIC to use.

DriverIOReserved
Reserved for the LSL.
Server Environment Structures 215

216 NDK: Serve

novdocx (E
N

U
) 01 February 2006
LSL_INFO
Get LSL (Link Support Layer) information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 rxBufs ;
 nuint32 rxBufs75PerCent ;
 nuint32 rxBufsCheckedOut ;
 nuint32 rxBufMaxSize ;
 nuint32 maxPhysicalSize ;
 nuint32 lastTimeRxBufAllocated ;
 nuint32 maxNumsOfProtocols ;
 nuint32 maxNumsOfMediaTypes ;
 nuint32 totalTXPackets ;
 nuint32 getECBBfrs ;
 nuint32 getECBFails ;
 nuint32 AESEventCounts ;
 nuint32 postponedEvents ;
 nuint32 ECBCxlFails ;
 nuint32 validBfrsReused ;
 nuint32 enqueuedSendCount ;
 nuint32 totalRXPackets ;
 nuint32 unclaimedPackets ;
 nuint8 StatisticsTableMajorVersion ;
 nuint8 StatisticsTableMinorVersion ;
} LSL_INFO;

Delphi Structure
uses calwin32

 LSL_INFO = packed Record
 rxBufs : nuint32;
 rxBufs75PerCent : nuint32;
 rxBufsCheckedOut : nuint32;
 rxBufMaxSize : nuint32;
 maxPhysicalSize : nuint32;
 lastTimeRxBufAllocated : nuint32;
 maxNumsOfProtocols : nuint32;
 maxNumsOfMediaTypes : nuint32;
 totalTXPackets : nuint32;
 getECBBfrs : nuint32;
 getECBFails : nuint32;
 AESEventCounts : nuint32;
 postponedEvents : nuint32;
 ECBCxlFails : nuint32;
r Management

novdocx (E
N

U
) 01 February 2006
 validBfrsReused : nuint32;
 enqueuedSendCount : nuint32;
 totalRXPackets : nuint32;
 unclaimedPackets : nuint32;
 StatisticsTableMajorVersion : nuint8;
 StatisticsTableMinorVersion : nuint8;
 End;

Fields
rxBufs

Specifies the total number of LSL receive buffers.

rxBufs75PerCent
Specifies the number of LSL receive buffers that must be in use before a warning message is
issued that buffers are getting low.

rxBufsCheckedOut
Specifies the number of LSL buffers in use.

rxBufMaxSize
Specifies the size of the data portion of the ECBs in bytes.

maxPhysicalSize
Specifies the total size of the ECB in bytes.

lastTimeRxBufAllocated
Specifies the last time in ticks a buffer was checked out.

maxNumsOfProtocols
Specifies the number of protocol stacks supported by the OS.

maxNumsOfMediaTypes
Specifies the number of frame types supported by the OS.

totalTXPackets
Specifies the number of packet transmit requests.

getECBBfrs
Contains the number of ECBs that were requested.

getECBFails
Specifies the number of times an ECB request failed.

AESEventCounts
Specifies the total number of AES events that have been processed.

postponedEvents
Specifies the total number of AES events postponed because of critical sections.

ECBCxlFails
Server Environment Structures 217

218 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Specifies the number of AES cancel requests that failed because the event was not found on the
AES list.

validBfrsReused
Specifies the number of ECBs in the hold queue that were reused before they were removed
from the hold queue.

enqueuedSendCount
Specifies the number of send events in the queue that have occurred.

totalRXPackets
Specifies the total number of received incoming packets.

unclaimedPackets
Specifies the total number of unclaimed incoming packets.

StatisticsTableMajorVersion
Contains the major version of the LSL statistics table.

StatisticsTableMinorVersion
Contains the minor version of the LSL statistics table.
r Management

novdocx (E
N

U
) 01 February 2006
MEDIA_INFO_DEF
Returns information on the media manager object.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 label [64];
 nuint32 identificationType ;
 nuint32 identificationTimeStamp ;
} MEDIA_INFO_DEF;

Delphi Structure
uses calwin32

 MEDIA_INFO_DEF = packed Record
 mediaLabel : Array[0..63] Of nuint8;
 identificationType : nuint32;
 identificationTimeStamp : nuint32;
 End;

Fields
label

Specifies the name of the object.

identificationType
Specifies the Novell assigned number for the object.

identificationTimeStamp
Specifies the DOS timestamp of the object.
Server Environment Structures 219

220 NDK: Serve

novdocx (E
N

U
) 01 February 2006
MLID_BOARD_INFO
Contains information about each Multiple Link Interface Driver (MLID).

Service: Server Environment

Defined In: nwfse.h

Syntax
typedef struct
{
 nuint32 protocolBoardNum;
 nuint16 protocolNumber;
 nuint8 protocolID[6];
 nuint8 protocolName[16];
} MLID_BOARD_INFO;

Delphi Syntax
Type
 MLID_BOARD_INFO = packed Record
 protocolBoardNum : nuint32;
 protocolNumber : nuint16;
 protocolID: Array[0..5] of nuint8;
 protocolName : Array[0..15] of nuint8;
 End;

Fields
protocolBoardNum

Specifies the board number the protocol is using.

protocolNumber
Specifies the protocol number.

protocolID
Specifies the protocol ID.

protocolName
Specifies the protocol name as a length-preceded string.

Remarks
protocolNumber and protocolID can have the following values:

Name & Ethernet
Frame Type Number

ID (from Hi-Lo)

Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

IPX: 802.2 0 0xE0 0x00 0x00 0x00 0x00 0x00
r Management

novdocx (E
N

U
) 01 February 2006
IPX: 802.3 0x00 0x00 0x00 0x00 0x00 0x00

IPX: Ethernet II 0x37 0x81 0x00 0x00 0x00 0x00

IP 1 0x00 0x08 0x00 0x00 0x00 0x00

ARP 2 0x06 0x08 0x00 0x00 0x00 0x00

Name & Ethernet
Frame Type Number

ID (from Hi-Lo)

Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0
Server Environment Structures 221

222 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NETWARE_PRODUCT_VERSION
Returns NetWare product version information (major version, minor version and revision).

Service: Server Environment

Defined In: nwserver.h

Structure
typedef struct
{
 nuint16 majorVersion;
 nuint16 minorVersion;
 nuint16 revision;
} NETWARE_PRODUCT_VERSION;

Delphi Structure
uses calwin32

 NETWARE_PRODUCT_VERSION = Record
 majorVersion : nuint16;
 minorVersion : nuint16;
 revision : nuint16;
 End;

Fields
majorVersion

Specifies the major version number of the NetWare product.

minorVersion
Specifies the minor version number of the NetWare product.

revision
Specifies the version revision letter of the NetWare product. The revision letter can be
expressed as a number where a = 0, b = 1, and so forth.
r Management

novdocx (E
N

U
) 01 February 2006
NLM_INFO
Returns information about an NLM.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 identificationNum ;
 nuint32 flags ;
 nuint32 type ;
 nuint32 parentID ;
 nuint32 majorVersion ;
 nuint32 minorVersion ;
 nuint32 revision ;
 nuint32 year ;
 nuint32 month ;
 nuint32 day ;
 nuint32 allocAvailableBytes ;
 nuint32 allocFreeCount ;
 nuint32 lastGarbageCollection ;
 nuint32 messageLanguage ;
 nuint32 numOfReferencedPublics ;
} NLM_INFO;

Delphi Structure
uses calwin32

 NLM_INFO = packed Record
 identificationNum : nuint32;
 flags : nuint32;
 NLMtype : nuint32;
 parentID : nuint32;
 majorVersion : nuint32;
 minorVersion : nuint32;
 revision : nuint32;
 year : nuint32;
 month : nuint32;
 day : nuint32;
 allocAvailableBytes : nuint32;
 allocFreeCount : nuint32;
 lastGarbageCollection : nuint32;
 messageLanguage : nuint32;
 numOfReferencedPublics : nuint32;
 End;
Server Environment Structures 223

224 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Fields
identificationNum

Specifies the number assigned to the NLM when it was loaded.

flags
Specifies a bit mask. Bits are defined as follows:
0x0001 = REENTRANT
0x0002 = MULTIPLE
0x0004 = SYNCHRONIZE
0x0008 = PSEUDOPREEMPTION

type
Specifies the type:
0 = NLM_GENERIC
1 = LAN_DRIVER
2 = DSK_DRIVER
3 = NAM_SPACE
4 = NLM_UTILITY
5 = MIRRORED_SERVER_LINK
6 = NLM_OS
7 = NLM_PAGED_HIGH_OS
8 = HOST_ADAPTER_MODULE
9 = CUSTOM_DEVICE_MODULE
10 = NLM_FILE_SYSTEM
11 = NLM_REAL_MODE
12 = GHOST_TYPE
13 = SMP_NORMAL_TYPE
14 = NIOS_TYPE_NLM
15 = CIOS_CAD_TYPE
16 = CIOS_CLS_TYPE
20 through 32 = NICI (Novell International Cryptographic
Infrastructure)

parentID
Specifies the number of the NLM that caused this NLM to be loaded.

majorVersion
Specifies the major version of the NLM.

minorVersion
Specifies the minor version of the NLM.

revision
Specifies the revision letter of the NLM.

year
Specifies the timestamp of the NLM.

month
Specifies the timestamp of the NLM.
r Management

novdocx (E
N

U
) 01 February 2006
day
Specifies the timestamp of the NLM.

allocAvailableBytes
Specifies the bytes available for allocation by the NLM.

allocFreeCount
Specifies the number of bytes freed that can be reclaimed.

lastGarbageCollection
Specifies the last time garbage collection was done for the NLM.

messageLanguage
Specifies the number representing the language the NLM uses.

numOfReferencedPublics
Specifies the number of external symbols referenced by the NLM.
Server Environment Structures 225

226 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_ACCT_INFO
Returns Server Environment accounting information. Used by NWGetServerConnInfo (page 143).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 holdTime;
 nuint32 holdAmt;
 nuint32 chargeAmt;
 nuint32 heldConnectTimeInMinutes;
 nuint32 heldRequests;
 nuint8 heldBytesRead[6];
 nuint8 heldBytesWritten[6];
} NWFSE_ACCT_INFO;

Delphi Syntax
uses calwin32

 NWFSE_ACCT_INFO = packed RECORD
 holdTime : nuint32;
 holdAmt : nuint32;
 chargeAmt : nuint32;
 heldConnectTimeInMinutes : nuint32;
 heldRequests : nuint32;
 heldBytesRead : Array[1..6] of nuint8;
 heldBytesWritten : Array[1..6] of nuint8;
 End;

Fields
holdTime

Specifies the amount of time that the specified amount will be held before being charged to the
object's account balance.

holdAmt
Specifies the amount to be held against an object's account balance.

chargeAmt
Specifies the amount to be charged to an object's account balance.

heldConnectTimeInMinutes
Specifies the connect time (in minutes) that is held before being charged to an object's account.

heldRequests
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the number of requests held for accounting purposes.

heldBytesRead
Specifies the number of bytes the user read that have a hold on them for accounting purposes.

heldBytesWritten
Specifies the number of bytes the user wrote that have a hold on them for accounting purposes.

Remarks
The hold fields are designed to hold information as the server is reserving and calculating how much
of the object's account balance will be charged. Once the charge is made against the object's account,
the hold fields are cleared.
Server Environment Structures 227

228 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_ACTIVE_CONN_LIST
Returns the Active Connection List by type. Used by NWGetActiveConnListByType (page 45).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint8 activeConnBitList [512];
} NWFSE_ACTIVE_CONN_LIST;

Delphi Structure
uses calwin32

 NWFSE_ACTIVE_CONN_LIST = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 activeConnBitList : Array[0..511] Of nuint8;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO structure containing the time since the
server was brought up. This time is returned in ticks (approximately 1/18 of a second). When
this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved for future use.

activeConnBitList
Indicates active connections. An array of 512 bytes is returned where a bit is set for each active
connection. The connection number is determined by its position in the array.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_ACTIVE_LAN_BOARD_LIST
Returns a list of active LAN boards in the server. Used by NWGetActiveLANBoardList (page 47).

Service: Server Environment

Defined In: nwfserver.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo:
 nuint16 reserved ;
 nuint32 MaxNumOfLANs ;
 nuint32 LANLoadedCount ;
 nuint32 boardNums [FSE_MAX_NUM_OF_LANS];
} NWFSE_ACTIVE_LAN_BOARD_LIST;

Delphi Structure
uses calwin32

 NWFSE_ACTIVE_LAN_BOARD_LIST = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 MaxNumOfLANs : nuint32;
 LANLoadedCount : nuint32;
 boardNums : Array[0..FSE_MAX_NUM_OF_LANS-1] Of nuint32;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO structure containing the time since the
server was brought up. This time is returned in ticks (approximately 1/18 of a second). When
this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved for future use.

MaxNumOfLANs
Specifies the maximum number of LAN boards that can be used on the server.

LANLoadedCount
contains the number of LAN boards returned by this call to SSGetActiveLANBoardList
(page 482). To retrieve the rest of the board numbers, call this function again, using the total
number of items returned by all previous calls to SSGetActiveLANBoardList plus 1 as
startNumber.

boardNums
Server Environment Structures 229

230 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Contains the first LAN board number. The first number is followed by board numbers for each
LAN board.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_ACTIVE_STACKS
Returns information about active protocol stacks. Used by NWGetActiveProtocolStacks (page 49).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo:
 nuint16 reserved ;
 nuint32 maxNumOfStacks ;
 nuint32 stackCount ;
 nuint32 nextStartNum ;
 STACK_INFO stackInfo [FSE_MAX_NUM_OF_STACKINFO];
} NWFSE_ACTIVE_STACKS;

Delphi Structure
uses calwin32

 NWFSE_ACTIVE_STACKS = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 maxNumOfStacks : nuint32;
 stackCount : nuint32;
 nextStartNum : nuint32;
 stackInfo : Array[0.. FSE_MAX_NUM_OF_STACKINFO -1] Of STACK_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO structure containing the time since the
server was brought up. This time is returned in ticks (approximately 1/18 of a second). When
this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved for future use.

maxNumOfStacks
Specifies the total number of protocol stacks.

stackCount
Specifies the number of STACK_INFO (page 311) structures in the buffer.

nextStartNum
Server Environment Structures 231

232 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Is the start number to use on subsequent calls.

stackInfo
Contains the first ProtocolStackInfo structure in the buffer. The fields of this structure are
defined as follows:

stackNumber field Contains the protocol number.

stackName field The contains the protocol name.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_AUTH_INFO
Returns Server Environment authentication information. Used by NWGetServerConnInfo
(page 143).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 loginStatus;
 nuint32 loginPrivileges;
} NWFSE_AUTH_INFO;

Delphi Syntax
Type
 NWFSE_AUTH_INFO = packed RECORD
 loginStatus : nuint32;
 loginPrivileges : nuint32;
 End;

Fields
loginStatus

Specifies the login status:

loginPrivileges
Specifies the access privileges the logged in user possesses:

0x1 Supervisor privileges
0x2 Console operator privileges
0x4 Auditor privileges

Number Constant

0x00000001 LOGGED_IN

0x00000002 BEING_ABORTED

0x00000010 MAC_STATION

0x00000020 AUTHENTICATED_TEMPORARY

0x00000100 LOGOUT_IN_PROGRESS

0x00000200 INTERNAL_LOGIN

0x00000400 BINDERY_CONNECTION
Server Environment Structures 233

234 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_CACHE_INFO
Returns Server Environment cache information. Used by NWGetCacheInfo (page 51).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved ;
 CACHE_COUNTERS cacheCounters ;
 CACHE_MEM_COUNTERS cacheMemCounters ;
 CACHE_TREND_COUNTERS cacheTrendCounters ;
 CACHE_INFO cacheInformation ;
} NWFSE_CACHE_INFO;

Delphi Structure
uses calwin32

 NWFSE_CACHE_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 cacheCounters : CACHE_COUNTERS;
 cacheMemCounters : CACHE_MEM_COUNTERS;
 cacheTrendCounters : CACHE_TREND_COUNTERS;
 cacheInformation : CACHE_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Points to SERVER_AND_VCONSOLE_INFO.

reserved
Is reserved for future use.

cacheCounters
Points to CACHE_COUNTERS.

cacheMemCounters
Points to CACHE_MEM_COUNTERS.

cacheTrendCounters
Points to CACHE_TREND_COUNTERS.

cacheInformation
r Management

novdocx (E
N

U
) 01 February 2006
Points to CACHE_INFO.
Server Environment Structures 235

236 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_CPU_INFO
Returns Server Environment CPU information. Used by NWGetCPUInfo (page 53).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 numOfCPUs ;
 CPU_INFO CPUInfo ;
} NWFSE_CPU_INFO;

Delphi Structure
uses calwin32

NWFSE_CPU_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numOfCPUs : nuint32;
 CPUInfo : CPU_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Points to SERVER_AND_VCONSOLE_INFO.

reserved
Is reserved (pass 0).

numOfCPUs
Specifies the number of CPUs in the server.

CPUInfo
Points to the CPU_INFO structure.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_DIR_CACHE_INFO
Returns Directory cache information. Used by NWGetDirCacheInfo (page 55).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 DIR_CACHE_INFO dirCacheInfo ;
} NWFSE_DIR_CACHE_INFO;

Delphi Structure
uses calwin32

 NWFSE_DIR_CACHE_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 dirCacheInfo : DIR_CACHE_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/18 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved for future use.

dirCacheInfo
Contains a DIR_CACHE_INFO (page 184) structure.
Server Environment Structures 237

238 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_FILE_SERVER_INFO
Returns file server information. Used by NWGetFileServerInfo (page 65).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 NCPStationsInUseCount ;
 nuint32 NCPPeakStationsInUseCount ;
 nuint32 numOfNCPRequests ;
 nuint32 serverUtilization ;
 FSE_SERVER_INFO ServerInfo ;
 FILE_SERVER_COUNTERS fileServerCounters ;
} NWFSE_FILE_SERVER_INFO;

Delphi Structure
uses calwin32

NWFSE_FILE_SERVER_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 NCPStationsInUseCount : nuint32;
 NCPPeakStationsInUseCount : nuint32;
 numOfNCPRequests : nuint32;
 serverUtilization : nuint32;
 ServerInfo : FSE_SERVER_INFO;
 fileServerCounters : FILE_SERVER_COUNTERS;
 End;

Fields
serverTimeAndVConsoleInfo

Contains console version information and the time elapsed since the server was brought up. For
more information, see SERVER_AND_VCONSOLE_INFO (page 306).

reserved
Reserved for future use.

NCPStationsInUseCount
Specifies the number of workstations connected to the server.

NCPPeakStationsInUseCount
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the maximum number of workstations connected at one time since the server was
brought up.

numOfNCPRequests
Specifies the number of NCP requests received by the server since it was brought up.

serverUtilization
Specifies the current percentage of CPU utilization for the server.

ServerInfo
Specifies the NetWare server statistics.

fileServerCounters
Specifies the NetWare server statistics.
Server Environment Structures 239

240 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_FILE_SYSTEM_INFO
Returns NetWare File Systems information. Used by NWGetNetWareFileSystemsInfo (page 112).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 FSE_FILE_SYSTEM_INFO fileSystemInfo ;
} NWFSE_FILE_SYSTEM_INFO;

Delphi Structure
uses calwin32

 NWFSE_FILE_SYSTEM_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 fileSystemInfo : FSE_FILE_SYSTEM_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Contains the time elapsed since the server was brought up. This time is returned in ticks
(approximately 1/18 of a second). When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved for future use.

fileSystemInfo
Pointer to FSE_FILE_SYSTEM_INFO (page 196).
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_GARBAGE_COLLECTION_INFO
Returns information about failed requests. Used by NWGetGarbageCollectionInfo (page 79).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 failedAllocRequestCount ;
 nuint32 numOfAllocs ;
 nuint32 noMoreMemAvailableCount ;
 nuint32 numOfGarbageCollections ;
 nuint32 garbageFoundSomeMem ;
 nuint32 garbageNumOfChecks ;
} NWFSE_GARBAGE_COLLECTION_INFO;

Delphi Structure
uses calwin32

 NWFSE_GARBAGE_COLLECTION_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 failedAllocRequestCount : nuint32;
 numOfAllocs : nuint32;
 noMoreMemAvailableCount : nuint32;
 numOfGarbageCollections : nuint32;
 garbageFoundSomeMem : nuint32;
 garbageNumOfChecks : nuint32;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO structure containing the time since the
server was brought up.

reserved
Is reserved (pass zero).

failedAllocRequestCount
Specifies the number of memory allocations that failed since the server was brought up.

numOfAllocs
Specifies the number of memory allocations made since the server was brought up.
Server Environment Structures 241

242 NDK: Serve

novdocx (E
N

U
) 01 February 2006
noMoreMemAvailableCount
Specifies the number of times that allocation failed because there was no memory available
since the server was brought up.

numOfGarbageCollections
Specifies the number of times garbage collection was invoked since the server was brought up.

garbageFoundSomeMem
Specifies the number of times garbage collection reclaimed memory since the server was
brought up.

garbageNumOfChecks
Specifies the number of times garbage collection checked for memory since the server was
brought up.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_GENERAL_ROUTER_SAP_INFO
Returns router and SAP information. Used by NWGetGeneralRouterAndSAPInfo (page 81).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo
 nuint16 reserved ;
 nuint32 internalRIPSocket ;
 nuint32 internalRouterDownFlag ;
 nuint32 trackOnFlag ;
 nuint32 externalRouterActiveFlag ;
 nuint32 internalSAPSocketNumber ;
 nuint32 replyToNearestServerFlag ;
} NWFSE_GENERAL_ROUTER_SAP_INFO;

Delphi Structure
uses calwin32

 NWFSE_GENERAL_ROUTER_SAP_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 internalRIPSocket : nuint32;
 internalRouterDownFlag : nuint32;
 trackOnFlag : nuint32;
 externalRouterActiveFlag : nuint32;
 internalSAPSocketNumber : nuint32;
 replyToNearestServerFlag : nuint32;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved for future use.

internalRIPSocket
Specifies the router socket number.

internalRouterDownFlag
Server Environment Structures 243

244 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Specifies whether the internal router is up or down.

trackOnFlag
Specifies whether router tracking is active (the console operator issued the TRACK ON
console command).

externalRouterActiveFlag
Specifies whether an external router is active.

internalSAPSocketNumber
Specifies the number of the socket that receives SAP packets.

replyToNearestServerFlag
Specifies whether the server will respond to GetNearestServer.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_IPXSPX_INFO
Returns information about IPX/SPX use on a server. Used by NWGetIPXSPXInfo (page 83).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 IPX_INFO IPXInfo ;
 SPX_INFO SPXInfo ;
} NWFSE_IPXSPX_INFO;

Delphi Structure
uses calwin32

 NWFSE_IPXSPX_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 IPXInfo : IPX_INFO;
 SPXInfo : SPX_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved for future use.

IPXInfo
Contains a IPX_INFO (page 206) structure. This structure is defined in NWSERVST.H.

SPXInfo
Contains a SPX_INFO (page 308)structure. This structure is defined in NWSERVST.H.
Server Environment Structures 245

246 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_KNOWN_NETWORKS_INFO
Returns information about known networks. Used by NWGetKnownNetworksInfo (page 85).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved ;
 nuint32 numberOfEntries ;
 KNOWN_NET_INFO knownNetInfo [51];
} NWFSE_KNOWN_NETWORKS_INFO;

Delphi Structure
uses calwin32

 NWFSE_KNOWN_NETWORKS_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numberOfEntries : nuint32;
 knownNetInfo : Array[0..50] Of KNOWN_NET_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved for future use.

numberOfEntries
Contains the number of entries for which information is returned.

knownNetInfo
Specifies the first KNOWN_NET_INFO (page 208) structure.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_KNOWN_SERVER_INFO
Returns server information. Used by NWGetKnownServersInfo (page 87).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleIInfo;
 nuint16 reserved ;
 nuint32 numberOfEntries ;
 nuint8 data [512];
} NWFSE_KNOWN_SERVER_INFO;

Delphi Structure
uses calwin32

 NWFSE_KNOWN_SERVER_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numberOfEntries : nuint32;
 data : Array[0..511] Of nuint8;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass 0).

numberOfEntries
Specifies the number of entries.

data
Specifies an array containing the following fields: SERVER_INFO=RECORD network
Address: Array[0..3] of BYTE; nodeAddress: Array[0..5] of BYTE; socketAddress: nuint16;
HopsToServer: nuint16; ServerName: Array[0..47] of char8; (#0 terminated) END;
The next field starts immediately after the trailing #0 of the last ServerName field.
Server Environment Structures 247

248 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_LAN_COMMON_COUNTERS_INFO
Returns information on LAN common counters. Used by NWGetLANCommonCountersInfo
(page 89).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint8 statisticsMajorVersion ;
 nuint8 statisticsMinorVersion ;
 nuint32 numberOfGenericCounters ;
 nuint32 numberOfCounterBlocks ;
 nuint32 customVariableCount ;
 nuint32 NextCounterBlock ;
 LAN_COMMON_INFO LANCommonInfo ;
} NWFSE_LAN_COMMON_COUNTERS_INFO;

Delphi Structure
uses calwin32

 NWFSE_LAN_COMMON_COUNTERS_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 statisticsMajorVersion : nuint8;
 statisticsMinorVersion : nuint8;
 numberOfGenericCounters : nuint32;
 numberOfCounterBlocks : nuint32;
 customVariableCount : nuint32;
 NextCounterBlock : nuint32;
 LANCommonInfo : LAN_COMMON_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

statisticsMajorVersion
Specifies the major version number of the statistics table.

statisticsMinorVersion
Specifies the minor version number of the statistics table.

numberOfGenericCounters
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the total number of LAN common counters.

numberOfCounterBlocks
Specifies the number of blocks used by LAN common counters by the LAN board.

customVariableCount
Specifies the number of custom counters for this LAN board.

NextCounterBlock
Specifies the value to be passed in block numbers to the NWGetLANCommonCountersInfo
function.

LANCommonInfo
Points to the LAN_COMMON_INFO structure containing information about the LAN board.

Remarks
When 0 is returned in the NextCounterBlock field, all common counters have been returned.
Server Environment Structures 249

250 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_LAN_CONFIG_INFO
Returns LAN configuration information. Used by NWGetLANConfigInfo (page 91).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 LAN_CONFIG_INFO LANConfigInfo ;
} NWFSE_LAN_CONFIG_INFO;

Delphi Structure
uses calwin32

 NWFSE_LAN_CONFIG_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 LANConfigInfo : LAN_CONFIG_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass 0).

LANConfigInfo
Contains LAN configuration information.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_LAN_CUSTOM_INFO
Returns information on LAN custom counters. Used by NWGetLANCustomCountersInfo
(page 93).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 numCustomVar ;
 nuint8 customInfo [512];
} NWFSE_LAN_CUSTOM_INFO;

Delphi Structure
uses calwin32

 NWFSE_LAN_CUSTOM_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numCustomVar : nuint32;
 customInfo : Array[0..511] Of nuint8;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass 0).

numCustomVar
Specifies the value of the custom counter.

customInfo
Specifies the description of the custom counter.
Server Environment Structures 251

252 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_LOADED_MEDIA_NUM_LIST
Returns a list of loaded media numbers. Used by NWGetLoadedMediaNumList (page 95).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 maxMediaTypes ;
 nuint32 mediaListCount ;
 nuint32 mediaList [FSE_MEDIA_LIST_MAX];
} NWFSE_LOADED_MEDIA_NUM_LIST;

Delphi Structure
uses calwin32

 NWFSE_LOADED_MEDIA_NUM_LIST = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 maxMediaTypes : nuint32;
 mediaListCount : nuint32;
 mediaList : Array[0.. FSE_MEDIA_LIST_MAX -1] Of nuint32;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass 0).

maxMediaTypes
Specifies the maximum number of media allowed.

mediaListCount
Specifies the number of valid IDs returned in the mediaList parameter.

mediaList
Specifies the ID numbers of the returned media.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_LOCK_INFO
Returns Server Environment locking information. Used by NWGetServerConnInfo (page 143).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 logicalLockThreshold;
 nuint8 recordLockThreshold;
 nuint16 fileLockCount;
 nuint16 recordLockCount;
} NWFSE_LOCK_INFO;

Delphi Syntax
uses calwin32

 NWFSE_LOCK_INFO = packed RECORD
 logicalLockThreshold : nuint8;
 recordLockThreshold : nuint8;
 fileLockCount : nuint16;
 recordLockCount : nuint16;
 End;

Fields
logicalLockThreshold

Specifies the maximum number of logical locks a user can have.

recordLockThreshold
Specifies the maximum number of record locks the user can have.

fileLockCount
Specifies the number of files the user locked.

recordLockCount
Specifies the number of records the user locked.
Server Environment Structures 253

254 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_LOGIN_NAME
Returns the login name of the object. Used by NWGetServerConnInfo (page 143).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 loginObjectType;
 nuint8 loginNameLen;
 pnuint8 loginName;
} NWFSE_LOGIN_NAME;

Delphi Syntax
uses calwin32

 NWFSE_LOGIN_NAME = packed RECORD
 loginObjectType : nuint32;
 loginNameLen : nuint8;
 loginName : pnuint8;
 End;

Fields
loginObjectType

Specifies the type of the logged in object (user, group, server, etc.).

loginNameLen
Specifies the length of the login name string.

loginName
Points to the string containing the name of the logged in object.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_LOGIN_TIME
Returns the login time of the object. Used by NWGetServerConnInfo (page 143).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 loginTime[7];
 nuint32 loginExpirationTime;
} NWFSE_LOGIN_TIME;

Delphi Syntax
uses calwin32

 NWFSE_LOGIN_TIME = packed RECORD
 loginTime : Array[1..7] of nuint8;
 loginExpirationTime : nuint32;
 End;

Fields
loginTime

Specifies the time the user logged in.

loginExpirationTime
Specifies the expiration time of the login.
Server Environment Structures 255

256 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_LSL_INFO
Returns LSL information. Used by NWGetLSLInfo (page 97).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 LSL_INFO LSLInfo ;
} NWFSE_LSL_INFO;

Delphi Structure
uses calwin32

 NWFSE_LSL_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 LSLInfo : LSL_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass 0).

LSLInfo
Points to the LSL_INFO structure containing the LSL information.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_LSL_LOGICAL_BOARD_STATS
Returns statistics concerning LSL boards. Used by NWGetLSLLogicalBoardStats (page 99).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved0 ;
 nuint32 LogTtlTxPackets ;
 nuint32 LogTtlRxPackets ;
 nuint32 LogUnclaimedPackets ;
 nuint32 reserved1 ;
} NWFSE_LSL_LOGICAL_BOARD_STATS;

Delphi Structure
uses calwin32

 NWFSE_LSL_LOGICAL_BOARD_STATS = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved0 : nuint16;
 padding : nuint16;
 LogTtlTxPackets : nuint32;
 LogTtlRxPackets : nuint32;
 LogUnclaimedPackets : nuint32;
 reserved1 : nuint32;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved0
Is reserved (pass zero).

LogTtlTxPackets
Specifies the total number of packets transmitted.

LogTtlRxPackets
Specifies the total number of packets received.

LogUnclaimedPackets
Specifies the total number of unclaimed packets.
Server Environment Structures 257

258 NDK: Serve

novdocx (E
N

U
) 01 February 2006
reserved1
Is reserved (pass zero).
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_MEDIA_MGR_OBJ_INFO
Returns information about media manager objects. Used by NWGetMediaMgrObjInfo (page 103).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 FSE_MM_OBJ_INFO fseMMObjInfo ;
} NWFSE_MEDIA_MGR_OBJ_INFO;

Delphi Structure
uses calwin32

 NWFSE_MEDIA_MGR_OBJ_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 fseMMObjInfo : FSE_MM_OBJ_INFO;
 End;

Fields
 serverTimeAndVconsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

fseMMObjInfo
Pointer to FSE_MM_OBJ_INFO (page 198).
Server Environment Structures 259

260 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_MEDIA_MGR_OBJ_LIST
Returns the media manager object list and the media manager object children’s list. Used by
NWGetMediaMgrObjList (page 105).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 nextStartObjNum ;
 nuint32 objCount ;
 nuint32 objs [FSE_MAX_OBJECTS];
} NWFSE_MEDIA_MGR_OBJ_LIST;

Delphi Structure
uses calwin32

 NWFSE_MEDIA_MGR_OBJ_LIST = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 nextStartObjNum : nuint32;
 objCount : nuint32;
 objs : Array[0.. FSE_MAX_OBJECTS -1] Of nuint32;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

nextStartObjNum
Contains the number to be passed as the startNumber parameter on the next call. When this
field is -1, all information has been processed.

objCount
Specifies the number of object IDs returned.

objs
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the list of object IDs.
Server Environment Structures 261

262 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_MEDIA_NAME_LIST
Returns the media name by using a media number. Used by NWGetMediaNameByMediaNum
(page 108).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
} NWFSE_MEDIA_NAME_LIST;

Delphi Structure
uses calwin32

 NWFSE_MEDIA_NAME_LIST = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_MLID_BOARD_INFO
Contains a list of each Multiple Link Interface Driver (MLID) on a specified server. Used by
NWGetMLIDBoardInfo (page 110).

Service: Server Environment

Defined In: nwfse.h

Syntax
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint8 reserved;
 nuint8 numberProtocols;
 MLID_BOARD_INFO MLIDBoardInfo[FSE_MAX_NUM_BOARD_INFO];
} NWFSE_MLID_BOARD_INFO;

Delphi Syntax
CONST FSE_MAX_NUM_BOARD_INFO = 18;

uses calwin32

 NWFSE_MLID_BOARD_INFO = packed Record
 serverTimeAndVConsoleInfo :SERVER_AND_VCONSOLE_INFO;
 reserved : nuint8;
 numberProtocols :nuint8;
 LIDBoardInfo : Array[0..(FSE_MAX_NUM_BOARD_INFO-1)] of
 MLID_BOARD_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

numberProtocols
Specifies the number of protocols bound to the specified board.

MLIDBoardInfo
Points to MLID_BOARD_INFO, which contains information about each MLID.
Server Environment Structures 263

264 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_NETWORK_ADDRESS
Returns the network address information. Used by NWGetServerConnInfo (page 143).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 addressType;
 nuint32 addressSize;
 pnuint8 address;
} NWFSE_NETWORK_ADDRESS;

Delphi Syntax
Type
 NWFSE_NETWORK_ADDRESS = packed Record
 addressType : nuint32;
 addressSize : nuint32;
 address : pnuint8;
 End;

Fields
addressType

Specifies the type of the network transport address:

1 IPX
2 IP
8 UDP
9 TCP

addressSize
Specifies the size (in bytes) of the buffer allocated for the address and the actual size of the
returned address.

address
Specifies the physical address in binary form.

Remarks
If the address is an IP address, four bytes of the address are in printable order.

TIP: The declaration of address types 1 and 2 is different from the standard declaration (found at
Network Address Types).
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_NETWORK_ROUTER_INFO
Returns information about a specified router on the network. Used by NWGetNetworkRouterInfo
(page 116).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 NetIDNumber ;
 nuint16 HopsToNet ;
 nuint16 NetStatus ;
 nuint16 TimeToNet ;
} NWFSE_NETWORK_ROUTER_INFO;

Delphi Structure
uses calwin32

 NWFSE_NETWORK_ROUTER_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 NetIDNumber : nuint32;
 HopsToNet : nuint16;
 NetStatus : nuint16;
 TimeToNet : nuint16;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass zero).

NetIDNumber
Specifies the network ID number used by the server.

HopsToNet
Specifies the number of routers to cross to get to the network.

NetStatus
Server Environment Structures 265

266 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Specifies the status of the network.

TimeToNet
Specifies the number of clock ticks to the network (roundtrip).

Remarks
The NetStatus field can have the following values:

0x01 LOCALBIT
0x02 NETSTARTBIT
0x04 NETRELIABLEBIT
0x10 NETWANBIT
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_NETWORK_ROUTERS_INFO
Returns information about the routers on a network. Used by NWGetNetworkRoutersInfo
(page 118).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 NumberOfEntries ;
 ROUTERS_INFO routersInfo [36];
} NWFSE_NETWORK_ROUTERS_INFO;

Delphi Structure
uses calwin32

 NWFSE_NETWORK_ROUTERS_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 NumberOfEntries : nuint32;
 routersInfo : Array[0..35] Of ROUTERS_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

NumberOfEntries
Contains the number of ROUTERS_INFO (page 305) structures in the buffer.

routersInfo
Contains the number of ROUTERS_INFO (page 305) structures in the buffer.
Server Environment Structures 267

268 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_NLM_INFO
Returns information about an NLM running on a server for the current connection. Used by
NWGetNLMInfo (page 122).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 NLM_INFO NLMInfo ;
} NWFSE_NLM_INFO;

Delphi Structure
uses calwin32

 NWFSE_NLM_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 NLMInfo : NLM_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

NLMInfo
Contains an NLM_INFO (page 223) structure.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_NLM_LOADED_LIST
Returns a list of NLMs running on a server. Used by NWGetNLMLoadedList (page 124).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 numberNLMsLoaded ;
 nuint32 NLMsInList ;
 nuint32 NLMNums [FSE_NLM_NUMS_RETURNED_MAX];
} NWFSE_NLM_LOADED_LIST;

Delphi Structure
uses calwin32

NWFSE_NLM_LOADED_LIST = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numberNLMsLoaded : nuint32;
 NLMsInList : nuint32;
 NLMNums : Array[0..FSE_NLM_NUMS_RETURNED_MAX-1] Of nuint32;
End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

numberNLMsLoaded
Specifies the total number of NLMs loaded on the server including hidden NLMs. No
information will be returned about hidden NLMs.

NLMsInList
Specifies the number of valid NLM IDs returned in NLMNums. A valid NLM is an NLM whose
information was placed in the buffer and does not include hidden NLMs.

NLMNums
Server Environment Structures 269

270 NDK: Serve

novdocx (E
N

U
) 01 February 2006
A list containing the numbers assigned to NLMs loaded on the server.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_NLMS_RESOURCE_TAG_LIST
Returns the NLM’s resource tag list. Used by NWGetNLMsResourceTagList (page 126).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 totalNumOfResourceTags ;
 nuint32 packetResourceTags ;
 nuint8 resourceTagBuf [512];
} NWFSE_NLMS_RESOURCE_TAG_LIST;

Delphi Structure
uses calwin32

 NWFSE_NLMS_RESOURCE_TAG_LIST = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 totalNumOfResourceTags : nuint32;
 packetResourceTags : nuint32;
 resourceTagBuf : Array[0..511] Of nuint8;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

totalNumOfResourceTags
Specifies the total number of resource tags the NLM is using.

packetResourceTags
Specifies the number of resource tags the structure contains.

resourceTagBuf
Contains the resourceTagBuf (page 304) structure.
Server Environment Structures 271

272 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_OS_VERSION_INFO
Returns operating system version information. Used by NWGetOSVersionInfo (page 128).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint8 OSMajorVersion ;
 nuint8 OSMinorVersion ;
 nuint8 OSRevisionNum ;
 nuint8 accountingVersion ;
 nuint8 VAPVersion ;
 nuint8 queueingVersion ;
 nuint8 securityRestrictionsLevel ;
 nuint8 bridgingSupport ;
 nuint32 maxNumOfVolumes ;
 nuint32 numOfConnSlots ;
 nuint32 maxLoggedInConns ;
 nuint32 maxNumOfNameSpaces ;
 nuint32 maxNumOfLans ;
 nuint32 maxNumOfMediaTypes ;
 nuint32 maxNumOfProtocols ;
 nuint32 maxMaxSubdirTreeDepth ;
 nuint32 maxNumOfDataStreams ;
 nuint32 maxNumOfSpoolPrinters ;
 nuint32 serialNum ;
 nuint16 applicationNum ;
} NWFSE_OS_VERSION_INFO;

Delphi Structure
uses calwin32

 NWFSE_OS_VERSION_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 OSMajorVersion : nuint8;
 OSMinorVersion : nuint8;
 OSRevisionNum : nuint8;
 accountingVersion : nuint8;
 VAPVersion : nuint8;
 queueingVersion : nuint8;
 securityRestrictionsLevel : nuint8;
 bridgingSupport : nuint8;
 maxNumOfVolumes : nuint32;
r Management

novdocx (E
N

U
) 01 February 2006
 numOfConnSlots : nuint32;
 maxLoggedInConns : nuint32;
 maxNumOfNameSpaces : nuint32;
 maxNumOfLans : nuint32;
 maxNumOfMediaTypes : nuint32;
 maxNumOfProtocols : nuint32;
 maxMaxSubdirTreeDepth : nuint32;
 maxNumOfDataStreams : nuint32;
 maxNumOfSpoolPrinters : nuint32;
 serialNum : nuint32;
 applicationNum : nuint16;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/18 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Reserved.

OSMajorVersion
Specifies the major version number of the OS.

OSMinorVersion
Specifies the minor version number of the OS.

OSRevisionNum
Specifies the version revision letter of the OS.

accountingVersion
Specifies the version of the accounting subsystem.

VAPVersion
Is not used.

queueingVersion
Specifies the queueing version number.

securityRestrictionsLevel
Specifies the security restriction version number.

bridgingSupport
Specifies the internet bridge support version number.

maxNumOfVolumes
Contains the maximum number of volumes that can be simultaneously mounted on the server.

numOfConnSlots
Server Environment Structures 273

274 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Specifies the maximum number of connections that can be used simultaneously on the server.

maxLoggedInConns
Contains the maximum number of connections that can be used simultaneously on the server.

maxNumOfNameSpaces
Specifies the maximum number of name spaces that can be simultaneously loaded on the
server.

maxNumOfLans
Specifies the maximum number of LAN boards that can be used on the server.

maxNumOfMediaTypes
Specifies the maximum number of different media types allowed on the server.

maxNumOfProtocols
Specifies the maximum number of protocol stacks that can be used on the server.

maxMaxSubdirTreeDepth
Specifies the maximum depth of directories that can be used on the server.

maxNumOfDataStreams
Specifies the maximum number of data streams that can be used on the server.

maxNumOfSpoolPrinters
Specifies the maximum number of spool printers (default queue assignments) that can be used
on the server.

serialNum
Specifies the serial number of the server.

applicationNum
Is included for backward compatibility.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_PACKET_BURST_INFO
Returns packet burst information. Used by NWGetPacketBurstInfo (page 130).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 PACKET_BURST_INFO packetBurstInfo ;
} NWFSE_PACKET_BURST_INFO;

Delphi Structure
uses calwin32

 NWFSE_PACKET_BURST_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 packetBurstInfo : PACKET_BURST_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass zero).

packetBurstInfo
Specifies the PACKET_BURST_INFO structure containing information about packet bursts.
Server Environment Structures 275

276 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_PRINT_INFO
Returns Server Environment printing information. Used by NWGetServerConnInfo (page 143).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 printFlags;
 nuint8 tabSize
 nuint8 numberCopies;
 nuint8 printToFileFlag;
 nuint8 bannerFileName[14];
 nuint8 targetServerID;
 nuint8 formType;
} NWFSE_PRINT_INFO;

Delphi Syntax
uses calwin32

 NWFSE_PRINT_INFO = packed RECORD
 printFlags : nuint8;
 tabSize : nuint8;
 numberCopies : nuint8;
 printToFileFlag : nuint8;
 bannerFileName : Array[1..14] of nuint8;
 targetServerID : nuint8;
 formType : nuint8;
 End;

Fields
printFlags

Specifies the print flags:

Value Constant and Description

0x08 SFormSuppressBit specifies the print service suppresses automatic form feed
after the print job is printed.

0x10 SCreateBit

0x20 SDeleteBit

0x40 STabBit

0x80 sBannerPageBit specifies the print service precedes the print job with a banner
page.
r Management

novdocx (E
N

U
) 01 February 2006
tabSize
Specifies the tab size which is a value between 1 and 18 inclusive (default setting is 0x08).

numberCopies
Specifies the number of copies (0 to 255) of the captured file that is printed (default setting is
0x0001). If 0x0000, nothing prints.

printToFileFlag
Specifies that the data is sent to a file rather than a printer.

bannerFileName
Specifies the name of the banner that is printed when a print job is submitted.

targetServerID
Specifies the server ID of the queue server servicing the job. If this field is set to 0xFFFFFFFF,
any queue server can service the job. If the specified queue server is not attached to the queue,
QMS removes the job from the queue.

formType
Specifies the type of form (0 to 255) a user must mount in the printer to print files captured to
the LPT device. If the form currently mounted in the printer differs from the form type returned
in this field, the NetWare server console displays a message instructing the console operator to
mount the correct form. The default form is 0x0000.

Remarks
The banner specified in bannerFileName will be printed only if the user has selected the option
to print a banner. If a banner is not specified in bannerFileName, a default banner will print that
contains the name of the file being printed.
Server Environment Structures 277

278 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_PROTOCOL_CUSTOM_INFO
Returns custom information about protocol stacks. Used by NWGetProtocolStackCustomInfo
(page 135).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved0 ;
 nuint32 customCount ;
 nuint8 customStruct [512];
} NWFSE_PROTOCOL_CUSTOM_INFO;

Delphi Structure
uses calwin32

 NWFSE_PROTOCOL_CUSTOM_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved0 : nuint16;
 padding : nuint16;
 customCount : nuint32;
 customStruct : Array[0.. 512 -1] Of nuint8;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

customCount
Contains the number of NWFSE_PROTOCOL_CUSTOM_INFO (page 278) structures in the
buffer.

customStruct
Specifies the structure with the DWORD value of the custom counter, followed by a length
preceded string describing the custom counter.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_PROTOCOL_ID_NUMS
Returns the protocol stack numbers using a media number or using a LAN board number. Used by
NWGetProtocolStkNumsByMediaNum (page 141).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 stackIDCount ;
 nuint32 stackIDs [FSE_STACK_IDS_MAX];
} NWFSE_PROTOCOL_ID_NUMS;

Delphi Structure
uses calwin32

 NWFSE_PROTOCOL_ID_NUMS = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 stackIDCount : nuint32;
 stackIDs : Array[0.. FSE_STACK_IDS_MAX -1] Of nuint32;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

stackIDCount
Specifies the number of protocol stack ID Number returned in stackIDs by
NWGetProtocolStkNumsByMediaNum (page 141).

stackIDs
Specifies the list of stack ID numbers.
Server Environment Structures 279

280 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_PROTOCOL_STK_CONFIG_INFO
Returns information about the protocol stack configuration. Used by
NWGetProtocolStackConfigInfo (page 133).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint8 configMajorVersionNum ;
 nuint8 configMinorVersionNum ;
 nuint8 stackMajorVersionNum ;
 nuint8 stackMinorVersionNum ;
 nuint8 stackShortName [16];
} NWFSE_PROTOCOL_STK_CONFIG_INFO;

Delphi Structure
uses calwin32

 NWFSE_PROTOCOL_STK_CONFIG_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 configMajorVersionNum : nuint8;
 configMinorVersionNum : nuint8;
 stackMajorVersionNum : nuint8;
 stackMinorVersionNum : nuint8;
 stackShortName : Array[0..15] Of nuint8;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

configMajorVersionNum
Specifies the major version number of the configuration table.

configMinorVersionNum
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the minor version number of the configuration table.

stackMajorVersionNum
Specifies the major version number of the protocol stack.

stackMinorVersionNum
Specifies the minor version number of the protocol stack.

stackShortName
Specifies the short protocol name; name used to register the stack with the LSL. The first byte
is the length of the string followed by the string itself. It is not a null-terminated string.
Server Environment Structures 281

282 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_PROTOCOL_STK_STATS_INFO
Returns information about protocol stack statistics. Used by NWGetProtocolStackStatsInfo
(page 137).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint8 statMajorVersionNum ;
 nuint8 statMinorVersionNum ;
 nuint16 commonCounters ;
 nuint32 validCountersMask ;
 nuint32 totalTxPackets ;
 nuint32 totalRxPackets ;
 nuint32 ignoredRxPackets ;
 nuint16 numCustomCounters ;
} NWFSE_PROTOCOL_STK_STATS_INFO;

Delphi Structure
uses calwin32

 NWFSE_PROTOCOL_STK_STATS_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 statMajorVersionNum : nuint8;
 statMinorVersionNum : nuint8;
 commonCounters : nuint16;
 validCountersMask : nuint32;
 totalTxPackets : nuint32;
 totalRxPackets : nuint32;
 ignoredRxPackets : nuint32;
 numCustomCounters : nuint16;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.
r Management

novdocx (E
N

U
) 01 February 2006
statMajorVersionNum
Specifies the major version number of the statistics table.

statMinorVersionNum
Specifies the minor version number of the statistics table.

commonCounters
Specifies the number of counters in the fixed portion of the table, current 3.

validCountersMask
Specifies which counters are valid, right most bit for the first counter; 0 = Counter is valid, 1 =
Counter is invalid

totalTxPackets
Contains the total number of packets that were requested to be transmitted.

totalRxPackets
Specifies the total number of packets that were requested to be transmitted.

ignoredRxPackets
Specifies the number of incoming packets that were ignored by the stack.

numCustomCounters
Specifies the number of custom counters for the protocol stack.
Server Environment Structures 283

284 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_SERVER_INFO
Returns server information. Used by NWGetServerInfo (page 147).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint8 serverAddress [12];
 nuint16 hopsToServer ;
} NWFSE_SERVER_INFO;

Delphi Structure
uses calwin32

NWFSE_SERVER_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 serverAddress : Array[0..11] Of nuint8;
 hopsToServer : nuint16;
End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

serverAddress
contains the node address of the server.

hopsToServer
Contains the number of hops to the server.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_SERVER_SET_CATEGORIES
Returns information about server set categories. Used by NWGetServerSetCategories (page 149).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved ;
 nuint32 numberOfSetCategories ;
 nuint32 nextSequenceNumber ;
 nuint8 categoryName [512];
} NWFSE_SERVER_SET_CATEGORIES;

Delphi Structure
uses calwin32

 NWFSE_SERVER_SET_CATEGORIES = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numberOfSetCategories : nuint32;
 nextSequenceNumber : nuint32;
 categoryName : Array[0..511] Of nuint8;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

numberOfSetCategories
Specifies the total number of set categories supported on the server.

nextSequenceNumber
Specifies the number to be used for startNum on subsequent calls.

categoryName
Specifies the null-terminated (not length-preceded) string describing the category.
Server Environment Structures 285

286 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_SERVER_SET_CMDS_INFO
Returns server set command information. Used by NWGetServerSetCommandsInfo (page 151).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 numberOfSetCommands ;
 nuint32 nextSequenceNumber ;
 nuint32 setCmdType ;
 nuint32 setCmdCategory ;
 nuint32 setCmdFlags ;
 nuint8 setNameAndValueInfo [500];
} NWFSE_SERVER_SET_CMDS_INFO;

Delphi Structure
uses calwin32

 NWFSE_SERVER_SET_CMDS_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numberOfSetCommands : nuint32;
 nextSequenceNumber : nuint32;
 setCmdType : nuint32;
 setCmdCategory : nuint32;
 setCmdFlags : nuint32;
 setNameAndValueInfo : Array[0..499] Of nuint8;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

numberOfSetCommands
Specifies the total number of set commands for all the categories on the server.

nextSequenceNumber
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the next number to be used for startNum on the next call.

setCmdType
Specifies how to interpret the command as follows:
O FSE_TYPE_NUMBER
1 FSE_TYPE_BOOLEAN
2 FSE_TYPE_TICKS
3 FSE_TYPE_BLOCK_SHIFT (512*number)
4 FSE_TYPE_TIME_OFFSET ([+|-]hh:mm:ss converted to seconds)
5 FSE_TYPE_STRING
6 FSE_TYPE_TRIGGER

The following show the types of triggers:
0x00 FSE_TYPE_TRIGGER_OFF
0x01 FSE_TYPE_TRIGGER_ON
0x10 FSE_TYPE_TRIGGER_PENDING
0x20 FSE_TYPE_TRIGGER_SUCCESS
0x30 FSE_TYPE_TRIGGER_FAILED

setCmdCategory
Specifies the category the command belongs to, as follows:
0 FSE_COMMUNICATIONS
1 FSE_MEMORY
2 FSE_FILE_CACHE
3 FSE_DIR_CACHE
4 FSE_FILE_SYSTEM
5 FSE_LOCKS
6 FSE_TRANSACTION_TRACKING
7 FSE_DISK
8 FSE_TIME
9 FSE_NCP
10 FSE_MISCELLANEOUS
11 FSE_ERRORS
12 FSE_DIRECTORY_SERVICES
13 FSE_MULTIPROCESSOR
14 FSE_SERVICE_LOCATION_PROTOCOL

setCmdFlags
Specifies the ways in which this category may be changed, as follows:
0x01 FSE_STARTUP_ONLY
0x02 FSE_HIDE
0x04 FSE_ADVANCED
0x08 FSE_STARTUP_OR_LATER
0x10 FSE_NOT_SECURED_CONSOLE (Can’t be performed on secured
 console)

setNameAndValueInfo
Specifies the NULL-terminated string containing the name of the command at index zero, and
the value that begins at strlen(name)+1. The string is not length-preceded.
Server Environment Structures 287

288 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_SERVER_SRC_INFO
Returns address information about servers known to a server with a given name. Used by
NWGetServerSourcesInfo (page 153).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved ;
 nuint32 numberOfEntries ;
 SERVERS_SRC_INFO serverSrcInfo[42];
} NWFSE_SERVER_SRC_INFO;

Delphi Structure
uses calwin32

 NWFSE_SERVER_SRC_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numberOfEntries : nuint32;
 serversSrcInfo : Array[0..41] Of SERVERS_SRC_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

numberOfEntries
Specifies the number of SERVERS_SRC_INFOs that were returned
byNWGetServerSourcesInfo (page 153) .

serverSrcInfo
Specifies SERVERS_SRC_INFO (page 307).
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_STATS_INFO
Returns Server Environment statistical information. Used by NWGetServerConnInfo (page 143).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 totalBytesRead[6];
 nuint8 totalBytesWritten[6];
 nuint32 totalRequests;
} NWFSE_STATS_INFO;

Delphi Syntax
uses calwin32

 NWFSE_STATS_INFO = packed RECORD
 totalBytesRead : Array[1..6] of nuint8;
 totalBytesWritten : Array[1..6] of nuint8;
 totalRequests : nuint32;
 End;

Fields
totalBytesRead

Specifies the number of bytes the user read (48-bit value).

totalBytesWritten
Specifies the number of bytes the user wrote (48-bit value).

totalRequests
Specifies the number of requests the user sent.
Server Environment Structures 289

290 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_USER_INFO
Returns user information for a given connection. Used by NWGetUserInfo (page 155).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 USER_INFO userInfo ;
} NWFSE_USER_INFO;

Delphi Structure
 uses calwin32

 NWFSE_USER_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 userInfo : USER_INFO;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

userInfo
Contains a USER_INFO (page 312)structure for the connection. The UserInformation structure
is defined in NWSERVST.H.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_VOLUME_INFO_BY_LEVEL
Returns volume information when the information level is specified. Used by
NWGetVolumeInfoByLevel (page 157).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 infoLevel ;
 VOLUME_INFO_BY_LEVEL volumeInfo ;
} NWFSE_VOLUME_INFO_BY_LEVEL;

Delphi Structure
uses calwin32

 NWFSE_VOLUME_INFO_BY_LEVEL = packed Record
 serverAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 infoLevel : nuint32;
 volumeInfo : VOLUME_INFO_BY_LEVEL;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass zero).

infoLevel
Specifies the information level to be returned.
If this field is set to 1, the volInfoDef field of the VOLUME_INFO_BY_LEVEL
(page 319) structure will be used.
If this field is set to 2, the volInfoDef2 field of the VOLUME_INFO_BY_LEVEL
structure will be used.

volumeInfo
Points to the VOLUME_INFO_BY_LEVEL (page 319) structure containing the specified
volume information.
Server Environment Structures 291

292 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWFSE_VOLUME_SEGMENT_LIST
Returns the volume segment list. Used by NWGetVolumeSegmentList (page 159).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 numOfVolumeSegments ;
 VOLUME_SEGMENT volumeSegment [42];
} NWFSE_VOLUME_SEGMENT_LIST;

Delphi Structure
uses calwin32

 NWFSE_VOLUME_SEGMENT_LIST = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 numOfVolumeSegments : nuint32;
 volumeSegment : Array[0..41] Of VOLUME_SEGMENT;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved for future use.

numOfVolumeSegments
Specifies the number of volume segments on the volume.

volumeSegment
Specifies the volume information structures for all the volume segments on the volume. Only
the number of structures will contain valid data.
r Management

novdocx (E
N

U
) 01 February 2006
NWFSE_VOLUME_SWITCH_INFO
Returns information about volume switches. Used by NWGetVolumeSwitchInfo (page 161).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo ;
 nuint16 reserved ;
 nuint32 totalLFSCounters ;
 nuint32 CurrentLFSCounters ;
 nuint32 LFSCounters [128];
} NWFSE_VOLUME_SWITCH_INFO;

Delphi Structure
uses calwin32

 NWFSE_VOLUME_SWITCH_INFO = packed Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 padding : nuint16;
 totalLFSCounters : nuint32;
 CurrentLFSCounters : nuint32;
 LFSCounters : Array[0..127] Of nuint32;
 End;

Fields
serverTimeAndVConsoleInfo

Specifies the SERVER_AND_VCONSOLE_INFO (page 306) structure containing the time
since the server was brought up. This time is returned in ticks (approximately 1/8 of a second).
When this parameter reaches 0xFFFFFFFF, it wraps to zero.

reserved
Is reserved (pass zero).

totalLFSCounters
Specifies the total number of FS counters.

CurrentLFSCounters
Specifies the current number of FS counters.

LFSCounters
Specifies the number of LFS counters.
Server Environment Structures 293

294 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NW_GUID
Contains the server's Global Universal Identification (GUID).

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 GUID[16];
} NW_GUID;

Delphi Structure
Type
 NW_GUID = Array[0..15] of nuint8;

Fields
GUID

Specifies the GUID for the server.

Remarks
The server’s GUID is automatically generated by the OS the first time the server is brought up.

The Ethernet address of a LAN board is part the server's GUID. Once a LAN board is loaded, the
GUID contains all zeros until a LAN board is loaded the first time.

The server GUID is kept in the registry so the initial GUID created for the server will be preserved
across multiple reboots. If the registry is corrupted or deleted, the startup code will automatically
generate a new server GUID as if this was the first time the server was brought up.
r Management

novdocx (E
N

U
) 01 February 2006
PACKET_BURST_INFO
Returns packet burst information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 bigInvalidSlotCount ;
 nuint32 bigForgedPacketCount ;
 nuint32 bigInvalidPacketCount ;
 nuint32 bigStillTransmittingCount ;
 nuint32 stillDoingTheLastRequestCount ;
 nuint32 invalidCtrlRequestCount ;
 nuint32 ctrlInvalidMessageNumCount ;
 nuint32 ctrlBeingTornDownCount ;
 nuint32 bigRepeatTheFileReadCount ;
 nuint32 bigSendExtraCCCount ;
 nuint32 bigReturnAbortMessageCount ;
 nuint32 bigReadInvalidMessageNumCount ;
 nuint32 bigReadDoItOverCount ;
 nuint32 bigReadBeingTornDownCount ;
 nuint32 previousCtrlPacketCount ;
 nuint32 sendHoldOffMessageCount ;
 nuint32 bigReadNoDataAvailableCount ;
 nuint32 bigReadTryingToReadTooMuchCount ;
 nuint32 asyncReadErrorCount ;
 nuint32 bigReadPhysicalReadErrorCount ;
 nuint32 ctrlBadACKFragmentListCount ;
 nuint32 ctrlNoDataReadCount ;
 nuint32 writeDuplicateRequestCount ;
 nuint32 shouldntBeACKingHereCount ;
 nuint32 writeInconsistentPktLengthsCnt ;
 nuint32 firstPacketIsntAWriteCount ;
 nuint32 writeTrashedDuplicateRequestCnt ;
 nuint32 bigWriteInvalidMessageNumCount ;
 nuint32 bigWriteBeingTornDownCount ;
 nuint32 bigWriteBeingAbortedCount ;
 nuint32 zeroACKFragmentCountCount ;
 nuint32 writeCurrentlyTransmittingCount ;
 nuint32 tryingToWriteTooMuchCount ;
 nuint32 writeOutOfMemForCtrlNodesCount ;
 nuint32 writeDidntNeedThisFragmentCount ;
 nuint32 writeTooManyBuffsCheckedOutCnt ;
 nuint32 writeTimeOutCount ;
 nuint32 writeGotAnACKCount ;
 nuint32 writeGotAnACKCount1 ;
 nuint32 pollerAbortedTheConnCount ;
 nuint32 maybeHadOutOfOrderWritesCount ;
Server Environment Structures 295

296 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 nuint32 hadAnOutOfOrderWriteCount ;
 nuint32 movedTheACKBitDownCount ;
 nuint32 bumpedOutOfOrderWriteCount ;
 nuint32 pollerRemovedOldOutOfOrderCount ;
 nuint32 writeDidntNeedButRequestACKCnt ;
 nuint32 writeTrashedPacketCount ;
 nuint32 tooManyACKFragmentsCount ;
 nuint32 savedAnOutOfOrderPacketCount ;
 nuint32 connBeingAbortedCount ;
} PACKET_BURST_INFO;

Delphi Structure
uses calwin32

 PACKET_BURST_INFO = packed Record
 bigInvalidSlotCount : nuint32;
 bigForgedPacketCount : nuint32;
 bigInvalidPacketCount : nuint32;
 bigStillTransmittingCount : nuint32;
 stillDoingTheLastRequestCount : nuint32;
 invalidCtrlRequestCount : nuint32;
 ctrlInvalidMessageNumCount : nuint32;
 ctrlBeingTornDownCount : nuint32;
 bigRepeatTheFileReadCount : nuint32;
 bigSendExtraCCCount : nuint32;
 bigReturnAbortMessageCount : nuint32;
 bigReadInvalidMessageNumCount : nuint32;
 bigReadDoItOverCount : nuint32;
 bigReadBeingTornDownCount : nuint32;
 previousCtrlPacketCount : nuint32;
 sendHoldOffMessageCount : nuint32;
 bigReadNoDataAvailableCount : nuint32;
 bigReadTryingToReadTooMuchCount : nuint32;
 asyncReadErrorCount : nuint32;
 bigReadPhysicalReadErrorCount : nuint32;
 ctrlBadACKFragmentListCount : nuint32;
 ctrlNoDataReadCount : nuint32;
 writeDuplicateRequestCount : nuint32;
 shouldntBeACKingHereCount : nuint32;
 writeInconsistentPktLengthsCnt : nuint32;
 firstPacketIsntAWriteCount : nuint32;
 writeTrashedDuplicateRequestCnt : nuint32;
 bigWriteInvalidMessageNumCount : nuint32;
 bigWriteBeingTornDownCount : nuint32;
 bigWriteBeingAbortedCount : nuint32;
 zeroACKFragmentCountCount : nuint32;
 writeCurrentlyTransmittingCount : nuint32;
 tryingToWriteTooMuchCount : nuint32;
 writeOutOfMemForCtrlNodesCount : nuint32;
 writeDidntNeedThisFragmentCount : nuint32;
 writeTooManyBuffsCheckedOutCnt : nuint32;
 writeTimeOutCount : nuint32;
r Management

novdocx (E
N

U
) 01 February 2006
 writeGotAnACKCount : nuint32;
 writeGotAnACKCount1 : nuint32;
 pollerAbortedTheConnCount : nuint32;
 maybeHadOutOfOrderWritesCount : nuint32;
 hadAnOutOfOrderWriteCount : nuint32;
 movedTheACKBitDownCount : nuint32;
 bumpedOutOfOrderWriteCount : nuint32;
 pollerRemovedOldOutOfOrderCount : nuint32;
 writeDidntNeedButRequestACKCnt : nuint32;
 writeTrashedPacketCount : nuint32;
 tooManyACKFragmentsCount : nuint32;
 savedAnOutOfOrderPacketCount : nuint32;
 connBeingAbortedCount : nuint32;
 End;

Fields
bigInvalidSlotCount

Specifies the number of requests determined not to be packet burst requests. The requests are
either not NCP connections, the connection number is greater than available connection slots,
or they have an invalid connection structure.

bigForgedPacketCount
Specifies the number of times the station connection ID and unique IDs do not match the
server’.

bigInvalidPacketCount
Specifies the number of times the request packet is determined to be invalid.

bigStillTransmittingCount
Specifies the number of times the previous request is still transmitting so the current requests
are delayed.

stillDoingTheLastRequestCount
Specifies the number of times the previous request is still being processed and read.

invalidCtrlRequestCount
Specifies the number of times the type of the packet and the packet nature cannot be
determined.

ctrlInvalidMessageNumCount
Specifies the number of packets received that do not have a message number corresponding to
what is already been sent and what is being inquired about.

ctrlBeingTornDownCount
Specifies the number of times the connection is torn down.

bigRepeatTheFileReadCount
Specifies the number of times an old request had to be reread.

bigSendExtraCCCount
Server Environment Structures 297

298 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Specifies the number of times the completion code error needed to be resent.

bigReturnAbortMessageCount
Specifies the number of times an `Abort Message’ was returned to the server.

bigReadInvalidMessageNumCount
Specifies the number of times the message number comparison between the station and server
failed.

bigReadDoItOverCount
Specifies the number of times a request that had been processed was received again and
reprocessed.

bigReadBeingTornDownCount
Specifies the number of times the status flag is set to abort so the read is torn down before being
processed.

previousCtrlPacketCount
Specifies the number of times the server packet ID does not compare to the station’s packet ID.

sendHoldOffMessageCount
Specifies the number of times the station’s request

bigReadNoDataAvailableCount
Specifies the number of times nothing was able to be read from the request packet.

bigReadTryingToReadTooMuchCount
Specifies the number of times the request packet was greater than 64K so was unreadable.

asyncReadErrorCount
Specifies the number of times an error is returned trying to read the data in from the request
packet.

bigReadPhysicalReadErrorCount
Specifies the number of times a physical read error was encountered while reading the request
packet.

ctrlBadACKFragmentListCount
Specifies the number of times the fragments making up the packet burst exceeded the
maximum fragments allowed.

ctrlNoDataReadCount
Specifies the number of times a control packet was received specifying to send more data after
the request was thought to be over. The station error confirmed the error that no control data
was read.

writeDuplicateRequestCount
Specifies the number of times a duplicate write was performed after a duplicate request was
processed.

shouldntBeACKingHereCount
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the number of times a request was being initialized when a fragment count was found
indicating the station still needs to send some fragments.

writeInconsistentPktLengthsCnt
Specifies the number of times consistency checking on packet lengths failed.

firstPacketIsntAWriteCount
Specifies the number of times the first fragment packet is not a write request.

writeTrashedDuplicateRequestCnt
Specifies the number of times a duplicate write request was received without a need to
acknowledge receipt of the request so it was trashed.

bigWriteInvalidMessageNumCount
Specifies the number of times the message number comparison between the station and the
server failed.

bigWriteBeingTornDownCount
Specifies the number of times the write is aborted and the connection is torn down.

bigWriteBeingAbortedCount
Specifies the number of times the write is aborted and the station is cleared up.

zeroACKFragmentCountCount
Specifies the number of times the request needs to be retried so the acknowledge fragment
count is zeroed out.

writeCurrentlyTransmittingCount
Specifies the number of times data was currently being transmitted so the transmission needed
to complete before writing.

tryingToWriteTooMuchCount
Specifies the number of times an attempt was made to write a total length greater than 64K.

writeOutOfMemForCtrlNodesCount
Is currently unused.

writeDidntNeedThisFragmentCount
Specifies the number of times that everything needed is already acquired so the write process is
ended.

writeTooManyBuffsCheckedOutCnt
Specifies the number of times the next packet was received without received the first packet. If
the buffer cannot be kept, buffers are not released.

writeTimeOutCount
Specifies the number of times the write retry limit was exceeded.

writeGotAnACKCount
Specifies the number of times the client is resending part or all of the request back because the
request timed out and there are missing pieces.
Server Environment Structures 299

300 NDK: Serve

novdocx (E
N

U
) 01 February 2006
writeGotAnACKCount1
Specifies the number of times the client is resending part or all of the request back because the
request timed out and there are missing pieces.

pollerAbortedTheConnCount
Specifies the number of times the poller lost track of the connection and the connection was
cleared.

maybeHadOutOfOrderWritesCount
Specifies the number of times that extra packets for the write came in and needed to be
reordered before a write completed.

hadAnOutOfOrderWriteCount
Specifies the number of times out of order packets were received and needed to be requested in
the right order.

movedTheACKBitDownCount
Specifies the number of times out of order packets were reordered and information that was
buffered up will not be re-requested by the out of order writes.

bumpedOutOfOrderWriteCount
Specifies the number of times packets needing to be reordered could not be reordered. The
packets were thrown out and need to be resent.

pollerRemovedOldOutOfOrderCount
Specifies the number of times the write received buffers that were removed because they were
on the out of order list too long.

writeDidntNeedButRequestACKCnt
Specifies the number of times the fragment count was zero indicating no new fragments were
expected but the acknowledge bit was checked.

writeTrashedPacketCount
Specifies the number of times the cleaning up of additional receive buffers queued up during
the execution of an error path.

tooManyACKFragmentsCount
Specifies the number of times a fragment placement needed to be adjusted.

savedAnOutOfOrderPacketCount
Specifies the number of times an out of order packet was received, saved for several seconds,
and the buffer then moved onto the out of order write list.

connBeingAbortedCount
Specifies the number of times a station’s connection was aborted.
r Management

novdocx (E
N

U
) 01 February 2006
PHYS_DSK_STATS
Returns physical disk statistics.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 systemElapsedTime ;
 nuint8 diskChannel ;
 nuint8 diskRemovable ;
 nuint8 driveType ;
 nuint8 controllerDriveNumber ;
 nuint8 controllerNumber ;
 nuint8 controllerType ;
 nuint32 driveSize ;/*in 4096 byte blocks*/
 nuint16 driveCylinders ;
 nuint8 driveHeads ;
 nuint8 sectorsPerTrack ;
 nuint8 driveDefinition [64];
 nuint16 IOErrorCount ;
 nuint32 hotFixStart ;
 nuint16 hotFixSize ;
 nuint16 hotFixBlockAvailable ;
 nuint8 hotFixDisabled ;
} PHYS_DSK_STATS;

Delphi Structure
uses calwin32

PHYS_DSK_STATS = packed Record
 systemElapsedTime : nuint32;
 diskChannel : nuint8;
 diskRemovable : nuint8;
 driveType : nuint8;
 controllerDriveNumber : nuint8;
 controllerNumber : nuint8;
 controllerType : nuint8;
 driveSize : nuint32;
 driveCylinders : nuint16;
 driveHeads : nuint8;
 sectorsPerTrack : nuint8;
 driveDefinition : Array[0..63] Of nuint8;
 IOErrorCount : nuint16;
 hotFixStart : nuint32;
 hotFixSize : nuint16;
 hotFixBlockAvailable : nuint16;
Server Environment Structures 301

302 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 hotFixDisabled : nuint8;
 End;

Fields
systemElapsedTime

Specifies how long the NetWare server has been up. This value is returned in units of
approximately 1/18 second and is used to determine the amount of time that has elapsed
between consecutive calls. When systemElapsedTime reaches 0xFFFFFFFF, it wraps
back to zero.

diskChannel
Specifies the disk channel to which the disk unit is attached.

diskRemovable
Specifies whether a disk is removable (0 = nonremovable).

driveType
Specifies the type of drive, defined as follows:
1 XT
2 AT
3 SCSI
4 disk coprocessor
5 PS/2 with MFM Controller
6 PS/2 with ESDI Controller
7 Convergent Technology SBIC
50 to 255 Value-Added Disk Drive

controllerDriveNumber
Specifies the drive number of the disk unit relative to the controller number.

controllerNumber
Specifies the address on the physical disk channel of the disk controller.

controllerType
Specifies the number identifying the type (make and model) of the disk controller.

driveSize
Specifies the size of the physical drive in blocks (1 block = 4,096 bytes). The drive size does
not include the portion of the disk reserved for Hot Fix redirection in the event of media errors.

driveCylinders
Specifies the number of physical cylinders on the drive.

driveHeads
Specifies the number of disk heads on the drive.

sectorsPerTrack
Specifies the number of sectors on each disk track (1 sector = 512 bytes).

driveDefinition
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the make and model of the drive (NULL-terminated string).

IOErrorCount
Specifies the number of times I/O errors have occurred on the disk since the server was brought
up.

hotFixStart
Specifies the first block of the disk Hot Fix Redirection Table. This field is meaningful only
with SFT(tm) NetWare Level I or above. The redirection table is used to replace bad disk
blocks with usable blocks in the event that a media failure occurs on the disk

hotFixSize
Specifies the total number of redirection blocks set aside on the disk for Hot Fix redirection.
Some or all of these blocks may be in use. hotFixSize is meaningful only with SFT
NetWare Level I or above. To determine the number of redirection blocks still available for
future use, see hotFixBlocksAvailable

hotFixBlockAvailable
Specifies the number of redirection blocks that are still available.
hotFixBlockAvailable is meaningful only on SFT NetWare Level I or above.

hotFixDisabled
Specifies whether Hot Fix is enabled or disabled. hotFixDisabled is meaningful only with
SFT NetWare Level I or above (0 = enabled).
Server Environment Structures 303

304 NDK: Serve

novdocx (E
N

U
) 01 February 2006
resourceTagBuf
Returns information about resources used by NLMs on a server.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 number ;
 nuint32 signature ;
 nuint32 count ;
 nuint8 name [];
} resourceTagBuf;

Fields
number

Contains the number assigned to the resource tag when it was allocated.

signature
Contains the signature of the resource tag.

count
Contains the number of this kind of tag that has been allocated.

name
Contains the name of the resource tag.
r Management

novdocx (E
N

U
) 01 February 2006
ROUTERS_INFO
Returns information about the routers on a network.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 nodeAddress [6];
 nuint32 connectedLAN ;
 nuint16 routeHops ;
 nuint16 routeTime ;
} ROUTERS_INFO;

Delphi Structure
uses calwin32

 ROUTERS_INFO = packed Record
 nodeAddress : Array[0..5] Of nuint8;
 connectedLAN : nuint32;
 routeHops : nuint16;
 routeTime : nuint16;
 End;

Fields
nodeAddress

Contains the 6-byte network address of the router.

connectedLAN
Contains the LAN board number of the router.

routeHops
Contains the number of hops to the network specified by networkNumber.

routeTime
Contains the time (in ticks) to the network specified by networkNumber.
Server Environment Structures 305

306 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SERVER_AND_VCONSOLE_INFO

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 currentServerTime ;
 nuint8 vconsoleVersion ;
 nuint8 vconsoleRevision ;
} SERVER_AND_VCONSOLE_INFO;

Delphi Structure
uses calwin32

 SERVER_AND_VCONSOLE_INFO = packed Record
 currentServerTime : nuint32;
 vconsoleVersion : nuint8;
 vconsoleRevision : nuint8
 End;

Fields
currentServerTime

Specifies the time in ticks (about 1/18 second) since the server was brought up. When
currentServerTime reaches 0xFFFFFFFF, it wraps to 0.

NOTE: The tick count is derived from the original PC NTSC crystal frequency of 14.317180
MHz divided by 12 which is about 1.193MHz. The PC’s 8253/8254 PIT further divides this
clock by 65536 to generate an interrupt 18.207 times a second which approximates to one
interrupt every 54.925 mS.

vconsoleVersion
Specifies the console version number and tracks the packet format.

vconsoleRevision
Specifies the console version revision number and tracks the packet format.
r Management

novdocx (E
N

U
) 01 February 2006
SERVERS_SRC_INFO

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint8 serverNode [6];
 nuint32 connectedLAN ;
 nuint16 sourceHops ;
} SERVERS_SRC_INFO;

Delphi Structure
uses calwin32

 SERVERS_SRC_INFO = packed Record
 serverNode : Array[0.. 6 -1] Of nuint8;
 connectedLAN : nuint32;
 sourceHops : nuint16;
 End;

Fields
serverNode

Specifies the node address of the server.

connectedLAN
Specifies the LAN board number of the server.

sourceHops
Specifies the number of hops to the server.
Server Environment Structures 307

308 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SPX_INFO
Returns information about the SPX protocol.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint16 SPXMaxConnsCount ;
 nuint16 SPXMaxUsedConns ;
 nuint16 SPXEstConnReq ;
 nuint16 SPXEstConnFail ;
 nuint16 SPXListenConnectReq ;
 nuint16 SPXListenConnectFail ;
 nuint32 SPXSendCount ;
 nuint32 SPXWindowChokeCount ;
 nuint16 SPXBadSendCount ;
 nuint16 SPXSendFailCount ;
 nuint16 SPXAbortedConn ;
 nuint32 SPXListenPacketCount ;
 nuint16 SPXBadListenCount ;
 nuint32 SPXIncomingPacketCount ;
 nuint16 SPXBadInPacketCount ;
 nuint16 SPXSuppressedPackCount ;
 nuint16 SPXNoSesListenECBCount ;
 nuint16 SPXWatchDogDestSesCount ;
} SPX_INFO;

Delphi Structure
uses calwin32

 SPX_INFO = packed Record
 SPXMaxConnsCount : nuint16;
 SPXMaxUsedConns : nuint16;
 SPXEstConnReq : nuint16;
 SPXEstConnFail : nuint16;
 SPXListenConnectReq : nuint16;
 SPXListenConnectFail : nuint16;
 SPXSendCount : nuint32;
 SPXWindowChokeCount : nuint32;
 SPXBadSendCount : nuint16;
 SPXSendFailCount : nuint16;
 SPXAbortedConn : nuint16;
 SPXListenPacketCount : nuint32;
 SPXBadListenCount : nuint16;
 SPXIncomingPacketCount : nuint32;
 SPXBadInPacketCount : nuint16;
 SPXSuppressedPackCount : nuint16;
r Management

novdocx (E
N

U
) 01 February 2006
 SPXNoSesListenECBCount : nuint16;
 SPXWatchDogDestSesCount : nuint16;
 End;

Fields
SPXMaxConnsCount

Specifies the maximum number of SPX™ connections allowed on the server.

SPXMaxUsedConns
Specifies the maximum number of SPX connections used at one time since the server was
booted.

SPXEstConnReq
Specifies the total number of SPX connections established since the server was booted.

SPXEstConnFail
Specifies the number of times that an attempt to establish an SPX connection failed since the
server was booted.

SPXListenConnectReq
Specifies the number of requests to post a listen since the server was booted.

SPXListenConnectFail
Specifies the number of times a request to post a listen failed since the server was booted.

SPXSendCount
Specifies the number of SPX packets sent since the server was booted.

SPXWindowChokeCount
Specifies the value used internally for debugging.

SPXBadSendCount
Specifies the number of bad packets sent since the server was booted.

SPXSendFailCount
Specifies the number of packets sent for which no acknowledgment was received since the
server was booted.

SPXAbortedConn
Specifies the number of times a connection was aborted since the server was booted.

SPXListenPacketCount
Specifies the number of times a listen was posted on a socket since the server was booted.

SPXBadListenCount
Specifies the number of times a listen on a socket failed since the server was booted.

SPXIncomingPacketCount
Specifies the number of packets in the queue.
Server Environment Structures 309

310 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SPXBadInPacketCount
Specifies the number of bad SPX packets received since the server was booted.

SPXSuppressedPackCount
Specifies the number of times a duplicate SPX packet was received since the server was
booted.

SPXNoSesListenECBCount
Specifies the number of times a listen was posted on a session that was not established since the
server was booted.

SPXWatchDogDestSesCount
Specifies the number of times the watchdog destroyed a session since the server was booted.
r Management

novdocx (E
N

U
) 01 February 2006
STACK_INFO
Returns information about the stack.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 StackNum ;
 nuint8 StackShortName [16];
} STACK_INFO;

Delphi Structure
uses calwin32

 STACK_INFO = packed Record
 StackNum : nuint32;
 StackShortName : Array[0..15] Of nuint8;
 End;

Fields
StackNum

Specifies the protocol number.

StackShortName
Specifies the protocol short name with StackShortName being the length, and the rest of
the name following. It is not null-terminated.
Server Environment Structures 311

312 NDK: Serve

novdocx (E
N

U
) 01 February 2006
USER_INFO
Returns information about a user connection.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 connNum ;
 nuint32 useCount ;
 nuint8 connServiceType ;
 nuint8 loginTime [7];
 nuint32 status ;
 nuint32 expirationTime ;
 nuint32 objType ;
 nuint8 transactionFlag ;
 nuint8 logicalLockThreshold ;
 nuint8 recordLockThreshold ;
 nuint8 fileWriteFlags ;
 nuint8 fileWriteState ;
 nuint8 filler ;
 nuint16 fileLockCount ;
 nuint16 recordLockCount ;
 nuint8 totalBytesRead [6];
 nuint8 totalBytesWritten [6];
 nuint32 totalRequests ;
 nuint32 heldRequests ;
 nuint8 heldBytesRead [6];
 nuint8 heldBytesWritten [6];
} USER_INFO;

Delphi Structure
uses calwin32

 USER_INFO = packed Record
 connNum : nuint32;
 useCount : nuint32;
 connServiceType : nuint8;
 loginTime : Array[0..6] Of nuint8;
 status : nuint32;
 expirationTime : nuint32;
 objType : nuint32;
 transactionFlag : nuint8;
 logicalLockThreshold : nuint8;
 recordLockThreshold : nuint8;
 fileWriteFlags : nuint8;
 fileWriteState : nuint8;
 filler : nuint8;
r Management

novdocx (E
N

U
) 01 February 2006
 fileLockCount : nuint16;
 recordLockCount : nuint16;
 totalBytesRead : Array[0..5] Of nuint8;
 totalBytesWritten : Array[0..5] Of nuint8;
 totalRequests : nuint32;
 heldRequests : nuint32;
 heldBytesRead : Array[0..5] Of nuint8;
 heldBytesWritten : Array[0..5] Of nuint8;
 End;

Fields
connNum

Specifies the connection number of the user.

useCount
Specifies if the connection is in use:

1 Connection is in use
0 Connection is not in use

connServiceType
Specifies the connection type.

loginTime
Specifies the time the user logged in.

status
Specifies the status of the connection.

expirationTime
Specifies the expiration time.

objType
Specifies the object type of the user (usually 0x0100).

transactionFlag
Specifies the transaction tracking information.

logicalLockThreshold
Specifies the maximum number of logical locks a user can have.

recordLockThreshold
Specifies the maximum number of record locks the user can have.

fileWriteFlags
Specifies the writing status (includes active and stop bits):

1 FSE_WRITE
2 FSE_WRITE_ABORTED
Server Environment Structures 313

314 NDK: Serve

novdocx (E
N

U
) 01 February 2006
fileWriteState
Specifies the writing status:

0 FSE_NOT_WRITING
1 FSE_WRITE_IN_PROGRESS
2 FSE_WRITE_BEING_STOPPED

filler
Is unused.

fileLockCount
Specifies the number of files the user locked.

recordLockCount
Specifies the number of records the user locked.

totalBytesRead
Specifies the number of bytes the user read (48-bit value).

totalBytesWritten
Specifies the number of bytes the user wrote (48-bit value).

totalRequests
Specifies the number of requests the user sent.

heldRequests
Specifies the number of requests held for accounting purposes.

heldBytesRead
Specifies the number of bytes the user read that have a hold on them for accounting purposes.

heldBytesWritten
Specifies the number of bytes the user wrote that have a hold on them for accounting purposes.

Remarks
connServiceType can have the following values:

2 FSE_NCP_CONNECTION_TYPE
3 FSE_NLM_CONNECTION_TYPE
4 FSE_AFP_CONNECTION_TYPE
5 FSE_FTAM_CONNECTION_TYPE
6 FSE_ANCP_CONNECTION_TYPE
7 FSE_ACP_CONNECTION_TYPE
8 FSE_SMB_CONNECTION_TYPE
9 FSE_WINSOCK_CONNECTION_TYPE
10 FSE_HTTP_CONNECTION_TYPE
11 FSE_UDP_CONNECTION_TYPE

status can have the following values:
r Management

novdocx (E
N

U
) 01 February 2006
0x00000001 FSE_LOGGED_IN
0x00000002 FSE_BEING_ABORTED
0x00000004 FSE_AUDITED
0x00000008 FSE_NEEDS_SECURITY_CHANGE
0x00000010 FSE_MAC_STATION
0x00000020 FSE_AUTHENTICATED_TEMPORARY
0x00000040 FSE_AUDIT_CONNECTION_RECORDED
0x00000080 FSE_DSAUDIT_CONNECTION_RECORDED
Server Environment Structures 315

316 NDK: Serve

novdocx (E
N

U
) 01 February 2006
VERSION_INFO
Returns version information about the logical components of a NetWare server.

Service: Server Environment

Defined In: nwserver.h

Structure
typedef struct
{
 nuint8 serverName [48];
 nuint8 fileServiceVersion ;
 nuint8 fileServiceSubVersion ;
 nuint16 maximumServiceConnections ;
 nuint16 connectionsInUse ;
 nuint16 maxNumberVolumes ;
 nuint8 revision ;
 nuint8 SFTLevel ;
 nuint8 TTSLevel ;
 nuint16 maxConnectionsEverUsed ;
 nuint8 accountVersion ;
 nuint8 VAPVersion ;
 nuint8 queueVersion ;
 nuint8 printVersion ;
 nuint8 virtualConsoleVersion ;
 nuint8 restrictionLevel ;
 nuint8 internetBridge ;
 nuint8 reserved [60];
} VERSION_INFO;

Delphi Structure
uses calwin32

 VERSION_INFO = packed Record
 serverName : Array[0..47] Of nuint8;
 fileServiceVersion : nuint8;
 fileServiceSubVersion : nuint8;
 maximumServiceConnections : nuint16;
 connectionsInUse : nuint16;
 maxNumberVolumes : nuint16;
 revision : nuint8;
 SFTLevel : nuint8;
 TTSLevel : nuint8;
 maxConnectionsEverUsed : nuint16;
 accountVersion : nuint8;
 VAPVersion : nuint8;
 queueVersion : nuint8;
 printVersion : nuint8;
 virtualConsoleVersion : nuint8;
 restrictionLevel : nuint8;
r Management

novdocx (E
N

U
) 01 February 2006
 internetBridge : nuint8;
 reserved : Array[0..59] Of nuint8;
 End;

Fields
serverName

Specifies the name of the queried server.

fileServiceVersion
Specifies the major NetWare version number of the running server.

fileServiceSubVersion
Specifies the minor NetWare version number of the running server.

maximumServiceConnections
Specifies the maximum number of connection slots (licensed or unlicensed) that the server has
allocated since it came up, which is not the same as how many connections the server can
support.

connectionsInUse
Specifies how many connections are currently using the server at the time of the query.

maxNumberVolumes
Specifies the maximum number of volumes the server supports.

revision
Specifies the revision level of the NetWare version number running on the server.

SFTLevel
Specifies which SFT level the server operating system is using.

TTSLevel
Specifies which TTS level the server operating system is using.

maxConnectionsEverUsed
Specifies the maximum number of licensed connections in use at one time since the server was
installed.

accountVersion
Specifies the accounting version number.

VAPVersion
Specifies the VAP version number, which is only used with NetWare versions prior to 3.0.

queueVersion
Specifies the queuing version number.

printVersion
Specifies the Print Server version number.
Server Environment Structures 317

318 NDK: Serve

novdocx (E
N

U
) 01 February 2006
virtualConsoleVersion
Specifies the Virtual Console version number.

restrictionLevel
Specifies the Security Restriction version number.

internetBridge
Specifies the Internet Bridge support version number.

reserved
Is reserved for future use.

Remarks
To get product version information (major, minor, and revision), call the
NWGetNetWareProductVersion (page 114) function.
r Management

novdocx (E
N

U
) 01 February 2006
VOLUME_INFO_BY_LEVEL
Returns volume information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef union
{
 VOLUME_INFO_BY_LEVEL_DEF volInfoDef ;
 VOLUME_INFO_BY_LEVEL_DEF2 volInfoDef2 ;
} VOLUME_INFO_BY_LEVEL;

Delphi Syntax
Type
 VOLUME_INFO_BY_LEVEL = packed RECORD
 case integer of
 1: (volinfoDef : VOLUME_INFO_BY_LEVEL_DEF);
 2: (volinfoDef2 : VOLUME_INFO_BY_LEVEL_DEF2);
 End;

Fields
volInfoDef

Pointer to VOLUME_INFO_BY_LEVEL_DEF (page 320).

volInfoDef2
Pointer to VOLUME_INFO_BY_LEVEL_DEF2 (page 325).
Server Environment Structures 319

320 NDK: Serve

novdocx (E
N

U
) 01 February 2006
VOLUME_INFO_BY_LEVEL_DEF
Returns volumen information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 volumeType ;
 nuint32 statusFlagBits ;
 nuint32 sectorSize ;
 nuint32 sectorsPerCluster ;
 nuint32 volumeSizeInClusters ;
 nuint32 freedClusters ;
 nuint32 subAllocFreeableClusters ;
 nuint32 freeableLimboSectors ;
 nuint32 nonFreeableLimboSectors ;
 nuint32 nonFreeableAvailSubAllocSectors ;
 nuint32 notUsableSubAllocSectors ;
 nuint32 subAllocClusters ;
 nuint32 dataStreamsCount ;
 nuint32 limboDataStreamsCount ;
 nuint32 oldestDeletedFileAgeInTicks ;
 nuint32 compressedDataStreamsCount ;
 nuint32 compressedLimboDataStreamsCount ;
 nuint32 unCompressableDataStreamsCount ;
 nuint32 preCompressedSectors ;
 nuint32 compressedSectors ;
 nuint32 migratedFiles ;
 nuint32 migratedSectors ;
 nuint32 clustersUsedByFAT ;
 nuint32 clustersUsedByDirectories ;
 nuint32 clustersUsedbyExtendedDirs ;
 nuint32 totalDirectoryEntries ;
 nuint32 unUsedDirectoryEntries ;
 nuint32 totalExtendedDirectoryExtants ;
 nuint32 unUsedExtendedDirectoryExtants ;
 nuint32 extendedAttributesDefined ;
 nuint32 extendedAttributeExtantsUsed ;
 nuint32 directoryServicesObjectID ;
 nuint32 volumeLastModifiedDateAndTime ;
} VOLUME_INFO_BY_LEVEL_DEF;

Delphi Structure
uses calwin32

 VOLUME_INFO_BY_LEVEL_DEF = packed Record
 volumeType : nuint32;
r Management

novdocx (E
N

U
) 01 February 2006
 statusFlagBits : nuint32;
 sectorSize : nuint32;
 sectorsPerCluster : nuint32;
 volumeSizeInClusters : nuint32;
 freedClusters : nuint32;
 subAllocFreeableClusters : nuint32;
 freeableLimboSectors : nuint32;
 nonFreeableLimboSectors : nuint32;
 nonFreeableAvailSubAllocSectors : nuint32;
 notUsableSubAllocSectors : nuint32;
 subAllocClusters : nuint32;
 dataStreamsCount : nuint32;
 limboDataStreamsCount : nuint32;
 oldestDeletedFileAgeInTicks : nuint32;
 compressedDataStreamsCount : nuint32;
 compressedLimboDataStreamsCount : nuint32;
 unCompressableDataStreamsCount : nuint32;
 preCompressedSectors : nuint32;
 compressedSectors : nuint32;
 migratedFiles : nuint32;
 migratedSectors : nuint2;
 clustersUsedByFAT : nunt32;
 clustersUsedByDirectories : nuint32;
 clustersUsedByExtendedDirs : nuint32;
 totalDirectoryEntries : nuint32;
 unUsedDirectoryEntries : nuint32;
 totalExtendedDirectoryExtants : nuint32;
 unUsedExtendedDirectoryExtants : nuint32;
 extendedAttributesDefined : nuint32;
 extendedAttributeExtantsUsed : nuint32;
 directoryServicesObjectID : nuint32;
 volumeLastModifiedDateAndTime : nuint32;
 End;

Fields
volumeType

Specifies the defined type of the current volume.

statusFlagBits
Specifies the options that are currently available on the volume.

sectorSize
Specifies the sector size (in bytes).

sectorsPerCluster
Specifies the number of sectors per cluster or block.

volumeSizeInClusters
Specifies the size of the volume (in clusters or blocks).

freedClusters
Server Environment Structures 321

322 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Specifies the number of clusters or blocks that are currently free for allocation (does not
include space that is currently available from deleted or limbo files, nor space that could be
reclaimed from the suballocation file system).

subAllocFreeableClusters
Specifies the space that can be reclaimed from the suballocation file system.

freeableLimboSectors
Specifies the disk space (in clusters or blocks) that can be freed from deleted files.

nonFreeableLimboSectors
Specifies the disk space (in clusters or blocks) that is currently in deleted files and is not aged
enough to be classified as freeableLimboClusters.

nonFreeableAvailSubAllocSectors
Specifies the space available to the suballocation file system, but not freeable to return as
clusters or blocks.

notUsableSubAllocSectors
Specifies the disk space that is wasted by the suballocation file system. These clusters cannot
be allocated by the suballocation system or used a regular clusters or blocks.

subAllocClusters
Specifies the disk space being used by the suballocation file system.

dataStreamsCount
Specifies the number of data streams for real files that have data allocated to them.

limboDataStreamsCount
Specifies the number of data streams for deleted files that have data allocated to them.

oldestDeletedFileAgeInTicks
Specifies the current age of the oldest file (in ticks).

compressedDataStreamsCount
Specifies the number of data streams for compressed real files.

compressedLimboDataStreamsCount
Specifies the number of data streams for compressed deleted files.

unCompressableDataStreamsCount
Specifies the number of data streams that are not compressable (real and deleted).

preCompressedSectors
Specifies the amount of disk space that was allocated to all files before they were compressed
(includes "hole" space).

compressedSectors
Specifies the amount of disk space that is used by all compressed files.

migratedFiles
r Management

novdocx (E
N

U
) 01 February 2006
Specifies the number of migrated files.

migratedSectors
Specifies the amount of migrated disk space (in sectors).

clustersUsedByFAT
Specifies the amount of disk space (in clusters or blocks) being used by the FAT table.

clustersUsedByDirectories
Specifies the amount of disk space (in clusters or blocks) being used by directories.

clustersUsedbyExtendedDirs
Specifies the amount of disk space (in clusters or blocks) being used by the extended directory
space.

totalDirectoryEntries
Specifies the total number of directories that are available on the volume.

unUsedDirectoryEntries
Specifies the total number of directory entries that are not in use on the volume.

totalExtendedDirectoryExtants
Specifies the amount of extended directory space extants (128 bytes each) that are available on
the volume.

unUsedExtendedDirectoryExtants
Specifies the amount of extended directory space extants (128 bytes each) that are not in use on
the volume.

extendedAttributesDefined
Specifies the number of extended attributes that are defined on the volume.

extendedAttributeExtantsUsed
Specifies the number of extended directory extants that are used by the extended attributes.

directoryServicesObjectID
Specifies the NDS ID for the volume.

volumeLastModifiedDateAndTime
Specifies the last time any file or subdirectory on the volume was modified (as tracked by the
OS).

Remarks
volumeType can have the following values:

0 VINetWare386
1 VINetWare286
2 VINetWare386x30
3 VINetWare386v31
Server Environment Structures 323

324 NDK: Serve

novdocx (E
N

U
) 01 February 2006
statusFlagBits can have the following values:

0x01 SubAllocEnableBit
0x02 CompressionEnabledBit
0x04 MigrationEnableBit
0x08 AuditingEnabledBit
0x10 ReadOnlyEnableBit
0x20 ImmediatePurgeBit
0x80000000 NSSVolumeBit
r Management

novdocx (E
N

U
) 01 February 2006
VOLUME_INFO_BY_LEVEL_DEF2
Returns volume information.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 volumeActiveCount ;
 nuint32 volumeUseCount ;
 nuint32 mACRootIDs ;
 nuint32 volumeLastModifiedDateAndTime ;
 nuint32 volumeReferenceCount ;
 nuint32 compressionLowerLimit ;
 nuint32 outstandingIOs ;
 nuint32 outstandingCompressionIOs ;
 nuint32 compressionIOsLimit ;
} VOLUME_INFO_BY_LEVEL_DEF2;

Delphi Structure
uses calwin32

 VOLUME_INFO_BY_LEVEL_DEF2 = packed Record
 volumeActiveCount : nuint32;
 volumeUseCount : nuint32;
 mACRootIDs : nuint32;
 volumeLastModifiedDateAndTime : nuint32;
 volumeReferenceCount : nuint32;
 compressionLowerLimit : nuint32;
 outstandingIOs : nuint32;
 outstandingCompressionIOs : nuint32;
 compressionIOsLimit : nuint32;
 End;

Fields
volumeActiveCount

Specifies a per-volume count that indicates the volume currently has operations in progress that
need to be completed before other actions (such as dismounting a volume) can be initiated.

volumeUseCount
Specifies a per-volume count that is incremented before directory cache requests and other
writes to the directory can begin. This field is decremented when such operations complete.

mACRootIDs
Specifies the Directory Numbers of the Macintosh roots.
Server Environment Structures 325

326 NDK: Serve

novdocx (E
N

U
) 01 February 2006
volumeLastModifiedDateAndTime
Specifies the last date and time that any subdirectory on the volume was modified.

volumeReferenceCount
Specifies the last modified reference count. This field is increment every time that
MarkDirectoryChanged is called on the volume.

compressionLowerLimit
Specifies a value used to determine if a file will be smaller once it is compressed. On a volume
with suballocation enabled, this value is set to 512; otherwise, it is determined (in part) by the
defined block size of the volume.

outstandingIOs
Specifies the number of IO operations that are still in progress and have not yet completed.

outstandingCompressionIOs
Specifies the number of compression-related IO operations that are still in progress and have
not yet completed.

compressionIOsLimit
Specifies a per-volume count of the number of IO operations that can be dedicated to
compression as opposed to the number of regular reading and writing operations.
r Management

novdocx (E
N

U
) 01 February 2006
VOLUME_SEGMENT
Returns information about the segments in a volume.

Service: Server Environment

Defined In: nwfse.h

Structure
typedef struct
{
 nuint32 volumeSegmentDeviceNum ;
 nuint32 volumeSegmentOffset ;
 nuint32 volumeSegmentSize ;
} VOLUME_SEGMENT;

Delphi Structure
uses calwin32

 VOLUME_SEGMENT = packed Record
 volumeSegmentDeviceNum : nuint32;
 volumeSegmentOffset : nuint32;
 volumeSegmentSize : nuint32;
 End;

Fields
volumeSegmentDeviceNum

Specifies the device the segment is located on.

volumeSegmentOffset
Specifies the offset of the segment in bytes.

volumeSegmentSize
Specifies the segment size in bytes.
Server Environment Structures 327

328 NDK: Serve

novdocx (E
N

U
) 01 February 2006
r Management

4
novdocx (E

N
U

) 01 February 2006
4Server Management Concepts

Server management allows you to manage server functions from the workstation. From the
workstation you can

• Add a name space to a volume
• Mount and dismount volumes
• Excute an NCF fileson a server
• Load and unload NLMs
• Modifiy SET command values
Server Management Concepts 329

330 NDK: Serve

novdocx (E
N

U
) 01 February 2006
r Management

5
novdocx (E

N
U

) 01 February 2006
5Server Management Tasks

This section describes the common tasks associated with Server Management.

5.1 Managing Volumes
1 To mount a volume using either a volume name or a volume number, call

NWSMMountVolume (page 347).
2 To dismount a volume using a volume name, call NWSMDismountVolumeByName

(page 336).
3 To dismount a volume using a volume number, call NWSMDismountVolumeByNumber

(page 338).

5.2 Managing a Volume’s Name Space
1 To add a specified name space to a volume on a server, call NWSMAddNSToVolume

(page 334).

5.3 Managing NCF Files
1 To execute a selected NCF file on a specified server, call NWSMExecuteNCFFile (page 340).

5.4 Managing NLMs
1 To load a selected NLM on a server, call NWSMLoadNLM (page 342).
2 To unload a selected NLM on a server, call NWSMUnloadNLM (page 353).

5.5 Managing SET Values
1 To change a SET integer value, call NWSMSetDynamicCmdIntValue (page 349).
2 To change a SET string value, call NWSMSetDynamicCmdStrValue (page 351).
Server Management Tasks 331

332 NDK: Serve

novdocx (E
N

U
) 01 February 2006
r Management

6
novdocx (E

N
U

) 01 February 2006
6Server Management Functions

This documentation alphabetically lists the server management functions and describes their
purpose, syntax, parameters, and return values.

• “NWSMAddNSToVolume” on page 334
• “NWSMDismountVolumeByName” on page 336
• “NWSMDismountVolumeByNumber” on page 338
• “NWSMExecuteNCFFile” on page 340
• “NWSMLoadNLM” on page 342
• “NWSMLoadNLM2” on page 344
• “NWSMMountVolume” on page 347
• “NWSMSetDynamicCmdIntValue” on page 349
• “NWSMSetDynamicCmdStrValue” on page 351
• “NWSMUnloadNLM” on page 353
Server Management Functions 333

334 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWSMAddNSToVolume
Adds a specified name space to a mounted volume on a server

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMAddNSToVolume
 (NWCONN_HANDLE connHandle,
 nuint16 volNumber,
 nuint8 namspc);

Delphi Syntax
uses calwin32

Function NWSMAddNSToVolume
 (connHandle : NWCONN_HANDLE;
 volNumber : nuint16;
 namspc : nuint8
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

volNumber
(IN) Specifies the volume number on which the name space will be loaded.

namspc
(IN) Specifies the name space to load on the volume.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESS

0x00BF No add name space string given
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged into connHandle, be permanently authenticated, and have console operator
rights at the minimum to call NWSMAddNSToVolume.

namspc values cannot be ORed; they may be added on each call. namspc values follow:

NW_NS_MAC
NW_NS_NFS
NW_NS_FTAM
NW_NS_OS2

Execute ADD NAME SPACE only once for each non-DOS naming convention you want to store on
a volume.

Before you can add a name space to a volume, the volume and the name space module must both be
loaded. See the NWSMLoadNLM (page 342) function.

NCP Calls
0x2222 135 5 Add Name Space To Volume

See Also
NWSMLoadNLM (page 342)

0x0205 Unable to add specified name space to a volume

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x89FB ERR_NCP_NOT_SUPPORTED
Server Management Functions 335

336 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWSMDismountVolumeByName
Dismounts a volume on a selected server

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMDismountVolumeByName (
 NWCONN_HANDLE connHandle,
 const nstr8 N_FAR *volumeName);

Delphi Syntax
uses calwin32

Function NWSMDismountVolumeByName
 (connHandle : NWCONN_HANDLE;
 volumeName : pnstr8
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

volumeName
(IN) Points to the NULL-terminated name of the NetWare volume to dismount.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions)for more information.

0x0000 SUCCESS

0x00BF Invalid volumeName string passed

0x0204 Unable to dismount specified volume name

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged into connHandle, be permanently authenticated, and have console operator
rights at the minimum to call NWSMDismountVolumeByName.

NCP Calls
0x2222 131 4 Dismount Volume

See Also
NWSMMountVolume (page 347)

0x8998 VOLUME_DOES_NOT_EXIST

0x89FB ERR_NCP_NOT_SUPPORTED
Server Management Functions 337

338 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWSMDismountVolumeByNumber
Dismounts a volume on a selected server

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMDismountVolumeByNumber
 (NWCONN_HANDLE connHandle,
 nuint16 volumeNumber);

Delphi Syntax
uses calwin32

Function NWSMDismountVolumeByNumber
 (connHandle : NWCONN_HANDLE;
 volumeNumber : nuint16
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

volumeNumber
(IN) Specifies the number of the NetWare volume to dismount.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions)for more information.

0x0000 SUCCESS

0x00BF Invalid volumeName string passed

0x0204 Unable to dismount specified volume name

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged into connHandle, be permanently authenticated, and have console operator
rights at the minimum to call NWSMDismountVolumeByNumber.

NCP Calls
0x2222 131 4 Dismount Volume

See Also
NWSMMountVolume (page 347)

0x8998 VOLUME_DOES_NOT_EXIST

0x89FB ERR_NCP_NOT_SUPPORTED
Server Management Functions 339

340 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWSMExecuteNCFFile
Executes a selected NCF file on a specified server

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMExecuteNCFFile (
 NWCONN_HANDLE connHandle,
 const nstr8 N_FAR *NCFFileName);

Delphi Syntax
uses calwin32

Function NWSMExecuteNCFFile
 (connHandle : NWCONN_HANDLE;
 NCFFileName : pnstr8
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

NCFFileName
(IN) Points to the NULL-terminated name of the file to execute.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESS

0x009E No Path and Name field supplied

0x0207 Unable to execute NCF file

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged into connHandle, be permanently authenticated, and have console operator
rights at the minimum to call NWSMExecuteNCFFile.

fileName may include a volume and path in the following format:

{VOLUME NAME:}{PATH\...|file name}

NCP Calls
0x2222 131 7 Execute NCF File

0x8993 INVALID_FILENAME

0x89FB ERR_NCP_NOT_SUPPORTED
Server Management Functions 341

342 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWSMLoadNLM
Loads a selected NLM on a server

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMLoadNLM (
 NWCONN_HANDLE connHandle,
 const nstr8 N_FAR *loadCommand);

Delphi Syntax
uses calwin32

Function NWSMLoadNLM
 (connHandle : NWCONN_HANDLE;
 loadCommand : pnstr8
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

loadCommand
(IN) Points to the load command for the NLM. It must be NULL terminated; maximum length
is 482 bytes.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions)for more information.

0x0000 SUCCESS

0x0202 Unable to load specified module

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged in with the connection specified by connHandle, be permanently
authenticated, and have supervisor rights to call NWSMLoadNLM.

loadCommand can be any string that is valid for the LOAD command on the console (except it
does not include the actual "LOAD" command). It contains the NLM name (including the path if it
is not in the server path), and command line parameters if any.

The LOAD command has the following format:

{VOLUME NAME:}{PATH\...}NLMname{.ext}{parameters}

NWSMLoadNLM does not support UNC paths.

The NLM does not have to include the extensions. .NLM will be assumed if the extensions are not
included.

The server console LOAD command is documented in the NetWare server utilities documentation.

NCP Calls
0x2222 131 1 Load A NLM

See Also
NWSMUnloadNLM (page 353)

0x88FB ERR_NCP_NOT_SUPPORTED

0x899E INVALID_FILENAME
Server Management Functions 343

344 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWSMLoadNLM2
Loads a selected NLM on a server

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMLoadNLM2 (
 NWCONN_HANDLE connHandle,
 const nstr8 N_FAR *loadCommand,
 pnuint32 loadNLMReturnCode);

Delphi Syntax
uses calwin32

Function NWSMLoadNLM2
 (connHandle : NWCONN_HANDLE;
 loadCommand : const nstr8 N_FAR
 loadNLMReturnCode : pnuint32
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

loadCommand
(IN) Points to the load command for the NLM. It must be NULL terminated; maximum length
is 482 bytes.

loadNLMReturnCode
(OUT) Points to nuint32 variable which contains a return code from the loading NLM
procedure in servers when the return code from NWSMLoadNLM2 is 0x0202. See the
Remarks section for possible values.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged in with the connection specified by connHandle, be permanently
authenticated, and have a minimum of console operator rights to call NWSMLoadNLM2.

loadCommand can be any string that is valid for the LOAD command on the console (except it
does not include the actual "LOAD" command). It contains the NLM name (including the path if it
is not in the server path), and command line parameters if any.

The LOAD command has the following format:

{VOLUME NAME:}{PATH\...}NLMname{.ext}{parameters}

NWSMLoadNLM2 does not support UNC paths.

NWSMLoadNLM2 is an enhancement version of NWSMLoadNLM. It provides extra information
to explain why the function cannot load an NLM.

The following values are possibilities when the loadNLMReturnCode is 0x0202:

LOAD_COULD_NOT_FIND_FILE 1
LOAD_ERROR_READING_FILE 2
LOAD_NOT_NLM_FILE_FORMAT 3
LOAD_WRONG_NLM_FILE_VERSION 4
LOAD_REENTRANT_INITIALIZE_FAILURE 5
LOAD_CAN_NOT_LOAD_MULTIPLE_COPIES 6
LOAD_ALREADY_IN_PROGRESS 7
LOAD_NOT_ENOUGH_MEMORY 8
LOAD_INITIALIZE_FAILURE 9
LOAD_INCONSISTENT_FILE_FORMAT 10
LOAD_CAN_NOT_LOAD_AT_STARTUP 11
LOAD_AUTO_LOAD_MODULES_NOT_LOADED 12
LOAD_UNRESOLVED_EXTERNAL 13
LOAD_PUBLIC_ALREADY_DEFINED 14
LOAD_XDC_DATA_ERROR 15
LOAD_NOT_OS_DOMAIN 16

NCP Calls
0x2222 131 1 Load A NLM

0x0000 SUCCESS

0x0202 Unable to load specified module

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x88FB ERR_NCP_NOT_SUPPORTED

0x899E INVALID_FILENAME
Server Management Functions 345

346 NDK: Serve

novdocx (E
N

U
) 01 February 2006
See Also
NWSMLoadNLM (page 342), NWSMUnloadNLM (page 353)
r Management

novdocx (E
N

U
) 01 February 2006
NWSMMountVolume
Mounts a volume on a selected server

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMMountVolume (
 NWCONN_HANDLE connHandle,
 const nstr8 N_FAR *volumeName,
 pnuint32 volumeNumber);

Delphi Syntax
uses calwin32

Function NWSMMountVolume
 (connHandle : NWCONN_HANDLE;
 volumeName : pnstr8;
 volumeNumber : pnuint32
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

volumeName
(IN) Points to the name of the NetWare volume to mount (must be NULL terminated).

volumeNumber
(OUT) Points to the number of the volume.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESS
Server Management Functions 347

348 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged into connHandle, be permanently authenticated, and have console operator
rights at the minimum to call NWSMMountVolume.

If upon mounting a volume, an error occurs, and if the set parameters are such that VREPAIR will
automatically execute, VREPAIR will execute and NWSMMountVolume will not return until
VREPAIR has completed. The volume is then mounted.

NCP Calls
0x2222 131 3 Mount Volume

See Also
NWSMDismountVolumeByName (page 336), NWSMDismountVolumeByNumber (page 338)

0x00BF Invalid volumeName string passed

0x0203 VOLUME_ALREADY_MOUNTED

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FB ERR_NCP_NOT_SUPPORTED

0x8998 VOLUME_DOES_NOT_EXIST
r Management

novdocx (E
N

U
) 01 February 2006
NWSMSetDynamicCmdIntValue
Changes the current value of a set command (that takes in integer values) on a specified server

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMSetDynamicCmdIntValue (
 NWCONN_HANDLE connHandle,
 const nstr8 N_FAR *setCommandName,
 nuint32 cmdValue;

Delphi Syntax
uses calwin32

Function NWSMSetDynamicCmdIntValue
 (connHandle : NWCONN_HANDLE;
 setCommandName : pnstr8;
 cmdValue : nuint32
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

setCommandName
(IN) Points to the set parameter name. It must be NULL terminated.

cmdValue
(IN) Specifies the new value for the set command parameter.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESS
Server Management Functions 349

350 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged into connHandle, be permanently authenticated, and have console operator
rights at the minimum to call NWSMSetDynamicCmdIntValue.

The server console SET command is documented in the NetWare server utilities documentation. The
SET values OFF/ON are treated as the integers 0 (zero) and 1 respectively; they are not treated as
strings.

NCP Calls
0x2222 131 6 Set Command Value

See Also
NWGetServerSetCommandsInfo (page 151), NWGetServerSetCategories (page 149),
NWSMSetDynamicCmdStrValue (page 351)

0x008C Invalid type flag value

0x00BF No setCommandName string

0x0206 Unable to set the command

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FB ERR_NCP_NOT_SUPPORTED
r Management

novdocx (E
N

U
) 01 February 2006
NWSMSetDynamicCmdStrValue
Changes the current values of a set command (that takes in string values) on a specified server

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMSetDynamicCmdStrValue (
 NWCONN_HANDLE connHandle,
 const nstr8 N_FAR *setCommandName,
 const nstr8 N_FAR *cmdValue);

Delphi Syntax
uses calwin32

Function NWSMSetDynamicCmdStrValue
 (connHandle : NWCONN_HANDLE;
 setCommandName : pnstr8;
 cmdValue : pnstr8
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

setCommandName
(IN) Points to the parameter command name. It must be NULL terminated.

cmdValue
(IN) Points to the new value for the set command parameter. It must be NULL terminated.

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESS
Server Management Functions 351

352 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged into connHandle, be permanently authenticated, and have console operator
rights at the minimum to call NWSMSetDynamicCmdStrValue.

The server console SET command is documented in the NetWare server utilities documentation. The
SET values OFF/ON are treated as the integers 0 (zero) and 1 respectively; they are not treated as
strings.

NCP Calls
0x2222 131 6 Set Command Value

See Also
NWGetServerSetCommandsInfo (page 151), NWGetServerSetCategories (page 149),
NWSMSetDynamicCmdIntValue (page 349)

0x008C Invalid type flag value

0x00BF No setCommandName string

0x0206 Unable to set the command

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FB ERR_NCP_NOT_SUPPORTED
r Management

novdocx (E
N

U
) 01 February 2006
NWSMUnloadNLM
Unloads a selected NLM on a server

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Server Management

Syntax
#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMUnloadNLM (
 NWCONN_HANDLE connHandle,
 const nstr8 N_FAR *NLMName);

Delphi Syntax
uses calwin32

Function NWSMUnloadNLM
 (connHandle : NWCONN_HANDLE;
 NLMName : pnstr8
) : NWCCODE;

Parameters
connHandle

(IN) Specifies the server connection handle which is being managed.

NLMName
(IN) Points to the name of the NLM to be unloaded (NULL-terminated with a maximum length
of 482 bytes).

Return Values
These are common return values; see Return Values (NDK: Connection, Message, and NCP
Extensions) for more information.

0x0000 SUCCESS

0x009E Bad file name or no file name given

0x0202 Unable to unload specified module

0x8801 INVALID_CONNECTION
Server Management Functions 353

354 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
You must be logged into connHandle, be permanently authenticated, and have supervisor rights
to call NWSMUnloadNLM.

The NLMName parameter can be any string that is valid for the UNLOAD command on the console
(except it does not include the actual "UNLOAD" command) and contains the NLM name.

The NLMName parameter has the following format:

NLMname{.ext}

NWSMUnloadNLM does not support UNC paths.

The NLM does not have to include the extensions. .NLM will be assumed if the extension is not
included.

The server console UNLOAD command is documented in the NetWare server utilities
documentation.

NOTE: NWSMUnloadNLM can return SUCCESS without unloading the specified NLM
application if the NLM also has dependencies loaded. The return of SUCCESS signifies only that
the server successfully processed the RPC.

NCP Calls
0x2222 131 2 Unload A NLM

See Also
NWSMLoadNLM (page 342)

0x890A NLM_INVALID_CONNECTION

0x89FB ERR_NCP_NOT_SUPPORTED

0x899E INVALID_FILENAME
r Management

7
novdocx (E

N
U

) 01 February 2006
7TTS Concepts

This section provides and overview of TTS services, its functions, and features.

7.1 TTS Introduction
The Transaction Tracking System™ (TTS™) software allows NetWare® servers to track
transactions and ensure file integrity by backing out of or erasing interrupted or partially completed
transactions. For example, the server can back out of a transaction if your application terminates
unexpectedly while a transaction is in progress.

A transaction can include any series of requests that affect transactional files. TTS can monitor from
1 to 200 transactions at a time. The maximum number (50 to 200) is configurable.

TTS can track only one transaction at a time for each session. If a session sends several transactions
to a server rapidly, TTS queues the transactions and services them one at a time. TTS lets you begin
and end transactions, monitor TTS status, and access TTS information.

7.2 Implicit Transaction Tracking
Implicit transaction tracking requires no coding on your part. If TTS is installed and enabled on a
NetWare® server, transaction tracking applies to any logical or physical record lock you place on a
transactional file. If the workstation’s connection is disrupted before the records are unlocked, TTS
backs out of the transaction and restores the records to their original state.

For related information, see Section 7.3, “Explicit Transaction Tracking,” on page 355.

7.3 Explicit Transaction Tracking
Explicit transaction tracking uses TTS. To signal an explicit transaction, bracket file update
sequences with a pair of TTS functions.

• NWTTSBeginTransaction (page 369) signals the beginning of a transaction.
• NWTTSEndTransaction (page 371) signals the end of a transaction.

TTS tracks all transactional files accessed between these two functions and automatically places a
physical lock on transactional files that you write to during this time. As with implicit tracking, if
your connection is disrupted, TTS backs out of any modified files. You can force TTS to back out of
the transaction by calling NWTTSAbortTransaction (page 367).

TTS affects only transactional files. To make a file transactional, set the file’s transaction bit. This
bit is a file attribute and can be modified using the File System service. (See Directory Entry
Attributes in Volume Management.)

For related information, see Section 7.2, “Implicit Transaction Tracking,” on page 355.
TTS Concepts 355

356 NDK: Serve

novdocx (E
N

U
) 01 February 2006
7.4 Transaction Tracking Process
A typical transaction scenario is a banking database application that writes a debit to one account, a
credit to another account, and a note to a log. The dependencies among the three operations make it
extremely important that they are performed as a single transaction.

If any one of the operations fails, the integrity of the other operations is undermined. TTS ensures
data integrity under circumstances such as these. Below is a description of how TTS responds to a
request to write to a transactional file.

1. TTS stores the new data in cache memory. The file itself remains unchanged.
2. TTS scans the target file on the server hard disk, finds the data to be changed (old data), and

copies the old data to cache memory. TTS also records the name and directory path of the target
file and the location and length of the old data (record) within the file. The target file on the
server hard disk is still unchanged.

3. TTS writes the old data in cache memory to a transaction work file on the server hard disk. The
transaction work file resides at the root level of a volume on the server. The file is flagged
system and hidden. The target file on the server hard disk is still unchanged.

4. TTS finally writes the new data in cache memory to the target file on the server hard disk.

TTS repeats these steps for each write within a transaction. The transaction work file grows to
accommodate the old data for each write. If the transaction is interrupted, TTS writes the contents of
the transaction work file to the target file, thereby restoring the file to its pre-transaction state.

7.5 Implicit Tracking Threshold
TTS lets you read and modify the implicit tracking threshold. This is the number of logical and
physical locks your application can set before implicit tracking takes effect. The default threshold is
0, meaning that whenever you place a logical or physical lock on a transactional file, the file will be
tracked. A threshold of 0xFF means that implicit transactions for the associated lock type have been
completed.

There are two reasons to modify the threshold value:

• If your application is performing explicit transactions but also locking records you don’t want
to track, you can turn off implicit transactions.

• If your application always keeps one or more records locked, raising the threshold prevents
these records from being tracked.

7.6 TTS Transaction Functions
These functions perform transaction tracking.

Function Header Comment

NWTTSAbortTransaction nwtts.h Aborts all transactions, explicit or implicit. When
this function returns successfully, all transactions
have been successfully backed out of.

NWTTSBeginTransaction nwtts.h Begins an explicit transaction.
r Management

novdocx (E
N

U
) 01 February 2006
7.7 TTS Status and File Control Functions
These functions check and modify the status of TTS on a NetWare® server and access the TTS
transaction bit flags associated with transactional files.

7.8 TTS Threshold Functions
These functions read and modify the connection and process thresholds affecting implicit
transaction tracking.

NWTTSEndTransaction nwtts.h Ends an explicit transaction and returns a
transaction reference number.

Function Header Comment

NWDisableTTS nwtts.h Disables transaction tracking on a server.

NWEnableTTS nwtts.h Enables transaction tracking on a server.

NWTTSGetControlFlags nwtts.h Returns the transaction bits for files flagged as
transactional.

NWTTSIsAvailable nwtts.h Verifies that the server supports transaction
tracking.

NWTTSSetControlFlags nwtts.h Enables or disables automatic record locking when
writing to transactional files.

NWTTSTransactionStatus nwtts.h Verifies whether a transaction has been written to
disk.

Function Header Comment

NWTTSGetConnectionThresholds nwtts.h Returns the number of logical and physical
record locks allowed before implicit
transactions begin.

NWTTSGetProcessThresholds nwtts.h Returns the number of explicit physical and
logical record locks allowed before implicit
locking begins.

NWTTSSetConnectionThresholds nwtts.h Informs a server of how many explicit
physical and logical record locks to permit
before invoking implicit transactions.

NWTTSSetProcessThresholds nwtts.h Sets the number of logical and physical
locks to perform before implicit locking
begins.

Function Header Comment
TTS Concepts 357

358 NDK: Serve

novdocx (E
N

U
) 01 February 2006
r Management

8
novdocx (E

N
U

) 01 February 2006
8TTS Tasks

This section describes a task associated with TTS services.

8.1 Enabling TTS
When TTS is disabled, NDS operations which require modifying the database on that server are also
disabled.

1 At the console prompt of the server, type ENABLE TTS.

NOTE: If TTS was disabled because volume SYS: was full, log onto the server and delete
unnecessary files from volume SYS:, then type ENABLE TTS at the console.
TTS Tasks 359

360 NDK: Serve

novdocx (E
N

U
) 01 February 2006
r Management

9
novdocx (E

N
U

) 01 February 2006
9TTS Functions

This documentation alphabetically lists the TTS functions and describes their purpose, syntax,
parameters, and return values.

• “NWDisableTTS” on page 362
• “NWEnableTTS” on page 364
• “NWGetTTSStats (obsolete-moved from .h file 6/99)” on page 366
• “NWTTSAbortTransaction” on page 367
• “NWTTSBeginTransaction” on page 369
• “NWTTSEndTransaction” on page 371
• “NWTTSGetConnectionThresholds” on page 373
• “NWTTSGetControlFlags” on page 375
• “NWTTSGetProcessThresholds” on page 377
• “NWTTSIsAvailable” on page 379
• “NWTTSSetConnectionThresholds” on page 381
• “NWTTSSetControlFlags” on page 383
• “NWTTSSetProcessThresholds” on page 385
• “NWTTSTransactionStatus” on page 387
TTS Functions 361

362 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWDisableTTS
Disables transaction tracking on a NetWare® server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDisableTTS (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWDisableTTS
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
Transaction Tracking is always enabled on 4.x servers due to NDS™ requirements; therefore,
enabling or disabling transaction tracking is only supported on 3.x servers.

NCP Calls
0x2222 23 207 Disable Transaction Tracking
TTS Functions 363

364 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWEnableTTS
Enables transaction tracking on a NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWEnableTTS (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWEnableTTS
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
Transaction Tracking is always enabled on 4.x servers due to NDS requirements; therefore, enabling
or disabling transaction tracking is only supported on 3.x servers.

NCP Calls
0x2222 23 208 Enable Transaction Tracking
TTS Functions 365

366 NDK: Serve

novdocx (E
N

U
) 01 February 2006
NWGetTTSStats (obsolete-moved from .h file 6/99)
Was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
NWTTSAbortTransaction
Aborts all transactions, explicit and implicit

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSAbortTransaction (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWTTSAbortTransaction
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FE DIRECTORY_LOCKED

0x89FE Transaction Restart

0x89FF LOCK_ERROR
TTS Functions 367

368 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
When NWTTSAbortTransaction is complete, all transactions will have been successfully backed
out.

If a transaction is aborted, all Writes made since the beginning of a transaction are cancelled, and all
files are returned to the state they were in before the transaction began.

NWTTSAbortTransaction releases the following record locks:

• Physical record locks generated by the NetWare server when an application tried to write an
unlocked record.

• Physical or logical locks not released because of a file Write.

0x89FE indicates more than the threshold number of logical or physical records are still locked by
the application. However, the transaction is finished and any locks being held are released. When
this happens, the NetWare server automatically starts a new implicit transaction.

NCP Calls
0x2222 34 3 TTS Abort Transaction

See Also
NWTTSBeginTransaction (page 369), NWTTSEndTransaction (page 371)
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSBeginTransaction
Begins an explicit transaction

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSBeginTransaction (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWTTSBeginTransaction
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWTTSBeginTransaction tracks all transactional files currently open, and those opened during the
transaction.

0x0000 Successful

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
TTS Functions 369

370 NDK: Serve

novdocx (E
N

U
) 01 February 2006
When data is written to a transaction file during a transaction, the NetWare server automatically
generates a physical record lock for the region being written. If a lock already exists, no additional
lock is generated. This automatic locking can be disabled by calling NWTTSSetControlFlags.

Any closing and unlocking of transaction files is delayed until either NWTTSEndTransaction or
NWTTSAbortTransaction is executed. Logical and physical records are not unlocked until the end
of the transaction if file writes are performed while the lock is in force.

NCP Calls
0x2222 34 1 TTS Begin Transaction

See Also
NWTTSAbortTransaction (page 367), NWTTSEndTransaction (page 371),
NWTTSSetControlFlags (page 383)
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSEndTransaction
Ends an explicit transaction and returns a transaction reference number

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSEndTransaction (
 NWCONN_HANDLE conn,
 pnuint32 transactionNum);

Delphi Syntax
uses calwin32

Function NWTTSEndTransaction
 (conn : NWCONN_HANDLE;
 transactionNum : pnuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

transactionNum
(OUT) Points to the transaction reference number for the transaction being ended (optional).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 Successful

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
TTS Functions 371

372 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
The transaction number is used to verify a successful transaction completion to disk.

The transaction is not necessarily written to disk when the reference number is returned. A client
must call NWTTSTransactionStatus to verify a transaction has been written to disk. If the NetWare
server fails before all updates contained within the transaction have been written to disk, the
transaction is backed out when the NetWare server is rebooted.

If transaction tracking is disabled, transactionNum can still determine when the transaction has
been completely written to disk. Since transactionNum is optional, substitute NULL if no
return values are desired.

NWTTSEndTransaction releases all physical record locks generated by the NetWare server when a
Write is made to an unlocked record. In addition, physical or logical locks that were not released due
to a file Write are unlocked at this time.

0x89FE indicates more than the threshold number of logical or physical records are still locked by
the application. However, the transaction is finished and any locks being held are released. In this
case, the NetWare server automatically starts a new implicit transaction.

NCP Calls
 0x2222 34 2 TTS End Transaction

See Also
NWTTSAbortTransaction (page 367), NWTTSBeginTransaction (page 369),
NWTTSTransactionStatus (page 387)

0x89FE Transaction Restart

0x89FF LOCK_ERROR
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSGetConnectionThresholds
Returns the number of logical and physical record locks allowed before implicit transactions begin

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSGetConnectionThresholds (
 NWCONN_HANDLE conn,
 pnuint8 logicalLockLevel,
 pnuint8 physicalLockLevel);

Delphi Syntax
uses calwin32

Function NWTTSGetConnectionThresholds
 (conn : NWCONN_HANDLE;
 logicalLockLevel : pnuint8;
 physicalLockLevel : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

logicalLockLevel
(OUT) Points to the number of logical record locks allowed before implicit transactions begin
(0 to 255, optional).

physicalLockLevel
(OUT) Points to the number of physical record locks allowed before implicit transactions begin
(0 to 255, optional).
TTS Functions 373

374 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
Both NWTTSSetConnectionThresholds and NWGetConnectionThreshold s are useful for
applications changing the implicit application thresholds that later want to restore them. For
example, NWTTSGetConnectionThresholds can get the number of logical and physical locks, and
NWTTSSetConnectionThresholds can perform one of the following:

• Turn off implicit transactions. (Applications using only explicit transactions, but sometimes
generating unnecessary implicit transactions, need to turn off all implicit transactions.)

• Set implicit thresholds for applications always keeping one or more records locked.

The default threshold for logical and physical locks is 0. 0xFF means implicit transactions for the
lock type have been completed.

Both physicalLockLevel and logicalLockLevel are optional parameters. Substitute
NULL if these parameters are not to be returned. However, all parameter positions must be filled.

NCP Calls
0x2222 34 7 TTS Get Workstation Threshold

See Also
NWTTSSetConnectionThresholds (page 381)

0x0000 Successful

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSGetControlFlags
Returns the transaction bits for files flagged as transactional

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSGetControlFlags (
 NWCONN_HANDLE conn,
 pnuint8 controlFlags);

Delphi Syntax
uses calwin32

Function NWTTSGetControlFlags
 (conn : NWCONN_HANDLE;
 controlFlags : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

controlFlags
(OUT) Points to Transaction Tracking Control flags.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
TTS Functions 375

376 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
Transaction tracking control flags are only valid for files flagged as TTS. Bits 1 to 7 in
controlFlags are reserved; bit 0 is defined below:

0x00 Automatic record locking is disabled
0x01 Automatic record locking is enabled

NCP Calls
0x2222 34 9 TTS Get Transaction Bits

See Also
NWTTSSetControlFlags (page 383)
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSGetProcessThresholds
Returns the number of explicit physical and logical record locks allowed before implicit locking
begins

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSGetProcessThresholds (
 NWCONN_HANDLE conn,
 pnuint8 logicalLockLevel,
 pnuint8 physicalLockLevel);

Delphi Syntax
uses calwin32

Function NWTTSGetProcessThresholds
 (conn : NWCONN_HANDLE;
 logicalLockLevel : pnuint8;
 physicalLockLevel : pnuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

logicalLockLevel
(OUT) Points to the number of explicit logical record locks allowed before implicit
transactions begin (0 to 255, optional).

physicalLockLevel
(OUT) Points to the number of explicit physical record locks allowed before implicit
transactions begin (0 to 255, optional).
TTS Functions 377

378 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
NWTTSGetProcessThresholds and NWTTSSetProcessThresholds are useful for applications
changing the implicit process thresholds that later want to restore them. For example,
NWTTSGetProcessThresholds can query an application for the number of logical and physical
record locks allowed before an implicit transaction begins, and NWTTSSetProcessThresholds can
perform one of the following:

• Turn off implicit transactions. (Applications intending to use only explicit transactions, but
sometimes generate unnecessary implicit transactions, need to turn off all implicit
transactions.)

• Set implicit thresholds for applications always keeping one or more records locked.

The default threshold for logical and physical locks is 0. 0xFF means no implicit transactions are
allowed for the lock type.

Thresholds returned by NWTTSGetProcessThresholds are valid for the requesting application only.
When the application terminates, the connection thresholds are restored.

Both physicalLockLevel and logicalLockLevel are optional parameters. Substitute
NULL if these parameters are not to be returned. However, all parameter positions must be filled.

NCP Calls
0x2222 34 5 TTS Get Application Threshold

See Also
NWTTSSetProcessThresholds (page 385)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSIsAvailable
Verifies the NetWare server supports transaction tracking

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSIsAvailable (
 NWCONN_HANDLE conn);

Delphi Syntax
uses calwin32

Function NWTTSIsAvailable
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 Transaction Tracking is Unavailable

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x89FD Transaction Tracking is Disabled

0x89FF Transaction Tracking is Available
TTS Functions 379

380 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
0x0000 does not indicate successful completion of NWTTSIsAvailable. Instead, 0x0000 indicates
TTS is unavailable. The successful completion code is 0x89FF, TTS is available.

NCP Calls
 0x2222 34 0 TTS Is Available
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSSetConnectionThresholds
Sets the number of explicit physical and logical record locks to permit before invoking implicit
transactions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSSetConnectionThresholds (
 NWCONN_HANDLE conn,
 nuint8 logicalLockLevel,
 nuint8 physicalLockLevel);

Delphi Syntax
uses calwin32

Function NWTTSSetConnectionThresholds
 (conn : NWCONN_HANDLE;
 logicalLockLevel : nuint8;
 physicalLockLevel : nuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

logicalLockLevel
(IN) Specifies the number of logical record locks to allow before implicit transactions begin (0
to 255).

physicalLockLevel
(IN) Specifies the number of physical record locks to allow before implicit transactions begin
(0 to 255).
TTS Functions 381

382 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The return values are in effect for all applications, not just ones calling
NWTTSSetConnectionThresholds.

The default threshold for logical and physical locks is 0. 0xFF means no implicit transactions for the
lock type can be performed.

NWTTSSetConnectionThresholds and NWTTSGetConnectionThresholds are useful for
applications changing the implicit application thresholds that later want to restore them.

For example, NWTTSGetConnectionThresholds can obtain the current number of logical and
physical locks, and NWTTSSetConnectionThresholds can perform one of the following:

• Turn off implicit transactions. (Applications using only explicit transactions, but sometimes
generate unnecessary implicit transactions, need to turn off all implicit transactions.)

• Set implicit thresholds for applications always keeping one or more records locked.

NCP Calls
 0x2222 34 8 TTS Set Workstation Thresholds

See Also
NWTTSGetConnectionThresholds (page 373)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSSetControlFlags
Enables or disables automatic record locking on Writes to transactional files

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSSetControlFlags (
 NWCONN_HANDLE conn,
 nuint8 controlFlags);

Delphi Syntax
uses calwin32

Function NWTTSSetControlFlags
 (conn : NWCONN_HANDLE;
 controlFlags : nuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

controlFlags
(IN) Specifies the Transaction Tracking control flags.

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
TTS Functions 383

384 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
NWTTSSetControlFlags allows a client to set the transaction bits in controlFlag.

Transaction tracking control flags are only valid for files flagged as transactional. Only bit 0 is used
currently. Flag definitions follow:

0x00 Automatic record locking is disabled
0x01 Automatic record locking is enabled

NCP Calls
 0x2222 34 10 TTS Set Transaction Bits
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSSetProcessThresholds
Sets the number of logical and physical locks to perform before implicit locking begins

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSSetProcessThresholds (
 NWCONN_HANDLE conn,
 nuint8 logicalLockLevel,
 nuint8 physicalLockLevel);

Delphi Syntax
uses calwin32

Function NWTTSSetProcessThresholds
 (conn : NWCONN_HANDLE;
 logicalLockLevel : nuint8;
 physicalLockLevel : nuint8
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

logicalLockLevel
(IN) Specifies the number of logical record locks to allow before implicit transactions begin (0-
255).

physicalLockLevel
(IN) Specifies the number of physical record locks to allow before implicit transactions begin
(0-255).
TTS Functions 385

386 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Return Values
These are common return values; see Return Values (Return Values for C) for more information.

Remarks
The thresholds set by NWTTSSetProcessThresholds are valid for the requesting application only.
When the application terminates, the default workstation thresholds are restored.

NWTTSSetProcessThresholds either turns off implicit transactions or allows applications always
keeping one or more records locked to work. Applications intending to use only explicit
transactions, but sometimes generating unnecessary implicit transactions, can call
NWTTSSetProcessThresholds to turn off all implicit transactions.

The default threshold for logical and physical locks is 0 unless the number has been changed by
calling NWTTSSetConnectionThresholds. 0xFF means no implicit transactions for the lock type are
performed.

NCP Calls
0x2222 34 6 TTS Set Application Thresholds

See Also
NWTTSGetProcessThresholds (page 377)

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY
r Management

novdocx (E
N

U
) 01 February 2006
NWTTSTransactionStatus
Verifies whether a transaction has been written to disk

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 3.2, 4.x, 5.x, 6.x

Platform: NLM, Windows NT, Windows 95, Windows 98

Library: Cross-Platform NetWare Calls (CAL*.*)

Service: Transaction Tracking System (TTS)

Syntax
#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSTransactionStatus (
 NWCONN_HANDLE conn,
 nuint32 transactionNum);

Delphi Syntax
uses calwin32

Function NWTTSTransactionStatus
 (conn : NWCONN_HANDLE;
 transactionNum : nuint32
) : NWCCODE;

Parameters
conn

(IN) Specifies the NetWare server connection handle.

transactionNum
(IN) Specifies the transaction reference number (obtained from NWTTSEndTransaction).

Return Values
These are common return values; see Return Values (Return Values for C) for more information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x890A NLM_INVALID_CONNECTION
TTS Functions 387

388 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
NWTTSTransactionStatus can be called even if NWTTSEndTransaction returns TTS_DISABLED.

Applications should not wait for transactions to be written to disk unless it is absolutely necessary.
Because the NetWare server caches algorithms, it may be up to five seconds before they are actually
written. Transactions are written to disk in the order in which they terminate.

NCP Calls
 0x2222 34 4 TTS Transaction Status

See Also
NWTTSEndTransaction (page 371)

0x89FF Transaction not written to disk
r Management

10
novdocx (E

N
U

) 01 February 2006
10Server-Based Server Environment
Concepts

This documentation describes Server-Based Server Environment concepts, its functions, and
features.

Server Environment allows you to control various server operations and gather statistics about
server operation. The functions can be divided into two categories: functions related to the
FCONSOLE utility, and statistical information functions.

10.1 Prerequisites
A knowledge of underlying NetWare® subsystems may be helpful or necessary to interpret
information returned by many of these functions. For example, interpreting connection task
information requires a general knowledge of file system record locks and semaphores.

Many of these functions return restricted information, so they require Console Operator (or, in some
cases, Supervisor) rights.

10.2 Potential Uses
The statistical functions return a wide variety of information that can be used in many ways, such as
performance analysis and configuration reporting NLM applications. Among other possibilities,
applications could identify system overloads, hardware failures, and potential bottlenecks.

10.3 Server-Based Server Environment
Functions
The functions beginning with SS are all new functions available for NetWare 4.x which provide
statistical information. The other functions are used for controlling the server and gathering
statistical information. FCONSOLE provides a good example of the kinds of information provided
by these functions.

The FCONSOLE server control functions allow you to

• Enable or disable transaction tracking
• Prohibit or allow users to log in
• Set the server time and date
• Broadcast messages to a group of workstations
• Clear a connection
• Down the server.
• Check whether a connection has console operator rights

The FCONSOLE functions also return many types of information, including

• NetWare version running on a server
Server-Based Server Environment Concepts 389

390 NDK: Serve

novdocx (E
N

U
) 01 February 2006
• The remaining disk space for an object
• Semaphore information
• File usage and task information
• Disk cache statistics
• Disk utilization information
• LAN driver information
• Information about logical and physical records

The statistical information functions return many types of information, including

• Active connections for a server
• LAN and LSL information
• CPU information
• Cache information
• IPX and SPX information
• Information about known networks and servers
• File system information
• NLM information
• Packet Burst information
• User information
• Volume information

There is some overlap in the types of information returned by the FCONSOLE functions and the
newer statistical information functions. The functions with an asterisk in the following table are new
in NetWare 4.x.

NOTE: To safeguard the server from unauthorized tampering, most functions in this section require
Console Operator rights and some require Supervisor rights.

CheckConsolePrivileges Determines whether the current connection has
console operator rights

CheckNetWareVersion Verifies compatibility of an application with the
version of the NetWare® OS running on a
server

ClearConnectionNumber Clears a logical connection from a server

DisableFileServerLogin Disables all logins to a server

DisableTransactionTracking Disables transaction tracking on a server

DownFileServer Brings the server down

EnableFileServerLogin Enables logins to the server

EnableTransactionTracking Enables transaction tracking on the server

GetBinderyObjectDiskSpaceLeft Returns an objects remaining disk space
r Management

novdocx (E
N

U
) 01 February 2006
GetConnectionSemaphores* Returns information about a connections open
semaphores

GetConnectionsOpenFiles* Returns information about a connections open
files

GetConnectionsTaskInformation* Returns information about a connections active
tasks

GetConnectionsUsageStats* Returns information about a connections usage

GetConnectionsUsingFile* Returns information about connections using a
given file

GetDiskCacheStats* Returns information about disk caching on a
server

GetDiskChannelStats* Returns information about a servers disk
channels

GetDriveMappingTable* Returns information about drive mappings for a
server

GetFileServerDateAndTime Returns the date and time of the server

GetFileServerDescriptionStrings Returns the name of the company that
distributed this copy of NetWare

GetFileServerLANIOStats* Returns information about packets sent and
received by a server

GetFileServerLoginStatus Determines whether logins are disabled or
enabled on a server

GetFileServerMiscInformation* Returns bindery and memory statistics for a
server

GetFileServerName Returns the name of a server

GetFileSystemStats* Returns file system statistics for a server

GetLanDriverConfigInfo* Returns configuration information for the LAN
drivers installed on a server

GetLogicalRecordInformation* Returns information about a logical record

GetLogicalRecordsByConnection* Returns the logical records that a connection
has logged with a server

GetPathFromDirectoryEntry* Accesses a file path listed in a servers directory
entry table (DET)

GetPhysicalDiskStats* Returns information about a physical disk

GetPhysicalRecordLocksByFile* Returns physical records that are locked in a
file

GetPhysRecLockByConnectAndFile* Returns a connections physical record locks
within a file

GetSemaphoreInformation* Returns information about a semaphore

GetServerInformation Returns information about a server
Server-Based Server Environment Concepts 391

392 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SendConsoleBroadcast Sends a message to a list of connections

SetFileServerDateAndTime Sets the date and time of the server

SSGetActiveConnListByType* Returns a list of active connections

SSGetActiveLANBoardList* Returns information about the active LAN
boards on a server

SSGetActiveProtocolStacks* Returns protocol information for a server

SSGetCacheInfo* Returns information about a servers cache
buffers

SSGetCPUInfo* Returns information about a servers CPU

SSGetDirCacheInfo* Returns information about directory caching on
a server

SSGetFileServerInfo* Returns information about a server

SSGetFileSystemInfo* Returns information about a servers file system

SSGetGarbageCollectionInfo* Returns information about garbage collection
on a server

SSGetIPXSPXInfo* Returns information about IPX™/SPX™ use on
a server

SSGetKnownNetworksInfo* Returns information about the networks known
to a server

SSGetKnownServersInfo* Returns information about the servers known to
a given server

SSGetLANCommonCounters* Returns LAN common counters

SSGetLANConfiguration* Returns information about LAN drivers on a
server

SSGetLANCustomCounters* Returns custom counters defined for a LAN
driver

SSGetLoadedMediaNumberList* Returns a list of media loaded on a server

SSGetLSLInfo* Returns information about an LSL™ board

SSGetLSLLogicalBoardStats* Returns information about LSL logical boards

SSGetMediaManagerObjChildList* Returns a list of child objects for a given media
manager object

SSGetMediaManagerObjInfo* Returns media manager information

SSGetMediaManagerObjList* Returns a list of media manager objects

SSGetMediaNameByNumber* Returns a media name for a given media
number

SSGetNetRouterInfo* Returns information about network routing on a
server

SSGetNetworkRoutersInfo* Returns information about the routers on a
network
r Management

novdocx (E
N

U
) 01 February 2006
SSGetNLMInfo* Returns information about an NLM™ running
on a server

SSGetNLMLoadedList* Returns a list of NLM applications loaded on a
server

SSGetNLMResourceTagList* Returns information about resources used by
NLM applications on a server

SSGetOSVersionInfo* Returns information about the OS version
running on a server

SSGetPacketBurstInfo* Returns Packet Burst™ information for a server

SSGetProtocolConfiguration* Returns configuration information about the
protocols on a server

SSGetProtocolCustomInfo* Returns custom information about a protocol
stack

SSGetProtocolNumbersByLANBoard* Returns a list of protocols for a given LAN
board

SSGetProtocolNumbersByMedia* Returns a list of protocols for a given media

SSGetProtocolStatistics* Returns protocol statistics for a server

SSGetRouterAndSAPInfo* Returns router and SAP information for a
server

SSGetServerInfo* Returns address and routing information for a
server

SSGetServerSourcesInfo* Returns server addresses known to a server
with a given name

SSGetUserInfo* Returns user information for a given connection

SSGetVolumeSegmentList* Returns a list of volume segments for a given
volume on a server

SSGetVolumeSwitchInfo* Returns counts for volume access functions
Server-Based Server Environment Concepts 393

394 NDK: Serve

novdocx (E
N

U
) 01 February 2006
r Management

11
novdocx (E

N
U

) 01 February 2006
11Server-Based Server Environment
Functions

This documentation alphabetically lists the server-based server environment functions and describes
their purpose, syntax, parameters, and return values.

11.1 A*-GetD* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “CheckConsolePrivileges” on page 396
• “CheckNetWareVersion” on page 398
• “ClearConnectionNumber” on page 400
• “DisableFileServerLogin” on page 402
• “DisableTransactionTracking” on page 404
• “DownFileServer” on page 406
• “EnableFileServerLogin” on page 408
• “EnableTransactionTracking” on page 410
• “GetBinderyObjectDiskSpaceLeft” on page 412
• “GetConnectionSemaphores” on page 415
• “GetConnectionsOpenFiles” on page 418
• “GetConnectionsTaskInformation” on page 422
• “GetConnectionsUsageStats (obsolete 4/99)” on page 426
• “GetConnectionsUsingFile” on page 427
• “GetDiskCacheStats (obsolete 4/99)” on page 431
• “GetDiskChannelStats (obsolete 4/99)” on page 432
• “GetDiskUtilization” on page 433
• “GetDriveMappingTable (obsolete 4/99)” on page 436
Server-Based Server Environment Functions 395

396 NDK: Serve

novdocx (E
N

U
) 01 February 2006
CheckConsolePrivileges
Determines whether the object on the current connection is a console operator (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions) and call NWCheckConsolePrivileges (page 32))

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int CheckConsolePrivileges (void);

Return Values

Remarks
This function determines whether the object on the current connection has console operator rights. If
the function returns 0, the object has console operator rights.

See Also
Bindery Concepts

CheckConsolePrivileges Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode;
 printf ("\n\n");
 ccode = CheckConsolePrivileges ();
 if (ccode == 0)
 printf ("You HAVE console Operator rights.\n");

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS
r Management

novdocx (E
N

U
) 01 February 2006
 else
 if (ccode == 198)
 printf ("You DO NOT have console Operator rights.\n");
}
Server-Based Server Environment Functions 397

398 NDK: Serve

novdocx (E
N

U
) 01 February 2006
CheckNetWareVersion
Verifies compatibility between an application and the version of NetWare® running on the server
(For cross-platform functionality, see Developing NLMs with Cross-Platform Functions (NDK:
NLM Development Concepts, Tools, and Functions) and call NWCCGetConnInfo)

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int CheckNetWareVersion (
 WORD majorVersion,
 WORD minorVersion,
 WORD revisionNumber,
 WORD minimumSFTlevel,
 WORD minimumTTSlevel);

Parameters
majorVersion

(IN) Specifies the minimum major version number that is compatible.

minorVersion
(IN) Specifies the minimum minor version number that is compatible.

revisionNumber
(IN) Specifies the minimum revision number that is compatible.

minimumSFTlevel
(IN) Specifies the minimum System Fault Tolerant™ (SFT™) level that is compatible.

minimumTTSlevel
(IN) Specifies the minimum Transaction Tracking System™ (TTS™) level that is compatible.

Return Values

Decimal Hex Constant

0 (0x00) COMPATIBLE

1 (0x01) VERSION_NUMBER_TOO_LOW
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
Versions of NetWare are identified by major version number, minor version number, and (if
applicable) revision number. The revision number is displayed as a letter (0=a, 1=b, and so on) to the
user. For example, if a version number were 2.10a, 2 would be the major version number, 10 would
be the minor version number, and 0 would be the revision number.

CheckNetWareVersion Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int i;
 WORD mv, msv, mr, msft, mtts;
 printf("min verSion, min subversion, min rev, min SFT, min TTS\n");
 scanf ("%d, %d, %d, %d, %d", &mv, &msv, &mr, &msft, &mtts);
 i = CheckNetWareVersion (mv, msv, mr, msft, mtts);
 printf ("return is %d\n",i);
}

2 (0x02) SFT_LEVEL_TOO_LOW

The version number is compatible, but the SFT level is too low.

3 (0x03) TTS_LEVEL_TOO_LOW

The version number is compatible, but the TTS level is too low.

Decimal Hex Constant
Server-Based Server Environment Functions 399

400 NDK: Serve

novdocx (E
N

U
) 01 February 2006
ClearConnectionNumber
Clears a logical connection from the server (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWClearConnectionNumber)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int ClearConnectionNumber (
 WORD connectionNumber);

Parameters
connectionNumber

(IN) Contains the identification number that the server assigns to a requesting workstation
when the workstation attaches to the server.

Return Values

Remarks
The first time a workstation attaches to a server, the server assigns it the first unused connection
number in the File Server Connection Table. When a workstation detaches from a server, the server
marks its connection number unused but reserves it in anticipation of reattachment. A reserved
logical connection number is not reassigned to another workstation until it is the first unused
connection number and the attaching workstation does not have a connection number reserved.

The server has room for 250 logical connections. The File Server Connection Table maintains the
addresses of the workstations attached to the server.

This function blocks when successful.

This function closes a connection’s open files and releases a connection’s file locks. On a TTS
server, this function causes a connection’s transactions to be aborted.

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS
r Management

novdocx (E
N

U
) 01 February 2006
When a requesting workstation clears its own connection, it can no longer communicate with the
server.

The requesting workstation must have security equivalence to Supervisor rights.

ClearConnectionNumber Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode;
 WORD connectionNumber;
 printf ("\n\n");
 printf ("Enter connection number to be cleared: ");
 scanf ("%u", &connectionNumber);
 ccode = ClearConnectionNumber (connectionNumber);
 if (ccode == 198)
 printf ("\n\nNO CONSOLE RIGHTS\n");
 else if (ccode == 0)
 printf ("\n\nSUCCESSFULLY cleared connection number. %u\n",
 connectionNumber);
 else
 printf ("\nccode = %d\n", ccode);
}
Server-Based Server Environment Functions 401

402 NDK: Serve

novdocx (E
N

U
) 01 February 2006
DisableFileServerLogin
Disables all logins to a server (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWDisableFileServerLogin (page 35))

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int DisableFileServerLogin (void);

Return Values

Remarks
The DisableFileServerLogin function allows a console operator to restrict new accesses to the server
during a crucial period of time such as before shutting down the server. (See also: DISABLE
LOGIN console command.) If the workstation from which this call is made loses its connection to
the server and no other logged objects have console Operator rights, logins can be reenabled by
downing the server and rebooting, or by entering the ENABLE LOGIN command at the server
console. The requesting workstation must have console Operator rights.

See Also
EnableFileServerLogin (page 408), GetFileServerLoginStatus (page 442)

DisableFileServerLogin Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode;

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS
r Management

novdocx (E
N

U
) 01 February 2006
 char serverName[48];
 WORD connID;
 printf ("\n\n");
 ccode = DisableFileServerLogin ();
 if (ccode == 198)
 printf ("Console Operator rights required for this
 utility\n");
 else if (ccode == 0)
 {
 connID = GetDefaultConnectionID ();
 GetFileServerName (connID, serverName);
 printf ("SUCCESSFUL\n\n");
 printf ("Disabled all new accesses to %s\n", serverName);
 }
 else
 printf ("Completion Code = %d\n", ccode);
}
Server-Based Server Environment Functions 403

404 NDK: Serve

novdocx (E
N

U
) 01 February 2006
DisableTransactionTracking
Disables transaction tracking on the server (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWDisableTTS (page 362))

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int DisableTransactionTracking (void);

Return Values

Remarks
DisableTransactionTracking is usually used to disable transaction tracking temporarily. This
function has no effect if TTS is not installed on the server.

Transaction tracking is also disabled by the server when the transaction volume is full.

The requesting workstation must have console Operator rights. (See also: DISABLE TTS console
command.)

See Also
EnableTransactionTracking (page 410)

DisableTransactionTracking Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode;

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS
r Management

novdocx (E
N

U
) 01 February 2006
 ccode = DisableTransactionTracking ();
 if (ccode == 0)
 printf ("Successfully disabled TRANSACTION TRACKING...\n");
 else
 printf ("ccode = %d\n", ccode);
}
Server-Based Server Environment Functions 405

406 NDK: Serve

novdocx (E
N

U
) 01 February 2006
DownFileServer
Brings the server down (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWDownFileServer (page 37))

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int DownFileServer (
 int forceFlag);

Parameters
forceFlag

(IN) Indicates whether the server should be forced down even if files are open (0 = Server does
not go down if there are open files).

Return Values

Remarks
The requesting workstation must have security equivalence to Supervisor rights.

DownFileServer Example
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <nwconio.h>
#include <nlm\nit\nwenvrn.h>

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS

255 (0xFF) ERR_OPEN_FILES
r Management

novdocx (E
N

U
) 01 February 2006
main()
{
 int ccode;
 int forceFlag;
 char ans;
 printf ("\n\n");
 printf ("Down the server while files are open??\n");
 printf ("Y/N: ");
 ans = (char)getch();
 ans = toupper (ans);
 if (ans == ’Y’)
 forceFlag = 1;
 if (ans == ’N’)
 forceFlag = 0;
 else
 {
 printf ("INVALID CHOICE");
 exit (-1);
 }
 ccode = DownFileServer (forceFlag);
 switch (ccode)
 {
 case 0:
 printf ("SUCCESSFULLY downed the server...");
 break;

 case 198:
 printf ("WARNING! WARNING! WARNING!\n\n");
 printf("Console Operator rights required for this
 utility\n");
 break;

 case 255:
 printf ("There are open files on the server!\n");
 break;

 default:
 printf ("Error %d in DownFileServer\n", ccode);
 }
}
Server-Based Server Environment Functions 407

408 NDK: Serve

novdocx (E
N

U
) 01 February 2006
EnableFileServerLogin
Enables logins to the server (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWEnableFileServerLogin (page 39))

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int EnableFileServerLogin (void);

Return Values

Remarks
Server logins are disabled to restrict new accesses to a server during a crucial period of time (such as
just before a server is shut down).

The requesting workstation must have console Operator rights. (See also: ENABLE LOGIN console
command.)

See Also
DisableFileServerLogin (page 402), GetFileServerLoginStatus (page 442)

EnableFileServerLogin Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode;
 char serverName[48];

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS
r Management

novdocx (E
N

U
) 01 February 2006
 WORD connID;
 printf ("\n\n");
 ccode = EnableFileServerLogin ();
 if (ccode == 198)
 printf("Console Operator rights required for utility. \n");
 else
 if (ccode == 0)
 {
 connID = GetDefaultConnectionID ();
 GetFileServerName (connID, serverName);
 printf ("SUCCESSFUL\n\n");
 printf ("Enabled logins to %s\n", serverName);
 }
 else
 printf ("Completion Code = %d\n", ccode);
}
Server-Based Server Environment Functions 409

410 NDK: Serve

novdocx (E
N

U
) 01 February 2006
EnableTransactionTracking
Enables transaction tracking on the server (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWEnableTTS (page 364))

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int EnableTransactionTracking (void);

Return Values

Remarks
Transaction tracking might have been disabled explicitly calling DisableTransactionTracking or
automatically by the server because the transaction volume is full. After freeing space on the
transaction volume by deleting unneeded files, the operator can use this function to enable
transaction tracking.

This function has no effect if TTS is not installed on the server.

The requesting workstation must have console Operator rights. (See also: ENABLE TTS console
command.)

See Also
DisableTransactionTracking (page 404)

EnableTransactionTracking Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS
r Management

novdocx (E
N

U
) 01 February 2006
main()
{
 int ccode;
 printf ("\n\n");
 ccode = EnableTransactionTracking ();
 if (ccode == 0)
 printf ("SUCCESSFULLY enabled TRANSACTION TRACKING.\n");
 else
 printf ("ccode = %d\n", ccode);
}
Server-Based Server Environment Functions 411

412 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetBinderyObjectDiskSpaceLeft
Returns an object’s remaining disk space (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWGetObjectDiskSpaceLeft)

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int GetBinderyObjectDiskSpaceLeft (
 WORD fileServerID,
 long objectID,
 long *systemElapsedTime,
 long *unusedDiskBlocks,
 BYTE *restrictionEnforced);

Parameters
fileServerID

(IN) Specifies the connection ID of the server for which to get information.

objectID
(IN) Specifies the ID of the object for which to return information.

systemElapsedTime
(OUT) Specifies the time elapsed since the server was brought up.

unusedDiskBlocks
(OUT) Specifies the number of 4K blocks the object has left.

restrictionEnforced
(OUT) Indicates the limitations placed on disk resources; 0 indicates maximum disk space is
enforced for the object by the server.

Return Values

Decimal Hex Constant

0 (0x00) ESUCCESS
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
This function allows the requesting workstation to get remaining disk space for its own logged
object.

The objectID parameter is a 4-byte identification number assigned to an object by the server. It
uniquely identifies the object within the NetWare Directory.

The systemElapsedTime parameter indicates the time that has elapsed since the server was
brought up. It is returned in units of approximately 1/18th of a second. This field can be used to
determine the amount of time that has elapsed between consecutive calls. When this field reaches
0xFFFFFFFF, it wraps back to zero.

The unusedDiskBlocks parameter indicates the number of remaining 4K blocks the object can
allocate. The unusedDiskBlocks available to a user are not related to how much free disk space
is actually available.

The restrictionsEnforced parameter indicates the limitations placed on disk resources
(0x00 = enforced, 0xFF = not enforced). For disk resource limitation to be active, it must be selected
as an option during network installation. If it is not selected as an option, it is not enforced by the
server.

Console Operator rights are required to get remaining disk space for other objects.

See Also
GetDefaultFileServerID

GetBinderyObjectDiskSpaceLeft Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode, restrictionEnforced;
 int days, hours, minutes, seconds;
 char serverName[48];
 WORD fileServerID, oldConnID;
 long objectID, systemElapsedTime, unusedDiskBlocks;
 float tmpTime;
 printf ("Enter server name: ");
 scanf ("%s", serverName);
 GetfileServerID (serverName, &fileServerID);
 oldConnID = GetPreferredConnectionID ();
 SetPreferredConnectionID (fileServerID);

/*- Replace "JDOE" with the user name you want -*/
 GetBinderyObjectID ("JDOE", OT_USER, &objectID);

198 (0XC6) ERR_NO_CONSOLE_RIGHTS

Decimal Hex Constant
Server-Based Server Environment Functions 413

414 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 ccode = GetBinderyObjectDiskSpaceLeft(fileServerID, objectID,
 &systemElapsedTime, &unusedDiskBlocks, &restrictionEnforced);
 if (ccode == 0)
 {
 tmpTime = ((((((float)(systemElapsedTime))/18)/60)/60)/24);
 days = (int)tmpTime;
 tmpTime = (tmpTime - days) * 24;
 hours = (int)tmpTime;
 tmpTime = (tmpTime - hours) * 60;
 minutes = (int)tmpTime;
 tmpTime = (tmpTime - minutes) * 60;
 seconds = (int)tmpTime;
 printf ("\n\n\n");
 printf ("Connection ID %u\n", fileServerID);
 printf ("Object ID %08lX\n", objectID);
 printf ("Elapsed Time %d DAYS %d HOURS ", days, hours);
 printf ("%d MINUTES %d SECONDS\n", minutes, seconds);
 printf ("Unused Disk Blocks %08lX\n", unusedDiskBlocks);
 printf ("Restriction Enforced?? %d\n", restrictionEnforced);
 }
 else
 printf ("Error %d in GetBinderyObjectDiskSpaceLeft\n", ccode);
 SetPreferredConnectionID (oldConnID);
}
r Management

novdocx (E
N

U
) 01 February 2006
GetConnectionSemaphores
Returns information about a connection’s open semaphores (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NLM Development Concepts, Tools, and
Functions) and call NWScanSemaphoresByConn in Single and Intra-File Management)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

T_RC GetConnectionSemaphores (
 WORD connectionNumber,
 int *lastRecord,
 int *lastTask,
 int structSize,
 CONN_SEMAPHORE *connectionSemaphore,
 void *buffer,
 int bufferSize);

Parameters
connectionNumber

(IN) Specifies the connection number to return information for.

lastRecord
(IN/OUT) Points to the next major record (set to 0 for the first call).

lastTask
(IN/OUT) Points to the task number within the logical connection that has the semaphore open
(set to 0 for the first call).

structSize
(IN) Specifies the size of the CONN_SEMAPHORE structure.

connectionSemaphore
(OUT) Points to a structure that contains information about the connection’s open semaphores.

buffer
(IN/OUT) Points to a buffer that is used during processing. If this function is called iteratively,
buffer should be reused.

bufferSize
Server-Based Server Environment Functions 415

416 NDK: Serve

novdocx (E
N

U
) 01 February 2006
(IN) Specifies the size of buffer. The buffer should be at least ENVSERV_BUFFER1_SIZE
bytes.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns information about the open semaphores for the connection specified by
connectionNumber. The requesting connection must have console operator rights.

To call this function iteratively, an application must set lastRecord and lastTask to zero on
the first call. The function changes lastRecord to point to the next major record, if any. If
lastRecord and lastTask are returned as zero, there is no more information to receive.

The structSize parameter is the size of CONN_SEMAPHORE, which should be at least the size
of CONN_SEMAPHORE_386 plus two bytes (for the WORD, unionType). The connection type
(386 server) can be determined by calling CheckNetWareVersion.

GetConnectionSemaphores returns different information depending on whether the connection is to
a NetWare 3.x (or above) server. The CONN_SEMAPHORE structure is defined in NWENVRN1.H
as follows:

typedef struct CONN_SEMAPHORE
{
 WORD unionType;
 union
 {
 CONN_SEMAPHORE_386 con386;
 }u;
}CONN_SEMAPHORE;

The unionType field indicates the type of information (386) that is returned. If the connection is
to a NetWare 3.x (or above) server, unionType is ENVSERV_CONN_TYPE_386 and a
CONN_SEMAPHORE_386 structure is returned. Both structures are defined in NWENVRN1.H as
follows:

typedef struct CONN_SEMAPHORE_386
{
 WORD openCount;
 WORD semahoreValue;
 WORD taskNumber;
 BYTE nameLength;
 BYTE semaphoreName[255];
} CONN_SEMAPHORE_386;

The first structSize bytes are copied into the structure.

The openCount field contains the number of logical connections that have this semaphore open.

The semaphoreValue field contains the current value of the semaphore. A negative value is
usually interpreted as the number of processes waiting for the service represented by the semaphore.
r Management

novdocx (E
N

U
) 01 February 2006
The taskNumber field contains the task number within the logical connection that has the
semaphore open.

The semaphoreName field contains a length-preceded string representing the semaphore name.
Server-Based Server Environment Functions 417

418 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetConnectionsOpenFiles
Returns information about the files that a connection has open (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NLM Development Concepts, Tools, and
Functions) and call NWScanOpenFilesByConn2)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

T_RC GetConnectionsOpenFiles (
 WORD connectionNumber,
 int *lastRecord,
 int *lastTask,
 int structSize,
 CONN_OPEN_FILES *openFiles,
 void *buffer,
 int bufferSize);

Parameters
connectionNumber

(IN) Specifies the connection number to return information for.

lastRecord
(IN/OUT) The function sets this parameter to point to the next major record (must be set to 0
for the first call).

lastTask
(IN/OUT) The function sets this parameter to point to the task number within the logical
connection that has the semaphore open (must be set to 0 for the first call).

structSize
(IN) Specifies the size of the CONN_OPEN_FILES structure.

openFiles
(OUT) Points to a structure that contains information about files that the connection has open.

buffer
(IN/OUT) Points to a buffer that is used during processing. If this function is called iteratively,
buffer should be reused.
r Management

novdocx (E
N

U
) 01 February 2006
bufferSize
(IN) Specifies the size of buffer. The buffer should be at least ENVSERV_BUFFER1_SIZE
bytes.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns information about the open files of the connection specified by
connectionNumber. The requesting connection must have console operator rights.

To call this function iteratively, an application must set lastRecord and lastTask to zero on
the first call. The function changes lastRecord to point to the next major record, if any. If
lastRecord and lastTask are returned as zero, there is no more information to receive.

The structSize parameter is the size of CONN_OPEN_FILES, which should be at least the size
of CONN_OPEN_FILES_386 plus two bytes (for the WORD, unionType). The connection type
(386 server) can be determined by calling CheckNetWareVersion.

GetConnectionsOpenFiles returns different information depending on whether the connection is to a
NetWare 3.x (or above) server. The CONN_OPEN_FILES structure is defined in NWENVRN1.H
as follows:

typedef struct CONN_OPEN_FILES
{
 WORD unionType;
 union
 {
 CONN_OPEN_FILES_386 con386;
 }u;
} CONN_OPEN_FILES;

The unionType field indicates the type of information (386) that is returned. If the connection is
to a NetWare 3.x (or above) server, unionType is ENVSERV_CONN_TYPE_386 and a
CONN_OPEN_FILES_386 structure is returned. This structure is defined in NWENVRN1.H as
follows:

typedef struct CONN_OPEN_FILES_386
{
 WORD taskNumber;
 BYTE lockType;
 BYTE accessControl;
 BYTE lockFlag;
 BYTE volumeNumber;
 LONG parentDirEntry;
 LONG dirEntry;
 BYTE forkCount;
 BYTE nameSpace;
 BYTE nameLength;
 BYTE fileName[256];
}CONN_OPEN_FILES_386;
Server-Based Server Environment Functions 419

420 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The first structSize bytes are copied to the structure.

The taskNumber field indicates the task number that has the file open.

The lockType field contains bit flags indicating the type of file lock as follows:

0 Locked
1 Open Shareable
2 Logged
3 Open Normal
6 TTS Holding Lock
7 Transaction Flag Set For This File

The accessControl field contains bit flags indicating the connection’s access rights for the file
as follows:

0 Open for read by this connection
1 Open for write by this connection
2 Deny read requests by other connections
3 Deny write requests by other connections
4 File detached
5 TTS holding detach
6 TTS holding open

The lockFlag field contains a flag indicating the type of lock on the file as follows:

The volumeNumber field identifies the file’s volume in a Volume Table on the server. The Volume
Table contains information about each volume on the server.

The dirEntry field indicates the file path that is relative to this directory. This value is not a
directory handle.

The fileName field contains an ASCII string representing the file’s name.

CONN_OPEN_FILES_386 contains an additional four fields.

The parentDirEntry field contains the file path relative to the parent directory.

The forkCount field contains the index assigned (by Novell®) to the non-primary data stream
associated with the file (for example, the resource fork of a Macintosh file).

The nameSpace field contains a number indicating the name space of the file. The name spaces
currently available are:

Decimal Hex Description

0 0x00 Not locked

254 0xFE Locked by a file lock

255 0xFF Locked by Begin Share File Set

0 DOS
r Management

novdocx (E
N

U
) 01 February 2006
The nameLength field contains the length of fileName.

The fileName field contains the file name.

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT
Server-Based Server Environment Functions 421

422 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetConnectionsTaskInformation
Returns information about a connection’s active tasks (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call NWGetTaskInformationByConn)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Synta
#include <nlm\nit\nwenvrn1.h>

T_RC GetConnectionsTaskInformation (
 WORD connectionNumber,
 void **connectionTaskInfo,
 void *buffer,
 int bufferSize);

Parameters
connectionNumber

(IN) Specifies the connection number to return information for.

connectionTaskInfo
(OUT) Points to a structure containing task information for the connection.

buffer
(IN/OUT) Points to a buffer that receives CONN_SEMAPHORE_386.

bufferSize
(IN) Specifies the size of buffer. The buffer should be at least ENVSERV_BUFFER1_SIZE
bytes.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns information about the active tasks for the connection identified by
connectionNumber.

The connectionTaskInfo parameter receives a pointer to one or more structures. The
structure(s) is CONN_TASK_INFO_386 depending on whether the connection is to a 3.x (or above)
r Management

novdocx (E
N

U
) 01 February 2006
server. If the structure is CONN_TASK_INFO_386, its unionType field contains
ENVSERV_CONN_TYPE_386. These structures are defined in NWENVRN1.H as follows:

typedef struct CONN_TASK_INFO_386
{
 WORD unionType;
 BYTE lockStatus;
 union
 {
 struct
 {
 WORD taskNumber;
 LONG beginAddress;
 LONG endAddress;
 WORD volumeNumber;
 LONG parentID;
 LONG directoryEntry;
 BYTE forkCount;
 BYTE nameSpace;
 BYTE nameLength;
 BYTE name;
 }LockStatus1;
 struct
 {
 WORD taskNumber;
 WORD volumeNumber;
 LONG parentID;
 LONG directoryEntry;
 BYTE forkCount;
 BYTE nameSpace;
 BYTE nameLength;
 BYTE name;
 }LockStatus2;
 struct
 {
 WORD taskNumber;
 BYTE nameLength;
 BYTE name;
 }LockStatus3Or4;
 }waitRecord;
}CONN_TASK_INFO_386;

The lockStatus field receives one of the following values:

0 Normal (connection free to run)

1 Connection waiting on physical record lock

2 Connection waiting on file lock

3 Connection waiting on logical record lock

4 Connection waiting on semaphore
Server-Based Server Environment Functions 423

424 NDK: Serve

novdocx (E
N

U
) 01 February 2006
This field indicates which of the following structures (LockStatus1, LockStatus2, or
LockStatus3Or4) is filled out. If lockStatus is 0, none of these structures is filled out.

The taskNumber, nameLength, and name fields are returned for all lock status types (except
0).

The taskNumber field contains the task number.

The nameLength field contains length of name.

The name field contains the name of the file that is locked.

LockStatus1 and LockStatus2 also contain volumeNumber and directoryEntry fields.

The volumeNumber field contains the volume number of the volume containing the file.

The directoryEntry field contains the directory entry of the file.

For the CONN_TASK_INFO_386 structure, the LockStatus1 and LockStatus2 structures also
contain parentID, forkCount, and nameSpace fields.

The parentID field contains the directory entry for the parent directory.

The forkCount field contains the index assigned (by Novell) to the non-primary data stream
associated with the file (for example, the resource fork of a Macintosh file).

The nameSpace field contains a number indicating the name space of the file. The five name
spaces that are currently available are:

The LockStatus1 structure also contains beginAddress and endAddress fields, which contain
the starting address and the ending address of the locked region in the file, respectively.

Directly following the waitRecord is a byte indicating the number of active tasks for the connection.
For each active task a structure follows. This structure is CONN_TASK_PAIRS_386 (for a
connection to a NetWare 3.x or above server). This structure is defined in NWENVRN1.H as
follows:

typedef struct CONN_TASK_PAIRS_386
{
 WORD task;
 BYTE taskStatus;
}CONN_TASK_PAIRS_386;

The task field contains the task number.

The taskStatus field contains the state of task:

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT
r Management

novdocx (E
N

U
) 01 February 2006
Decimal Hex State and Description

1 0x01 TState_TTSEXPLICIT: Indicates a TTS explicit transaction is in
progress.

2 0x02 TState_TTSIMPLICIT: Indicates a TTS implicit transaction is in
progress.

4 0x04 TState_FileSetLock: Indicates a Shared file set lock is in progress.
Server-Based Server Environment Functions 425

426 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetConnectionsUsageStats (obsolete 4/99)
was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
GetConnectionsUsingFile
Returns all logical connections using a file (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NLM Development Concepts, Tools, and Functions) and call
NWScanConnectionsUsingFile in Multiple and Inter-File Management)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

T_RC GetConnectionsUsingFile (
 int requestSize,
 void *request,
 void *buffer,
 int bufferSize);

Parameters
requestSize

(IN) Specifies the size of the request buffer.

request
(IN) Points to a buffer containing the request structure.

buffer
(IN/OUT) Points to a buffer which receives the response structure.

bufferSize
(IN) Specifies the size of the buffer that receives the response structure. The buffer should be at
least ENVSERV_BUFFER1_SIZE bytes.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function uses a different request structure depending on whether the request is made to a
NetWare 3.x (or above) server. You must determine the type of server that the request is sent to and
put the correct request structure into the request buffer. If the wrong structure is submitted, this
function returns EFAILURE.
Server-Based Server Environment Functions 427

428 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The buffer receives the response structure.

The request buffer contains a CONN_USING_FILE_REQUEST structure, defined in
NWENVRN1.H as follows:

typedef struct CONN_USING_FILE_REQUEST
{
 WORD unionType;
 WORD reserved1;
 BYTE reserved2;
 union
 {
 CONN_USING_FILE_REQ_386 req386;
 };
}CONN_USING_FILE_REQUEST;

The unionType field contains ENVSERV_CONN_TYPE_386 (for a NetWare 3.x or above
server).

The union field contains the request structure for the server type that you want information for.

NetWare 3.x (or above) Server: The request structure you send to NetWare 3.x (or above) servers is
CONN_USING_FILE_REQ_386, defined in NWENVRN1.H as follows:

typedef struct CONN_USING_FILE_REQ_386
{
 BYTE forkType;
 BYTE volume;
 LONG directoryID;
 WORD nextRecord;
}CONN_USING_FILE_REQ_386;

The forkType field contains the index assigned (by Novell) to the non-primary data stream
associated with the file (for example, the resource fork of a Macintosh file).

The volume field contains the volume that the file is on.

The directoryID field contains the directory handle of the directory that contains the file.

The nextRecord field identifies the first record to retrieve data for. This field must be set to 0 for
the first call to this function. On subsequent calls, it should be given the value returned in the
nextRequestRecord field of the reply structure.

The buffer receives a CONN_USING_FILE_REPLY structure, defined in NWENVRN1.H as
follows:

typedef struct CONN_USING_FILE_REPLY
{
 WORD unionType;
 union
 {
 struct CONN_USING_FILE_REPLY_386 rep386;
 };
}CONN_USING_FILE_REPLY;

The unionType field contains ENVSERV_CONN_TYPE_386 (for a NetWare 3.x or above
server).
r Management

novdocx (E
N

U
) 01 February 2006
The union field contains the reply structure for the server type that you want information for.

NetWare 3.x (or above) Server: The buffer receives a CONN_USING_FILE_REPLY_386
structure followed by CONN_USING_FILE_RECORD_386 structures. The
CONN_USING_FILE_REPLY_386 structure is defined in NWENVRN1.H as follows:

typedef struct CONN_USING_FILE_REPLY_386
{
 WORD nextRequestRecord;
 WORD useCount;
 WORD openCount;
 WORD openForReadCount;
 WORD openForWriteCount;
 WORD denyReadCount;
 WORD denyWriteCount;
 BYTE locked;
 BYTE forkCount;
 WORD numberOfRecords; /* connection records follow */
}CONN_USING_FILE_REPLY_386;

The nextRequestRecord field contains a value to be passed in the nextRecord field of
CONN_USING_FILE_REQ_386 for the next call to this function. This field contains 0 when the
last record is retrieved and no more calls to this function need to be made.

In addition, this structure has a forkCount field, which contains the index assigned (by Novell) to
the non-primary data stream associated with the file (for example, the resource fork of a Macintosh
file).

The reply structure is followed by a number of structures, one for each connection using the file.

NetWare 3.x (or above) Server: The CONN_USING_FILE_REPLY_386 structure is followed by a
number of CONN_USING_FILE_RECORD_386 structures, one for each connection using the file.
This structure is defined in NWENVRN1.H as follows:

typedef struct CONN_USING_FILE_RECORD_386
{
 WORD connectionNumber;
 WORD taskNumber;
 BYTE lockType;
 BYTE accessFlags;
 BYTE lockStatus;
}CONN_USING_FILE_RECORD_386;

The connectionNumber field contains the connection number using the file.

The taskNumber field contains the connection’s task number that is using the file.

The lockType field contains bit flags indicating the file’s lock information, as shown below:

0 Locked
1 Open Shareable
2 Logged
3 Open Normal
6 TTS Holding Lock
7 Transaction Flag Set For This File
Server-Based Server Environment Functions 429

430 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The accessFlags field contains bit flags indicating the connection/task’s access rights for the
file, as shown below:

0 Open for read by this connection
1 Open for write by this connection
2 Deny read requests by other connections
3 Deny write requests by other connections
4 File detached
5 TTS holding detach
6 TTS holding open

The lockStatus field contains a flag indicating the type of lock, if any, on the file, as follows:

Decimal Hex Description

0 0x00 Not locked

254 0xFE Locked by a file lock

255 0xFF Locked by Begin Share File Set
r Management

novdocx (E
N

U
) 01 February 2006
GetDiskCacheStats (obsolete 4/99)
was last documented in Release 15 for NetWare 2.x only.

Server-Based Server Environment Functions 431

432 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetDiskChannelStats (obsolete 4/99)
was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
GetDiskUtilization
Returns the disk usage of an object on a volume (For cross-platform functionality, see Developing
NLMs with Cross-Platform Functions (NLM Development Concepts, Tools, and Functions) and call
NWGetDiskUtilization in Volume Management)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int GetDiskUtilization (
 long objectID,
 BYTE volumeNumber,
 LONG *usedDirectories,
 LONG *usedFiles,
 LONG *usedBlocks);

Parameters
objectID

(IN) Specifies the unique ID of the object.

volumeNumber
(IN) Specifies the volume for which statistics are requested (0-based).

usedDirectories
(OUT) Receives the number of directories owned by the object.

usedFiles
(OUT) Receives the number of files created by the object.

usedBlocks
(OUT) Receives the number of disk blocks used by the object.

Return Values

Decimal Hex Constant

0 (0x00) ESUCCESS

152 (0x98) ERR_VOLUME_DOES_NOT_EXIST
Server-Based Server Environment Functions 433

434 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
This function returns the disk usage of an object by passing the object ID.

The volumeNumber parameter identifies the volume in a volume table on the server. The volume
table contains information about each volume on the server.

The objectID parameter is 4-byte identification number assigned to an object by the server. It
uniquely identifies the object within the NetWare Directory.

To determine the number of bytes an object is using on a volume, use the following equation:

bytes used = usedBlocks
 * sectors/block * bytes/sector

Current network implementations allocate eight 512-byte sectors per block (4 KB per block).

This function requires Read privileges at the object level.

See Also
GetVolumeInformation (NetWare SDK)

GetDiskUtilization Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode, volumeNumber;
 LONG objectID, usedDirectories, usedFiles, usedBlocks;
 WORD objType;
 char objName[48], volName[16];
 printf ("\n\n");
 printf ("Enter object’s name: ");
 scanf ("%s", objName);
 printf ("\nEnter object’s type: ");
 scanf ("%d", &objType);
 ccode = GetBinderyObjectID (objName, objType, &objectID);
 printf ("\nEnter volume name: ");
 scanf ("%s", volName);
 ccode = GetVolumeNumber (volName, &volumeNumber);
 ccode = GetDiskUtilization (objectID, *((BYTE *)volumeNumber),
 &usedDirectories, &usedFiles, &usedBlocks);
 if (ccode)
 {
 if (ccode == 152)
 printf ("\n\nVOLUME DOES NOT EXIST\n");

242 (0xF2) ERR_NO_OBJECT_READ_PRIVILEGE

Decimal Hex Constant
r Management

novdocx (E
N

U
) 01 February 2006
 else if (ccode == 242)
 printf ("\n\nNO OBJECT READ PRIVILEGE\n");
 else
 printf ("\n\nccode = %d\n", ccode);
 }
 else
 {
 printf ("\n\n\nSUCCESSFULLY COMPLETED\n\n\n");
 printf ("Object ID... %08lX\n", objectID);
 printf ("Volume Number... %d\n", volumeNumber);
 printf ("Directories Used... %u\n", usedDirectories);
 printf ("Files Used... %u\n", usedFiles);
 printf ("Blocks Used... %u\n", usedBlocks);
 }
}
Server-Based Server Environment Functions 435

436 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetDriveMappingTable (obsolete 4/99)
was last documented in Release 15 for NetWare 2.x only.

11.2 GetF*-TTS* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “GetFileServerDateAndTime” on page 437
• “GetFileServerDescriptionStrings” on page 439
• “GetFileServerLANIOStats (obsolete 4/99)” on page 441
• “GetFileServerLoginStatus” on page 442
• “GetFileServerMiscInformation (obsolete 4/99)” on page 444
• “GetFileServerName” on page 445
• “GetFileSystemStats (obsolete 4/99)” on page 447
• “GetLANDriverConfigInfo (obsolete 4/99)” on page 448
• “GetLogicalRecordInformation” on page 449
• “GetLogicalRecordsByConnection” on page 452
• “GetPathFromDirectoryEntry” on page 455
• “GetPhysicalDiskStats (obsolete 4/99)” on page 457
• “GetPhysicalRecordLocksByFile” on page 458
• “GetPhysRecLockByConnectAndFile” on page 462
• “GetSemaphoreInformation” on page 465
• “GetServerInformation” on page 468
• “GetServerMemorySize” on page 472
• “GetServerUtilization” on page 473
• “SendConsoleBroadcast” on page 474
• “SetFileServerDateAndTime” on page 476
• “TTSGetStats (Obsolete-moved from .h file 4/99)” on page 479
r Management

novdocx (E
N

U
) 01 February 2006
GetFileServerDateAndTime
Returns the date and time of the server (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWGetFileServerDateAndTime (page 59))

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

void GetFileServerDateAndTime (
 BYTE *dateAndTime);

Parameters
dateAndTime

(OUT) Receives the server’s date and time (7 bytes).

Remarks
The dateAndTime parameter returns information in the following format:

The date and time are not synchronized across the network (between servers) unless time
synchronization is active.

Byte Contents Values Explanation

0 Year 80 to 179 80-99 correspond to the years 1980-1999. 100-179
correspond to the years 2000-2079.

1 Month 1 to 12

2 Day 1 to 31

3 Hour 0 to 23

4 Minute 0 to 59

5 Second 0 to 59

6 Day (0 to 6) A value of 0 = Sunday, 1 = Monday, 2 = Tuesday, etc.
Server-Based Server Environment Functions 437

438 NDK: Serve

novdocx (E
N

U
) 01 February 2006
See Also
GetClockStatus (NetWare SDK), SetFileServerDateAndTime (page 476)

GetFileServerDateAndTime Example
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <nwtypes.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int rc;
 char d[7];
 GetFileServerDateAndTime(d);
 printf("year = %d\n",d[0]);
 printf("month = %d\n",d[1]);
 printf("day = %d\n",d[2]);
 printf("hour = %d\n",d[3]);
 printf("minute = %d\n",d[4]);
 printf("second = %d\n",d[5]);
 printf("weekday = %d\n",d[6]);
}
r Management

novdocx (E
N

U
) 01 February 2006
GetFileServerDescriptionStrings
Returns the name of the company that distributed this copy of NetWare (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions) and call NWGetFileServerDescription (page 61))

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int GetFileServerDescriptionStrings (
 char *companyName,
 char *revision,
 char *revisionDate,
 char *copyrightNotice);

Parameters
companyName

(OUT) Receives a string containing the name of the company (80 characters, including the
NULL terminator).

revision
(OUT) Receives a string containing the NetWare version and revision (80 characters, including
the NULL terminator).

revisionDate
(OUT) Receives a string containing the revision date in the form MM/DD/YY (up to 24
characters, including the NULL terminator).

copyrightNotice
(OUT) Receives a string containing the copyright notice (maximum 80 characters, including
the NULL terminator).

Return Values

Decimal Hex Constant

0 (0x00) ESUCCESS
Server-Based Server Environment Functions 439

440 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
The companyName, revision, revisionDate, and copyrightNotice parameters return
information about this copy of NetWare.

See Also
GetServerInformation (page 468)

GetFileServerDescriptionStrings Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode;
 char companyName[80], revision[80];
 char revisionDate[24], copyrightNotice[80];
 ccode = GetFileServerDescriptionStrings (companyName, revision,
 revisionDate, copyrightNotice);
 if (ccode == 0)
 {
 printf ("\n\n\n");
 printf ("%s\n", companyName);
 printf ("%s\n", revision);
 printf ("%s\n", revisionDate);
 printf ("%s\n", copyrightNotice);
 }
}
r Management

novdocx (E
N

U
) 01 February 2006
GetFileServerLANIOStats (obsolete 4/99)
Was last documented in Release 15 for NetWare 2.x only.

Server-Based Server Environment Functions 441

442 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetFileServerLoginStatus
Returns the server’s login status (For cross-platform functionality, see Developing NLMs with
Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWGetFileServerLoginStatus (page 71))

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int GetFileServerLoginStatus (
 int *loginEnabledFlag);

Parameters
loginEnabledFlag

(OUT) Receives a flag indicating the status of the server’s login state (0 = Login is disabled).

Return Values

Remarks
The login status indicates whether logins are enabled or disabled.

Server logins can be disabled with the DisableFileServerLogin function so that new accesses to a
server are restricted during a crucial period of time (before taking a server down). The
EnableFileServerLogin function re-enables logins.

The requesting workstation must have console Operator rights.

See Also
DisableFileServerLogin (page 402), EnableFileServerLogin (page 408)

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS
r Management

novdocx (E
N

U
) 01 February 2006
GetFileServerLoginStatus Example
#include <stdio.h>
#include <stdlib.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode, loginEnabledFlag;
 ccode = GetFileServerLoginStatus (&loginEnabledFlag);
 if (ccode)
 {
 printf ("ccode = %d\n", ccode);
 exit (-1);
 }
 else
 if (loginEnabledFlag)
 printf ("Login is enabled.\n");
 else
 printf ("Login is disabled.\n");
 }
}
Server-Based Server Environment Functions 443

444 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetFileServerMiscInformation (obsolete 4/99)
Was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
GetFileServerName
Returns the name of a server (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWGetFileServerVersionInfo (page 74) or NWCCGetConnInfo)

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

void GetFileServerName (
 WORD fileServerID,
 char *fileServerName);

Parameters
fileServerID

(IN) Contains the connection ID for which fileServerName is returned; if this number is 0,
the name of the server is returned.

fileServerName
(OUT) Receives name of the server (maximum 48 characters).

Return Values
This function returns no value. If an error occurs, NetWareErrno is set to:

Remarks
This function returns the name of a server by passing the fileServerID. If fileServerID is
invalid, fileServerName is NULL.

Passing the fileServerID (server number) of any logged in remote server returns the name of
that server. If fileServerID is 0, the name of the local server is returned.

Decimal Hex Constant

115 (0x73) ERR_BAD_CONNECTION_ID
Server-Based Server Environment Functions 445

446 NDK: Serve

novdocx (E
N

U
) 01 February 2006
See Also
GetFileServerID, GetServerInformation (page 468)

GetFileServerName Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 WORD fileServerID;
 char fileServerName[48];
 printf ("\n\n");
 printf ("Enter Connection ID: ");
 scanf ("%u", &fileServerID);
 GetFileServerName (fileServerID, fileServerName);
 printf ("Connection ID is: %u\n", fileServerID);
 printf ("Server Name is: %s\n", fileServerName);
}
r Management

novdocx (E
N

U
) 01 February 2006
GetFileSystemStats (obsolete 4/99)
Was last documented in Release 15 for NetWare 2.x only.

Server-Based Server Environment Functions 447

448 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetLANDriverConfigInfo (obsolete 4/99)
Was last documented in Release 15 for NetWare 2.x only.

r Management

novdocx (E
N

U
) 01 February 2006
GetLogicalRecordInformation
Returns information about a logical record (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NLM Development Concepts, Tools, and Functions) and call
NWScanLogicalLocksByName in Single and Intra-File Management)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

T_RC GetLogicalRecordInformation (
 int requestSize,
 void *request,
 void *buffer,
 int bufferSize);

Parameters
requestSize

(IN) Specifies the size of the request buffer.

request
(IN) Points to a buffer containing the request structure.

buffer
(IN/OUT) Points to a buffer which receives the response structure.

bufferSize
(IN) Specifies the size of the buffer that receives the response structure. This buffer must be at
least ENVSERV_BUFFER1_SIZE bytes.

Return Values
ESUCCESS or NetWare errors.

Remarks
The request buffer contains a CONN_USING_FILE_REQUEST structure, defined in
NWENVRN1.H as follows:

typedef struct LOGICAL_RECORD_REQUEST
{
Server-Based Server Environment Functions 449

450 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 WORD reserved1;
 BYTE reserved2;
 WORD nextRecord;
 BYTE nameLength;
 BYTE name[255];
}LOGICAL_RECORD_REQUEST;

The nextRecord field identifies the first record to be processed by this function. This field must
be set to 0 for the first call to this function. On subsequent calls, it must be set to the value returned
in the nextRequestRecord field of the reply structure.

The nameLength field contains the length of name.

The name field contains the name of the logical record that you want information about.

The buffer parameter receives the response structure, LOGICAL_RECORD_INFO, which is
defined in NWENVRN1.H as follows:

typedef struct LOGICAL_RECORD_INFO
{
 WORD unionType;
 union
 {
 LOGICAL_RECORD_INFO_386 lr386;
 }u;
}LOGICAL_RECORD_INFO;

The unionType field indicates the type of information (386) that is returned. If the connection is
to a NetWare 3.x (or above) server, unionType is ENVSERV_CONN_TYPE_386 and a
LOGICAL_RECORD_INFO_386 structure is returned. Both structures are defined in
NWENVRN1.H as follows:

typedef struct LOGICAL_RECORD_INFO_386
{
 WORD useCount;
 WORD shareableLockCount;
 BYTE locked;
 WORD nextRequestRecord;
 WORD numberOfRecords;
}LOGICAL_RECORD_INFO_386;

The useCount field contains the number of logical connections that have the logical record
logged.

The sharableLockCount field contains the number of logical connections that have a shareable
lock on the logical record.

The locked field indicates whether the logical record is locked exclusively (0 = not locked
exclusively).

The nextRequestRecord field identifies the next record to be processed by this function. This
value is passed in the nextRecord field of the request function on the next call to this function.
When 0 is returned in this field, there are no more records to be processed.

The numberOfRecords field contains the number of structures that follow in the buffer
(LOGICAL_RECORD_386 structures). This structure is defined in NWENVRN1.H as follows:
r Management

novdocx (E
N

U
) 01 February 2006
typedef struct LOGICAL_RECORD_386
{
 WORD connectionNumber;
 WORD taskNumber;
 BYTE lockStatus;
}LOGICAL_RECORD_386;

The connectionNumber field contains the connection number of the connection using the
record.

The taskNumber field contains the number of the task within the connection that is using the
record.

The lockStatus field contains the bit flags that indicate the record’s lock status, as follows:

0 Locked
1 Open Shareable
2 Logged
3 Open Normal
6 TTS Holding Lock
7 Transaction Flag Set For This File
Server-Based Server Environment Functions 451

452 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetLogicalRecordsByConnection
Returns the logical records that a connection has logged with a server (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NLM Development Concepts,
Tools, and Functions) and call NWScanLogicalLocksByConn (in Single and Intra-File
Management)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

T_RC GetLogicalRecordsByConnection (
 WORD connectionNumber,
 WORD nextRecord,
 void *buffer,
 int bufferSize);

Parameters
connectionNumber

(IN) Specifies the connection number to return information for.

nextRecord
(IN) Specifies the first record to process. This parameter must be set to 0 for the first call to this
function. On subsequent calls, it must be set to the value returned in the nextRequest field
of the reply structure.

buffer
(IN/OUT) Points to a buffer which receives the reply structure.

bufferSize
(IN) Specifies the size of the buffer that receives the reply structure. This buffer must be at least
ENVSERV_BUFFER1_SIZE bytes.

Return Values
ESUCCESS or NetWare errors.
r Management

novdocx (E
N

U
) 01 February 2006
Remarks
This function returns information about logical records that a given connection has logged with a
server.

This function returns a CONN_LOGICAL_RECORD structure in buffer. This structure is
defined in NWENVRN1.H as follows:

typedef struct CONN_LOGICAL_RECORD
{
 WORD unionType;
 union
 {
 CONN_LOGICAL_RECORD_386 lr386;
 }u;
}CONN_LOGICAL_RECORD;

The unionType field indicates the type of information (386) that is returned. If the connection is
to a NetWare 3.x (or above) server, unionType is ENVSERV_CONN_TYPE_386 and a
CONN_LOGICAL_RECORD_386 structure is returned. This structure is defined in
NWENVRN1.H as follows:

typedef struct CONN_LOGICAL_RECORD_386
{
 WORD nextRequest;
 WORD numberOfRecords;
}CONN_LOGICAL_RECORD_386;

The nextRequestRecord field identifies the next record to be processed by this function. This
value is passed in the nextRecord parameter for the next call. When this field is 0, there are no
more records to be processed.

The numberOfRecords field contains the number of structures that follow in the buffer
(LOGICAL_RECORD_BLOCK_386). This structure is defined in NWENVRN1.H as follows:

typedef struct CONN_LOGICAL_RECORD_BLOCK_386
{
 WORD taskNumber;
 BYTE lockStatus;
 BYTE lockNameLength;
 BYTE lockName; /* 1st byte - more follow */
}CONN_LOGICAL_RECORD_BLOCK_386;

The taskNumber field contains the number of the task within the connection that has the record
logged.

The lockStatus field contains the bit flags indicating the record’s lock status as follows:

0 Locked
1 Open Shareable
2 Logged
3 Open Normal
6 TTS Holding Lock
7 Transaction Flag Set For This File
Server-Based Server Environment Functions 453

454 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The lockNameLength field contains the length of lockName.

The lockName field contains the name of the lock.
r Management

novdocx (E
N

U
) 01 February 2006
GetPathFromDirectoryEntry
Accesses a file path listed in a server’s Directory Entry Table (DET) (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions).)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

int GetPathFromDirectoryEntry (
 BYTE volumeNumber,
 WORD directoryEntry,
 BYTE *pathLength,
 char *path);

Parameters
volumeNumber

(IN) Specifies the volume number of the volume containing the directory from which the file
path is accessed.

directoryEntry
(IN) Specifies the offset into the Directory Entry Table of the file path to be accessed.

pathLength
(OUT) Receives the length of path.

path
(OUT) Receives the file path of the directory (ASCIIZ string).

Return Values
ESUCCESS or NetWare errors.

Remarks
An application must call GetConnectionsOpenFiles to get the offset into the server’s DET of the file
path to be accessed before calling GetPathFromDirectoryEntry.
Server-Based Server Environment Functions 455

456 NDK: Serve

novdocx (E
N

U
) 01 February 2006
See Also
GetConnectionsOpenFiles (page 418)
r Management

novdocx (E
N

U
) 01 February 2006
GetPhysicalDiskStats (obsolete 4/99)
Was last documented in Release 15 for NetWare 2.x only.

Server-Based Server Environment Functions 457

458 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetPhysicalRecordLocksByFile
Returns physical records that are locked in a file (For cross-platform functionality, see Developing
NLMs with Cross-Platform Functions (NLM Development Concepts, Tools, and Functions) and call
NWScanPhysicalLocksByFile (Single and Intra-File Management

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

T_RC GetPhysicalRecordLocksByFile (
 int requestSize,
 void *request,
 void *buffer,
 int *bufferSize);

Parameters
requestSize

(IN) Specifies the size of the request buffer.

request
(IN) Points to a buffer containing the request structure.

buffer
(IN/OUT) Points to a buffer which receives the response structure.

bufferSize
(IN) Specifies the size of the buffer that receives the response structure. This buffer must be at
least ENVSERV_BUFFER1_SIZE bytes.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function uses a different request structure depending on whether the request is made to a
NetWare 3.x (or above) server. You must determine the type of server that the request is sent to and
put the correct request structure into the request buffer. If the wrong structure is submitted, this
function returns EFAILURE.
r Management

novdocx (E
N

U
) 01 February 2006
The buffer parameter receives the response structure.

The request buffer contains a FILE_PHYSICAL_RECORD_REQUEST structure, defined in
NWENVRN1.H as follows:

typedef struct FILE_PHYSICAL_RECORD_REQUEST
{
 WORD unionType;
 WORD reserved1;
 BYTE reserved2;
 union
 {
 FILE_PHYSICAL_REQUEST_386 pr386;
 }u;
} FILE_PHYSICAL_RECORD_REQUEST;

The unionType field contains ENVSERV_CONN_TYPE_386 (for a NetWare 3.x or above
server).

The union field contains the request structure for the server type that you want information for.

NetWare 3.x (or above) Server: The request for a NetWare 3.x (or above) server contains a
FILE_PHYSICAL_REQUEST_386 structure, defined in NWENVRN1.H as follows:

typedef struct FILE_PHYSICAL_REQUEST_386
{
 BYTE forkType;
 BYTE volume;
 LONG directoryID;
 WORD next;
}FILE_PHYSICAL_REQUEST_386;

The forkType field contains the index assigned (by Novell) to the non-primary data stream
associated with the file (for example, the resource fork of a Macintosh file).

The volume field contains the volume number of the file to return information for.

The directoryID field contains the directory ID number of the file.

The next field identifies the next record to be processed by this function. It must be set to 0 on the
first call to this function. On subsequent calls, it must be set to the value returned in the
nextRequest field of the reply structure.

The buffer receives a FILE_PHYSICAL_RECORD_LOCK structure, defined in
NWENVRN1.H as follows:

typedef struct FILE_PHYSICAL_RECORD_LOCK
{
 WORD unionType;
 union
 {
 FILE_PHYSICAL_RECORD_LOCK_386 pr386;
 }u;
}FILE_PHYSICAL_RECORD_LOCK;

The unionType field contains ENVSERV_CONN_TYPE_386 (for a NetWare 3.x or above
server).
Server-Based Server Environment Functions 459

460 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The union field contains the reply structure for the server type that you want information for. The
reply structure is FILE_PHYSICAL_RECORD_LOCK_386 for a NetWare 3.x (or above) server.
This structure is defined in NWENVRN1.H as follows:

typedef struct FILE_PHYSICAL_RECORD_LOCK_386
{
 WORD nextRequest;
 WORD numberOfLocks;
}FILE_PHYSICAL_RECORD_LOCK_386;

The nextRequest field identifies the next record to be processed by this function. On subsequent
calls to this function, this value is passed in the lastRecord field of the request structure. When 0
is returned in this field, all records have been processed.

The numberOfLocks field contains the number of lock information structures which follow in the
buffer. If information for a NetWare 3.x (or above) server is requested,
FILE_PHYSICAL_RECORD_386 structures follow. This structure is defined in NWENVRN1.H as
follows:

typedef struct FILE_PHYSICAL_RECORD_386
{
 WORD loggedCount;
 WORD shareLockCount;
 LONG recordStart;
 LONG recordEnd;
 WORD connectionNumber;
 WORD taskNumber;
 BYTE lockType;
}FILE_PHYSICAL_RECORD_386;

The loggedCount field contains the number of physical record locks.

The shareLockCount field contains the number of tasks that have the record locked shareable.

The recordStart field contains the starting byte offset of the physical record lock within the file.

The recordEnd field contains the ending byte offset of the physical record lock within the file.

The connectionNumber field contains the number of the connection that has the record locked
exclusively.

The taskNumber field contains the task number of the task within the connection that has the
record locked exclusively.

The lockType field contains a flag indicating the type of lock, if any, on the file, as shown below:

The requesting connection must have console operator rights.

Decimal Hex Description

0 0x00 Not locked

254 0xFE Locked by a file lock

255 0xFF Locked by Begin Share File Set
r Management

novdocx (E
N

U
) 01 February 2006
See Also
GetPhysRecLockByConnectAndFile (page 462)
Server-Based Server Environment Functions 461

462 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetPhysRecLockByConnectAndFile
Returns a logical connection’s physical record locks within a file (For cross-platform functionality,
see Developing NLMs with Cross-Platform Functions (NLM Development Concepts, Tools, and
Functions) and call NWScanPhysicalLocksByConnFile (Single and Intra-File Management)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

T_RC GetPhysRecLockByConnectAndFile (
 int requestSize,
 void *request,
 void *buffer,
 int *bufferSize);

Parameters
requestSize

(IN) Specifies the size of the request buffer.

request
(IN) Points to a buffer containing the request structure.

buffer
(IN/OUT) Points to a buffer which receives the response structure.

bufferSize
(IN) Specifies the size of the buffer that receives the response structure. This buffer must be at
least ENVSERV_BUFFER1_SIZE bytes.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function uses a different request structure depending on whether the request is made to a
NetWare 3.x (or above) server. You must determine the type of server that the request is sent to and
put the correct request structure into the request buffer. If the wrong structure is submitted, this
function returns EFAILURE.
r Management

novdocx (E
N

U
) 01 February 2006
The buffer parameter receives the response structure.

The request buffer contains a CONN_LOCK_REQUEST structure, defined in NWENVRN1.H as
follows:

typedef struct CONN_LOCK_REQUEST
{
 WORD unionType;
 WORD reserved1;
 BYTE reserved2;
 union
 {
 CONN_LOCK_REQUEST_386 lr386;
 }u;
}CONN_LOCK_REQUEST;

The unionType field contains ENVSERV_CONN_TYPE_386 (for a NetWare 3.x or above
server).

The union field contains the request structure for the server type that you want information for.

NetWare 3.x (or above) Server: The request for a NetWare 3.x (or above) server contains a
CONN_LOCK_REQUEST_386 structure, defined in NWENVRN1.H as follows:

typedef struct CONN_LOCK_REQUEST_386
{
 WORD connectionNumber;
 BYTE forkType;
 BYTE volume;
 LONG directoryID;
 WORD next;
}CONN_LOCK_REQUEST_386;

The connectionNumber field contains the connection number to obtain information for.

The forkType field contains the index assigned (by Novell) to the nonprimary data stream
associated with the file (for example, the resource fork of a Macintosh file).

The volume field contains the number of the volume that contains the file.

The directoryID field contains the ID number of the directory that contains the file.

The next field identifies the next record to be processed by this function. On the first call, this field
must be set to 0. On subsequent calls, it must be set to the value returned in the nextRecord field
of the reply structure.

The buffer receives a CONN_RECORD_LOCKS structure, defined in NWENVRN1.H as
follows:

typedef struct CONN_RECORD_LOCKS
{
 WORD unionType;
 union
 {
 CONN_RECORD_LOCKS_386 rl386;
 }u;
}CONN_RECORD_LOCKS;
Server-Based Server Environment Functions 463

464 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The unionType field contains ENVSERV_CONN_TYPE_386 (for a NetWare 3.x or above
server).

The union field contains the reply structure for the server type that you want information for. The
reply structure is CONN_RECORD_LOCKS_386 for a NetWare 3.x (or above) server. This
structure is defined in NWENVRN1.H as follows:

typedef struct CONN_RECORD_LOCKS_386
{
 WORD nextRecord;
 WORD numberOfLocks; /* record locks follow */
}CONN_RECORD_LOCKS_386;

The nextRecord field identifies the next record to be processed by this function. This value is
passed to the next call in next (for NetWare 3.x) field of the request structure. When 0 is returned
in this field, all records have been processed.

The numberOfLocks field contains the number of lock information structures which follow in the
buffer. If information for a NetWare 3.x (or above) server is requested,
CONN_LOCK_RECORD_386 structures follow. These structures are defined in NWENVRN1.H
as follows:

typedef struct CONN_LOCK_RECORD_386
{
 WORD taskNumber;
 BYTE lockFlag;
 LONG recordStart;
 LONG recordEnd;
}CONN_LOCK_RECORD_386;

The taskNumber field contains the task number of the task within the connection that has the
record locked exclusively.

The lockFlag field contains the bit flags indicating the record’s lock status as follows:

0 Locked
1 Open Shareable
2 Logged
3 Open Normal
6 TTS Holding Lock
7 Transaction Flag Set For This File

The recordStart field contains the byte offset of the physical record lock within the file.

The recordEnd field contains the byte offset of the physical record lock within the file.

The requesting connection must have console operator rights.

See Also
GetPhysicalRecordLocksByFile (page 458)
r Management

novdocx (E
N

U
) 01 February 2006
GetSemaphoreInformation
Returns information about a semaphore (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NLM Development Concepts, Tools, and Functions) and call
NWExamineSemaphore in Single and Intra-File Management)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn1.h>

T_RC GetSemaphoreInformation (
 int requestSize,
 void *request,
 void *buffer,
 int *bufferSize);

Parameters
requestSize

(IN) Specifies the size of the request buffer.

request
(IN) Points to a buffer containing the request structure.

buffer
(IN/OUT) Points to a buffer which receives the response structure.

bufferSize
(IN) Specifies the size of the buffer that receives the response structure. This buffer must be at
least ENVSERV_BUFFER1_SIZE bytes.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function uses a different request structure depending on whether the request is made to a
NetWare 3.x (or above) server. You must determine the type of server that the request is sent to and
put the correct request structure into the request buffer. If the wrong structure is submitted, this
function returns EFAILURE.
Server-Based Server Environment Functions 465

466 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The buffer parameter receives the response structure.

The request buffer contains a SEMAPHORE_INFO_REQUEST structure, defined in
NWENVRN1.H as follows:

typedef struct SEMAPHORE_INFO_REQUEST
{
 WORD reserved1;
 BYTE reserved2;
 WORD nextRecord;
 BYTE nameLength;
 BYTE name[255];
}SEMAPHORE_INFO_REQUEST;

The nextRecord field identifies the next record to be processed by this function. This field must
be set to 0 on the first call to this function. On subsequent calls, it must be set to the value returned in
the nextRequest field of the reply structure.

The nameLength field contains the length of name.

The name field contains the name of the semaphore to obtain information for.

The buffer receives a SEMAPHORE_INFO structure, defined in NWENVRN1.H as follows:

typedef struct SEMAPHORE_INFO
{
 WORD unionType;
 union
 {
 SEMAPHORE_INFO_386 si386;
 }u;
}SEMAPHORE_INFO;

The unionType field contains ENVSERV_CONN_TYPE_386 (for a NetWare 3.x or above
server).

The union field contains the reply structure for the server type that you want information for. The
reply structure is SEMAPHORE_INFO_386 for a NetWare 3.x (or above) server. This structure is
defined in NWENVRN1.H as follows:

typedef struct SEMAPHORE_INFO_386
{
 WORD nextRequest;
 WORD openCount;
 WORD semaphoreValue;
 WORD numberOfRecords;
}SEMAPHORE_INFO_386;

The nextRequest field identifies the next record to be processed by this function. This value is
passed in the nextRecord field of the request structure on the next call to this function. When 0 is
returned in this field, all records have been processed.

The openCount field contains the number of logical connections that have this semaphore open.

The semaphoreValue field contains the current value of the semaphore. A negative value is
usually interpreted as the number of objects waiting for the service represented by the semaphore. A
r Management

novdocx (E
N

U
) 01 February 2006
positive value is usually interpreted as the number of free resources available in the resource pool
governed by the semaphore.

The numberOfRecords field contains the number of semaphore information records that follow
in the reply buffer. These records are SEMAPHORE_INFO_RECORD_386 structures for NetWare
3.x (or above) servers. This structure is defined in NWENVRN1.H as follows:

typedef struct SEMAPHORE_INFO_RECORD_386
{
 WORD connectionNumber;
 WORD taskNumber;
}SEMAPHORE_INFO_RECORD_386;

The connectionNumber field contains the connection number of the connection using the
semaphore.

The taskNumber field contains the task number of the task within the connection that is using the
semaphore.
Server-Based Server Environment Functions 467

468 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetServerInformation
Returns information about the server (For cross-platform functionality, see Developing NLMs with
Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWGetFileServerVersionInfo (page 74))

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int GetServerInformation (
 int structSize,
 FILE_SERV_INFO *serverInfo);

Parameters
structSize

(IN) Specifies the number of bytes to return in serverInfo.

serverInfo
(OUT) Receives the statistics of the server (maximum 128 bytes).

Return Values

Remarks
This function allows the user to retrieve all or part of the information about the server where the
current connection is logged in. The function returns up to structSize bytes in serverInfo.

The FILE_SERV_INFO structure that serverInfo points to has the following definition:

{
 char serverName[48];
 BYTE netwareVersion;
 BYTE netwareSubVersion;
 WORD maxConnectionsSupported;
 WORD connectionsInUse;

Decimal Hex Constant

0 (0x00) ESUCCESS
r Management

novdocx (E
N

U
) 01 February 2006
 WORD maxVolumesSupported;
 BYTE revisionLevel;
 BYTE SFTLevel;
 BYTE TTSLevel;
 WORD peakConnectionsUsed;
 BYTE accountingVersion;
 BYTE VAPversion;
 BYTE queingVersion;
 BYTE printServerVersion;
 BYTE virtualConsoleVersion;
 BYTE securityRestrictionLevel;
 BYTE internetBridgeSupport;
 BYTE reserved[60];
 BYTE CLibMajorVersion;
 BYTE CLibMinorVersion;
 BYTE CLibRevision;
} FILE_SERV_INFO;

netwareVersion and netwareSubVersion contain the NetWare service (or OS) version
information, not the NetWare product version. To get these values, type version on the server and
look at the returned Server Version value. The following table lists common NetWare products and
their corresponding values:

The following fields in this structure contain different information depending on the version of
CLIB used in calling the function, whether the call is made to a local or remote server, and the
version of the server that is queried:

• maxConnectionsSupported

• connectionsInUse

• peakConnectionsUsed

The following describes the contents of the maxConnectionsSupported field under different
circumstances.

NetWare Product netwareVersion value netwareSubVersion value

NetWare 4.11 4 11

NetWare 5.1 5 0

NetWare 6 5 60

Calling a remote pre-4.0 server Contains the size of the workstation connection table, which
corresponds to the number of workstation connections the server
supports (for example, 250 for 250-User NetWare).

Calling the local pre-4.0 server Contains the same value as maxConnectionsSupported when
calling a remote pre-4.0 server (above) plus the number of NLM
connections that the server supports. If the number of NLM
connections supports is 100, then a 250-user server would give a
value of 350 in this field.
Server-Based Server Environment Functions 469

470 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The following describes the contents of the connectionsInUse field under different
circumstances.

The following describes the contents of the peakConnectionsUsed field under different
circumstances.

The connection licensing of 4.x brought on a fundamental change in the meaning of the above fields.
CLIB version 4.0 and later supports additional "statistical service" functions to provide NetWare 4.x
specific information about connections. (See the "SS" functions, such as
SSGetActiveConnListByType, SSGetFileServerInfo, SSGetOSVersionInfo, SSGetUserInfo).
SSGetOSVersionInfo returns a maxNumOfConn field, which is the size of the connection table, and
another field maxNumOfUsers, which is the maximum number of licensed connections except on
NetWare versions using Novell Licensing Services (NLS).

Using these functions in combination with the information returned from GetServerInformation
should give you all you need to know about the connections on NetWare 4.x servers, with the
following important exception.

IMPORTANT: Under the NetWare 5.x or 6.x OS or any other NetWare version that uses Novell
Licensing Services (NLS), the maxNumOfUsers value returned by SSGetOSVersionInfo is not
always equal to the maximum nubmer of licensed connections. For this reason, Novell strongly
discourages tying the value of maxNumOfUsers to the licensing of any product.

Calling a 4.x server, local or
remote

Contains the maximum number of connections (licensed and
unlicensed) that have been simultaneously attached, or are currently
attached to the server. This value does not decrease. For example, if
15 workstations have been simultaneously logged in, but only three
workstations are logged in when GetServerInformation is called,
maxConnectionsSupported will contain a value of 15.

maxConnectionsSupported does not contain the maximum
number of licensed connections that are possible for the 4.x server.
This is because 4.x servers use licensing technology to manage
users and now allow an unlimited amount of unlicensed connections.
Therefore, this value is not a static value.

Calling a pre-4.0 server, local
or remote

Contains the number of workstation connections currently attached
to the server. The number does not include internal NLM
connections, nor does it reflect whether the connections are logged-
in (licensed) or not.

Calling a 4.x server, local or
remote

Contains the number of licensed workstation or internal NLM
connections currently attached to the server. The number does not
include connections which are not licensed.

Calling a pre-4.0 server, local
or remote

Contains the maximum number of workstation connections that are
simultaneously attached to the server. The number does not include
internal NLM connections, nor does it reflect whether the
connections are logged-in (licensed) or not.

Calling a 4.x server, local or
remote

Contains the maximum number of licensed workstation or internal
NLM connections that are simultaneously attached to the server. The
number does not include connections which are not licensed.
r Management

novdocx (E
N

U
) 01 February 2006
See Also
GetFileServerDescriptionStrings (page 439)

GetServerInformation Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int ccode, structSize;
 FILE_SERV_INFO sbuf;
 printf ("\n\n");
 structSize = 128;
 ccode = GetServerInformation (structSize, &sbuf);
 if (ccode == 0)
 {
 printf ("ServerName: %s\n", sbuf.serverName);
 printf ("NetwareVersion: %d\n", sbuf.netwareVersion);
 printf ("NetwareSubVersion: %d\n", sbuf.netwareSubVersion);
 printf ("Max Connections Supported: %d\n",
 sbuf.maxConnectionsSupported);
 printf ("Connections In Use:%d\n", sbuf.connectionsInUse);
 printf ("Max Volumes Supported: %d\n",
 sbuf.maxVolumesSupported);
 printf ("Revision Level: %d\n", sbuf.revisionLevel);
 printf ("SFT Level: %d\n", sbuf.SFTLevel);
 printf ("TTS Level: %d\n", sbuf.TTSLevel);
 printf ("Peak Connections Used: %d\n",
 sbuf.peakConnectionsUsed);
 printf ("Accounting Version: %d\n", sbuf.accountingVersion);
 printf ("VAP Version: %d\n", sbuf.VAPversion);
 printf ("Queing version: %d\n", sbuf.queingVersion);
 printf ("Print Server Version: %d\n",
 sbuf.printServerVersion);
 printf ("Virtual Console Version: %d\n",
 sbuf.virtualConsoleVersion);
 printf ("Security Restriction Level: %d\n",
 sbuf.securityRestrictionLevel);
 printf ("Internet Bridge Support: %d\n",
 sbuf.internetBridgeSupport);
 printf ("CLIB Major Version: %d\n", sbuf.CLibMajorVersion);
 printf ("CLIB Minor Version: %d\n", sbuf.CLibMinorVersion);
 printf ("CLIB Revision: %d\n", sbuf.CLibRevision);
 }
 else
 printf ("ccode = %d\n", ccode);
}
Server-Based Server Environment Functions 471

472 NDK: Serve

novdocx (E
N

U
) 01 February 2006
GetServerMemorySize
Returns the amount of memory (RAM) on the server. (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions).)

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.12E, 3.2, 4.01C, 4.1

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

LONG GetServerMemorySize (void);

Return Values
The amount of memory (in bytes) known to the NetWare server, or EFAILURE.

Remarks
GetServerMemorySize returns EFAILURE if it is called in the MS Engine of an SFT III server.

GetServerMemorySize Example
#include <stdio.h>
#include <stdlib.h>
#include <nlm\nit\nwenvrn.h>
#include <process.h>
#include <conio.h>

main()
{
 printf("Server memory: %i\n",
 GetServerMemorySize());
}

r Management

novdocx (E
N

U
) 01 February 2006
GetServerUtilization
Returns the server utilization value that can be seen from MONITOR.NLM

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.12E, 3.2, 4.01C, 4.1

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

LONG GetServerUtilization (void);

Return Values
The utilization value as computed by MONITOR.NLM.

Remarks
The utilization of a NetWare server is a value that can be used to make a measurement of how busy
a server is. This value is computed based upon how many processes running idle loops have run on
the server. The value returned by GetServerUtilization is a measurement at a single instance in time.

Since the value returned by GetServerUtilization is the utilization at a single instance in time,
determining a complete picture of a server’s utilization cannot be determined by one call to
GetServerUtilization. A more meaningful measurement of how the server is being utilized is
determined by computing an average value of the utilization and determining the deviation from the
average.

GetServerUtilization Example
<include stdlib.h>
<include nwenvrn.h>
<include process.h>
<include conio.h>

void main(void)
{
 while(TRUE)
 {
 printf("\nUtilization: %i\n",
 GetServerUtilization());
 ThreadSwitchWithDelay();
 }
}

Server-Based Server Environment Functions 473

474 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SendConsoleBroadcast
Sends a message to a list of connections (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWSendConsoleBroadcast)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int SendConsoleBroadcast (
 char *message,
 WORD connectionCount,
 WORD *connectionList);

Parameters
message

(IN) Specifies the string containing the message to send (maximum 60 characters, including the
NULL terminator).

connectionCount
(IN) Specifies the number of logical connections in the connectionList (0 = broadcast to
all workstations).

connectionList
(IN) Contains a list of logical connection numbers to receive the message.

Return Values

Remarks
Messages do not reach a workstation that has disabled broadcasts.

The requesting workstation must have console Operator rights.

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS
r Management

novdocx (E
N

U
) 01 February 2006
See Also
SendBroadcastMessage

SendConsoleBroadcast Example
#include <stdio.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int i, ccode;
 char message[60];
 WORD connectionList[100];
 WORD connectionCount;
 char buf[4];
 printf ("\n\n");
 printf ("Enter number of messages to send: ");
 gets (buf);
 connectionCount = (WORD) atoi (buf);
 for (i=0; i<connectionCount; i++)
 {
 printf ("\nEnter connection number %d: ", i+1);
 gets (buf);
 connectionList[i] = (WORD) atoi (buf);
 }
 printf ("\nEnter message to be sent:\n");
 printf ("—-> ");
 gets (message);
 ccode = SendConsoleBroadcast (message,
 connectionCount,
 connectionList);
 if (ccode == 0)
 printf("——- SUCCESSFUL ———\n\n");
 if (ccode == 198)
 printf("—- NO_CONSOLE_RIGHTS —-\n\n");
}
Server-Based Server Environment Functions 475

476 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SetFileServerDateAndTime
Sets the date and time of the server (For cross-platform functionality, see Developing NLMs with
Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWSetFileServerDateAndTime (page 169))

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nlm\nit\nwenvrn.h>

int SetFileServerDateAndTime (
 WORD year,
 WORD month,
 WORD day,
 WORD hour,
 WORD minute,
 WORD second);

Parameters
date and time

(IN) These parameters set the server’s date and time.

Return Values

Remarks
The date and time parameters accept information in the following format:

Decimal Hex Constant

0 (0x00) ESUCCESS

198 (0xC6) ERR_NO_CONSOLE_RIGHTS

Decimal Corresponds
To Values Explanation

0 Year 0 to 179 0-79 and 100-179 correspond to the years 2000-
2079. 80-99 correspond to the years 1980-1999.
r Management

novdocx (E
N

U
) 01 February 2006
If an invalid value, such as 250 for the month, is specified, an error will not be returned. The server
will be set to an undefined but valid date and time.

The date and time are not synchronized across the network (between servers).

The requesting workstation must have console Operator or Supervisor rights.

NOTE: If you are running time synchronization (NetWare 4.x) this function behaves differently
depending on the server whose time you change:

If you change the time of the Reference Server, the time for the network is eventually changed.

If you change the time of a Primary Server, its time is eventually synchronized to the network time.

If you change the time of a Secondary Server, its time is eventually synchronized to the network
time.

See Also
GetFileServerDateAndTime (page 437)

SetFileServerDateAndTime Example
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <nwtypes.h>
#include <nlm\nit\nwenvrn.h>

main()
{
 int rc;
 WORD year, month, day, hour, minute, second;
 printf("enter year, month, day, hour, minute, second:\n");
 scanf("%hu,%hu,%hu,%hu,%hu,%hu", &year, &month, &day, &hour,
 &minute, &second);
 rc = SetFileServerDateAndTime(year, month, day, hour,
 minute, second);

1 Month 1 to 12

2 Day 1 to 31

3 Hour 0 to 23

4 Minute 0 to 59

5 Second 0 to 59

6 Day 0 to 6 A value of 0 = Sunday,1 = Monday, 2 = Tuesday,
and so on

Decimal Corresponds
To Values Explanation
Server-Based Server Environment Functions 477

478 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 printf("rc = %d",rc);
}
r Management

novdocx (E
N

U
) 01 February 2006
TTSGetStats (Obsolete-moved from .h file 4/99)
Obsolete—last documented in Release 15 of the Limited Support NetWare SDK.

11.3 SSGetA*-SSGetK* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “SSGetActiveConnListByType” on page 480
• “SSGetActiveLANBoardList” on page 482
• “SSGetActiveProtocolStacks” on page 484
• “SSGetCacheInfo” on page 486
• “SSGetCPUInfo” on page 489
• “SSGetDirCacheInfo” on page 492
• “SSGetFileServerInfo” on page 495
• “SSGetFileSystemInfo” on page 499
• “SSGetGarbageCollectionInfo” on page 501
• “SSGetIPXSPXInfo” on page 503
• “SSGetKnownNetworksInfo” on page 507
• “SSGetKnownServersInfo” on page 509
Server-Based Server Environment Functions 479

480 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetActiveConnListByType
Returns a list of active connection numbers of a given connection type. For cross-platform
functionality, use NWGetActiveConnListByType (page 45).

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetActiveConnListByType (
 LONG startConnNumber,
 LONG connType,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startConnNumber

(IN) Specifies the connection number to start with.

connType
(IN) Specifies the type of connection to return information for.

buffer
(IN/OUT) Points to a buffer which receives a list of connections.

bufferLen
(IN) Specifies the size of buffer. This should be the size of
GetActiveConnListByTypeStructure.

Return Values
ESUCCESS or NetWare® errors.

Remarks
This function returns a connection list of all connections of a given type on the currently connected
server. The connType parameter can have one of the following values:

1 (Included for CLIB backwards compatibility)
r Management

novdocx (E
N

U
) 01 February 2006
This function returns a GetActiveConnListByTypeStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetActiveConnListByTypeStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 BYTE ActiveConnBitList[512];
}GetActiveConnListByTypeStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The ActiveConnBitList field indicates active connections. An array of 512 bytes is returned
where a bit is set for each active connection. The connection number is determined by its position in
the array.

2 NCP_CONNECTION_TYPE

3 NLM_CONNECTION_TYPE

4 AFP_CONNECTION_TYPE

5 FTAM_CONNECTION_TYPE

6 ANCP_CONNECTION_TYPE
Server-Based Server Environment Functions 481

482 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetActiveLANBoardList
Returns information about the active LAN boards on a server. For cross-platform functionality, use
NWGetActiveLANBoardList (page 47) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetActiveLANBoardList (
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Specifies the number of LAN board to start with.

buffer
(IN/OUT) Points to a buffer which receives a list of LAN boards.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetActiveLANBoardListStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetActiveLANBoardListStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG maxNumOfLANs;
 LONG itemsCount;
r Management

novdocx (E
N

U
) 01 February 2006
 LONG boardNumbers;
}GetActiveLANBoardListStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The maxNumOfLANs field contains the total number of LAN boards.

The itemsCount field contains the number of LAN boards returned by this call to
SSGetActiveLANBoardList. To retrieve the rest of the board numbers, call this function again,
using the total number of items returned by all previous calls to SSGetActiveLANBoardList plus 1
as startNumber.

The boardNumbers field contains the first LAN board number. This number is followed in the
buffer by board numbers for each LAN board.
Server-Based Server Environment Functions 483

484 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetActiveProtocolStacks
Returns protocol stack information. For cross-platform functionality, use
NWGetActiveProtocolStacks (page 49) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetActiveProtocolStacks (
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Specifies the number to start with if this function is being called iteratively. On the first
call, this parameter should be 0. On subsequent calls, use the number of stacks retrieved.

buffer
(IN/OUT) Points to a buffer which receives protocol stack information.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetActiveProtocolStackStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetActiveProtocolStackStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG maxNumberOfStacks;
r Management

novdocx (E
N

U
) 01 February 2006
 LONG stackCount;
 ProtocolStackInfo stackInfo;
}GetActiveProtocolStackStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The numberOfSegments field contains the number of volume segments on the volume.

The maxNumberOfStacks field contains the total number of protocol stacks.

The stackCount field contains the number of ProtocolStackInfo structures in the buffer.

The stackInfo field contains the first ProtocolStackInfo structure in the buffer.

The ProtocolStackInfo structure is defined in NWSERVST.H as follows:

typedef struct ProtocolStackInfo
{
 LONG stackNumber;
 BYTE stackName[16];
}ProtocolStackInfo;

The stackNumber field contains the protocol number.

The stackName field contains a length-preceeded string that represents the name of the protocol
stack.
Server-Based Server Environment Functions 485

486 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetCacheInfo
Returns information about a server’s cache buffers. For cross-platform functionality, use
NWGetCacheInfo (page 51) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetCacheInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives cache buffer information structures.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetCacheInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns cache buffer information for the current connection.

This function returns the GetCacheInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetCacheInfoStructure
{
 LONG currentServerTime;
 BYTE VConsoleVersion;
 BYTE VConsoleRevision;
 WORD reserved;
 LONG CacheCntrs[26];
 CacheMemoryCounters MemoryCntrs;
 CacheTrendCounters TrendCntrs;
r Management

novdocx (E
N

U
) 01 February 2006
 CacheInformation CacheInfo;
}GetCacheInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The VConsoleVersion field contains the console version number. VConsoleVersion and
VConsoleRevision track packet format.

The VConsoleRevision field contains the console version revision number.

The CacheCntrs field contains an array of counters that are used by Novell® for debugging.

The MemoryCntrs, TrendCntrs, and CacheInfo fields contain structures which hold cache
buffer information.

The CacheMemoryCounters structure is defined in NWSERVST.H as follows:

typedef struct {
 LONG OriginalNumberOfCacheBuffers;
 LONG CurrentNumberOfCacheBuffers;
 LONG CacheDirtyBlockThreshold;
 LONG debugCounters[7];
} CacheMemoryCounters;

The OriginalNumberOfCacheBuffers field contains the number of cache buffers that
existed when the server was brought up.

The CurrentNumberOfCacheBuffers field contains the number of cache buffers presently
on the server.

The CacheDirtyBlockThreshold field contains the maximum number o cache blocks
allowed to be dirty simultaneously.

The debugCounters field contains an array of counters that are used by Novell for debugging.

The CacheTrendCounters structure is defined in NWSERVST.H as follows:

typedef struct {
 LONG NumOfCacheChecks;
 LONG NumOfCacheHits;
 LONG debugCounters[7];
 LONG LRUSittingTime;
} CacheTrendCounters;

The NumOfCacheChecks field contains the total number of times any block in the cache was
looked at since the server was brought up.

The NumOfCacheHits field contains the number of times cache requests were serviced from
existing cache blocks.

The debugCounters field contains an array of counters that are used by Novell for debugging.

The LRUSittingTime field contains the time in ticks that the oldest cache block has been
available (sitting in the LRU list).

The CacheInformation structure is defined in NWSERVST.H as follows:
Server-Based Server Environment Functions 487

488 NDK: Serve

novdocx (E
N

U
) 01 February 2006
typedef struct {
 LONG MaximumByteCount;
 LONG MinimumNumberOfCacheBuffers;
 LONG MinimumCacheReportThreshold;
 LONG AllocateWaitingCount;
 LONG NDirtyBlocks;
 LONG CacheDirtyWaitTime;
 LONG CacheMaximumConcurrentWrites;
 LONG MaximumDirtyTime;
 LONG NumberOfDirectoryCacheBuffers;
 BYTE CacheByteToBlockShiftFactor;
} CacheInformation;

The MaximumByteCount field contains the maximum length (in bytes) of a cache block.

The MinimumNumberOfCacheBuffers field contains the minimum number of cache buffers
allowed on the server. This number can be set using the SET console command. Supported values
are 20 to 1000; the default value is 20.

The MinimumCacheReportThreshold field contains the number of cache buffers used for the
report threshold. When the cache buffers reach a number equal to the minimum number of cache
buffers plus this report threshold, the server sends an alarm message warning that cache buffers are
getting low. This number can be set using the SET console command. Supported values are 0 to
1000; the default value is 20.

The AllocateWaitingCount field contains the number of processes waiting to allocate a cache
block.

The NDirtyBlocks field contains the number of dirty blocks waiting to write to disk.

The CacheDirtyWaitTime field contains the maximum wait before a write request is written to
disk. This value can be set using the SET console command. Supported values are 0.1 seconds to 10
seconds; the default value is 3.3 seconds.

The CacheMaximumConcurrentWrites field contains the maximum number of write
requests for changed file data that can be put in the elevator before the disk head begins a sweep
across the disk. This value can be set using the SET console command. Supported values are 10 to
100; the default value is 50.

The MaximumDirtyTime field contains the longest time (in ticks) that a dirty block has waited
before it was written to disk since the server was brought up.

The NumberOfDirectoryCacheBuffers field contains the number of directory cache buffers
on the server.

The CacheByteToBlockShiftFactor field contains the factor used to determine the block
size. Block size is calculated by the following equation, where n is the shift factor:

block size = 2 n bytes
r Management

novdocx (E
N

U
) 01 February 2006
SSGetCPUInfo
Returns information about the server CPU. For cross-platform functionality, use NWGetCPUInfo
(page 53) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetCPUInfo (
 LONG CPUNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
CPUNumber

(IN) Specifies the number of the CPU to obtain information for (currently this number is
always 0).

buffer
(IN/OUT) Points to a buffer which receives CPU information.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetCPUInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetCPUInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 CPUInformation CPUInfo;
Server-Based Server Environment Functions 489

490 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 BYTE variableStringsStart;
}GetCPUInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The CPUInfo field contains a CPUInformation structure.

The variableStringsStart field contains the CPU string, the NPX present string, and the
Bus string.

The CPUInfo field contains a CPUInformation structure. This structure is defined in
NWSERVST.H as follows:

typedef struct {
 LONG numberOfCPUs;
 LONG PageTableOwnerFlag;
 LONG CPUType;
 LONG CoProcessorFlag;
 LONG BusType;
 LONG IOEngineFlag;
 LONG FSEngineFlag;
 LONG NonDedFlag;
} CPUInformation;

The numberOfCPUs field contains the number of registered CPUs in the server.

The PageTableOwnerFlag field indicates whether the NetWare OS owns the page table. Values
for this flag include the following:

0-The NetWare OS owns the page tables
1-The NetWare OS does not own the page tables (currently, only when running with OS/2)

The CPUType field contains the CPU type.

The CoProcessorFlag field indicates whether a coprocessor is present.

The BusType field indicates the type of bus used:

More than one of the bit field can be set. Thus, for example, if PCI and ISA are both supported, the
value in the BusType field is 0x14 (decimal 20).

0x01 microchannel

0x02 EISA

0x04 PCI

0x08 PCMCIA

0x10 ISA
r Management

novdocx (E
N

U
) 01 February 2006
The IOEngineFlag field indicates whether the IO engine is installed (TRUE = installed).

The FSEngineFlag field indicates whether the file system engine is installed (TRUE = installed).

The NonDedFlag currently is not supported. In the future, this field will indicate whether the CPU
is dedicated to the NetWare OS. This flag is set when the CPU is nondedicated (currently, only when
running OS/2).

The PageTableOwnerFlag, defined above, can be used to determine whether an NLM™
application is running under NetWare for OS/2 because this flag is 0 only under those
circumstances.
Server-Based Server Environment Functions 491

492 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetDirCacheInfo
Returns information about the directory cache of a server. For cross-platform functionality, use
NWGetDirCacheInfo (page 55) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetDirCacheInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives directory cache information.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetDirCacheInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns information for the current connection. A GetDirCacheInfoStructure is
returned in buffer. This structure is defined in NWSERVST.H as follows:

typedef struct GetDirCacheInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 DirectoryCacheInformation dirCacheInfo;
}GetDirCacheInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.
r Management

novdocx (E
N

U
) 01 February 2006
The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The dirCacheInfo field contains a DirectoryCacheInformation structure.

The DirectoryCacheInformation structure is defined in NWSERVST.H as follows:

typedef struct {
 LONG MinimumTimeSinceFileDelete;
 LONG AbsMinimumTimeSinceFileDelete;
 LONG MinimumNumberOfDirCacheBuffers;
 LONG MaximumNumberOfDirCacheBuffers;
 LONG NumberOfDirectoryCacheBuffers;
 LONG DCMinimumNonReferencedTime;
 LONG DCWaitTimeBeforeNewBuffer;
 LONG DCMaximumConcurrentWrites;
 LONG DCDirtyWaitTime;
 LONG debugCounters[4];
 LONG PercentOfVolumeUsedByDirs;
} DirectoryCacheInformation;

The MinimumTimeSinceFileDelete field contains the minimum time (in ticks) between the
deletion of a file and when it can be purged.

The AbsMinimumTimeSinceFileDelete field contains the minimum time (in ticks) between
the deletion of a file and when it can be purged when the system has no available blocks.

The MinimumNumberOfDirCacheBuffers field contains the minimum number of directory
cache buffers that can be allocated on the server. This number can be set using the SET console
command. Supported values are 10 to 2000; the default value is 20.

The MaximumNumberOfDirCacheBuffers field contains the maximum number of directory
cache buffers that can be allocated on the server. This number can be set using the SET console
command. Supported values are 20 to 4000; the default value is 500.

The NumberOfDirectoryCacheBuffers field contains the current number of directory cache
buffers on the server.

The DCMinimumNonReferencedTime field contains the time (in ticks) that must elapse
between the last reference of a directory buffer and the time it is reused. This value can be set using
the SET console command. Supported values are 1 second to 5 minutes; the default value is 5.5
seconds.

The DCWaitTimeBeforeNewBuffer field contains the time (in ticks) that must elapse before
an additional directory cache buffer is allocated. This value can be set using the SET console
command. Supported values are 0.5 seconds to 2 minutes; the default value is 2.2 seconds.

The DCMaximumConcurrentWrites field contains the maximum number of write requests
from directory cache buffers that can be put in the elevator before they are written to disk. This value
can be set using the SET console command. Supported values are 5 to 50; the default value is 10.

The DCDirtyWaitTime field contains the maximum time (in ticks) that the server can wait
before writing dirty cache buffers to disk. This value can be set using the SET console command.
Supported values are 0 to 10 seconds; the default value is 0.5 seconds.
Server-Based Server Environment Functions 493

494 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The debugCounters field contains an array of counters used by Novell for debugging.

The PercentOfVolumeUsedByDirs field contains the maximum percentage of a volume that
can be used by directories. This value can be set using the SET console command. Supported values
are 5 to 50; the default value is 13.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetFileServerInfo
Returns information about a server. For cross-platform functionality, use NWGetFileServerInfo
(page 65) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetFileServerInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives server information structures.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetFileServerInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns server information for the current connection.

NOTE: Prior to NetWare 5.1 SP 6 and NetWare 6 SP 3, the SSGetFileServerInfo function required
the IPX protocol stack to be loaded on the server. With these service packs, IP-only servers return all
information except the IPX-specific information. These fields (NCPStaInUseCnt,
NCPPeakStaInUse, and numOfNCPReqs) always return 0.

This function returns the GetFileServerInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetFileServerInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
Server-Based Server Environment Functions 495

496 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 WORD reserved;
 LONG NCPStaInUseCnt;
 LONG NCPPeakStaInUse;
 LONG numOfNCPReqs;
 LONG serverUtilization;
 ServerInformation serverInfo;
 FSCounters fileServerCounters;
}GetFileServerInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The NCPStaInUseCnt field contains the number of workstations connected to the server.

The NCPPeakStaInUse field contains the maximum number of workstations connected at one
time since the server was brought up.

The numOfNCPReqs field contains the number of NCP™ requests received by the server since it
was brought up.

The serverUtilization field contains the current percentage of CPU utilization for the server.

The serverInfo and fileServerCounters fields contain server statistics.

The ServerInformation structure is defined in NWSERVST.H as follows:

typedef struct {
 LONG ReplyCanceledCount;
 LONG WriteHeldOffCount;
 LONG reserved1;
 LONG InvalidRequestTypeCount;
 LONG BeingAbortedCount;
 LONG AlreadyDoingReAllocateCount;
 LONG reserved2[3];
 LONG DeAllocateStillTransmittingCount;
 LONG StartStationErrorCount;
 LONG InvalidSlotCount;
 LONG BeingProcessedCount;
 LONG ForgedPacketCount;
 LONG StillTransmittingCount;
 LONG ReExecuteRequestCount;
 LONG InvalidSequenceNumberCount;
 LONG DuplicateIsBeingSentAlreadyCount;
 LONG SentPositiveAcknowledgeCount;
 LONG SentADuplicateReplyCount;
 LONG NoMemoryForStationControlCount;
 LONG NoAvailableConnectionsCount;
 LONG ReAllocateSlotCount;
 LONG ReAllocateSlotCameTooSoonCount;
} ServerInformation;
r Management

novdocx (E
N

U
) 01 February 2006
The ReplyCanceledCount field contains the number of replies that were cancelled because the
connection was reallocated while the request was being processed.

The WriteHeldOffCount field contains the number of times that writes were delayed because
of a pending TTS™ transaction or cache busy condition.

The InvalidRequestTypeCount field contains the number of packets received which had an
invalid request type or were received after the server was downed.

The BeingAbortedCount field contains the number of packets received for a connection that
was being terminated.

The AlreadyDoingReAllocateCount field contains the number of times that a connection is
requested when a connection already exists.

The DeAllocateInvalidSlotCount field contains the number of times an attempt was made
to deallocate a connection slot which was not valid.

The StartStationErrorCount field contains the number of times the server was unable to
allocate a connection for whatever reason.

The InvalidSlotCount field contains the number of requests received for an invalid
connection slot.

The BeingProcessedCount field contains the number of times a duplicate request was
received during processing of the first request.

The ForgedPacketCount field contains the number of suspicious invalid packets received. It is
rarely possible to create such packets because of faulty equipment. If this number is large, it might
indicate an attempt to breach network security.

The StillTransmittingCount field contains the number of times a new request is received
before a reply to a previous request has been sent.

The ReExecuteRequestCount field contains the number of times the requester did not receive
the reply and the request had to be reprocessed.

The InvalidSequenceNumberCount field contains the number of request packets the server
received from a connection where the sequence number in the packet did not match the current
sequence number or the next sequence number. (Packets with bad sequence numbers are discarded).
If this number is large, it might indicate an attempt to breach network security.

The DuplicateIsBeingSentAlreadyCount field contains the number of times a duplicate
reply was requested when the reply had already been sent.

The SentPositiveAcknowledgeCount field contains the number of acknowledgments sent
by the server. An acknowledgment is sent when a connection repeats a request that is being serviced.

The SentADuplicateReplyCount field contains the number of request packets for which the
server had to send a duplicate reply. (Duplicate replies are only sent for requests the server cannot
process.)

The NoMemoryForStationControlCount field contains the number of times that the server
could not allocate memory to expand the connection table for a new connection.

The NoAvailableConnectionsCount field contains the number of times there were no slots
available in the connection table for a new connection.
Server-Based Server Environment Functions 497

498 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The ReAllocateSlotCount field contains the number of times the server reallocated the same
slot in the connection table for a client that logged out and then re-logged in.

The ReAllocateSlotCameTooSoonCount field contains the number of times that a request
came from a client to re-log in before that client had been completely logged out.

The FSCounters structure is defined in NWSERVST.H as follows:

typedef struct {
 WORD TooManyHops;
 WORD UnknownNetwork;
 WORD NoSpaceForService;
 WORD NoRecieveBuffers;
 WORD NotMyNetwork;
 LONG NetBIOSProgatedCount;
 LONG TotalPacketsServiced;
 LONG TotalPacketsRouted;
} FSCounters;

The TooManyHops field contains the number of packets that were discarded because they had
passed through more than 16 bridges without reaching their destination.

The UnknownNetwork field contains the number of packets that were discarded because their
destination network was unknown to the server.

The NoSpaceForService field is always set to 0 (currently).

The NoRecieveBuffers field contains the number of times a packet was discarded because
there were no buffers to receive it.

The NotMyNetwork field contains the number of packets received that were not destined for the
server.

The NetBIOSPropagatedCount field contains the number of NetBIOS packets received that
were sent forward.

The TotalPacketsServiced field contains the total packets received by the server.

The TotalPacketsRouted field contains the number of all packets forwarded by the server.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetFileSystemInfo
Returns information about a server’s file system.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetFileSystemInfo (
 LONG fileSystemID,
 BYTE *buffer,
 LONG bufferLen);

Parameters
fileSystemID

(IN) Specifies the ID number of the file system for which to return information. Currently this
value is always 1 (for 386).

buffer
(IN/OUT) Points to a buffer which receives file system information.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetFileSystemInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns file system information for the file system specified by fileSystemID.
Although none of the information currently returned by this function is useful to a developer, this
function has been included in the documentation for future use.

This function returns a GetFileSystemInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetFileSystemInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
Server-Based Server Environment Functions 499

500 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 BYTE vConsoleRevision;
 WORD reserved;
 LONG debugCounters[13];
}GetFileSystemInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The debugCounters field contains an array of counters that deal with the background FAT
update process. These counters are used by Novell for debugging.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetGarbageCollectionInfo
Returns information about garbage collection on a server. For cross-platform functionality, use
NWGetGarbageCollectionInfo (page 79) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetGarbageCollectionInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives garbage collection information.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetGarbageCollInfoStruc.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetGarbageCollInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetGarbageCollInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG failedAllocReqCount;
 LONG numberOfAllocs;
 LONG noMoreMemAvlCnt;
 LONG numOfGarbageColl;
 LONG foundSomeMem;
Server-Based Server Environment Functions 501

502 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 LONG numOfChecks;
}GetGarbageCollInfoStruc;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The failedAllocReqCount field contains the number of times memory allocation failed since
the server was brought up.

The numberOfAllocs field contains the number of memory allocations made since the server
was brought up.

The noMoreMemAvlCnt field contains the number of times that allocation failed because there
was no memory available since the server was brought up.

The numOfGarbageColl field contains the number of times garbage collection was invoked
since the server was brought up.

The foundSomeMem field contains the number of times garbage collection reclaimed memory.

The numOfChecks field contains the number of times garbage collection checked for memory
since the server was brought up.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetIPXSPXInfo
Returns information about IPX™ / SPX™ use on a server. For cross-platform functionality, use
NWGetIPXSPXInfo (page 83) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetIPXSPXInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives IPX and SPX information.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetIPXSPXInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetIPXSPXInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetIPXSPXInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 IPXInformation IPXInfo;
 SPXInformation SPXInfo;
}GetIPXSPXInfoStructure;
Server-Based Server Environment Functions 503

504 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The IPXInfo field contains a IPXInformation structure. This structure is defined in
NWSERVST.H as follows:

typedef struct {
 LONG IpxSendPacketCount;
 WORD IpxMalformPacketCount;
 LONG IpxGetECBRequestCount;
 LONG IpxGetECBFailCount;
 LONG IpxAESEventCount;
 WORD IpxPostponedAESCount;
 WORD IpxMaxConfiguredSocketCount;
 WORD IpxMaxOpenSocketCount;
 WORD IpxOpensocketFailCount;
 LONG IpxListenECBCount;
 WORD IpxECBCancelFailCount;
 WORD IpxGetLocalTargetFailCount;
} IPXInformation;

The IpxSendPacketCount field contains the number of IPX packets sent by the server.

The IpxMalformPacketCount field contains the number of IPX packets discarded because
they were malformed.

The IpxGetECBRequestCount field contains the number of ECB requests.

The IpxGetECBFailCount field contains the number of times an ECB was requested but could
not be supplied.

The IpxAESEventCount field contains the number of AES events scheduled.

The IpxPostponedAESCount field contains the number of AES events that could not be
scheduled and were placed in a waiting list.

The IpxMaxConfiguredSocketCount field contains the maximum number of sockets that
can be open at one time.

The IpxMaxOpenSocketCount field contains the maximum number of sockets open at one
time since the server was brought up.

The IpxOpensocketFailCount field contains the number of times a request to open a socket
failed.

The IpxListenECBCount field contains the number of ECBs listening for a packet.

The IpxECBCancelFailCount field contains the number of ECB listens that were cancelled.

The IpxGetLocalTargetFailCount field contains the number of times that the server failed
to find the target.
r Management

novdocx (E
N

U
) 01 February 2006
The SPXInfo field contains a SPXInformation structure. This structure is defined in
NWSERVST.H as follows:

typedef struct {
 WORD SpxMaxConnectionsCount;
 WORD SpxMaxUsedConnections;
 WORD SpxEstConnectionReq;
 WORD SpxEstConnectionFail;
 WORD SpxListenConnectReq;
 WORD SpxListenConnectFail;
 LONG SpxSendCount;
 LONG SpxWindowChokeCount;
 WORD SpxBadSendCount;
 WORD SpxSendFailCount;
 WORD SpxAbortedConnection;
 LONG SpxListenPacketCount;
 WORD SpxBadListenCount;
 LONG SpxIncomingPacketCount;
 WORD SpxBadInPacketCnt;
 WORD SpxSuppressedPackCnt;
 WORD SpxNoSesListenECBCnt;
 WORD SpxWatchDogDestSesCnt;
} SPXInformation;

The SpxMaxConnectionsCount field contains the maximum number of SPX connections
allowed on the server.

The SpxMaxUsedConnections field contains the maximum number of SPX connections used
at one time since the server was brought up.

The SpxEstConnectionReq field contains total number of SPX connections established since
the server was brought up.

The SpxEstConnectionFail field contains number of times that an attempt to establish an
SPX connection failed since the server was brought up.

The SpxListenConnectReq field contains the number of requests to post a listen since the
server was brought up.

The SpxListenConnectFail field contains the number of times a request to post a listen failed
since the server was brought up.

The SpxSendCount field contains the number of SPX packets sent since the server was brought
up.

The SpxWindowChokeCount field contains a value used internally for debugging.

The SpxBadSendCount field contains the number of bad packets sent since the server was
brought up.

The SpxSendFailCount field contains the number of packets sent for which no
acknowledgment was received since the server was brought up.

The SpxAbortedConnection field contains the number of times a connection was aborted
since the server was brought up.
Server-Based Server Environment Functions 505

506 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The SpxListenPacketCount field contains the number of times a listen was posted on a socket
since the server was brought up.

The SpxBadListenCount field contains the number of times a listen on a socket failed for
whatever reason (for example, it was cancelled) since the server was brought up.

The SpxIncomingPacketCount field contains the number of packets in the queue.

The SpxBadInPacketCnt field contains the number of bad SPX packets received since the
server was brought up.

The SpxSuppressedPackCnt field contains the number of times a duplicate SPX packet was
received.

The SpxNoSesListenECBCnt field contains the number of times a listen was posted on a
session that was not established since the server was brought up.

The SpxWatchDogDestSesCnt field contains the number of times the watchdog destroyed a
session since the server was brought up.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetKnownNetworksInfo
Returns information about known networks. For cross-platform functionality, use
NWGetKnownNetworksInfo (page 85) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetKnownNetworksInfo (
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Specifies the number to start with.

buffer
(IN/OUT) Points to a buffer which receives a information about known networks.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetKnownNetworksStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetKnownNetworksStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG numberOfEntries;
Server-Based Server Environment Functions 507

508 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 KnownNetworksStructure info;
}GetKnownNetworksStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The numberOfEntries field contains the number of structures in the buffer

The info field contains the first KnownNetworkStructure.

The KnownNetworkStructure is defined in NWSERVST.H as follows:

typedef struct KnownNetworksStructure
{
 LONG netIDNumber;
 WORD hopsToNet;
 WORD netStatus;
 WORD timeToNet;
}KnownNetworksStructure;

The netIDNumber field contains the network ID number.

The hopsToNet field contains the number of hops to the network from the server.

The netStatus field indicates the status of the network.

The timeToNet field contains the time in ticks to the network (round-trip).
r Management

novdocx (E
N

U
) 01 February 2006
SSGetKnownServersInfo
Returns information about known servers. For cross-platform functionality, use
NWGetKnownServersInfo (page 87) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetKnownServersInfo (
 LONG startNumber,
 LONG serverType,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Specifies the number of the server to start with.

serverType
(IN) Specifies the type of server to return information for.

buffer
(IN/OUT) Points to a buffer which receives a information about protocol configuration of the
server.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetKnownServerInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetKnownServersInfoStructure
{
 LONG currentServerTime;
Server-Based Server Environment Functions 509

510 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG numberOfEntries;
 KnownServerStructure info;
}GetKnownServersInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The numberOfEntries field contains the number of structures in the buffer.

The info field contains the first KnownServerStructure in the buffer. More follow.

typedef struct KnownServerStructure
{
 BYTE serverAddress[12];
 WORD hopCount;
 BYTE name;
}KnownServerStructure;

The serverAddress field contains the node address of the known server.

The hopCount field contains the number of hops to the server.

The name field contains the first byte of the server name.

11.4 SSGetL*-SSGetN* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “SSGetLANCommonCounters” on page 512
• “SSGetLANConfiguration” on page 515
• “SSGetLANCustomCounters” on page 522
• “SSGetLoadedMediaNumberList” on page 524
• “SSGetLSLInfo” on page 526
• “SSGetLSLLogicalBoardStats” on page 529
• “SSGetMediaManagerObjChildList” on page 531
• “SSGetMediaManagerObjInfo” on page 534
• “SSGetMediaManagerObjList” on page 539
• “SSGetMediaNameByNumber” on page 542
• “SSGetNetRouterInfo” on page 544
• “SSGetNetworkRoutersInfo” on page 546
• “SSGetNLMInfo” on page 548
r Management

novdocx (E
N

U
) 01 February 2006
• “SSGetNLMLoadedList” on page 552
• “SSGetNLMResourceTagList” on page 554
Server-Based Server Environment Functions 511

512 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetLANCommonCounters
Returns common statistics for a LAN board. For cross-platform functionality, use
NWGetLANCommonCountersInfo (page 89) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetLANCommonCounters (
 LONG boardNumber,
 LONG blockNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
boardNumber

(IN) Specifies the board number of the LAN board for which you want information.

blockNumber
(IN) Specifies the block number to start with. On the first call to this function this value should
be 0. On subsequent calls this value should be the value that is returned in the
nextCntBlock field of the GetLANCommonCountersStructure returned by this function.

buffer
(IN/OUT) Points to a buffer which receives a GetLANCommonCountersStructure.

bufferLen
(IN) Specifies the size of buffer. This should be the size of
GetLANCommonCountersStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetLANCommonCountersStructure in buffer. This structure is defined in
NWSERVST.H as follows:
r Management

novdocx (E
N

U
) 01 February 2006
typedef struct GetLANCommonCountersStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 BYTE statMajorVersion;
 BYTE statMinorVersion;
 LONG totalCommonCnts;
 LONG totalCntBlocks;
 LONG customCounters;
 LONG nextCntBlock;
 CommonLANStructure info;
}GetLANCommonCountersStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The statMajorVersion field contains the major version number of the generic portion of the
statistics table (defined by Novell).

The statMinorVersion field contains the minor version number of the generic portion of the
statistics table (defined by Novell).

The totalCommonCnts field contains the number of LAN common counters.

The totalCntBlocks field contains the total number of blocks used by LAN common counters
for the specified LAN board.

The customCounters field contains the number of LAN custom counters.

The nextCntBlock field contains the value to be passed in blockNumber on the next call to
this function. When 0 is returned in this field, all common counters have been returned.

The info field contains a CommonLANStructure.

The CommonLANStructure is defined in NWSERVST.H as follows:

typedef struct CommonLANStructure
{
 LONG notSupportedMask;
 LONG TotalTxPacketCount;
 LONG TotalRxPacketCount;
 LONG NoECBAvailableCount;
 LONG PacketTxTooBigCount;
 LONG PacketTxTooSmallCount;
 LONG PacketRxOverflowCount;
 LONG PacketRxTooBigCount;
 LONG PacketRxTooSmallCount;
 LONG PacketTxMiscErrorCount;
 LONG PacketRxMiscErrorCount;
Server-Based Server Environment Functions 513

514 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 LONG RetryTxCount;
 LONG ChecksumErrorCount;
 LONG HardwareRxMismatchCount;
}CommonLANStructure;

The notSupportedMask field indicates if the counter is supported. If the bit is 0, the counter is
supported; if it is 1, the counter is not supported.

The TotalTxPacketCount field contains the total number of packets transmitted by the LAN
board.

The TotalRxPacketCount field contains the total number of packets that were received by the
LAN board.

The NoECBAvailableCount field contains the number of times the LAN board failed to get a
receive ECB.

The PacketTxTooBigCount field contains the number of times the send packet was too big for
this LAN board to send.

The PacketTxTooSmallCount field contains the number of times the send packet was too
small for this LAN board to send.

The PacketRxOverflowCount field contains the number of times the LAN board’s receive
buffers overflowed.

The PacketRxTooBigCount field contains the number of times this LAN board could not
receive a packet because the packet was too big.

The PacketRxTooSmallCount field contains the number of times this LAN board could not
receive a packet because the packet was too small.

The PacketTxMiscErrorCount field contains the number of times any kind of transmit error
occurred for the LAN board.

The PacketRxMiscErrorCount field contains the number of times any kind of receive error
occurred for the LAN board.

The RetryTxCount field contains the number of times the LAN board retried a transmit because
of failure.

The ChecksumErrorCount field contains the number of times a checksum error occurred for the
LAN board.

The HardwareRxMismatchCount field contains a counter which can be incremented when a
packet is received which does not pass length consistency checks (currently used only by the
Ethernet TSU).
r Management

novdocx (E
N

U
) 01 February 2006
SSGetLANConfiguration
Returns information about the configuration of LAN drivers on a server. For cross-platform
functionality, use NWGetLANConfigInfo (page 91) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetLANConfiguration (
 LONG boardNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
boardNumber

(IN) Specifies the number (1-255) of the logical LAN board to obtain information for. The
value must not be zero.

buffer
(IN/OUT) Points to a buffer which receives a LAN driver configuration information.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetLANConfigInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetLANConfigInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetLANConfigInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
Server-Based Server Environment Functions 515

516 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 DriverConfigStructure LANConfig;
}GetLANConfigInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The LANConfig field contains a DriverConfigStructure.

The DriverConfigStructure is defined in NWSERVST.H as follows:

typedef struct {
 BYTE DriverCFG_MajorVersion;
 BYTE DriverCFG_MinorVersion;
 BYTE DriverNodeAddress[6];
 WORD DriverModeFlags;
 WORD DriverBoardNumber;
 WORD DriverBoardInstance;
 LONG DriverMaximumSize;
 LONG DriverMaxRecvSize;
 LONG DriverRecvSize;
 LONG DriverCardName;
 LONG DriverShortName;
 LONG DriverMediaType;
 WORD DriverCardID;
 WORD DriverMediaID;
 WORD DriverTransportTime;
 BYTE DriverReserved[16];
 BYTE DriverMajorVersion;
 BYTE DriverMinorVersion;
 WORD DriverFlags;
 WORD DriverSendRetries;
 LONG DriverLink;
 WORD DriverSharingFlags;
 WORD DriverSlot;
 WORD DriverIOPortsAndLengths[4];
 LONG DriverMemoryDecode0;
 WORD DriverLength0;
 LONG DriverMemoryDecode1;
 WORD DriverLength1;
 BYTE DriverInterrupt[2];
 BYTE DriverDMAUsage[2];
 LONG DriverResourceTag;
 LONG DriverConfig;
 LONG DriverCommandString;
 BYTE DriverLogicalName[18];
 LONG DriverLinearMemory[2];
 WORD DriverChannelNumber;
 BYTE DriverIOReserved[6];
} DriverConfigStructure;
r Management

novdocx (E
N

U
) 01 February 2006
The DriverCFG_MajorVersion field contains the Novell defined major version number of the
configuration table.

The DriverCFG_MinorVersion field contains the Novell defined minor version of the
configuration table.

The DriverNodeAddress field contains the node address of the LAN board.

The DriverModeFlags field contains the modes supported by the driver. The bits are defined as
follows:

Bits 14 and 15 in DriverModeFlags describe the format of DriverNodeAddress. The
combinations are as follow:

The DriverBoardNumber field contains the logical board number (1 - 255) assigned to the LAN
board by the L ink Support Layer™ (LSL™) software.

WARNING: If the value of DriverBoardNumber is zero at the time SSGetLANConfugration is
called, the function never returns.

The DriverBoardInstance field contains the number of the physical card that the logical
board is using. If a driver is driving one physical card, all the logical boards using this card would
have a value of 1 in this field. If a second physical card is added, all the logical boards using the
second physical card would have a value of 2 in this field.

0 Set to 1. At one time this bit indicated whether the driver was a real or dummy driver.

1 Set if the driver uses DMA. However, the buffers are not guaranteed to be on a 64K
boundary.

2 Set only if bit 4 is set. This bit tells routers to only pass router table changes when they
occur, rather than forwarding all RIP and SAP packets.

3 Set if the driver supports multicasting.

4 "Point-to-point bit": Set if the driver can bind with a protocol stack without providing a
network number.

6 Set if the driver supports raw sends. If the LSL hands a "raw" packet to an MLID, the
MLID should send the packet without prepending any hardware header (the protocol
stack prepares the packet).

10 Set if the HSM can handle framented RCBs.

13 Set if the HSM can handle promiscuous RCBs.

14-15 Bits 14 and 15 combine to describe the DriverNodeAddress (see the following
table).

00 Format is unspecified-The node address is assumed to be in the physical layer’s
native format

01 This is an illegal combination and should not occur

10 DriverNodeAddress is canonical

11 DriverNodeAddress is non-canonical
Server-Based Server Environment Functions 517

518 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The DriverMaximumSize field contains the maximum send or receive packet size (in bytes) that
the LAN board can transmit or receive.

The DriverMaxRecvSize field contains the maximum packet size (or best size) in bytes that the
LAN board can receive.

The DriverRecvSize field contains the maximum packet size (in bytes) a protocol stack can
send or receive using this board.

The DriverCardName field contains a pointer to a length-preceded, zero-terminated ASCII
description string that is contained in the OSDATA segment and is similar to the description string in
the definition table. For example, "NE2000 ETHERNET Driver".

The DriverShortName field contains a pointer to a length-preceded, zero-terminated ASCII
string that describes the LAN board in eight bytes or less, such as "NE2000".

The DriverMediaType field contains a pointer to a length-preceded, zero-terminated string that
describes the frame type of the Multiple Link Interface Driver™ (MLID™) software (for example,
"ETHERNET_802.3"). The Independent Manufacturer Support Program (IMSP) assigns strings for
the frame type. The following table summarizes frame types currently defined by Novell with their
corresponding protocol ID numbers for IPX.

Frame ID Frame Type String
Protocol
ID on IPX/
SPX

Description

0 VIRTUAL_LAN 00h For use where no Frame ID/MAC envelope is
necessary

1 LOCALTALK 00h Apple LocalTalk* frame

2 ETHERNET_II 8137h Ethernet using a DEC* Ethernet II envelope

3 ETHERNET_802.2 E0h Ethernet (802.3) using an 802.2 envelope

4 TOKEN-RING E0h Token ring (802.5) using an 802.2 envelope

5 ETHERNET_802.3 00h IPX 802.3 raw encapsulation

6 802.4 N/A Token-passing bus envelope

7 NOVELL_PCN2 1111h Novell’s IBM* PC Network II envelope

8 GNET E0h Gateway’s GNET frame envelope

9 PRONET-10 N/A Proteon’s* ProNET* I/O frame envelope

10 ETHERNET_SNAP 8137h Ethernet (802.3) using an 802.2 envelope with SNAP

11 TOKEN-RING_SNAP 8137h Token ring (802.5) using an 802.2 envelope with
SNAP

12 LANPAC_II N/A Racore’s frame envelope

13 ISDN N/A Integrated Services Digital Network

14 NOVELL_RX-NET FAh Novell’s ArcNet 68™ envelope

15 IBM_PCN2_802.2 E0h IBM PCN2 using 802.2 envelope

16 IBM_PCN2_SNAP 8137h IBM PCN2 using 802.2 with SNAP envelope
r Management

novdocx (E
N

U
) 01 February 2006
The DriverCardID field contains the number assigned to the LAN board by the IMSP.

The DriverMediaID field contains a number identifying the link-level envelope (frame ID) used
by the MLID. The above table lists defined ID numbers.

The DriverTransportTime field contains the time (in ticks) that it takes for the LAN board to
transmit a 576-byte packet.

The DriverReserved field is reserved for future use (currently set to 0).

The DriverMajorVersion field contains the major version number of the MLID.

The DriverMinorVersion field contains the minor version number of the MLID.

The DriverFlags field contains a bit map indicating the architecture supported by the MLID:

0 Supports an EISA board
1 Supports an ISA board
2 Supports an MCA board
8 Supports HUB management
9-10 Bits 9 and 10 combine to indicate different support mechanisms for multicast filtering and

multicast formats (see the following table)

Bits 9 and 10 in DriverFlags indicate different support mechanisms for multicast filtering and
format. The combinations are as follow:

17 OMNINET/4 N/A Corvus’s frame envelope

18 3270_COAXA N/A Harris Adacom’s frame envelope

19 IP N/A IP Tunnel frame envelope

20 FDDI_802.2 E0h FDDI (802.7) using an 802.2 envelope

21 IVDLAN_802.9 N/A Commtex, Inc.’s frame envelope

22 DATACO_OSI N/A Dataco’s frame envelope

23 FDDI_SNAP 8137h FDDI (802.7) using 802.2 with a SNAP envelope

24 IBM_SDLC N/A SDLC tunnel envelope

25 PCO_FDDITP N/A PC Office frame envelope

26 WAIDNET N/A Hypercommunications

27 SLIP N/A Novell frame envelope

28 PPP N/A Novell frame envelope

00 The method used for group addressing support defaults to that of the LAN medium.
For example, for Ethernet it is the Hash Table; for Token Ring it is the Functional
Address.

01 This is an illegal combination and should not occur

Frame ID Frame Type String
Protocol
ID on IPX/
SPX

Description
Server-Based Server Environment Functions 519

520 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The DriverSendRetries field contains the number of times that the MLID retries send events
before aborting the send.

The DriverLink field is used by the LSL.

The DriverSharingFlags field contains a bit map defining the sharing abilities of the MLID:

0 Set if the LAN board is currently shut down
1 Set if the LAN board can share the primary I/O port
2 Set if the LAN board can share the secondary I/O port
3 Set if the LAN board can share the primary memory range
4 Set if the LAN board can share the secondary memory range
5 Set if the LAN board can share the primary interrupt
6 Set if the LAN board can share the secondary interrupt
7 Set if the LAN board can share DMA channel 0
8 Set if the LAN board can share DMA channel 1
9 Set if there is a command line ifnormation string to place in the AUTOEXEC.NCF file, which is

the string that DriverCommandString points to
10 This bit is set to prevent default information from being placed into the AUTOEXEC.NCF file

when option information is entered on the command line. Setting this bit overrides the setting of
bit 9.

The DriverSlot field contains the slot number where the LAN board is installed if the board is
running in an MCA or EISA machine. Otherwise, this field is 0.

The DriverIOPortsAndLengths field contains I/O port information as follows:

The DriverMemoryDecode0 field contains the absolute primary memory address that the LAN
board uses (if not used, this field is 0).

The DriverLength0 field contains the amount of memory (in paragraphs) that the LAN board
uses, starting at DriverMemoryDecode0 (if not used, this field is 0).

The DriverMemoryDecode1 field contains the absolute secondary memory address that the
LAN board uses (if not used, this field is 0).

The DriverLength1 field contains the amount of memory (in paragraphs) that the LAN board
uses, starting at DriverMemoryDecode0 (if not used, this field is 0).

10 Group addressing is supported by a specialized adapter, but the Topology Specific
Module™ (TSM™) software should filter the addresses.

11 Group addressing is supported by a specialized adapter, and TSM checking is not
required.

1st WORD The primary base I/O port for the LAN board

2nd WORD The number of I/O ports beginning with the primary base I/O port

3rd WORD The secondary base I/O port for the LAN board

4th WORD The number of I/O ports beginning with the secondary base I/O port
r Management

novdocx (E
N

U
) 01 February 2006
The first byte in the DriverInterrupt field contains the primary interrupt vector number. The
second byte in this field contains the secondary interrupt vector number. FFh = not used.

The first byte in the DriverDMAUsage field contains the primary DMA channel used by the LAN
board. The second byte in this field contains the secondary DMA channel used by the LAN board.
FFh = not used.

The DriverResourceTag field contains a pointer to the IOResourceTag obtained by the driver.

The DriverConfig field contains a pointer to the LSL copy of the configuration structure (used
by the LSL).

The DriverCommandString field contains a long pointer to a new or additional command line
string if the driver needs to append something to the command line or replace the default command
line in the AUTOEXEC.NCF file. If the driver does not use this option, this field is 0.

The DriverLogicalName field contains the logical name of the LAN driver (given at load
time).

The DriverLinearMemory field contains the addresses of DriverMemoryDecode0 and
DriverMemoryDecode1. The first LONG contains the linear address of
DriverMemoryDecode0. The second LONG contains the linear address of
DriverMemoryDecode1.

The DriverChannelNumber field is used for multichannel adapters. It holds the channel
number of the NIC to use. The channel number can be specified when a driver is loaded using the
"channel=#" keyword (where # is any number greater than 0).

The DriverIOReserved field is reserved for the LSL.
Server-Based Server Environment Functions 521

522 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetLANCustomCounters
Returns custom statistics for a LAN board. For cross-platform functionality, use
NWGetLANCustomCountersInfo (page 93) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetLANCustomCounters (
 LONG boardNumber,
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
boardNumber

(IN) Specifies the board number of the LAN board to return counters for.

startNumber
(IN) Specifies the custom counter number to start with.

buffer
(IN/OUT) Points to a buffer which receives information about LAN custom counters.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
LAN custom counters can keep track of such things as the number of raw sends and fatal
retransmissions. Each counter has a string describing the counter and a value associated with the
counter.

The startNumber parameter is the starting counter number that is returned on this call to
SSGetLANCustomCounters. On the first call to this function, startNumber should be 0. For
subsequent calls, it should be the number of the next counter that has not been retrieved (therefore,
r Management

novdocx (E
N

U
) 01 February 2006
you must keep track of how many counters have been returned). When FALSE is returned in the
moreflag field of the GetCustomCountersInfoStructure, all custom counters have been retrieved.

This function returns a GetLANConfigInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetCustomCountersInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD moreflag;
 LONG numberOfCustomCounters;
 BYTE startOfCustomCounters;
}GetCustomCountersInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The moreflag field indicates whether there are more custom counters that can be retrieved by
further calls to this function. If TRUE is returned, there are more counters; if FALSE is returned,
there are no more counters.

The numberOfCustomCounters field contains the number of custom counters used by the
LAN driver.

The startOfCustomCounters field contains the first byte of a number of CustomCountersInfo
structures in the buffer.

The CustomCountersInfo structure is defined in NWSERVST.H as follows:

typedef struct CustomCountersInfo
{
 LONG value;
 BYTE stringLength;
 BYTE stringStart;
}CustomCountersInfo;

The value field contains the value of the custom counter.

The stringLength field contains the length of the string that starts with stringStart. If the
stringLength is zero, there is no string following.

The stringStart field contains the first byte of a string that describes the custom counter.
Server-Based Server Environment Functions 523

524 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetLoadedMediaNumberList
Returns a list of loaded media numbers. (For cross-platform functionality, see Developing NLMs
with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWGetLoadedMediaNumList (page 95).)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>
#include <nwmediam.h>

LONG SSGetLoadedMediaNumberList (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives a list of LAN boards.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetMediaNumberListStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetMediaNumberListStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG maxNumberOfMedia;
 LONG mediaListCount;
 LONG mediaList;
}GetMediaNumberListStructure;
r Management

novdocx (E
N

U
) 01 February 2006
The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The maxNumberOfMedia field contains the maximum number of media allowed.

The mediaListCount field contains the number of media in mediaList.

The mediaList field contains the first media item in the list. More media follow.
Server-Based Server Environment Functions 525

526 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetLSLInfo
Returns information about the LSL. For cross-platform functionality, use NWGetLSLInfo (page 97)
instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetLSLInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives a list of LAN boards.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetLSLInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetLSLInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetLSLInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LSLInformation LSLInfo;
}GetLSLInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.
r Management

novdocx (E
N

U
) 01 February 2006
The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The LSLInfo field contians an LSLInformation structure.

The LSLInformation structure is defined in NWSERVST.H as follows:

typedef struct {
 LONG RxBufs;
 LONG RxBufs75PerCent;
 LONG RxBufsCheckedOut;
 LONG RxBufMaxSize;
 LONG MaxPhysicalSize;
 LONG LastTimeRxBufAllocated;
 LONG MaxNumbersOfProtocols;
 LONG MaxNumbersOfMediaTypes;
 LONG TotalTXPackets;
 LONG GetECBBfrs;
 LONG GetECBFails;
 LONG AESEventCounts;
 LONG PostpondedEvents;
 LONG ECBCxlFails;
 LONG ValidBfrsReused;
 LONG EnqueuedSendCnt;
 LONG TotalRXPackets;
 LONG UnclaimedPackets;
 BYTE StatisticsTableMajorVersion;
 BYTE StatisticsTableMinorVersion;
} LSLInformation;

The RxBufs field contains the total number of LSL receive buffers.

The RxBufs75PerCent field contains the number of LSL receive buffers that must be in use
before a warning message is issued that buffers are getting low.

The RxBufsCheckedOut field contains the number of LSL buffers in use.

The RxBufMaxSize field contains the size of the data portion of the ECBs in bytes.

The MaxPhysicalSize field contains the total size of the ECB in bytes.

The LastTimeRxBufAllocated field contains the last time (in ticks since the server was
brought up) a buffer was checked out.

The MaxNumbersOfProtocols field contains the number of protocol stacks supported by the
OS.

The MaxNumbersOfMediaTypes field contains the number of frame types supported by the OS.

The TotalTXPackets field contains the number of packet transmit requests.

The GetECBBfrs field contains the number of ECBs that were requested.

The GetECBFails field contains the number of times an ECB request failed.

The AESEventCounts field contains the total number of AES events that have been processed.
Server-Based Server Environment Functions 527

528 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The PostpondedEvents field contains the total number of AES events postponed because of
critical sections.

The ECBCxlFails field contains the number of AES cancel requests that failed because the event
was not found on the AES list.

The ValidBfrsReused field contains the number of ECBs in the hold queue that were reused
before they were removed from the hold queue.

The EnqueuedSendCnt field contains the number of send events in the queue that have occurred.

The TotalRXPackets field contains the total number of received incoming packets.

The UnclaimedPackets field contains the total number of unclaimed incoming packets.

The StatisticsTableMajorVersion field contains the major version of the LSL statistics
table.

The StatisticsTableMinorVersion field contains the minor version of the LSL statistics
table.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetLSLLogicalBoardStats
Returns information about LSL logical boards. For cross-platform functionality, use
NWGetLSLLogicalBoardStats (page 99) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetLSLLogicalBoardStats (
 LONG boardNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
boardNumber

(IN) Specifies the board number to return information for.

buffer
(IN/OUT) Points to a buffer which receives a LSL board information.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetLSLBoardStatsStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetLSLInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetLSLBoardStatsStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LogicalBoard boardStats;
}GetLSLBoardStatsStructure;
Server-Based Server Environment Functions 529

530 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The boardStats field contains an LogicalBoard structure.

The LogicalBoard structure is defined in NWSERVST.H as follows:

typedef struct {
 LONG LogTtlTxPackets;
 LONG LogTtlRxPackets;
 LONG LogUnclaimedPackets;
 LONG reserved;
} LogicalBoard;

The LogTtlTxPackets field contains the total number of packets transmitted.

The LogTtlRxPackets field contains the total number of packets received.

The LogUnclaimedPackets field contains the total number of unclaimed packets.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetMediaManagerObjChildList
Returns a list of children belonging to a given media manager parent object. For cross-platform
functionality, use NWGetMediaMgrObjChildrenList (page 101) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetMediaManagerObjChildList (
 LONG startNumber,
 LONG objType,
 LONG parentObjNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Specifies the number to start with. This parameter should be 0 on the first call to this
function. On subsequent calls, startNumber should be the value returned in the
nextStartNumber field of the GetMMChildListStructure.

objType
(IN) Specifies the type of object to return information for.

parentObjectNumber
(IN) Specifies the object number of the media manager object for which you want a list of
children.

buffer
(IN/OUT) Points to a buffer which retruns a GetMMObjectChildListStructure.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.
Server-Based Server Environment Functions 531

532 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
The objType parameter specifies the media manager database type:

SSGetMediaManagerObjChildList returns a GetMMObjectChildListStructure in buffer. This
structure is defined in NWSERVST.H as follows:

typedef struct GetMMObjectChildListStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG nextStartNum;
 LONG objectCount;
 LONG objects;
}GetMMObjectChildListStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

0 ADAPTER_OBJECT

1 CHANGER_OBJECT

2 RDEVICE_OBJECT

2 DEVICE_OBJECT

3 MDEVICE_OBJECT

4 RMECIA_OBJECT

4 MEDIA_OBJECT

5 PARTITION_OBJECT

6 SLOT_OBJECT

7 HOTFIX_OBJECT

8 MIRROR_OBJECT

9 PARITY_OBJECT

10 VOLUME_SEG_OBJECT

11 VOLUME_OBJECT

12 CLONE_OBJECT

13 FMEDIA_OBJECT

14 UNKNOWN_OBJECT
r Management

novdocx (E
N

U
) 01 February 2006
The nextStartNum field contains the number to pass as the startNumber parameter on the
next call to this function. When this field is 0, all information has been processed by this function.

The objectCount field contains the number of child objects that are in the buffer.

The objects field contains the ID number of the first media manager child object. More ID
numbers follow.
Server-Based Server Environment Functions 533

534 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetMediaManagerObjInfo
Returns information about media manager objects. For cross-platform functionality, use
NWGetMediaMgrObjInfo (page 103) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetMediaManagerObjInfo (
 LONG objNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
objNumber

(IN) Specifies the object number of the media manager object that you want information for.

buffer
(IN/OUT) Points to a buffer which receives information about the media manager object
identified by objNumber.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetMManagerObjInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetMManagerObjInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetMManagerObjInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
r Management

novdocx (E
N

U
) 01 February 2006
 struct CopyOfGenericInfoDef info;
}GetMManagerObjInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The info field contains a CopyOfGenericInfoDef structure.

The CopyOfGenericInfoDef structure is defined in NWSERVST.H as follows:

struct CopyOfGenericInfoDef
{
 struct CopyOfPMStructure mediaInfo;
 LONG mediatype;
 LONG cartridgetype;
 LONG unitsize;
 LONG blocksize;
 LONG capacity;
 LONG preferredunitsize;
 BYTE name[64];
 LONG type;
 LONG status;
 LONG functionmask;
 LONG controlmask;
 LONG parentcount;
 LONG siblingcount;
 LONG childcount;
 LONG specificinfosize;
 LONG objectuniqueid;
 LONG mediaslot;
};

The mediaInfo field contains a CopyOfPMStructure.

The mediatype field contains the device type of the object:

The cartridgetype field indicates the type of cartridge or magazine that the device can use. The
defined types follow:

0 Hard disk

1 CD-ROM

2 WORM device

3 Tape device

4 Magneto-Optical (MO) device

0x00000000 fixed media
Server-Based Server Environment Functions 535

536 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The unitsize field contains the current transfer unit size (in bytes) for the device.

The blocksize field contains the size of a block for the device (in bytes).

The capacity field contains the capacity of the device (in blocks).

The preferredunitsize field contains the preferred transfer unit size (512 bytes to 1K) for the
device.

The name field contains a length-preceeded string representing the name of the object.

The type field contains the media manager database type:

0x00000001 5.25 floppy

0x00000002 3.5 floppy

0x00000003 5.25 optical

0x00000004 3.5 optical

0x00000005 0.5 tape

0x00000006 0.25 tape

0x00000007 8 mm tape

0x00000008 4 mm tape

0x00000009 Bernoulli disk

0 ADAPTER_OBJECT

1 CHANGER_OBJECT

2 RDEVICE_OBJECT

2 DEVICE_OBJECT

3 MDEVICE_OBJECT

4 RMECIA_OBJECT

4 MEDIA_OBJECT

5 PARTITION_OBJECT

6 SLOT_OBJECT

7 HOTFIX_OBJECT

8 MIRROR_OBJECT

9 PARITY_OBJECT

10 VOLUME_SEG_OBJECT

11 VOLUME_OBJECT

12 CLONE_OBJECT

13 FMEDIA_OBJECT

14 UNKNOWN_OBJECT
r Management

novdocx (E
N

U
) 01 February 2006
The status field contains the status mask for the object:

The functionmask field indicates the access functions supported on the device:

0 Random read
1 Random write
2 Random write once
3 Sequential read
4 Sequential write
5 Reset end of media
6 Single file marks
7 Multi-file marks
8 Single set marks
9 Multi-set marks
10 Relative data blocks
11 Direct data blocks
12 Position partition
13 Position media

The controlmask field indicates the type of control functions that can be issued to the device:

0 Activate/deactivate
1 Mount/dismount
2 Select/unselect
3 Lock/unlock
4 Eject

0x00000001 OBJECT_ACTIVATED

0x00000002 OBJECT_PHANTOM

0x00000004 OBJECT_ASSIGNABLE

0x00000008 OBJECT_ASSIGNED

0x00000010 OBJECT_RESERVED

0x00000020 OBJECT_BEING_IDENTIFIED

0x00010000 OBJECT_IN_DEVICE

0x00020000 OBJECT_IN_MAGAZINE

0x00040000 OBJECT_IN_CHANGER

0x00080000 OBJECT_LOADABLE

0x00080000 OBJECT_BEING_LOADED

0x01000000 OBJECT_DEVICE_LOCK

0x02000000 OBJECT_CHANGER_LOCK

0x04000000 OBJECT_REMIRRORING

0x08000000 OBJECT_SELECTED
Server-Based Server Environment Functions 537

538 NDK: Serve

novdocx (E
N

U
) 01 February 2006
5 Move media

The parentcount field contains the number of parent objects for the device (usually 1).

The siblingcount field contains the number of sibling objects for the device (objects with
common dependencies).

The childcount field contains the number of child objects for the device (objects that depend on
the device).

The specificinfosize field contains the size of the data structures that are returned.

The objectuniqueid field contains the number which identifies the device in the media
manager database.

The mediaslot field contains the number of the slot that the device occupies.

CopyOfPMStructure is defined in NWSERVST.H as follows:

struct CopyOfPMStructure
{
 BYTE f1[64];
 LONG f2;
 LONG f3;
};

The f1 field contains the label of the object.

The f2 field contains the Novell assigned number for the object.

The f3 field contains the DOS timestamp of the object.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetMediaManagerObjList
Returns a list of media manager objects. For cross-platform functionality, use
NWGetMediaMgrObjList (page 105) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetMediaManagerObjList (
 LONG startNumber,
 LONG objType,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Specifies the number to start with. This parameter should be -1 for the first call to this
function. On subsequent calls, startNumber should be the value returned in the
nextStartNum field of the GetMMObjectListsStructure.

objType
(IN) Specifies the type of object to return information for.

buffer
(IN/OUT) Points to a buffer which receives a list of media manager objects.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
The objType parameter specifies the media manager database type:

0 ADAPTER_OBJECT
Server-Based Server Environment Functions 539

540 NDK: Serve

novdocx (E
N

U
) 01 February 2006
This function returns a GetMMObjectListsStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetMMObjectListsStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG nextStartNum;
 LONG objectCount;
 LONG objects;
}GetMMObjectListsStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The nextStartNum field contains the number to be passed as the startNumber parameter on
the next call to this function. When this field is -1, all information has been processed.

The objectCount field contains the number of media manager objects in the buffer.

1 CHANGER_OBJECT

2 RDEVICE_OBJECT

2 DEVICE_OBJECT

3 MDEVICE_OBJECT

4 RMECIA_OBJECT

4 MEDIA_OBJECT

5 PARTITION_OBJECT

6 SLOT_OBJECT

7 HOTFIX_OBJECT

8 MIRROR_OBJECT

9 PARITY_OBJECT

10 VOLUME_SEG_OBJECT

11 VOLUME_OBJECT

12 CLONE_OBJECT

13 FMEDIA_OBJECT

14 UNKNOWN_OBJECT
r Management

novdocx (E
N

U
) 01 February 2006
The objects field contains the ID number of the first media manager object. More ID numbers
follow.
Server-Based Server Environment Functions 541

542 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetMediaNameByNumber
Returns a media name for a given media number. For cross-platform functionality, use
NWGetMediaNameByMediaNum (page 108) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetMediaNameByNumber (
 LONG mediaNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
mediaNumber

(IN) Specifies the ID number of the media for which you want a name.

buffer
(IN/OUT) Points to a buffer which receives the media name.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetMediaNameByNumberStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetMediaNameByNumberStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 BYTE mediaNameLength;
r Management

novdocx (E
N

U
) 01 February 2006
 BYTE mediaName;
}GetMediaNameByNumberStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The mediaNameLength field contains the length of the media name.

The mediaName structure contains the first byte of the media name.
Server-Based Server Environment Functions 543

544 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetNetRouterInfo
Returns information about network routing on a server. For cross-platform functionality, use
NWGetNetworkRouterInfo (page 116) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetNetRouterInfo (
 LONG networkNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
networkNumber

(IN) Specifies the network to return information for.

buffer
(IN/OUT) Points to a buffer which receives routing information for the server.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetNetRouterInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetNetRouterInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetNetRouterInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG netIDNumber;
 WORD hopsToNet;
r Management

novdocx (E
N

U
) 01 February 2006
 WORD netStatus;
 WORD timeToNet;
}GetNetRouterInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The netIDNumber field contains the network ID number.

The hopsToNet field contains the number of hops to the network.

The netStatus field indicates the status of the network.

The timeToNet field contains the number of ticks to the network (round-trip).
Server-Based Server Environment Functions 545

546 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetNetworkRoutersInfo
Returns information about the routers on a network. For cross-platform functionality, use
NWGetNetworkRoutersInfo (page 118) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetNetworkRoutersInfo (
 LONG networkNumber,
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
networkNumber

(IN) Specifies the network number to return router information for.

startNumber
(IN) Specifies the number to start with.

buffer
(IN/OUT) Points to a buffer which receives a information about routers on a network.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetNetworkRoutersInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetNetworkRoutersInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
r Management

novdocx (E
N

U
) 01 February 2006
 BYTE vConsoleRevision;
 WORD reserved;
 LONG numberOfEntries;
 RoutersInfoStructure info;
}GetNetworkRoutersInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The numberOfEntries field contains the number of RoutersInfoStructure structures in the
buffer.

The info field contains the first RoutersInfoStructure. More follow.

The RoutersInfoStructure is defined in NWSERVST.H as follows:

typedef struct RoutersInfoStructure
{
 BYTE node[6];
 LONG connectedLAN;
 WORD hopsToNetCount;
 WORD timeToNet;
}RoutersInfoStructure;

The node field contains the 6-byte network address of the router.

The connectedLAN field contains the LAN board number of the router.

The hopsToNetCount field contains the number of hops to the network specified by
networkNumber.

The timeToNet field contains the time (in ticks) to the network specified by networkNumber.
Server-Based Server Environment Functions 547

548 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetNLMInfo
Returns information about an NLM running on a server. For cross-platform functionality, use
NWGetNLMInfo (page 122) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetNLMInfo (
 LONG NLMNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
NLMNumber

(IN) Specifies the number assigned to the NLM by the OS when the NLM was loaded.

buffer
(IN/OUT) Points to a buffer which receives NLM information.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns information for the current connection. The NLMNumber parameter is the
number assigned to that NLM by the OS when it is loaded. This number can be obtained by calling
SSGetNLMLoadedList.

This function returns a GetNLMInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetNLMInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
r Management

novdocx (E
N

U
) 01 February 2006
 BYTE vConsoleRevision;
 WORD reserved;
 NLMInformation NLMInfo;
 BYTE startOfLStrings;
}GetNLMInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The NLMInfo field contains an NLMInformation structure.

The startOfLStrings field contains the first byte of three length-preceded strings (the strings
can be 0 bytes long). The strings represent the filename, name, and copyright of the NLM.

The NLMInformation structure is defined in NWSERVST.H as follows:

typedef struct {
 LONG nlmIdentificationNumber;
 LONG nlmFlags;
 LONG nlmType;
 LONG nlmParentID;
 LONG nlmMajorVersion;
 LONG nlmMinorVersion;
 LONG nlmRevision;
 LONG nlmYear;
 LONG nlmMonth;
 LONG nlmDay;
 LONG nlmAllocAvailBytes;
 LONG nlmAllocFreeCount;
 LONG nlmLastGarbCollect;
 LONG nlmMessageLanguage;
 LONG nlmNumberOfReferencedPublics;
} NLMInformation;

The nlmIdentificationNumber field contains the number assigned to the NLM when it was
loaded.

The nlmFlags field contains a bit mask with a combination of the following:

0x0001 REENTRANT: The module is reentrant. That is, if the NLM is loaded twice, the actual
code in the server’s memory is reused.

0x0002 MULTIPLE: The module can be loaded more than once by a LOAD console
command.

0x0004 SYNCHRONIZE: This NLM option causes the load process to go to sleep until the
NLM calls SynchronizeStart.This prevents any other console commands from being
processed (particularly LOAD commands) while the NLM is being loaded.

0x0008 PSEUDOPREEMPTION: This option requests that the OS force the NLM to relinquish
control if the NLM does not do so on its own often enough.
Server-Based Server Environment Functions 549

550 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The nlmType field contains a number indicating the NLM type:

The nlmParentID field contains the number assigned to the NLM that caused this NLM to be
loaded.

The nlmMajorVersion field contains the major version number of the NLM.

The nlmMinorVersion field contains the minor version number of the NLM.

The nlmRevision field contains the revision letter of the NLM.

The nlmYear, nlmMonth, and nlmDay fields contain the year, month, and day that the NLM was
created on.

The nlmAllocAvailBytes, nlmAllocFreeCount, and nlmLastGarbCollect field
contain garbage collection information. The nlmAllocAvailBytes contains the bytes available
for allocation by the NLM. The nlmAllocFreeCount contain the number of bytes freed that can
be reclaimed. The nlmLastGarbCollect field contains the last time garbage collection was
done for the NLM (expressed in ticks since the server was brought up).

The nlmMessageLanguage field contains the number representing the language that the NLM
uses.

Number Extension Description

0 .NLM Generic NLM (default value)

1 .LAN LAN driver

2 .DSK Disk driver

3 .NAM Name space support module

4 .NLM Utility or support program

5 .MSL Mirrored Server Link™ (MSL™)

6 .NLM OS NLM

7 .NLM Paged high OS NLM

8 .HAM Host Adapter Module (works with Custom Device Module)

9 .CDM Custom Device Module (works with Host Adapter Module)

10 .NLM OS Reserved

11 .NLM OS Reserved

12 .NLM OS Reserved

13 SMP normal

14 NIOS

15 .CAD CIOS CAD

16 .CLS CIOS CLS

20 through 32 Reserved for NICI (Novell International Cryptographic Infrastructure)
r Management

novdocx (E
N

U
) 01 February 2006
The nlmNumberOfReferencedPublics field contains the number of external symbols
referenced by the NLM.
Server-Based Server Environment Functions 551

552 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetNLMLoadedList
Returns a list of NLM applications running on a server. For cross-platform functionality, use
NWGetNLMLoadedList (page 124) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetNLMLoadedList (
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Specifies the NLM number to start with.

buffer
(IN/OUT) Points to a buffer which receives NLM information.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a list of NLM applications for the current connection. The list is returned in a
GetNLMLoadedListStructure in buffer. This structure is defined in NWSERVST.H as follows:

typedef struct GetNLMLoadedListStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG NLMLoadedCount;
 LONG NLMCount;
r Management

novdocx (E
N

U
) 01 February 2006
 LONG NLMNumbers;
}GetNLMLoadedListStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The NLMLoadedCount field contains the number of NLM applications loaded on the server. This
number might indicate NLM applications that you cannot get information for, such as the loader.
Therefore, the total number of NLM applications you receive information about after iterative calls
to this function might be less than the NLMLoadedCount.

The NLMCount field contains the number of NLM applications listed in the buffer.

The NLMNumbers field contains the numbers assigned to NLM applications loaded on the server.
Server-Based Server Environment Functions 553

554 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetNLMResourceTagList
Returns information about resources used by NLM applications on a server. For cross-platform
functionality, use NWGetNLMsResourceTagList (page 126) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetNLMResourceTagList (
 LONG NLMNumber,
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
NLMNumber

(IN) Specifies the number assigned to the NLM by the OS when the NLM was loaded

startNumber
(IN) Specifies the resource tag to start with.

buffer
(IN/OUT) Points to a buffer which receives a resource tag information.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetNLMResourceTagList in buffer. This structure is defined in
NWSERVST.H as follows:

ttypedef struct GetNLMResourceTagList
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
r Management

novdocx (E
N

U
) 01 February 2006
 BYTE vConsoleRevision;
 WORD reserved;
 LONG totalNumOfRTags;
 LONG currentNumOfRTags;
 RTagStructure RTagStart;
}GetNLMResourceTagList;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The totalNumOfRTags field contains the total number of resource tags that the NLM is using.

The currentNumOfRTags field contains the number of resource tags that the buffer contains. If
additional tags are used by the NLM that did not fit in the buffer, call this function again, using the
next number as the startNumber.

The RTagStart field contains an RTagStructure. This is the first RTagStructure in the buffer.
More structures follow, one for each resource tag used on the server.

RTagStructure is defined in NWSERVST.H as follows:

typedef struct RTagStructure
{
 LONG rTagNumber;
 LONG signature;
 LONG count;
 BYTE name;
}RTagStructure;

The rTagNumber field contains the number assigned to the resource tag when it was allocated.

The signature field contains the signature of the resource tag.

The count field contains the number of this kind of tag that has been allocated.

The name field contains the name of the resource tag. It is null terminated string of unknown size.

11.5 SSGetO*-SSGetV* Functions
Click on any function name in the table of contents to view the purpose, syntax, parameters, and
return values for that function.

• “SSGetOSVersionInfo” on page 557
• “SSGetPacketBurstInfo” on page 560
• “SSGetProtocolConfiguration” on page 563
• “SSGetProtocolCustomInfo” on page 566
• “SSGetProtocolNumbersByLANBoard” on page 568
• “SSGetProtocolNumbersByMedia” on page 570
Server-Based Server Environment Functions 555

556 NDK: Serve

novdocx (E
N

U
) 01 February 2006
• “SSGetProtocolStatistics” on page 573
• “SSGetRouterAndSAPInfo” on page 575
• “SSGetServerInfo” on page 577
• “SSGetServerSourcesInfo” on page 579
• “SSGetUserInfo” on page 581
• “SSGetVolumeSegmentList” on page 585
• “SSGetVolumeSwitchInfo” on page 587
r Management

novdocx (E
N

U
) 01 February 2006
SSGetOSVersionInfo
Returns information about the NetWare OS version running on the server. For cross-platform
functionality, use NWGetOSVersionInfo (page 128) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetOSVersionInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives OS version information.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetOSVersionInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetOSVersionInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetOSVersionInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 BYTE OSMajorVersion;
 BYTE OSMinorVersion;
 BYTE OSRevision;
 BYTE accountVersion;
 BYTE VAPVersion;
 BYTE queueingVersion;
Server-Based Server Environment Functions 557

558 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 BYTE securityRestLvl;
 BYTE bridgingSupport;
 LONG maxNumOfVol;
 LONG maxNumOfConn;
 LONG maxNumOfUsers;
 LONG maxNumOfnameSpaces;
 LONG maxNumOfLANS;
 LONG maxNumOfMedias;
 LONG maxNumOfStacks;
 LONG maxDirDepth;
 LONG maxDataStreams;
 LONG maxNumOfSpoolPr;
 LONG serverSerialNumber;
 WORD serverApplicationNumber;
}GetOSVersionInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The OSMajorVersion field contains the major version number of the OS.

The OSMinorVersion field contains the minor version number of the OS.

The OSRevision field contains the version revision letter of the OS.

The accountVersion field contains the version of the accounting subsystem.

The VAPVersion field is not used.

The queueingVersion field contains the Queuing version number.

The securityRestLvl field contains the Security Restriction version number.

The bridgingSupport field contains the Internet Bridge support version number.

The maxNumOfVol field contains the maximum number of volumes that can be simultaneously
mounted on the server. Versions 4.10 and higher return 255 in this field. 0-63 are physical volumes
and 64-255 are logical volumes.

The maxNumOfConn field contains the maximum number of connections that can be used
simultaneously on the server.

The maxNumOfUsers field contains the maximum number of simultaneous users allowed on the
server.

The maxNumOfnameSpaces field contains the maximum number of name spaces that can be
simultaneously loaded on a server.

The maxNumOfLANS field contains the maximum number of LAN boards that can be used on the
server.
r Management

novdocx (E
N

U
) 01 February 2006
The maxNumOfMedias field contains the maximum number of different media types allowed on
the server.

The maxNumOfStacks field contains the maximum number of protocol stacks that can be used in
the server.

The maxDirDepth field contains the maximum depth of directories that can be used on the server.

The maxDataStreams field contains the maximum number of data streams that can be used on
the server.

The maxNumOfSpoolPr field contains the maximum number of spool printers that can be used on
the server.

The serverSerialNumber field contains the serial number of the server.

The serverApplicationNumber field is included for backward compatibility.
Server-Based Server Environment Functions 559

560 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetPacketBurstInfo
Returns Packet Burst™ information. For cross-platform functionality, use NWGetPacketBurstInfo
(page 130) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetPacketBurstInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives Packet Burst information.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetPacketBurstInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetPacketBurstInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetPacketBurstInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 PacketBurstInformation packetBurstInfo;
}GetPacketBurstInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.
r Management

novdocx (E
N

U
) 01 February 2006
The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The packetBurstInfo field contains a PacketBurstInformation structure. This structure is
defined in NWSERVST.H as follows:

typedef struct {
 LONG BigInvalidSlotCount;
 LONG BigForgedPacketCount;
 LONG BigInvalidPacketCount;
 LONG BigStillTransmittingCount;
 LONG StillDoingTheLastRequestCount;
 LONG InvalidControlRequestCount;
 LONG ControlInvalidMessageNumberCount;
 LONG ControlBeingTornDownCount;
 LONG BigRepeatTheFileReadCount;
 LONG BigSendExtraCCCount;
 LONG BigReturnAbortMessageCount;
 LONG BigReadInvalidMessageNumberCount;
 LONG BigReadDoItOverCount;
 LONG BigReadBeingTornDownCount;
 LONG PreviousControlPacketCount;
 LONG SendHoldOffMessageCount;
 LONG BigReadNoDataAvailableCount;
 LONG BigReadTryingToReadTooMuchCount;
 LONG ASyncReadErrorCount;
 LONG BigReadPhysicalReadErrorCount;
 LONG ControlBadACKFragmentListCount;
 LONG ControlNoDataReadCount;
 LONG WriteDuplicateRequestCount;
 LONG ShouldntBeACKingHereCount;
 LONG WriteInconsistentPacketLengthsCount;
 LONG FirstPacketIsntAWriteCount;
 LONG WriteTrashedDuplicateRequestCount;
 LONG BigWriteInvalidMessageNumberCount;
 LONG BigWriteBeingTornDownCount;
 LONG BigWriteBeingAbortedCount;
 LONG ZeroACKFragmentCountCount;
 LONG WriteCurrentlyTransmittingCount;
 LONG TryingToWriteTooMuchCount;
 LONG WriteOutOfMemoryForControlNodesCount;
 LONG WriteDidntNeedThisFragmentCount;
 LONG WriteTooManyBuffersCheckedOutCount;
 LONG WriteTimeOutCount;
 LONG WriteGotAnACKCount;
 LONG WriteGotAnACKCount1;
 LONG PollerAbortedTheConnectionCount;
 LONG MaybeHadOutOfOrderWritesCount;
 LONG HadAnOutOfOrderWriteCount;
 LONG MovedTheACKBitDownCount;
 LONG BumpedOutOfOrderWriteCount;
 LONG PollerRemovedOldOutOfOrderCount;
Server-Based Server Environment Functions 561

562 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 LONG WriteDidntNeedButRequestedACKCount;
 LONG WriteTrashedPacketCount;
 LONG TooManyACKFragmentsCount;
 LONG SavedAnOutOfOrderPacketCount;
 LONG ConnectionBeingAbortedCount;
} PacketBurstInformation;

Descriptions of the fields in this structure are not available as of this edition.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetProtocolConfiguration
Returns configuration information about the protocols on a server. For cross-platform functionality,
use NWGetProtocolStackConfigInfo (page 133) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetProtocolConfiguration (
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Indicates the number to start with.

buffer
(IN/OUT) Points to a buffer which receives a information about protocol configuration of the
server.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetProtocolConfigStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetProtocolConfigStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 BYTE configMajorVersion;
Server-Based Server Environment Functions 563

564 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 BYTE configMinorVerstion;
 BYTE stackMajorVersion;
 BYTE stackMinorVersion;
 BYTE shortName[16];
 BYTE fullNameLength;
 BYTE fullName;
}GetProtocolConfigStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The configMajorVersion field contains the major version number of the configuration table.

The configMinorVerstion field contains the minor version number of the configuration table.

The stackMajorVersion field contains the major version number of the protocol stack.

The stackMinorVersion field contains the minor version number of the protocol stack.

The shortName field contains the short protocol name (used to register the stack with the LSL):

VIRTUAL_LAN For use where no Frame ID/MAC envelope is necessary

LOCALTALK Apple LocalTalk frame

ETHERNET_II Ethernet using a DEC Ethernet II envelope

ETHERNET_802.2 Ethernet (802.3) using an 802.2 envelope

TOKEN-RING Token ring (802.5) using an 802.2 envelope

ETHERNET_802.3 IPX 802.3 raw encapsulation

802.4 Token-passing bus envelope

NOVELL_PCN2 Novell’s IBM PC Network II envelope

GNET Gateway’s GNET frame envelope

PRONET-10 Proteon’s ProNET I/O frame envelope

ETHERNET_SNAP Ethernet (802.3) using an 802.2 envelope with SNAP

TOKEN-RING_SNAP Token ring (802.5) using an 802.2 envelope with SNAP

LANPAC_II Racore’s frame envelope

ISDN Integrated Services Digital Network

NOVELL_RX-NET Novell’s ArcNet 68 envelope

IBM_PCN2_802.2 IBM PCN2 using 802.2 envelope

IBM_PCN2_SNAP IBM PCN2 using 802.2 with SNAP envelope

OMNINET/4 Corvus’s frame envelope
r Management

novdocx (E
N

U
) 01 February 2006
The fullNameLength field contains the length of the full name.

The fullName field contains the first byte of the full name.

3270_COAXA Harris Adacom’s frame envelope

IP IP Tunnel frame envelope

FDDI_802.2 FDDI (802.7) using an 802.2 envelope

IVDLAN_802.9 Commtex, Inc.’s frame envelope

DATACO_OSI Dataco’s frame envelope

FDDI_SNAP FDDI (802.7) using 802.2 with a SNAP envelope

IBM_SDLC SDLC tunnel envelope

PCO_FDDITP PC Office frame envelope

WAIDNET Hypercommunications

SLIP Novell frame envelope

PPP Novell frame envelope
Server-Based Server Environment Functions 565

566 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetProtocolCustomInfo
Returns custom information about a protocol stack on a server. For cross-platform functionality, use
NWGetProtocolStackCustomInfo (page 135) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetProtocolCustomInfo (
 LONG stackNumber,
 LONG customStartNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
stackNumber

(IN) Specifies the number of the protocol stack that you want information for.

customStartNumber
(IN) Specifies the custom information structure to start with. For the first call to this function,
customStartNumber should be 0. On subsequent calls, it should be the next custom
information structure that has not been retrieved. All information has been retrieved when no
more information is returned by this function.

buffer
(IN/OUT) Points to a buffer which receives custom information about the protocol stack.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetProtocolCustomInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:
r Management

novdocx (E
N

U
) 01 February 2006
typedef struct GetProtocolCustomInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG customCount;
 ProtocolCustomInfo info;
}GetProtocolCustomInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The customCount field contains the number of ProtocolCustomInfo structures in the buffer.

The info field contains the first ProtocolCustomInfo structure. More structures follow.

The ProtocolCustomInfo structure is defined in NWSERVST.H as follows:

typedef struct ProtocolCustomInfo
{
 LONG value;
 BYTE length;
 BYTE customData;
}ProtocolCustomInfo;

The value field contains the value of the custom counter.

The length field contains the length of customData.

The customData field contains the first byte of a string describing the custom counter. The length
of the string is length.
Server-Based Server Environment Functions 567

568 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetProtocolNumbersByLANBoard
Returns a list of protocol stack ID numbers for a given LAN board. For cross-platform functionality,
use NWGetProtocolStkNumsByLANBrdNum (page 139) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetProtocolNumbersByLANBoard (
 LONG LANBoardNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
LANBoardNumber

(IN) Specifies the ID number of the LAN board for which you want a list of protocols.

buffer
(IN/OUT) Points to a buffer which receives a list of protocols.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetProtocolByBoardStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetProtocolByBoardStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG stackIDCount;
r Management

novdocx (E
N

U
) 01 February 2006
 LONG stackID;
}GetProtocolByBoardStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The stackIDCount field contains the number of protocol stack ID numbers in the buffer.

The stackID field contains the first protocol stack ID number in the buffer. More numbers follow.
Server-Based Server Environment Functions 569

570 NDK: Serve

novdocx (E
N

U
) 01 February 2006
SSGetProtocolNumbersByMedia
Returns a list of protocol stack ID numbers for a given media. For cross-platform functionality, use
NWGetProtocolStkNumsByMediaNum (page 141) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetProtocolNumbersByMedia (
 LONG mediaNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
mediaNumber

(IN) Specifies the media number (frame number) for which you want protocol stack
information.

buffer
(IN/OUT) Points to a buffer which receives a list of protocols.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a list of protocol stack ID numbers for a given media. The mediaNumber is
the frame ID number of the media:

0 For use where no Frame ID/MAC envelope is necessary

1 Apple LocalTalk frame

2 Ethernet using a DEC Ethernet II envelope

3 Ethernet (802.3) using an 802.2 envelope
r Management

novdocx (E
N

U
) 01 February 2006
This function returns a GetProtocolByMediaStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetProtocolByMediaStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG stackIDCount;
 LONG stackID;
}GetProtocolByMediaStructure;

4 Token ring (802.5) using an 802.2 envelope

5 IPX 802.3 raw encapsulation

6 Token-passing bus envelope

7 Novell’s IBM PC Network II envelope

8 Gateway’s GNET frame envelope

9 Proteon’s ProNET I/O frame envelope

10 Ethernet (802.3) using an 802.2 envelope with SNAP

11 Token ring (802.5) using an 802.2 envelope with SNAP

12 Racore’s frame envelope

13 Integrated Services Digital Network

14 Novell’s ArcNet 68 envelope

15 IBM PCN2 using 802.2 envelope

16 IBM PCN2 using 802.2 with SNAP envelope

17 Corvus’s frame envelope

18 Harris Adacom’s frame envelope

19 IP Tunnel frame envelope

20 FDDI (802.7) using an 802.2 envelope

21 Commtex, Inc.’s frame envelope

22 Dataco’s frame envelope

23 FDDI (802.7) using 802.2 with a SNAP envelope

24 SDLC tunnel envelope

25 PC Office frame envelope

26 Hypercommunications

27 Novell frame envelope
Server-Based Server Environment Functions 571

572 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The stackIDCount field contains the number of protocol stack ID numbers in the buffer.

The stackID field contains the first protocol stack ID number in the buffer. More numbers follow.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetProtocolStatistics
Returns protocol statistics for a server. For cross-platform functionality, use
NWGetProtocolStackStatsInfo (page 137) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetProtocolStatistics (
 LONG stackNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
stackNumber

(IN) Specifies the stack number of the protocol stack for which you want information.

buffer
(IN/OUT) Points to a buffer which receives protocol statistics.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetProtocolStatsStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetProtocolStatsStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetProtocolStatsStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 BYTE StatMajorVersion;
 BYTE StatMinorVersion;
Server-Based Server Environment Functions 573

574 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 WORD GenericCounters;
 LONG ValidCntsMask;
 LONG TotalTxPackets;
 LONG TotalRxPackets;
 LONG IgnoredRxPackets;
 WORD NumberOfCustomCounters;
}GetProtocolStatsStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The StatMajorVersion field contains the major version number of the statistics table.

The StatMinorVersion field contains the minor version number of the statistics table.

The GenericCounters field contains the number of counters in the fixed portion of the table. It
is always set to 3.

The ValidCntsMask field contains a bit mask indicating which counters are valid (starting with
right-most representing the first counter). If the bit is 0, the counter is valid; if it is 1, the counter is
not valid.

The TotalTxPackets field contains the total number of packets that were requested to be
transmitted.

The TotalRxPackets field contains the total number of packets that were received.

The IgnoredRxPackets field contains the number of incoming packets that were ignored by the
stack.

The NumberOfCustomCounters field contains the number of custom counters for the protocol
stack.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetRouterAndSAPInfo
Returns router and SAP information. For cross-platform functionality, use
NWGetGeneralRouterAndSAPInfo (page 81) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetRouterAndSAPInfo (
 BYTE *buffer,
 LONG bufferLen);

Parameters
buffer

(IN/OUT) Points to a buffer which receives router and SAP information for a server.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetRouterAndSAPInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetRouterAndSAPInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetRouterAndSAPInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG RIPSocketNumber;
 LONG routerDownFlag;
 LONG trackOnFlag;
 LONG extRouterActiveFlag;
 LONG SAPSocketNumber;
Server-Based Server Environment Functions 575

576 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 LONG rpyNearestServerFlag;
}GetRouterAndSAPInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The RIPSocketNumber field contains the router socket number.

The routerDownFlag field indicates whether the internal router is up or down.

The trackOnFlag field indicates whether router tracking is active (the console operator issued
the TRACK ON console command).

The extRouterActiveFlag field indicates whether an external router is active.

The SAPSocketNumber field contains the number of the socket that receives SAP packets.

The rpyNearestServerFlag field indicates whether the server responds to GetNearestServer.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetServerInfo
Returns information about a server. For cross-platform functionality, use NWGetServerInfo
(page 147) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetServerInfo (
 LONG serverType,
 BYTE nameLength,
 BYTE *name,
 BYTE *buffer,
 LONG bufferLen);

Parameters
serverType

(IN) Specifies the server type. This must be 0x400.

nameLength
(IN) Specifies the length of the server name (name).

name
(IN) Points to the name of the server.

buffer
(IN/OUT) Points to a buffer which receives a information about the server.

bufferLen
(IN) Specifies the size of buffer. This should be the size of GetServerInfoStructure.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetServerInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:
Server-Based Server Environment Functions 577

578 NDK: Serve

novdocx (E
N

U
) 01 February 2006
typedef struct GetServerInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 BYTE serverAddress[12];
 WORD hopsToServer;
}GetServerInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The serverAddress field contains the node address of the server.

The hopsToServer field contains the number of hops to the server.

The value of the serverType parameter must be 0x0400.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetServerSourcesInfo
Returns address information about servers known to a server with a given name. For cross-platform
functionality, use NWGetServerSourcesInfo (page 153) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetServerSourcesInfo (
 LONG startNumber,
 LONG serverType,
 BYTE nameLength,
 BYTE *name,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Indicates the number to start with.

serverType
(IN) Specifies the type of server to obtain information for.

nameLength
(IN) Specifies the length of the server name (name).

name
(IN) Points to the name of the server.

buffer
(IN/OUT) Points to a buffer which receives a information about protocol configuration of the
server.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.
Server-Based Server Environment Functions 579

580 NDK: Serve

novdocx (E
N

U
) 01 February 2006
Remarks
This function returns a GetServerSourcesStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetServerSourcesStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG numberOfEntries;
 ServerSourceInfoStructure info;
}GetServerSourcesStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The numberOfEntries field contains the number of structures in the buffer.

The info field contains the first ServerSourceInfoStructure. More follow.

typedef struct ServerSourceInfoStructure
{
 BYTE serverNode[6];
 LONG connectLAN;
 WORD hopCount;
}ServerSourceInfoStructure;

The serverNode field contains the node address of a server.

The connectLAN field contains the LAN board number of the server.

The hopCount field contains the number of hops to the server.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetUserInfo
Returns user information for a given connection. For cross-platform functionality, use
NWGetUserInfo (page 155) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetUserInfo (
 LONG connectionNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
connectionNumber

(IN) Specifies the connection number that you want user information for. The user for the
connection must be logged in (licensed) for the server to return any information about the user.

buffer
(IN/OUT) Points to a buffer which receives user information.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetUserInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetUserInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
Server-Based Server Environment Functions 581

582 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 WORD reserved;
 UserInformation userInfo;
 BYTE userNameLen;
 BYTE username;
}GetUserInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The userInfo field contains a UserInformation structure for the connection.

The userNameLen field contains the length of the username field.

The username field contains the name of the user.

The UserInformation structure is defined in NWSERVST.H as follows:

typedef struct {
 LONG connectionNumber;
 LONG useCount;
 BYTE connectionServiceType;
 BYTE loginTime[7];
 LONG status;
 LONG expirationTime;
 LONG objectType;
 BYTE transactionFlag;
 BYTE logicalLockThreshold;
 BYTE recordLockThreshold;
 BYTE fileWriteFlags;
 BYTE fileWriteState;
 BYTE filler;
 WORD fileLockCount;
 WORD recordLockCount;
 BYTE totalBytesRead[6];
 BYTE totalBytesWritten[6];
 LONG totalRequests;
 LONG heldRequests;
 BYTE heldBytesRead[6];
 BYTE heldBytesWritten[6];
} UserInformation;

The connectionNumber field contains the connection number of the user.

The useCount field contains 1 if the connection is in use, or 0 if the connection is not in use.

The connectionServiceType field contains the connection type:

1 (Included for CLIB backwards compatibility)

2 NCP_CONNECTION_TYPE
r Management

novdocx (E
N

U
) 01 February 2006
The loginTime field contains the time that the user logged in.

The status field contains the status of the connection:

The expirationTime field contains the time before the authentication expires (in ticks). If this
value is 0, there is no expiration time.

The objectType field contains the type of the user.

The transactionFlag field contains transaction tracking information

The logicalLockThreshold field contains the maximum number of logical locks the user can
have.

The recordLockThreshold field contains maximum number of record locks the user can have.

The fileWriteFlags field contains a flag indicating the writing status as follows:

The fileWriteState field indicates the writing status:

The filler field is unused.

The fileLockCount field contains the number of files the user has locked.

3 NLM_CONNECTION_TYPE

4 AFP_CONNECTION_TYPE

5 FTAM_CONNECTION_TYPE

6 ANCP_CONNECTION_TYPE

0x00000001 LOGGED_IN

0x00000002 BEING_ABORTED

0x00000004 AUDITED

0x00000008 NEEDS_SECURITY_CHANGE

0x00000010 MAC_STATION

0x00000020 AUTHENTICATED_TEMPORARY

0x00000040 AUDIT_CONNECTION_RECORDED

0x00000080 DSAUDIT_CONNECTION_RECORDED

1 Writing

2 Write aborted

0 not writing

1 write in progress

2 write being stopped
Server-Based Server Environment Functions 583

584 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The recordLockCount field contains the number of records the user has locked.

The totalBytesRead field contains the number of bytes the user has read (48-bit value).

The totalBytesWritten field contains the number of bytes the user has written (48-bit value).

The totalRequests field contains the number of requests the user has sent.

The heldRequests field contains the number of requests held for accounting purposes.

The heldBytesRead field contains the number of bytes the user has read that have a hold on
them for accounting purposes.

The heldBytesWritten field contains the number of bytes the user has written that have a hold
on them
r Management

novdocx (E
N

U
) 01 February 2006
SSGetVolumeSegmentList
Returns a list of volume segments for a given volume. For cross-platform functionality, use
NWGetVolumeSegmentList (page 159) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetVolumeSegmentList (
 LONG volumeNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
volumeNumber

(IN) Specifies the volume number of the volume that you want information for.

buffer
(IN/OUT) Points to a buffer which receives a list of volume segments.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetVolumeSegmentListStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetVolumeSegmentListStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG numberOfSegments;
Server-Based Server Environment Functions 585

586 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 VolumeSegmentStructure segment;
}GetVolumeSegmentListStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The numberOfSegments field contains the number of volume segments on the volume.

The segment field contains the VolumeSegmentStructure for the first volume segment. More of
these structures follow in the buffer, one for each volume segment.

The VolumeSegmentStructure is defined in NWSERVST.H as follows:

typedef struct VolumeSegmentStructure
{
 LONG segmentDevice;
 LONG segmentOffset;
 LONG segmentSize;
}VolumeSegmentStructure;

The segmentDevice field identifies the device that the segment is located on.

The segmentOffset field contains the offset of the segment in bytes.

The segmentSize field contains the segment size in bytes.
r Management

novdocx (E
N

U
) 01 February 2006
SSGetVolumeSwitchInfo
Returns information about the number of times various code paths have been taken in the NetWare
OS. For cross-platform functionality, use NWGetVolumeSwitchInfo (page 161) instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based Server Environment

Syntax
#include <nit\nwservst.h>

LONG SSGetVolumeSwitchInfo (
 LONG startNumber,
 BYTE *buffer,
 LONG bufferLen);

Parameters
startNumber

(IN) Specifies the number of the counter to start with. (This parameter is included for the
future, when there might be more counters than can be retrieved by one call to this function.)

buffer
(IN/OUT) Points to a buffer which receives volume switch information.

bufferLen
(IN) Specifies the size of buffer. This should be SS_DEFAULT_BUFFER_SIZE.

Return Values
ESUCCESS or NetWare errors.

Remarks
This function returns a GetVolumeSwitchInfoStructure in buffer. This structure is defined in
NWSERVST.H as follows:

typedef struct GetVolumeSwitchInfoStructure
{
 LONG currentServerTime;
 BYTE vConsoleVersion;
 BYTE vConsoleRevision;
 WORD reserved;
 LONG totalLFSCounters;
Server-Based Server Environment Functions 587

588 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 LONG currentLFSCounters;
 LONG counters;
}GetVolumeSwitchInfoStructure;

The currentServerTime field contains the time elapsed since the server was brought up. This
time is returned in ticks (approximately 1/18 of a second). When this field reaches 0xFFFFFFFF, it
wraps to zero.

The vConsoleVersion field contains the console version number. vConsoleVersion and
vConsoleRevision track packet format.

The vConsoleRevision field contains the console version revision number.

The totalLFSCounters field contains the total number of LFS counters.

The currentLFSCounters field contains the number of LFS counters returned by this call to
SSGetVolumeSwitchInfo.

The counters field contains the first LFS counter. This counter is followed by others.

You might want to define a structure to retrieve the LFS counters. However, an example structure (
LFSCountersStructure) is included in NWSERVST.H so that the fields can be identified. In the
future this structure might grow beyond a size that can be retrieved with a single call to a function.
The LFSCountersStructure is defined as follows:

typedef struct LFSCountersStructure
{
 LONG ReadFile;
 LONG WriteFile;
 LONG DeleteFile;
 LONG RenMove;
 LONG OpenFile;
 LONG CreateFile;
 LONG CreateAndOpenFile;
 LONG CloseFile;
 LONG ScanDeleteFile;
 LONG SalvageFile;
 LONG PurgeFile;
 LONG MigrateFile;
 LONG DeMigrateFile;
 LONG CreateDir;
 LONG DeleteDir;
 LONG DirectoryScans;
 LONG MapPathToDirNum;
 LONG ModifyDirEntry;
 LONG GetAccessRights;
 LONG GetAccessRightsFromIDs;
 LONG MapDirNumToPath;
 LONG GetEntryFromPathStrBase;
 LONG GetOtherNSEntry;
 LONG GetExtDirInfo;
 LONG GetParentDirNum;
 LONG AddTrusteeR;
 LONG ScanTrusteeR;
 LONG DelTrusteeR;
r Management

novdocx (E
N

U
) 01 February 2006
 LONG PurgeTrust;
 LONG FindNextTrustRef;
 LONG ScanUserRestNodes;
 LONG AddUserRest;
 LONG DeleteUserRest;
 LONG RtnDirSpaceRest;
 LONG GetActualAvailDskSp;
 LONG CntOwnedFilesAndDirs;
 LONG MigFileInfo;
 LONG VolMigInfo;
 LONG ReadMigFileData;
 LONG GetVolusageStats;
 LONG GetActualVolUsageStats;
 LONG GetDirUsageStats;
 LONG NMFileReadsCount;
 LONG NMFileWritesCount;
 LONG MapPathToDirectoryNumberOrPhantom;
 LONG StationHasAccessRightsGrantedBelow;
 LONG GetDataStreamLengthsFromPathStringBase;
 LONG CheckAndGetDirectoryEntry;
 LONG GetDeletedEntry;
 LONG GetOriginalNameSpace;
 LONG GetActualFileSize;
 LONG VerifyNameSpaceNumber;
 LONG VerifyDataStreamNumber;
 LONG CheckVolumeNumber;
 LONG CommitFile;
 LONG VMGetDirectoryEntry;
 LONG CreateDMFileEntry;
 LONG RenameNameSpaceEntry;
 LONG LogFile;
 LONG ReleaseFile;
 LONG ClearFile;
 LONG SetVolumeFlag;
 LONG ClearVolumeFlag;
 LONG GetOriginalInfo;
 LONG CreateMigratedDir;
 LONG F3OpenCreate;
 LONG F3InitFileSearch;
 LONG F3ContinueFileSearch;
 LONG F3RenameFile;
 LONG F3ScanForTrustees;
 LONG F3ObtainFileInfo;
 LONG F3ModifyInfo;
 LONG F3EraseFile;
 LONG F3SetDirHandle;
 LONG F3AddTrustees;
 LONG F3DeleteTrustees;
 LONG F3AllocDirHandle;
 LONG F3ScanSalvagedFiles;
 LONG F3RecoverSalvagedFiles;
 LONG F3PurgeSalvageableFile;
 LONG F3GetNSSpecificInfo;
 LONG F3ModifyNSSpecificInfo;
Server-Based Server Environment Functions 589

590 NDK: Serve

novdocx (E
N

U
) 01 February 2006
 LONG F3SearchSet;
 LONG F3GetDirBase;
 LONG F3QueryNameSpaceInfo;
 LONG F3GetNameSpaceList;
 LONG F3GetHugeInfo;
 LONG F3SetHugeInfo;
 LONG F3GetFullPathString;
 LONG F3GetEffectiveDirectoryRights;
 LONG ParseTree;
}LFSCountersStructure;

Each field in this structure indicates the number of times a given OS code path is taken.
r Management

12
novdocx (E

N
U

) 01 February 2006
12Server-Based TTS Concepts

This documentation provides and overview of Server-Based TTS Services concepts, its functions,
and features

The NetWare® Transaction Tracking System (TTS) feature ensures data integrity on files that
otherwise would be corrupted when updates on the files are interrupted by such things as hardware
failures or power outages. A transaction is defined as a set of one or more operations that must be
completed together to maintain file and database integrity. TTS guarantees that all writes within a
transaction are completed or none are completed.

A banking database application frequently performs a transaction that includes three writes to
database files: a debit to one account, a credit to another account, and a note to a log. The application
must complete all three writes to maintain database integrity. However, hardware or power failure
can interrupt such a transaction, causing database corruption.

Servers running NetWare 3.x and above can track transactions and ensure file integrity by backing
out (or erasing) interrupted or partially completed transactions. TTS tracks only transactions to
transactional files. A file becomes transactional when the files transactional extended file attribute is
set.

12.1 Transaction Process
The following steps describe how TTS tracks each write within a transaction:

1. An application writes new data to a file on a server.
2. The server stores the new data in cache memory. The target file on the servers hard disk

remains unchanged.
3. The server scans the target file on the servers hard disk, finds the data to be changed (old data),

and copies the old data to cache memory. The server also records the name and directory path
of the target file and the location and length of the old data (record) within the file. The target
file on the servers hard disk remains unchanged.

4. The server writes the old data in cache memory to a transaction work file on the servers hard
disk. The transaction work file resides at the root level of the SYS volume on the server. The
file is flagged System and Hidden. The target file on the servers hard disk remains unchanged.

5. The server writes the new data in cache memory to the target file on the servers hard disk. The
target file is now changed.

The server repeats these steps for each write within a transaction. The transaction work file grows to
accommodate the old data for each write. If the transaction is interrupted, the server writes the
contents of the transaction work file to the target file, thereby restoring the file to pretransaction
condition. In effect, the server backs out the transaction.

A server can monitor from 1 to 10,000 transactions. The maximum value is configurable and can be
set from 1 to 10,000. A server can track only one transaction at a time for each unique connection
number/task number pair.
Server-Based TTS Concepts 591

592 NDK: Serve

novdocx (E
N

U
) 01 February 2006
12.2 Transaction Tracking
Transactions are divided into two categories:

• “Implicit Transaction Tracking” on page 592
• “Explicit Transaction Tracking” on page 593

Implicit transaction tracking requires no coding on the part of an application developer. If TTS is
enabled on a server, TTS tracks all transactions to all transactional files (including transactions made
by NetWare to Bindery files).

Explicit transaction tracking requires applications to make TTS calls and allows applications to
neatly bracket file update sequences with locking and TTS calls. An application would most likely
use logical or physical record locks with TTS functions. Almost all applications should work
correctly with TTS implicit or explicit transactions, or be easily adapted to do so. However, the
following TTS record locking features could adversely affect certain applications:

• Physical and logical record locks remain in force until the end of the transaction.
• Records unlocked in the middle of a transaction are usually held until the transaction

completes.
• The server automatically generates a physical lock when a record is written if the record is not

yet locked.

NOTE: Transactions are tracked and evaluated by connection number and task number. Therefore,
in order for transactions on a file to be monitored, the thread must have its connection and task
numbers set to the same connection and task numbers that were used to open the file. (Remember,
setting the connection and task number for one thread changes the connection and task numbers for
all of the threads that belong to the same thread group.)

12.2.1 Implicit Transaction Tracking
Implicit transaction tracking is designed to work transparently with existing multiuser software that
uses record locking (physical or logical). All the user must do is flag the multiuser database files as
transactional; everything else is automatic. However, implicit transactions are not guaranteed to
work with all multiuser applications. For example, applications that do not synchronize file updates
exclusively with record locks and applications that synchronize updates improperly might not work.

Applications that always keep one or more records locked should set lock thresholds:

• Application thresholds are valid only until the next end-of-job on the current connection. When
the next end-of-job occurs (normally when a workstation application ends), the application
thresholds are set to the current workstation thresholds. This is meaningful only in a client-
server NLM application that uses the clients connection number for transactions. Application
thresholds can be set using TTSSetApplicationThresholds.

• Workstation thresholds are valid not only for the requesting application but for all applications
at the requesting workstation and all NLM applications using the same connection number as
the callers current connection number. The threshold values are not reset when the application
terminates (that is, when an end-of-job occurs). Workstation thresholds can be set using
TTSSetWorkstationThresholds. Workstation users normally execute SETTTS.EXE to set
workstation thresholds.
r Management

novdocx (E
N

U
) 01 February 2006
12.2.2 Explicit Transaction Tracking
Explicit transaction tracking has an advantage over implicit transaction tracking in that it allows
applications to determine precisely when updates within the transaction are written to disk.

In addition, TTSBeginTransaction and TTSEndTransaction within the application allow the
developer to identify the beginning and end-of-file update sequences. Identifying the beginning and
end-of-file update sequences makes it easier for applications to group file updates and practice
correct record locking practices. Correct record locking practices include locking and unlocking
records as a group to avoid deadlock, and not leaving records locked exclusively while waiting for
keyboard input.

12.3 Record Locking
Record locking provides security and data protection during transactions. If a record is not locked by
an application but is written to during a transaction, the server physically locks that record
automatically. This physical lock remains in force until the transaction is completed. Physically
locking written records is an added protection that prevents other NLM applications and
workstations from examining or modifying them while they are being Changed. The server usually
holds logical and physical record locks on a file until the end of the transaction, even if the file is
unlocked by an NLM before the transaction is completed.

For example, if an NLM requests an unlock before a transaction is completed, it receives an
ESUCCESS completion code indicating that the records are unlocked; however, the lock is actually
held until the transaction is complete. The one exception to this is a file that is not updated while the
lock is in force. A request to unlock such a record is honored.

The server delays record unlocking because the data controlled by the locks could still be changed
by a transaction backout. Thus, the server guarantees that other NLM applications and workstations
do not see data that is being changed until those changes are final. If multiple stations attempt to
change a file, only the first station is allowed to make the change. Usually, multiuser software
synchronizes the records and prevents other NLM applications and workstations from examining
records that are being changed.

If an NLM or workstation attempts to read from or write to a record that is physically locked by the
server, the NLM or workstation gets a locked error. This means that applications that use logical
record locks can potentially get unexpected physical lock errors. However, because unlocking
logical records is also delayed during a file write, unexpected errors should never occur if the logical
record synchronization is correct. The logical record locks keep other workstations away from the
physically locked records.

It is important to point out that in a environment that is not TTS it is valid to unlock some updated
records in the middle of a transaction if they have been completely updated. In a TTS environment,
however, those records cannot be unlocked because they can still be changed-not by the application
but by a transaction backout.

12.4 Transaction Backouts
Transactions are backed out because of system failures resulting from hardware problems and power
outages at a workstation or the server. But backouts also occur because of problems with
applications running on a workstation, or because of user intervention at a workstation:

• “Causes of Transaction Backout” on page 594
Server-Based TTS Concepts 593

594 NDK: Serve

novdocx (E
N

U
) 01 February 2006
• “Solutions for Transaction Backout” on page 594

12.4.1 Causes of Transaction Backout
Some common causes for a transaction backout are listed below:

• An application terminates while a transaction is in progress (a begin transaction with no end
transaction). For example, the user may enter a Ctrl+C.

• After terminating, a workstation application leaves records locked.
• There has been no activity from a station for 15 minutes. If a server does not receive packets

from one of the workstations listed in its File Server ID Table for more than 5 minutes, it sends
a watchdog packet to that station. If the station does not respond, the server continues to send a
packet every minute for 15 minutes.

• After 15 minutes, if the workstation still does not respond, the server logs it out. Usually lack of
response from a workstation indicates a power failure, software hang, a problem with an
intermediate network route, and so on.

• A station reattaches to the same server after rebooting and reloading the shell. If the station
attaches to a different server after a reboot, the server watchdog process reinitializes the station
after 5 minutes.

• A CLEAR STATION or a DOWN command is issued at the server system console.
• The server crashes due to a hardware, software, or power problem.

12.4.2 Solutions for Transaction Backout
The following are some general suggestions of how to recover when a workstation or server that
goes down and therefore backs out a transaction.

Workstation

When a workstation goes down in the middle of a transaction, the user may not know exactly which
transaction was completed and which was backed out. However, unless the application is
multitasking, it should have only one transaction active at the time of the crash. Even if a
workstation goes down, transactions that were completed but not yet written to disk are written to
disk and not backed out.

If the station goes down and transactions were backed out, the user must ensure that the last
transaction was completed, or if it was not completed, do it over again. The transaction could be
partially completed if the application incorrectly used several transactions per operation. The
following message appears at the server console if transactions were backed out:

 Transaction being backed out for station ##.

This message is given at the server console if a transaction is backed out for any reason other than a
TTSAbortTransaction from the application. Note that if the station had several tasks active, several
messages are given. The DOWN server console command can force several of these messages to be
issued.

If a workstation goes down and cannot be brought back up, the user should issue a CLEAR
STATION command at the server console. Besides affecting TTS, the downed station keeps its
records locked, which may affect other stations. If the CLEAR STATION command is not issued,
the server watchdog process clears out the station after 15 minutes.
r Management

novdocx (E
N

U
) 01 February 2006
Server

Unlike the workstation, if the server goes down before transactions have been written to the disk, it
backs out any incomplete transactions when it is rebooted. If your server does go down and files are
backed out, a message is issued at the server console indicating the number of transactions that need
to be backed out.

This message appears when the server is being brought up (while the affected volumes are being
mounted). The transaction tracking software has detected that some of the transactions were not
completed before the server went down. You should not see this message unless the server went
down abnormally.

After bringing up a server that went down, the user is responsible for determining which updates
were completed and which were backed out and need to be repeated. A good practice is to verify
that the last few changes were actually made. Remember that most transactions should be committed
to disk within 3 to 5 seconds of being completed. However, any operation completed within 10
seconds of a failure should be examined. After the server is brought up, a good practice is to have
the workstation operators review their last operation. If it is not completed, they should also review
the next to last operation, and so on.

If TTSTransactionStatus is used by the application, the user has a better idea of when transactions
were actually completed. However, the fact that the application thought that a transaction was not
completed does not mean that it was not. The transaction could have been completed between the
last time the application checked and the time the server crashed.

12.5 Disable/Enable Transaction Tracking
Transaction tracking can be disabled or enabled from the server console with the commands Disable
Transactions and Enable Transactions. However, even when transaction tracking is disabled,
tracking occurs in a partial way:

• TTSBeginTransaction and TTSEndTransaction still denote transactions and work correctly.
• TTSTransactionStatus still returns the correct status.

If TTS is disabled, the only loss to explicit and implicit transaction calls is the capability of backing
out incomplete transactions. For example, if a server or workstation fails while transaction tracking
is disabled, you cannot back out because the backout information was not saved, and the database
could be corrupted.

When transaction tracking is re-enabled at the system console, backout capability is provided only to
new transactions. Transactions that are in progress when transaction tracking is reenabled do not
have backout, and the possibility of file corruption still exists until these unprotected transactions are
completed and written to disk. It is important to note that a transaction can be backed out if the
workstation or NLM does not write to a transaction file after transactions are disabled. If a
workstation or NLM does a write after transactions are disabled, the transaction is invalidated and
any previous backout information for that transaction is ignored.

12.5.1 Disable Transactions
Disable Transactions is a server console command that turns off TTSs backout capability. Any
transactions written after transactions have been disabled cannot be backed out. A transaction that
has not written anything since transactions were disabled can still be backed out while transactions
are disabled. Normally, this command is used only for testing.
Server-Based TTS Concepts 595

596 NDK: Serve

novdocx (E
N

U
) 01 February 2006
12.5.2 Enable Transactions
Enable Transactions is a server console command that re-enables TTS. Any previous transaction
backout information is erased, except those that were active at the time transactions were disabled
and did not write anything. (These transactions are not erased and can still be backed out.)

12.6 Functions
The following table lists the Transaction Tracking System Functions

TTSAbortTransaction Aborts explicit and implicit transactions

TTSBeginTransaction Begins an explicit transaction

TTSEndTransaction Ends an explicit or implicit transaction and returns a transaction
reference number

TTSGetApplicationThresholds Returns the current connections application thresholds for
implicit transactions

TTSGetWorkstationThresholds Returns the current connections workstation thresholds for
implicit transactions

TTSIsAvailable Verifies whether the default server supports transaction
tracking

TTSSetApplicationThresholds Sets the current connections application thresholds for implicit
transactions

TTSSetWorkstationThresholds Sets the current connections workstation thresholds for implicit
transactions

TTSTransactionStatus Verifies whether a transaction has been written to disk
r Management

13
novdocx (E

N
U

) 01 February 2006
13Server-Based TTS Functions

This documentation alphabetically lists the Server-Based TTS functions and describes their purpose,
syntax, parameters, and return values.

• “TTSAbortTransaction” on page 598
• “TTSBeginTransaction” on page 600
• “TTSEndTransaction” on page 602
• “TTSGetApplicationThresholds” on page 604
• “TTSGetWorkstationThresholds” on page 606
• “TTSIsAvailable” on page 608
• “TTSSetApplicationThresholds” on page 609
• “TTSSetWorkstationThresholds” on page 611
• “TTSTransactionStatus” on page 613
Server-Based TTS Functions 597

598 NDK: Serve

novdocx (E
N

U
) 01 February 2006
TTSAbortTransaction
Aborts explicit transactions (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWTTSAbortTransaction (page 367).)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSAbortTransaction (void);

Return Values

Remarks
When this function returns, the transaction has been successfully backed out. When a transaction is
backed out, any writes to the file are aborted, and the file is returned to the state it was in before the
transaction began.

This function releases the following physical record locks:

• Physical record locks generated by TTS when a write operation is performed on a nonlocked
record

• Physical record locks that are not yet released because of a file write

For explicit transactions, the transaction is backed out, and any locks being held are released.

Decimal Hex Constant

0 (0x00) ESUCCESS

253 (0xFD) ERR_TTS_DISABLED

Transaction could not be ended because the Transaction Tracking
System™ (TTS™) is disabled.

254 (0xFE) ERR_TRANSACTION_ENDS_RECORDS_LOCKED

Transaction was ended abnormally, but records were left locked.

255 (0xFF) ERR_NO_EXPLICIT_TRANSACTION_ACTIVE
r Management

novdocx (E
N

U
) 01 February 2006
If implicit transactions are enabled and the number of logical or physical records still locked by the
application exceeds the threshold, this function returns a value of 0xFE. In this case, the transaction
is backed out, and the server automatically starts a new implicit transaction.

See Also
TTSBeginTransaction (page 600), TTSEndTransaction (page 602), TTSIsAvailable (page 608),
TTSTransactionStatus (page 613)
Server-Based TTS Functions 599

600 NDK: Serve

novdocx (E
N

U
) 01 February 2006
TTSBeginTransaction
Begins an explicit transaction (For cross-platform functionality, see Developing NLMs with Cross-
Platform Functions (NDK: NLM Development Concepts, Tools, and Functions) and call
NWTTSBeginTransaction (page 369).)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSBeginTransaction (void);

Return Values

Remarks
After TTSBeginTransaction is called, TTS tracks all files that are marked transactional and are
currently open as well as transactional files that are opened during the transaction. When an
application writes to a transaction file, the server automatically generates a physical record lock for
that file. If the record is already locked, the server does not generate an additional lock.

Transaction files are not closed and unlocked until a TTSEndTransaction or TTSAbortTransaction is
executed.

If transaction files are updated, logical and physical record locks are held until the end of the
transaction. If a transaction file is not updated, any logical or physical lock on that file can be
released at any time.

NOTE: Transactions are tracked and evaluated by connection number and task number. Therefore,
in order for transactions on a file to be monitored, the thread must have its connection and task
numbers set to the same connection and task numbers that were used to open the file. (Remember,

Decimal Hex Constant

0 (0x00) ESUCCESS

150 (0x96) ERR_SERVER_OUT_OF_MEMORY

254 (0xFE) ERR_IMPLICIT_TRANSACTION_ACTIVE

Converted to an explicit transaction.

255 (0xFF) ERR_EXPLICIT_TRANSACTION_ACTIVE
r Management

novdocx (E
N

U
) 01 February 2006
setting the connection and task number for one thread changes the connection and task numbers for
all of the threads that belong to the same thread group.)

See Also
TTSAbortTransaction (page 598), TTSEndTransaction (page 602), TTSIsAvailable (page 608),
TTSTransactionStatus (page 613)
Server-Based TTS Functions 601

602 NDK: Serve

novdocx (E
N

U
) 01 February 2006
TTSEndTransaction
Ends an explicit transaction and returns a transaction reference number (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions) and call call NWTTSEndTransaction (page 371).)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSEndTransaction (
 long *transactionNumber);

Parameters
transactionNumber

(OUT) Receives the transaction reference number of the ended transaction.

Return Values

Remarks
A transaction is not necessarily completed to disk when this function returns. If the server fails
before all transaction updates are written to disk, the transaction is backed out when the server is
rebooted.

Decimal Hex Constant

0 (0x00) ESUCCESS

253 (0xFD) ERR_TTS_DISABLED

Transaction could not be ended because TTS is disabled.

254 (0xFE) ERR_TRANSACTION_ENDS_RECORDS_LOCKED

Transaction was ended abnormally, but records were left locked. This
error is only for implicit transactions.

255 (0xFF) ERR_EXPLICIT_TRANSACTION_ACTIVE
r Management

novdocx (E
N

U
) 01 February 2006
TTSTransactionStatus verifies a successful transaction completion to disk; or, if transaction tracking
is disabled, the reference number can used to determine when the transaction is completely written
to disk.

This function releases the following physical record locks:

• Physical record locks generated by TTS when a write operation is performed on a nonlocked
record

• Physical or logical locks that have not yet been released because of a transaction

For explicit transactions, the transaction is completed and any locks being held are released.

If implicit transactions are enabled and the number of logical or physical records still locked by the
application exceeds the threshold, this function returns a value of 0xFE. In this case, the server
automatically starts a new implicit transaction. However, the explicit transaction is still completed
and any locks being held are released.

See Also
TTSAbortTransaction (page 598), TTSBeginTransaction (page 600), TTSIsAvailable (page 608),
TTSTransactionStatus (page 613)
Server-Based TTS Functions 603

604 NDK: Serve

novdocx (E
N

U
) 01 February 2006
TTSGetApplicationThresholds
Returns the current connection’s application thresholds for implicit transactions (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions) and call call NWTTSGetConnectionThresholds (page 373).)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSGetApplicationThresholds (
 BYTE *logicalRecordLockThreshold,
 BYTE *physicalRecordLockThreshold);

Parameters
logicalRecordLockThreshold

(OUT) Receives the number of logical record locks allowed before an implicit transaction
begins (0 to 255).

physicalRecordLockThreshold
(OUT) Receives the number of physical record locks allowed before an implicit transaction
begins (0 to 255).

Return Values

Remarks
This function allows an application to get the number of logical and physical record locks allowed
before an implicit transaction begins for the current connection.

This function and the TTSSetApplicationThresholds function are useful for applications that change
the implicit application thresholds and later want to restore them.

Decimal Hex Constant

0 (0x00) ESUCCESS

NetWare® Error UNSUCCESSFUL
r Management

novdocx (E
N

U
) 01 February 2006
For example, TTSGetApplicationThresholds can query an application for the number of logical and
physical record locks allowed before an implicit transaction begins.

TTSSetApplicationThresholds can then do one of the following:

• Turn off implicit transactions.
• Set implicit thresholds for applications that always keep one or more records locked.

Applications that intend to use only explicit transactions, but sometimes generate unnecessary
implicit transactions, would need to turn off all implicit transactions.

The default threshold for logical and physical locks is 0. A threshold of 0xFF means there are not
implicit transactions for that lock type.

The thresholds returned by this function are valid for the requesting application only. When the
application terminates, the workstation thresholds are restored. This is only meaningful in a client-
server NLM™ application that uses the client’s connection number for transactions. Whenever the
client’s workstation generates an end-of-job (normally when a workstation application ends), the
TTS application thresholds are reset to the TTS workstation thresholds.

See Also
TTSGetWorkstationThresholds (page 606), TTSSetApplicationThresholds (page 609),
TTSSetWorkstationThresholds (page 611)
Server-Based TTS Functions 605

606 NDK: Serve

novdocx (E
N

U
) 01 February 2006
TTSGetWorkstationThresholds
Returns the current connection’s workstation thresholds for implicit transactions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSGetWorkstationThresholds (
 BYTE *logicalRecordLockThreshold,
 BYTE *physicalRecordLockThreshold);

Parameters
logicalRecordLockThreshold

(OUT) Specifies the number of logical record locks allowed before an implicit transaction
begins (0 to 255).

physicalRecordLockThreshold
(OUT) Specifies the number of physical record locks allowed before an implicit transaction
begins (0 to 255).

Return Values

Remarks
This function allows an application to get the number of logical and physical record locks allowed
before an implicit transaction begins for the current connection.

This function and TTSSetWorkstationThresholds are useful for applications that want to set the
thresholds semi-permanently (until the next time TTSetWorkstationThresholds is called).

For example, TTSGetWorkstationThresholds can get the number of logical and physical locks, and
TTSSetWorkstationThresholds can do one of the following:

• Turn off implicit transactions.

Decimal Hex Constant

0 (0x00) ESUCCESS

NetWare Error UNSUCCESSFUL
r Management

novdocx (E
N

U
) 01 February 2006
• Set implicit thresholds for applications that always keep one or more records locked.

Applications that use only explicit transactions, but sometimes generate unnecessary implicit
transactions, can turn off all implicit transactions.

The default threshold for logical and physical locks is 0. A threshold of 0xFF means there are no
implicit transactions for that lock type.

The threshold values set by TTSSetWorkstationThresholds are not reset when a workstation
application terminates (that is, when an end-of-job occurs). In other words, all applications on the
requesting workstation share these same thresholds.

Workstation users normally execute SETTTS.EXE to set workstation thresholds.

See Also
TTSSetWorkstationThresholds (page 611)
Server-Based TTS Functions 607

608 NDK: Serve

novdocx (E
N

U
) 01 February 2006
TTSIsAvailable
Reports whether the server has transaction tracking enabled (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call call NWTTSIsAvailable (page 379).)

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSIsAvailable (void);

Return Values

Remarks
The NetWare 3.x and 4.x OS always supports TTS, but TTS can be disabled.

Decimal Hex Constant

1 (0x01) TTS_AVAILABLE

253 (0xFD) ERR_TTS_DISABLED: TTS is available but is presently disabled.
r Management

novdocx (E
N

U
) 01 February 2006
TTSSetApplicationThresholds
Sets the current connection’s application thresholds for implicit transactions (For cross-platform
functionality, see Developing NLMs with Cross-Platform Functions (NDK: NLM Development
Concepts, Tools, and Functions) and call and call NWTTSSetConnectionThresholds (page 381).)

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSSetApplicationThresholds (
 BYTE logicalRecordLockThreshold,
 BYTE physicalRecordLockThreshold);

Parameters
logicalRecordLockThreshold

(IN) Specifies the maximum number of logical locks that can be held without starting a
transaction.

physicalRecordLockThreshold
(IN) Specifies the maximum number of physical locks that can be held without starting a
transaction.

Return Values

Remarks
The thresholds set by this function are valid only until the next end-of-job on the current connection.
When the next end-of-job occurs, the application thresholds are set to the current workstation
thresholds.

This function is useful for either turning off implicit transactions or allowing applications to work
that always keep one or more records locked. For example, applications that use only explicit

Decimal Hex Constant

0 (0x00) ESUCCESS

NetWare Error UNSUCCESSFUL
Server-Based TTS Functions 609

610 NDK: Serve

novdocx (E
N

U
) 01 February 2006
transactions, but sometimes generate unnecessary implicit transactions, can use this function to turn
off all implicit transactions.

The default threshold for logical and physical locks is 0. A threshold of 0xFF means there are no
implicit transactions for that lock type.

The thresholds set by this function are valid for the requesting application only. When the
application terminates, the workstation thresholds are restored. This is only meaningful in a client-
server NLM that uses the client’s connection number for transactions. Whenever the client’s
workstation generates an end-of-job (normally when a workstation application ends), the TTS
application thresholds are reset to the TTS workstation thresholds.

See Also
TTSGetApplicationThresholds (page 604)
r Management

novdocx (E
N

U
) 01 February 2006
TTSSetWorkstationThresholds
Sets the current connection’s workstation thresholds for implicit transactions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSSetWorkstationThresholds (
 BYTE logicalRecordLockThreshold,
 BYTE physicalRecordLockThreshold);

Parameters
logicalRecordLockThreshold

(IN) Specifies the number of logical record locks allowed before an implicit transaction begins
(0 to 255).

physicalRecordLockThreshold
(IN) Specifies the number of physical record locks allowed before an implicit transaction
begins (0 to 255).

Return Values

Remarks
The thresholds set by this function are valid not only for the requesting application, but for all
applications at the requesting workstation and for all NLM applications using the same connection
number as the caller’s current connection number. This function is useful for either turning off
implicit transactions or allowing applications to work that always keep one or more records locked.

For example, applications that intend to use only explicit transactions but which sometimes generate
unnecessary implicit transactions can use this function to turn off all implicit transactions.

Decimal Hex Constant

0 (0x00) ESUCCESS

NetWare Error UNSUCCESSFUL
Server-Based TTS Functions 611

612 NDK: Serve

novdocx (E
N

U
) 01 February 2006
The default threshold for logical and physical locks is 0. A threshold of 0xFF means there are no
implicit transactions for that lock type.

The threshold values set by this function are not reset when a workstation application terminates. In
other words, all applications on the requesting workstation share these thresholds.

Workstation users normally execute SETTTS.EXE to set workstation thresholds.

See Also
TTSGetWorkstationThresholds (page 606)
r Management

novdocx (E
N

U
) 01 February 2006
TTSTransactionStatus
Verifies whether a transaction has been written to disk (For cross-platform functionality, see
Developing NLMs with Cross-Platform Functions (NDK: NLM Development Concepts, Tools, and
Functions) and call call NWTTSTransactionStatus (page 387).)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x, 5.x, 6.x

Platform: NLM

Service: Server-Based TTS

Syntax
#include <\nlm\nit\nwtts.h>

int TTSTransactionStatus (
 long transactionNumber);

Parameters
transactionNumber

(IN) Specifies the transaction reference number returned from the TTSEndTransaction
function.

Return Values

Remarks
This function verifies whether a transaction has been written to disk, even if TTSEndTransaction
returned ERR_TTS_DISABLED.

This function uses the transactionNumber parameter that contains a number assigned and used
by the NetWare operating system to track each transaction. The transactionNumber is
obtained through a call to TTSEndTransaction.

Because of the server caching algorithms, it can be 3 to 5 seconds or longer before transactions are
actually written. Transactions are completed to disk in the order in which they are ended.

Decimal Hex Constant

0 (0x00) ESUCCESS

255 (0xFF) TRANSACTION_NOT_YET_WRITTEN
Server-Based TTS Functions 613

614 NDK: Serve

novdocx (E
N

U
) 01 February 2006
See Also
TTSEndTransaction (page 602)
r Management

A
novdocx (E

N
U

) 01 February 2006
ARevision History

The following table outlines all the changes that have been made to the Server Management
documentation (in reverse chronological order).

March 1, 2006 Updated format.

December 6, 2005 Updated NWSMLoadNLM2 (page 344).

October 5, 2005 Transitioned to revised Novell documentation standards.

March 2, 2005 Fixed legal information.

June 9, 2004 Added some information to VERSION_INFO (page 316) .

July 30, 2003 Fixed the Delphi syntax for NWFSE_MLID_BOARD_INFO (page 263).

June 2003 Added information to SSGetMediaManagerObjChildList (page 531). Added NLM
Type information to NLM_INFO (page 223) and SSGetNLMInfo (page 548).
Removed the obsolete label from the SS... functions. Changed references to
Pascal to Delphi. Modified the Delphi syntax for NWFSE... structures to add
padding.

October 2002 Modified the Pascal syntax in the structures.

Marked all SS... functions as obsolete. Added additional information to
SSGetFileServerInfo (page 495) and SSGetUserInfo (page 581).

September 2002 Added Ethernet frame information to the MLID_BOARD_INFO (page 220)
structure and tick information to the SERVER_AND_VCONSOLE_INFO
(page 306) structure.

May 2002 Added information about the CPUNum in NWGetCPUInfo (page 53) and the
Pentium Pro value for CPUTypeFlag in CPU_INFO (page 182).

February 2002 Added information about the netWareVersion and netwareSubVersion values to
GetServerInformation (page 468).

Updated links.

October 2001 Updated Pascal syntaxes for NWEnumNetAddresses (page 41),
NWGetMLIDBoardInfo (page 110), NWEnumNetAddresses (page 41),
NWGetServerConnInfo (page 143), MLID_BOARD_INFO (page 220),
NWFSE_ACCT_INFO (page 226), NWFSE_AUTH_INFO (page 233),
NWFSE_LOCK_INFO (page 253), NWFSE_LOGIN_NAME (page 254),
NWFSE_LOGIN_TIME (page 255), NWFSE_NETWORK_ADDRESS
(page 264), NWFSE_MLID_BOARD_INFO (page 263), NWFSE_PRINT_INFO
(page 276), NWFSE_STATS_INFO (page 289), and
VOLUME_INFO_BY_LEVEL (page 319).

Fixed typographical errors.
Revision History 615

616 NDK: Serve

novdocx (E
N

U
) 01 February 2006
September 2001 Added NetWare 6.0 support to documentation.

Updated NWGetServerConnInfo (page 143), SSGetMediaManagerObjList
(page 539), NWFSE_AUTH_INFO (page 233),
NWFSE_MEDIA_MGR_OBJ_LIST (page 260), and NWFSE_PRINT_INFO
(page 276).

Fixed typographical errors.

Added descriptions to graphics.

June 2001 Updated tables and fixed typographical errors.

February 2001 Corrected #include syntax entry by adding nit\ in front of the nwservst.h file
reference for all SSGet... functions in the Chapter 11, “Server-Based Server
Environment Functions,” on page 395. Added Delphi (Pascal) syntax to functions
where missing.

Changed the referenced structure in NWGetLANCommonCountersInfo
(page 89) to NWFSE_LAN_COMMON_COUNTERS_INFO (page 248).

Added a note to NWFSE_NETWORK_ADDRESS (page 264) about the
declaration of address types 1 and 2 being different from the standard NDS
declaration of network address types.

July 2000 Added documentation on the new function NWGetNetWareProductVersion
(page 114) and the associated structure NETWARE_PRODUCT_VERSION
(page 222). Also, updated documentation for the two functions:
NWGetFileServerVersionInfo (page 74) and NWGetOSVersionInfo (page 128).

May 2000 Changed numberOfRecords of CONN_USING_FILE_REPLY_386 in
GetConnectionsUsingFile (page 427) from a BYTE to a WORD per the updated
nlm/nit/nwenvrn1.h file.

Changed some field descriptions in FSE_MM_OBJ_INFO (page 198).

March 2000 Added field definitions for FSE_FILE_SYSTEM_INFO (page 196),
VOLUME_INFO_BY_LEVEL_DEF (page 320), and
VOLUME_INFO_BY_LEVEL_DEF2 (page 325).

Moved Server-Based Auditing Concepts, Bindery-Based Accounting Concepts
and Bindery-Based Accounting Functions to Network Management.

Changed fourth possible value of retInfoMask in NWGetServerConnInfo
(page 143) to CONN_INFO_LOGIN_NAME_MASK. Also, changed the third
parameter of NWFSE_LOGIN_NAME (page 254) to be a pointer.

Added statement to NWGetServerConnInfo (page 143) about having to allocate
memory for networkAddress or the server might abend.

January 2000 Updated the Remarks section of NWGetNLMLoadedList (page 124) to indicate
the correct starting value of startNum.

Changed the corresponding cross-platform function for GetServerInformation
(page 468) to NWGetFileServerVersionInfo (page 74).

Changed Return Values for TTSIsAvailable (page 608).
r Management

novdocx (E
N

U
) 01 February 2006
November 1999 Added library information to each function.

Added Remarks statements in NWGetMLIDBoardInfo (page 110) about the limit
of one protocol per board in NetWare 4.x and that 0x89FF is returned if no
protocols are bound to the specified board.

Added possible protocol names, numbers, and IDs for MLID_BOARD_INFO
(page 220).

September 1999 Removed NetWare 3.x as a supported platform from NWSMLoadNLM
(page 342) and NWSMUnloadNLM (page 353). These functions use NCP 131 1
and 131 2, which work only on NetWare 4.x and above.

Removed 0x009E as a return value for NWSMLoadNLM (page 342).

Changed serverType to an IN parameter in NWGetKnownServersInfo
(page 87).

Changed lastRecord and lastTask to be IN/OUT parameters in
GetConnectionSemaphores (page 415).

Changed the addressType values of NWFSE_NETWORK_ADDRESS
(page 264) to 1 IPX, 2 IP, 8 UDP, and 9 TCP.

July 1999 Removed NW_FS_INFO and NW_DYNAMIC_MEM structures, which were used
only by NWGetFilServerMiscInfo (2.x only function).

June 1999 Added NWGenerateGUIDs (page 43).

Added NWGetMLIDBoardInfo (page 110) and related
NWFSE_MLID_BOARD_INFO (page 263) and MLID_BOARD_INFO (page 220)
structures.

Added NWEnumNetAddresses (page 41) and related NW_GUID (page 294)
structure.

Added NWGetServerConnInfo (page 143) and related NWFSE_ACCT_INFO
(page 226), NWFSE_AUTH_INFO (page 233), NWFSE_LOCK_INFO
(page 253), NWFSE_LOGIN_NAME (page 254), NWFSE_LOGIN_TIME
(page 255), NWFSE_NETWORK_ADDRESS (page 264),
NWFSE_PRINT_INFO (page 276), and NWFSE_STATS_INFO (page 289)
structures.
Revision History 617

	NDK: Server Management
	About This Guide
	1 Server Environment Concepts
	1.1 Server Environment Introduction
	1.2 Server Get Functions for 4.x-6.x
	1.3 Server Information Functions for 4.x-6.x
	1.4 Server LAN Board Information Functions for 4.x-6.x
	1.5 Server Media Manager Information Functions for 4.x-6.x
	1.6 Server Network and Router Information Functions for 4.x-6.x
	1.7 Server NLM Information Functions for 4.x-6.x
	1.8 Server Protocol Stack Information Functions for 4.x-6.x
	1.9 Server Set Functions for 4.x-6.x
	1.10 Server Volume Information Functions for 4.x-6.x
	1.11 Server Configuration Functions
	1.12 Server Connection Functions
	1.13 Server Console Functions

	2 Server Environment Functions
	GetServerConfigurationInfo
	NWAttachToFileServer
	NWAttachToFileServerByConn
	NWCheckConsolePrivileges
	NWCheckNetWareVersion
	NWDisableFileServerLogin
	NWDownFileServer
	NWEnableFileServerLogin
	NWEnumNetAddresses
	NWGenerateGUIDs
	NWGetActiveConnListByType
	NWGetActiveLANBoardList
	NWGetActiveProtocolStacks
	NWGetCacheInfo
	NWGetCPUInfo
	NWGetDirCacheInfo
	NWGetDiskCacheStats (obsolete-moved from .h file 6/ 99)
	NWGetDiskChannelStats (obsolete-moved from .h file 6/99)
	NWGetFileServerDateAndTime
	NWGetFileServerDescription
	NWGetFileServerExtendedInfo
	NWGetFileServerInfo
	NWGetFileServerInformation
	NWGetFileServerLANIOStats (obsolete-moved from .h file 6/99)
	NWGetFileServerLoginStatus
	NWGetFileServerMiscInfo (obsolete 12/98)
	NWGetFileServerVersionInfo
	NWGetFileSystemStats (obsolete-moved from .h file 6/ 99)
	NWGetFSDriveMapTable (obsolete-moved from .h file 6/99)
	NWGetFSLANDriverConfigInfo (obsolete-moved from .h file 6/99)
	NWGetGarbageCollectionInfo
	NWGetGeneralRouterAndSAPInfo
	NWGetIPXSPXInfo
	NWGetKnownNetworksInfo
	NWGetKnownServersInfo
	NWGetLANCommonCountersInfo
	NWGetLANConfigInfo
	NWGetLANCustomCountersInfo
	NWGetLoadedMediaNumList
	NWGetLSLInfo
	NWGetLSLLogicalBoardStats
	NWGetMediaMgrObjChildrenList
	NWGetMediaMgrObjInfo
	NWGetMediaMgrObjList
	NWGetMediaNameByMediaNum
	NWGetMLIDBoardInfo
	NWGetNetWareFileSystemsInfo
	NWGetNetWareProductVersion
	NWGetNetworkRouterInfo
	NWGetNetworkRoutersInfo
	NWGetNetworkSerialNumber
	NWGetNLMInfo
	NWGetNLMLoadedList
	NWGetNLMsResourceTagList
	NWGetOSVersionInfo
	NWGetPacketBurstInfo
	NWGetPhysicalDiskStats (obsolete-moved from .h file 6/99)
	NWGetProtocolStackConfigInfo
	NWGetProtocolStackCustomInfo
	NWGetProtocolStackStatsInfo
	NWGetProtocolStkNumsByLANBrdNum
	NWGetProtocolStkNumsByMediaNum
	NWGetServerConnInfo
	NWGetServerInfo
	NWGetServerSetCategories
	NWGetServerSetCommandsInfo
	NWGetServerSourcesInfo
	NWGetUserInfo
	NWGetVolumeInfoByLevel
	NWGetVolumeSegmentList
	NWGetVolumeSwitchInfo
	NWIsManager
	NWLoginToFileServer
	NWLogoutFromFileServer
	NWSetFileServerDateAndTime

	3 Server Environment Structures
	CACHE_COUNTERS
	CACHE_INFO
	CACHE_MEM_COUNTERS
	CACHE_TREND_COUNTERS
	CPU_INFO
	DIR_CACHE_INFO
	DRV_MAP_TABLE
	DSK_CACHE_STATS
	FILE_SERVER_COUNTERS
	FSE_FILE_SYSTEM_INFO
	FSE_MM_OBJ_INFO
	FSE_SERVER_INFO
	IPX_INFO
	KNOWN_NET_INFO
	LAN_COMMON_INFO
	LAN_CONFIG_INFO
	LSL_INFO
	MEDIA_INFO_DEF
	MLID_BOARD_INFO
	NETWARE_PRODUCT_VERSION
	NLM_INFO
	NWFSE_ACCT_INFO
	NWFSE_ACTIVE_CONN_LIST
	NWFSE_ACTIVE_LAN_BOARD_LIST
	NWFSE_ACTIVE_STACKS
	NWFSE_AUTH_INFO
	NWFSE_CACHE_INFO
	NWFSE_CPU_INFO
	NWFSE_DIR_CACHE_INFO
	NWFSE_FILE_SERVER_INFO
	NWFSE_FILE_SYSTEM_INFO
	NWFSE_GARBAGE_COLLECTION_INFO
	NWFSE_GENERAL_ROUTER_SAP_INFO
	NWFSE_IPXSPX_INFO
	NWFSE_KNOWN_NETWORKS_INFO
	NWFSE_KNOWN_SERVER_INFO
	NWFSE_LAN_COMMON_COUNTERS_INFO
	NWFSE_LAN_CONFIG_INFO
	NWFSE_LAN_CUSTOM_INFO
	NWFSE_LOADED_MEDIA_NUM_LIST
	NWFSE_LOCK_INFO
	NWFSE_LOGIN_NAME
	NWFSE_LOGIN_TIME
	NWFSE_LSL_INFO
	NWFSE_LSL_LOGICAL_BOARD_STATS
	NWFSE_MEDIA_MGR_OBJ_INFO
	NWFSE_MEDIA_MGR_OBJ_LIST
	NWFSE_MEDIA_NAME_LIST
	NWFSE_MLID_BOARD_INFO
	NWFSE_NETWORK_ADDRESS
	NWFSE_NETWORK_ROUTER_INFO
	NWFSE_NETWORK_ROUTERS_INFO
	NWFSE_NLM_INFO
	NWFSE_NLM_LOADED_LIST
	NWFSE_NLMS_RESOURCE_TAG_LIST
	NWFSE_OS_VERSION_INFO
	NWFSE_PACKET_BURST_INFO
	NWFSE_PRINT_INFO
	NWFSE_PROTOCOL_CUSTOM_INFO
	NWFSE_PROTOCOL_ID_NUMS
	NWFSE_PROTOCOL_STK_CONFIG_INFO
	NWFSE_PROTOCOL_STK_STATS_INFO
	NWFSE_SERVER_INFO
	NWFSE_SERVER_SET_CATEGORIES
	NWFSE_SERVER_SET_CMDS_INFO
	NWFSE_SERVER_SRC_INFO
	NWFSE_STATS_INFO
	NWFSE_USER_INFO
	NWFSE_VOLUME_INFO_BY_LEVEL
	NWFSE_VOLUME_SEGMENT_LIST
	NWFSE_VOLUME_SWITCH_INFO
	NW_GUID
	PACKET_BURST_INFO
	PHYS_DSK_STATS
	resourceTagBuf
	ROUTERS_INFO
	SERVER_AND_VCONSOLE_INFO
	SERVERS_SRC_INFO
	SPX_INFO
	STACK_INFO
	USER_INFO
	VERSION_INFO
	VOLUME_INFO_BY_LEVEL
	VOLUME_INFO_BY_LEVEL_DEF
	VOLUME_INFO_BY_LEVEL_DEF2
	VOLUME_SEGMENT

	4 Server Management Concepts
	5 Server Management Tasks
	5.1 Managing Volumes
	5.2 Managing a Volume’s Name Space
	5.3 Managing NCF Files
	5.4 Managing NLMs
	5.5 Managing SET Values

	6 Server Management Functions
	NWSMAddNSToVolume
	NWSMDismountVolumeByName
	NWSMDismountVolumeByNumber
	NWSMExecuteNCFFile
	NWSMLoadNLM
	NWSMLoadNLM2
	NWSMMountVolume
	NWSMSetDynamicCmdIntValue
	NWSMSetDynamicCmdStrValue
	NWSMUnloadNLM

	7 TTS Concepts
	7.1 TTS Introduction
	7.2 Implicit Transaction Tracking
	7.3 Explicit Transaction Tracking
	7.4 Transaction Tracking Process
	7.5 Implicit Tracking Threshold
	7.6 TTS Transaction Functions
	7.7 TTS Status and File Control Functions
	7.8 TTS Threshold Functions

	8 TTS Tasks
	8.1 Enabling TTS

	9 TTS Functions
	NWDisableTTS
	NWEnableTTS
	NWGetTTSStats (obsolete-moved from .h file 6/99)
	NWTTSAbortTransaction
	NWTTSBeginTransaction
	NWTTSEndTransaction
	NWTTSGetConnectionThresholds
	NWTTSGetControlFlags
	NWTTSGetProcessThresholds
	NWTTSIsAvailable
	NWTTSSetConnectionThresholds
	NWTTSSetControlFlags
	NWTTSSetProcessThresholds
	NWTTSTransactionStatus

	10 Server-Based Server Environment Concepts
	10.1 Prerequisites
	10.2 Potential Uses
	10.3 Server-Based Server Environment Functions

	11 Server-Based Server Environment Functions
	11.1 A*-GetD* Functions
	CheckConsolePrivileges
	CheckNetWareVersion
	ClearConnectionNumber
	DisableFileServerLogin
	DisableTransactionTracking
	DownFileServer
	EnableFileServerLogin
	EnableTransactionTracking
	GetBinderyObjectDiskSpaceLeft
	GetConnectionSemaphores
	GetConnectionsOpenFiles
	GetConnectionsTaskInformation
	GetConnectionsUsageStats (obsolete 4/99)
	GetConnectionsUsingFile
	GetDiskCacheStats (obsolete 4/99)
	GetDiskChannelStats (obsolete 4/99)
	GetDiskUtilization
	GetDriveMappingTable (obsolete 4/99)

	11.2 GetF*-TTS* Functions
	GetFileServerDateAndTime
	GetFileServerDescriptionStrings
	GetFileServerLANIOStats (obsolete 4/99)
	GetFileServerLoginStatus
	GetFileServerMiscInformation (obsolete 4/99)
	GetFileServerName
	GetFileSystemStats (obsolete 4/99)
	GetLANDriverConfigInfo (obsolete 4/99)
	GetLogicalRecordInformation
	GetLogicalRecordsByConnection
	GetPathFromDirectoryEntry
	GetPhysicalDiskStats (obsolete 4/99)
	GetPhysicalRecordLocksByFile
	GetPhysRecLockByConnectAndFile
	GetSemaphoreInformation
	GetServerInformation
	GetServerMemorySize
	GetServerUtilization
	SendConsoleBroadcast
	SetFileServerDateAndTime
	TTSGetStats (Obsolete-moved from .h file 4/99)

	11.3 SSGetA*-SSGetK* Functions
	SSGetActiveConnListByType
	SSGetActiveLANBoardList
	SSGetActiveProtocolStacks
	SSGetCacheInfo
	SSGetCPUInfo
	SSGetDirCacheInfo
	SSGetFileServerInfo
	SSGetFileSystemInfo
	SSGetGarbageCollectionInfo
	SSGetIPXSPXInfo
	SSGetKnownNetworksInfo
	SSGetKnownServersInfo

	11.4 SSGetL*-SSGetN* Functions
	SSGetLANCommonCounters
	SSGetLANConfiguration
	SSGetLANCustomCounters
	SSGetLoadedMediaNumberList
	SSGetLSLInfo
	SSGetLSLLogicalBoardStats
	SSGetMediaManagerObjChildList
	SSGetMediaManagerObjInfo
	SSGetMediaManagerObjList
	SSGetMediaNameByNumber
	SSGetNetRouterInfo
	SSGetNetworkRoutersInfo
	SSGetNLMInfo
	SSGetNLMLoadedList
	SSGetNLMResourceTagList

	11.5 SSGetO*-SSGetV* Functions
	SSGetOSVersionInfo
	SSGetPacketBurstInfo
	SSGetProtocolConfiguration
	SSGetProtocolCustomInfo
	SSGetProtocolNumbersByLANBoard
	SSGetProtocolNumbersByMedia
	SSGetProtocolStatistics
	SSGetRouterAndSAPInfo
	SSGetServerInfo
	SSGetServerSourcesInfo
	SSGetUserInfo
	SSGetVolumeSegmentList
	SSGetVolumeSwitchInfo

	12 Server-Based TTS Concepts
	12.1 Transaction Process
	12.2 Transaction Tracking
	12.2.1 Implicit Transaction Tracking
	12.2.2 Explicit Transaction Tracking

	12.3 Record Locking
	12.4 Transaction Backouts
	12.4.1 Causes of Transaction Backout
	12.4.2 Solutions for Transaction Backout

	12.5 Disable/Enable Transaction Tracking
	12.5.1 Disable Transactions
	12.5.2 Enable Transactions

	12.6 Functions

	13 Server-Based TTS Functions
	TTSAbortTransaction
	TTSBeginTransaction
	TTSEndTransaction
	TTSGetApplicationThresholds
	TTSGetWorkstationThresholds
	TTSIsAvailable
	TTSSetApplicationThresholds
	TTSSetWorkstationThresholds
	TTSTransactionStatus

	A Revision History

