
SecureLogin 9.0
Application Definition Guide

June, 2021

Legal Notice
For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

© Copyright 2021 Micro Focus or one of its affiliates.
2

https://www.microfocus.com/about/legal/

Contents
About This Guide 7

1 Application Definition Language: An Overview 9
1.1 What Is an Application Definition. 9
1.2 Advantages of Using Application Definitions. 9
1.3 Using Application Definitions . 10
1.4 Defining Applications Enabled for Single Sign-On. 10
1.5 Corporate Definitions . 10
1.6 Using Dialog Specifier Commands . 11
1.7 Reading from and Writing to Variables . 11

1.7.1 Using Characters Interpretable by SecureLogin . 11

2 Application Definition Command Quick Reference 13

3 Managing Application Definitions 25
3.1 Application Definition Checklist . 25
3.2 Managing Predefined Applications and Application Definitions . 26
3.3 Modifying Predefined Applications and Application Definitions . 26

3.3.1 Building an Application Definition in the Personal Management Utility 26
3.4 Windows Application Definition Tools . 29

3.4.1 Finding Application Details with Window Finder . 29
3.4.2 Finding Application Details with the Login Watcher . 30

3.5 Application Definition Elements . 31

4 Application definition variables 35
4.1 Types of Variables . 35

4.1.1 Using a variable to change the default platform . 35
4.1.2 Directory Attribute Variables . 35
4.1.3 Stored Variables . 36
4.1.4 Runtime Variables. 37

4.2 SecureLogin Supported Variables. 38
4.3 Application Definition Best Practices . 39

4.3.1 Symbols Used . 39
4.3.2 Blank Line Between Sections . 39
4.3.3 Capitalization . 40
4.3.4 Comments . 40
4.3.5 Indent Section. 40
4.3.6 Password Policy Names . 41
4.3.7 Quotation Marks. 41
4.3.8 Regular Expressions . 41
4.3.9 Switches. 43
4.3.10 Variables . 43
4.3.11 Writing Subroutine Sections . 43
Contents 3

4 Con
5 Support for Dynamic Controls 45

6 Command Reference 49
6.1 Command Reference Conventions . 49

6.1.1 Command Information. 49
6.1.2 Web Wizard Application Definition Conventions . 50
6.1.3 Auditing . 51
6.1.4 One Time Passwords . 52

6.2 Commands . 52
6.2.1 AAVerify . 55
6.2.2 Add . 58
6.2.3 Attribute . 59
6.2.4 AuditEvent . 59
6.2.5 BeginSplashScreen/EndSplashScreen . 60
6.2.6 BooleanInput . 61
6.2.7 Break . 61
6.2.8 Call . 63
6.2.9 ChangePassword . 64
6.2.10 Class . 65
6.2.11 ClearPlat . 66
6.2.12 ClearSite . 67
6.2.13 Click . 68
6.2.14 ClickElement . 71
6.2.15 ClickInput. 72
6.2.16 ConvertTime . 72
6.2.17 Ctrl . 73
6.2.18 DebugPrint . 74
6.2.19 Decrement . 75
6.2.20 Delay . 76
6.2.21 Dialog/EndDialog . 76
6.2.22 DisplayVariables . 77
6.2.23 Divide . 79
6.2.24 DumpPage . 79
6.2.25 EndScript . 80
6.2.26 Event/Event Specifiers . 80
6.2.27 FocusInput . 81
6.2.28 GenerateOTP . 82
6.2.29 GetCheckBoxState . 85
6.2.30 GetCommandLine . 86
6.2.31 GetEnv . 86
6.2.32 GetHandle . 87
6.2.33 GetIni . 87
6.2.34 GetMD5 . 88
6.2.35 GetReg . 89
6.2.36 GetDirectoryStatus . 90
6.2.37 GetSessionName . 91
6.2.38 GetText . 91
6.2.39 GetURL . 92
6.2.40 GoToURL . 92
6.2.41 Highlight . 93
6.2.42 If/Else/EndIf . 93
6.2.43 Include . 97
6.2.44 Increment . 98
6.2.45 KillApp . 98
tents

6.2.46 Local .100
6.2.47 MatchDomain .101
6.2.48 MatchElement .102
6.2.49 MatchField .103
6.2.50 MatchForm .105
6.2.51 MatchOption .108
6.2.52 MatchReferer .109
6.2.53 MatchRegex .110
6.2.54 MatchTitle .111
6.2.55 MatchURL .112
6.2.56 MessageBox .113
6.2.57 Multiply .115
6.2.58 OnException/ClearException .116
6.2.59 Parent/EndParent .121
6.2.60 PickListAdd .123
6.2.61 PickListDisplay .124
6.2.62 PositionCharacter .125
6.2.63 PressInput .126
6.2.64 ReadInput .127
6.2.65 ReadText .128
6.2.66 RegSplit .131
6.2.67 ReLoadPlat .133
6.2.68 Repeat/EndRepeat .136
6.2.69 RestrictVariable .137
6.2.70 Run .140
6.2.71 RunEX. .141
6.2.72 Select .142
6.2.73 SelectListBoxItem .143
6.2.74 SelectOption .144
6.2.75 SendEvent .145
6.2.76 SendKey .145
6.2.77 Set .146
6.2.78 SetCheckBox .148
6.2.79 SetCursor .148
6.2.80 SetFocus .149
6.2.81 SetPlat .150
6.2.82 SetPrompt .153
6.2.83 Site/Endsite .155
6.2.84 -SiteDeparted .157
6.2.85 StrCat .157
6.2.86 StrLength .158
6.2.87 StrLower .159
6.2.88 StrLower .160
6.2.89 StrReplace .161
6.2.90 StrUpper .162
6.2.91 Sub/EndSub .162
6.2.92 Submit .163
6.2.93 Substr. .164
6.2.94 SubstVar. .165
6.2.95 Subtract .166
6.2.96 Tag/EndTag .167
6.2.97 TextInput .167
6.2.98 Title .168
6.2.99 Type .170
6.2.100 WaitForFocus .176
Contents 5

6 Con
6.2.101 WaitForText .177
6.2.102 While/Endwhile .178

7 Testing Application Definitions 181
7.1 Example Application Definition for the Test Application .181
7.2 Application Definition Explained .183
7.3 Dialog Boxes .183

8 Reference Commands and Keys 187
8.1 Windows Keyboard Functions .187
8.2 Terminal Emulator Commands .192

9 Application Definition Commands for SNMP Alerts 195
9.1 Creating an SNMP Alert. .195
9.2 Example .195
tents

About This Guide

This guide helps users to write or modify application definitions for single sign-on-enabled
applications. Most users will find it quicker and easier to use the Application Definition Wizard but,
assuming the relevant permissions have been granted, users may also write their own application
definitions to suit their particular requirements.

Additional Documentation
For the latest version of this guide and other SecureLogin documentation resources, see the
SecureLogin Documentation and keep up to date on patches and versions of both SecureLogin and
the host operating system.

Contact Information
We want to hear your comments and suggestions about this book and the other documentation
included with this product. You can use the comment on this topic link at the bottom of each page of
the online documentation, or send an email to Documentation-Feedback@microfocus.com.

For specific product issues, contact Micro Focus Customer Care at https://www.microfocus.com/
support-and-services/.
About This Guide 7

https://www.microfocus.com/documentation/securelogin/
mailto:Documentation-Feedback@microfocus.com
https://www.microfocus.com/support-and-services/
https://www.microfocus.com/support-and-services/

8 About This Guide

1 1Application Definition Language: An
Overview

The capability of SecureLogin to create proprietary application definitions is a powerful feature. This
application definition command language facilitates single sign-on of all types of applications.

SecureLogin implements application definition commands to provide a flexible single sign-on and
monitoring environment. For example, the SecureLogin Windows Agent watches for application
login boxes. When a login box is identified, the agent runs an application definition to enter the
username, password, and background authentication information.

This section contains the following information:

 Section 1.1, “What Is an Application Definition,” on page 9
 Section 1.2, “Advantages of Using Application Definitions,” on page 9
 Section 1.3, “Using Application Definitions,” on page 10
 Section 1.4, “Defining Applications Enabled for Single Sign-On,” on page 10
 Section 1.5, “Corporate Definitions,” on page 10
 Section 1.6, “Using Dialog Specifier Commands,” on page 11
 Section 1.7, “Reading from and Writing to Variables,” on page 11

1.1 What Is an Application Definition
An application definition is essentially a list of instructions that SecureLogin follows in order to
perform various tasks on various windows. For example, for a Windows application (*.exe), an
application definition is written for each executable file that you want SecureLogin to act upon. In
that application definition, you are able to assign different instructions to each dialog box or screen
that the executable file or application might produce. By doing this, you have the choice of acting
upon only the login panel, only selected windows, or every window that is produced by the
executable file, such as account locked, invalid username, invalid password, back-end database is
down, password expiry, and so on.

SecureLogin processes the application definition from left to right, top to bottom. However, with the
use of flow control commands, such as Call, it is possible to skip, repeat, or jump to certain parts of
the application definition.

1.2 Advantages of Using Application Definitions
 Enables you to single sign-on to any Windows, mainframe, Internet, Intranet, terminal server, or

Unix application.
 No need to install software on your application servers.
Application Definition Language: An Overview 9

 The flexibility for you and your application owners to choose what to do once an application
generated message is detected, giving you full control over your single sign-on environment.

 Allows more sophisticated single sign-on to supported applications, including the ability to
seamlessly handle several versions of one application. This feature is especially important when
you upgrade your applications.

 Security. SecureLogin data (for example, user credentials) is stored and protected in the
directory.

 Speed. When SecureLogin is started, it locates user data in the directory and caches its
encrypted contents in memory (and optionally on disk) for later use by the workstation's
SecureLogin agent.

1.3 Using Application Definitions
You can use application definitions to:

 Execute the retrieval and entering of correct login details. Application definitions are stored and
secured within the directory to ensure maximum security, support for single-point
administration, and manageability.

 Automate many login processes, such as multi-page login and login panels requiring other
information that you can store in the directory (such as surname or telephone number).

 Application definitions can include commands to automate password changes on behalf of
users and to request user input when required.

 Application definitions can accommodate error handling that is generated by the back-end
application. For example, handling of invalid logins.

1.4 Defining Applications Enabled for Single Sign-On
SecureLogin provides the option to define which applications are enabled for single sign-on. This
option gives you:

 Complete control for deciding which applications need to be enabled for single sign-on.
 The ability to update the entire directory database with a new application login application

definition by updating a single object.

1.5 Corporate Definitions
Corporate applications allow scripts to flow down to all users located within a container, allowing
central administrators and maintenance of the script.

Corporate application definitions are stored in a container object rather than on the individual user
objects. For users, the result is a less complex system.

For you as the administrator, the improved login mechanisms provide the following:

 A greater level of accountability with increased productivity and security.
 A reduced workload at the help desk because of significantly fewer password resets.
10 Application Definition Language: An Overview

1.6 Using Dialog Specifier Commands
Using the Dialog Specifier commands, you can assign individual sections of an application
definition to the different windows an executable file produces. This allows the login dialog box, for
example, to be treated differently from the Error Message box and so on.

Many commands are available in the SecureLogin application definition language. Some of the
SecureLogin commands, such as Repeat and Dialog, have one or two commands that are used to
close them.

1.7 Reading from and Writing to Variables
Application definition commands can read from and write to variables. These variables enable
SecureLogin to use corporate application definitions, while each individual user's secrets are
securely stored in the directory. It is also possible to read attributes, such as the user's full name and
phone number, from attributes in the directory.

SecureLogin not only writes information to the screen, but also reads from it with the use of
commands such as ReadText. Use this to extract usernames, domains in use, error messages, and
other useful information. Use Variable Manipulator commands to perform calculations, break
apart information, and join it back together again.

All these features come together to form an extremely powerful language that is able to accomplish
almost any task that is required.

1.7.1 Using Characters Interpretable by SecureLogin
Using interpretable characters in SecureLogin application definitions has implications for definitions
that are created in, or copied from, and pasted from a Microsoft Word.

For example, when you are writing an application definition that requires a “-” (dash) in the
command syntax, make sure you use a short "–" or en dash (Unicode glyph U+2013 (Hex) or
8211(Decimal) and cannot be an extended "—" or em dash as generated in Microsoft Word.

In Microsoft Word, when you type a space and one or two hyphens between text, Microsoft Word
automatically inserts an ASCII dash or en dash (–). If you type two hyphens and do not include a
space before the hyphens, an em dash (—) is created.

Similarly, when you are writing an application definition that requires quotation mark in the
command syntax, make sure you use a straight quotation mark (Unicode glyph U+0022 (Hex) or 0034
(Decimal) or the ASCII printable character 34). For quotation mark syntax example, see Section 4.3.7,
“Quotation Marks,” on page 41.

In Microsoft Word, when you type a question mark, Word automatically changes straight quotation
marks to curly (or smart) quotes, as you type unless the Word AutoCorrect, AutoFormat As You Type
features are disabled.
Application Definition Language: An Overview 11

12 Application Definition Language: An Overview

2 2Application Definition Command Quick
Reference

Table 2-1 Application Definition Command Quick Reference

Command Description

Use the this symbol to define a line of text as a comment field. Comment fields are
used to leave notes.

For more information, see “#” on page 32

" " Use quotation marks to group together text or variables containing spaces.
Quotation marks are used with commands like Type, MessageBox, and If -
Text.

For more information, see “" "” on page 32

$ Use the dollar sign to define the use of a SecureLogin variable stored in the directory
for later use by that user.

For more information, see “$” on page 13

? Use the question mark to define the use of a runtime variable.

The values of these variables are not stored in the directory. They are reset each
time SecureLogin is started.

For more information, see “?” on page 32

% Use the percentage sign to define the use of a directory attribute. The attributes
that are available vary depending on the directory in use, and the setup of the
directory.

For more information, see “%” on page 33

\ Use the backslash with the Type and Send Key commands to specify the use of a
special function.

@ Use this symbol in the same way as the backslash symbol, except its use is limited to
HLLAPI enabled emulators.

For more information, see “@” on page 33

- Use the hyphen as a switch within several commands, such as If and Type.

For more information, see “-” on page 33

AAVerify It is typically used before the application Username and Password are retrieved and
entered into the login box.

For more information, Section 6.2.1, “AAVerify,” on page 55
Application Definition Command Quick Reference 13

Add Adds one number to another. The numbers can be hard-coded into the application
definition, or they can be variables. The result can be the output of another variable,
or one of the original numbers.

For more information, see Section 6.2.2, “Add,” on page 58

Attribute Use the Attribute specifier in conjunction with the Tag/EndTag command to
specify which HTML attributes and attribute values must exist for that particular
HTML tag.

For more information, see Section 6.2.3, “Attribute,” on page 59

AuditEvent Use the AuditEvent to audit the following events from an application definition:

 SecureLogin client started
 SecureLogin client exited
 SecureLogin client activated by user
 SecureLogin client deactivated by user
 Password provided to an application by a script
 Password changed by the user in response to a changepassword command
 Password changed automatically in response to a changepassword

command

For more information, see Section 6.2.4, “AuditEvent,” on page 59

BeginSplashScreen/
EndSplashScreen

Use to display a splash screen across the whole Terminal Emulator window. This is
used to mask any flashing produced by SecureLogin scraping the screen for text. A
Delay command at the start of the application definition ensures that the emulator
window is in place before the splash screen is displayed.

For more information, see Section 6.2.5, “BeginSplashScreen/EndSplashScreen,” on
page 60

BooleanInput Use BooleanInput within a site block to set the state of a Boolean field (either
a check box or radio button).

For more information, see Section 6.2.6, “BooleanInput,” on page 61

Break Use Break within the Repeat/EndRepeat commands to break out of a repeat
loop.

For more information, see Section 6.2.7, “Break,” on page 61

Call Use the Call command to call and run a subroutine. When a subroutine is called,
the application definition begins executing from the first line of the subroutine.

For more information, see Section 6.2.8, “Call,” on page 63

ChangePassword Use the ChangePassword command to change a single variable and is used in
scenarios where password expiry is an issue. Set the <Variable> to the new
password.

For more information, see Section 6.2.9, “ChangePassword,” on page 64

Command Description
14 Application Definition Command Quick Reference

Class When a window is created, it is based on a template known as a window class. The
Class command checks to see if the class of the newly created window matches its
<Window-Class> argument.

For more information, see Section 6.2.10, “Class,” on page 65

ClearPlat Use to reset the last chosen platform, causing subsequent calls to ReLoadPlat to do
nothing.

For more information, see Section 6.2.11, “ClearPlat,” on page 66

ClearSite Use within a Site block to clear the ‘matched’ status for a given site.

For more information, see Section 6.2.12, “ClearSite,” on page 67

Click When used with windows applications, the Click command sends a click
instruction to the specified <#Ctrl-ID>.

For more information, see Section 6.2.13, “Click,” on page 68

ConvertTime Use to convert a numeric time value, for example, ?CurrTime(system), into a
legible format and store it in <String Time>.

For more information, see Section 6.2.16, “ConvertTime,” on page 72

Ctrl Use the Ctrl command to determine if a window contains the control expressed in
the <#Ctrl-ID> argument. The control ID number is a constant that is established
at the time a program is compiled.

For more information, see Section 6.2.17, “Ctrl,” on page 73

DebugPrint Use the DebugPrint command to display the text specified in the <Data>
variable on a Debug console.The command can take any number of text arguments,
including variables, (for example, DebugPrint "The user " $Username "
has just been logged onto the system").

For more information, see Section 6.2.18, “DebugPrint,” on page 74

Decrement Use the Decrement command to subtract from a specified variable. For example,
you can use Decrement to count the number of passes a particular application
definition has made.

For more information, see Section 6.2.19, “Decrement,” on page 75

Delay Use the Delay command to delay the execution of the application definition for the
time specified in the <Time Period> argument.

For more information, see Section 6.2.20, “Delay,” on page 76

Dialog/EndDialog Use the Dialog/EndDialog command to identify the beginning and end of a
dialog specification block respectively. You can use these commands to construct a
dialog specification block, which consists of a series of dialog specification
statements (for example Ctrl and Title).

For more information, see Section 6.2.21, “Dialog/EndDialog,” on page 76

Command Description
Application Definition Command Quick Reference 15

DisplayVariables Use the DisplayVariables command to display a dialog box that lists the user's
stored variables (for example, $Username and $Password) for the current
application.

For more information, see Section 6.2.22, “DisplayVariables,” on page 77

Divide Use to divide one number by another. The numbers can be hard coded into the
application definition, or they can be variables. The result can be output to another
variable, or to one of the original numbers.

For more information, see Section 6.2.23, “Divide,” on page 79

DumpPage Use the DumpPage command to provide information about the current Web page.
Use for debugging Web page application definitions.

For more information, see Section 6.2.24, “DumpPage,” on page 79

EndScript Use the EndScript command to immediately terminate execution of the
application definition.

For more information, see Section 6.2.25, “EndScript,” on page 80

Event/Event Specifiers Application definitions generally execute at the point when an application window is
created. This corresponds to the WM_CREATE message received from an
application window at startup.

By adding the Event Specifier to a dialog block, you can override this behavior
whereby application definition executes only when the specified message is
generated. If an Event Specifier is not givem, it is treated as the same as Event
WM_CREATE.

For more information, see Section 6.2.26, “Event/Event Specifiers,” on page 80

FocusInput Use within a Site Block to focus on an input field based on the Boolean value of
"focus".

For more information, see Section 6.2.27, “FocusInput,” on page 81

GenerateOTP Used to generate a one time password (OTP) as an authentication method in lieu of
a traditional fixed and static password.

For more information, see Section 6.2.28, “GenerateOTP,” on page 82

GetCheckBoxState Use the GetCheckBoxState command to return the current state of the specified
checkbooks.

For more information, see Section 6.2.29, “GetCheckBoxState,” on page 85

GetCommandLine Use the GetCommandLine command to capture the full command line of the
program that is loaded, and save it to the specified variable.

For more information, see Section 6.2.30, “GetCommandLine,” on page 86

GetEnv Use the GetEnv command to read the value of an environment variable and save it
in the specified <variable>.

For more information, see Section 6.2.31, “GetEnv,” on page 86

Command Description
16 Application Definition Command Quick Reference

GetHandle Use GetHandle to capture the unique handle of the window on which the
Windows application definition script is activated.

For more information, see Section 6.2.32, “GetHandle,” on page 87

GetIni Use the GetIni command to read data from the INI file.

For more information, see Section 6.2.33, “GetIni,” on page 87

GetMD5 Use the GetMD5 command to generate an MD5 hash value of the current process
the script is running for. GetMD5 works only with the Win32 scripts.

For more information, see Section 6.2.34, “GetMD5,” on page 88

GetReg Use the GetReg command to read data from the registry and save it in the specified
<variable>.

For more information, see Section 6.2.35, “GetReg,” on page 89

GetDirectoryStatus Use the GetDirectoryStatus command to find out whether SecureLogin can connect
to the directory or not.

For more information, see Section 6.2.36, “GetDirectoryStatus,” on page 90

GetSessionName Use the GetSessionName command to find the current HLLAPI session name that
is used to connect and return it to the specified variable.

For more information, see Section 6.2.37, “GetSessionName,” on page 91

GetText Use the GetText command to get all of the text from the screen and save it to the
specified variable. It is used in a large Web application definition that might contain
several If -Text statements.

For more information, see Section 6.2.38, “GetText,” on page 91

GetURL Use the GetURL command to capture the URL of the site that is loaded and save it
to the specified variable.

For more information, see Section 6.2.39, “GetURL,” on page 92

GoToURL Use the GoToURL command to make the browser navigate to the specified <URL>.
By default the command opens the new Web page in the main window, rather than
the frame that started the application definition.

For more information, see Section 6.2.40, “GoToURL,” on page 92

If/Else/EndIf Use the If command to establish a block to execute if the expression supplied is
true. The Else command works inside an If block. The Else command is executed
if the operator in the If block is false. Use the EndIf command to terminate the If
block.

For more information, see Section 6.2.42, “If/Else/EndIf,” on page 93

Command Description
Application Definition Command Quick Reference 17

Include Use the Include command to share commonly used application definition
commands by multiple applications. The application definition identified by
<Platform-Name> is included at execution time into the calling application
definition. The application definition included with the Include command must
consists of commands supported by the calling application.

For more information, see Section 6.2.43, “Include,” on page 97

Increment Use the Increment command to add to a specified variable. For example, you can
use increment to count the number of passes a particular application definition has
made.

For more information, see Section 6.2.44, “Increment,” on page 98

KillApp Use to terminate an application.

For more information, see Section 6.2.45, “KillApp,” on page 98

Local Use the Local command to declare that a runtime variable will only exist for the
lifetime of the application definition. Local runtime variables are used in the same
way as normal runtime variables and are still written as ?Variable.

For more information, see Section 6.2.46, “Local,” on page 100

MatchDomain Use MatchDomain inside a site block to filter a site based on its domain. If the
domain does not match, the site block fails to match.

For more information, see Section 6.2.47, “MatchDomain,” on page 101

MatchField Use MatchField to filter a form based on the presence of a particular field. If the
field fails to match and it is not specified as optional, then the parent form fails to
match.

For more information, see Section 6.2.49, “MatchField,” on page 103

MatchForm Use MatchForm to filter a site based on the presence of a particular field. If the
field fails to match and it is not specified as optional, then the site fails to match.

For more information, see Section 6.2.50, “MatchForm,” on page 105.

MatchOption Use the MatchOption command to filter a field based on the presence of a
particular option.

For more information, see Section 6.2.51, “MatchOption,” on page 108.

MatchReferer Use MatchReferer inside a Site/EndSite block to match or filter a site based
on a referrer.

For more information, see Section 6.2.52, “MatchReferer,” on page 109.

MatchRegex Use the MatchRegex command to test whether a regular expression matches
against the specified string or not. You can also use it inside a Site–EndSite or
Dialog–EndDialog block for example.

For more informations, see Section 6.2.53, “MatchRegex,” on page 110.

Command Description
18 Application Definition Command Quick Reference

MatchTitle Used inside a site block, MatchTitle is used to filter a site based on its title. If the
site title does not match, the site block fails to match.

For more information, see Section 6.2.54, “MatchTitle,” on page 111.

MatchURL Use MatchURL inside a site block to match or filter an HTML page within a site
based on its URL. The URL can be a complex Web address or a secure website.

For more information, see Section 6.2.55, “MatchURL,” on page 112.

MessageBox Use the MessageBox command to display a dialog box that contains the text
specified in the <Data> variable. The application definition is suspended until the
user reacts to this message. The MessageBox can take any number of text
arguments, including variables, (for example MessageBox "The user " $Username "
has just been logged onto the system").

For more information, see Section 6.2.56, “MessageBox,” on page 113.

Multiply Use to multiply one number by another. You can hard-code the numbers into the
application definition, or you can use variables. The results can be output to another
variable, or to one of the original numbers.

For more information, see Section 6.2.57, “Multiply,” on page 115.

OnException/
ClearException

Use the OnException command to detect when certain conditions are met.
Currently, this is when Cancel is clicked on either of two dialog boxes. When the
condition is met, a subroutine is run. Use the ClearException command to reset
the exceptions value.

For more information, see Section 6.2.58, “OnException/ClearException,” on
page 116.

Parent/EndParent Use the EndParent command to terminate a Parent block and set the subject of
the application definition back to the original window. You can nest the Parent
command, thereby allowing the Parent block to act on the parent of the parent.

For more information, see Section 6.2.59, “Parent/EndParent,” on page 121.

PickListAdd Use the PickList command to allow users with multiple accounts for a particular
system to choose the account to which they will log in.

For more information, see Section 6.2.60, “PickListAdd,” on page 123.

PickListDisplay Use the PickListDisplay command to display the pick list entries built by
previous calls to PickListAdd. The PickListDisplay command returns the
result in a <?Variable> sent to the command.

For more information, see Section 6.2.61, “PickListDisplay,” on page 124.

PositionCharacter Use the PositionCharacter command in a password policy application
definition to enforce that a certain character in the password is a numeral,
uppercase, lowercase, or a punctuation character.

For more information, see Section 6.2.62, “PositionCharacter,” on page 125.

PressInput Used within a site block to simulate a keyboard enter event.

For more information, see Section 6.2.63, “PressInput,” on page 126.

Command Description
Application Definition Command Quick Reference 19

ReadText Use the ReadText command to run in both Windows and Terminal Launcher
application definitions. Although the usage and arguments for the use of ReadText
with Windows and Terminal Launcher are different, the results of each command
are the same.

For more information, see Section 6.2.65, “ReadText,” on page 128.

RegSplit Use the RegSplit command to split a string by using a regular expression.
<Output-String1> and <Output-String2> contain the first and second
subexpressions.

For more information, see Section 6.2.66, “RegSplit,” on page 131.

ReLoadPlat Use to set the current platform to the last one chosen by the application definition,
or if a platform is not chosen, leaves the platform unset.

For more information, see Section 6.2.67, “ReLoadPlat,” on page 133.

Repeat/EndRepeat Use the Repeat command to establish an application definition block similar to the
If command. The repeat block is terminated by an EndRepeat command.
Alternatively, you can use the Break or EndScript commands to break out of the
loop.

For more information, see Section 6.2.68, “Repeat/EndRepeat,” on page 136.

RestrictVariable Use the RestrictVariable command to monitor a <Variable> and enforce a
specified <Password-Policy> on the <Variable>. Any variable specified must
match the policy or it is not saved.

For more information, see Section 6.2.69, “RestrictVariable,” on page 137.

Run Use the Run command to launch the program specified in <Command> with the
specified optional [<Arg1> [<Arg2>] …] arguments.

For more information, see Section 6.2.70, “Run,” on page 140.

Select Use the Select command to select entries from a combo box or list box control.

For more information, see Section 6.2.72, “Select,” on page 142.

SelectListBoxItem Use the SelectListBoxItem command to select entries from a list box.

For more information, see Section 6.2.73, “SelectListBoxItem,” on page 143.

SelectOption Use the SelectOption command to select or deselect options within a list box or
combo dialog box.

For more information, see Section 6.2.74, “SelectOption,” on page 144.

SendEvent Use the SendEvent command to broadcast events.

For more information, see Section 6.2.75, “SendEvent,” on page 145

Command Description
20 Application Definition Command Quick Reference

SendKey Use the SendKey command to work only with Generic and Advanced Generic
emulators. You can use the SendKey command in the same manner as the Type
command. Generally, the Type command is the preferred command to use. The
Type command places the text into the clipboard, and then pastes it into the
emulator screen. The SendKey command enters the text directly into the emulator
screen.

For more information, see Section 6.2.76, “SendKey,” on page 145.

Set Use the Set command to copy the value of <Data> into <Variable>. The
<Data> can be any text, or another variable, whereas the <Variable> must be
either a ?Variable or $Variable.

For more information, see Section 6.2.77, “Set,” on page 146.

SetCheckBox Use the SetCheckBox command to select or clear a check box.

For more information, see Section 6.2.78, “SetCheckBox,” on page 148.

SetCursor Use the SetCursor command to set the cursor to a specified
<ScreenPosition> or <X Co-ordinate> <Y Co-ordinate>.

For more information, see Section 6.2.79, “SetCursor,” on page 148.

SetFocus Use the SetFocus command to set the keyboard focus to a specified <#Ctrl-ID>.

For more information, see Section 6.2.80, “SetFocus,” on page 149.

SetPlat SetPlat sets the platform or application from which variables are read and saved.

By default, variables are stored directly against the platform or application on which
you have SecureLogin enabled. For example, if you enable Groupwise.exe, the
Groupwise credentials are stored against the Groupwise.exe platform. SetPlat
sets the platform or application from which variables are read and saved.

For more information, see Section 6.2.81, “SetPlat,” on page 150.

SetPrompt Use the SetPrompt command to customize the text in the Enter SecureLogin
Variables dialog boxes. These dialog boxes are used to prompt the user for new
variables. You can also use the DisplayVariables command to customize the
prompt text in the dialog box (for previously stored variables).

For more information, see Section 6.2.82, “SetPrompt,” on page 153.

Site/Endsite Site/Endsite are Web commands added to allow for finer control of site
matching. More detailed information within a loaded website can now be matched
upon an used to execute blocks of scripting commands.

Begins and ends an application definition, in place of Dialog/EndDialog.

For more information, see Section 6.2.83, “Site/Endsite,” on page 155.

StrCat Use the StrCat command to append a second data string to the first data string.
For example, StrCat ?Result "SecureRemote " "$Username".

For more information, see Section 6.2.85, “StrCat,” on page 157.

Command Description
Application Definition Command Quick Reference 21

StrLength Use the StrLength command to count the number of characters in a variable and
output that value to the destination variable.

For more information, see Section 6.2.86, “StrLength,” on page 158.

StrLower Use the StrLower command to modify a variable so that all the characters are
lowercase.

For more information, see Section 6.2.87, “StrLower,” on page 159.

StrUpper Use the StrUpper command to modify a variable so that all the characters are
uppercase.

For more information, see Section 6.2.90, “StrUpper,” on page 162.

Sub/EndSub Use the Sub/EndSub commands around a block of lines within an application
definition to denote a subroutine.

For more information, see Section 6.2.91, “Sub/EndSub,” on page 162,

Submit Use the Submit command only in Web application definitions, and only with
Internet Explorer, to allow for enhanced control of how and when a form is
submitted. The Submit command performs a Submit on the form in which the first
password field is found. The Submit command is ignored if used with Netscape.

For more information, see Section 6.2.92, “Submit,” on page 163.

Substr Use the Substr command to search for a sub string from a text based on the index
and the length which are provided as parameters.

For more information, see Section 6.2.93, “Substr,” on page 164.

Subtract Use the Subtract command to subtract one value from another. This is useful if
you are implementing periodic password change functionality for an application.
You can use the subtract command (in conjunction with the Divide function and
the Slina DLL) to determine the number of days that have elapsed since the last
password change. Other numeric commands include Add, Divide, and Multiply.

For more information, see Section 6.2.95, “Subtract,” on page 166.

Tag/EndTag Use the Tag/EndTag commands to find HTML tags.

For more information, see Section 6.2.96, “Tag/EndTag,” on page 167.

TextInput Use within a site block to input text into a special field.

For more information, see Section 6.2.97, “TextInput,” on page 167.

Title Use the Title command to retrieve the title of a window and compare it against
the string specified in the <Window-Title> argument. For this block of the
application definition to run, the retrieved window title and the <Window-Title>
argument must match the text supplied to the Title command in the dialog block.

For more information, see Section 6.2.98, “Title,” on page 168.

Command Description
22 Application Definition Command Quick Reference

Type Use the Type command to enter data, such as usernames and passwords, into
applications. There are reserved character sequences that are used to type special
characters, for example TAB and ENTER. If it is not possible to determine Control IDs
in a Windows application, and the Type command is not working, use the SendKey
command instead.

For more information, see Section 6.2.99, “Type,” on page 170.

WaitForFocus Use the WaitForFocus command to suspend the running of the application
definition until the <#Ctrl-ID> has received keyboard focus, or the <Repeat-
Loops> expire. The <Repeat-Loops> is an optional value that defines the
number of loop cycles to run. The <Repeat-Loops> value defaults to 3000 loops
if nothing is set. After focus is received, the application definition continues.

For more information, see Section 6.2.100, “WaitForFocus,” on page 176.

WaitForText Use the WaitForText command so the Terminal Launcher waits for the specified
<text> to display before continuing. For example, the user waits for a username
field to display before attempting to type a username.

For more information, see Section 6.2.101, “WaitForText,” on page 177.

Command Description
Application Definition Command Quick Reference 23

24 Application Definition Command Quick Reference

3 3Managing Application Definitions

Application definitions are imported, built, or modified in the Management utility of SecureLogin,
tested locally, and then copied to the relevant container or the organizational unit in multi-user
directory environments. Application definitions are imported and exported in the XML file format for
the ease of distribution and deployment.

SecureLogin application definitions can be created using the application definition wizard.

For information about Application Definition Wizard, see the NetIQ SecureLogin 9.0 Application
Definition Wizard Administration Guide .

 Section 3.1, “Application Definition Checklist,” on page 25
 Section 3.2, “Managing Predefined Applications and Application Definitions,” on page 26
 Section 3.3, “Modifying Predefined Applications and Application Definitions,” on page 26
 Section 3.4, “Windows Application Definition Tools,” on page 29
 Section 3.5, “Application Definition Elements,” on page 31

3.1 Application Definition Checklist
When you build or modify application definitions, it is recommended to test each supported
application or the web page for the following requirements:

 Entering a correct username or password.
 Entering an incorrect username or password.
 Canceling a login by the user.
 Exceeding maximum password retries.
 A user changing his or her own password.
 Attempting to change to an illegal password.

This illegal password action is relevant when you define a password policy and you try to define
a password that does not match the policy.

 An administrator canceling a password change.
 An administrator changing a user password.
 Expiry of user password.
 Locking out the account.
 Locking out someone from the account.
Managing Application Definitions 25

https://www.microfocus.com/documentation/securelogin/9.0/pdfdoc/application_definition_wizard_admin_guide/application_definition_wizard_admin_guide.pdf#b1798qpz
https://www.microfocus.com/documentation/securelogin/9.0/pdfdoc/application_definition_wizard_admin_guide/application_definition_wizard_admin_guide.pdf#b1798qpz

3.2 Managing Predefined Applications and Application
Definitions
SecureLogin provides export functionality to facilitate distribution of the predefined applications
and application definitions. Converting predefined applications and application definitions to XML
format allows you to distribute and deploy these across directories, software, and hardware
platforms.

For information about how to export and import an application definition, see the following sections
in the NetIQ SecureLogin 9.0 Administration Guide:

 Exporting the Single Sign On Data in Encrypted XML Files
 Importing Single Sign-On Data in Encrypted XML Files

3.3 Modifying Predefined Applications and Application
Definitions
SecureLogin predefined applications and application definitions are easily modified to cater to your
organization's requirements.

Use the following procedure to modify a SecureLogin predefined application or application
definition:

1 Double-click the SecureLogin icon in the notification area.
2 Click Applications. The Applications pane is displayed.
3 Double-click the required application definition. The application details are displayed.
4 Select the Definition tab. The application definition editor is displayed.
5 Modify the application definition or the predefined application, as required.

It is recommended to include date and a description of the changes made for future references.
The predefined web applications such as eBay or Hotmail under the Type list are titled Web and
not Advanced Web. There is no difference between a Web application definition or an Advanced
Web application definition.

6 Click OK to save changes and close the Personal Management utility.
For information about how to modify specific functions, see Command Reference.

3.3.1 Building an Application Definition in the Personal Management
Utility
It is recommended that you test the application definitions locally and then copy them to the
relevant container or organizational unit in multi-user directory environments.

Use the following procedure to create an application definition for a Windows application:

1 Double-click the SecureLogin icon in the notification area.
2 Select File > New > Application. The New Application dialog box is displayed.
3 Click New Application Definition and select the required application type in Type.
26 Managing Application Definitions

https://www.microfocus.com/documentation/securelogin/9.0/pdfdoc/administration_guide/administration_guide.pdf#front
https://www.microfocus.com/documentation/securelogin/9.0/pdfdoc/administration_guide/administration_guide.pdf#bcf9vac
https://www.microfocus.com/documentation/securelogin/9.0/pdfdoc/administration_guide/administration_guide.pdf#bcfa3ca

4 Specify other details such as the EXE or the description.
These fields vary based on the application definition type that you have selected. For example,
if you select Windows as the Type, you must fill in the EXE and Description fields.

5 Click OK. The application definition is added to the left pane under applications and the details
display in the right pane.

6 Select Definition and delete this text: # place your application definition here.
7 Specify your application details, and click OK.

NOTE: If you are creating multiple application definitions, click Apply to save changes without
closing the Personal Management utility.

Settings Tab
Figure 3-1 The Settings Options

Table 3-1 Settings Options

Option Description

Allow web page to load while
application definition is running

Applies to Microsoft Internet Explorer and application definitions
created for Web pages and JavaScript login that execute in a Web page.

By default, this option is set to No. This suspends completion of any
other Internet Explorer tasks until the log in is completed.

If this option is set to Yes, SecureLogin allows Internet Explorer to
continue functioning while SecureLogin is executing the login.
Managing Application Definitions 27

Enable third party access for this
platform

By default, this option is set to No. This disables the API access for this
predefined application or the application definition.

If this option is set to Yes, it disables the API access for this predefined
application or application definition.

Password field must exist on
Internet Explorer page for
application definition to run

Applies to Microsoft Internet Explorer and application definitions
created for Web pages and JavaScripts within Web pages.

If this option is set to Yes, SecureLogin does not execute automated
login for pages without a password field.

If this option is set to No, your Web application returns errors on pages
without password fields that you need to handle with SecureLogin. For
example, password change successful.

Prompt for device
reauthentication for this
application

Allows you to reauthenticate an application against an Advanced
Authentication device.

By default, this option is set to No, which means that users are not
prompted for device reauthentication for the application.

If this option is set to Yes, user are prompted for device
reauthentication for the application.

Reauthentication Method This option allows you to reauthenticate to an application before single
sign-on.

This option is available only when Prompt for device reauthentication
for this application is set to No.

The reauthentication methods available are:

 Any
 Biometric
 Smart card
 Token
 Password
 Passphrase
 Directory password

Synchronize with Mobile Device This option is set to No by default, enabling synchronization to an API-
enabled hand-held device, for this predefined application or application
definition.

Set this option is set to Yes to disable synchronization to an API-enabled
handheld device for this predefined application or application
definition.

Option Description
28 Managing Application Definitions

3.4 Windows Application Definition Tools
SecureLogin provides wizards to assist with the creation of basic application definitions. For more
complex applications and requirements, SecureLogin provides the following tools to assist with
finding the application information required to build an application definition:

 Section 3.4.1, “Finding Application Details with Window Finder,” on page 29
 Section 3.4.2, “Finding Application Details with the Login Watcher,” on page 30

3.4.1 Finding Application Details with Window Finder
The SecureLogin Window Finder finds windows applications details, including control and dialog box
IDs. SecureLogin might require this information to identify specific objects in order to uniquely
identify the application.

Control IDs are used to uniquely identify objects within a window. Window Finder extracts this
information from the application for use in the application definition.

 “Starting the Windows Finder” on page 29
 “WINSSO Window Finder Details” on page 29

Starting the Windows Finder
The following procedure uses the SecureLogin test application provided on the SecureLogin product
installer package or your other distribution source.

1 On the Windows Start menu, select All Programs > NetIQ Securelogin > Window Finder. The
Window Finder is displayed.

2 Right-click the SecureLogin icon and drag it to the required window, field or control.

WINSSO Window Finder Details
The following table lists the fields in the WinSSO Window Finder:

Table 3-2 Window Finder Details

Field Description

Module Details Section

Module Name This is the Windows executable name for the selected application.

This is the application name for a Windows application definition or the
predefined application.

Command Line This is the full command line used to start the application.

You can use this information in along with the GetCommandLine command.

Parent Details Section
Managing Application Definitions 29

3.4.2 Finding Application Details with the Login Watcher
The Login Watcher records login and Windows application data to provide information that you
might need for creating an application definition.

 “Order Information Is Recorded and Stored” on page 30
 “Information Details” on page 31
 “SecureLogin Test Application Example” on page 31

Order Information Is Recorded and Stored
Information is recorded and stored in a text file in the following order:

Time||Module Name||Window Handle||Window Text||Class Name||Parent||Visible Flag||Title
Flag||Control ID

NOTE: The Login Watcher records all log in information, including usernames and passwords, in a
text file. This text file might be a security issue.

Window Title This is the title of the window of the selected control.

Use with the Title command in the Dialog/EndDialog section of the
application definition.

Window Class This is the Windows class name for this dialog or window.

Use with the Class command in a Dialog or EndDialog section.

Handle This is the internal Windows handle for this window.

This is generally not used in application definitions.

Control Details Section

Dialog ID This is the unique number identifying the control.

Use it with various commands, including Type, SetPlat, and Click.
Class Name This is the Windows class name for the control.

SecureLogin supported classes, which include Edit, Combo box, and Static.

Window Text This is the test that exists on the control.

Useful to copy and paste into the application definition editor.

1. Note the required details from the WinSSO Window Finder window from the
relevant fields.

2. Click Close.

Field Description
30 Managing Application Definitions

Information Details

SecureLogin Test Application Example
1 Right-click the SecureLogin icon on the notification area.
2 Select close from the menu.
3 Right-click the Windows Start menu > Explore.
4 Double-click loginwatch.exe (\program files\netiq\securelogin\tools).
5 Specify the executable filename in the Login Watcher field. For example, YPager.exe.
6 Click Start.
7 Log in to the relevant application.
8 Click Stop when logged on successfully to return to the Login Watcher dialog box.
9 Click View Log. SecureLogin starts the Notepad application and displays the watch.txt file

with login details recorded.
10 Note the required information or save the text file with a different name.
11 Click the Login Watcher dialog box. Click Close.

3.5 Application Definition Elements
Application definitions use various symbols to define the function of each line.

Information Item Description

Time Milliseconds elapsed since the Login Watcher started.

Module name Name of the executable being recorded.

Window handle Unique identifier for the window.

Window text All text displayed in the window, which includes text entered during login and text
displayed as labels for fields and buttons.

Class name Name of the window class.

Parent Window handle of the parent window.

Visible flag Refers to top-level windows that have the style set to Visible.

If set to Visible, the word Visible displays; otherwise the field is empty.

Title flag Refers to top-level windows that have the style set to display the Window Title.

If the title is not displayed, then the field is empty.

Control ID The unique numerical identifier for the windows object.
Managing Application Definitions 31

Table 3-3 Symbol Definitions

Symbol Description

Use this symbol to define a line of text as a comment. Comment fields are used to leave notes.

Any line that starts with a # is ignored.

Use comment lines for the following:

 Defining sections of an application definition, for example the login window and Change
Password window.

 Explaining complex sections.
 Removing command lines during creation and editing of the application definition. This saves

continuously deleting and rewriting lines while testing.
 Making notes such as when the application definition was written, what version of the

software it was written for, and so on.

When used as part of a command, such as Class or Type, the symbol precedes a numerical
value. You can use these numerical values to specify a target for the command.

For example: Type $Username #1 or Class #32770
" " Use quotation marks to group together text or variables that contain spaces. Quotation marks are

used with commands such as Type, MessageBox, and If -Text.

For these command lines to work, you must use quotation marks in the following method to
group the text together:

 Type "Database 2"
 MessageBox "Please confirm your log in details."
 If -Text "Login failure"

$ Use the dollar sign to define a variable to be stored by SecureLogin as part of application
credential set. The stored value will be retrieved and used by SecureLogin for any future instances
of the application.

These variables are used to store information such as usernames and passwords.

? Use the question mark to define the use of a runtime variable. The values of these variables are
not stored in the directory; they are reset each time SecureLogin is started.

Alternatively, with the use of the Local command, these variables are reset each time the
application definition is started.

These variables are used for temporary information, such as counting, data processing, and date
information. The question mark is also used to identify some system runtime variables. For
example, ?SysUser and ?SysPassword.
32 Managing Application Definitions

% Use the percentage sign to have SecureLogin retrieve the value of a directory attribute of the user
object. The attributes available vary depending on the directory in use, and the setup of the
directory.

Examples of the attributes you can use are FCN and Surname. Type %FCN or Type %Surname.

NOTE: The attribute name defined here needs to be in the exact case and syntax as the attribute
name in the directory. Also, Quotes are required around the variable if the attribute name
contains a space. For example,

Set ?text "%Login Time"
or

Messagebox "%Given Name"
For more information, see Section 4.1.2, “Directory Attribute Variables,” on page 35.

\ Use the backslash with the Type and SendKey commands to specify the use of a special
function.

The backslash is used along with values to perform the simulation of the pressed keys on the
keyboard. Examples of frequently used functions are provided in the following list:

 \Alt-F: Alt+F on the keyboard in Windows and Web applications.
 \D: Delete key in a Windows and Web applications. Not applicable to terminal emulators.
 \N: Enter key in a Windows and Web applications. Not applicable to terminal emulators.
 \T: Tab in Windows and Web applications.
 \-T: Shift+Tab in Windows and Web applications.

@ Use the same way as the backslash symbol, except its use is limited to HLLAPI-enabled emulators.

This symbol is used along with values to perform the simulation of pressed keys on the keyboard
when communicating with a host in a terminal emulator application. For example, use @E to
simulate pressing the Enter key in a terminal emulator application.

- Use the hyphen as a switch within several commands, such as If and Type.

The hyphen is used along with values to modify the behavior of commands (such as -Raw), or to
switch on or off certain functions (such as -YesNo).

Symbol Description
Managing Application Definitions 33

34 Managing Application Definitions

4 4Application definition variables

 Section 4.1, “Types of Variables,” on page 35
 Section 4.2, “SecureLogin Supported Variables,” on page 38
 Section 4.3, “Application Definition Best Practices,” on page 39

4.1 Types of Variables
SecureLogin supports the use of four different types of variables:

 Stored
 Runtime
 Directory attribute

4.1.1 Using a variable to change the default platform

NOTE: Specify variables without spaces, for example $Username_Alias. If you use spaces you must
enclose the entire variable in quotation marks, for example "$Username Alias".

Each variable defaults to the platform specified in the application definition or the predefined
application name. You can use a variable to change the platform.

Example:
If you have applications A and Z.

1. Application A has default credential A, and linked credentials B and C. A credential selection
will prompt you to choose A, B or C.

2. Application Z has default credential Z with linked credentials W, X and Y If you have set the
platform to Z and then a credential selection will prompt you to choose W, X, Y or Z.

$password: This variable will prompt the user for a credential. For application A a credential
selection will prompt you to choose A, B or C and for application Z a credential selection will prompt
you to choose W, X, Y or Z.

$password(A): This variable will not give any choice and will use the credential from A.

$password(Z): This variable will not give any choice and will use the credential from Z.

4.1.2 Directory Attribute Variables
SecureLogin can read directory attributes from the currently logged on user's object. For example,
%CN reads the CN attribute from the currently logged in user's object and displays it.
Application definition variables 35

IMPORTANT: SecureLogin can read and display an attribute only if the attribute is defined in the
user object. If the attribute variable is not defined, SecureLogin will display an empty attribute.

You can use the percentage symbol (%) variables only when SecureLogin is configured to use a
directory and only on single-valued text attributes.

Quotes are required around the variable if the attribute name contains a space. For example:

Set ?text "%fullname"
MessageBox "%mail"
For more information about application definition elements and symbol usage refer to Chapter 3,
“Managing Application Definitions,” on page 25.

4.1.3 Stored Variables
Stored variables are the most common style of variable used in application definitions and
Predefined Applications. They are preceded with a dollar symbol ($). Use these variables to store the
values used during the login process, such as usernames, passwords and any other details that are
required.

This section contains the following information:

 “Storing the Variables” on page 36
 “Using Stored Variables” on page 36

Storing the Variables
The values of these variables are stored in the directory under the user object. They are encrypted so
that only the user can access them. You can store variables separately for each application definition
and predefined application, so the username variable for one application can be different from the
username variable for another application. It is, however, possible to set an application to read
variables from another application's application definition and predefined application. This is useful
for applications that share user accounts or passwords.

For more information, see Section 6.2.81, “SetPlat,” on page 150.

Using Stored Variables
If a stored variable is referenced in an application definition and predefined application, and there is
no value stored for that variable (for example, the first time the program is run), SecureLogin
prompts the user to enter a value for the variable. This is an automatic process. It is also possible to
manually trigger this process to prompt a user to enter new values for particular variables.

For more information, see Section 6.2.22, “DisplayVariables,” on page 77 and Section 6.2.9,
“ChangePassword,” on page 64.

NOTE: If you want to hide a variable from an administrator by displaying it as asterix (****) instead
of clear text, begin the variable name with $Password. For example, the $PasswordPIN variable is
protected as described, however, $PIN is not.
36 Application definition variables

Example of stored variables in use:

Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1

4.1.4 Runtime Variables
Runtime variables are generally used for storage of calculations, processing data, and date
information. You can also use them for temporary passwords and usernames.

Runtime variables are preceded by the question mark symbol (?). They have two modes:

 Normal runtime variables are reset each time SecureLogin is started.
 Local runtime variables are reset each time the application definition and predefined

application is started.

Runtime variables are Normal by default. For more information about how to switch a runtime
variable to Local mode, see Section 6.2.46, “Local,” on page 100.

Using Runtime Variables
Runtime variables are not stored in the directory or the SecureLogin cache; they are used straight
from the computer's memory. For this reason, it is important not to use runtime variables for the
storage of usernames, passwords, or other details SecureLogin will need to access in the future.

If runtime variables are used for such details, the user is prompted to enter them each time the
application definition or predefined application is run, or each time SecureLogin is restarted. Users
are not prompted for ?variables that have no value. These variables are given the value
<NOTSET>.

Example of a Runtime Variable
Dialog
Class #32770
Title "ERROR"
EndDialog
Local?ErrorCount
Increment?ErrorCount
If?ErrorCount Eq "2"
MessageBox "This is the second time you have received this error. Would you like to
reset the application?" -YesNo ?Result
If ?Result Eq "Yes"
 "App.exe"
 Run "C:\App\App.exe"
Else
 Set?ErrorCount "0"
 EndIf
EndIf
Application definition variables 37

4.2 SecureLogin Supported Variables
SecureLogin reads details from the system and uses them to create variables that you can
incorporate into the application definition. These variables are automatically generated as runtime
variables and used in the same manner within any application definition.

Variable Description

?BrowserType(system) Contains Internet Explorer and indicates the browser on which the
application definition is running.

This variable is only set in a Web application definition.

?CurrTime(system) Contains the running time in seconds from Jan 1970 to the present.
Use this variable to force password changes every X days, or similar.

Do not use the application definition to force a password change if
you want to continue the application generating the change
password event. This is recommended.

Use this variable on applications where you cannot set a password
expiry at the application back end.

?DSVariable(system) SecureLogin traps the DataStoreVariableNotAvailable
exception and stores the name of the variable, which resulted the
exception, in a built-in variable called ?DSVariable. This helps in
tracing errors that occurs while trying to read a directory attribute.

?SysContext(system) Contains the context within which the current SecureLogin user's
directory object exists.

?SysPassword(system) Contains the directory password of the user currently using
SecureLogin.

This variable is only available if the appropriate options are chosen
when installing SecureLogin.

?SysServer(system) Contains the name of the server or the IP address of the server that
was entered in the Novell client login panel.

NOTE: This variable is only available if the Novell client login
extension is installed (eDirectory) and is not available if the MS
Active Directory or ADAM option has been installed.

?SysTree(system) The name of the directory tree that the SecureLogin is currently
using.

NOTE: The variable ?SysTree will return the Domain name when
using Microsoft GINA (Microsoft Active Directory or ADAM)/
Credential Provider and the Tree name or Port Number when using
Novell GINA or LDAP installation.

?SysTSLaunched (system) Contains the condition state value when SLLauncher is run.

This variable is set to "True" when a script is being executed by
SLLauncher. Otherwise it will be "<NOTSET>".

?SysUser(system) The name of the user currently using SecureLogin.
38 Application definition variables

4.3 Application Definition Best Practices
The following are some of the best practice rules to follow when creating an application definition.
These rules make reading the application definition easier and also help if you need to make
modifications in the future.

4.3.1 Symbols Used

Table 4-1 Description of Symbols

4.3.2 Blank Line Between Sections

NOTE: Always place the title after all other commands in the dialog block.

?sysInstallDir(Tray) Location of the tray or any other SecureLogin application.

?sysTrayHWND System tray window handle.

?sysProductVersion(os) Version of the operating system.

?sysProductVersion(app) Version of the application on which the script is running.

?sysProductVersion(work
er)

Version of the process (worker) running for the application.

?sysProductVersion(some
app.exe)

Version of some other application in the NetIQ SecureLogin folder.

?sysFileVersion(app) Version including the patch number or the hotfix number of the
application on which the script is running.

?sysFileVersion(worker) Version including the patch number or the hotfix number of the
process (worker) running on the selected application.

?sysPlatform(os) Architecture of the operating system.

?sysPlatform(worker) Architecture of the process (worker) that runs for the selected
application.

Variable Description

Symbol Description

< > Angle brackets represent an item.

For example, text, variable, or value.

[] Square brackets represent an optional item.

If an item is not marked with square brackets, it is a compulsory item.

Indicates a line break
Application definition variables 39

Leave a blank line between sections, for example, between the dialog block and the rest of the
application definition.

4.3.3 Capitalization
Use capitalization where applicable.

Table 4-2 Capitalization

4.3.4 Comments
Use comments throughout to explain what each section does and how it does it.

4.3.5 Indent Section
Indent sections between pairs of commands, for example Dialog, Repeat, and If. Use an indent
of three spaces.

Instead of Use

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002 Click #1

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog

Type $Username #1001
Type $Password #1002
Click #1

Instead of... Use...

messagebox "some text" -yesno ?result MessageBox "Some text" -YesNo ?Result.

Instead of... Use...

Dialog
 Class #32770
 Title
"Log on" EndDialog

Written by B. Smith 2004, modified C. Silvagni
2006
Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

Instead of... Use...

If -Text "Some text"
#Do thisElse
#Do This
EndIf

If -Text "Some text"
 #Do thisElse
 #Do this
EndIf
40 Application definition variables

4.3.6 Password Policy Names
Password policy names must represent the program they are used for. Do not use numerical names.

4.3.7 Quotation Marks
Always use quotation marks around segments of text in commands.

4.3.8 Regular Expressions
Regular expressions are text patterns normally used for string matching. Regular expressions might
contain a mix of plain text and special characters to indicate the kind of matching to be done.

For example, if you are searching for any numeric character, then the regular expression that you use
for the search is, “[0-9]”.

The square [] brackets indicate that the character that is compared must match any one of the
characters enclosed with in the brackets. The dash (-) between the zero (0) and nine (9) indicates
that the range is between the number zero and nine.

If you need search for a special character, then you must use the backslash (\) before the special
character.

If your regular expression does not match any controls on a particular application screen,
SecureLogin will prompt you to check your regular expression and ensure the correct control is
selected. Special characters in your regular expression might need to be escaped.

The following table briefly describes the characters that can be used in regular expressions within
SecureLogin application definitions, in particular the RegSplit command detailed in RegSplit.

Instead of... Use...

PasswordPolicy3 GroupwisePasswordPolicy

Instead of... Use...

Type TextOrIf -Text Login Type "Text"OrIf -Text "Log on"

Character Description

\ (Backslash) The \ is an escape character indicating that the next character must be used as a
regular search character and not as a special character.

For example, the regular expression “\” matches a single asterisk and the expression
“\\” matches a single backslash.

^ (Caret) The ^ is an anchor. If you use the ^ preceding any character, it searches the
beginning character of any string.

For example, the expression “A^” matches an “A” only at the beginning of the string.
Application definition variables 41

Capture Groups
If you are using the regular expressions to extract information rather than just match the text, use
capture groups. You can use a captur egroup when using regular expressions to select credentials to
be used based on a particular option from a common dialog box. For example, the name or IP
address of a particular server to which you want to connect. In such a scenario, SecureLogin uses the
capture group to make a unique name for a credential set and allows users to have different
credentials for different servers.

For example, if a message indicating Welcome Kerry to the Corporate server is displayed,
then Kerry is the name of the user and Corporate is the name of the server. If you want to match just
the text, Welcome .+ to the .+ server. If you want to use the server name as the name of the
credential set, so that you can create other credential sets for other servers, add a capture group to
the same regular expression and get Welcome .+ to the (.+) server.

For more information about regular expressions and usage, see the Boost website.

NetIQ uses the Boost regular expression library (in Perl) when developing SecureLogin. While other
reference sites provide detailed and comprehensive information about regular expressions, only the
expressions listed in the tables are supported by NetIQ.

[^ (Square bracket
and Caret)

The ^ immediately following [, is used to exclude the characters within the square
brackets from matching the target string.

For example, the expression “[^0-9]” specifies that the target character must not be
a numeral.

$ (Dollar sign) The $ is an anchor. The $ matches the end of the string.

For example, the expression “abc$” matches the substring “abc” only if it is at the
end of the string.

| (Vertical bar or pipe) The | allows the character on either side of the vertical bar (or pipe) to match the
target string.

For example, the expression “a|b” matches a as well as b.

. (Period or full stop) The . matches any character.

* (Asterisk) The * indicates that the character to the left of the asterisk in the expression must
match at least zero or more times.

+ (Plus sign) The + indicates that the character to the left of the plus symbol in the expression
must match at least once.

? (Question mark) The ? indicates that the character to the left of the question mark must match at
least zero or more than once.

() (Parentheses) The () enclosing a set of characters affects the order of pattern evaluation and also
serves as a tagged expression that can be used when replacing the matched
substring with another expression.

[] (Square brackets) The [] enclosing a set of characters indicates that any of the enclosed characters
might match the target character.

Character Description
42 Application definition variables

http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html

4.3.9 Switches
Switches are placed directly after the command, for example, Type -Raw, If -Text.

Table 4-3 Switches

4.3.10 Variables
All variable names start with a capital letter.

Table 4-4 Variables

4.3.11 Writing Subroutine Sections
Write subroutine sections at the bottom of the application definition and not partway through.

The name of the subroutine should describe its function. Do not use a numeric name. The name
should follow the capitalization rule.

Wherever possible, use the Include command to create generic application definitions for
frequently used elements, for example password change procedures. For common processes within
the same application definition, use subroutines.

Instead of... Use...

Type $Username -Raw Type -Raw $Username

Instead of... Use...

Type $username Type $Username
Application definition variables 43

44 Application definition variables

5 5Support for Dynamic Controls

SecureLogin provides a flexible single sign-on solution by allowing user to choose what to do when
an application generates a message. The application definitions of SecureLogin provides full control
on the single sign-on environment. You can use application definition to interact with controls
present in a window and specify desired input. Controls are the UI elements that require user
interaction, these include text fields, radio button, check boxes etc. SecureLogin needs to identify
the controls correctly before performing single sign-on for any window. SecureLogin identifies the
controls using the control matching. To match the controls, in JavaSSO and DotNetSSO, SecureLogin
navigates through the window using Z-order and assigns control IDs in the increasing order that
allows writing/generating of the single sign-on scripts. In WinSSO, Z-order or the existing control IDs
are used to match the controls. When the window is opened next time, the application definition
matches the controls using the same Z-order or control IDs and verifies the controls. When a control
is successfully matched, SecureLogin provides single sign-on using scripts.

There are certain controls that do not appear at the same place in the window. It can breaks the
order that SecureLogin identified initially. It can be caused by hidden elements in the window or
addition of a new control. SecureLogin application definition commands and wizard can identify
these dynamic controls and provides single sign-on. These commands provide the following
capabilities:

 Using single Dialog/EndDialog matching script to provide single sign-on to windows that
changes order of controls. It uses the class, name, value or type attributes to identify the
dynamic controls.

 Provides better control match when using WinSSO, JavaSSO and DotnetSSO workers.
 MatchElement and MatchOption are the dialog specifier commands that are used with other

commands to interact with new attributes and achieve desired single sign-on scripts. For
example, ReadInput command can be used to define an action in the script after reading an
input from user.

Make a note of the following points when you use the MatchElement command:

1. The command selectors must be specified at the beginning of the command. For example,
MatchElement #<id>, here # is the selector. The MatchElement command supports
following selectors:

Selector Example Example Description

#ID MatchElement #login #10 Matching element using ID.

.Class MatchElement #login .10 Matching element using class.

:nth-of-type() MatchElement #login
:nth-of-type(10)

Matching the order.

Value MatchElement #login
value=10

Matching the element value.
Support for Dynamic Controls 45

2. The class matching, order matching and ID matching can be specified in any order. For example,
the following two commands are in different order but provides same result.

MatchElement #login EditBox#1001:nth-of-type(2).TEdit
MatchElement #login EditBox.TEdit#1001:nth-of-type(2)

3. You must specify type matching while using :nth-of-type. For example:

MatchElement #username EditBox:nth-of-type(2)
4. You must specify exact matching criteria. For example, in the command mentioned below, it will

match the first button available.

MatchElement #button Button
5. You must use Value and Visible at the end of the command.
6. The class names can contain special characters. For example, #, . (dot) or (space) etc. In such

scenarios, use \ to escape these special character, see the following example.

MatchElement #password
EditBox#textPassword.WindowsForms10\.EDIT\.app\.0\.259f9d2

7. Following are the examples for common dynamic controls using MatchElement.
Combobox or Listbox:
 MatchElement #Combo ComboBox#cmbServer
MatchOption #Combo:1 -text "Server5"
SelectOption #Combo -clear
SelectOption #Combo:1 -select "true"
Editbox:
 MatchElement #username "EditBox#textUsername"
TextInput #N07F3E088N0087A1B8 "DemoUser"
Button:
 MatchElement #login "Button#btnLogin"
ClickInput #login
CheckBox or RadioButton:
 MatchElement #remember "CheckBox#checkRemember"
BooleanInput #remember "checked"

Visible MatchElement #login
[value='Login']
[visible=true]

Matching the element visibility.

 (space) MatchElement #ID
<parent> <child>

Matching the child element of a parent element. You
can apply any match on both parent and child
elements.

-optional MatchElement #combo
ComboBox -optional

Allows optional matching of elements. It allows
script execution even when the control does not
match.

Selector Example Example Description
46 Support for Dynamic Controls

Use the following set of commands for dynamic controls to achieve a more flexible single sign-on
solution.

1. “MatchElement” on page 102
2. “MatchOption” on page 108
3. “SelectOption” on page 144
4. “ReadInput” on page 127
5. “BooleanInput” on page 61
6. “ClickInput” on page 72
7. “TextInput” on page 167
Support for Dynamic Controls 47

48 Support for Dynamic Controls

6 6Command Reference

In this Chapter

 Command Reference Conventions
 Commands

6.1 Command Reference Conventions
This section consists of descriptions and examples of the commands that make up SecureLogin
application definitions.

An index is included in Chapter 2, “Application Definition Command Quick Reference,” on page 13.

In this Section

 Command Information
 Web Wizard Application Definition Conventions
 Auditing
 One Time Passwords

6.1.1 Command Information
The information for each of the commands includes:

 “Use With values” on page 49
 “Type Values” on page 50

Use With values

Command Description

Java Use as part of a Java* application definition.

Startup Use as part of a startup.

Terminal Launcher Use as part of a terminal launcher application definition.

Advanced Web Use as part of a manually created website or Internet application definition. Not
compatible with the Web Wizard application definition language.

NOTE: A predefined Web application and an Advanced Web application definition are
the same.
Command Reference 49

Type Values

6.1.2 Web Wizard Application Definition Conventions
The SecureLogin advanced Web Wizard makes it easier for users to enable single sign-on (SSO)
websites and capture a user’s web-based login details. When the user accesses a web page from the
browser, SecureLogin automatically launches the Web Wizard.

The Web Wizard captures the user’s login details and adds them to the user’s web application
definitions.

When managing users’ web login credentials, the Definition tab of the Advanced Setting page allows
you to customize site and user credential details. Also, an Advanced function is available under the
Definitions tab that provides more functionalities with their associated values and an option to
convert the user’s credentials to an application definition.

For information about how to manage application definitions, see Managing Application Definitions.

Web Wizard Use as part of application definitions created automatically by the Web Wizard. Web
Wizard application definitions can be kept in their original XML format or converted to
an ASCII script for advanced editing.

Windows Use as part of a Windows application definition.

Command Description

Action Performs an action, for example, the Type command types information into a field.

Dialog specifiers Defines dialog boxes, for example, the Parent and Class commands.

Flow control
commands

Directs SecureLogin to a specific location in the application definition, for example,
Repeat and EndScript commands.

Variable manipulators Modifies variables, such as the Add and Subtract commands.

Command Description
50 Command Reference

Site Matching
Web commands are added to allow much finer control of site matching. Detailed information of the
loaded website can be matched and used to execute blocks of scripting commands. The technique
used to specify constraints upon a site match are similar to those constraints used in the windows
scripting.

Instead of Dialog/EndDialog commands, equivalent Site/EndSite commands have been
created and can now be used. Within these Site blocks, Match commands can be used to filter a
given site. If one of the specified match commands fails to match, the site block fails to match as a
whole. See Site/Endsite.

Form/Field/Option Matching
When matching a specific form, field, or other match option, multiple items match the selection
criteria. In these cases, the first item on the website which matches is considered to be the match. To
access other fields that also need to be matched, subsequent match commands can be added with
the same selection criteria.

NOTE: Matched items might only be matched once. Each ID must be unique and cannot have been
used previously.

For example, the following will match a site with two password fields. The first is given the ID '#1:1'
and the second is given the ID '#1:2'.

MatchField #1:1 -type "password"
MatchField #1:2 -type "password"

Form/Field/Option ID
When matching a site, match methods are used to give specific fields, forms and options their own
unique ID. When the site has been successfully matched, the given ID is used in input commands to
specify particular items.

The actual IDs are denoted with a # followed by 1, 2 or 3 numbers, each separated by a colon – for
instance, "#1:3:2".

6.1.3 Auditing
For auditing, use the AuditEvent command built into SecureLogin or the LogEvent command
from the Windows Resource Kit. See the SecureLogin Administration Guide. See AuditEvent.
Command Reference 51

6.1.4 One Time Passwords
The use of multiple passwords places a high maintenance overhead on large enterprises. Users are
required to manage multiple passwords, which can result in a significant cost, particularly with
regard to calls to the help desk to reset forgotten passwords, or to ensure that all passwords are
provisioned when a new user starts or are deleted when an existing user leaves the organization.

One of the benefits of implementing one time password (OTP) systems is that it is impossible for a
password to be captured on the wire and replayed to the server. This is particularly important if a
system does not encrypt the password went it is sent to the server, as is the case with many legacy
mainframe systems.

OTP also offers advantages in terms of disaster recovery because the encryption key is used to
generate OTP rarely changes. System restoration, which might be to a system version that is hours or
many months old, can be achieved without consideration of restoring users' passwords or notifying
staff of new passwords.

SecureLogin provides a secure, robust and scalable infrastructure by integrating ActivCard* OTP
authentication functionality. See GenerateOTP.

6.2 Commands
 AAVerify
 Add
 Attribute
 AuditEvent
 BeginSplashScreen/EndSplashScreen
 BooleanInput
 Break
 Call
 ChangePassword
 Class
 ClearPlat
 ClearSite
 Click
 ClickElement
 ClickInput
 ConvertTime
 Ctrl
 DebugPrint
 Decrement
 Delay
 Dialog/EndDialog
 DisplayVariables
52 Command Reference

 Divide
 DumpPage
 EndScript
 Event/Event Specifiers
 FocusInput
 GenerateOTP
 GetCheckBoxState
 GetCommandLine
 GetEnv
 GetHandle
 GetIni
 GetMD5
 GetReg
 GetDirectoryStatus
 GetSessionName
 GetText
 GetURL
 GoToURL
 Highlight
 If/Else/EndIf
 Include
 Increment
 KillApp
 Local
 MatchDomain
 MatchElement
 MatchField
 MatchForm
 MatchOption
 MatchReferer
 MatchRegex
 MatchTitle
 MatchURL
 MessageBox
 Multiply
 OnException/ClearException
 Parent/EndParent
 PickListAdd
Command Reference 53

 PickListDisplay
 PositionCharacter
 PressInput
 ReadInput
 ReadText
 RegSplit
 ReLoadPlat
 Repeat/EndRepeat
 RestrictVariable
 Run
 RunEX
 Select
 SelectListBoxItem
 SelectOption
 SendEvent
 SendKey
 Set
 SetCheckBox
 SetCursor
 SetFocus
 SetPlat
 SetPrompt
 Site/Endsite
 -SiteDeparted
 StrCat
 StrLength
 StrLower
 StrLower
 StrReplace
 StrUpper
 Sub/EndSub
 Submit
 Substr
 SubstVar
 Subtract
 Tag/EndTag
 TextInput
 Title
54 Command Reference

 Type
 WaitForFocus
 WaitForText
 While/Endwhile

6.2.1 AAVerify
This section includes the commands that you can use in a script and the usage of the command.

Use with Startup, Terminal Launcher, Web or Windows

SecureLogin version 3.5 or later (arguments added in version 3.0)

Type Action

Usage AAVerify [-Method <Defined method to use>] [-User <Username>] [-Tree <Tree
name>] [?Result]

Arguments Method

The name of the advanced authentication method you wish to use. If not specified,
AAVerify uses the method that was chosen during initial authentication to the
directory.

NOTE: You can specify multiple methods.

User

The name of the user you wish to use for the AAVerify command. If not specified,
AAVerify re-authenticates the currently logged on user.

Tree

The name of the tree the user is in. You must use this with the User argument.

[?Result]

A variable name (preferably a temporary variable) that receives the result of the
AAVerify. Set this variable to true for success or false for failure.

?AAVerifyReturnCode

A variable that will get set with the error code that is generated from the AAVerify re-
authentication process (if any).
Command Reference 55

Description Use AAVerify with SecureLogin re-authentication, Novell Modular Authentication
Service (NMAS), or Novell Lightweight Directory Access Protocol (LDAP) to verify the
user. It is typically used before the application user name and password are retrieved
and entered into the login box.

This provides application re-authentication using a strong login method. For example, a
user might be forced to enter their smart card and PIN before the application will log
on using SSO, even though the application natively knows nothing about smartcard
and PIN. If the verification succeeds, the [?Result] is set to true, otherwise it is set to
false. These additions are for SecureLogin and NMAS.

SecureLogin re-authentication may use one of the following methods:

 Password – your directory password.
 Smart card – if the smart card option has been selected during installation.
 Logon method – SecureLogin prompts for the same credentials that were used to

log in for the current session.

You can specify more than one method arguments. A user is allowed to re-authenticate
with any of the specified methods. For example, you can use the command to request
authentication using a fingerprint reader or smart card.

NMAS or Novell LDAP-specific

The method should be the name of the sequence as defined in the environment.

If AAVerify is called with no arguments, then the currently logged in user is
re-authenticated using different login methods based on the following scenarios:

SecureLogin Is Installed with Advanced Authentication: Selecting the default re-
authentication method displays all available methods in the event. A user can choose
any method available in the event that the SecureLogin administrator has configured.

SecureLogin Is Installed without Advanced Authentication: Selecting the default re-
authentication method display only one method that the user used to log in to the
current session.

NOTE: When the AAVerify command is added to an application definition, it only
increases the security of the target application if it is not possible to alter the
application definition. If the application definition could be modified or overridden,
then the AAVerify command could be removed and there would be no additional
security. For this reason it is imperative that application definition access be restricted
through directory access controls and SecureLogin’s preferences, so that only a small,
trusted group of administrators can modify, add and override application definitions.

Syntax examples AAVerify
AAVerify -Method "Enhanced Password" ?Result
AAVerify -Method "Enhanced Password"-User "BSmith" - Tree "Production"
?Result
56 Command Reference

Example 1 Windows application definition

This example detects the login dialog box. Before SecureLogin enters credentials, it
prompts the user to provide the re-authentication credentials. The credentials are not
submitted until the re-authentication succeeds.

Logon Dialog Box
Dialog
 Title "Log on"
EndDialog
AAVerify -Method "Enhanced Password" ?Result
If ?Result Eq "True"
 Type $Username #1001
 Click #1
Else
 Click #2
 MessageBox "Authentication failed. Please verify your smart card is
inserted and your PIN is correct."
EndIf

Example 2 Windows application definition

The following example shows the use of exception handling with the OnExceptions
command. For more information, see OnException/ClearException.

Dialog
 Title "Log on"
EndDialog

OnException AAVerifyCancelled Call CancelSimpleLoginDialogCancelled
OnException AAVerifyFailed Call CancelSimpleLoginDialogFailed

AAVerify -method "smartcard"
Type $Username #1001
Click #1

Sub CancelSimpleLoginDialogCancelled
 Click #2
 EndScript
EndSub

Sub CancelSimpleLoginDialogFailed
 Click #2
 MessageBox "Your re-authentication failed. Log on cancelled"
 EndScript
EndSub
Command Reference 57

6.2.2 Add

Example 3 Windows application definition

The following example shows how to re-authenticate against the user's login method:

Dialog
 Title "Log on"
EndDialog

OnException AAVerifyFailed Call AAVerifyFailed
OnException AAVerifyCancelled Call AAVerifyCancelled

If ?isPin Eq "true"
 AAVerify -method "smartcard" ?result
Else
 AAVerify -method "password" ?result
EndIf

ClearException AAVerifyFailed
ClearException AAVerifyCancelled

Type $username
Type \n
Type $password
Type \n

Sub AAVerifyFailed
 Click #2
 MessageBox "Re-authentication failed."
 EndScript
EndSub

Sub AAVerifyCancelled
 Click #2
 EndScript
EndSub

Used with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.0 or later

Type Variable manipulator

Usage Add <Variable1> <Variable2> [?Result]

Arguments <Variable1>

The first argument, the number to which the second argument will be added. This
argument will also contain the result of the addition equation if the optional [?Result]
argument is not passed in. If used without the [?Result] argument, <Variable1> must be
a SecureLogin variable. Otherwise, <Variable1> can be any numeric value.

<Variable2>

The second argument, the number added to the first argument in the equation.
<Variable2> can be a SecureLogin variable or numeric value.

[?Result]

Optional, the sum or result of the equation.
58 Command Reference

6.2.3 Attribute

6.2.4 AuditEvent

Description Adds one number to another. The numbers can be written into the application
definition or they can be variables. The result can be output to another variable or to
one of the original numbers.

Syntax examples Add 1 2 ?Result
Add ?LoginAttempts ?LoginFailures
Add ?LoginAttempts ?LoginFailures ?Result
Add ?LoginAttempts 3
Add ?LoginAttempts 3 ?Result

Example Windows application definition

This example reads the values of control IDs 103 and 104 into variables. From there
they are added, and the result is typed into control ID 1

ReadText #103 ?Number1
ReadText #104 ?Number2
Add ?Number1 ?Number2 ?Result
Type ?Result #1

Use with Advanced Web application definition

SecureLogin version 3.5 or later

Type Specifier

Usage Attribute <Attribute Name> <Attribute Name>

Arguments < Attribute Name>

Name of the HTML attribute to discover.

< Attribute Value>

The value the above HTML attribute must contain for the condition to be true.

Description Use the Attribute specifier in conjunction with the Tag/EndTag command to
specify which HTML attributes and attribute values must exist for that particular
HTML tag.

For more information, see Section 6.2.96, “Tag/EndTag,” on page 167.

Example This example finds the form that has an attribute of Name with a value of Logon.

Tag "Form"
Attribute "Name" "Logon"
EndTag

Use with Startup, Terminal Launcher, Java, Web, or Windows application definitions to send
an audit event to the Windows Event Log.

SecureLogin version 6.0 or later
Command Reference 59

6.2.5 BeginSplashScreen/EndSplashScreen

Type Specifier

Usage AuditEvent [<message>]

Arguments <message>

The variable or text string passed to the Windows Event Log.

NOTE: The functionality to send the contents of $variable or ?variable to
the Windows Event Log is only supported in SecureLogin 6.1SP1 or later

Description Use AuditEvent to log SecureLogin events to the Windows Event Log.

If the ChangePassword command is used to generate a $password variable,
then a log entry is sent to the Windows Event Log.

Example If the Audit platform agent is not present on the workstation nothing will be
logged.

AuditEvent "message"
The parameter “message” is passed to the Windows Event Log.

AuditEvent $message
The parameter $message variable is passed to the Windows Event Log.

Use with Terminal Launcher (Generic and Advanced Generic only)

SecureLogin version 3.0.4 or later

Type Action

Usage BeginSplashScreen

EndSplashScreen

Arguments None

Description Use to display splash screen across the whole Terminal Emulator window. This is
used to mask any flickering caused by SecureLogin scraping the screen for text.

A Delay command at the start of the application definition ensures the emulator
window is in place before the splash screen is displayed.

Example Terminal Launcher application definition

This example launches the emulator and the SecureLogin waits 2 seconds for it to
connect. The splash screen is displayed to cover the flickering, the login field is
detected, the user name is entered, then the splash screen disappears.

Delay 2000
BeginSplashScreen
WaitForText "Login:"
Type $Username
EndSplashScreen
Type @E
60 Command Reference

6.2.6 BooleanInput

6.2.7 Break

Use with Advanced application definitions created using the Web Wizard, WinSSO, JavaSSO
and .NetSSO workers.

IMPORTANT: Use BooleanInput with MatchElement when using for WinSSO,
JavaSSO and .NetSSO workers.

SecureLogin version 3.5.x or later

8.7 or later for the WinSSO, JavaSSO and .NetSSO workers.

Type Action

Usage for web BooleanInput #FormID:FieldID check "check"

Usage for the WinSSO,
JavaSSO and .NetSSO
workers

BooleanInput #ElementID "checked"

BooleanInput #ElementID "unchecked"

Arguments #FormID:FieldID

The ID that was given to the matched field in the Site block using MatchField
command. The FormID and FieldID must be unsigned integers.

check "check"

"check" is a Boolean value indicating a set or unset state for the specified field.

Description Used inside a Site block to set the state of a Boolean field (either a check box or
radio button).

Example In this example the value of field #1:3 is being checked by the application
definition.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site Login -userid "Google Logon" -initial
MatchDoimain "www.google.com"
MatchField #1:1 -name "Email" -type "text"
MatchField #1:2 -name "Passwd" -type "password"
MatchField #1:3 -name "Cookie" -type "check"
EndSite
SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput#1:2 -focus "true"
BooleanInput #1:3 -check "false"
PressInput
Endscript

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.5 or later

Type Action
Command Reference 61

Usage Break

Arguments None

Description Use Break within the Repeat/EndRepeat commands to break out of a repeat loop.

Example 1 Windows application definition

This example reads the screen and the content is searched for the words ‘log on’. If
log on is found, the Repeat loop is broken and the application definition continues.
If log on is not found, the application definition will check again.

Dialog
 Class #32770
 Title "Log on"
EndDialog
Repeat
 ReadText #301 "?Text"
 If ?Text Eq "Log on"
 Break
 EndIf
Delay 100
EndRepeat

Example 2 Terminal application definition

This example reads the terminal emulator screen and the content is searched for a
successful log on (in this case the application main menu appears). When a user
has logged in, the Repeat loop is broken and the application definition continues. If
the log on is not successful, the application definition checks again. Terminal
emulators use repeat loops for error handling and to break the loop as appropriate.

Initial System Login
WaitForText "ogin:"
Type $Username
Type @E
WaitForText "assword:
"Type $Password
Type @E
Delay 500
Repeat loop for error handling
Repeat
Check to see if password has expired
If -Text "EMS: The password has expired."
 ChangePassword $Password
 Type $Password
 Type @E
 Type $Password
 Type @E
EndIf
#User has an invalid Username and / or Password stored.
 If -Text "Log on Failed" DisplayVariables "The username and /
or password stored by SecureLogin is invalid. Please verify your
credentials and try again. IT x453."
 Type $Username
 Type @E
 Delay 500
 WaitForText "assword:"
 Type $Password
 Type @E
 Delay 500
 EndIf#
62 Command Reference

6.2.8 Call

Account is locked for some reason, possibly inactive.
If -Text "Account Locked" MessageBox "Your account has been locked,
possibly due to inactivity for 40 days. Please contact the
administrator on x453." EndIf # Main Menu, user has logged on
#successfully. If -Text "Application Selection" Break
EndIf
Delay100
EndRepeat

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.5 or later

Type Flow control

Usage Call <SubRoutine>

Arguments <SubRoutine>

The name of the subroutine called. This must be identical to the name given in the
Sub command.

Description Use the Call command to call and run a subroutine. When a subroutine is called,
the application definition begins executing from the first line of the subroutine.
When it is completed, the application definition resumes executing from the
command immediately following the Call command.

Subroutines are useful when you would otherwise have to repeat the same lines of
application definition over again.

Example Terminal application definition

This example looks for the word Username, if it is found on the screen the
subroutine Log on is launched. If Wrong Password is found, the subroutine
WrongPassword is launched.

Repeat
If -Text "Username"
 Call "Login"
EndIf
If -Text "Wrong Password"
 Call "WrongPassword"
EndIf
EndRepeat
#==Login Subroutine==
Sub Login
 Type $Username
 Type @E
 Type $Password
 Type @E
EndSub
#==Wrong Password Subroutine==
Sub WrongPassword
 DisplayVariables "The password entered is incorrect. Please check
your password and click OK to try again. IT x4532."
 $Password
 Call Login
EndSub
Command Reference 63

6.2.9 ChangePassword

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.5 or later

Type Action

Usage ChangePassword <Variable> [<Text>] "Random"

Arguments <Variable>

A normal or runtime variable in which the password is stored.

[Text]

The text you want displayed in the change password dialog box.

[Random]

Random will invoke the random password generator.

Description Use ChangePassword to change a single variable in scenarios where password
expiry is an issue. Set the <Variable> to the new password.

The flag for this command is Random.

If Random is:

 Set, the new password is generated automatically in compliance with the
variable's password policy.

 Not set, the user is prompted to enter a new password. The new password is
tried against any variable password policies that are in place. See
Section 6.2.69, “RestrictVariable,” on page 137.

Syntax examples ChangePassword $NewPassword
ChangePassword ?NewPassword "Please enter a new password"
ChangePassword ?NewPassword Random
64 Command Reference

6.2.10 Class

Example Windows application definition

This example detects the change password event. The application requires the
current user name and password, and then a new password and confirmation of
the new password. The application definition creates a backup of the old password
in case the password change fails (which is detected by the message that is
displayed), and then generates and enters a new password.

Change Password Dialog
BoxDialog
Class #32770
Title "Change Password"
EndDialog
Set $PasswordBackup $Password
Type $Password #1015
ChangePassword $Password Random
Type $Password #1005
Type $Password #1006
Click #1#
Change Password Failed Dialog Box
Dialog
Class #32770
Title "Change Password Failed"
EndDialog
Set the password back as the password change failed
$Password $PasswordBackup
MessageBox "The change password process failed. Please retry the
password change at your next log on. IT x453."

Use with Startup, Windows

SecureLogin version 3.5 or later

Type Dialog specifier

Usage Class <Window-Class>

Arguments <Window-Class>

A string specifying the window class that this statement will match.

Description When a window is created, it is based on a template known as a window class. The
Class command checks to see if the class of the newly created window matches its
<Window-Class> argument.

If the window:

 Matches the <Window-Class> argument, the application definition continues to
the next line.

 Does not match the <Window-Class> argument, execution continues at the next
dialog statement.

NOTE: Use the Window Finder tool to determine the window class.
Command Reference 65

6.2.11 ClearPlat
For each dialog block in an application definition, the chosen user ID is reset and you must select it
again. Select it again by using a SetPlat command or by having the user select again from a list.

When an application first presents a login screen, SecureLogin directs the user to select an
appropriate user ID from a list. SecureLogin enters the selected user ID's credentials into the
application and submits them.

Resolving issue of re-entering user ID details
If the login fails due to incorrect credentials, SecureLogin prompts the user to change the
credentials. SecureLogin does not retain user ID details and prompts the user to re-enter them.
However, this could result in changing the wrong credentials if the user selects the incorrect user ID.

To resolve this issue, use the SetPlat, ReLoadPlat and ClearPlat commands. ReloadPlat sets the
current user ID to the one which was last chosen (for the given application) or leaves the user ID
unset if a user ID has not been selected previously. ClearPlat resets the last chosen user ID.

See Section 6.2.67, “ReLoadPlat,” on page 133 and Section 6.2.81, “SetPlat,” on page 150.

Example Windows application definition

This example checks the dialog box generated by the application to determine if the
Window Class is #32770. If true and its title is log on, that section of the application
definition will execute. If false, the application definition checks the next Dialog block.

Logon Dialog Box
Dialog
Class "#32770"
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.6.0 or later

Type Action

Usage The following are the places where code needs to be added to use ClearPlat:

Application startup When an application first starts up, use ClearPlat to clear the
previously chosen platform. (Do this in a Windows application by adding an extra
dialog statement for the main window.)

Change Credentials Canceled Call ClearPlat if the user decides not to modify the
chosen platform's credentials, thus giving them a chance to choose a different
platform next time.

Successful Logon Call ClearPlat to allow the user to log on again with a different
platform at a later stage.

Arguments None
66 Command Reference

6.2.12 ClearSite

Description Use to reset the last chosen platform, causing subsequent calls to ReLoadPlat to do
nothing.

Example Windows application definition

#== BeginSection: Application startup ====
Dialog
Class "#32770"
Title "Password Test Application"
EndDialog
ClearPlat
== EndSection: Application startup====
==== BeginSection: Log on ====
Dialog
Class "#32770"
Ctrl #1001
Title "Log on"
EndDialog
ReLoadPlat
SetPrompt "Username =====>"
Type $Username #1001
SetPrompt "Password =====>"
Type $Password #1002
SetPrompt "Domain =====>
"Type $Domain #1003
Click #1
==== EndSection: Log on ====

====BeginSection: Log on successful ====
Dialog
Class "#32770"
Title "Log on successful"
EndDialog
ClearPlat

Example (continued) Click #2
==== EndSection: Log on successful ====

==== BeginSection: Log on failure ====
Dialog
Class "#32770"
Title "Log on failure"
EndDialog
Click #2
ReLoadPlat
OnException ChangePasswordCancelled Call
ChangeCancelled
ChangePassword $password
ClearException ChangePasswordCancelled
Type -raw \Alt+F
Type -raw L
==== EndSection: Log on Failure ====
==== BeginSection: Change Credentials Cancelled ====
Sub ChangeCancelled
ClearPlat
EndScript
EndSub
==== EndSection: Change Credentials
Canceled ===

Use with Web Wizard

SecureLogin version 6.0 or later
Command Reference 67

6.2.13 Click

Type Action

Usage ClearSite "SiteName"

Arguments "SiteName"

The name of the site to clear, as specified in the matching Site/EndSite block that
will be reset to initial.

Description Used to clear the 'matched' status for a given site. This allows initial sites to match
again and causes recent and subsequent sites to fail to match.

The ClearSite command needs to have the complete URL specified in the line
before the ClearSite command.

Examples In this example, the user is redirected to the Google home page and any previous
user information is cleared.

GotoURL "http://www.google.com"
ClearSite Login

In this example, the ClearSite command is used with as part of conditional
statement and if a particular condition is true the user information is cleared.

Site "Login" –subsequent

MatchURL "here.now.com"

endsite

MessageBox "Would you like to login again?" -yesno ?Continue

If ?Continue eq "Yes"

 Call LoginSub

Else

 ClearSite Login

EndIf

Use with Web, WinSSO, JavaSSO and .NetSSO workers.

SecureLogin version 3.5 or later

Type Action

Windows usage Usage One: Click <#Ctrl-ID> [-Raw] [-Right] Usage Two: Click <# Ctrl-ID > [-Raw [-x < X
Co-ordinate > -y <Y Co-ordinate >]] Usage Three: Click [-order] <#Order-ID>

Web usage Click <#Number>
68 Command Reference

Arguments <#Ctrl-ID>

The ID number of the control to be pressed.

[-order]

If the control ID's are not constant, utilize the -order argument to instruct SecureLogin
to type into a control based on the creation order and not the tab order. For more
information about the -order argument usage, see “Example 4” on page 174.

<#Order-ID>

For Windows application definitions, this parameter specifies which control based on
the creation order in which to type the text.

[-Raw]

-Raw eliminates the mouse and sends a direct click.

[-Right]

-Right, used only with the -Raw flag, will send a right mouse click.

<X Co-ordinate>

X represents the horizontal co-ordinate relative to the client area of the application
(not the screen).

<Y Co-ordinate>

Y represents the vertical coordinate relative to the client area of the application (not
the screen).

<#Number>

The pound/hash symbol followed by the sequential number/control ID of the button to
be pressed.

Web specific

The number of the button is determined by the web page layout. See DumpPage.

Windows specific

This is the control ID. Use the Windows Finder tool to discover the control ID.

Java specific

The index to use is put in an example application definition created by the Java wizard.
Command Reference 69

Description When used with Windows applications, the Click command sends a click instruction
to the specified <#Ctrl-ID>.

NOTE: If the button to be clicked does not have a control ID, the Type "\N" command
will often click the default button in a Windows application.

You can set the –Raw flag if the button or control does not respond to the Click
command. The –Raw flag causes SecureLogin to emulate the mouse and send a direct
click message to the control. Using the -Right flag with the -Raw flag sends a right-click
to the control.

Setting the <#Ctrl-ID> to 0 (zero) sends the click instruction to the window on which
the application definition is running.

If -Raw is specified, then you can set the X coordinate and the Y coordinates. These
coordinates are relative to the client area of the application, not the screen.

NOTE: The borders of Windows Vista windows are substantially wider than those of
Windows XP windows. If your application definition will be used on both operating
systems, use coordinates towards the top left of a Vista button or the bottom right of
an XP button to ensure the same button is clicked in both operating systems.

When used with web application definitions, the Click command takes a single
argument, which is the sequential number on the page of the button to be pressed.
Click #3 will click the third button on the page. Due to the web page layout and design,
the sequential order of the buttons may not be obvious, and you may have to use the
DumpPage command to discover the field layout (see DumpPage).

Syntax examples Click #1
Click #1 -Raw -Right
Click -X 12 -Y 24
Click -order #1

Example 1 Windows application definition

This example detects the login dialog box, the user name and password are entered,
and button number 1 (in this case the logon button) is clicked.

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1

Example 2 Web application definition

This example enters the user name and password, and then the logon button is clicked.

Type $Username
Type $Password Password
Click #1
70 Command Reference

6.2.14 ClickElement

Example 3 Windows application definition

This example uses the Java application, so there is no control ID. Instead, the Click
command is told to click a particular place on the window.

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
End Dialog
Type $Username
Type $Password
Click -X 12 -Y 24

Example 4 Windows application definition

This example shows the use of the -order switch and demonstrates a possible ‘order’
of the parameter.

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type #Password #1002
Click -order #1

Use with Web Wizard

SecureLogin version 8.6 or later

Type Action

Usage ClickElement #ElementID
Arguments #ElementID

User assigned ID number

Description Use this command to simulate clicking element in the webpage.

ClickElement is the only command that interacts with MatchElement. For more
information, see Section 6.2.48, “MatchElement,” on page 102.

Example This example uses the ClickElement command to click the item defined in
MatchElement command.

Site "Citrix Receiver" -initial
MatchElement #4 -selector "#loginBtn"
EndSite
ClickElement #4
Endscript
Command Reference 71

6.2.15 ClickInput

6.2.16 ConvertTime

Use with Advanced Web application definitions created using the Web Wizard.

IMPORTANT: Use ClickInput with MatchElement when using for WinSSO,
JavaSSO, and .NetSSO workers.

SecureLogin version 3.5.x or later

8.7 for the WinSSO, JavaSSO and .NetSSO workers.

Type Action

Usage for web ClickInput #FormID:FieldID
Usage for the
WinSSO, JavaSSO
and .NetSSO
workers

ClickInput #ElementID

Arguments <#FormID:FieldID>

The ID that is specified in the matched field in the Site block using MatchField
command. The FormID and FieldID must be unsigned integers.

Description Use this command to simulate pressing the Enter key.

Syntax examples ClickInput #1:3

Example This example uses the ClickInput command that simulates pressing the Sign In
button after the username and password fields are filled for the www.google.com
website.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site Login -userid "Google Log On" -initial
MatchForm #1 -name "log on"
MatchDomain "www.google.com"
MatchField #1:1 -name "Email" -type "text"
MatchField #1:2 -name "Passwd" -type "password"
MatchField #1:3 -name "Cookie" -type "check"
EndSite
SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput#1:2 -focus "true"
BooleanInput #1:3 -check "false"
ClickInput #1:4
Endscript

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.0.4 or later

Type Variable manipulator

Usage ConvertTime <Time> <String Time>
72 Command Reference

6.2.17 Ctrl

Arguments <String Time>

The output variable.

Description Use to convert a numeric time value, for example, ?CurrTime(system), into a legible
format and store it in <String Time>.

Example Windows application definition

This example converts the time to a readable format and displays it in a dialog box.

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
End Dialog
ConvertTime ?CurrTime(system) ?Time
MessageBox ?Time

Use with Startup, Windows, Java

SecureLogin version 3.5 or later

Type Dialog specifier

Usage Ctrl <#Ctrl-ID> [<Regular Expression>]

Arguments <#Ctrl-ID>

The ID number of the control to check.

[<RegEx>]

The regular expression.

Description Use the Ctrl command to determine if a window or its children (any descendants)
contains the control expressed in the <#Ctrl-ID> argument. The control ID number is a
constant that is established at the time a program is compiled.

Third party software control ID numbers may not be consistent from one version to the
next. Use the Window Finder tool to determine the control ID.

Using the [<RegEx>] argument adds a further check that allows the application
definition to skip to the next command. If the text on the specified <#Ctrl-ID> does not
conform to the [<RegEx>], the application definition will skip to the next dialog
statement as though the <#Ctrl-ID> did not exist.

Syntax examples Ctrl #1
Ctrl #1 "OK"
Command Reference 73

6.2.18 DebugPrint

Example Windows application definition

This example tests the dialog box to see if it contains the correct control IDs with the
correct values. If any of the control IDs are missing, or the text does not match, the
application definition passes on to the next dialog block.

Logon Dialog Box
Dialog
Ctrl #1 "OK"
Ctrl #2 "Cancel"
Ctrl #3 "Help"
Title "Log on"
EndDialog

Type $Username
Type "\T"
Click #1

Use with All

SecureLogin version 6.0 or later

Type Action

Usage DebugPrint <Data>

Arguments <Data>

The text displayed to the user.

Data can be several strings, variables, or a combination of both..

Description Use the DebugPrint command to display the text specified in the <Data> variable
on a Debug console. The command can take any number of text arguments, including
variables (for example, DebugPrint "The user " $Username " has just logged onto the
system").

Syntax examples DebugPrint "Caught the login dialog"
DebugPrint "Setting platform to " ?Platform

Example Windows application definition

This example displays the the text specified in the ?ServerName variable on the
Debug console.

Logon Dialog
Dialog
Class "#32770"
Title "Log on"
EndDialog
ReadText #1003 ?ServerText
RegSplit "Server: (.*)" ?ServerText ?ServerName
DebugPrint "Setting the platform to " ?ServerName
SetPlat ?ServerName
Type $Username #1001
Type $Password #1002
Click #1
74 Command Reference

6.2.19 Decrement

Use with All

SecureLogin version 3.5 or later

Type Variable manipulator

Usage Decrement <Variable>

Arguments <Variable>

The name of the variable to decrease in value.

Description Use the Decrement command to from a specified variable. For example, you can use
decrement to count the number of passes a particular application definition has made.

Once the number of instances is equal to the specified number, you can instruct the
application definition to run another task or end the application definition. This is
useful when configuring an application whose login panel is similar to other windows
within the application, or to easily control the number of attempts a user can have to
access an application.

Also see Section 6.2.44, “Increment,” on page 98

Syntax examples Decrement ?RunCount

Example Windows application definition

Each time the application definition is run, a variable is decremented. This example
counts the number of times the dialog box is dis-played. If the dialog box is displayed
more than three times, the application is closed. If the login is successful, the count is
reset.

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog

Decrement ?RunCount
If ?RunCount Gt "3"
MessageBox "Log on has been attempted too many times. The application
will be closed."
KillApp "app.exe"
Else
Type $Username #1001
Type $Password #1002
Click #1
EndIf

Logon Successful Message
Dialog
Ctrl #1
Title "Logon Successful"
EndDialog

Set ?RunCount "0"
Command Reference 75

6.2.20 Delay

6.2.21 Dialog/EndDialog

Use with All

SecureLogin version 3.5 or later

Type Action

Usage Delay <Time Period>

Arguments <Time Period>

A period of time, expressed in milliseconds (1/1000 of a second), during which
application definition execution is paused.

Description Use the Delay command to delay the execution of the application definition for the
time specified in the <Time Period> argument.

The time specified in the <Time Period> argument is noted in milliseconds (for
example, Delay 5000 creates a 5-second pause). You can use the Delay command to
accommodate an introduction screen or another custom feature.

Example Windows application definition

This example detects the login box, then the application definition waits half a second
before acting upon it to make sure that the box is complete.

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog

Delay 500
Type $Username #1001
Type $Password #1002
Click #1

Use with Java, Windows

SecureLogin version 3.5 or later

Type Dialog specifier

Usage Dialog/EndDialog

Arguments None
76 Command Reference

6.2.22 DisplayVariables

Description Use the Dialog/EndDialog command to identify the beginning and end of a dialog
specification block respectively. You can use these commands to construct a dialog
specification block, which consists of a series of dialog specification statements (for
example Ctrl, Title, and so on).

When a dialog block is executed, each of the dialog specification statements is
executed in sequence. If any statement within the dialog block is not found, the entire
dialog block is considered false, and the application definition execution proceeds to
the next dialog block, if any. You need to specify as much information in the dialog
block to make the dialog box (for example, Log on, Change Password, and so on)
unique.

The portion of the application definition that follows the EndDialog command is
called the application definition body. Another dialog block, or the end of the
application definition, terminates the application definition body.

Example Windows application definition

This example tests the dialog box in order to determine its identity. If it is determined
to be the login box, the application definition will parse the Type and Click commands
to complete the login process.

Logon Dialog Box
Dialog
Ctrl #1 "OK"
Title "Log on"
Parent
Title "Application 1"
EndParent
EndDialog

Type $Username #1001
Type $Password #1002

Click #1

Use with All

SecureLogin version 3.5 or later

Type Action

Usage DisplayVariables [<User Prompt>] [<Variable> [<Variable>] …]

Arguments [<User Prompt>]

Optional, customized text displayed in the Enter SecureLogin Variables dialog box.
This message can be defined in a runtime variable (see example 2).

[<Variables>]

The name of the variables for which you want the user prompted. If not specified,
SecureLogin will prompt for all variables that are used by the application definition.
Command Reference 77

Description Use the DisplayVariables command to display a dialog box that lists the user's
stored variables (for example, $Username and $Password) for the current application.

About editing variables The user can edit the variables from this dialog box. For
example, if the login process is unsuccessful due to an incorrect user name or
password, the DisplayVariables command prompts the user to edit the stored
user name or password values. The login process proceeds as normal from that point.
You can also specify a particular variable to display.

If the <Variables> parameter is specified, DisplayVariables prompts only for the
variables specified. Enter the replacement text in quotation marks after the
DisplayVariables command. This replaces the default prompt text in the Enter
SecureLogin Variables dialog box.

If there are no variables stored for a user, the first time SecureLogin attempts to SSO
to the application, the prompt will not be customized.

When variables are stored for a user, the prompt will be customized when the
application definition is run. The SetPrompt command can also be used to
customize the prompt text in the dialog box.

NOTE: You can use the OnException EnterVariablesCancelled command to
prevent a user from canceling the DisplayVariables prompt.

Syntax examples DisplayVariables
DisplayVariables "Please enter your details"
DisplayVariables "Please enter a new password" $Password
DisplayVariables "Please enter your username and password" $Username
$Password
DisplayVariables "" $Username $Password

Example 1 Windows application definition

This example detects the Wrong Password dialog box, and SecureLogin prompts the
user to enter a new user name and password. Once specified, SecureLogin enters
them into the dialog box, and the user clicks OK.

Wrong Password
Dialog Box
Dialog
Class #32770
Title "Wrong Password"
EndDialog
DisplayVariables "Enter a new username and password"?$Username $Password
Type $Username #1001
Type $Password #1002
Click #1

Example 2 Windows application definition

This examples passes the message in as a variable.

Dialog
Class "Notepad"
Title "Untitled - Notepad"
EndDialog
Set ?Vars "\$Username"
Set ?Msg "This is a DisplayVariables message"
DisplayVariables ?Vars
DisplayVariables ?Msg $Password
DisplayVariables "testing" ?Vars
DisplayVariables "testing" $Password $Username
78 Command Reference

6.2.23 Divide

6.2.24 DumpPage

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.0 or later

Type Variable manipulator

Usage Divide <Variable1> <Variable2> [?Result]

Arguments <Variable1>

The dividend, the first argument, the number that is divided by the second argument.
Also this argument contains the result if the optional [?Result] argument is not passed
in. If used without the [?Result] argument, <Variable1> must be a SecureLogin
variable, either?Variable1 or $Variable1. Otherwise <Variable1> can be any numeric
value.

<Variable2>

The divisor, the second argument, the number by which the first argument is divided.
<Variable2> can be a SecureLogin variable or a numeric value.

[?Result]Optional, the quotient, the result of the equation.

Description Use to divide one number by another. The numbers can be written into the
application definition or they can be variables. The result can be output to another
variable or to one of the original numbers.

NOTE: This is an integer arithmetic that is 5/2, not 2.5.

Syntax examples Divide "1" "2" ?Result
Divide ?LoginAttempts ?LoginFailures
Divide ?LoginAttempts ?LoginFailures ?Result
Divide ?LoginAttempts "3"
Divide ?LoginAttempts "3" ?Result

Example Windows application definition

This example read the values of control IDs 103 and 104 into variables. From there
they are divided,and typed into control ID 1.

ReadText #103 ?Number1
ReadText #104 ?Number2
Divide ?Number1 ?Number2 ?Result
Type ?Result #1

Use with Advanced Web application definition

SecureLogin version 3.5 or later

Type Action

Usage DumpPage <Variable>
Command Reference 79

6.2.25 EndScript

6.2.26 Event/Event Specifiers

Arguments <Variable>

The string variable to receive the page information.

Description Use the DumpPage command to provide information about the current Web page.
Use for debugging Web page application definitions.

Example DumpPage ?dump
MessageBox ?dump

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.5 or later

Type Action

Usage EndScript

Arguments None

Description Use the EndScript command to immediately terminate execution of the
application definition.

Example Windows application definition

This example detects the login box, then SecureLogin enters the user name and
password, and the user clicks OK. If the Incorrect Password message is detected,
SecureLogin displays a message that the password was incorrect, and terminates the
application definition.

Dialog
Title "Logon Failure"
Ctrl #1
EndDialog

ReadText #65535 ?ErrorMsg
If "Incorrect Password" -In ?ErrorMsg MessageBox "You have entered an
incorrect password"
EndScript
EndIf

Use with Windows

SecureLogin version 3.5 or later

Type Dialog specifier

Usage Event <Event Specifier>
80 Command Reference

6.2.27 FocusInput

Arguments <Event Specifier>

The application event to monitor. This corresponds to a Windows event, which usually
begins with WM_.

For example, WM_COPYDATA, WM_GETOBJECT, WM_GETTEXT

For information about Windows events, see Microsoft Developer network website.

Microsoft's Spy++, or similar Windows message spy tools, are also useful for trapping
event names in specific windows. information about Spy ++ is also available on the
MSDN website.

Description Application definitions generally execute at the point when an application window is
created. This corresponds to the WM_CREATE message that is received from an
application window at start up. By adding the Event specifier to a dialog block, you
can override this behavior, such that an application definition only executes when
(and only when) the specified message is generated. If no Event specifier is given, it is
equivalent to Event WM_CREATE.

You can only apply the Event specifier within a Dialog and EndDialog statement block.
Only one Event may be specified per Dialog block. If there is a requirement to monitor
for multiple events, each must be specified within their own Dialog block. For more
information, see MSDN or other documentation on the Win32 messaging system.

Syntax examples Dialog
Class "someclass"
Event WM_ACTIVATE
EndDialog
MessageBox "Caught the WM_ACTIVATE message"

Use with Startup, Terminal Launcher, Web or Windows and advanced application definitions
created using the Web Wizard, WinSSO, JavaSSO and .NetSSO workers.

SecureLogin version 3.5.x or later

Type Action

Usage FocusInput #FormID:FieldID

Arguments #FormID:FieldID

The ID that was given to the matched field in the Site block using MatchField
command. The FormID and FieldID must be unsigned integers.

Description Used to focus on an input field.
Command Reference 81

http://msdn.microsoft.com

6.2.28 GenerateOTP
GenerateOTP command supports two types of usage:

 “AISC Usage” on page 82
 “HOTP Usage” on page 84

AISC Usage

Example In this example the value of field #1:2 is being checked by the application definition.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site Login -userid "Google Logon" -initial
MatchDoimain "www.google.com"
MatchField #1:1 -name "Email" -type "text"
MatchField #1:2 -name "Passwd" -type "password"
MatchField #1:3 -name "Cookie" -type "check"
EndSite
SetPrompt "Enter your user credentials"
FocusInput #1:1
TextInput #1:1 -value "$Username"
FocusInput #1:2
TextInput #1:2 -value "$Password"
FocusInput #1:3
BooleanInput #1:3 -check "false"
Endscript

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.5.0 or later

Type Action

Usage GenerateOTP -mode <string>-challenge <string>

Arguments <result>

A variable that receives the value of the one-time password (OTP) that is generated.

-mode

Specifies the type of OTP that is dynamically generated. The default value for mode is
set to AISC-SKI for smartcard OTP. Setting this to AISC-SKI makes SecureLogin use
algorithm to generate an OTP based on the user’s smart card. This setting is
deprecated and can be removed.

-challenge

When the OTP generated is based on a challenge/response or asynchronous mode,
the challenge needs to be passed to the GenerateOTP command as an argument,
normally by means of a script that reads the challenge from the screen.
82 Command Reference

Description OTP is an authentication method specifically designed to avoid the security exposures
inherit in traditional fixed and static passwords.

OTPs rely upon a predefined relationship between the user and the authenticating
server. The encryption key is shared between the user's token generator and the
server, with each performing the pseudo-random code calculation at user logon. If
the codes match, the user is authenticated.

The GenerateOTP command incorporates OTP token generation functionality
embedded in smartcard technology.

The soft tokens can be generated in synchronous and asynchronous modes which
now allows soft tokens to be loaded onto mobile devices such as PDAs or be sent to
cell phones as SMS text messages.

Synchronous mode: Synchronous authentication of timeplus-event authentication
replaces static alphanumeric passwords with a pseudo-random code that is
dynamically generated at configured time intervals, generally around once a minute.
The pseudo-random code is based on a shared encryption key and the current time.

Asynchronous mode: Asynchronous authentication or challenge response
authorization replaces static alphanumeric passwords with a pseudo-random code
that is dynamically generated based on a shared encryption key, the current time and
a challenge/response combination. In Asynchronous mode the challenge must be
passed to the GenerateOTP command as an argument.

The application definition asynchronous example shows a typical command structure
to enable OTP for use with smart card technology.
Command Reference 83

HOTP Usage

Example The GenerateOTP command can integrate with smart cards.

In Synchronous mode the GenerateOTP command requires the administrator to
pass the -mode variable, AISC-SKI, to the command.

In this instance AISC-SKI is the smart card and SKI is the name of the applet used on
the smart card.

An example application definition enabling synchronous OTP encryption key
distribution for use with smart cards is as follows:

Dialog
Title "Test App"
EndDialog
GenerateOTP -mode "AISC-SKI" ?OtpResult
Type ?OtpResult #14

In Asynchronous mode the challenge must be passed to the GenerateOTP
command as an argument. This requires a script that reads the challenge variable
from the screen.

An example application definition enabling asynchronous OTP encryption key
distribution for use with smartcards is as follows:

Dialog
Title "Test App"
EndDialog
ReadText #12 ?tmp
GenerateOTP -mode "AISC-SKI" -challenge ?tmp ?Otp
Type ?Otp #14

It is assumed that a call without a challenge passed in is synchronous. The -mode
parameter, instead of being passed in via the script, can also be created as a SSO
variable in the script platform.

If the -mode parameter is not passed in as a parameter to the GenerateOTP
command, SecureLogin will check for a variable named mode. Values passed into the
command via the script will override values defined as variables. This is for future
integration with SecureLogin for Mobiles.

NOTE: It is assumed that the acomx.dll is present on the machine and in the path.
If not, then additional code may be required to specify the location of this library file.

The smartcard is assumed to be in the card reader at OTP generation time and a single
card reader is also assumed.

If the user's smart card has not been authenticated the user will be prompted to enter
a PIN to unlock the card. This is required only once as the PIN is normally cached.

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 7.0 SP2 or later

Type Action

Usage GenerateOTP -METHOD=<XMethod> -MODE=<XMode> ?OTPResult
84 Command Reference

6.2.29 GetCheckBoxState

Arguments -METHOD

Defines the method or algorithm to generate the OTP. You can use the following
value:

 OATH-HOTP

-MODE

Defines the mode of OTP generation and usage - software, hardware or smart token.
You can use any one of the following values:

 SOFT
 HARD
 AI-SC(Smart Card)

?OTPResult

A variable that receives the value of the one-time password (OTP) that is generated.

Description SecureLogin will enable using wizards to configure applications supporting OTP based
authentication. Using wizards, users can configure OTP algorithm specific parameters
with the options available to choose from using the wizard.

Example # place your application definition here.
Set ?OTPCredential "<NOTSET>"
GenerateOTP -method "OATH_HOTP" -mode "SOFT" ?OTPCredential
If ?OTPCredential Eq "<NOTSET>"
DisplayVariables "Please specify all information." $OTPSecretKey
$OTPCounter $OTPDigit
GenerateOTP -method "OATH_HOTP" -mode "SOFT" ?OTPCredential
EndIf
MessageBox "OTP Generation Success"
MessageBox ?OTPCredential

Use with Advanced Web, Windows

SecureLogin version 3.5 or later

Type Action

Usage GetCheckBoxState <#Item Number> <Variable>

Arguments <Item Number>

The ID of the check box.

<Variable>

The target variable for the status of the specified check box. Value returned is Checked
or Unchecked. Partially selected tristate check boxes will be returned as Unchecked.
The variable can be a question mark (?) or a dollar sign ($) variable.
Command Reference 85

6.2.30 GetCommandLine

6.2.31 GetEnv

Description Use GetCheckBoxState to check the status of the specified check boxes.

Example GetCheckBoxState #25 ?state1
GetCheckBoxState #26 ?state2
MessageBox ?state1
MessageBox ?state2

Use with Startup, Windows

SecureLogin version 3.0.4 or later

Type Action

Usage GetCommandLine<Variable>

Arguments <Variable>

This variable defines where to store the captured command line.

Description Use the GetCommandLine command to capture the full command line of the
program that is loaded and save it to the specified variable.

NOTE: You can use the GetCommandLine to detect and differentiate backend systems
and databases for use with multiple logons in the SAP application.

Example Windows application definition

This example reads the command line of the application, and then tests the line to see
if it is Notepad.exe. If it is, Notepad is closed. If it is not, the application definition ends.

GetCommandLine ?Text
If ?Text Eq "\"C:\Windows\System32\notepad.exe\""
 KillApp Notepad.exe
EndIf

Use with All

SecureLogin version 3.5 or later

Type Action

Usage GetEnv <EnvVar> <Variable>

Arguments <EnvVar>

This is the environment variable name you wish to retrieve.

<Variable>

This variable defines where to store the retrieved environment variable data.

Description Use the GetEnv command to read the value of an environment variable and saves it
in the specified variable.
86 Command Reference

6.2.32 GetHandle

6.2.33 GetIni

Example Windows application definition

GetEnv "SESSIONNAME" ?SessionName
If ?SessionName eq "console"
MessageBox "Running from Citrix Server Console"
EndIf

Use with Windows

SecureLogin version 6.1.0 or later

Type Action

Usage GetHandle <Variable>

Arguments <Variable>

This variable defines where to store the captured handle.

Description Use GetHandle to capture the unique handle of the window that the Windows
application definition script is activated on.

GetHandle is used to retrieve the handle so that the value is passed to TLaunch.exe to
inform the terminal launcher what window to interact with, or to pass the value to
any other application.

Example 1 Windows application definition

GetHandle ?winHandle
MessageBox ?winHandle

Example 2 Windows application definition

GetReg "HKLM\Software\Microsoft\Windows\CurrentVersion\App
Paths\SLProto.exe\Path" ?SLLocation
If ?SLLocation eq "<NOTSET>"
EndScript
EndIf

GetHandle ?PuttyHWND
Strcat ?TLaunch ?SLLocation "tlaunch.exe"
Strcat ?TLaunchHWND "/hwnd" ?PuttyHWND
Run ?TLaunch "/auto" "/ePutty" "/l" "/pPutty - Detection and
Login" "/t" "/q" "/s" ?TLaunchHWND

Use with Windows, Web, Terminal Emulator, Java

SecureLogin version 3.5 or later

Type Action

Usage GetIni <ini file> <section> <key> <variable>
Command Reference 87

6.2.34 GetMD5

Arguments <Ini File>

This is the file name from which you wish to read the section or key.

<Section>

Name of the section that contains the key name.

<Key>

Name of the key to read.

<Variable>

This variable defines where to store the retrieved data from the ini file.

Description Use the GetIni command to read data from INI file.

Example Windows application definition

GetIni "C:\Program Files\Lotus\Notes\Notes.ini" "Notes"
"KeyFileName" ?NotesDefaultIDFileSetPlat

Use with Windows

SecureLogin version 6.0 or later

Type Action

Usage GetMD5 <Variable>

Arguments <Variable>

Variable to store the returned MD5 hash value.

Description Use the GetMD5 command to generate an MD5 hash value of the current process the
script is running for. GetMD5 will only work with Win32 scripts.

Message-Digest algorithm 5 (MD5) is employed in SecureLogin and can be used to
check the integrity of files against a known hash value.

MD5 hash values are widely used in software to provide assurance that a particular
file has not been altered. The administrator can compare a published MD5 sum with
the checksum of another file to recognize corrupt or incomplete files, particularly for
large executable files.
88 Command Reference

6.2.35 GetReg

Example In a Windows application definition, the MD5 hash value is stored in the variable that
was passed as the argument to the command. The variable can either be a temporary
or stored variable type.

GetMD5 ?tmp
or

GetMD5 $hash_value
The MD5 hash value would normally be obtained with the Window Finder tool on a
window from the application. This MD5 value will then be put into a script and
compared against the results of the GetMD5 command. If the MD5 hash values do not
match, the executable file may have been altered.

Use with All

SecureLogin version 3.5 or later

Type Action

Usage GetReg <RegEntry> <Variable> [<platform>]

Arguments <RegEntry>

This is the registry entry to read.

<Variable>

This variable defines where to store the retrieved environment variable data.

<platform>

This optional variable reads the worker registries. The following are the platform
inputs:

 x64

It reads 64 bit registries even when the worker is 32-bit. It ignores 32-bit
windows.

 x32
It reads 32-bit registries even when the worker is 64-bit.

 os
It reads the registries based on the operating system. It reads 32-bit registries on
32-bit Windows and 64-bit registries on 64-bit windows.

NOTE: When no platform is mentioned, the current running process is considered as
default. For example:

 Winsso, Java, Tlaunch will match application, 32-bit or 64-bit
 Websso will default to 32-bit
 .NET will default to match framework
Command Reference 89

6.2.36 GetDirectoryStatus

NOTE: The status of the primary datastore connection can be found in the SecureLogin About box.

Description Use the GetReg command to read data from the registry and save it in the specified
variable.

The following is format for the registry entry input: HIVE\KEY\Value
Valid hives are:

HKCR - HKEY_CLASSES_ROOT
HKCC - HKEY_CURRENT_CONFIG
HKCU - HKEY_CURRENT_USER
HKLM - HKEY_LOCAL_MACHINE
HKU - HKEY_USERS

Example Windows application definition

GetReg "HKLM\Software\ABCCorp\ProductID" ?ProductID
If ?ProductID noteq "xxxxxxxxxx"
 EndScript
EndIf

Example Reading from registry matching the operating system platform

GetReg "HKLM\Software\Protocom\SecureLogin\InternalVersion"
?ProductID OS

Use with All

SecureLogin version 7.0 or later

Type Variable manipulators

Usage GetDirectoryStatus <?StatusVariable>

Arguments <?StatusVariable>

The target variable to which the value of the primary status is copied.

The value returned is either online or offline.

Description Use the GetDirectoryStatus command to find out whether SecureLogin can
connect to the directory or not.

The status is online if the network is up, SecureLogin connects to the directory, and
the user is working in online mode.

The status is offline if the network is down, the network is up but the directory is
unavailable, or the user chose to work in offline mode.
90 Command Reference

6.2.37 GetSessionName

6.2.38 GetText

Example GetDirectoryStatus ?status
If ?status eq "online"
#online instructions
EndIf
If ?status eq "offline"
#offline instructions
EndIf

Use with Terminal Emulator

SecureLogin version 3.5 or later

Type Action

Usage GetSessionName <?Variable>

Arguments <Variable>

The target variable that the session name is copied into.

Description Use the GetSessionName command to find the current HLLAPI session name that is
used to connect and returns it to the specified variable.

This command is only valid for tlaunch emulator definitions with the type HLLAPI.

Example Terminal Emulator application definition

GetSessionName ?Session_name

Use with Web, Terminal Launcher

SecureLogin version 3.0 or later

Type Action

Usage GetText <Variable>

Arguments <Variable>

This variable defines where to store the captured text.

Description Use the GetText command to get all of the text from the screen and save it to the
specified variable. It is used in large Web application definitions that contain several If -
Text statements.

In Netscape, each If -Text statement screen scan to find the specified text caused the
screen to flicker. However, using GetText (for example If ?Text -in ?FromGetText), the
application definition can contain multiple If -Text commands with only one scan of the
screen.
Command Reference 91

6.2.39 GetURL

6.2.40 GoToURL

Example Web application definition

This example copies the text content of the web page to the ?Text variable.
SecureLogin tests for the presence of the word ‘Logon’. If Logon exists, SecureLogin
enters the credentials and submits them automatically.

GetText ?Text
If "Log on" -In ?Text
Type $Username
Type $Password Password
EndIf

Use with Web

SecureLogin version 3.0 or later

Type Action

Usage GetURL <Variable>

Arguments <Variable>

This variable defines where to store the captured URL.

Description Use the GetURL command to capture the URL of the site that is loaded and save it to
the specified variable.

Example Web application definition

This example copies the URL of the website to the ?URL variable and tests the URL to
see if it matches text being searched for. If it does, SecureLogin pops up a message
box and redirects the user to the intranet.

GetURL ?URL
If "Log off" -In ?URL
MessageBox "You have chosen to log off the application. You will now be
redirected to the intranet home page."
GoToURL "http://Intranet"
EndIf

Use with Web

SecureLogin version 3.5 or later

Type Action

Usage GoToURL <URL> [<-frame>]
92 Command Reference

6.2.41 Highlight

6.2.42 If/Else/EndIf

Arguments <URL>

The URL to which the browser will navigate.

<-frame>

Opens the URL in the frame which started the application definition.

Description Use the GoToURL command to make the browser navigate to the specified URL. By
default the command opens the new Web page in the main window, rather than the
frame that started the application definition.

When using the -frame option on a framed Web page, the URL redirect occurs only in
the current frame rather than the parent window.

You must include http://.

Example Web application definition

This example detects an incorrect password message, displays a message box
informing the user, and then browses to the NetIQ website.

If -Text "Incorrect Password"
 MessageBox "You have entered an incorrect password"
 GoToURL "http://www.NetIQ.com"
EndIf

Use with Web

SecureLogin version 3.5 or later

Type Action

Description Use the Highlight command to set the focus of the Web page on a field.

The command is useful for pages that do not have any control selected after loading
or for any fields that change the behavior after gaining focus.

This command is functionally equivalent to the SetFocus command in Windows
scripts.

Example Web application definition

If –Text "Logon"
 Highlight #1
 Type $Username #1
 Highlight #2
 Type $Password #2
 Type "\N"
EndIf

Use with Startup, Terminal Launcher, Web, or Windows
Command Reference 93

SecureLogin version 3.5 or later

Type Flow control

Usage 1 If <Value1> <Gt|Lt> <Value2>
#Do This
[Else]
#Do This
EndIf

Usage 2 If <Value1> <Eq|NotEQ > <Value2> [-I|-S]
#Do This
[Else]
#Do This
EndIf

Usage 3 If <Value1> <-In|-NotIn> <Value2> [-I|-S]
#Do This
[Else]
#Do This
EndIf

Usage 4 If -Text [-Frame] <Text>
#Do This
[Else]
#Do This
EndIf

Usage 5 If -Exist|-NotExist <Variable>
#Do This
[Else]
#Do This
EndIf

Arguments <Value1>

The left side of the expression for evaluation.

<Value2>

The right side of the expression for evaluation.

<Text>

The text for which you are searching.
94 Command Reference

Description Use the If command to establish a block to execute if the expression supplied is true.
The Else command works inside an If block. The Else command is executed if the
operator in the If block is false. Use the EndIf command to terminate the If block.

Text comparison operators supported The text comparison operators supported by
the If command are:

 Eq: True if the left side is equal to the right side.
 NotEQ: True if the left side is not equal to the right side.
 -In: True if the left side is a substring of the right side.
 -NotIn: True if the left side is not a substring of the right side.
 -SiteDeparted: Checks if the current document is still active or not.

When using these text comparison operators, you may optionally specify whether the
comparison is to take into account the case of the strings being compared. If -I is
specified, the comparison is case insensitive. If -S is specified, then the comparison is
case sensitive. By default the Eq and NotEQ operators are not case sensitive, while the
-In and -NotIn operators are case sensitive.

An operator is also supplied to directly query the application for a particular string:-
Text: Evaluates to true if the specified text is found in the application windows of the
application. For Internet Explorer application definitions, you can supply an optional -
Frame argument, which restricts the command to look for the specified text in the
current frame.

Numerical comparison operators supported Two numerical comparison operators
are supported by the If command, Gt and Lt. The command evaluates to true if the
left side is greater than or less than (respectively) the right side. This is a numerical
comparison, so the left and right sides must be numbers.

An operator is supplied to check for the existence of a stored variable:

 -Exists: True if the specified variable exists.
 -NotExist: True if the specified variable does not exist.

Syntax examples If $Number NotEQ "1"
MessageBox "NotEQ 1"
Else
MessageBox "Eq 1"
EndScript
EndIf

If ?Value1 Gt ?Value2
If -Text "Log on"
If -Exists $RunBefore
If "Log on" -In ?Text

Example 1 Web application definition

This example tests for an incorrect password. If it is found, an incorrect password
message box is displayed. If the error message is not found, SecureLogin logs in as
normal.

If -Text "Incorrect Password"
DisplayVariables "You have an incorrect password. Please verify it and
retry log on."
EndScript
Else
Type $Username
Type $Password Password
EndIf
Command Reference 95

Example 2 Windows application definition

Each time the application definition is run, a variable is incremented. This example
counts the number of times the dialog box is displayed. If it is displayed more than
three times, the application is closed. If the log on is successful, the count is reset.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #1001 ?Username

If –Exists $Username
Else
 Set $Username ?Username
EndIf
Increment ?RunCount
If ?RunCount Gt "3"
MessageBox "Log on has been attempted too many times. The application
will be closed."
KillApp "app.exe"
Else
 Type $Username #1001
 Type $Password #1002
 Click #1
EndIf

Logon Successful Dialog Box
Dialog
 Ctrl #1
 Title "Log on successful"
EndDialog

Set ?RunCount "0"

Example 3 Web application definition

This example copies the text content of the Web page to ?WebText. The variable is
then tested to see if ‘Log on’ is present. If it is, SecureLogin performs the login
process. If it is not present, the application definition is terminated.

GetText ?WebText
If "Log on" –In ?WebText
 Type $Username
 Type $Password Password
Else
 EndScript
EndIf
96 Command Reference

6.2.43 Include

Example 4 Startup

This example tests, upon SecureLogin loading, to see if SecureLogin has been run by
the user. If it has not, SecureLogin sets the variable so that the message is only
displayed once, and then displays a welcome message along with the option for
further details on SecureLogin.

If –NotExist $LoadedBefore
 EndScript
Else
MessageBox –YesNo ?Result "Welcome to SecureLogin Single Sign-On, a new
password management tool that will save you the hassle of remembering
your passwords. Would you like more details on how to use SecureLogin
and what it can do for you?"
Set $LoadedBefore "Yes"
If ?Result Eq "Yes"
GoToURL "http://www.NetIQ.com/securelogin.htm"
EndIf
EndIf

Use with All

SecureLogin version 3.0 or later

Type Flow control

Usage Include <Platform-Name>

Arguments <Platform-Name>

The name of the application definition to include.

Description Use the Include command to share commonly-used application definition
commands by multiple applications. The application definition identified by <Platform-
Name> is included at execution time into the calling application definition. The
application definition included with the Include command must comprise
commands supported by the calling application.

Example Windows application definition

This example detects the login dialog, the Notepad.exe application definition is
executed, and then the user's credentials are entered.

Logon Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog

Include "Notepad.exe"
Type $Username #1001
Type $Password #1002
Click #1
Command Reference 97

6.2.44 Increment

6.2.45 KillApp

Use with All

SecureLogin version 3.5 or later

Type Variable manipulator

Usage Increment <Variable>

Arguments <Variable>

The name of the variable to increase in value.

Description Use Increment to add to a specified variable. For example, you can use increment
to count the number of passes a particular application definition has made.

Once the number of instances is equal to the specified number, you can instruct the
application definition to run another task or end the application definition. This is
useful when configuring an application whose login panel is similar to other windows
within the application, or to easily control the number of attempts a user can have to
access an application. See Section 6.2.19, “Decrement,” on page 75.

Syntax examples Increment ?RunCount

Example Windows application definition

Each time the application definition is run, a variable is incremented. This example
counts the number of times a dialog box is displayed. If the dialog box is displayed
more than three times, the application is closed. If the login is successful, the count is
reset.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

Increment ?RunCount
If ?RunCount Gt "3"
 MessageBox "Log on has been attempted too many times. The
application will be closed."
 KillApp "app.exe"
Else
 Type $Username #1001
 Type $Password #1002
 Click #1
EndIf

Logon Successful Message
Dialog
 Ctrl #1
 Title "Log on successful"
EndDialog

Set ?RunCount "0"

Use with All
98 Command Reference

SecureLogin version 3.5 or later

Type Action

Usage KillApp <Process-Name>

KillApp <-Title>

Arguments <Process-Name>

The name of the process to terminate.

-title “Application title”

The title of the process to terminate.

Description Use the KillApp command to terminate an application.

Example 1 Windows application definition

Each time the application definition is run, a variable is incremented. This example
counts the number of times the dialog box is displayed. If the dialog box is displayed
more than three times, the application is closed. If the log on is successful, the count is
reset.

Logon Dialog Box
Dialog
 Title "Log on"
 Class #32770
EndDialog

Increment ?RunCount

If ?RunCount Gt "3"
 MessageBox "Log on has been attempted too many times. The
application will be closed."
 KillApp "app.exe"

Else
 Type $Username #1001
 Type $Password #1002
 Click #1
EndIf

Logon Successful Message
Dialog
 Title "Log on successful"
 Ctrl #1
EndDialog

Set ?RunCount "0"
Command Reference 99

6.2.46 Local

Example 2 Windows application definition

Same application definition as used in Example 1, however, the KillApp process is
specified by title.

Dialog
 Title "Login Simple"
 Class #32770
EndDialog

Increment ?RunCount

If ?RunCount Gt "3"
 MessageBox "Log on has been attempted too many times. The application
will be closed."
 KillApp -title "Login Simple"
Else
 Type $Username #1001
 Type $Password #1002
 Click #1
EndIf

Logon Successful Message
Dialog
 Title "Login - Simple Successful"
 Ctrl #1
EndDialog

Set ?RunCount "0"

Use with All

SecureLogin version 3.5 or later

Type Variable manipulator

Usage Local <?Variable>

Arguments <?Variable>

The runtime variable to declare as local.

Description Use the Local command to declare that a runtime variable will only exist for the
lifetime of the application definition. Local runtime variables are used in the same way
as normal runtime variables and are still written as ?Variable.

Declare local runtime variables as local by using the Local command, followed by the
variable name. When runtime variables are declared local, you cannot set them back
again. You can declare a runtime variable local at any time in an application definition.

Using local runtime variables increases the performance of SecureLogin, although only
slightly. Local runtime variables are used to run application definitions multiple times
without storing the runtime variables between each run of the application definition.

Local runtime variables are also used to prevent runtime variables from overwriting
each other, which could happen if two instances of an application definition are
running at the same time. For example, use the Local command if two instances of
Terminal Launcher are running, each instance running the same application definition
but attached to different emulator sessions.
100 Command Reference

6.2.47 MatchDomain

Example Windows application definition

This example declares a variable as local, and then uses it to count the number of times
a dialog box is displayed. If the dialog box is displayed too many times, SecureLogin will
alert the user, then close the application.

Invalid Logon Message
Dialog
 Class #32770
 Title "Logon Failure"
EndDialog

Local ?RunCount
Increment ?RunCount
If ?RunCount Gt "5"
 MessageBox "Closing application"
 KillApp "PasswordText.exe"
EndIf
Type $Username
Type $Password

Use with Advanced application definitions created using the Web Wizard.

SecureLogin version 3.5.x or later

Type Action

Usage MatchDomain "Domain"

Arguments Domain

The domain name or address to be matched.

Description Use MatchDomain inside a Site block to filter a site based on its domain. If the domain
doesn't match, the Site block fails to match.

The domain matched is a normally a low level domain name such as www.yahoo.com
and not www.yahoo.com/mymail/login

Example In this example the site www.google.com is being matched by the application
definition.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site "Login" -userid "Google Log On" -initial
 MatchDomain "www.google.com"
 MatchField #1:1 -name "Email" -type "text"
 MatchField #1:2 -name "Passwd" -type "password"
 MatchField #1:3 -name "Cookie" -type "check"
EndSite

SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput#1:2 -focus "true"
BooleanInput #1:3 -check "false"
PressInput
Endscript
Command Reference 101

6.2.48 MatchElement

Use with WinSSO, WebSSO, JavaSSO, and .NetSSO workers.

SecureLogin version
for web

8.6 or later

SecureLogin version
for WinSSO,
JavaSSO and
.NetSSO workers

8.7 or later

Type Action

Usage MatchElement #<ElementID> <Selector>
Arguments #<ElementID>

The element ID is assigned to the matched control.

<Selector>

It is a combination of attributes that identifies an element of a form uniquely. The
matching is based on this selector.

WebSSO supports full CSS selector. It also supports the text matching.

WinSSO, JavaSSO, and NetSSO are limited to the following:

<Type>#<id>.<class>:nth(<order>)[value=<value>][visible=<true
|false>]
For more information on selector, refer https://www.w3schools.com/cssref/
css_selectors.asp.

Description Use MatchElement to match the dynamic controls in a window.

ClickElement is the only command that interacts with MatchElement. For more
information, see Section 6.2.14, “ClickElement,” on page 71.
102 Command Reference

https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp

6.2.49 MatchField

Example for
WinSSO, JavaSSO
and .NetSSO
workers e

Dialog
Title "ACMsample"
MatchElement #username EditBox
EndDialog
In this example, MatchElement matches the type of the control.

Dialog
Title "ACMsample"
MatchElement #password #1000
EndDialog
In this example, MatchElement matches the ID of the control.

Dialog
Title "ACMsample"
MatchElement #submit .Edit#101
EndDialog
In this example, MatchElement matches the class and ID of the control.

Dialog
Title "ACMsample"
MatchElement #buttonvalue Button[value=ok]
EndDialog
In this example, MatchElement matches the value of the control.

Example for
WebSSO

Site "Microsoft Documentation"
MatchElement #1 -selector "#directory-page-search-form-autocomplete-
input"
EndSite
ClickElement #1
Endscript

In this example, MatchElement matches the search bar in the webpage.

Site "Citrix Receiver" -initial
MatchElement #4 -selector "#loginBtn"
EndSite
ClickElement #4
Endscript
In this example, MatchElement matches the login button.

Use with Advanced application definitions created using the Web Wizard.

SecureLogin version 3.5.x or later

Type Action

Usage MatchField #FormID:FieldID [-optional] [-name "name"] [-type "type"] [-value "value"]
[-defaultValue "defaultValue"] [-id “ID”]
Command Reference 103

Arguments #FormID:FieldID

The ID to be given to the matched option within the field, building from the #FormID of
the associated form. The FormID and FieldID must be unsigned integers. The combined
#FormID:FieldID must be unique within the site block.

-optional

Specifies that matching this field is not required to successfully match the parent form.

-name "name"

Match against the field name.

-type "type"

Match against the field type. Type can be one of the following:

 Button
 Checkbox
 Image
 Hidden
 Password
 Radio
 Reset
 Submit
 Text
 TextArea
 Select-multiple
 Select-one

-value "value"

Match against the field value.

-defaultValue "defaultValue"

Match against the field’s default value.

-id “ID”

Match against the field ID.

Description Use MatchField to filter a form based on the presence of a particular field. If the field
fails to match and it is not specified as optional, then the parent form will fail to match.
104 Command Reference

6.2.50 MatchForm

Example 1 This example would locate the Web page fields Email, Password and Cookie within the
website www.google.com.com matched by the application definition.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site Login -userid "Google Log On" -initial
 MatchForm #1 -name "log on"
 MatchDomain "www.google.com"
 MatchField #1:1 -name "Email" -type "text"
 MatchField #1:2 -name "Passwd" -type "password"
 MatchField #1:3 -name "Cookie" -type "check"
 MatchField #1:4 -name "SAVEOPTION" -type "checkbox" -value "YES"
 MatchField #1:5 -name "Submit2" -type "submit"
EndSite

SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput#1:2 -focus "true"
BooleanInput #1:3 -check "false"
BooleanInput #1:4 -check "false"
PressInput
Endscript

Example 2 In this example, the username and password fields are matched using field IDs. Also,
the login-submit button is matched using field ID.

Site "Form" -initial
 MatchForm #0 -name ""
 MatchField #0:1 -name "" -id "username" -type "email"
 MatchField #0:2 -name "" -id "password" -type "password"
 MatchField #0:3 -name "" -id "login-submit" -type "submit"
EndSite

Use with Advanced application definitions created using the Web Wizard.

SecureLogin version 3.5.x or later

Type Action

Usage MatchForm #FormID [-optional] [-name "name"] [-id "ID"] [-action "action"] [-method
"method"] [-target "target"]

MatchForm #FormID [-optional] [-noform]
Command Reference 105

Arguments #FormID
The ID to be given to a matching form. The ID must be an unsigned integer
prefixed with # and unique within the site block.

 -optional
Specifies that matching this form is not required to successfully match site.

 -noform
Specifies the form id, which is required to define the MatchField command. This
argument is used to match the elements that are not defined in the form tag.

 -name "name"
Specifies the form name to match against. The form name is an optional value
given to a form by the creator of the website.

 -id "ID"
Matches against the form ID.

 -action "action"
Specifies the form action to match against. The URL to which the form content is
sent for processing.

 -method "method"
Specifies the form method to match against. The method or how to send the
form data to the server.

 -target "target"
Specifies the form target to match against. The window or frame at which to the
form targets its contents.

Description Use MatchForm to filter a site based on the presence of a particular form. If the form
fails to match and it is not specified as optional, then the site will fail to match.

Use MatchForm with -noform to match fields that use the elements not defined in the
form tag. This argument is required to get a form ID for the MatchField command.
106 Command Reference

Example 1 In this example, the form named ‘log on’ within the website
www.google.com.com is being matched by the application definition.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site Login -userid "Google Log On" -initial
 MatchForm #1 -name "log on"
 MatchDomain "www.google.com"
 MatchField #1:1 -name "Email" -type "text"
 MatchField #1:2 -name "Passwd" -type "password"
 MatchField #1:3 -name "Cookie" -type "check"
EndSite

SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput#1:2 -focus "true"
BooleanInput #1:3 -check "false"
PressInput
Endscript

 The name, method, target, and action of forms can match the null values by
using an empty quote (“”). For example, the form name may be a “null”, the
form can be matched without the name. If Name is not available, then ID can be
used.

MatchForm #1 -name ""
MatchForm #1 -id "Form ID"

 The MatchField command requires a MatchForm ID and if the input and other
fields are without the form tag then use -noform
MatchForm #1 -noform

 When multiple forms are available, each form can be matched within a single
site and is considered as a single form.

Site "complex"
 MatchForm #1 -noform
 MatchForm #2 -name "user details"
 MatchForm #3 -name "submission options"
EndSite

Example 2 In this example, the Yahoo mail login form is being matched by the application
definition using the ID.

Site "Yahoo"
 MatchDomain "login.yahoo.com"
 MatchForm #1 -id "login-username-form"
 MatchField #1:2 -type "text" -id "login-username"
 MatchField #1:4 -type "submit" -id "login-signin"
 MatchField #1:3 -type "password" -name "passwd"
EndSite
Command Reference 107

6.2.51 MatchOption

Use with Advanced Web application definitions created using the Web Wizard, WinSSO, JavaSSO
and .NetSSO workers.

IMPORTANT: Use MatchOption with MatchElement when using for WinSSO, JavaSSO
and .NetSSO workers.

SecureLogin version 3.5.x or later for Web.

8.7 for WinSSO, JavaSSO, and .NetSSO workers.

Type Action

Usage for Web MatchOption #FormID:FieldID:OptionID [-optional] [-text "text"] [-value "value"]

Usage for WinSSO,
JavaSSO and
.NetSSO workers

MatchOption #ElementID [-index “index”] [-text "text"]

Arguments for Web #FormID:FieldID:OptionID

The ID to be given to the matched option within the field, building from the
#FormID:FieldID of the associated selection field. The FormID, FieldID and OptionIDs
must be unsigned integers. The combined #FormID:FieldID:OptionID must be unique
within the site block.

-optional

Specifies that matching this option is not required to successfully match the parent
field.

-text "text"

Specifies the text string for this particular option.

NOTE: The text is what is displayed to the user.

-value "value"

Specifies the value for this particular option.

NOTE: The value is what is passed to the server when a form is submitted.

Arguments for
WinSSO, JavaSSO
and .NetSSO
workers

#ElementID

The ID to be given to the matched option within the field, building from the #ElementD
of the associated selection field. The element ID must be unique within the site block.

-text "text"

Specifies the text string for this particular option.

NOTE: The text is what is displayed to the user.

-index "index"

Specifies the order for this particular option.

NOTE: The index starts from 0.
108 Command Reference

6.2.52 MatchReferer

Description Use the MatchOption command to filter a field based on the presence of a particular
option.

An option is an item within a specific combo box or list box. If the option is not found,
and it is not specified as optional, then the parent field will also fail to match.

Example for Web In this example the form named ‘log on’ within the secure website www.lotto.com is
being matched by the application definition.

=== Logon Application Definition #4 ==
=== Lotto User Initial Logon ====
#==
Site Login -userid "Member Log In" -initial
 MatchForm #1 -name "log in"
 MatchDomain "https://site10.Lotto.com"
 MatchField #1:1 -name "Member ID" -type "text"
 MatchField #1:2 -name "Passwd" -type "password"
 MatchOption #1:3 -text "Secure" -value "Secure"
EndSite

SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput #1:3
BooleanInput #1:3 -check "true"
PressInput
Endscript

Example for
WinSSO, JavaSSO
and .NetSSO
workers

In this example, the MatchOption command matches fourth element of the index.

Dialog
MatchElement #1:5 #1034
MatchOption #1:5:3 -index 4
EndDialog

Use with Advanced Web application definitions created using the Web Wizard.

SecureLogin version 3.5.x or later

Type Action

Usage MatchReferer [-regex] "Referer"

Arguments -regex

Used with MatchReferer to use the referer value as regular expression rather than
exact match.

For example, if referer is any page with prefix as "Page" and suffix as ".htm", then pass
the argument as -regex "Page\w+\.htm"
"Referer"

The site referer which is to be matched. If PageA.htm includes a link to PageB.htm,
then the referer is "PageA.htm".
Command Reference 109

6.2.53 MatchRegex

Description Use MatchReferer inside a Site/EndSite block to match or filter a site based on a
referer. If the site referer does not match, the site block fails to match.

Example In this example, the referring HTML page www.lotto.com/index.html is being matched
by the application definition.

=== Logon Application Definition #5 ==
=== Lotto User Initial Logon ====
#==
Site "Login" -userid "Member Log On"? -initial
 MatchForm #1 -name "log on"?
 MatchReferer "www.lotto.com/index.html"?
 MatchDomain "https://site10.lotto.com"?
 MatchField #1:1 -name "Member ID"? -type "text"?
 MatchField #1:2 -name "Passwd"? -type "password"?
 MatchOption #1:3 -name "Secure"? -type "text"?
EndSite

SetPrompt "Enter your user credentials"?
TextInput #1:1 -value "$Username"?
TextInput #1:2 -value "$Password"?
FocusInput #1:2 -focus "true"?
BooleanInput #1:3 -check "true"?
PressInput
Endscript
In this example, the referring HTML page is being matched by the application
definition.

=== Logon Application Definition #5 ==
=== Lotto User Initial Logon ====
#==
Site "Login" -userid "Member Log On"? -initial
 MatchForm #1 -name "log on"?
 MatchReferer -regex "\w{0,3}.*(lotto.)\w+"
 MatchDomain "https://site10.lotto.com"?
 MatchField #1:1 -name "Member ID"? -type "text"?
 MatchField #1:2 -name "Passwd"? -type "password"?
 MatchOption #1:3 -name "Secure"? -type "text"?
EndSite

SetPrompt "Enter your user credentials"?
TextInput #1:1 -value "$Username"?
TextInput #1:2 -value "$Password"?
FocusInput #1:2 -focus "true"?
BooleanInput #1:3 -check "true"?
PressInput
Endscript

Use with All

SecureLogin version 7.0 or later
110 Command Reference

6.2.54 MatchTitle

Type Action

Usage MatchRegex <RegEx> <Input-String>

Arguments <RegEx>

The regular expression

<Input-String>

The string to match against.

Description Use the MatchRegex command to test whether a regular expression matches
against the specified string or not. Can be used inside a Site–EndSite or Dialog–
EndDialog block for example.

For more information regarding regular expressions see the Boost C++ Libraries
website (http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html)

Example This example matches against any Web page on the www.google.com domain that
has a text box, a password box and text somewhere on the page that matches against
the “Welcome \w+ to Gmail” regular expression (“Welcome Nick to Gmail” for
example).

Site "Gmail: Email from Google"
 MatchForm #1
 MatchDomain "www.google.com"
 MatchField #1:10 -type "text"
 MatchField #1:11 -type "password"
 GetText ?PageText
 MatchRegex "Welcome \w+ to Gmail" ?PageText
EndSite
MessageBox "Matched"

Use with Advanced Web application definitions created using the Web Wizard.

NOTE: -regex parameter is not supported in SecureLogin versions prior to 7.0.

SecureLogin version 3.5 or later

Type Action

Usage MatchTitle [-regex] "Title"

Arguments -regex

Indicates that the Title argument is a regular expression.

"Title"

The site title which is to be matched.

For more information regarding regular expressions see the Boost C++ Libraries
website (http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html)

Description Use MatchTitle inside a Site block to match or filter a site based on a HTML page
title.
Command Reference 111

http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html
http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html
http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html
http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html

6.2.55 MatchURL

Example In this example the HTML page with the title ‘The New York Times > Log In’ within the
website www.nytimes.com is matched by the application definition.

===
Login Script #1 - The New York Times > Log In
===
=== Initial Login ===
Site "Login" -userid "nytimes.com #1" -initial
 MatchURL "http://www.nytimes.com/auth/login"
 MatchDomain "www.nytimes.com"
 MatchTitle "The New York Times > Log In"
 MatchForm #1 -name "login"
 MatchField #1:1 -name "USERID" -type "text"
 MatchField #1:2 -name "PASSWORD" -type "password"
 MatchField #1:3 -name "SAVEOPTION" -type "checkbox" -value
"YES"
 MatchField #1:4 -name "Submit2" -type "submit"
EndSite
If the title needing to be matched is "The New York Times > Log In", then you could
use -regex and match against only a portion of the title.

MatchTitle -regex "Times > Log In"

Use with Advanced Web application definitions created using the Web Wizard.

NOTE: -regex parameter is not supported in SecureLogin versions prior to 7.0.

SecureLogin version 3.5 or later

Type Action

Usage MatchURL [-regex] "URL"

Arguments -regex

You may also use regular expressions to match part of a URL, such as the domain only.

"URL"

The site URL which is to be matched. This need not be the URL listed in the navigation
field of the Web browser as the given page may not have been loaded from there.

For more information regarding regular expressions see the Boost C++ Libraries
website. (http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html)

Description Use MatchURL inside a Site block to match or filter a HTML page within a site based on
its URL.

The URL can be a complex Web address or a secure website.
112 Command Reference

http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html
http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html

6.2.56 MessageBox

Example In this example the URL “https://www.nytimes.com/auth/login” is matched.

=== Initial Login ===
Site "Login" -userid "nytimes.com #1" -initial
 MatchURL "https://www.nytimes.com/auth/login"
 MatchDomain "www.nytimes.com"
 MatchTitle "The New York Times > Log In"
 MatchForm #1 -name "login"
 MatchField #1:1 -name "USERID" -type "text"
 MatchField #1:2 -name "PASSWORD" -type "password"
 MatchField #1:3 -name "SAVEOPTION" -type "checkbox" -value
"YES"
 MatchField #1:4 -name "Submit2" -type "submit"
EndSite
If the URL to match is “http://www.nytimes.com/auth/login?URI=http://”, then you
can match a portion of the URL with the -regex parameter.

MatchURL -regex "nytimes.com"

Use with Startup, Terminal Emulator, Web, or Windows

SecureLogin version 3.5 or later

Type Action

Usage MessageBox <Data> [-Background] [-DefaultNo] [-YesNo <?Variable>] [-YesNoCancel
<?Variable>]
Command Reference 113

Arguments <-YesNo>

The -YesNo flag allows the user to select Yes or No within the message box, rather than
being limited to an OK button only.

<-YesNoCancel>

The -YesNoCancel flag allows the user to select Yes, No, or Cancel when a message box
is displayed.

<?Variable>

This runtime variable is required with the -YesNo / -YesNoCancel flag to store the result
of the user action.

<-Background>

When specified, this parameter allows the user to open an application and work in that
application, without having to respond to the MessageBox. If this parameter is not
used, the MessageBox remains the active window. In Web applications, you must
respond to the MessageBox before you can continue with any other work.

<-DefaultNo>

This optional parameter is used only with the -YesNoCancel flags. When the -DefaultNo
parameter is set, the No button has the default focus rather than the Yes button.

<Data>

The text displayed to the user. <Data> can be several strings, variables, or a
combination of both.

Description Use the MessageBox command to display a dialog box that contains the text specified
in the <Data> variable. The application definition is suspended until the user reacts to
this message. The MessageBox can take any number of text arguments, including
variables (for example, MessageBox "The user " $Username " has just logged onto the
system").

You can set the -YesNo flag when calling a MessageBox. If the -YesNo flag is set, the
MessageBox prompts the user with a box that has a Yes and a No button, rather than
an OK button.

Place a runtime <?Variable>, immediately after the flag, to capture the MessageBox
result.

Syntax examples MessageBox "Application definition completed successfully"
MessageBox "Do you wish to continue?" -YesNo ?Result
MessageBox "Do you wish to continue?" -YesNoCancel ?Result
-Background -DefaultNo
114 Command Reference

6.2.57 Multiply

Example 1 Windows application definition

This example detects the change password dialog box. A message box is displayed
prompting the user whether or not they would like to change their password, and to
inform them it was successful.

Change Password Dialog Box
Dialog
 Class #32770
 Title "Change Password"
EndDialog

MessageBox -YesNo ?Result "Your password has expired, would you
like to change it now?"
If ?Result Eq "Yes"
 Type $Username #1015
 Type $Password #1004
 ChangePassword $Password Random
 Type $Password #1005
 Type $Password #1006
 Click #1
 MessageBox "Password changed successfully"
Else
 Click #2
 MessageBox "You chose not to change your password"
EndIf

Example 2 Terminal Emulator test application definition

Use message boxes when troubleshooting application definitions. This example
displays a message box before each step in the application definition to allow the
writer to see where the application definition execution is failing.

MessageBox "Beginning wait for logon prompt"
WaitForText "ogin:"
MessageBox "Logon detected, now entering user name"
Type $Username
MessageBox "User name entered, now simulating Enter"
Type @E
MessageBox "Enter has been simulated, now waiting for password"?
WaitForText "assword:"
MessageBox "Password detected, now entering password"
Type $Password
MessageBox "Password entered, now simulating Enter"
Type @E
MessageBox "Sequence completed, the user should now be logged on"

Use with All

SecureLogin version 3.0 or later

Type Variable manipulator
Command Reference 115

6.2.58 OnException/ClearException

Usage Multiply <Variable1> <Variable2> [?Result]

NOTE: You must use integer arithmetic.

Arguments <Variable1>

The first argument is the number multiplied by the second argument.

<Variable2>

The second argument is the number by which the first number is multiplied.

[?Result]

Optional, the result of the equation.

Description This fails to list the exception for RegSplitFailed. Use to multiply one number by
another. You can write the numbers into the application definition or use variables. The
results can be output to another variable or to one of the original numbers.

Syntax examples Multiply "1" "2" ?Result

Multiply ?LoginAttempts ?LoginFailures

Multiply ?LoginAttempts ?LoginFailures ?Result

Multiply ?LoginAttempts "3"

Multiply ?LoginAttempts "3" ?Result

Example Windows application definition

This example reads the values of control IDs 103 and 104 into variables. From there
they are multiplied, and typed into control ID 1.

ReadText #103 ?Number1
ReadText #104 ?Number2
Multiply ?Number1 ?Number2 ?Result
Type ?Result #1

Use with All

SecureLogin version 3.0.4 or later

Type Flow control

Usage OnException <Exception Name> Call <SubRoutine>

ClearException <Exception Name>
116 Command Reference

Arguments <Exception Name>

The name of the exception on which you wish to act. The following exceptions are
supported:

 AAVerifyCancelled: When a user cancels the re-authentication process (support
will depend on the Advanced Authentication product being used).

 AAVerifyFailed: When the AAVerify re-authentication command fails.
 ChangePasswordCancelled: When a user cancels on the Change Password

dialog.
 EnterVariablesCancelled: When a user cancels the automatic variable prompt

box or the display variables prompt box.
 GenerateOTPCancelled: When a user cancels the GenerateOTP dialog.
 GenerateOTPFailed: When the GenerateOTP command fails.
 PickListCancelled: When a user cancels the pick list choice dialog.
 RunFailed: When the program specified by the Run command fails to launch.
 SelectLoginCancelled: When a user cancels the dialog box listing the login

credential set.

<SubRoutine>

The name of the subroutine you want to run when the exception condition is true.

Description Use the OnException command to detect when certain conditions are met.
Currently, this is when Cancel is clicked on either of two dialog boxes. When the
condition is met, a subroutine is run. Use the ClearException command to reset
the exceptions value.

Syntax examples OnException ChangePasswordCancelled Call Display Error
ClearException ChangePasswordCancelled
Command Reference 117

Example 1 Windows application definition

In this example the login failed because the user has invalid credentials stored. This
provides the user with an opportunity to verify their user name and password, but
what happens if the user clicks Cancel? If the user clicks Cancel, the exception is
executed and forces the user to enter their credentials.

Logon Failed Dialog Box
Dialog
 Class #32770
 Title "Log on failed"
EndDialog
OnException EnterVariablesCancelled Call VariablesCancelled
DisplayVariables "Please verify your user name and password and
try again. IT x4532"
ClearException EnterVariablesCancelled
Type $Username #1001
Type $Password #1002
Click #1

Sub VariablesCancelled
 OnException EnterVariablesCancelled Call VariablesCancelled
 DisplayVariables "You cannot cancel this verification dialog
box. Please verify your user name and password when prompted and
click OK to try again."
 ClearException EnterVariablesCancelled
EndSub

Example 2 Windows application definition

This example prompts the user to change their password. The user is restricted from
clicking cancel and is forced to enter a new password.

Change Password Dialog Box
Dialog
 Class #32770
 Title "Change Password"?
EndDialog

Type $Username #1005
Type $Password #1006
OnException ChangePasswordCancelled Call ForceChangePwd
ChangePassword $Password "Please enter a new password for the
Human Resources application. IT x4532"?
Type $Password #1007
Type $Password #1008
ClearException ChangePasswordCancelled

Sub ForceChangePwd
 OnException ChangePasswordCancelled Call ForceChangePwd
 ChangePassword $Password "You must enter a new password and
cannot Cancel. IT x4532"?
 ClearException ChangePasswordCancelled
EndSub
118 Command Reference

Example 3 Windows application definition

This example demonstrates the OnException usage of AAVerifyCancelled and
AAVerifyFailed.

#
Login - Simple
#
Dialog
 Title "Login - Simple"
 Class "#32770"
 Ctrl #1001
 Ctrl #1002
 Ctrl #1 "&Login"
 Ctrl #2 "Cancel"
 Ctrl #1027 "Username:"
 Ctrl #1028 "Password:"
 Ctrl #1009
EndDialog
 OnException AAVerifyCancelled Call
CancelSimpleLoginDialogCancelled
 OnException AAVerifyFailed Call CancelSimpleLoginDialogFailed
 AAVerify -method "smartcard"
 Type $Username #1001
 Type $Password #1002
 Click #1
#
Cancel the Simple Login Window - AAVerify cancelled
#
Sub CancelSimpleLoginDialogCancelled
 Click #2
 EndScript
EndSub
#
Cancel the Simple Login Window - AAVerify failed
#
Sub CancelSimpleLoginDialogFailed
 Click #2
 MessageBox "Your re-authentication failed. Login canceled"
 EndScript
EndSub
Command Reference 119

Example 4 Windows application definition

This example demonstrates the OnException usage of GenerateOTPCancelled and
GenerateOTPFailed.

#
Login - Simple
#
Dialog
 Title "Login - Simple"
 Class "#32770"
 Ctrl #1001
 Ctrl #1002
 Ctrl #1 "&Login"
 Ctrl #2 "Cancel"
 Ctrl #1027 "Username:"
 Ctrl #1028 "Password:"
 Ctrl #1009
EndDialog
 OnException GenerateOTPCancelled Call
CancelSimpleLoginDialogCancelled
 OnException GenerateOTPFailed Call
CancelSimpleLoginDialogFailed
 GenerateOTP -mode "AISC-SKI" ?OtpResult
 Type $Username #1001
 Type ?OtpResult #1002
 Click #1
#
Cancel the Simple Login Window - GenerateOTP cancelled
#
Sub CancelSimpleLoginDialogCancelled
 Click #2
 EndScript
EndSub
#
Cancel the Simple Login Window - GenerateOTP failed
#
Sub CancelSimpleLoginDialogFailed
 Click #2
 MessageBox "Your generation of your password failed. Login
cancelled"
 EndScript
EndSub
120 Command Reference

6.2.59 Parent/EndParent

Example 5 Windows application definition

This example demonstrates the OnException usage of SelectLoginCancelled. In
the following example, two credential sets defined, one credential set is the default
credentials created for the application and the other is a linked credential set. When
the application is executed SecureLogin will prompt the user to select the credential
set to use for this logon session. The following steps will link another credential set to
an existing application definition.

1. In the notification area, right-click the SecureLogin icon, then select New
Login. The Add New Login Wizard Welcome page is displayed.

2. Select the application for which you want to add another login. In this example,
Notepad.

3. Click Next.
4. In the Description field, specify a descriptive name for the login. For example,

Talk.
5. Click Finish.
6. NSL prompts you to enter values for $Username and $Password for the newly

created credential set. If you type in the name of an existing credential set, you
are not prompted. But there is no selection box displayed to select an existing
credential set. You must know and type the credential set name the same as you
would for using the setplat command.

7. Start the application.
The <name of the application; in this example,
notepad.exe> login selection dialog box is displayed.

8. Select the required login credential set, then click OK.
SecureLogin enters the credentials, and you are automatically logged on to the
application.

BeginSection: "Login Form"
Dialog
 Title "Untitled - Notepad"
EndDialog

OnException SelectLoginCancelled Call CannotCancel
SetPlat Login1
Type $username #1001
Type $password #1002

Sub CannotCancel
 Messagebox "You cannot cancel selecting to use a credential
set, closing application."
 #Send ALT F4 to close application
 type \ALT \|115
 EndScript
EndSub

Use with Windows
Command Reference 121

SecureLogin version 3.5 or later

Type Dialog specifier

Usage Parent

EndParent

Arguments None

Description Use the EndParent command to begin a parent block in which the statements act
upon a window's parent. The commands that follow the Parent command function
identically to commands used in a dialog block; if they equate to false, then the
application definition ends.

For example, the command Title in a parent block returns false if the title of the parent
does not match the one specified in the command. However, if a command in a parent
block returns a false result, the execution does not skip to the next parent block, as it
would in a dialog block. Instead, the parent block proceeds to the next dialog block or
the application definition terminates if no further dialog blocks exists.

The Parent command is particularly useful in applications where the dialog box (for
example, a login dialog box) is the child of an open window, typically in the
background. If you are unable to SSO to an application after enabling it with the
wizard, you typically need to specify parent blocks.

You can also use the Parent command to execute commands on a dialog’s parent. For
example, it is possible to get an application definition to click a button on the parent
window. An example is shown below.

Use the EndParent command to terminate a parent block and set the subject of the
application definition back to the original window. You can nest the Parent
command, thereby allowing the parent block to act on the parent of the parent.

NOTE: If you use the wizard or try to enable an application and it does not seem to
work, try using the Parent command. It is able to handle windows that are within
windows.

Example 1 Windows application definition

This example specifies the dialog box that is used for log on. In this case, the parent of
the login box has a class of "Centura:MDIFrame".

Logon Dialog Box
Dialog
 Class "Centura:Dialog"
 Ctrl #4098
 Ctrl #4100
 Title "Log on"
 Parent
 Class "Centura:MDIFrame"
 EndParent
EndDialog

Type $Username #4098
Type $Password #4100
Click #4101
122 Command Reference

6.2.60 PickListAdd

Example 2 Windows application definition

This example is used to click a button on the login window’s parent.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

Type $Username #1001
Type $Password #1002
Parent
 Click #1
EndParent

Use with All

SecureLogin version 3.5 or later (see note under Description below)

Type Action

Usage PickListAdd <Display-Text> [<Return-Value>]

Arguments <Display-Text>

The text displayed in the pick list for the specified option.

<Return-Value>

The value returned from the pick list. If not specified, the return value is the display
text.

Description Use the PickListAdd command to allow users with multiple accounts for a
particular system to choose the account to which they will log on.

You can also use PickListAdd command to choose from multiple sessions on one
mainframe account. Use the PickList to build a list of databases, phone numbers, or
any list from which a user can choose. You can then set variables or take action
accordingly.

PickListAdd is always used with the PickListDisplay and is typically also used
in conjunction with the SetPlat command.

NOTE: Change in usage from SecureLogin 6.1 on. Setting variables after adding them to
the list no longer results in the new value appearing in the list. For example:

PickListAdd ?Y
Set ?Y "Text"
PickListDisplay ...
will display the value <not set>
Command Reference 123

6.2.61 PickListDisplay

 Java or Windows application definition

In this example, the user has to pick which of three accounts to use. They pick which
account they want to use, and SecureLogin switches to that set of credentials using the
SetPlat command.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

PickListAdd "Account One" "One"
PickListAdd "Account Two" "Two"
PickListAdd "Account Three" "Three"
PickListDisplay ?Account "Please select the account you wish to
use"-NoEdit
SetPlat ?Account
Type $Username #1001
Type $Password #1002
Click #1
End Logon Dialog Box

Example 2 Any application definition

In this example, the application should execute and when SecureLogin runs it should
display the numbers 0 - 9.

Set ?Count "0"
Repeat 10
 PickListAdd ?Count
 Increment ?Count
EndRepeat
PickListDisplay ?Count "Please select your option " -NoEdit

Example 3 Java or Windows application definition

In this example, SecureLogin reads the possible values for the Other drop down box. It
then prompts the user to select the desired item and types in the username, password,
and selected item.

###Logon
PickListAdd #3
PickListDisplay ?Database "Select your database" -NoEdit
SetPlat ?Database
Type #1 $Username
Type #2 $Password
Select ?Database #3
###End logon##

Use with All

SecureLogin version 3.5 or later

Type Action
124 Command Reference

6.2.62 PositionCharacter

Usage PickListDisplay <?Variable> <Display-Text> [-NoEdit]

Arguments <?Variable>

The output variable for the selected option.

<Display-Text>

The description text for the pick list box.

-NoEdit

The -NoEdit flag disables the addition of extra variables by the user.

Description Use the PickListDisplay command to display the pick list entries built by
previous calls to PickListAdd. The PickListDisplay command returns the
result in a <?Variable> sent to the command.

If the desired entry is not among the displayed entries, the user can enter their own
data into an edit field at the bottom of the pick list. Set the -NoEdit flag to turn this
feature off.

Syntax examples PickListDisplay ?Choice "Please select the account you wish to
use"
PickListDisplay ?Choice "Please select the account you wish to
use" -NoEdit

Example Windows example

In this example, the user has three accounts to this application and wants to pick
which one to use. They pick which account they want to use and SecureLogin uses the
SetPlat command to switch to that set of credentials.

Logon dialog box
Dialog
 Class #32770
 Title "Log on"
EndDialog

PickListAdd "Account one" "One"
PickListAdd "Account two" "Two"
PickListAdd "Account three" "Three"
PickListDisplay ?Account "Please select the account you wish to
use" -NoEdit
SetPlat ?Account
Type $Username #1001
Type $Password #1002
Click #1

Use with Password Policy application definitions

SecureLogin version 3.5 or later

Type Action
Command Reference 125

6.2.63 PressInput

Usage POSITIONCHARACTER [NUMERAL] [UPPERCASE] [LOWERCASE] [PUNCTUATION]
<Position>, [<Position>].

Arguments [NUMERAL]

The character at <Position> must be a numeral.

[UPPERCASE]

The character at <Position> must be an uppercase character.

[LOWERCASE]

The character at <Position> must be a lowercase character.

[PUNCTUATION]

The character at <Position> must be a punctuation character.

<Position>

The character position in the password.

Description Use this command in a password policy application definition to enforce that a certain
character in the password is a numeral, uppercase, lowercase, or a punctuation
character.

You can specify multiple positions.

Example The password is not valid unless the first, sixth, and seventh characters are uppercase.

POSITIONCHARACTER UPPERCASE 1,6,7

Use with Advanced Web application definitions created using the Web Wizard.

SecureLogin Version 3.5.x or later

Type Action

Usage PressInput [#FormID:FieldID]

Arguments #FormID:FieldID

The ID that was given to the matched field in the Site block using MatchField
command. The FormID and FieldID must be unsigned integers.

Description Simulates a keyboard enter event focusing a given field beforehand.
126 Command Reference

6.2.64 ReadInput

Example This example the PressInput command within the application definition is the
equivalent of clicking the Sign In button on the www.google.com website.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site Login -userid "Google Log On" -initial
 MatchForm #1 -name "log on"
 MatchDomain "www.google.com"
 MatchField #1:1 -name "Email" -type "text"
 MatchField #1:2 -name "Passwd" -type "password"
 MatchField #1:3 -name "Cookie" -type "check"
 MatchField #1:4 -name "Submit" -type "submit"
EndSite

SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput #1:3
BooleanInput #1:3 -check "false"
FocusInput #1:4
PressInput #1:4
Endscript

Use with Web application, WinSSO, JavaSSO and .NetSSO workers.

IMPORTANT: Use ReadInput with MatchElement when using for WinSSO,
JavaSSO and .NetSSO workers.

SecureLogin version 8.5 or later

8.7 or later for the WinSSO, JavaSSO and .NetSSO workers.

Type Action

Web application
usage

ReadInput #<form id>:<field id> -checked ? <writable variable name>

Usage for the
WinSSO, JavaSSO and
.NetSSO workers

ReadInput #ElementID -value ?valText
ReadInput #ElementID -checked ?isChecked

Arguments <#Ctrl-ID>

The control ID number of the input to read.

<?Variable>

The variable that receives the text that is read. It can read input given in check box,
radio button, submit button and text field.

Description In a web application, the ReadInput command reads the text from any given
<#Ctrl-ID> (check box, radio button, submit button and text field). For this
command to function correctly, the <#Ctrl-ID> must be valid.

Syntax examples ReadInput #1:3 -checked ?check
Command Reference 127

6.2.65 ReadText

Example 1 Web application

Site "test"
MatchForm #1 -name ""
MatchField #1:3 –type "text"
EndSite

ReadInput #1:3 -checked ?fieldValue

Use with Terminal Emulator, Windows.

NOTE: For terminal emulator application definitions, this command is only supported
when used with tlaunch.exe emulator definitions with the type "HLLAPI". This
includes HLLAPI, WinHLLAPI, and HLLAPI16 definitions. This command will not
function with other emulator definition types.

SecureLogin version 3.5 or later

Type Action

Windows Usage

Terminal Launcher
Usage

ReadText <#Ctrl-ID> <?Variable> ReadText [-order] <#Order-ID>

ReadText <?Variable> <Character-Number> <Row-Number> <Column-Number>

Arguments <#Ctrl-ID>

The control ID number of the text to read.

[-order]

If the control ID's are not constant, utilize the -order argument to instruct SecureLogin
to type into a control based on the creation order and not the tab order. For more
information about the -order argument usage, see “Example 4” on page 174.

<#Order-ID>

For Windows application definitions, this parameter specifies which control based on
the creation order in which to type the text.

<?Variable>

The variable that receives the text that is read.

<Character-Number>

The number of characters to read.

<Row-Number>

The horizontal position number of the first character to read (for example, row).

<Column-Number>

The vertical position number of the first character to read (for example, column).
128 Command Reference

Description The ReadText command can be used in both Windows and Terminal Emulator
application definitions. While the usage and arguments for the use of ReadText with
Windows and Terminal Launcher are different, the results of each command are the
same.

Windows application definition In a Windows application definition, the ReadText
command reads the text from any given <#Ctrl-ID>, and sends it to the specified
variable. For this command to function correctly, the <#Ctrl-ID> must be valid.

Terminal Launcher application definition In a Terminal Launcher application
definition, the ReadText command reads a specified number of characters, starting
at the <Row-Number>, and sends those characters to the specified <Variable>. The
ReadText command will not work with Generic or Advanced Generic emulators, it
only works with HLLAPI and some DDE emulators. For Generic or Advanced Generic
emulators, use the If -Text or Gettext commands.

For more information, see Section 6.2.42, “If/Else/EndIf,” on page 93 and
Section 6.2.38, “GetText,” on page 91.

Syntax examples ReadText #301 ?Text
ReadText ?Text 10 4 6

Example 1 Terminal Emulator application definition

Read 10 characters starting at row 4 column 6.
ReadText ?result 10 4 6

Example 2 Windows script

ReadText #1004 ?result
Command Reference 129

Example 3 Windows application definition

The same title and class appear in the error message dialog box when a user fails to
log on.

This example distinguishes between errors and provides users with more specific
information, rather than a general message stating their username and password is
incorrect, or the account is locked. In this case, the example reads the error message,
clicks OK, and prompts the user with a customized message.

Logon Failed Message
Dialog
 Class #32770
 Title "Log on failed"
EndDialog

ReadText #65535 ?ErrorMsg
Click #1
If "Invalid Username" -In ?ErrorMsg
 DisplayVariables "Please verify your Username and try again."
$Username
 Type $Username #1001
 Type $Password #1002
 Click #1
EndIf
If "Invalid Password" -In ?ErrorMsg
 DisplayVariables "Please verify your Password and try again."
$Password
 Type $Username #1001
 Type $Password #1002
 Click #1
EndIf
If "Account locked" -In ?ErrorMsg
 MessageBox "Your account is locked. Please contact the IT
help- desk on x4532."
 EndScript
EndIf

Example 4 Windows application definition

This example reads the text from a control ID and sets the database variable so the
user is not prompted to set the variable.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #15 ?Database
If -Exists $Database
Else
 Set $Database ?Database
EndIf
Type $Username #1001
Type $Password #1002
Type $Database #1003
Click #1
130 Command Reference

6.2.66 RegSplit

Example 5 Terminal Emulator application definition

This example reads a message in a terminal emulator and displays a message in a user
friendly format.

ReadText ?Message 30 24 2
MessageBox ?Message

Example 6 Windows application definition

This example reads the text from a control defined by its creation order and sets the
database variable so the user is not prompted to set the variable.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText -order #5 ?Database
If -Exists $Database
Else
 Set $Database ?Database
EndIf
Type $Username #1001
Type $Password #1002
Type $Database #1003
Click #1

Use with All

SecureLogin version 3.5 or later

Type Action

Usage RegSplit <RegEx> <Input-String> [<Output-String1> [<Output-String2>]...]

Arguments <RegEx>

The regular expression.

<Input-String>

The string that to split.

<Output-String1>

The first sub-expression.

<Output-String2>

The second sub-expression.
Command Reference 131

Description Use the RegSplit command to split a string using a regular expression. <Output-
String1> and <Output-String2> contain the first and second sub-expressions
respectively.

When using regular expressions with the RegSplit command, ensure that any
regular expressions comply with the syntax rules detailed under Section 4.3.8,
“Regular Expressions,” on page 41.

For more information regarding regular expressions see:

www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html (http://
www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html)

For information regarding Microsoft regular expression usage, search the Microsoft
MSDN Library at:

http://msdn2.microsoft.com/en-us/library/default.aspx (http://
msdn2.microsoft.com/en-us/library/default.aspx)

Example 1 Windows application definition

This example copies text from control ID 301 to the ?Text variable. The RegSplit
command is then used to strip the user name details out of the text that was read.
The platform is set to that user name, and the correct password is entered by
SecureLogin.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #65535 ?Text
RegSplit "Please enter the password for (.*) account" ?Text
?UserSetPlat ?User
Type $Username #1001
Type $Password #1002
Click #1
132 Command Reference

http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html
http://msdn2.microsoft.com/en-us/library/default.aspx

6.2.67 ReLoadPlat

Example 2 How to handle regsplit exception with OnException

Logon Dialog Box
Dialog
 Title "Untitled - Notepad"
EndDialog

Set ?Url "Oneabc"
Type ?Url
Type \n
Create exception handler
OnException RegSplitFailed Call RegSplitError
Provide suspicious regular expression, note the "\)" below
RegSplit "(.*\)abc(.*)" ?Url ?Lhs ?Rhs
StrCat ?Url ?Lhs ", " ?Rhs
MessageBox ?Url
ClearException RegSplitFailed

Sub RegSplitError
 # print out RegSplitReturnCode
 Type "RegSplitError: "
 Type ?RegSplitReturnCode
 Type \n
 EndScript
EndSub

Example 3 Open text example

Set ?InputString "This is a long string with a few components in
it"
RegSplit "This(.*)a long(.*)with(.*)components(.*)" ?InputString
?First ?Second ?Third ?Fourth
Type "First value is " ?First
Type \n
Type "Second value is " ?Second
Type \n
Type "Third value is " ?Third
Type \n
Type "Fourth value is " ?Fourth
#?First = "is", ?Second = "string", ?Third = "a few", ?Fourth =
"in it"

Use with Startup, Terminal Emulator, Web, or Windows

SecureLogin version 3.5 or later

Type Action

Usage ReloadPlat

Arguments None
Command Reference 133

Description When an application first presents a login screen, SecureLogin displays a message
prompting the user to select an appropriate platform from a list. Once selected,
SecureLogin enters the chosen platform's credentials into the application and submits
them.

If log on fails due to incorrect credentials, SecureLogin prompts the user to change
their credentials. SecureLogin does not retain the platform details and prompts the
user to re-enter the information. This could result in the user changing the wrong
credentials if they select the incorrect platform.

The SetPlat, ReLoadPlat and ClearPlat commands resolve this issue.
ReloadPlat sets the current platform to the one which was last chosen (for the
given application) or, if a platform was not previously selected, the command will
leave it unset.

Use the ReLoadPlat command at:

 Log on. Before the user first logs onto the application, call ReLoadPlat. This
prevents the user from having to reselect a platform after a failed log on.

 Failed log on. Call ReLoadPlat to reselect the platform that contained the
incorrect credentials. This gives the user an opportunity to change the
credentials using a ChangePassword or a DisplayVariables command.

See also Section 6.2.81, “SetPlat,” on page 150 and Section 6.2.11, “ClearPlat,” on
page 66.
134 Command Reference

Example Windows application definition

==== BeginSection: Application startup ====
Dialog
 Class "#32770"
 Title "Password Test Application"
EndDialog

ClearPlat
==== EndSection: Application startup ====

==== BeginSection: Log on ====
Dialog
 Class "#32770"
 Title "Log on"
 Ctrl #1001
EndDialog

ReLoadPlat
SetPrompt "Username =====>"
Type $Username #1001
SetPrompt "Password =====>"
Type $Password #1002
SetPrompt "Domain =====>"
Type $Domain #1003
Click #1
==== EndSection: Log on ====

==== BeginSection: Log on successful ====
Dialog
 Class "#32770
 "Title "Log on successful"
EndDialog

ClearPlat
Click #2
==== EndSection: Log on successful ====

==== BeginSection: Log on failure ====
Dialog
 Class "#32770"
 Title "Log on failure"
EndDialog

Click #2
ReLoadPlatOnException ChangePasswordCancelled Call Change-
Cancelled
ChangePassword $password
ClearException ChangePasswordCancelled
Type -raw \Alt F
Type -raw L
==== EndSection: Log on failure ====

==== BeginSection: Change credentials cancelled ====
Sub ChangeCancelled
 ClearPlat
 EndScript
EndSub
==== EndSection: Change credentials Cancelled ===
Command Reference 135

6.2.68 Repeat/EndRepeat

Use with All

SecureLogin version 3.5 or later

Type Action

Usage Repeat [Loop#]

EndRepeat

Arguments [Loop#]

The number of times the repeat application definition block is repeated. If not
specified, the repeat continues indefinitely unless broken by other commands.

Description Use the Repeat command to establish an application definition block similar to the
If command. The repeat block is terminated by an EndRepeat command.
Alternatively, you can use the Break or EndScript commands to break out of the
loop.

Syntax examples Repeat
Repeat 3
136 Command Reference

6.2.69 RestrictVariable

Example Terminal application definition

This example uses the Repeat command to watch the screen for the messages and
responds accordingly. You can use the Break command to jump to the next
command following the EndRepeat.

Initial System Log on
WaitForText "login:"
Type $Username
Type @E
WaitForText "password:"
Type $Password
Type @E
Delay 500
#Repeat loop for error handling
Repeat
 #Check to see if password has expired
 If -Text "EMS: The password has expired."
 ChangePassword
 #Password
 Type $Password
 Type @E
 Type $Password
 Type @E
 EndIf
 #User has an invalid Username and / or # Password stored.
 If -Text "Log on Failed"
 DisplayVariables "The username and / or password stored by
SecureLogin is invalid. Please verify your credentials and try
again. IT x453."
 Type $Username
 Type @E
 Delay 500
 WaitForText "password:"
 Type $Password
 Type @E
 Delay 500
 EndIf
 # Account is locked for some reason, possibly inactive.
 If -Text "Account Locked"
 MessageBox "Your account has been locked, possibly due to
inactivity for 40 days. Please contact the administrator on
x453."
 EndIf
 # Main Menu, user has logged on successfully.
 If -Text "Application Selection"
 Break
 EndIf
 Delay 100
EndRepeatDelay 100
EndRepeat

Use with All
Command Reference 137

SecureLogin version 3.5 or later

Type Action

Usage RestrictVariable <Variable-Name> <Password-Policy>

Arguments <Variable-Name>

The name of the variable to restrict.

<Password-Policy>

The name of the policy to enforce on the variable.

Description Use the RestrictVariable command to monitor a variable and enforce a specified
password policy on the variable. Use the RestrictVariable command to monitor a
variable and enforce a specified password policy. There are two instances when the
password policy is enforced.

1. On application startup if credential data is not defined
2. On ChangePassword command

On application startup SecureLogin will prompt the user for credential information if
the values do not exist. If an empty credential is restricted with the
RestrictVariable command, SecureLogon will require the user to provide a valid
entry before the script continues. Users could cancel out of the prompt for new
credentials. Hence, it is a normal practice to monitor this activity with the
OnException command. When the ChangePassword command is used, the user is
forced to enter a password that complies to the selected password policy set with the
RestrictVariable command. ChangePassword can also be canceled by the user
and should be monitored with the OnException command.

When restricting variables to policies, if you are making a tighter policy than is already
in place, and you restrict a variable that does not match the policy today, then the user
cannot save it the first time. This is because when SecureLogin detects there is no
saved credential, a user who has a password of 6 characters today cannot save it if the
policy restricts the $Password variable to 8 characters and 2 numbers.

“Example 2” on page 140 works around this by restricting a new password variable
(?NewPwd), instead of restricting the $Password variable. The user can store their
existing password when SecureLogin prompts for the credentials first time, and
enforces the stronger password policy when the password expires in x days.

You can restrict any variable using a password policy, not just a $Password. You can also
use RestrictVariable to make sure other variables are entered in the correct format. For
example, you can enforce that $Username is always lowercase or $Database is 6
characters and no numbers.
138 Command Reference

Example 1 Windows application definition

This example uses the application definition to restrict the $Password variable to the
Finance password policy. The user's password must match the policy when they first
save their credentials. When the password requires changing, the application
definition generates a new password randomly based on that policy (no user
intervention is required).

Set the password to use the Finance password policy
RestrictVariable $Password FinancePwdPolicy

#Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

Type $Username #1001
Type $Password #1002

#Change Password Dialog Box
Dialog
 Class #32770
 Title "Change Password"?
EndDialog

Type $Username #1015
Type $Password #1004
ChangePassword $Password Random
Type $Password #1005
Type $Password #1006
Click #1
Command Reference 139

6.2.70 Run

Example 2 Windows application definition

This example uses the application definition to restrict the ?NewPwd variable to the
Finance password policy. When the application starts for the first time and prompts
the user to enter their credentials, then their current password ($Password) is saved
and used.

When the password expires, the password policy is enforced on any new password.
This is a way to enforce tougher password policies (than are currently in place) when
you cannot guarantee all existing passwords meet the new policy.

Set the password to use the Finance password policy
RestrictVariable ?NewPwd FinancePwdPolicy

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

Type $Username #1001
Type $Password #1002
Click #1

Change Password Dialog Box
Dialog
 Class #32770
 Title "Change Password"
EndDialog

Type $Username #1015
Type $Password #1004
ChangePassword "Please enter a new password." ?NewPwd
Type ?NewPwd #1005
Type ?NewPwd #1006
Set $Password ?NewPwd
Click #1

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 3.5 or later

Type Action

Usage Run <Command> [<Arg1> [<Arg2>] ...]

Arguments <Command>

The full path of the program to execute.

<Arg1> <Arg2>

An optional list of arguments and switches for the command.
140 Command Reference

6.2.71 RunEX

Description Use the Run command to launch the program specified in <Command> with the
specified optional [<Arg1> [<Arg2>] …] arguments.

The application definition does not wait for the launched program to complete.

Example Startup application definition

This example prompts the user to start the Finance System.

If they click:

 Yes, the Run command is used to start the application with the necessary
switches.

 No, a message box is displayed, and the application is not started.

MessageBox "Would you like to connect to the Finance System?" -
YesNo ?Result
If ?Result Eq "Yes"
 Run "C:\Program Files\HRS\Finance.exe" "/DB:HRS" "/Debug"
Else
 MessageBox "You have chosen not to run the Finance System.
Please do so manually."
 EndScript
EndIf

Use with Startup, Terminal Launcher, Web, or Windows

SecureLogin version 7.0.3 or later

Type Action

Usage RunEx [-show <state>] [-position <coord>] [-size <dimensions>] -cmd
"executablepath" [<Arg1>... <ArgN>]
Command Reference 141

6.2.72 Select

Arguments -show <state>

state is a variable or value that represents a window state.

NOTE: If the state cannot be evaluated to a valid state, then the default value is
NORMAL.

-position <coord>

coord is a variable or value that represents screen position in pixels from the top
left of the window.

-size <dimensions>

dimensions is a variable or value that represents width in pixels.

<Arg1>....<ArgN>

An optional list of arguments and switches for the command

-cmd <command>

Command is the full path of the program to execute. Note that the full path is only
necessary if the application cannot be located in the systems path environment
variable.

Description RunEX executes a function in the hidden mode based on the options the user
provides.

Example For Example:

Run cmd.exe maximized
RunEx -show maximize -cmd cmd.exe
Run cmd.exe minimized
RunEx -show 6 -cmd cmd.exe
Run cmd.exe hidden using a variable
Set ?show hide
RunEx -show ?show -cmd cmd.exe
Run cmd.exe at position 50, 50
RunEx -position 50,50 -cmd cmd.exe
RunEx -pos 50,50 -cmd cmd.exe
Run cmd.exe at position 50, 50 using a variable
Set ?pos 50,50
RunEx -pos ?pos -cmd cmd.exe
Run cmd.exe in a window sized to 800,900
RunEx -size 800,900 -cmd cmd.exe
Run cmd.exe in a window sized to 400,500 using a variable
Set ?size 400,500
RunEx -size ?size -cmd cmd.exe

Use with Java, Advanced Web, Windows

SecureLogin version 6.1 or later

Type Action
142 Command Reference

6.2.73 SelectListBoxItem

Usage Select <Text of Item to select> [<#Ctrl-ID>]

Arguments <Text of Item to select>

The text item that you want SecureLogin to select in the list box.

<#Ctrl-ID>

When multiple list boxes are found, this specifies which list box to address.

Description Use the Select command to select entries from a combo or list style control.

Examples This example picks an item from the session combo or list control:

Select ?session #1
This example selects a tab within another tab control. When one tab control is
contained within another, the tab selection order is irrelevant.

Select "Quick Connect" #70
Select "Connection" #69
This example selects a cell from within a table

Select "[0,0]" #1
If –text "User" #1
 Select "[0,1]" #1
 Type $Username #1
Endif

Use with Advanced Web application definitions

SecureLogin version 3.5 or later

Type Action

Usage SelectListBoxItem <Item text of selection> <#Ctrl-ID> [-multiselect]

Arguments <Item text of selection>

The text item that you want SecureLogin to select in the list box. it can be a variable or
a string.

<#Ctrl-ID>

This argument is required and represents the control ID of the list box.

<-multiselect>

Used to select multiple list box entries by using a subsequent SelectListBoxItem
command.

Description Use the SelectListBoxItem command to select entries from a list box.

For instructions on determining <#Ctrl-IDs>, see Section 6.2.24, “DumpPage,” on
page 79.
Command Reference 143

6.2.74 SelectOption

Example If "ERROR: The credentials supplied were invalid. Please try
again." -In ?Text
 SelectListBoxItem "Find Context" #1
 Type ?SysUser #1
 Type $Password #2
 MessageBox "If logon continues to fail, please logout of the
computer and back in, retry, and report it to your SecureLogin
administrator."
 EndScript
EndIf

Use with Advanced Web application definitions, WinSSO, JavaSSO and .NetSSO workers.

IMPORTANT: Use SelectOption with MatchElement when using for WinSSO,
JavaSSO and .NetSSO workers.

SecureLogin version 3.5.x or later

8.7 or later for the WinSSO, JavaSSO and .NetSSO workers.

Type Action

Usage for web SelectOption #FormID:FieldID:OptionID -select <true|false>

Usage for the
WinSSO, JavaSSO
and .NetSSO
workers

SelectOption #ElementID -clear

SelectOption #ElementID:OptionID -select "true"

Arguments #FormID:FieldID:OptionID

The ID that was given to the matched option in the Site block using the MatchOption
command. The FormID, FieldID, and OptionID must be unsigned integers.

-select "select"

Selects or deselects a specific option.

"select" is a Boolean value, either "true" or "false".

-clear

Deselects all options for the given control.

Description Use the SelectOption command to select or deselect options within a list box or
combo dialog box.

Example This example clears the selection in the option list and selects option 2 only.

SelectOption #1:3 -clear
SelectOption #1:3:2 –select true
144 Command Reference

6.2.75 SendEvent

6.2.76 SendKey

Use with All

SecureLogin Version 7.0

Type Action

Usage SendEvent <Windows Handle> <Event Specifier>

Arguments <Windows Handle>

A valid windows handle. This should be a local variable with the handle initialised via
a call to GetHandle. Alternatively, it is possible to broadcast the event by using the
Windows constant HWND_BROADCAST.

<Event Specifier>

See Section 6.2.26, “Event/Event Specifiers,” on page 80 for the applicable conditions.
In addition, a new custom SSO event can be used, SSO_NOTIFY.

Description Use the SendEvent command with constants:

 HWND_BROADCAST to send an event to all windows
 SSO_NOTIFY to send a custom SSO event

Example 1 Send WM_SETFOCUS using a captured handle

Event WM_SETFOCUS
....
GetHandle ?handle
SendEvent ?handle WM_SETFOCUS

Example 2 Broadcast the custom SSO_NOTIFY event

Event SSO_NOTIFY
....
SendEvent HWND_BROADCAST SSO_NOTIFY

Use with Terminal Emulator

SecureLogin Version 3.5 or later

Type Action

Usage SendKey <Text>

Arguments <Text>

The text typed into the emulator screen.
Command Reference 145

6.2.77 Set

Description Use the SendKey command to work only with Generic and Advanced Generic
emulators. You can use the SendKey command in the same manner as the Type
command. Generally, the Type command is the preferred command to use. The
Type command places the text into the clipboard, and then pastes it into the
emulator screen. The SendKey command enters the text directly into the emulator
screen.

Using the Type Command: Variables do not work with the SendKey command. If
you want to use variables, use the Type command.

The Type command has many special functions, and some you can use with the
SendKey command. For more information, see Section 6.2.99, “Type,” on page 170
and Chapter 8, “Reference Commands and Keys,” on page 187.

Example Terminal Emulator application definition

The example sends the username and password to the terminal emulator.

#Send User Name
SendKey "DJones"
SendKey "\N"
#Send Password
SendKey "Hu7%f"
SendKey "\N"

Use with All

SecureLogin version 3.5 or later

Type Action

Usage Set <Variable> <Data>

Arguments <Variable>

The variable to which the data is being assigned.

<Data>

The text or variable to read from and assign to the specified variable, for example:

Set ?Message "\?Username"
Descriptions Use the Set command to copy the value of <Data> into <Variable>. The <Data> can be

any text or another variable, whereas the <Variable> must be either a ?Variable or
$Variable.
146 Command Reference

Example 1 Windows application definition

This example uses the application definition to set a ?RunCount variable to count the
number of times the application is run.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

If ?RunCount Eq <NOTSET>
 Set ?RunCount "1"
Else
 Increment ?RunCount
EndIf

Type $Username #1001
Type $Password #1002
Click #1

Example 2 Windows application definition

This example uses the application definition to set the ?NewPwd to the stored
$Password variable.

Change Password Dialog Box
Dialog
 Class #32770
 Title "Change Password"
EndDialog

Type $Username #1015
Type $Password #1004
ChangePassword ?NewPwd Random
Type ?NewPwd #1005
Type ?NewPwd #1006
Set $Password ?NewPwd
Click #1

Example 3 Windows application definition

This example uses the application definition to read the value of control ID 15 and sets
the $Database variable so the user does not have to set the variable.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #15 ?Database
If -Exists $Database
Else
 Set $Database ?Database
EndIf
Command Reference 147

6.2.78 SetCheckBox

6.2.79 SetCursor

Use with Advanced Web, Windows

SecureLogin version 3.5 or later

Type Action

Usage SetCheckBox <Item Number> <Option>

Arguments <Item Number>

The check box in reference to the number of check boxes found.

<Option>

Specifies the status of the check box as Checked or Unchecked.

Description Use the SetCheckBox command to select or clear a check box.

Example MessageBox "Scroll down to see the 'Search Language' section
with the check boxes then click OK"setcheckbox #1 "checked"
setcheckbox #2 "checked"
setcheckbox #3 "checked"
setcheckbox #4 "checked"
setcheckbox #25 "checked"
setcheckbox #26 "checked"
setcheckbox #27 "checked"
MessageBox "Did it select the first four languages and
Norwegian, Polish and Portuguese languages" -yesno ?advweb
if ?advweb eq yes
 Set ?cmd37 "SetCheckBox command worked"
Else
 Set ?cmd37 "SetCheckBox failed"
Endif
SetCheckbox #1 "unchecked"
SetCheckbox #2 "unchecked"
SetCheckbox #3 "unchecked"
SetCheckbox #4 "unchecked"
SetCheckbox #26 "unchecked"
SetCheckbox #27 "unchecked"
MessageBox "Did it clear all languages except Norwegian" -yesno
? advweb2
If ?advweb2 eq yes
 set ?cmd38 "SetCheckBox command worked"
Else
 set ?cmd38 "SetCheckBox failed"
Endif

Use with Terminal Emulator application definition (only works with HLLAPI and some DDE
Tlaunch emulator definitions)

SecureLogin version 3.5 or later
148 Command Reference

6.2.80 SetFocus

Type Action

Usage 1 SetCursor <Screen-Position>

Usage 2 SetCursor <X Coordinate> <Y Coordinate>

Arguments <Screen-Position>

The position on the screen to move the cursor.

<X Coordinate>

The horizontal coordinate. When specified, a row or column conversion is carried out
before the cursor is set to the position.

<Y Coordinate>

The vertical coordinates. When specified, a row or column conversion is carried out
before the cursor is set to the position.

Description Use the SetCursor command to set the cursor to a specified <Screen-Position> or
<X Coordinate> <Y Coordinate>.

The position is noted by a number greater than 0 (zero), for example, SetCursor 200.
Terminal Launcher displays an error message if the screen position is invalid.

Syntax examples SetCursor 200
SetCursor 100 500

Example Terminal Emulator application definition

This example sets the cursor to the correct position, and then you enter credentials.

SetCursor 200
Type $Username
Type @E
Type $Password
Type @E

Use with Java and Windows

SecureLogin version 3.5 or later

Type Action

Arguments <#Ctrl-ID>

The ID number of the control to which the keyboard focus is directed.

Description Use the SetFocus command to set the keyboard focus to a specified control ID.

A valid control ID is required for the SetFocus command to function correctly.
Command Reference 149

6.2.81 SetPlat

Example Windows application definition

This example sets the focus to the username field (#1001). The username is typed and
a tab stop is simulated, and then the password is typed and pressing Enter is simulated.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

SetFocus #1001
Type $Username
Type \T
Type $Password
Type \N

Use with All

SecureLogin version 3.5 or later

Type Action

Usage 1 SetPlat <Application-Name>

Usage 2 SetPlat <RegEx> <Variable> <#Ctrl-ID>

Arguments <Application-Name>

Application name from which to read the variables.

<RegEx>

Regular expression to use as application name.

<Variable>

Use a previously set ?Variable, for example, using a PickList (see Section 6.2.60,
“PickListAdd,” on page 123).

<#Ctrl-ID>

The control ID number of the regular expression. For information regarding regular
expressions see:

 (http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html)
150 Command Reference

Description By default, variables are stored directly against the platform or application on which
you have SecureLogin enabled. For example, if you enable Groupwise.exe, the
Groupwise credentials are stored against the Groupwise.exe platform.

SetPlat sets the platform or application from which variables are read and saved if you
have:

 Multiple accounts (for example, your own log on and an admin log on) accessing
the same platform or application.

 Multiple platforms or applications using a common set of credentials?

Other uses of SetPlat include:

 Configuring application1 to read it's $Username and $Password from
application2. This saves a user from entering the credentials twice and having to
remember to update them in both locations when they change, and so on.

 Configuring application1, application2, and application3 to read the users
credentials from Platform Common. This results in a single store of common
credentials which you only need to update once.
Command Reference 151

Example 1 Windows application definition

Following is a standard dialog box for accessing a password protected site. The dialog
box is generated by the browser itself. The details for this window must be specified
through a Windows script and not a web script. If the browser is Mozilla Firefox, we
must create a Windows application definition for Firefox.exe.

When you specify the Title, Class, User Name, and Password fields for this dialog box
in Firefox, they display the same dialog box irrespective of the password protected
site. Since the FireFox browser is generating this window, the same dialog box is used
with any password protected site and not just the site www.serversystems.com.

However, the previous dialog box always contains the name of the website to which
to log on. You can use this name as the unique identifier in order to set a new
platform and to save the log on credentials.

Using a dialog block with a SetPlat statement The solution is to use a dialog block
with a SetPlat statement such as:

Dialog
 Ctrl #330
 Ctrl #214
 Ctrl #331
 Ctrl #1
 Ctrl #2
 Title "Username and Password Required"
 SetPlat #331 "Enter username for (.*) at (.*):"
EndDialog
Type $Username #214
Type $Password #330
Click #1
The power of this application definition is the line:

SetPlat #331 "Enter username for (.*) at (.*):"
This reads the line from dialog control ID 331, enters the user name for Control Panel
at www.serversystems.com, and applies the regular expression to this text. Regular
expressions are a way of manipulating text strings, however, for most purposes a few
very basic commands work.
152 Command Reference

6.2.82 SetPrompt

For information regarding regular expressions see:

www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html (http://
www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html)

When the user has run the application definition, they will see the user name and
password saved as www.serversystems.com. The text matched inside the brackets
then becomes the symbol application. If a dialog <#Ctrl-ID> is not specified, the
symbol application is unconditionally changed to the application specified in <RegEx>.
An unconditional SetPlat command is only valid if specified before Dialog/
EndDialog statements.

Example 2 Windows application definition

This example displays a pick list and sets a new platform so multiple users can log on
to the application. In this case, SetPlat creates a new platform called Default User,
Global Administrator, or Regional Administrator, and the respective $Username and
$Password is saved there.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

PickListAdd "Default User"
PickListAdd "Global Administrator"
PickListAdd "Regional Administrator"
PickListDisplay ?Choice "Please select the account you wish to
use"-NoEdit
SetPlat ?Choice
Type $Username #1001
Type $Password #1002
Click #3

Use with All

SecureLogin version 3.5 or later

Type Action

Usage SetPrompt <Prompt-Text>

Arguments <Prompt-Text>

The customized text prompt displayed in the Enter SecureLogin Variables dialog box.
Command Reference 153

http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html

Description SetPrompt is invoked anytime a user would be prompted for the values in stored
variables. For example, a newly created application where user’s credentials have not
been set, will invoke the SecureLogin Variables dialog box. This box has a standard
header text and the fields are represented with the standard User and Password
labels. The SetPrompt command allows you to customize these values so that the
user is prompted with a more precise message. For example, you may need to prompt
in the user’s native language or you would like to indicate what type of password or
restrictions may apply. SetPrompt can also be used to customize the same dialog
box when displayed with the DisplayVariables command. For more information,
see Section 6.2.22, “DisplayVariables,” on page 77.

NOTE: Positioning of the SetPrompt command is crucial. Position it before the first
usage of each variable to name that variable, and apply the final Setprompt to the
text displayed at the top of the prompt screen.

Example 1 Windows application definition

This example replaces the default text prompt in the Enter SecureLogin Variables
dialog box. It places the SetPrompt command after the last variable typed.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

Type $Username #1001
Type $Password #1002
SetPrompt "Please enter your user name and password for
accessing the Human Resources system. These credentials will be
remembered by SecureLogin and you will be automatically logged
on in future. IT Help Desk x4532"
Click #1

Example 2 Windows application definition

This example replaces the text prompt next to any variable entry field in the Enter
SecureLogin Variables box and places the SetPrompt command immediately before
the variable in the application definition.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

SetPrompt "Enter Username==>"
Type $Username #1001
SetPrompt "Enter Password==>"
Type $Password #1002
SetPrompt "Please enter your user name and password for
accessing the Human Resources system. These credentials will be
remembered by SecureLogin and you will be automatically logged
on in future. IT Help Desk x4532"
Click #1
154 Command Reference

6.2.83 Site/Endsite

Use with Advanced Web/Web Wizard Script application definitions created using the Web
Wizard.

SecureLogin Version 3.5.x or later

Type Action

Usage Site ["Name" [-userid "userid"] [-initial|-subsequent|-recent timeout] [-
nonexclusive]]

Arguments Site
The Site/EndSite commands are used to match a particular site given a set of filters.
Site/EndSite usage is much the same as the Dialog/EndDialog commands found in the
windows scripting commands.

Name
Name is a static string used to denote the site being matched. The Name cannot be a
variable and the same value can be used by multiple Site commands to specify a
match for the same site under differing conditions.

-userid "userid"
Specifies the default set of credentials to be used for this site block.

NOTE: "userid" must be a static string.

-initial
Specifies that this site block will only match the first time.

-subsequent
Specifies that this site block will only match after an initial match has already been
made.

Arguments -recent timeout
Specifies that this site block will only match if a previous match was made within the
given timeout period.

Timeout is given in milliseconds.

-nonexclusive
Specifies that even if this site block matches, other scripts and wizards will not be
prevented from running.

-events create mutate
Specifies the subset of an event to monitor the webpage and execute the scripts.

NOTE: To ensure backward compatibility, the mutate event is raised only when the
following preference is enabled for Web group:

Add application prompts for web pages on mutation. The event monitoring feature
is enabled when the Enable DHTML monitor on web pages is set to Yes.
Command Reference 155

Description Site/EndSite begins and ends a site definition, similar to the Dialog/EndDialog
commands used in Windows application definition scripts. There can be multiple site
definitions within a single advanced web application script to identify different sites
within the same domain.

Site/EndSite blocks are used to define all the parameters SecureLogin would expect to
find on a Web page to run the application definition.

'Match' commands can be used to filter a given site. If one of the contained match
commands fails to match, then the site block fails to match as a whole.

Example 1 This simple example will match against the website www.mybank.com.

=== My Bank Initial Logon ===
Site "www.mybank.com" -userid "My Logon Credentials" -initial
EndSite

Example 2 This simple example will match the website www.google.com, match the login form
fields and logs on to the user’s account using the user’s e-mail address, password, and
don't remember checkbox unchecked.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site Login -userid "Google Log On" -initial
 MatchDomain "www.google.com"
 MatchField #1:1 -name "Email" -type "text"
 MatchField #1:2 -name "Passwd" -type "password"
 MatchField #1:3 -name "Cookie" -type "check"
EndSite

SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput#1:2 -focus "true"
BooleanInput #1:3 -check "false"
PressInput
Endscript
156 Command Reference

6.2.84 -SiteDeparted

6.2.85 StrCat

Example 3 The following site definitions show examples of how the -events argument could be
used. Note that the preference, Add application prompts for web pages on mutation
must be set to Yes for SecureLogin to use this argument. For more information see the
description for -events in the arguments section above.

a) Using Site/endsite without the -events option is the same as using the option -
events create:

Site Login
endsite

Site Login -events create
endsite
b) To ignore creation event and only handle when the page changes:

Site Login -events mutate
endsite
c) To act on either creation or mutation:

Site Login -events create mutate
endsite

Use With Web

Novell SecureLogin
version

3.5 or later

Type Action

Argument SiteDeparted is a conditional variable.

Description Use the SiteDeparted variable in Web scripts to see if the current document is still
active when used as part of an If statement.

Example The following example checks if the user has navigated away from the current
website or not.

If the users have navigated away from the Website, it informs the users and exists the
script.

GotoURL "www.google.com"
Delay 1000
If -SiteDeparted
 MessageBox "Script terminated, we have left the web-site"
 EndScript
EndIf

Use with All
Command Reference 157

6.2.86 StrLength

SecureLogin Version 3.5 or later

Type Action

Usage StrCat <Variable> <Input-String1> <Input-String2>

Arguments <Variable>

The variable to which you want a result saved.

<Input-String1>

First data string or variable.

<Input-String2>

Second data string or variable.

Description Use the StrCat command to append the second data string to the first data string.
For example, StrCat ?Result "SecureRemote " "$Username".

In this case "$Username" is "Tim", and the variable "?Result" now contains the value
"SecureRemote Tim".

Example Windows application definition

This example reads the user name from #1001 into ?Username and uses the StrCat
command to append the ?Username value with the value of $Password. The resulting
string is returned in the ?LoginID variable, which SecureLogin then uses to log on to
the system.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #1001 ?Username
StrCat ?LoginID $Username $Password
Type ?LoginID #1002
Click #1

Use with All

SecureLogin version 3.0.4 or later

Type Variable manipulator

Usage StrLength <Destination> <String>

Arguments <Destination>

The output variable that will contain the results of the string length computation.

<String>

The string whose length you want to measure.
158 Command Reference

6.2.87 StrLower

Description Use the StrLength command to count the number of characters in a variable and
output that value to the destination variable.

Example Windows application definition

This example reads the password from #301 and then uses StrLength to count the
number of characters. If it is less that 4, an error message is displayed.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #301 ?Password
StrLength ?Length ?Password
If ?Length Lt "4"
 MessageBox "Password is too short"
EndIf

Use with All

SecureLogin Version 3.0.4 or later

Type Variable manipulator

Usage StrLower <Destination> [<Source>]

Arguments <Destination>

The output variable. Also the input variable if no source is specified.

[<Source>]

The input variable. If not specified, SecureLogin reads the destination variable, makes
the necessary changes, and writes over the variable.

Description Use the StrLower command to modify a variable so that all the characters are lower
case.

If only a:

 Destination variable is specified, the string is read from the destination, then is
stored back to it.

 Source variable is specified, the string is read from the source, and the modified
value is stored in the destination variable. In this case, the source variable
remains unchanged.
Command Reference 159

6.2.88 StrLower

Example Windows application definition

The example reads the user name from #1001 and copies it into ?Username. The
StrLower command is then used to make sure the user name is all lower case.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #1001 ?Username
StrLower ?LowerCaseUsername ?Username
Type ?LowerCaseUsername #1002
Click #1

Use with All

SecureLogin Version 3.0.4 or later

Type Variable manipulator

Usage StrLower <Destination> [<Source>]

Arguments <Destination>

The output variable. Also the input variable if no source is specified.

[<Source>]

The input variable. If not specified, SecureLogin reads the destination variable, makes
the necessary changes, and writes over the variable.

Description Use the StrLower command to modify a variable so that all the characters are lower
case.

If only a:

 Destination variable is specified, the string is read from the destination, then is
stored back to it.

 Source variable is specified, the string is read from the source, and the modified
value is stored in the destination variable. In this case, the source variable
remains unchanged.
160 Command Reference

6.2.89 StrReplace

Example Windows application definition

The example reads the user name from #1001 and copies it into ?Username. The
StrLower command is then used to make sure the user name is all lower case.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #1001 ?Username
StrLower ?LowerCaseUsername ?Username
Type ?LowerCaseUsername #1002
Click #1

Use with All

SecureLogin version 8.7 or later

Type Variable manipulator

Usage StrReplace <Destination> search replace <Source>

Arguments <Destination>

The output variable.

<Source>

The input variable.

search

It is the existing character or string in the <Source> variable that is to be replaced.

replace

It is the new character or string that replaces the existing character or string (search)
in the <Source> variable.

Description Use the StrReplace command to replace a character or string in a source variable
with a new character or string. The result is stored in the destination variable.

Example Dialog
Title "Untitled - Notepad"
EndDialog
Type $Username
StrReplace ?Us \ \\ $username
Type ?Us
StrReplace ?Us abc Test ?Us2
Type ?Us2
EndScript
If Username is abc\n\tdef then the <Us> variable will store abc\\n\\tdef and
<Us2> will store Test\n\tdef.
Command Reference 161

6.2.90 StrUpper

6.2.91 Sub/EndSub

Use with All

SecureLogin version 3.0.4 or later

Type Variable manipulator

Usage StrUpper <Destination> [<Source>]

Arguments <Destination>

The output variable. Also the input variable if no source is specified.

[<Source>]

The input variable. If not specified, SecureLogin reads the destination variable, makes
the necessary changes, and writes over the variable.

Description Use the StrUpper command to modify a variable so that all the characters are upper
case.

If only a:

 Destination variable is specified, the string is read from the destination and is
then stored back to it.

 Source variable is specified, the string is read from the source, and the modified
value is stored in the destination variable. In this case, the source variable
remains unchanged.

Example Windows application definition

This example reads the user name from #1001 and copies it into ?Username. The
StrUpper command is then used to make sure the user name is all upper case.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

ReadText #1001 ?Username
StrUpper ?UpperCaseUsername ?Username
Type ?UpperCaseUsername #1002
Click #1

Use with Startup, Terminal Emulator, Web, or Windows

SecureLogin version 3.5 or later

Type Flow control
162 Command Reference

6.2.92 Submit

Usage Sub <Name>

EndSub

Arguments <Name>

Any name entered to identify the subroutine.

Description Use the Sub/EndSub commands around a block of lines within an application
definition to denote a subroutine.

A subroutine defined with Sub/EndSub commands are called through the script
command Call. For more information about calling subroutines, see Section 6.2.8,
“Call,” on page 63.

Example Terminal Emulator application definition

This example checks the emulator screen for the text Log On or Wrong Password. If
either is found, the appropriate subroutine is called and run. After the subroutine
completes, the script will continue processing the remaining commands in the
application definition script.

If -Text "Log On"
 Call "Login"
EndIf
If -Text "Wrong Password"
 Call "WrongPassword"
EndIf

Sub Login
 Type $Username
 Type @E
 Type $Password
 Type @E
EndSub

Sub WrongPassword
 DisplayVariables "Enter correct password" $Password
 Call Login
EndSub

Use with The valid Web related application definitions that really apply.

SecureLogin version 3.5 or later

Type Action

Usage Submit

Arguments None
Command Reference 163

6.2.93 Substr

Description Use the Submit command only in Web application definitions and only with Internet
Explorer to allow for enhanced control of how and when a form is submitted. The
Submit command performs a Submit on the form in which the first password field is
found. The Submit command is ignored if used with FireFox.

The function performed by the Submit command is automatically performed by
Web application definitions by default. For example, the application definition:

Type $Username

Type $Password Password

Types the user name and password and submits the form.

When submits do not occur automatically However, submits do not occur
automatically if any of the following commands are in the application definition: Type
\N, Type \T, or Click.

Furthermore, an automatic submit does not occur if you type text into a specific text
entry field. For example, in the application definition snippet below, the Submit
command must follow the Type command for the application definition to work
properly:

Type $Username #1001

Submit

Example Web application definition

This example enters the user name and password and then executes a manual
Submit.

Type $Username #1

Type $Password #2

Submit

Use with Startup, Terminal Emulator, Advanced Web/Web Wizard Script, or Windows

SecureLogin version 7.0.3 or later

Type Action

Usage SubStr [<var result>] [<var source>] [<var start>] [<var count>]
164 Command Reference

6.2.94 SubstVar

Arguments <var result>

The <var result> argument is the variable where the sub text is stored.

<var source>

The <var source> argument is the actual string.

<var start>

The <var start> argument is the index number of the sub text.

<var count>

The <var count> argument is the number of characters from the <var start> position.

Example Windows application definition

This example displays a subtext from the given string.

Substr ?result abc123ABC!@# 3 6
?result 123ABC

Use with Java, Startup, Terminal Emulator, Advanced Web/Web Wizard Script, or Windows

SecureLogin version 6.0 or later

Type Action

Usage SubstVar [<var result>] [varvar]

Arguments <var result>

The <var result> argument is a variable in which the value of the varvar variable is
stored.

<varvar>

The <varvar> argument contains a variable of which value changes according to the
variable manipulators or other commands that are used in the script.

Description This command is used to create an array or a group.

Example This example evaluates the variable that is stored in <varvar> and places the value in
<var result>. If the variable that is stored in <varvar> is a runtime variable named
password, then the following is equivalent to Set ?result ?password.

SubstVar ?result ?varvar
Following example can help in accessing password history for first ten passwords:

Set ?Count 0
Repeat 10
 Strcat ?varvar password ?Count
 SubstVar ?currPass ?varvar
obtain the required details from each password
 Increment ?Count
EndRepeat
Command Reference 165

6.2.95 Subtract

Use with Startup, Terminal Emulator, Advanced Web/Web Wizard Script, or Windows

SecureLogin version 3.0 or later

Type Variable manipulator

Usage Subtract <Start-Value> <Subtract-Value> [?Result]

Arguments <Start-Value>

The <Start-Value> argument is the start number from which the second argument is
subtracted. This argument contains the result if the optional [?Result] argument is not
passed in. If used:

 Without the [?Result] argument, then <Start-Value> must be a SecureLogin
variable, for example, ?StartValue or $StartValue.

 With the [?Result] argument, then <Start-Value> can be a SecureLogin variable
or a numeric value.

<Subtract-Value>

The <Subtract-Value> argument is the number subtracted from the first argument.
<Subtract-Value> can be a SecureLogin variable or a numeric value.

[?Result]

The result of the equation. This argument is optional but, if used, set to <Start-Value>
- <Subtract-Value>. The [?Result] must be a SecureLogin variable, for example, $Result
or ?Result.

Description Use the Subtract command to subtract one value from another.

Other numeric commands include the Add, Divide, and Multiply.

For more information see:

 Section 6.2.2, “Add,” on page 58
 Section 6.2.23, “Divide,” on page 79
 Section 6.2.57, “Multiply,” on page 115

NOTE: The Subtract command correctly subtracts when <Start-Value>, <Subtract-
Value> and <Result-Value> are between -2147483648 and +2147483647.

Syntax examples: Subtract "1" "2" ?Result
Subtract ?LoginAttempts ?LoginFailures
Subtract ?LoginAttempts ?LoginFailures ?Result
Subtract ?LoginAttempts "3"
Subtract ?LoginAttempts "3" ?Result
166 Command Reference

6.2.96 Tag/EndTag

6.2.97 TextInput

Example Windows application definition

This example reads the values of control IDs 103 and 104 into variables. From there
they are subtracted and typed into control ID 1.

ReadText #103 ?Number1
ReadText #104 ?Number2
Subtract ?Number1 ?Number2 ?Result
Type ?Result #1

Use with Advanced Web application definitions

SecureLogin version 3.5 or later

Type Tag specifier

Usage Tag <Form-Name>

EndTag

Arguments <Form-Name>

The form name is an optional value given to a form by the creator of the website.

Description Use the Tag/EndTag commands to find HTML tags.

Example This example finds the form that has an attribute of Name with a value of Log on.

Tag "Form"
 Attribute "Name" "Log on"
EndTag

Use with Advanced Web application definitions created using the Web Wizard Script, WinSSO,
JavaSSO and .NetSSO workers.

IMPORTANT: Use TextInput with MatchElement when using for WinSSO, JavaSSO
and .NetSSO workers.

SecureLogin version 3.5.x or later

8.7 or later for the WinSSO, JavaSSO and .NetSSO workers.

Type Action

Usage for web TextInput #FormID:FieldID -value "value"

Usage for the
WinSSO, JavaSSO
and .NetSSO
workers

TextInput #ElementID “value”
Command Reference 167

6.2.98 Title

Arguments #FormID:FieldID

The ID that was given to the matched field in the Site block using MatchField
command. The FormID and FieldID must be unsigned integers.

-value "value"

The text value to be input.

Description Use the TextInput command after a Site block to input text into a specified field.

You can enter text into fields of type password/text/textarea/file.

Example In this example the text value of the system user name and password are passed to the
application definition.

=== Logon Application Definition #2 ==
=== Google Initial Logon ====
#==
Site Login -userid "Google Log On" -initial
 MatchDomain "www.google.com"
 MatchField #1:1 -name "Email" -type "text"
 MatchField #1:2 -name "Passwd" -type "password"
 MatchField #1:3 -name "Cookie" -type "check"
EndSite

SetPrompt "Enter your user credentials"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput#1:2 -focus "true"
BooleanInput #1:3 -check "false"
PressInput
Endscript

Use with Java, Windows, .NET etc.

SecureLogin version 3.5 or later

Type Dialog specifier

Usage Title <Window-Title> [-regex “regular expression”]

Arguments <Window-Title>

The text to test against the window title.

-regex

You may also use regular expressions to match part of a URL, such as the domain only.

For more information regarding regular expressions see:

www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html (http://
www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html)
168 Command Reference

http://www.boost.org/doc/libs/1_33_1/libs/regex/doc/syntax_perl.html

Description Use the Title command to retrieve the title of a window and compare it against the
string specified in the <Window-Title> argument. For this block of the application
definition to run, the retrieved window title and the <Window-Title> argument must
match the text supplied to the Title command in the dialog block.

Title is one of the main commands to identify a window. However, the Title
command alone may not be enough – if there is more than one window in a platform
(application) with the specified title, the SecureLogin application definition will run
every time that window is detected.

Make Title the first command in the Dialog block to speed the matching process and
ensure that all detected controls are also created. However, with some applications, if
the text to match is too long, this will slow the detection and creation process.
Consequently, if your application definition is unusually slow to execute, try placing the
Title command after all other commands in the Dialog block.

For Windows applications, either Title or Class should be defined in a Dialog block at
least once.

Uniquely identifying a window To uniquely identify a window, the Title command is
typically used with the Class or Ctrl commands. For more information, see
Section 6.2.10, “Class,” on page 65 and Section 6.2.17, “Ctrl,” on page 73.

NOTE: Use the Window Finder tool to determine the window title.

Example 1 Windows application definition

This example tests the dialog box to see if it has the correct title. If the title is not
correct, the application definition passes on to the next Dialog block.

Logon Dialog Box
Dialog
 Class #32770
 Title "Logon"
EndDialog

Type $Username #1001
Type $Password #1002
Click #1

Example 2 Windows application definition

This example uses a regular expression to identify the window title.

Dialog
 Class "#32770"
 Parent
 Class "#32770"
 Title -regex "training"
 EndParent
 Ctrl #1001
 Ctrl #1002
 Ctrl #1
 Title "Logon - Simple"
EndDialog
Command Reference 169

6.2.99 Type

Use with Java, Terminal Emulator, Web Wizard Script/Advanced Web, or Windows

SecureLogin version 3.5 or later

Type Action

Terminal usage Type [-Raw] <Text>

Windows usage Type <Text> [<#Ctrl-ID>]

Type [-Raw] <Text>

Type [-order] <Text> [<#Order-ID>]

Type [-msg] <Text> [<#Ctrl-ID>]

Web usage Type <Text> [<#Field-ID>]

Type <Text> ["password"]

Type [-Raw] <Text>
170 Command Reference

Arguments [-Raw]

By default, when typing into a terminal emulator or Windows application, SecureLogin
verifies that the window exists before continuing. This verification process is disabled
when the -Raw argument is provided. Furthermore, instead of setting the text in the
field directly, the -Raw argument simulates actual keystrokes, causing SecureLogin to
type into whichever window has focus.The -Raw argument can also be used in a Web
application. The -Raw argument attempts to type the text into the window that owns
the Web page (Internet Explorer or Firefox) and works the same as -Raw on Windows
applications.

[-order]

If the control ID's are not constant, utilize the -order argument to instruct SecureLogin
to type into a control based on the creation order and not the tab order. For more
information about the -order argument usage, see “Example 5” on page 174.

[-msg]

The -msg argument can be used when a Type command is sending the data correctly,
but the application is not successfully reading the data. The -msg argument will only
work in Windows applications as the argument simulates the keys being pressed (that
is, key down, character, key up). The -msg argument sends the data character by
character versus sending the text string all at once. This -msg option is often useful for
older Windows applications, particularly old versions of Lotus Notes.

<Text>

The text to type into this area. This text can be static text, such as ABC, or any
SecureLogin variable, such as $Username.

[<#Ctrl-ID>]

For Windows application definitions, this optional argument specifies the control into
which to type the text. Use the Window Finder to extract these control IDs. For more
information, see “Windows specific” on page 173.

[<#Order-ID>]

For Windows application definitions, this parameter specifies which control based on
the creation order in which to type the text.
Command Reference 171

[<#Field-ID>]

For Web application definitions, this optional argument specifies the text field into
which to type the text. For more information, see “Web specific” on page 173.

[“password”]

For Web application definitions, this optional argument specifies the field is of type
"password". HTML controls with the type "password" are masked so that any values
specified will be obscured from view as the user types in the value. For example, typing
password into a field set with the type "password" will display "********" on the
screen. SecureLogin will look at the HTML code to find the field with this type set.
Typically, only password fields are set with this type. Other fields will be of the type
"text". If [password] is used, that application's application definition cannot use a
<#Field-ID> argument. For more information, see “Web specific” on page 173.

For example the following HTML source shows a username and a password field.

<tr>
 <td align="right" width="35%">Username:</td>
 <td align="left"><input name="User.id" id="username"
style="width:198px;" value="" type=text autocomplete="off"
class="text" MAXLENGTH=64></td>
</tr>
<tr>
 <td align="right">Password:</td>
 <td align="left"><input name="User.password"
style="width:198px;" type=password autocomplete="off"
MAXLENGTH=32 class="text" ></td>
</tr>
172 Command Reference

Description Use the Type command to enter data such as user names and passwords into
applications. There are reserved character sequences that are used to type special
characters, for example Tab and Enter. If it is not possible to determine control IDs in a
Windows application, and the Type command is not working, use the SendKey
command instead.

Windows specific In Windows, if the <#Ctrl-ID> argument is:

 Provided, it must be a number that refers to a control ID as identified by the
Window Finder Tool. SecureLogin will then send the contents of the <Text>
argument directly to the window and to the specific control that matches the
<#Ctrl-ID> argument.

 Not specified, SecureLogin will send keystrokes to whichever control has focus. In
the Windows environment, the -Raw option is often useful when the Window
Finder Tool is unable to determine control IDs for the text entry areas of an
application, or these control IDs are changing. If using the -Raw argument, the
<#Ctrl-ID> argument is ignored.

Web specific For Web pages, there are two ways to specify which field receives <Text>.

 The first method uses absolute positioning by means of the <#Field-ID>
argument. The <#Field-ID> is a number that refers to the location of the field
within the HTML form. For example, #1 refers to the first text entry field in the
Web form; #2 refers to the second text entry field, and so on.

 The second method uses relative positioning using the password argument. In
this method the SecureLogin agent first locates the text field within the HTML
form that is a password field, and types <Text> into that field. Other type
commands send their <Text> parameters to fields that are relative to the first
password field.
For example, the Type command immediately preceding the Type command
that has the [Password] argument is sent to the text field immediately preceding
the first password field.

Example 1 Windows application definition

This example shows the use of the Type command in a Windows application
definition.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

Type $Username #1001
Type $Password #1002
Type "DB2" #1003
Click #1
Command Reference 173

Example 2 Windows application definition

This example shows the use of the -Raw argument. This argument is not actually
required for the application but is used as an example.

Calculator Is Active
Dialog
 Class #SciCalc
 Title "Calculator"
EndDialog

Type -Raw "15"
Type -Raw "+"
Type -Raw "20"
Type -Raw "="

Example 3 Windows application definition

This example shows the use of the -msg argument. In this instance the argument is not
actually required for this application but is used as an example.

Calculator Is Active
Dialog
 Class #SciCalc
 Title "Calculator"
EndDialog

Type -msg $Password #480
Example 4 Windows application definition

The following syntax examples compare and contrast the use of the various Type
command arguments.

Type #1 "text"
Will type text into control with ID of 1

Type #1 "text" -order
Will type text into the first control drawn in the application dialog window.

Type #1 "text" -msg
 Will type text character by character into the first control with an ID of 1.

Type #1 "text" -raw
Type #1 "text" -focus
Ignores the unused parameter #1

Example 5 Windows application definition

This example shows the use of the -order argument and demonstrates the possible
syntax that can be used.

Type -order #1 "some text"
Type #2 "some text" -order
Type "some text" -order #3
174 Command Reference

Sending keyboard commands using Type
SecureLogin can send special keyboard keystrokes to Windows and Web-based applications to
emulate the user's keyboard entry. The Type command passes keystrokes to the window that the
application definition is defined for. These special keystrokes include the ability to select menu
items, special keys such as Alt for F1, and other special keyboard combinations.

Special key commands

Raw key commands
You can also use the Type command to send a combination of raw key commands. Section 8.1,
“Windows Keyboard Functions,” on page 187 details the available keyboard sequences you can use
with the Type command.

Example 6 Web application definition

This example shows the use of the HTML type password as an argument to find the
appropriate Password field.

Type $Username
Type $Password Password
In the application definition above, the SecureLogin agent locates the first password
field. The first Type command sends $Username to the field immediately before the
password field. The second Type command sends $Password to the password field.
The same application definition could be rewritten using absolute placement as shown
below. In the following example, the Submit command is also used to automatically
submit the page.

Type $Username #1
Type $Password #2
Submit

Type Simulates

\Alt+<key> Pressing the ALT key plus the desired <key>.

\Shift+<key> Pressing the SHIFT key plus the desired <key>.

\Ctrl+<key> Pressing the CTRL key plus the desired <key>.

\LWin+<key> Pressing the left Windows key plus the desired <key>.

\RWin+<key> Pressing the right Windows key plus the desired <key>.

\Apps+<key> Pressing the Application key plus the desired <key>.

Type Simulates

\|<xxx> The format for sending a raw key command, where <xxx> represents the keyboard code.

\|18+65 Pressing the ALT-A keys in sequence.
Command Reference 175

Type commands used with Terminal Launcher
The use of the Type command to send special characters in a Terminal Emulator definition is
dependent upon the emulator definition defined in tlaunch. The section below applies to only
HLLAPI based emulator definitions for Generic and Advanced Generic emulator definitions, use the
SendKey command. For more information, see SendKey. Listed below are the @ keys that you can
use with the type command for HLLAPI based emulator definitions. These commands perform
specific emulator and mainframe functions. For example, you can send functions such as Enter, Tab,
System Request, and Clear.

The following example shows the use of the @ commands in a Terminal Emulator application
definition:

TYPE @ command

WAITFORTEXT "Log on:"

Type $username

Type @T

Type $password

Type @E

For information about commands that you can use within a Terminal Emulator application
definition, see Terminal Emulator Commands.

6.2.100 WaitForFocus

Use with Windows

SecureLogin version 3.5 or later

Type Flow control

Usage WaitForFocus <#Ctrl-ID> [<Repeat-Loops>]

Arguments <#Ctrl-ID>

The ID number of the control with the focus.

[<Repeat-Loops>]

The number of repeat-loops that will run.

Description Use the WaitForFocus command to suspend the running of the application
definition until the <#Ctrl-ID> has received keyboard focus, or the <Repeat-Loops>
expire. The <Repeat-Loops> is an optional value that defines the number of loop
cycles to run. The <Repeat-Loops> value defaults to 3000 loops if nothing is set. Once
focus is received, the application definition continues.

Set the value of <Repeat-Loops> to a negative number, for example, WaitForFocus
"$1065" "-1", for the loop to never expire.

NOTE: Do not place WaitForFocus commands within Dialog / EndDialog statements.
176 Command Reference

6.2.101 WaitForText

Syntax examples WaitForFocus #301
WaitForFocus #301 "2000"
WaitForFocus #301 "0"
WaitForFocus #301 "-1"

Example 1 Windows application definition

This example will look for a window that matches the criteria specified in the Dialog/
EndDialog section. Once found, it will wait indefinitely for control 301 to receive focus
before it will submit the user’s credentials to the application.

Logon Dialog Box
Dialog
 Class #32770
 Title "Log on"
EndDialog

WaitForFocus #301 "-1"
Type $Username
Type \T
Type $Password
Type \N

Example 2 This example has the WaitForFocus command suspend the running of the
application definition until control ID #15 is reached and a message box with “love”
should appear.

BeginSection: "Logon Window"
Dialog
 Class "Notepad"
 Title "Untitled - Notepad"
EndDialog

Setprompt "Optional:"
Here the correct ID with the loops set to 0
WaitForFocus #15 0
Set ?thu "love\me"
RegSplit "(.*)\\(.*)" ?thu ?Domain ?User
MessageBox ?Domain
EndSection: "Logon Window"

Use with Terminal Emulator

SecureLogin version 3.5 or later

Type Flow control

Usage WaitForText <Text>

Arguments <Text>

The text for which the application definition is waiting.
Command Reference 177

6.2.102 While/Endwhile

Description Use WaitForText to make SecureLogin wait for the specified text to display before
continuing. For example, you may make SecureLogin wait for a user name field to
display before attempting to type a user name.

The text may appear anywhere on the terminal screen and is usually case-sensitive
(this depends on the Terminal Emulator itself). If the text is written in the wrong case,
the terminal launcher pauses and tries to find the text in the correct case, until the
terminal screen times out.

As WaitForText searches with the character case specified in <Text>, it is common
practice to remove the initial letter from the first word. For example, WaitForText
"logon" will work regardless of whether the text "logon" or "Logon" is displayed.

Also, some terminal emulators do not correctly match text that is hard against the left
margin of the window. In this case, try to match text without the leading character.

Example Terminal Launcher application definition

This command instructs SecureLogin to wait for the text ogin: to appear on the
emulator screen before entering the user name. It will then wait for password: to
display before entering the password.

The WaitForText cuts off the first character because it finds both Password and
password, and responds to all password entry points.

WaitForText "ogin:"
Type $Username
Type @E
WaitForText "assword:"
Type $Password
Type @E

Use with Startup, Terminal Emulator, Web, or Windows

SecureLogin version 7.0.3 HF1 or later

Type Flow control

Usage 1 While <Value1> <Gt|Lt> <Value2>
#Do This
Endwhile

Usage 2 While <Value1> <Eq|NotEQ > <Value2> [-I|-S]
#Do This
Endwhile

Usage 3 While <Value1> <-In|-NotIn> <Value2> [-I|-S]
#Do This
Endwhile

Usage 4 While -Text [-Frame] <Text>
#Do This
Endwhile

Usage 5 While -Exist|-NotExist <Variable>
#Do This
Endwhile
178 Command Reference

NOTE: The following commands are not supported when using Google Chrome:

 Highlight
 Type
 Click
 Submit
 SetCheckbox
 Select
 DumpPage
 GetCheckBoxState

Arguments <Value1>

The left side of the expression for evaluation.
 <Value2>

The right side of the expression for evaluation.
 <Text>

The text for which you are searching.

Description Condition: It is a boolean expression. If condition is nothing, then SecureLogin
considers the condition as False.

While: The condition following the While command runs until the condition is True.

Endwhile: Terminates the definition of the While block.

Text comparison operators supported The text comparison operators supported by
the While command are:

 Eq: True if the left side is equal to the right side.
 NotEQ: True if the left side is not equal to the right side.
 -In: True if the left side is a substring of the right side.
 -NotIn: True if the left side is not a substring of the right side.
 -SiteDeparted: Checks if the current document is still active or not.

When using text comparison operators, you may optionally specify if the comparison is
to consider the case of strings being compared. If -I is specified, the comparison is case-
insensitive. If -S is specified, the comparison is case-sensitive. By default, Eq and NotEQ
operators are not case-sensitive. -In and -NotIn operators are case-sensitive.

An operator is also supplied to directly query the application for a particular string:-
Text: Evaluates to true if the specified text is found in the application windows of the
application. For Internet Explorer application definitions, you can supply an optional -
Frame argument, which restricts the command to look for the specified text in the
current frame.

Numerical comparison operators supported: Two numerical comparison operators are
supported by the While command, Gt and Lt. The command evaluates to true if the
left side is greater than or less than (respectively) the right side. This is a numerical
comparison, so the left and right sides must be numbers.

An operator is supplied to check for the existence of a stored variable:

 -Exists: True if the specified variable exists.
 -NotExist: True if the specified variable does not exist.
Command Reference 179

180 Command Reference

7 7Testing Application Definitions

To allow Administrators and other application definition writers to practice their application
definition creation skills, the Password Test application is included in the software package. It is
designed to replicate an application logon panel and supports the following processes:

 Initial log in
 Wrong password
 Password change

If you do not have the test application, contact Technical Support.

The following example, application definition for the Password Test application, further explains the
SecureLogin application definition principles.

 Example Application Definition for the Test Application
 Application Definition Explained
 Dialog Boxes

7.1 Example Application Definition for the Test Application
The application definition for the PSL Password Test Application (PasswordTest.exe) provides an
example of a typical Windows application definition, including error handling and changing the
password. Remember, the password for this application is hard-coded to single when the application
is closed and restarted. This can cause confusion when setting strong password policies and
changing passwords. You must also create a password policy called PwdTestPolicy, according to the
password policy defined in this application definition. The password policy must require a minimum
of 6 characters, but no complex rules, in order to use single as a password.

Here is the sample application definition in its entirety. Following this application definition is the
explanation of what each section does.

Set Password Policy
RestrictVariable $Password PwdTestPolicy
==== BeginSection: Log on ====
Dialog
 Class "#32770"
 Ctrl #1001
 Title "Log on"
EndDialog
SetPrompt "Username =====>"
Type $Username #1001
SetPrompt "Password =====>"
Type $Password #1002
SetPrompt "Domain =====>"
Type $Domain #1003
Testing Application Definitions 181

Click #1
SetPrompt "Please enter your user name and password to access Password Test.
SecureLogin will remember and automatically log you on in future. IT Help Desk
x4532"
==== EndSection: Log on ====
==== BeginSection: Log on failure ====
Dialog
 Class "#32770"
 Title "Log on failure"
EndDialog
Read the error message and set it as a temporary variable, then clear it
ReadText #65535 ?ErrorMessage
Click #2
If log on failed, display the current stored Username and Password and prompt the
user to verify them, then retry log on
If "You have failed to log on." -In ?ErrorMessage
 DisplayVariables "Log on to Password Test failed. The password for this
application must be single when it first starts. IT Help Desk x4532"
Press Alt>F and L to invoke the logon box so the user doesn't have to.
 Type -Raw "\Alt+F"
 Type -Raw "L"
 Type $Username
 Type $Password
 Type $Domain
EndIf
==== EndSection: Log on ====
==== Begin Section: Change Password ====
Change Password Dialog Box
Dialog
Class "#32770"
Title "Change Password"
EndDialog
Backup password, fill in the old user name and password, then start the change
password routine
Set ?PwdBackup $Password
Type $Username #1015
Type $Password #1004
ChangePassword ?NewPwd "Please enter a new password for this application."
Type ?NewPwd #1005
Type ?NewPwd #1006
Click #1

182 Testing Application Definitions

Change password successful messageDialog
 Class "#32770"
 Ctrl #65535 "You have changed your password successfully."
 Title "Change successful"
EndDialog
Clear application owned message and accept new password
Click #2
Set $Password ?NewPwd
==== End Section: Change Password ====

7.2 Application Definition Explained
You can use the same application definition to show what function each section performs. Dialog/
EndDialog blocks define a Windows dialog box. When the dialog box appears, SecureLogin detects
that this dialog box is based on the information found within the dialog block. The Dialog/
EndDialog block must contain information for the block to be unique, or the application definition
runs when other dialog boxes owned by the same executable with the same information appear.

When SecureLogin detects that all the information between Dialog and EndDialog is contained in
the dialog box on the screen (for example, the application login box, the change password box, or
the failed logon box), it runs the application definition commands until it sees the next dialog
statement or the end of the application definition, whichever is applicable. The order does not
matter in Windows application definitions, because SecureLogin watches for all dialog boxes while
the executable is running. Use a logical order for troubleshooting purposes.

7.3 Dialog Boxes
The following application definition example shows screen captures of the relevant dialog boxes. You
can use the Window Finder tool to gather information about the title of the window, class names,
dialog IDs, and so on. Use the wizard to automate the application definition creation.

Application definition section Comments

Set Password PolicyRestrictVariable
$Password PwdTestPolicy

This restricts the $Password variable to comply with
the Password Policy "PwdTestPolicy".

==== BeginSection: Log on ====Dialog
Class "#32770" Ctrl #1001 Title "Log
on"EndDialog

When PasswordTest.exe runs, SecureLogin
watches for dialog boxes that appear and match the
information defined between the Dialog/
EndDialog commands.

You can specify all values, or a few, as long as the
information specified is unique to that dialog box.
Testing Application Definitions 183

SetPrompt "Username =====>
"Type $Username #1001
SetPrompt "Password =====>
"Type $Password #1002
SetPrompt "Domain =====>"
Type $Domain #1003
Click #1
SetPrompt "Please enter your Username and
Password to access NSL Test. SecureLogin
will remember and automatically log you
on in future. IT Helpdesk x4546"
==== EndSection: Log on ====

Type the stored ($) Username variable into #1001,
and so on. SetPrompt is used to customize the
window the user sees when there are no
credentials stored.

When the user first runs an application that is
newly enabled for single sign-on, SecureLogin
prompts for their login credentials, and stores and
remembers them for future login attempts.

The title is Log In.

The Class is #32770.

The Username field is Control ID #1001.

The Password field is Control ID #1002.

The Other field is Control ID #1003.

The OK button is Control ID #1.

This dialog box is only displayed the first time the
application definition is run by a user. It prompts
the user to enter credentials for SecureLogin to
store.

The SetPrompt command is used throughout the
example application.

This is the login failure dialog box.

The title is Login Failure.

The class is #32770.

The OK button is Control ID #2.

The error message is Control ID #65535

Application definition section Comments
184 Testing Application Definitions

This is the Change Password dialog box.

The Username field is Control ID #1015.

The Old Password field is Control ID #1004.

The New Password field is Control ID #1005.

The Confirm New Password field is Control ID
#1006.

The OK button is Control ID #1.

The ChangePassword command is used in the
example application definition to display a dialog
box for the user to enter a new password.

The dialog box is customized to provide more
information for the user.

Application definition section Comments
Testing Application Definitions 185

186 Testing Application Definitions

8 8Reference Commands and Keys

 Section 8.1, “Windows Keyboard Functions,” on page 187
 Section 8.2, “Terminal Emulator Commands,” on page 192

8.1 Windows Keyboard Functions
The following reference tables list the Windows keyboard functions. You can use these functions in
conjunction with the Type command by referencing the appropriate keyboard code.

Do not type quotation marks before and after the keys. In this case the keys are taken literally, as
shown in the following table.

Table 8-1 Typing Keys

For more information about the Type command, see Section 6.2.99, “Type,” on page 170.

Table 8-2 Windows Keyboard Functions

For this command Type

Alt+Print Screen \Alt+\|44

Shift+Home \Shift+\|36

Shift+End \Shift+\|35

Function Decimal Comment

Left mouse button 1

Right mouse button 2

CTRL-Break 3

Middle mouse button 4

X1 mouse button 5

X2 mouse button 6

Backspace 8

Tab 9

Clear 12 5 on the keypad

Enter 13

Shift 16
Reference Commands and Keys 187

Ctrl 17

Alt 18

Pause 19

Cap Lock 20

Escape 27

Space 32

PageUp 33

PageDown 34

End 35

Home 36

Left-arrow 37

Up-arrow 38

Right-arrow 39

Down 40

Select 41

Execute 43

Print 44

Insert 45

Delete 46

Help Key 47

0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

A 65

B 66

Function Decimal Comment
188 Reference Commands and Keys

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

K 75

L 76

M 77

N 78

O 79

P 80

Q 81

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90

Left Windows Key 91

Right Windows Key 92

Application Key 93

Sleep Key 94

Keypad 0 96

Keypad 1 97

Keypad 2 98

Keypad 3 99

Function Decimal Comment
Reference Commands and Keys 189

Keypad 4 100

Keypad 5 101

Keypad 6 102

Keypad 7 103

Keypad 8 104

Keypad 9 105

Keypad asterisk (*) 106

Keypad plus sign (+) 107

Keypad separator 108

Keypad minus sign (-) 109

Keypad period (.) 110

Keypad slash mark (/) 111

F1 key 112

F2 key 113

F3 key 114

F4 key 115

F5 key 116

F6 key 117

F7 key 118

F8 key 119

F9 key 120

F10 key 121

F11 key 122

F12 key 123

F13 key 124

F14 key 125

F15 key 126

F16 key 127

F17 key 128

F18 key 129

F19 key 130

F20 key 131

Function Decimal Comment
190 Reference Commands and Keys

F21 key 132

F22 key 133

F23 key 134

F24 key 135

Num Lock key 144

Scroll Lock 145

Left Shift 160

Right Shift 161

Left Control 162

Right Control 163

Left Menu 164

Right Menu 165

Browser Back key 166 Applies to Windows 2000 +

Browser Forward key 167 Applies to Windows 2000 +

Browser Refresh key 168 Applies to Windows 2000 +

Browser Stop key 169 Applies to Windows 2000 +

Browser Search key 170 Applies to Windows 2000 +

Browser Favorites key 171 Applies to Windows 2000 +

Browser Start and Home key 172 Applies to Windows 2000 +

Volume Mute key 173 Applies to Windows 2000 +

Volume Down key 174 Applies to Windows 2000 +

Volume Up key 175 Applies to Windows 2000 +

CD Next Track key 176 Applies to Windows 2000 +

CD Previous Track key 177 Applies to Windows 2000 +

CD Stop Media key 178 Applies to Windows 2000 +

CD Play/Pause key 179 Applies to Windows 2000 +

Launch Mail key 180 Applies to Windows 2000 +

Media Select key 181 Applies to Windows 2000 +

Start Application 1 key 182 Applies to Windows 2000 +

Start Application 2 key 183 Applies to Windows 2000 +

; 186 Semi Colon/Colon

= 187 Equals/Plus Key

Function Decimal Comment
Reference Commands and Keys 191

8.2 Terminal Emulator Commands
The following table lists the terminal commands in terminal emulator application definitions.

, 188 Comma/Less Than

- 189 Minus/Underscore

. 190 Period/Greater Than

/ 191 Slash/Question Mark

` 192 Single Open Quote/Tilde

[219 Left Square/Curley Bracket

\ 220 Back slash/Pipe

] 221 Right Square/Curley Bracket

' 222 Single Close Quote Double Quote

Play Key 250

Zoom Key 251

Function Decimal Comment

Type Command Meaning Type Command Meaning

@B Left Tab @A@C Test

@C Clear @A@D Word Delete

@D Delete @A@E Field Exit

@E Enter @A@F Erase Input

@F Erase EOF @A@H System Request

@H Help @A@I Insert Toggle

@I Insert @A@J Cursor Select

@J Jump (Set Focus) @A@L Cursor Left Fast

@L Cursor Left @A@Q Attention

@N New Line @A@R Device Cancel (Cancels Print Presentation Space)

@O Space @A@T Print Presentation Space

@P Print @A@U Cursor Up Fast

@R Reset @A@V Cursor Down Fast

@T Right Tab @A@Z Cursor Right Fast

@U Cursor Up @A@9 Reverse Video

@V Cursor Down @A@b Underscore
192 Reference Commands and Keys

@X* DBCS (Reserved) @A@c Reset Reverse Video

@Y Caps Lock (No
action)

@A@d Red

@Z Cursor Right @A@e Pink

@0 Home @A@f Green

@1 PF1/F1 @A@g Yellow

@2 PF2/F2 @A@h Blue

@3 PF3/F3 @A@i Turquoise

@4 PF4/F4 @A@l Reset Host Colors

@5 PF5/F5 @A@j White

@6 PF6/F6 @A@t Print (Personal Computer)

@7 PF7/F7 @A@y Forward Word Tab

@8 PF8/F8 @A@z Backward Word Tab

@9 PF9/F9 @A@ - Field -

@a PF10/F10 @A@< Record Backspace

@b PF11/F11 @A@ + Field +

@c PF12/F12 @S@x Dup

@d PF13 @S@E Print Presentation Space or Host

@e PF14 @S@y Field Mark

@f PF15 @X@c Split Vertical Bar (¦)

@g PF16 @X@7 Forward Character

@h PF17 @X@6 Display Attribute

@i PF18 @X@5 Generate SO/SI

@j PF19 @X@1 Display SO/SI

@k PF20 @M@0 VT Numeric Pad 0

@l PF21 @M@1 VT Numeric Pad 1

@m PF22 @M@2 VT Numeric Pad 2

@n PF23 @m@3 VT Numeric Pad 3

@o PF24 @M@4 VT Numeric Pad 4

@q End @M@5 VT Numeric Pad 5

@s ScrLk (No action) @M@6 VT Numeric Pad 6

Type Command Meaning Type Command Meaning
Reference Commands and Keys 193

@t Num Lock (No
action)

@M@7 VT Numeric Pad 7

@u Page Up @M@8 VT Numeric Pad 8

@v Page Down @M@9 VT Numeric Pad 9

@x PA1 @M@- VT Numeric Pad

@y PA2 @M@, VT Numeric Pad

@z PA3 @M@. VT Numeric Pad

@M@h VT Hold Screen @M@e VT Numeric Pad Enter

@M@N Control Code SO @M@f VT Edit Find

@M@M Control Code CR @M@i VT Edit Insert

@M@L Control Code FF @M@r VT Edit Remove

@M@K Control Code VT @M@s VT Edit Select

@M@J Control Code LF @M@p VT Edit Previous Screen

@M@I Control Code HT @M@n VT Edit Next Screen

@M@H Control Code BS @M@a VT PF1

@M@G Control Code BEL @M@b VT PF2

@M@F Control Code
ACK

@M@c VT PF3

@M@(space) Control Code
NUL

@M@d VT PF4

@M@E Control Code
ENQ

@M@O ControlCode S1

@M@D Control Code EOT @M@Q ControlCode DC1

@M@C Control Code ETX @M@P ControlCode DLE

@M@B Control Code STX @M@A ControlCode SOH

Type Command Meaning Type Command Meaning
194 Reference Commands and Keys

9 9Application Definition Commands for
SNMP Alerts

SecureLogin produces Simple Network Management Protocol (SNMP) traps for use with SNMP
based network monitoring software. One or more traps can be configured within a single application
definition script to indicate errors or other status related information.

NOTE: Copy the LIBSNMP.DLL file from the SecureLogin 8 CD located at
<CD_ROOT>\SecureLogin\Tools\Unsupported\SNMP to the Windows\System32 folder.

 You can also find the following files in the same location as the LIBSNMP.DLL file.
 SecureLogin.mib: mib file for SNMP management console.
 slsnmp.exe: Executable to send SNMP trap.

9.1 Creating an SNMP Alert
To produce an SNMP alert, place the following command in the application definition where you
would like to create the alert:

NOTE: The required slsnmp.exe file is not copied to the machine during installation. It must to be
copied from the SecureLogin 8 CD to the \Program Files\NetIQ\SecureLogin folder.

Run C:\Program Files\NetIQ\SecureLogin\slsnmp.exe <Community Name>
<Host IP Address> <Text>
Where:

 <Community Name> is the case-sensitive community name to which this computer sends trap
messages.

 <Host IP Address> is the IP address of the SNMP host.
 <Text> is the text displayed as the message at the host.

9.2 Example
The following is an example application definition:

Dialog
 Class #32770
 Title "Incorrect Password"
EndDialog
Run "C:\Program Files\NetIQ\SecureLogin\Slsnmp.exe" SNMPCOmmunity1 192.168.156.23
"Incorrect password in finance system.
MessageBox "You have entered an incorrect password. The administrator has been
notified. Please restart the application and try again."
 "PasswordText.exe"
Application Definition Commands for SNMP Alerts 195

196 Application Definition Commands for SNMP Alerts

	NetIQ SecureLogin 9.0 Application Definition Guide
	About This Guide
	1 Application Definition Language: An Overview
	1.1 What Is an Application Definition
	1.2 Advantages of Using Application Definitions
	1.3 Using Application Definitions
	1.4 Defining Applications Enabled for Single Sign-On
	1.5 Corporate Definitions
	1.6 Using Dialog Specifier Commands
	1.7 Reading from and Writing to Variables
	1.7.1 Using Characters Interpretable by SecureLogin

	2 Application Definition Command Quick Reference
	3 Managing Application Definitions
	3.1 Application Definition Checklist
	3.2 Managing Predefined Applications and Application Definitions
	3.3 Modifying Predefined Applications and Application Definitions
	3.3.1 Building an Application Definition in the Personal Management Utility

	3.4 Windows Application Definition Tools
	3.4.1 Finding Application Details with Window Finder
	3.4.2 Finding Application Details with the Login Watcher

	3.5 Application Definition Elements

	4 Application definition variables
	4.1 Types of Variables
	4.1.1 Using a variable to change the default platform
	4.1.2 Directory Attribute Variables
	4.1.3 Stored Variables
	4.1.4 Runtime Variables

	4.2 SecureLogin Supported Variables
	4.3 Application Definition Best Practices
	4.3.1 Symbols Used
	4.3.2 Blank Line Between Sections
	4.3.3 Capitalization
	4.3.4 Comments
	4.3.5 Indent Section
	4.3.6 Password Policy Names
	4.3.7 Quotation Marks
	4.3.8 Regular Expressions
	4.3.9 Switches
	4.3.10 Variables
	4.3.11 Writing Subroutine Sections

	5 Support for Dynamic Controls
	6 Command Reference
	6.1 Command Reference Conventions
	6.1.1 Command Information
	6.1.2 Web Wizard Application Definition Conventions
	6.1.3 Auditing
	6.1.4 One Time Passwords

	6.2 Commands
	6.2.1 AAVerify
	6.2.2 Add
	6.2.3 Attribute
	6.2.4 AuditEvent
	6.2.5 BeginSplashScreen/EndSplashScreen
	6.2.6 BooleanInput
	6.2.7 Break
	6.2.8 Call
	6.2.9 ChangePassword
	6.2.10 Class
	6.2.11 ClearPlat
	6.2.12 ClearSite
	6.2.13 Click
	6.2.14 ClickElement
	6.2.15 ClickInput
	6.2.16 ConvertTime
	6.2.17 Ctrl
	6.2.18 DebugPrint
	6.2.19 Decrement
	6.2.20 Delay
	6.2.21 Dialog/EndDialog
	6.2.22 DisplayVariables
	6.2.23 Divide
	6.2.24 DumpPage
	6.2.25 EndScript
	6.2.26 Event/Event Specifiers
	6.2.27 FocusInput
	6.2.28 GenerateOTP
	6.2.29 GetCheckBoxState
	6.2.30 GetCommandLine
	6.2.31 GetEnv
	6.2.32 GetHandle
	6.2.33 GetIni
	6.2.34 GetMD5
	6.2.35 GetReg
	6.2.36 GetDirectoryStatus
	6.2.37 GetSessionName
	6.2.38 GetText
	6.2.39 GetURL
	6.2.40 GoToURL
	6.2.41 Highlight
	6.2.42 If/Else/EndIf
	6.2.43 Include
	6.2.44 Increment
	6.2.45 KillApp
	6.2.46 Local
	6.2.47 MatchDomain
	6.2.48 MatchElement
	6.2.49 MatchField
	6.2.50 MatchForm
	6.2.51 MatchOption
	6.2.52 MatchReferer
	6.2.53 MatchRegex
	6.2.54 MatchTitle
	6.2.55 MatchURL
	6.2.56 MessageBox
	6.2.57 Multiply
	6.2.58 OnException/ClearException
	6.2.59 Parent/EndParent
	6.2.60 PickListAdd
	6.2.61 PickListDisplay
	6.2.62 PositionCharacter
	6.2.63 PressInput
	6.2.64 ReadInput
	6.2.65 ReadText
	6.2.66 RegSplit
	6.2.67 ReLoadPlat
	6.2.68 Repeat/EndRepeat
	6.2.69 RestrictVariable
	6.2.70 Run
	6.2.71 RunEX
	6.2.72 Select
	6.2.73 SelectListBoxItem
	6.2.74 SelectOption
	6.2.75 SendEvent
	6.2.76 SendKey
	6.2.77 Set
	6.2.78 SetCheckBox
	6.2.79 SetCursor
	6.2.80 SetFocus
	6.2.81 SetPlat
	6.2.82 SetPrompt
	6.2.83 Site/Endsite
	6.2.84 -SiteDeparted
	6.2.85 StrCat
	6.2.86 StrLength
	6.2.87 StrLower
	6.2.88 StrLower
	6.2.89 StrReplace
	6.2.90 StrUpper
	6.2.91 Sub/EndSub
	6.2.92 Submit
	6.2.93 Substr
	6.2.94 SubstVar
	6.2.95 Subtract
	6.2.96 Tag/EndTag
	6.2.97 TextInput
	6.2.98 Title
	6.2.99 Type
	6.2.100 WaitForFocus
	6.2.101 WaitForText
	6.2.102 While/Endwhile

	7 Testing Application Definitions
	7.1 Example Application Definition for the Test Application
	7.2 Application Definition Explained
	7.3 Dialog Boxes

	8 Reference Commands and Keys
	8.1 Windows Keyboard Functions
	8.2 Terminal Emulator Commands

	9 Application Definition Commands for SNMP Alerts
	9.1 Creating an SNMP Alert
	9.2 Example

